
Data Intensive Computing Frameworks

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
1394/2/25

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 1 / 95

Big Data

small data big data

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 2 / 95

I Big Data refers to datasets and flows large
enough that has outpaced our capability to
store, process, analyze, and understand.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 3 / 95

The Four Dimensions of Big Data

I Volume: data size

I Velocity: data generation rate

I Variety: data heterogeneity

I This 4th V is for Vacillation:
Veracity/Variability/Value

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 4 / 95

Where Does
Big Data Come From?

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 5 / 95

Big Data Market Driving Factors

The number of web pages indexed by Google, which were around
one million in 1998, have exceeded one trillion in 2008, and its
expansion is accelerated by appearance of the social networks.∗

∗“Mining big data: current status, and forecast to the future” [Wei Fan et al., 2013]

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 6 / 95

Big Data Market Driving Factors

The amount of mobile data traffic is expected to grow to 10.8
Exabyte per month by 2016.∗

∗“Worldwide Big Data Technology and Services 2012-2015 Forecast” [Dan Vesset et al., 2013]

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 7 / 95

Big Data Market Driving Factors

More than 65 billion devices were connected to the Internet by
2010, and this number will go up to 230 billion by 2020.∗

∗“The Internet of Things Is Coming” [John Mahoney et al., 2013]

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 8 / 95

Big Data Market Driving Factors

Many companies are moving towards using Cloud services to
access Big Data analytical tools.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 9 / 95

Big Data Market Driving Factors

Open source communities

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 10 / 95

How To Store and Process
Big Data?

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 11 / 95

But First, The History

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 12 / 95

4000 B.C

I Manual recording

I From tablets to papyrus, to parchment, and then to paper

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 13 / 95

1450

I Gutenberg’s printing press

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 14 / 95

1800’s - 1940’s

I Punched cards (no fault-tolerance)

I Binary data

I 1890: US census

I 1911: IBM appeared

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 15 / 95

1940’s - 1950’s

I Magnetic tapes

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 16 / 95

1950’s - 1960’s

I Large-scale mainframe computers

I Batch transaction processing

I File-oriented record processing model (e.g., COBOL)

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 17 / 95

1960’s - 1970’s

I Hierarchical DBMS (one-to-many)

I Network DBMS (many-to-many)

I VM OS by IBM → multiple VMs on a single physical node.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 18 / 95

1970’s - 1980’s

I Relational DBMS (tables) and SQL

I ACID

I Client-server computing

I Parallel processing

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 19 / 95

1990’s - 2000’s

I Virtualized Private Network connections (VPN)

I The Internet...

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 20 / 95

2000’s - Now

I Cloud computing

I NoSQL: BASE instead of ACID

I Big Data

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 21 / 95

How To Store and Process
Big Data?

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 22 / 95

Scale Up vs. Scale Out (1/2)

I Scale up or scale vertically: adding resources to a single node in a
system.

I Scale out or scale horizontally: adding more nodes to a system.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 23 / 95

Scale Up vs. Scale Out (2/2)

I Scale up: more expensive than scaling out.

I Scale out: more challenging for fault tolerance and software devel-
opment.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 24 / 95

Taxonomy of Parallel Architectures

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 25 / 95

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 26 / 95

Two Main Types of Tools

I Data store

I Data processing

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 27 / 95

Data Store

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 28 / 95

Data Store

I How to store and access files? File System

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 29 / 95

What is Filesystem?

I Controls how data is stored in and retrieved from disk.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 30 / 95

What is Filesystem?

I Controls how data is stored in and retrieved from disk.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 30 / 95

Distributed Filesystems

I When data outgrows the storage capacity of a single machine.

I Partition data across a number of separate machines.

I Distributed filesystems: manage the storage across a network of
machines.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 31 / 95

Distributed Filesystems

I When data outgrows the storage capacity of a single machine.

I Partition data across a number of separate machines.

I Distributed filesystems: manage the storage across a network of
machines.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 31 / 95

Distributed Filesystems

I When data outgrows the storage capacity of a single machine.

I Partition data across a number of separate machines.

I Distributed filesystems: manage the storage across a network of
machines.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 31 / 95

Distributed Filesystems

I When data outgrows the storage capacity of a single machine.

I Partition data across a number of separate machines.

I Distributed filesystems: manage the storage across a network of
machines.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 31 / 95

HDFS (1/2)

I Hadoop Distributed FileSystem

I Appears as a single disk

I Runs on top of a native filesystem, e.g., ext3

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 32 / 95

HDFS (2/2)

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 33 / 95

Files and Blocks (1/2)

I Files are split into blocks.

I Blocks, the single unit of storage.
• Transparent to user.
• 64MB or 128MB.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 34 / 95

Files and Blocks (2/2)

I Same block is replicated on multiple machines: default is 3

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 35 / 95

HDFS Write

I 1. Create a new file in the Namenode’s Namespace; calculate block
topology.

I 2, 3, 4. Stream data to the first, second and third node.

I 5, 6, 7. Success/failure acknowledgment.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 36 / 95

HDFS Read

I 1. Retrieve block locations.

I 2, 3. Read blocks to re-assemble the file.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 37 / 95

What About Databases?

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 38 / 95

Database and Database Management System

I Database: an organized collection of data.

I Database Management System (DBMS): a software that interacts
with users, other applications, and the database itself to capture
and analyze data.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 39 / 95

Database and Database Management System

I Database: an organized collection of data.

I Database Management System (DBMS): a software that interacts
with users, other applications, and the database itself to capture
and analyze data.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 39 / 95

Relational Databases Management Systems (RDMBSs)

I RDMBSs: the dominant technology for storing structured data in
web and business applications.

I SQL is good
• Rich language and toolset
• Easy to use and integrate
• Many vendors

I They promise: ACID

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 40 / 95

Relational Databases Management Systems (RDMBSs)

I RDMBSs: the dominant technology for storing structured data in
web and business applications.

I SQL is good
• Rich language and toolset
• Easy to use and integrate
• Many vendors

I They promise: ACID

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 40 / 95

ACID Properties

I Atomicity

I Consistency

I Isolation

I Durability

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 41 / 95

RDBMS Challenges

I Web-based applications caused spikes.
• Internet-scale data size
• High read-write rates
• Frequent schema changes

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 42 / 95

Scaling RDBMSs is Expensive and Inefficient

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 43 / 95

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 44 / 95

NoSQL

I Avoidance of unneeded complexity

I High throughput

I Horizontal scalability and running on commodity hardware

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 45 / 95

NoSQL Cost and Performance

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 46 / 95

RDBMS vs. NoSQL

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 47 / 95

NoSQL Data Models

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 48 / 95

NoSQL Data Models: Key-Value

I Collection of key/value pairs.

I Ordered Key-Value: processing over key ranges.

I Dynamo, Scalaris, Voldemort, Riak, ...

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 49 / 95

NoSQL Data Models: Column-Oriented

I Similar to a key/value store, but the value can have multiple at-
tributes (Columns).

I Column: a set of data values of a particular type.

I BigTable, Hbase, Cassandra, ...

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 50 / 95

NoSQL Data Models: Document-Based

I Similar to a column-oriented store, but values can have complex
documents, e.g., XML, YAML, JSON, and BSON.

I CouchDB, MongoDB, ...

{

FirstName: "Bob",

Address: "5 Oak St.",

Hobby: "sailing"

}

{

FirstName: "Jonathan",

Address: "15 Wanamassa Point Road",

Children: [

{Name: "Michael", Age: 10},

{Name: "Jennifer", Age: 8},

]

}

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 51 / 95

NoSQL Data Models: Graph-Based

I Uses graph structures with nodes, edges, and properties to represent
and store data.

I Neo4J, InfoGrid, ...

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 52 / 95

Data Processing

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 53 / 95

Challenges

I How to distribute computation?

I How can we make it easy to write distributed programs?

I Machines failure.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 54 / 95

Idea

I Issue:
• Copying data over a network takes time.

I Idea:
• Bring computation close to the data.
• Store files multiple times for reliability.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 55 / 95

Idea

I Issue:
• Copying data over a network takes time.

I Idea:
• Bring computation close to the data.
• Store files multiple times for reliability.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 55 / 95

MapReduce

I A shared nothing architecture for processing large data sets with a
parallel/distributed algorithm on clusters.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 56 / 95

Simplicity

I Don’t worry about parallelization, fault tolerance, data distribution,
and load balancing (MapReduce takes care of these).

I Hide system-level details from programmers.

Simplicity!

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 57 / 95

Warm-up Task (1/2)

I We have a huge text document.

I Count the number of times each distinct word appears in the file

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 58 / 95

Warm-up Task (2/2)

I File too large for memory, but all 〈word, count〉 pairs fit in memory.

I words(doc.txt) | sort | uniq -c
• where words takes a file and outputs the words in it, one per a line

I It captures the essence of MapReduce: great thing is that it is
naturally parallelizable.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 59 / 95

Warm-up Task (2/2)

I File too large for memory, but all 〈word, count〉 pairs fit in memory.

I words(doc.txt) | sort | uniq -c
• where words takes a file and outputs the words in it, one per a line

I It captures the essence of MapReduce: great thing is that it is
naturally parallelizable.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 59 / 95

Warm-up Task (2/2)

I File too large for memory, but all 〈word, count〉 pairs fit in memory.

I words(doc.txt) | sort | uniq -c
• where words takes a file and outputs the words in it, one per a line

I It captures the essence of MapReduce: great thing is that it is
naturally parallelizable.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 59 / 95

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 60 / 95

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 60 / 95

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 60 / 95

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 60 / 95

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 60 / 95

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 60 / 95

Example: Word Count

I Consider doing a word count of the following file using MapReduce:

Hello World Bye World

Hello Hadoop Goodbye Hadoop

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 61 / 95

Example: Word Count - map

I The map function reads in words one a time and outputs (word, 1)
for each parsed input word.

I The map function output is:

(Hello, 1)

(World, 1)

(Bye, 1)

(World, 1)

(Hello, 1)

(Hadoop, 1)

(Goodbye, 1)

(Hadoop, 1)

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 62 / 95

Example: Word Count - shuffle

I The shuffle phase between map and reduce phase creates a list of
values associated with each key.

I The reduce function input is:

(Bye, (1))

(Goodbye, (1))

(Hadoop, (1, 1))

(Hello, (1, 1))

(World, (1, 1))

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 63 / 95

Example: Word Count - reduce

I The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

I The output of the reduce function is the output of the MapReduce
job:

(Bye, 1)

(Goodbye, 1)

(Hadoop, 2)

(Hello, 2)

(World, 2)

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 64 / 95

Example: Word Count - map

public static class MyMap extends Mapper<...> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

context.write(word, one);

}

}

}

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 65 / 95

Example: Word Count - reduce

public static class MyReduce extends Reducer<...> {

public void reduce(Text key, Iterator<...> values, Context context)

throws IOException, InterruptedException {

int sum = 0;

while (values.hasNext())

sum += values.next().get();

context.write(key, new IntWritable(sum));

}

}

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 66 / 95

Example: Word Count - driver

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.setMapperClass(MyMap.class);

job.setReducerClass(MyReduce.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

}

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 67 / 95

MapReduce Execution

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 68 / 95

MapReduce Weaknesses

I MapReduce programming model has not been designed for complex
operations, e.g., data mining.

I Very expensive, i.e., always goes to disk and HDFS.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 69 / 95

MapReduce Weaknesses

I MapReduce programming model has not been designed for complex
operations, e.g., data mining.

I Very expensive, i.e., always goes to disk and HDFS.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 69 / 95

Solution?

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 70 / 95

Spark

I Extends MapReduce with more operators.

I Support for advanced data flow graphs.

I In-memory and out-of-core processing.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 71 / 95

Spark vs. Hadoop

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 72 / 95

Spark vs. Hadoop

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 72 / 95

Spark vs. Hadoop

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 73 / 95

Spark vs. Hadoop

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 73 / 95

Resilient Distributed Datasets (RDD)

I Immutable collections of objects spread across a cluster.

I An RDD is divided into a number of partitions.

I Partitions of an RDD can be stored on different nodes of a cluster.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 74 / 95

What About Streaming Data?

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 75 / 95

Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 76 / 95

Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 76 / 95

Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 76 / 95

DBMS vs. DSMS (1/3)

I DBMS: persistent data where updates are relatively infrequent.

I DSMS: transient data that is continuously updated.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 77 / 95

DBMS vs. DSMS (2/3)

I DBMS: runs queries just once to return a complete answer.

I DSMS: executes standing queries, which run continuously and pro-
vide updated answers as new data arrives.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 78 / 95

DBMS vs. DSMS (3/3)

I Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 79 / 95

DSMS

I Source: produces the incoming information flows

I Sink: consumes the results of processing

I IFP engine: processes incoming flows

I Processing rules: how to process the incoming flows

I Rule manager: adds/removes processing rules

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 80 / 95

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 81 / 95

What About Graph Data?

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 82 / 95

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 83 / 95

Large Graph

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 84 / 95

Large-Scale Graph Processing

I Large graphs need large-scale processing.

I A large graph either cannot fit into memory of single computer or
it fits with huge cost.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 85 / 95

Data-Parallel Model for Large-Scale Graph Processing

I The platforms that have worked well for developing parallel applica-
tions are not necessarily effective for large-scale graph problems.

I Why?

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 86 / 95

Graph Algorithms Characteristics

I Unstructured problems: difficult to partition the data

I Data-driven computations: difficult to partition computation

I Poor data locality

I High data access to computation ratio

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 87 / 95

Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 88 / 95

Graph-Parallel Processing

I Restricts the types of computation.

I New techniques to partition and distribute graphs.

I Exploit graph structure.

I Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 89 / 95

Data-Parallel vs. Graph-Parallel Computation

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 90 / 95

Vertex-Centric Programing

I Think as a vertex.

I Each vertex computes individually its value: in parallel

I Each vertex can see its local context, and updates its value accord-
ingly.

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 91 / 95

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 92 / 95

Summary

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 93 / 95

Summary

I Scale-out vs. Scale-up

I How to store data?
• Distributed file systems: HDFS
• NoSQL databases: HBase, Cassandra, ...

I How to process data?
• Batch data: MapReduce, Spark
• Streaming data: Spark stream, Flink, Storm, S4
• Graph data: Giraph, GraphLab, GraphX, Flink

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 94 / 95

Summary

I Scale-out vs. Scale-up

I How to store data?
• Distributed file systems: HDFS
• NoSQL databases: HBase, Cassandra, ...

I How to process data?
• Batch data: MapReduce, Spark
• Streaming data: Spark stream, Flink, Storm, S4
• Graph data: Giraph, GraphLab, GraphX, Flink

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 94 / 95

Summary

I Scale-out vs. Scale-up

I How to store data?
• Distributed file systems: HDFS
• NoSQL databases: HBase, Cassandra, ...

I How to process data?
• Batch data: MapReduce, Spark
• Streaming data: Spark stream, Flink, Storm, S4
• Graph data: Giraph, GraphLab, GraphX, Flink

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 94 / 95

Questions?

Amir H. Payberah (AUT) Data Intensive Computing 1394/2/25 95 / 95

