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Nature ...

» Nature has inspired many of our inventions
 Birds inspired us to fly
e Burdock plants inspired velcro
» Etc.




Biological Neurons (1/2)

» Brain architecture has inspired artificial neural networks.
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» Brain architecture has inspired artificial neural networks.
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Biological Neurons (1/2)

>

Brain architecture has inspired artificial neural networks.

v

A biological neuron is composed of

e Cell body, many dendrites (branching extensions), one axon (long extension), synapses

v

Biological neurons receive signals from other neurons via these synapses.

v

When a neuron receives a sufficient number of signals within a few milliseconds, it
fires its own signals.
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Biological Neurons (2/2)

» Biological neurons are organized in a vast network of billions of neurons.

» Each neuron typically is connected to thousands of other neurons.




A Simple Artificial Neural Network

» One or more binary inputs and one binary output

» Activates its output when more than a certain number of its inputs are active.




A Simple Artificial Neural Network

» One or more binary inputs and one binary output

» Activates its output when more than a certain number of its inputs are active.

C=A C=AAB C=AVB

[A. Geron, 0’Reilly Media, 2017]




The Linear Threshold Unit (LTU)

» Inputs of a LTU are numbers (not binary).




The Linear Threshold Unit (LTU)

>

Inputs of a LTU are numbers (not binary).

v

Each input connection is associated with a weight.

v

Computes a weighted sum of its inputs and applies a step function to that sum.

> Z = WXy + WoXo + -+ WpXp = WIX

v

§ = step(z) = step(wTx)




The Perceptron

» The perceptron is a single layer of LTUs.
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The Perceptron

» The perceptron is a single layer of LTUs.
» The input neurons output whatever input they are fed.

» A bias neuron, which just outputs 1 all the time.
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The Perceptron

» The perceptron is a single layer of LTUs.
» The input neurons output whatever input they are fed.
» A bias neuron, which just outputs 1 all the time.
» If we use logistic function (sigmoid) instead of a step function, it computes a con-
tinuous output. Outputs
*, Output
LTU - ' layer
Bias Neuron v Input
(always outputs 1) ! layer

Input Neuron’

(passthrough) 1 2




How is a Perceptron Trained? (1/2)

> The Perceptron training algorithm is inspired by Hebb's rule.
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How is a Perceptron Trained? (1/2)

> The Perceptron training algorithm is inspired by Hebb's rule.

» When a biological neuron often triggers another neuron, the connection between
these two neurons grows stronger.

Outputs
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How is a Perceptron Trained? (2/2)

> Feed one training instance x to each neuron j at a time and make its prediction §.

» Update the connection weights.
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> Feed one training instance x to each neuron j at a time and make its prediction §.

» Update the connection weights.
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>

How is a Perceptron Trained? (2/2)

Feed one training instance x to each neuron j at a time and make its prediction §.
Update the connection weights.
Outputs
?J - (WTX + b) LTU -+ \‘\ Output
J ,! layer
(wj) = cross_entropy(y;j, §;) -
t 0J >
W(nex ) = =Wij — T]M Bias Neuron v Input
1] ’ Wi (always outputs 1) ’,' layer
Input Neuron"
(passthrough) %4 Xz
wi ;: the weight between neurons i and j. ineuts

x;: the ith input value.
§;: the jth predicted output value.
y;: the jth true output value.

7: the learning rate.




Perceptron in TensorFlow

L3

TensorFlow



Perceptron in TensorFlow - First Implementation (1/3)

» n neurons: number of neurons in a layer.

» n_features: number of features.

n_neurons = 3
n_features = 2

Outputs

# placeholder

X = tf.placeholder(tf.float32, shape=(None, n_features), \\ Output
name="X") LTU - /’ layer
y_true = tf.placeholder(tf.int64, shape=(None), -
) =
=T Bias Neuron %\ Input
(always outputs 1) ! layer

# vartables

Input Neuron”
W = tf.get_variable("weights", dtype=tf.float32, o

(passthrough) %1 Xy

initializer=tf.zeros((n_features, n_neurons))) Inputs
b = tf.get_variable("bias", dtype=tf.float32,
initializer=tf.zeros((n_neurons)))




Perceptron in TensorFlow - First Implementation (2/3)

95 = o(w]x+1b)

# make the network
z = tf.matmul(X, W) + b
y_hat = tf.nn.sigmoid(z)
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Perceptron in TensorFlow - First Implementation (2/3)

95 = o(wlx +1)

# make the network
z = tf.matmul(X, W) + b
y_hat = tf.nn.sigmoid(z)

J(wj) = cross_entropy(y;, ;) ZyJ Iog(yJ )

# define the cost
cross_entropy = -y_true * tf.log(y_hat)
cost = tf.reduce_mean(cross_entropy)

nex aJ j
e : Y - (w;)

Wi
# train the model

# 1. compute the gradient of cost with respect to W and b

# 2. update the weights and bias

learning_rate = 0.1

new_W = W.assign(W - learning_rate * tf.gradients(xs=W, ys=cost))
new_b = b.assign(b - learning rate * tf.gradients(xs=b, ys=cost))




Perceptron in TensorFlow - First Implementation (3/3)

» Execute the network.

# execute the model
init = tf.global_variables_initializer()

n_epochs = 100
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
sess.run([new_W, new_b, cost], feed_dict={X: training X, y_true: training_y})




Perceptron in TensorFlow - Second Implementation (1/2)
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z = tf.matmul(X, W) + b
y_hat = tf.nn.sigmoid(z)




Perceptron in TensorFlow - Second Implementation (1/2)

95 =o(wjx+b)

# make the network
z = tf.matmul(X, W) + b
y_hat = tf.nn.sigmoid(z)

J(wj) = cross_entropy(yj, §;) Zyj Iog(yJ

# define the cost
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(z, y_true)
cost = tf.reduce_mean(cross_entropy)




Perceptron in TensorFlow - Second Implementation (1/2)

95 =o(wjx+b)

# make the network
z = tf.matmul(X, W) + b
y_hat = tf.nn.sigmoid(z)

J(wj) = cross_entropy(y;,¥;) ZyJ IOg(yJ )

# define the cost
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(z, y_true)
cost = tf.reduce_mean(cross_entropy)
(next) aJ(Wj)
Wij T Wi
; Wi

# train the model

learning_rate = 0.1
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
training _op = optimizer.minimize(cost)




Perceptron in TensorFlow - Second Implementation (2/2)
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» Execute the network.

# execute the model
init = tf.global_variables_initializer()

n_epochs = 100
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
sess.run(training_op, feed_dict={X: training X, y_true: training_y})




Multi-Layer Perceptron (MLP)



Perceptron Weakness (1/2)

» Incapable of solving some trivial problems, e.g., XOR classification problem. Why?
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» Incapable of solving some trivial problems, e.g., XOR classification problem. Why?
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Perceptron Weakness (2/2)
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Perceptron Weakness (2/2)

Outputs
\\‘ Output
) layer
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> If we minimize J(w), we obtain w; =0, wp =0, and b = 1.




Perceptron Weakness (2/2)

Outputs
\\‘ Output
) layer
Bias Neuron *, Input
(always outputs 1) _ ! layer
Input Neuron
(passthrough) %1 X,
Inputs
0 O 0
0 1 1 ~
X=11 o Y=11 § = step(z),z = wixs + w2x2 + b
1 1 0

» If we minimize J(w), we obtain wy =0, wo =0, and b = %

» But, the model outputs 0.5 everywhere.




Multi-Layer Perceptron (MLP)

» The limitations of Perceptrons can be eliminated by stacking multiple Perceptrons.

» The resulting network is called a Multi-Layer Perceptron (MLP) or deep feedforward
neural network.




Feedforward Neural Network Architecture

» A feedforward neural network is composed of:
e One input layer
¢ One or more hidden layers
e One final output layer




Feedforward Neural Network Architecture

» A feedforward neural network is composed of:
e One input layer
¢ One or more hidden layers
e One final output layer

» Every layer except the output layer includes a bias neuron and is fully connected to
the next layer.
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describing how the functions are composed together.
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The model is associated with a directed acyclic graph
describing how the functions are composed together.
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How Does it Work?

» The model is associated with a directed acyclic graph
describing how the functions are composed together.

» E.g., assume a network with just a single neuron in each layer.

» Also assume we have three functions £(1) | £(2) and
£(3) connected in a chain: § = f(x) = £®) (@ (£(M(x)))

» £(1) is called the first layer of the network.

» £(2) is called the second layer, and so on.

» The length of the chain gives the depth of the model.




XOR with Feedforward Neural Network (1/3)




XOR with Feedforward Neural Network (2/3)
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XOR with Feedforward Neural Network (3/3)
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How to Learn Model Parameters W?



Feedforward Neural Network - Cost Function

» We use the cross-entropy (minimizing the negative log-likelihood) between the train-
ing data y and the model's predictions § as the cost function.

cost(y,§) Zyjlog yJ




Gradient-Based Learning (1/2)

» The most significant difference between the linear models we have seen so far and
feedforward neural network?
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Gradient-Based Learning (1/2)

» The most significant difference between the linear models we have seen so far and
feedforward neural network?

» The non-linearity of a neural network causes its cost functions to become non-convex.
» Linear models, with convex cost function, guarantee to find global minimum.
e Convex optimization converges starting from any initial parameters.

J(w)
A

Plateau

H
- lobal
Local minimum Globa

minimum




Gradient-Based Learning (2/2)

» Stochastic gradient descent applied to non-convex cost functions has no such con-
vergence guarantee.
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» Stochastic gradient descent applied to non-convex cost functions has no such con-
vergence guarantee.
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> For feedforward neural networks, it is important to initialize all weights to small
random values.




Gradient-Based Learning (2/2)

Stochastic gradient descent applied to non-convex cost functions has no such con-
vergence guarantee.

It is sensitive to the values of the initial parameters.

For feedforward neural networks, it is important to initialize all weights to small
random values.

The biases may be initialized to zero or to small positive values.




Training Feedforward Neural Networks

» How to train a feedforward neural network?
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each connection.




Training Feedforward Neural Networks

» How to train a feedforward neural network?

» For each training instance x(}) the algorithm does the following steps:
1. Forward pass: make a prediction (compute () = £(x(1))).

2. Measure the error (compute cost (5%, y(¥))).
3. Backward pass: go through each layer in reverse to measure the error contribution from

each connection.
4. Tweak the connection weights to reduce the error (update W and b).




Training Feedforward Neural Networks

» How to train a feedforward neural network?

» For each training instance x(}) the algorithm does the following steps:
1. Forward pass: make a prediction (compute () = £(x(1))).

2. Measure the error (compute cost (5%, y(¥))).
3. Backward pass: go through each layer in reverse to measure the error contribution from

each connection.
4. Tweak the connection weights to reduce the error (update W and b).

> It's called the backpropagation training algorithm
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Output Unit (1/3)

» Linear units in neurons of the output layer.

v

Given h as the output of neurons in the layer before the output layer.

v

Each neuron j in the output layer produces §; = wJTh + bj.

» Minimizing the cross-entropy is then equivalent to minimizing the mean squared
error.




Output Unit (2/3)

» Sigmoid units in neurons of the output layer (binomial classification).




Output Unit (2/3)

» Sigmoid units in neurons of the output layer (binomial classification).
» Given h as the output of neurons in the layer before the output layer.

> Each neuron j in the output layer produces §; = o(wih +b;).




Output Unit (2/3)

v

Sigmoid units in neurons of the output layer (binomial classification).

v

Given h as the output of neurons in the layer before the output layer.

v

Each neuron j in the output layer produces ;5 = o(wjh + b;).

» Minimizing the cross-entropy.
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Output Unit (3/3)

» Softmax units in neurons of the output layer (multinomial classification).
» Given h as the output of neurons in the layer before the output layer.

» Each neuron j in the output layer produces §; = softmax(wJTh + bj).

"\ Softmax
, output layer
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*\ Hidden layer
’,’ (e.g., ReLU)




Output Unit (3/3)

>

Softmax units in neurons of the output layer (multinomial classification).

v

Given h as the output of neurons in the layer before the output layer.

v

Each neuron j in the output layer produces §; = softmax(wJTh + bj).

» Minimizing the cross-entropy.

"\ Softmax
, output layer
.

*\ Hidden layer
’,’ (e.g., ReLU)
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step function with other activation functions. Why?
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Hidden Units

> In order for the backpropagation algorithm to work properly, we need to replace the
step function with other activation functions. Why?

» Alternative activation functions:
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Hidden Units

> In order for the backpropagation algorithm to work properly, we need to replace the
step function with other activation functions. Why?

» Alternative activation functions:

1. Logistic function (sigmoid): o(z) = H%

2. Hyperbolic tangent function: tanh(z) = 20(2z) — 1

Activation functions Derivatives
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Hidden Units

> In order for the backpropagation algorithm to work properly, we need to replace the
step function with other activation functions. Why?

» Alternative activation functions:

1. Logistic function (sigmoid): o(z) = H%

2. Hyperbolic tangent function: tanh(z) = 20(2z) — 1
3. Rectified linear units (ReLUs): ReLU(z) = max(0, z)

Activation functions Derivatives

o 1.0

05 o4 08
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Feedforward Network in TensorFlow



Feedforward in TensorFlow - First Implementation (1/3)

» n neurons_h: number of neurons in the hidden layer.
» n neurons_out: number of neurons in the output layer.

» n_features: number of features.

n_neurons_h = 4
n_neurons_out =
n_features = 2

3

# placeholder
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
y_true = tf.placeholder(tf.int64, shape=(None), name="y")

# wvartables

Wl = tf.get_variable("weightsl", dtype=tf.float32,
initializer=tf.zeros((n_features, n_neurons_h)))

bl = tf.get_variable("biasl", dtype=tf.float32, initializer=tf.zero((n_neurons_h)))

W2 = tf.get_variable("weights2", dtype=tf.float32,
initializer=tf.zeros((n_features, n_neurons_out)))
b2 = tf.get_variable("bias2", dtype=tf.float32, initializer=tf.zero((n_neurons_out)))




Feedforward in TensorFlow - First Implementation (2/3)

» Build the network.

# make the network

h = tf.nn.sigmoid(tf.matmul(X, Wi) + bl)
z = tf.matmul (h, W2) + b2

y_hat = tf.nn.sigmoid(z)

# define the cost

cross_entropy =
tf.nn.sigmoid_cross_entropy_with_logits(z, y_true)

cost = tf.reduce_mean(cross_entropy)

# train the model
learning_rate = 0.1
optimizer = tf.train.GradientDescentOptimizer (learning_rate)
training_op = optimizer.minimize(cost)




Feedforward in TensorFlow - First Implementation (3/3)
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» Execute the network.

# execute the model
init = tf.global_variables_initializer()

n_epochs = 100
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
sess.run(training_op, feed_dict={X: training X, y_true: training_y})




Feedforward in TensorFlow - Second Implementation

n_neurons_h = 4
n_neurons_out = 3
n_features = 2

# placeholder
X = tf.placeholder(tf.float32, shape=(None, n_features),

name="X")
y_true = tf.placeholder(tf.int64, shape=(None),
name="y")

# make the network

h = tf.layers.dense(X, n_neurons_h, name="hidden",
activation=tf.sigmoid)

z = tf.layers.dense(h, n_neurons_out, name="output")

# the rest as before




Feedforward Network in Keras



Keras

» Keras is a high-level API to build and train deep learning models.

> To get started, import tf.keras to your program.

import temnsorflow as tf
from tensorflow.keras import layers

Keras




Keras Layers (1/2)

> In Keras, you assemble layers tf.keras.layers to build models.

» A model is (usually) a graph of layers.

» There are many types of layers, e.g., Dense, Conv2D, RNN, ...




Keras Layers (2/2)

» Common constructor parameters:

layers.Dense(64, activation=tf.sigmoid, kernel_regularizer=tf.keras.regularizers.11(0.01),
bias_initializer=tf.keras.initializers.constant(2.0))




Keras Layers (2/2)

» Common constructor parameters:

e activation: the activation function for the layer.

layers.Dense(64, activation=tf.sigmoid, kernel_regularizer=tf.keras.regularizers.11(0.01),
bias_initializer=tf.keras.initializers.constant(2.0))




Keras Layers (2/2)

» Common constructor parameters:

e activation: the activation function for the layer.

e kernel _initializer and bias_initializer: the initialization schemes of the layer's
weights.

layers.Dense(64, activation=tf.sigmoid, kernel_regularizer=tf.keras.regularizers.11(0.01),
bias_initializer=tf.keras.initializers.constant(2.0))




Keras Layers (2/2)

» Common constructor parameters:

e activation: the activation function for the layer.

e kernel _initializer and bias_initializer: the initialization schemes of the layer's
weights.

o kernel regularizer and bias_regularizer: the regularization schemes of the
layer's weights, e.g., L1 or L2.

layers.Dense(64, activation=tf.sigmoid, kernel_regularizer=tf.keras.regularizers.11(0.01),
bias_initializer=tf.keras.initializers.constant(2.0))




Keras Models

» There are two ways to build Keras models: sequential and functional.
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Keras Models

» There are two ways to build Keras models: sequential and functional.

» The sequential API allows you to create models layer-by-layer.

» The functional API allows you to create models that have a lot more flexibility.

* You can define models where layers connect to more than just their previous and next
layers.




Keras Models - Sequential Models

> You can use tf.keras.Sequential to build a sequential model.

from tensorflow.keras import layers

model = tf.keras.Sequential()

model.add(layers.Dense (64, activation="relu"))
model.add(layers.Dense (64, activation="relu"))
model.add(layers.Dense (10, activation="softmax"))




Keras Models - Functional Models

» You can use tf.keras.Model to build a functional model.

from tensorflow.keras import layers

inputs = tf.keras.Input(shape=(32,))

x = layers.Dense(64, activation="relu") (inputs)

x = layers.Dense(64, activation="relu") (x)

predictions = layers.Dense(10, activation="softmax") (x)

model = tf.keras.Model(inputs=inputs, outputs=predictions)




Training Keras Models

» Call the compile method to configure the learning process.

> tf.keras.Model.compile takes three important arguments.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training labels, epochs=10, batch_size=32)
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Training Keras Models

» Call the compile method to configure the learning process.
> tf.keras.Model.compile takes three important arguments.
e optimizer: specifies the training procedure.

e loss: the cost function to minimize during optimization, e.g., mean squared error
(mse), categorical _crossentropy, and binary crossentropy.

e metrics: used to monitor training.

» Call the fit method to fit the model the training data.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training labels, epochs=10, batch_size=32)




Evaluate and Predict

» tf.keras.Model.evaluate: evaluate the cost and metrics for the data provided.

> tf.keras.Model.predict: predict the output of the last layer for the data provided.

model.evaluate(test_data, test_labels, batch_size=32)

model.predict(test_data, batch_size=32)




P .
bl Feedforward Network in Keras

%ﬂm&@

n_neurons_h = 4
n_neurons_out =
n_epochs = 100
learning_rate = 0.1

3

model = tf.keras.Sequential()
model.add(layers.Dense(n_neurons_h, activation="sigmoid"))
model.add(layers.Dense(n_neurons_out, activation="sigmoid"))

model.compile(optimizer=tf.train.GradientDescentOptimizer(learning_rate.001),
loss="binary_crossentropy", metrics=["accuracy"])

model.fit(training X, training_y, epochs=n_epochs)




Dive into Backpropagation Algorithm



[https://i.pinimg.com/originals/82/d9/2c/82d92c2c15c580c2b2fce65a83fe0b3f . jpgl
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>

Assume x € R, and two functions £ and g, and also assume y = g(x) and z =
£(y) = £(g(x)).

The chain rule of calculus is used to compute the derivatives of functions, e.g., z,
formed by composing other functions, e.g., g.

v

v

Then the chain rule states that g—z = dzdy
X dy dx

v

Example:
z=f(y)=5y"andy=g(x) =x*+7
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Chain Rule of Calculus (1/2)

>

Assume x € R, and two functions £ and g, and also assume y = g(x) and z =
£(y) = £(g(x)).

The chain rule of calculus is used to compute the derivatives of functions, e.g., z,
formed by composing other functions, e.g., g.

v

v

Then the chain rule states that g—z = dzdy
X dy dx

v

Example:
z=1(y) =5y* and y = g(x) =x* + 7
dz dzdy
dx dy dx
d d
2 — 20y and ¥ = 3x?
dy dx

dz
o 20y° x 3x? = 20(x® +7) x 3x2
X




Chain Rule of Calculus (2/2)

» Two paths chain rule.

z = £(y1,y2) where y; = g(x) and y2 = h(x)
0z _ 0z Oy1 , 0z Oy2
Ox Oy, 0x Oy, Ox




Backpropagation

» Backpropagation training algorithm for MLPs

» The algorithm repeats the following steps:

1. Forward pass
2. Backward pass
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Backpropagation - Forward Pass

» Calculates outputs given input patterns.

» For each training instance
e Feeds it to the network and computes the output of every neuron in each consecutive
layer.
e Measures the network’s output error (i.e., the difference between the true and the
predicted output of the network)
e Computes how much each neuron in the last hidden layer contributed to each output
neuron'’s error.




Backpropagation - Backward Pass

» Updates weights by calculating gradients.
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» Updates weights by calculating gradients.

» Measures how much of these error contributions came from each neuron in the
previous hidden layer

e Proceeds until the algorithm reaches the input layer.




Backpropagation - Backward Pass

» Updates weights by calculating gradients.

» Measures how much of these error contributions came from each neuron in the
previous hidden layer

e Proceeds until the algorithm reaches the input layer.

» The last step is the gradient descent step on all the connection weights in the network,
using the error gradients measured earlier.




Backpropagation Example

>

Two inputs, two hidden, and two output neurons.

v

Bias in hidden and output neurons.

v

Logistic activation in all the neurons.

v

Squared error function as the cost function.

b1.35 b2 60
1




Backpropagation - Forward Pass (1/3)

» Compute the output of the hidden layer

b1.35 b2 60
1 1

netyy = wixXy + woxs + by = 0.15 X 0.05 + 0.2 X 0.1 4+ 0.35 = 0.3775




b1.35 b2 60
1

netyy = wixXy + woxs + by = 0.15 X 0.05 + 0.2 X 0.1 4+ 0.35 = 0.3775
1 o 1

1 + enetny - 1 + 60‘3775
outyy = 0.59688

outns = = 0.59327
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b1.35 b2 60
1

netoy1 = wsoutpi + wgoutys + by = 0.4 X 0.59327 + 0.45 X 0.59688 4+ 0.6 = 1.1059

1 1
outor = 1 + efetor - 1+ el-1059 =0.75136

outez = 0.77292




b1.35 b2 60
1

1 2 1 2
Eo1 = E(targetm — outputet)” = 5(0.01 — 0.75136)“ = 0.27481
Eo2 = 0.02356

1 2
Erotal =  _  (target — output)® = Eoi + Ecp = 0.27481 + 0.02356 = 0.29837




This class is boring...

can we learn about dragons?

[http://marimancusi.blogspot.com/2015/09/are-you-book-dragon.html]




Backpropagation - Backward Pass - Output Layer (1/6)

» Consider ws
» We want to know how much a change in ws affects the total error (6%7;:11)
» Applying the chain rule

output
hi

w5

“rgm wé ﬁa E 1 = %(target o - out,, )*
Eiota =Ec1+Eq
b2

OEtotal OEtota1  Ooutot » Oneto1

Ows  Ooutor Oneto1 Ows




Backpropagation - Backward Pass - Output Layer (2/6)

» First, how much does the total error change with respect to the output? (g‘v‘#"gi)

output
ht

w5

uu'gul w6 ﬁa E . = Y(target - out, )?
Eta “Ep1 +Eop
b2

OEtotal OEtotal Joutoet « Oneto1

Ows Ooutoy Oneto1 Ows




Backpropagation - Backward Pass - Output Layer (2/6)

» First, how much does the total error change with respect to the output? (g‘v‘#"gi)

output
ht

w5

uu'gul w6 E . = Y(target - out, )?

Epta =Ec1 +Eoe

OEtotal o OEtotal « Joutoet « Oneto1
Ows Ooutoy Oneto1 Ows

1 2 1 2
Etotal = E(targetﬂ — oute1)” + E(targetog — oute2)

aEtotal
8011‘001

1
= 725(target01 — oute1) = —(0.01 — 0.75136) = 0.74136




Backpropagation - Backward Pass - Output Layer (3/6)

» Next, how much does the out,; change with respect to its total input neto;?

douts
(Dnersy)

output
hi

w5

nu:;ul w6 ﬁa E 1 = %(target - outy )*
Ewta =Ec1 *Eo2
b2

OEtotal o OEtotal OJoutoy « Oneto1

Ows  Ooutos Oneto1 Ows




Backpropagation - Backward Pass - Output Layer (3/6)

» Next, how much does the out,; change with respect to its total input neto;?

douts
(Dnersy)

output
hi

w5

nu:;m wb E . = %(target - out,, )*

Ewota =Eo1 *Eoz

OEtotal o OEtotal % OJoutoy « Oneto1
Ows Ooutoy Oneto1 Ows

1

outey = ————
o1 1 + efnetol

Ooute

= outoer (1 — outoer) = 0.75136(1 — 0.75136) = 0.18681

Onetot




Backpropagation - Backward Pass - Output Layer (4/6)

01}et°1 )

» Finally, how much does the total net,; change with respect to ws? ( i

output
hi

w5

g —e ﬁa Eon = ltargeto; - out)*
Eta =Eq1 +Eq2
b2

aEtotal o 8Etcta1 6011t01 « 8net01

Ows  Ooutos Onetor Ows




Backpropagation - Backward Pass - Output Layer (4/6)

01}et°1 )

» Finally, how much does the total net,; change with respect to ws? ( i

output
hi

w5

g —e ﬁa Eon = ltargeto; - out)*
Eta =Eq1 +Eq2
b2

1

aEtotal 8Etcta1 6011t01 « 8net01

Ows  Ooutos Onetor Ows

netyy = ws X outp1 + wg X outns + b

Onetoy

— outn1 = 0.59327

8W5




Backpropagation - Backward Pass - Output Layer (5/6)

» Putting it all together:

output
ht

w5

uu'gul w6 ﬁa E . = Y(target - out, )?
Eta “Ep1 +Eop
b2

1

OEtotal OEtotal Joutoet « Oneto1

Ows  Ooutos Oneto1 Ows
aEtotal

= 0.74136 x 0.18681 x 0.569327 = 0.08216

Ous




Backpropagation - Backward Pass - Output Layer (6/6)

» To decrease the error, we subtract this value from the current weight.




Backpropagation - Backward Pass - Output Layer (6/6)

» To decrease the error, we subtract this value from the current weight.

> We assume that the learning rate is 7 = 0.5.

W) e OBttt 4 o5y 0.08216 — 0.35891
Ous
w{*%) = 0.40866
W) — 05113
w{*%) = 0.56137




THIS IS GETTING INTEIIES_]IHG

Keameme.org

[https://makeameme.org/meme/oooh-this]




Backpropagation - Backward Pass - Hidden Layer (1/8)

» Continue the backwards pass by calculating new values for wy, wy, w3, and wa.

» For wy we have:

OEtotal  OEtotal  Ooutpi » Onetpy

oWy a OJouty1 Onetp oWy

b1.35 b2 60
1




Backpropagation - Backward Pass - Hidden Layer (2/8)

» Here, the output of each hidden layer neuron contributes to the output of multiple
output neurons.

aEtotal
8outh1

» E.g., outy affects both out,; and out,s, so needs to take into consideration

its effect on the both output neurons.

OEtota1 _ OEtotal _ Ooutni » Onetp1
8w1 aoutm (‘?nethl HW1
aEtotal o anl anQ

Ooutni  Ooutni Ooutpi




Backpropagation - Backward Pass - Hidden Layer (3/8)

» Starting with -2Est

(7outh1

Epta =Eqi+Eoz

OEtotal _ OEo1 OEo2
Ooutpy n Ooutpy doutpy
OEot  OEo1 Ooutoy Onetot
Ooutn;  Ooutor Onetoy Oouty
OBar  _ 0.74136, outor _ , 1ge81

Odoutoy Onetot

netyy = ws X outp1 + wg X outps + b




Backpropagation - Backward Pass - Hidden Layer (4/8)

» Plugging them together.

Ewota =Ec1 +Eoz

OEo1 OEo1 Ooute Onetoy
= X X = 0.74136 x 0.18681 x 0.40 = 0.0554
Ooutpi Oouto Onetoy Ooutpi
OEo2

= —0.01905

OJoutyy




Backpropagation - Backward Pass - Hidden Layer (4/8)

» Plugging them together.

Ewota =Ec1 +Eoz

OEo1 OEo1 Ooute Onetoy
= x = 0.74136 x 0.18681 X 0.40 = 0.0554

Ooutpi Oouto Onetoy Ooutpi

OE
2 _ _0.01905
OJoutyy
OE OE OE
total _ TRol Y92 .0554 + —0.01905 = 0.03635

Ooutn;  Ooutn: Ooutyy




Backpropagation - Backward Pass - Hidden Layer (5/8)

Joutyy
Onety1

» Now we need to figure out

Eota =Eci+Eoz

aEtotal o 8Etcta1 % aOUthl « Bnethl
6W1 Boutm 6neth1 8W1
1

1 + efnetm

outp =

doutyy

= outps (1 — outpny) = 0.59327(1 — 0.59327) = 0.2413

Onety1




Epta =Eqi+Eoz

OEtota1 _ OEtotal _ Ooutni » Onetn1
8W1 Boutm 6neth1 8W1
netp1 = w1Xy + waXo + by
Onety1
Oy

=X1 = 0.05




Epta =E1+Eop

OEtota1 _ OEtotal _ Ooutni « Onetn1
Oy Oouty Onetyn1 Oy
aEtotal

Owy

= 0.03635 x 0.2413 X 0.05 = 0.00043




Backpropagation - Backward Pass - Hidden Layer (8/8)

» We can now update wy.

» Repeating this for wy, w3, and wy.

Eiota =Ec1+Eoz

o) gy Pl 16 05 x 0.00043 — 0.14978
Owq
w{*%) = 0.19956
(ext) _ 024975
W) = 0.2995
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Challenges of Training Feedforward Neural Networks

>

Challenges ...

v

Overfitting: risk of overfitting a model with large number of parameters.

» Vanishing/exploding gradients: hard to train lower layers.
» Training speed: slow training with large networks. WARNING
CHALLENGES
AHEAD




Overfitting

WARNING

P

CHALLENGES
AHEAD




High Degree of Freedom and Overfitting Problem

» With large number of parameters, a network has a high degree of freedom.

> It can fit a huge variety of complex datasets.

Desired Overfitting

Underfitting
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High Degree of Freedom and Overfitting Problem

>

With large number of parameters, a network has a high degree of freedom.

v

It can fit a huge variety of complex datasets.

v

This flexibility also means that it is prone to overfitting on training set.

v

Regularization: a way to reduce the risk of overfitting.

W

v

It reduces the degree of freedom a model.

.

Desired Overfitting

Underfitting




Avoiding Overfitting Through Regularization
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Early stopping
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>

Early stopping

v

11 and /2 regularization

» Max-norm regularization

v

Dropout

v

Data augmentation




Early Stopping

» As the training steps go by, its prediction error on the training/validation set naturally
goes down.

Learning curves
T

*— Training set loss

0.15.

— Validation set loss|

0.10

0.05f

Loss (negative log likelihood)

0. e

0 50 100 150 200 250

Time (epochs)




Early Stopping

» As the training steps go by, its prediction error on the training/validation set naturally
goes down.

» After a while the validation error stops decreasing and starts to go back up.
e The model has started to overfit the training data.

Learning curves
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Early Stopping

» As the training steps go by, its prediction error on the training/validation set naturally
goes down.

» After a while the validation error stops decreasing and starts to go back up.
e The model has started to overfit the training data.

> In the early stopping, we stop training when the validation error reaches a minimum.

Learning curves
T

e
9
>

*— Training set loss

0.15 — Validation set loss|

e
S

0.05f

Loss (negative log likelihood)

=4

0 50 100 150 200 250

Time (epochs)




Avoiding Overfitting Through Regularization

>

Early stopping

v

I1 and /2 regularization

» Max-norm regularization

v

Dropout

v

Data augmentation




I1 and /2 Regularization (1/4)

» Penalize large values of weights wj.

J(w) = J(w) + AR(w)

» Two questions:

1. How should we define R(w)?
2. How do we determine \?




I1 and /2 Regularization (2/4)

» /1 regression: R(w) =AY "7 _, |wi| is added to the cost function.

3(w) = 3(w) + A s

» /2 regression: R(w) = A>_7_, w? is added to the cost function.

I(w) = J(w) + A wa



I1 and /2 Regularization (3/4)

» Manually implement it in TensorFlow.

# make the network
hidden = tf.layers.dense(X, n_neurons_h, activation=tf.sigmoid, name="hidden")
logit = tf.layers.dense(hidden, n_neurons_out, name="output")
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/1 and /2 Regularization (3/4)

» Manually implement it in TensorFlow.

# make the network
hidden = tf.layers.dense(X, n_neurons_h, activation=tf.sigmoid, name="hidden")
logit = tf.layers.dense(hidden, n_neurons_out, name="output")

# extract the weights of layers
Wl = tf.get_default_graph().get_tensor_by_name("hidden/kernel:0")
W2 = tf.get_default_graph().get_tensor_by_name("output/kernel:0")

# 11 regularization
reg_cost = tf.reduce_sum(tf.abs(W1)) + tf.reduce_sum(tf.abs(W2))

# define the cost
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(logit, y_true)
base_cost = tf.reduce_mean(cross_entropy)

11_param = 0.001
cost = base_cost + 1l1_param * reg_cost

# the rest is as before




I1 and /2 Regularization (5/5)

> Alternatively, we can pass a regularization function to the tf.layers.dense().

# make the network
11_param = 0.001 # 11 regularization hyperparameter

hidden = tf.layers.dense(X, n_neurons_h, activation=tf.sigmoid, name="hidden",
kernel_regularizer=tf.contrib.layers.1l1_regularizer(1l1l_param))

logit = tf.layers.dense(hidden, n_neurons_out, name="output",
kernel_regularizer=tf.contrib.layers.l1_regularizer(11_param))




/1 and /2 Regularization (5/5)

> Alternatively, we can pass a regularization function to the tf.layers.dense().

# make the network
11_param = 0.001 # 11 regularization hyperparameter

hidden = tf.layers.dense(X, n_neurons_h, activation=tf.sigmoid, name="hidden",
kernel_regularizer=tf.contrib.layers.1l1_regularizer(1l1l_param))

logit = tf.layers.dense(hidden, n_neurons_out, name="output",
kernel_regularizer=tf.contrib.layers.l1_regularizer(11_param))

# define the cost
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(logit, y_true)

base_cost = tf.reduce_mean(cross_entropy)
reg_cost = tf.losses.get_regularization_loss()

cost = base_cost + reg_cost

# the rest is as before




Avoiding Overfitting Through Regularization

» Early stopping

» /1 and /2 regularization
» Max-norm regularization
» Dropout

» Data augmentation




Max-Norm Regularization (1/3)

» Max-norm regularization: constrains the weights w; of the incoming connections for
each neuron j.

e Prevents them from getting too large.
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Max-Norm Regularization (1/3)

» Max-norm regularization: constrains the weights w; of the incoming connections for
each neuron j.
e Prevents them from getting too large.

» After each training step, clip wj as below:
r

Wi — Wy ——
T lwll

» We have ||lwj||; < r.
e 1 is the max-norm hyperparameter

1
° HWJH2 = (Ziwij)2 = \/W%,j +W%,j +"’wafl,j




Max-Norm Regularization (2/3)

# make the network
hidden = tf.layers.dense(X, n_neurons_h, activation=tf.sigmoid, name="hidden")
logit = tf.layers.dense(hidden, n_neurons_out, name="output")




Bl Max-Norm Regularization (2/3)

OcH KoN:

# make the network
hidden = tf.layers.dense(X, n_neurons_h, activation=tf.sigmoid, name="hidden")
logit = tf.layers.dense(hidden, n_neurons_out, name="output")

# define the cost
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(logit, y_true)
cost = tf.reduce_mean(cross_entropy)

# define the optimizer
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
training_op = optimizer.minimize(cost)




Max-Norm Regularization (3/3)

> Use tf.clip_by norm.

# maxz-norm regularization - hidden layer
threshold = 1.0

weights = tf.get_default_graph().get_tensor_by_name("hidden/kernel:0")
clipped_weights = tf.clip_by_norm(weights, clip_norm=threshold, axes=1)
clip_weights = weights.assign(clipped_weights)




Max-Norm Regularization (3/3)

> Use tf.clip_by norm.

# maxz-norm regularization - hidden layer
threshold = 1.0

weights = tf.get_default_graph().get_tensor_by_name("hidden/kernel:0")
clipped_weights = tf.clip_by_norm(weights, clip_norm=threshold, axes=1)
clip_weights = weights.assign(clipped_weights)

# executing the model
init = tf.global_variables_initializer()

with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
sess.run(training_op, feed_dict={X: training X, y_true: training_yl})
clip_weights.eval()




Avoiding Overfitting Through Regularization

>

Early stopping

v

I1 and /2 regularization

» Max-norm regularization

v

Dropout

v

Data augmentation




Dropout (1/4)

» Would a company perform better if its employees were told to toss a coin every
morning to decide whether or not to go to work?
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Dropout (2/4)

> At each training step, each neuron drops out temporarily with a probability p.
e The hyperparameter p is called the dropout rate.
* A neuron will be entirely ignored during this training step.
e |t may be active during the next step.
e Exclude the output neurons.

» After training, neurons don't get dropped anymore.




Dropout (3/4)

» Each neuron can be either present or absent.

ORNONNORNO.
» 2% possible networks, where N is the total o“@ 0‘@ @,@ 2
number of droppable neurons. ‘ O O @ OXC
()

)

2

@

e N =4 in this figure. *
T —

Base network
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O,
©x6 046
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©)
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®
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Ensemble of Sub-Networks L




Dropout (4/4)

> Use tf.layers.dropout: specify the dropout rate rather than the keep probability.

# make the network
dropout_rate = 0.5 # == 1 - keep_prob
training = tf.placeholder_with_default(False, shape=(), name="training")

X_drop = tf.layers.dropout(X, dropout_rate, training=training)
hidden = tf.layers.dense(X_drop, n_neurons_h, activation=tf.sigmoid, name="hidden")
hidden_drop = tf.layers.dropout(hidden, dropout_rate, training=training)

logit = tf.layers.dense(hidden_drop, n_neurons_out, name="output")




Dropout (4/4)

> Use tf.layers.dropout: specify the dropout rate rather than the keep probability.

# make the network
dropout_rate = 0.5 # == 1 - keep_prob
training = tf.placeholder_with_default(False, shape=(), name="training")

X_drop = tf.layers.dropout(X, dropout_rate, training=training)
hidden = tf.layers.dense(X_drop, n_neurons_h, activation=tf.sigmoid, name="hidden")
hidden_drop = tf.layers.dropout(hidden, dropout_rate, training=training)

=n

logit = tf.layers.dense(hidden_drop, n_neurons_out, name="output")

# executing the model
init = tf.global_variables_initializer()

with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
sess.run(training_op, feed_dict={X: training X, y_true: training_y, training: True})




Avoiding Overfitting Through Regularization

>

Early stopping

v

11 and /2 regularization

» Max-norm regularization

v

Dropout

v

Data augmentation




Data Augmentation

» One way to make a model generalize better is to train it on more data.

» This will reduce overfitting.

,




Data Augmentation

» One way to make a model generalize better is to train it on more data.

» This will reduce overfitting.

» Create fake data and add it to the training set.

e E.g., in an image classification we can slightly
shift, rotate and resize an image.

e Add the resulting pictures to the training set.




Vanishing /Exploding Gradients

WARNING

S

CHALLENGES
AHEAD




Vanishing/Exploding Gradients Problem (1/4)

» The backpropagation goes from output to input layer, and propagates the error
gradient on the way.
0J(w)
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» Gradients often get smaller and smaller as the algorithm progresses down to the lower
layers.

> As a result, the gradient descent update leaves the lower layer connection weights
virtually unchanged.




Vanishing/Exploding Gradients Problem (1/4)

» The backpropagation goes from output to input layer, and propagates the error
gradient on the way.

0J(w)
ow

W(next) —w—n

» Gradients often get smaller and smaller as the algorithm progresses down to the lower
layers.

> As a result, the gradient descent update leaves the lower layer connection weights
virtually unchanged.

» This is called the vanishing gradients problem.




Vanishing/Exploding Gradients Problem (2/4)

» Assume a network with just a single neuron in each layer.

O wy @ ) @ ws m wy O—*F

* Wi, Wy, - are the weights
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e Cis the cost function




Vanishing/Exploding Gradients Problem (2/4)

» Assume a network with just a single neuron in each layer.

O . @ wy @ wy m wy ‘O—»F
* Wi, Wy, - are the weights

* by,by, - are the biases
e Cis the cost function

» The output aj from the jth neuron is o(z;).
e o is the sigmoid activation function
* zj =w;jaj—1 + b
e E.g., a; = 0(z4) = sigmoid(wsas + bs)




Vanishing/Exploding Gradients Problem (3/4)

» Let's compute the gradient associated to the first hidden neuron (8%01).
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Vanishing/Exploding Gradients Problem (3/4)

» Let's compute the gradient associated to the first hidden neuron (*).

O @ wy @ wg @ wy @ -

ocC ocC Oay 0z Oasz 0z3 Dasy 0z Oay 0z
— = — X — X — X — X — X — X — X — X ——
Oby Oay 0z4 Oaz 0z3 Oas 0zo Oay 0z1 Oby
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Vanishing/Exploding Gradients Problem (3/4)

» Let's compute the gradient associated to the first hidden neuron (8%01).

ocC ocC Oay 0z Oasz 0z3 Dasy 0z Oay 0z
— = — X — X — X — X — X — X — X — X ——
Oby Oag 0z4 Oaz 0z3 Oas 0zo Oay 0z1 Oby

8C 8C 8a4 aW4a3 + b4 6a3 8W3a2 + b3 0a2 8W2a1 + b2 8a1 6W1 ap + b1
— = X — X —]—/— X — X —/—/— X — X —/—— X — X —}———
Oby Oay 0z4 Oas 0z3 Oay tor) Oay 0z Oby

o _ oo
Oby _8a4

X U/(Z4) X Wa X 01(23) X Wz X O'/(ZQ) X Xwp X 0'/(21) x 1




Vanishing/Exploding Gradients Problem (4/4)

» Now, consider oc
Obs

9 _ 0 (aa) x v x o (23)
— Z. W. zZ
Obs Oag 7 (24 420z




Vanishing/Exploding Gradients Problem (4/4)

: ac
» Now, consider b5 -
m s m s m s . B
ocC 0C ’ ’
£:%XU(24)XW4XU(23)

/(24) X Wa X O'/(Z3) X w3 X 0"(22) X Wy X O'/(Zi) x 1
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Bb1 8&4




Vanishing/Exploding Gradients Problem (4/4)

» Now, consider gTCs.
O @ s @ . @ - @_ﬁ
STCB — % x o (z4) X wa X 0 (z3)
;—:1 - 8%1 X 0/(24) X Wa X U/(ZS) X wg X Ul(z2) KW X J/(zi) <t

/ /
> Assume w30 (2z2) < 3 and w0 (z1) < 3
o The gradient ch be a factor of 16 (or more) smaller than 0%.

« This is the essential origin of the vanishing gradient problem.
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Parameter Initialization Strategies (1/2)

» The non-linearity of a neural network causes the cost functions to become non-convex.
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» The non-linearity of a neural network causes the cost functions to become non-convex.

» The stochastic gradient descent on non-convex cost functions performs is sensitive
to the values of the initial parameters.
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Parameter Initialization Strategies (1/2)

» The non-linearity of a neural network causes the cost functions to become non-convex.

» The stochastic gradient descent on non-convex cost functions performs is sensitive
to the values of the initial parameters.

» Designing initialization strategies is a difficult task.

J(w)
A

Plateau

1
1
B w

H
Global
minimum

Local minimum




Parameter Initialization Strategies (2/2)

» The initial parameters need to break symmetry between different units.
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Parameter Initialization Strategies (2/2)

» The initial parameters need to break symmetry between different units.

» Two hidden units with the same activation function connected to the same inputs,
must have different initial parameters.

e The goal of having each unit compute a different function.

» |t motivates random initialization of the parameters.

o Typically, we set the biases to constants, and initialize only the weights randomly.




Overcoming the Vanishing Gradient

» Parameter initiazlization strategies
» Nonsaturating activation function

» Batch normalization
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Nonsaturating Activation Functions (1/4)

» ReLU(z) = max(0, z)

» The dying ReLUs problem.
e During training, some neurons stop outputting anything other than 0.
e E.g., when the weighted sum of the neuron’s inputs is negative, it starts outputting 0.

» Use leaky RelLU instead: LeakyReLU,(z) = max(az, z).
e « is the slope of the function for z < 0.

Leaky RelLU activation function




Nonsaturating Activation Functions (2/4)

» Randomized Leaky ReLU (RReLU)
e « is picked randomly during training, and it is fixed during testing.
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Nonsaturating Activation Functions (2/4)

» Randomized Leaky ReLU (RReLU)

e « is picked randomly during training, and it is fixed during testing.

» Parametric Leaky ReLU (PReLU)
e Learn « during training (instead of being a hyperparameter).

ELU activation function (a = 1)

» Exponential Linear Unit (ELU) ’

F1w () = { 2@ =D =<




Nonsaturating Activation Functions (3/4)

» Which activation function should we use?




Nonsaturating Activation Functions (3/4)

» Which activation function should we use?

» In general logistic < tanh < ReLU < leaky ReLU (and its variants) < ELU

Leaky ReLU activation function ELU activation function (a = 1) .
4 PO U 3 1.0 - =
. i
05 -
N e — Step
2 3 3 0.0 e == Logit
— Tanh
== RelU
! -05
Leak B e —— TSN " SH—
O
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Nonsaturating Activation Functions (3/4)

» Which activation function should we use?
» In general logistic < tanh < ReLU < leaky ReLU (and its variants) < ELU
> If you care about runtime performance, then leaky RelLUs works better than ELUs.
Leaky ReLU activation function ELU activation function (a = 1) -
4 PO U 3 1.0 —
N ‘_/' — Ste?
o oo oo - o
1 == RelU
Leak e 03
Rl 5 -1.0
~4 -2 2 4 —4 -2 2




Nonsaturating Activation Functions (4/4)

# leaky relu
def leaky_relu(z, name=None):
alpha = 0.01
return tf.maximum(alpha * z, z, name=name)

hidden = tf.layers.dense(X, n_neurons_h, activation=leaky_relu, name="hidden")




Nonsaturating Activation Functions (4/4)

# leaky relu
def leaky_relu(z, name=None):
alpha = 0.01
return tf.maximum(alpha * z, z, name=name)

hidden = tf.layers.dense(X, n_neurons_h, activation=leaky_relu, name="hidden")

# elu
hidden = tf.layers.dense(X, n_neurons_h, activation=tf.nn.elu, name="hidden")




Overcoming the Vanishing Gradient

» Parameter initiazlization strategies
» Nonsaturating activation function

» Batch normalization




Batch Normalization (1/5)

» The gradient tells how to update each parameter, under the assumption that the
other layers do not change.




Batch Normalization (1/5)

» The gradient tells how to update each parameter, under the assumption that the
other layers do not change.

e In practice, we update all of the layers simultaneously.
e However, unexpected results can happen.




Batch Normalization (1/5)

» The gradient tells how to update each parameter, under the assumption that the
other layers do not change.
e In practice, we update all of the layers simultaneously.
e However, unexpected results can happen.

» Batch normalization makes the learning of layers in the network more independent
of each other.




Batch Normalization (1/5)

» The gradient tells how to update each parameter, under the assumption that the
other layers do not change.
e In practice, we update all of the layers simultaneously.
e However, unexpected results can happen.

» Batch normalization makes the learning of layers in the network more independent
of each other.

e It is a technique to address the problem that the distribution of each layer's inputs
changes during training, as the parameters of the previous layers change.




Batch Normalization (1/5)

» The gradient tells how to update each parameter, under the assumption that the
other layers do not change.
e In practice, we update all of the layers simultaneously.
e However, unexpected results can happen.

» Batch normalization makes the learning of layers in the network more independent
of each other.
e It is a technique to address the problem that the distribution of each layer's inputs
changes during training, as the parameters of the previous layers change.

> The technique consists of adding an operation in the model just before the activation
function of each layer.
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> It's zero-centering and normalizing the inputs, then scaling and shifting the result.
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Batch Normalization (2/5)

» It's zero-centering and normalizing the inputs, then scaling and shifting the result.
e Estimates the inputs’ mean and standard deviation of the current mini-batch.

1SR,

up = — x\*
2 1) 2
0 = — x\W — g
B mB;( ps)

> up: the empirical mean, evaluated over the whole mini-batch B.

» op: the empirical standard deviation, also evaluated over the whole mini-batch.

» mg: the number of instances in the mini-batch.




Batch Normalization (3/5)

» (1): the zero-centered and normalized input.
» ~: the scaling parameter for the layer.
» [3: the shifting parameter (offset) for the layer.

> ¢c: a tiny number to avoid division by zero.

» z(1): the output of the BN operation, which is a scaled and shifted version of the
inputs.




Batch Normalization (4/5)

» Use tf.layers.batch normalization

# make the network
training = tf.placeholder_with_default(False, shape=(), name="training")

hidden = tf.layers.dense(X, n_neurons_h, name="hidden")
bn = tf.layers.batch_normalization(hidden, training=training)
bn_act = tf.sigmoid(bn)

logits_before_bn = tf.layers.dense(bn_act, n_outputs, name="output")
logits = tf.layers.batch_normalization(logits_before_bn, training=training)




& %
£ KTH

Batch Normalization (4/5)

.
&

s
» Use tf.layers.batch normalization

# make the network
training = tf.placeholder_with_default(False, shape=(), name="training")

hidden = tf.layers.dense(X, n_neurons_h, name="hidden")
bn = tf.layers.batch_normalization(hidden, training=training)
bn_act = tf.sigmoid(bn)

logits_before_bn = tf.layers.dense(bn_act, n_outputs, name="output")
logits = tf.layers.batch_normalization(logits_before_bn, training=training)

# define the cost
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)

cost = tf.reduce_mean(cross_entropy)

# train the model
optimizer = tf.train.GradientDescentOptimizer (learning_rate)
training op = optimizer.minimize(cost)




Batch Normalization (5/5)

» We need to explicitly run the extra update operations needed by batch normalization
sess.run([training op, extra_update_ops],

extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
init = tf.global_variables_initializer()

with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
sess.run([training_op, extra_update_ops],
feed_dict={X: training X, y_true: training_ y, training: True})




Training Speed

WARNING
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AHEAD




Regular Gradient Descent Optimization (1/2)

» Gradient descent optimization algorithm

(next) _ . 93(w)

i o i 8wi

> It updates the weights w

» Better optimization algorithms to improve the training speed




Regular Gradient Descent Optimization (2/2)

# define the cost
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(z, y_true)
cost = tf.reduce_mean(cross_entropy)

# train the model

learning_rate = 0.1

optimizer = tf.train.GradientDescentOptimizer(learning_rate)
training op = optimizer.minimize(cost)
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Momentum (1/4)

» Momentum is a concept from physics: an object in motion will have a tendency to
keep moving.

» It measures the resistance to change in motion.
e The higher momentum an object has, the harder it is to stop it.




Momentum (2/4)

» This is the very simple idea behind momentum optimization.
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» This is the very simple idea behind momentum optimization.
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Momentum (2/4)

» This is the very simple idea behind momentum optimization.

» We can see the change in the parameters w as motion: w(ineXt) =w; — ndgg:)

» We can thus use the concept of momentum to give the update process a tendency
to keep moving in the same direction.
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Momentum (2/4)

» This is the very simple idea behind momentum optimization.
: oo o(next) 93(w)
» We can see the change in the parameters w as motion: w; =Wi— g
» We can thus use the concept of momentum to give the update process a tendency
to keep moving in the same direction.
» |t can help to escape from bad local minima pits.

Initial

'
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/

Jw) Gradient

Global cost minimum
Jain(W)




Momentum (3/4)

» Momentum optimization cares about what previous gradients were.
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» At each iteration, it adds the local gradient to the momentum vector m.
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Momentum (3/4)

» Momentum optimization cares about what previous gradients were.
» At each iteration, it adds the local gradient to the momentum vector m.
0J(w
m; = fm; + WL

awi

v

(3 is called momentum, ans it is between 0 and 1.

v

Updates the weights by subtracting this momentum vector.

(next)

= Wi — My




Momentum (4/4)

# train the model

optimizer = tf.train.MomentumOptimizer (learning rate=learning rate, momentum=0.9)
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AdaGrad (1/3)

» AdaGrad keeps track of a learning rate for each parameter.

» Adapts the learning rate over time (adaptive learning rate).




AdaGrad (2/3)

» For each feature w;, we do the following steps:

AJ(w) .,

s;i =s; +( D

o n 93(w)
i W Vs; +e Ou;

(next)

» Parameters with large partial derivative of the cost have a rapid decrease in their
learning rate.

> Parameters with small partial derivatives have a small decrease in their learning rate.




AdaGrad (3/3)

# train the model

optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)




Optimization Algorithms

Momentum
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» Adam optimization




RMSProp (1/3)

» AdaGrad often stops too early when training neural networks.

» The learning rate gets scaled down so much that the algorithm ends up stopping
entirely before reaching the global optimum.




RMSProp (2/3)

>

The RMSProp fixed the AdaGrad problem.

v

It is like the AdaGrad problem, but accumulates only the gradients from the most
recent iterations (not from the beginning of training).

v

For each feature w;, we do the following steps:

s = o+ (1 - D)LY

w(next) — n 6J(W)

! VSi+ € awi




RMSProp (3/3)

# train the model

optimizer = tf.train.RMSPropOptimizer (learning_rate=learning_rate, momentum=0.9,
decay=0.9, epsilon=1e-10)
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Adam Optimization (1/3)

» Adam (Adaptive moment estimation) combines the ideas of Momentum optimization
and RMSProp.
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» Adam (Adaptive moment estimation) combines the ideas of Momentum optimization
and RMSProp.

> Like Momentum optimization, it keeps track of an exponentially decaying average of
past gradients.




Adam Optimization (1/3)

» Adam (Adaptive moment estimation) combines the ideas of Momentum optimization
and RMSProp.

> Like Momentum optimization, it keeps track of an exponentially decaying average of
past gradients.

» Like RMSProp, it keeps track of an exponentially decaying average of past squared
gradients.




Adam Optimization (2/3)

1L mte) = gim + (1 — B1)VaI(w)
2. S(next) — 625 + (1 _ ﬁQ)VwJ(W) ® VWJ(W)
3. m(next) — m
1- 61
S
1-43
5wl —w —mo Vst e

4. S(next) _

» ® and © represents the represents the element-wise multiplication and division.

» Steps 1, 2, and 5: similar to both Momentum optimization and RMSProp.

» Steps 3 and 4: since m and s are initialized at 0, they will be biased toward 0 at the
beginning of training, so these two steps will help boost m and s at the beginning of
training.




Adam Optimization (3/3)

# train the model

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)




Summary




Summary

» LTU

» Perceptron

» Perceptron weakness

» MLP and feedforward neural network

» Gradient-based learning

» Backpropagation: forward pass and backward pass

» Qutput unit: linear, sigmoid, softmax

» Hidden units: sigmoid, tanh, relu




Summary

» Overfitting

e Early stopping, /1 and /2 regularization, max-norm regularization
e Dropout, data augmentation

» Vanishing gradient

e Parameter initialization, nonsaturating activation functions
» Batch normalization

» Training speed
e Momentum, AdaGrad
e RMSProp, Adam optimization




Reference

» lan Goodfellow et al., Deep Learning (Ch. 6)

» Aurélien Géron, Hands-On Machine Learning (Ch. 10)




Questions?



