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Nature ...

I Nature has inspired many of our inventions
• Birds inspired us to fly
• Burdock plants inspired velcro
• Etc.
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Biological Neurons (1/2)

I Brain architecture has inspired artificial neural networks.

I A biological neuron is composed of
• Cell body, many dendrites (branching extensions), one axon (long extension), synapses

I Biological neurons receive signals from other neurons via these synapses.

I When a neuron receives a sufficient number of signals within a few milliseconds, it
fires its own signals.
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Biological Neurons (2/2)

I Biological neurons are organized in a vast network of billions of neurons.

I Each neuron typically is connected to thousands of other neurons.
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A Simple Artificial Neural Network

I One or more binary inputs and one binary output

I Activates its output when more than a certain number of its inputs are active.

[A. Geron, O’Reilly Media, 2017]
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The Linear Threshold Unit (LTU)

I Inputs of a LTU are numbers (not binary).

I Each input connection is associated with a weight.

I Computes a weighted sum of its inputs and applies a step function to that sum.

I z = w1x1 + w2x2 + · · ·+ wnxn = wᵀx

I ŷ = step(z) = step(wᵀx)
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The Perceptron

I The perceptron is a single layer of LTUs.

I The input neurons output whatever input they are fed.

I A bias neuron, which just outputs 1 all the time.

I If we use logistic function (sigmoid) instead of a step function, it computes a con-
tinuous output.
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How is a Perceptron Trained? (1/2)

I The Perceptron training algorithm is inspired by Hebb’s rule.

I When a biological neuron often triggers another neuron, the connection between
these two neurons grows stronger.

9 / 145



How is a Perceptron Trained? (1/2)

I The Perceptron training algorithm is inspired by Hebb’s rule.

I When a biological neuron often triggers another neuron, the connection between
these two neurons grows stronger.

9 / 145



How is a Perceptron Trained? (2/2)

I Feed one training instance x to each neuron j at a time and make its prediction ŷ.

I Update the connection weights.

ŷj = σ(wᵀ
jx + b)

J(wj) = cross entropy(yj, ŷj)

w
(next)
i,j = wi,j − η ∂J(wj)

wi

I wi,j: the weight between neurons i and j.

I xi: the ith input value.

I ŷj: the jth predicted output value.

I yj: the jth true output value.

I η: the learning rate.
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Perceptron in TensorFlow
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Perceptron in TensorFlow - First Implementation (1/3)

I n neurons: number of neurons in a layer.

I n features: number of features.

n_neurons = 3

n_features = 2

# placeholder

X = tf.placeholder(tf.float32, shape=(None, n_features),

name="X")

y_true = tf.placeholder(tf.int64, shape=(None),

name="y")

# variables

W = tf.get_variable("weights", dtype=tf.float32,

initializer=tf.zeros((n_features, n_neurons)))

b = tf.get_variable("bias", dtype=tf.float32,

initializer=tf.zeros((n_neurons)))
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Perceptron in TensorFlow - First Implementation (2/3)

ŷj = σ(wᵀ
jx+ b)

# make the network

z = tf.matmul(X, W) + b

y_hat = tf.nn.sigmoid(z)

J(wj) = cross entropy(yj, ŷj) = −
m∑
i

y
(i)
j log(ŷ

(i)
j )

# define the cost

cross_entropy = -y_true * tf.log(y_hat)

cost = tf.reduce_mean(cross_entropy)

w
(next)
i,j = wi,j − η

∂J(wj)

wi
# train the model

# 1. compute the gradient of cost with respect to W and b

# 2. update the weights and bias

learning_rate = 0.1

new_W = W.assign(W - learning_rate * tf.gradients(xs=W, ys=cost))

new_b = b.assign(b - learning_rate * tf.gradients(xs=b, ys=cost))
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Perceptron in TensorFlow - First Implementation (3/3)

I Execute the network.

# execute the model

init = tf.global_variables_initializer()

n_epochs = 100

with tf.Session() as sess:

init.run()

for epoch in range(n_epochs):

sess.run([new_W, new_b, cost], feed_dict={X: training_X, y_true: training_y})
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Perceptron in TensorFlow - Second Implementation (1/2)

ŷj = σ(wᵀ
jx+ b)

# make the network

z = tf.matmul(X, W) + b

y_hat = tf.nn.sigmoid(z)

J(wj) = cross entropy(yj, ŷj) = −
m∑
i

y
(i)
j log(ŷ

(i)
j )

# define the cost

cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(z, y_true)

cost = tf.reduce_mean(cross_entropy)

w
(next)
i,j = wi,j − η

∂J(wj)

wi
# train the model

learning_rate = 0.1

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

training_op = optimizer.minimize(cost)
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(i)
j )

# define the cost

cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(z, y_true)

cost = tf.reduce_mean(cross_entropy)

w
(next)
i,j = wi,j − η

∂J(wj)

wi
# train the model

learning_rate = 0.1

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

training_op = optimizer.minimize(cost)

15 / 145



Perceptron in TensorFlow - Second Implementation (2/2)

I Execute the network.

# execute the model

init = tf.global_variables_initializer()

n_epochs = 100

with tf.Session() as sess:

init.run()

for epoch in range(n_epochs):

sess.run(training_op, feed_dict={X: training_X, y_true: training_y})
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Multi-Layer Perceptron (MLP)
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Perceptron Weakness (1/2)

I Incapable of solving some trivial problems, e.g., XOR classification problem. Why?

X =


0 0

0 1

1 0

1 1

 y =


0

1

1

0


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Perceptron Weakness (2/2)

X =


0 0

0 1

1 0

1 1

 y =


0

1

1

0

 ŷ = step(z), z = w1x1 + w2x2 + b

J(w) =
1

4

∑
x∈X

(ŷ(x)− y(x))2

I If we minimize J(w), we obtain w1 = 0, w2 = 0, and b = 1
2

.

I But, the model outputs 0.5 everywhere.
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Multi-Layer Perceptron (MLP)

I The limitations of Perceptrons can be eliminated by stacking multiple Perceptrons.

I The resulting network is called a Multi-Layer Perceptron (MLP) or deep feedforward
neural network.
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Feedforward Neural Network Architecture

I A feedforward neural network is composed of:
• One input layer
• One or more hidden layers
• One final output layer

I Every layer except the output layer includes a bias neuron and is fully connected to
the next layer.
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How Does it Work?

I The model is associated with a directed acyclic graph
describing how the functions are composed together.

I E.g., assume a network with just a single neuron in each layer.

I Also assume we have three functions f(1) , f(2), and
f(3) connected in a chain: ŷ = f(x) = f(3)(f(2)(f(1)(x)))

I f(1) is called the first layer of the network.

I f(2) is called the second layer, and so on.

I The length of the chain gives the depth of the model.
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XOR with Feedforward Neural Network (1/3)

X =


0 0

0 1

1 0

1 1

 y =


0

1

1

0

 Wx =

[
1 1

1 1

]
bx =

[
−1.5
−0.5

]
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XOR with Feedforward Neural Network (2/3)

outh = XWᵀ
x + bx =


−1.5 −0.5
−0.5 0.5
−0.5 0.5
0.5 1.5

 h = step(outh) =


0 0

0 1

0 1

1 1


wh =

[
−1
1

]
bh = −0.5
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XOR with Feedforward Neural Network (3/3)

out = wᵀ
hh + bh =


−0.5
0.5
0.5
−0.5

 step(out) =


0

1

1

0


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How to Learn Model Parameters W?
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Feedforward Neural Network - Cost Function

I We use the cross-entropy (minimizing the negative log-likelihood) between the train-
ing data y and the model’s predictions ŷ as the cost function.

cost(y, ŷ) = −
∑
j

yjlog(ŷj)

27 / 145



Gradient-Based Learning (1/2)

I The most significant difference between the linear models we have seen so far and
feedforward neural network?

I The non-linearity of a neural network causes its cost functions to become non-convex.

I Linear models, with convex cost function, guarantee to find global minimum.
• Convex optimization converges starting from any initial parameters.
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Gradient-Based Learning (2/2)

I Stochastic gradient descent applied to non-convex cost functions has no such con-
vergence guarantee.

I It is sensitive to the values of the initial parameters.

I For feedforward neural networks, it is important to initialize all weights to small
random values.

I The biases may be initialized to zero or to small positive values.
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Training Feedforward Neural Networks

I How to train a feedforward neural network?

I For each training instance x(i) the algorithm does the following steps:

1. Forward pass: make a prediction (compute ŷ(i) = f(x(i))).
2. Measure the error (compute cost(ŷ(i), y(i))).
3. Backward pass: go through each layer in reverse to measure the error contribution from

each connection.
4. Tweak the connection weights to reduce the error (update W and b).

I It’s called the backpropagation training algorithm
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2. Measure the error (compute cost(ŷ(i), y(i))).
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2. Measure the error (compute cost(ŷ(i), y(i))).
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Output Unit (1/3)

I Linear units in neurons of the output layer.

I Given h as the output of neurons in the layer before the output layer.

I Each neuron j in the output layer produces ŷj = wᵀ
jh + bj.

I Minimizing the cross-entropy is then equivalent to minimizing the mean squared
error.
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Output Unit (2/3)

I Sigmoid units in neurons of the output layer (binomial classification).

I Given h as the output of neurons in the layer before the output layer.

I Each neuron j in the output layer produces ŷj = σ(wᵀ
jh + bj).

I Minimizing the cross-entropy.
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Output Unit (3/3)

I Softmax units in neurons of the output layer (multinomial classification).

I Given h as the output of neurons in the layer before the output layer.

I Each neuron j in the output layer produces ŷj = softmax(wᵀ
jh + bj).

I Minimizing the cross-entropy.
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Hidden Units

I In order for the backpropagation algorithm to work properly, we need to replace the
step function with other activation functions. Why?

I Alternative activation functions:

1. Logistic function (sigmoid): σ(z) = 1
1+e−z

2. Hyperbolic tangent function: tanh(z) = 2σ(2z)− 1

3. Rectified linear units (ReLUs): ReLU(z) = max(0, z)
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Feedforward Network in TensorFlow
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Feedforward in TensorFlow - First Implementation (1/3)
I n neurons h: number of neurons in the hidden layer.

I n neurons out: number of neurons in the output layer.

I n features: number of features.

n_neurons_h = 4

n_neurons_out = 3

n_features = 2

# placeholder

X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")

y_true = tf.placeholder(tf.int64, shape=(None), name="y")

# variables

W1 = tf.get_variable("weights1", dtype=tf.float32,

initializer=tf.zeros((n_features, n_neurons_h)))

b1 = tf.get_variable("bias1", dtype=tf.float32, initializer=tf.zero((n_neurons_h)))

W2 = tf.get_variable("weights2", dtype=tf.float32,

initializer=tf.zeros((n_features, n_neurons_out)))

b2 = tf.get_variable("bias2", dtype=tf.float32, initializer=tf.zero((n_neurons_out)))
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Feedforward in TensorFlow - First Implementation (2/3)

I Build the network.

# make the network

h = tf.nn.sigmoid(tf.matmul(X, W1) + b1)

z = tf.matmul(h, W2) + b2

y_hat = tf.nn.sigmoid(z)

# define the cost

cross_entropy =

tf.nn.sigmoid_cross_entropy_with_logits(z, y_true)

cost = tf.reduce_mean(cross_entropy)

# train the model

learning_rate = 0.1

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

training_op = optimizer.minimize(cost)
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Feedforward in TensorFlow - First Implementation (3/3)

I Execute the network.

# execute the model

init = tf.global_variables_initializer()

n_epochs = 100

with tf.Session() as sess:

init.run()

for epoch in range(n_epochs):

sess.run(training_op, feed_dict={X: training_X, y_true: training_y})

38 / 145



Feedforward in TensorFlow - Second Implementation

n_neurons_h = 4

n_neurons_out = 3

n_features = 2

# placeholder

X = tf.placeholder(tf.float32, shape=(None, n_features),

name="X")

y_true = tf.placeholder(tf.int64, shape=(None),

name="y")

# make the network

h = tf.layers.dense(X, n_neurons_h, name="hidden",

activation=tf.sigmoid)

z = tf.layers.dense(h, n_neurons_out, name="output")

# the rest as before
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Feedforward Network in Keras
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Keras

I Keras is a high-level API to build and train deep learning models.

I To get started, import tf.keras to your program.

import tensorflow as tf

from tensorflow.keras import layers
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Keras Layers (1/2)

I In Keras, you assemble layers tf.keras.layers to build models.

I A model is (usually) a graph of layers.

I There are many types of layers, e.g., Dense, Conv2D, RNN, ...
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Keras Layers (2/2)

I Common constructor parameters:

• activation: the activation function for the layer.

• kernel initializer and bias initializer: the initialization schemes of the layer’s
weights.

• kernel regularizer and bias regularizer: the regularization schemes of the
layer’s weights, e.g., L1 or L2.

layers.Dense(64, activation=tf.sigmoid, kernel_regularizer=tf.keras.regularizers.l1(0.01),

bias_initializer=tf.keras.initializers.constant(2.0))
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Keras Models

I There are two ways to build Keras models: sequential and functional.

I The sequential API allows you to create models layer-by-layer.

I The functional API allows you to create models that have a lot more flexibility.
• You can define models where layers connect to more than just their previous and next

layers.
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Keras Models - Sequential Models

I You can use tf.keras.Sequential to build a sequential model.

from tensorflow.keras import layers

model = tf.keras.Sequential()

model.add(layers.Dense(64, activation="relu"))

model.add(layers.Dense(64, activation="relu"))

model.add(layers.Dense(10, activation="softmax"))
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Keras Models - Functional Models

I You can use tf.keras.Model to build a functional model.

from tensorflow.keras import layers

inputs = tf.keras.Input(shape=(32,))

x = layers.Dense(64, activation="relu")(inputs)

x = layers.Dense(64, activation="relu")(x)

predictions = layers.Dense(10, activation="softmax")(x)

model = tf.keras.Model(inputs=inputs, outputs=predictions)
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Training Keras Models

I Call the compile method to configure the learning process.

I tf.keras.Model.compile takes three important arguments.

• optimizer: specifies the training procedure.

• loss: the cost function to minimize during optimization, e.g., mean squared error
(mse), categorical crossentropy, and binary crossentropy.

• metrics: used to monitor training.

I Call the fit method to fit the model the training data.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training_labels, epochs=10, batch_size=32)

47 / 145



Training Keras Models

I Call the compile method to configure the learning process.

I tf.keras.Model.compile takes three important arguments.

• optimizer: specifies the training procedure.

• loss: the cost function to minimize during optimization, e.g., mean squared error
(mse), categorical crossentropy, and binary crossentropy.

• metrics: used to monitor training.

I Call the fit method to fit the model the training data.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training_labels, epochs=10, batch_size=32)

47 / 145



Training Keras Models

I Call the compile method to configure the learning process.

I tf.keras.Model.compile takes three important arguments.

• optimizer: specifies the training procedure.

• loss: the cost function to minimize during optimization, e.g., mean squared error
(mse), categorical crossentropy, and binary crossentropy.

• metrics: used to monitor training.

I Call the fit method to fit the model the training data.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training_labels, epochs=10, batch_size=32)

47 / 145



Training Keras Models

I Call the compile method to configure the learning process.

I tf.keras.Model.compile takes three important arguments.

• optimizer: specifies the training procedure.

• loss: the cost function to minimize during optimization, e.g., mean squared error
(mse), categorical crossentropy, and binary crossentropy.

• metrics: used to monitor training.

I Call the fit method to fit the model the training data.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training_labels, epochs=10, batch_size=32)

47 / 145



Training Keras Models

I Call the compile method to configure the learning process.

I tf.keras.Model.compile takes three important arguments.

• optimizer: specifies the training procedure.

• loss: the cost function to minimize during optimization, e.g., mean squared error
(mse), categorical crossentropy, and binary crossentropy.

• metrics: used to monitor training.

I Call the fit method to fit the model the training data.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training_labels, epochs=10, batch_size=32)

47 / 145



Evaluate and Predict

I tf.keras.Model.evaluate: evaluate the cost and metrics for the data provided.

I tf.keras.Model.predict: predict the output of the last layer for the data provided.

model.evaluate(test_data, test_labels, batch_size=32)

model.predict(test_data, batch_size=32)
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Feedforward Network in Keras

n_neurons_h = 4

n_neurons_out = 3

n_epochs = 100

learning_rate = 0.1

model = tf.keras.Sequential()

model.add(layers.Dense(n_neurons_h, activation="sigmoid"))

model.add(layers.Dense(n_neurons_out, activation="sigmoid"))

model.compile(optimizer=tf.train.GradientDescentOptimizer(learning_rate.001),

loss="binary_crossentropy", metrics=["accuracy"])

model.fit(training_X, training_y, epochs=n_epochs)
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Dive into Backpropagation Algorithm
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[https://i.pinimg.com/originals/82/d9/2c/82d92c2c15c580c2b2fce65a83fe0b3f.jpg]
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Chain Rule of Calculus (1/2)

I Assume x ∈ R, and two functions f and g, and also assume y = g(x) and z =
f(y) = f(g(x)).

I The chain rule of calculus is used to compute the derivatives of functions, e.g., z,
formed by composing other functions, e.g., g.

I Then the chain rule states that dz
dx

= dz
dy

dy
dx

I Example:
z = f(y) = 5y4 and y = g(x) = x3 + 7

dz

dx
=

dz

dy

dy

dx
dz

dy
= 20y3 and

dy

dx
= 3x2

dz

dx
= 20y3 × 3x2 = 20(x3 + 7)× 3x2
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Chain Rule of Calculus (2/2)

I Two paths chain rule.

z = f(y1, y2) where y1 = g(x) and y2 = h(x)

∂z

∂x
=

∂z

∂y1

∂y1
∂x

+
∂z

∂y2

∂y2
∂x
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Backpropagation

I Backpropagation training algorithm for MLPs

I The algorithm repeats the following steps:

1. Forward pass
2. Backward pass
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Backpropagation - Forward Pass

I Calculates outputs given input patterns.

I For each training instance

• Feeds it to the network and computes the output of every neuron in each consecutive
layer.

• Measures the network’s output error (i.e., the difference between the true and the
predicted output of the network)

• Computes how much each neuron in the last hidden layer contributed to each output
neuron’s error.
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Backpropagation - Backward Pass

I Updates weights by calculating gradients.

I Measures how much of these error contributions came from each neuron in the
previous hidden layer
• Proceeds until the algorithm reaches the input layer.

I The last step is the gradient descent step on all the connection weights in the network,
using the error gradients measured earlier.
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Backpropagation Example

I Two inputs, two hidden, and two output neurons.

I Bias in hidden and output neurons.

I Logistic activation in all the neurons.

I Squared error function as the cost function.
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Backpropagation - Forward Pass (1/3)

I Compute the output of the hidden layer

neth1 = w1x1 + w2x2 + b1 = 0.15× 0.05+ 0.2× 0.1+ 0.35 = 0.3775

outh1 =
1

1+ eneth1
=

1

1+ e0.3775
= 0.59327

outh2 = 0.59688
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Backpropagation - Forward Pass (2/3)

I Compute the output of the output layer

neto1 = w5outh1 + w6outh2 + b2 = 0.4× 0.59327+ 0.45× 0.59688+ 0.6 = 1.1059

outo1 =
1

1+ eneto1
=

1

1+ e1.1059
= 0.75136

outo2 = 0.77292
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Backpropagation - Forward Pass (3/3)

I Calculate the error for each output

Eo1 =
1

2
(targeto1 − outputo1)

2 =
1

2
(0.01− 0.75136)2 = 0.27481

Eo2 = 0.02356

Etotal =
∑ 1

2
(target− output)2 = Eo1 + Eo2 = 0.27481+ 0.02356 = 0.29837
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Backpropagation - Backward Pass - Output Layer (1/6)

I Consider w5
I We want to know how much a change in w5 affects the total error (∂Etotal∂w5

)

I Applying the chain rule

∂Etotal

∂w5
=
∂Etotal

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂w5
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Backpropagation - Backward Pass - Output Layer (2/6)

I First, how much does the total error change with respect to the output? (∂Etotal∂outo1
)

∂Etotal

∂w5
=
∂Etotal

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂w5

Etotal =
1

2
(targeto1 − outo1)

2 +
1

2
(targeto2 − outo2)

2

∂Etotal

∂outo1
= −2

1

2
(targeto1 − outo1) = −(0.01− 0.75136) = 0.74136
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Backpropagation - Backward Pass - Output Layer (3/6)

I Next, how much does the outo1 change with respect to its total input neto1?
(∂outo1∂neto1

)

∂Etotal

∂w5
=
∂Etotal

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂w5

outo1 =
1

1+ e−neto1

∂outo1

∂neto1
= outo1(1− outo1) = 0.75136(1− 0.75136) = 0.18681
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Backpropagation - Backward Pass - Output Layer (4/6)

I Finally, how much does the total neto1 change with respect to w5? (∂neto1∂w5
)

∂Etotal

∂w5
=
∂Etotal

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂w5

neto1 = w5 × outh1 + w6 × outh2 + b2

∂neto1

∂w5
= outh1 = 0.59327
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Backpropagation - Backward Pass - Output Layer (5/6)

I Putting it all together:

∂Etotal

∂w5
=
∂Etotal

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂w5
∂Etotal

∂w5
= 0.74136× 0.18681× 0.59327 = 0.08216
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Backpropagation - Backward Pass - Output Layer (6/6)

I To decrease the error, we subtract this value from the current weight.

I We assume that the learning rate is η = 0.5.

w
(next)
5 = w5 − η ×

∂Etotal

∂w5
= 0.4− 0.5× 0.08216 = 0.35891

w
(next)
6 = 0.40866

w
(next)
7 = 0.5113

w
(next)
8 = 0.56137
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[https://makeameme.org/meme/oooh-this]
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Backpropagation - Backward Pass - Hidden Layer (1/8)

I Continue the backwards pass by calculating new values for w1, w2, w3, and w4.
I For w1 we have:

∂Etotal

∂w1
=
∂Etotal

∂outh1
×
∂outh1

∂neth1
×
∂neth1

∂w1
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Backpropagation - Backward Pass - Hidden Layer (2/8)

I Here, the output of each hidden layer neuron contributes to the output of multiple
output neurons.

I E.g., outh1 affects both outo1 and outo2, so ∂Etotal
∂outh1

needs to take into consideration
its effect on the both output neurons.

∂Etotal

∂w1
=
∂Etotal

∂outh1
×
∂outh1

∂neth1
×
∂neth1

∂w1
∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1

70 / 145



Backpropagation - Backward Pass - Hidden Layer (3/8)

I Starting with ∂Eo1
∂outh1

∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1
∂Eo1

∂outh1
=

∂Eo1

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂outh1
∂Eo1

∂outo1
= 0.74136,

∂outo1

∂neto1
= 0.18681

neto1 = w5 × outh1 + w6 × outh2 + b2

∂neto1

∂outh1
= w5 = 0.40
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Backpropagation - Backward Pass - Hidden Layer (4/8)

I Plugging them together.

∂Eo1

∂outh1
=

∂Eo1

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂outh1
= 0.74136× 0.18681× 0.40 = 0.0554

∂Eo2

∂outh1
= −0.01905

∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1
= 0.0554+−0.01905 = 0.03635
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Backpropagation - Backward Pass - Hidden Layer (5/8)

I Now we need to figure out ∂outh1
∂neth1

.

∂Etotal

∂w1
=
∂Etotal

∂outh1
×
∂outh1

∂neth1
×
∂neth1

∂w1

outh1 =
1

1+ e−neth1

∂outh1

∂neth1
= outh1(1− outh1) = 0.59327(1− 0.59327) = 0.2413
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Backpropagation - Backward Pass - Hidden Layer (6/8)

I And then ∂neth1
∂w1

.

∂Etotal

∂w1
=
∂Etotal

∂outh1
×
∂outh1

∂neth1
×
∂neth1

∂w1

neth1 = w1x1 + w2x2 + b1

∂neth1

∂w1
= x1 = 0.05
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Backpropagation - Backward Pass - Hidden Layer (7/8)

I Putting it all together.

∂Etotal

∂w1
=
∂Etotal

∂outh1
×
∂outh1

∂neth1
×
∂neth1

∂w1
∂Etotal

∂w1
= 0.03635× 0.2413× 0.05 = 0.00043
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Backpropagation - Backward Pass - Hidden Layer (8/8)

I We can now update w1.

I Repeating this for w2, w3, and w4.

w
(next)
1 = w1 − η ×

∂Etotal

∂w1
= 0.15− 0.5× 0.00043 = 0.14978

w
(next)
2 = 0.19956

w
(next)
3 = 0.24975

w
(next)
4 = 0.2995
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Challenges
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Challenges of Training Feedforward Neural Networks

I Challenges ...

I Overfitting: risk of overfitting a model with large number of parameters.

I Vanishing/exploding gradients: hard to train lower layers.

I Training speed: slow training with large networks.
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Overfitting
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High Degree of Freedom and Overfitting Problem

I With large number of parameters, a network has a high degree of freedom.

I It can fit a huge variety of complex datasets.

I This flexibility also means that it is prone to overfitting on training set.

I Regularization: a way to reduce the risk of overfitting.

I It reduces the degree of freedom a model.
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Avoiding Overfitting Through Regularization

I Early stopping

I l1 and l2 regularization

I Max-norm regularization

I Dropout

I Data augmentation
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Early Stopping

I As the training steps go by, its prediction error on the training/validation set naturally
goes down.

I After a while the validation error stops decreasing and starts to go back up.
• The model has started to overfit the training data.

I In the early stopping, we stop training when the validation error reaches a minimum.
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Avoiding Overfitting Through Regularization

I Early stopping
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l1 and l2 Regularization (1/4)

I Penalize large values of weights wj.

~J(w) = J(w) + λR(w)

I Two questions:

1. How should we define R(w)?
2. How do we determine λ?
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l1 and l2 Regularization (2/4)

I l1 regression: R(w) = λ
∑n

i=1 |wi| is added to the cost function.

~J(w) = J(w) + λ

n∑
i=1

|wi|

I l2 regression: R(w) = λ
∑n

i=1 w
2
i is added to the cost function.

~J(w) = J(w) + λ

n∑
i=1

w2i
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l1 and l2 Regularization (3/4)

I Manually implement it in TensorFlow.

# make the network

hidden = tf.layers.dense(X, n_neurons_h, activation=tf.sigmoid, name="hidden")

logit = tf.layers.dense(hidden, n_neurons_out, name="output")

# extract the weights of layers

W1 = tf.get_default_graph().get_tensor_by_name("hidden/kernel:0")

W2 = tf.get_default_graph().get_tensor_by_name("output/kernel:0")

# l1 regularization

reg_cost = tf.reduce_sum(tf.abs(W1)) + tf.reduce_sum(tf.abs(W2))

# define the cost

cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(logit, y_true)

base_cost = tf.reduce_mean(cross_entropy)

l1_param = 0.001

cost = base_cost + l1_param * reg_cost

# the rest is as before
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l1 and l2 Regularization (5/5)

I Alternatively, we can pass a regularization function to the tf.layers.dense().

# make the network

l1_param = 0.001 # l1 regularization hyperparameter

hidden = tf.layers.dense(X, n_neurons_h, activation=tf.sigmoid, name="hidden",

kernel_regularizer=tf.contrib.layers.l1_regularizer(l1_param))

logit = tf.layers.dense(hidden, n_neurons_out, name="output",

kernel_regularizer=tf.contrib.layers.l1_regularizer(l1_param))

# define the cost

cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(logit, y_true)

base_cost = tf.reduce_mean(cross_entropy)

reg_cost = tf.losses.get_regularization_loss()

cost = base_cost + reg_cost

# the rest is as before
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Avoiding Overfitting Through Regularization

I Early stopping

I l1 and l2 regularization

I Max-norm regularization

I Dropout

I Data augmentation
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Max-Norm Regularization (1/3)

I Max-norm regularization: constrains the weights wj of the incoming connections for
each neuron j.
• Prevents them from getting too large.

I After each training step, clip wj as below:

wj ← wj
r

||wj||2

I We have ||wj||2 ≤ r.
• r is the max-norm hyperparameter

• ||wj||2 = (
∑

i w
2
i,j)

1
2 =

√
w21,j + w22,j + · · ·+ w2n,j
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Max-Norm Regularization (2/3)

# make the network

hidden = tf.layers.dense(X, n_neurons_h, activation=tf.sigmoid, name="hidden")

logit = tf.layers.dense(hidden, n_neurons_out, name="output")

# define the cost

cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(logit, y_true)

cost = tf.reduce_mean(cross_entropy)

# define the optimizer

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

training_op = optimizer.minimize(cost)
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Max-Norm Regularization (3/3)

I Use tf.clip by norm.

# max-norm regularization - hidden layer

threshold = 1.0

weights = tf.get_default_graph().get_tensor_by_name("hidden/kernel:0")

clipped_weights = tf.clip_by_norm(weights, clip_norm=threshold, axes=1)

clip_weights = weights.assign(clipped_weights)

# executing the model

init = tf.global_variables_initializer()

with tf.Session() as sess:

init.run()

for epoch in range(n_epochs):

sess.run(training_op, feed_dict={X: training_X, y_true: training_y})

clip_weights.eval()
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Avoiding Overfitting Through Regularization

I Early stopping

I l1 and l2 regularization

I Max-norm regularization

I Dropout

I Data augmentation
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Dropout (1/4)

I Would a company perform better if its employees were told to toss a coin every
morning to decide whether or not to go to work?
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Dropout (2/4)

I At each training step, each neuron drops out temporarily with a probability p.

• The hyperparameter p is called the dropout rate.
• A neuron will be entirely ignored during this training step.
• It may be active during the next step.
• Exclude the output neurons.

I After training, neurons don’t get dropped anymore.
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Dropout (3/4)

I Each neuron can be either present or absent.

I 2N possible networks, where N is the total
number of droppable neurons.
• N = 4 in this figure.
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Dropout (4/4)

I Use tf.layers.dropout: specify the dropout rate rather than the keep probability.

# make the network

dropout_rate = 0.5 # == 1 - keep_prob

training = tf.placeholder_with_default(False, shape=(), name="training")

X_drop = tf.layers.dropout(X, dropout_rate, training=training)

hidden = tf.layers.dense(X_drop, n_neurons_h, activation=tf.sigmoid, name="hidden")

hidden_drop = tf.layers.dropout(hidden, dropout_rate, training=training)

logit = tf.layers.dense(hidden_drop, n_neurons_out, name="output")

# executing the model

init = tf.global_variables_initializer()

with tf.Session() as sess:

init.run()

for epoch in range(n_epochs):

sess.run(training_op, feed_dict={X: training_X, y_true: training_y, training: True})
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Avoiding Overfitting Through Regularization

I Early stopping

I l1 and l2 regularization

I Max-norm regularization

I Dropout

I Data augmentation
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Data Augmentation

I One way to make a model generalize better is to train it on more data.

I This will reduce overfitting.

I Create fake data and add it to the training set.
• E.g., in an image classification we can slightly

shift, rotate and resize an image.
• Add the resulting pictures to the training set.
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Vanishing/Exploding Gradients
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Vanishing/Exploding Gradients Problem (1/4)

I The backpropagation goes from output to input layer, and propagates the error
gradient on the way.

w(next) = w− η∂J(w)

∂w

I Gradients often get smaller and smaller as the algorithm progresses down to the lower
layers.

I As a result, the gradient descent update leaves the lower layer connection weights
virtually unchanged.

I This is called the vanishing gradients problem.
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Vanishing/Exploding Gradients Problem (2/4)

I Assume a network with just a single neuron in each layer.

• w1, w2, · · · are the weights
• b1, b2, · · · are the biases
• C is the cost function

I The output aj from the jth neuron is σ(zj).
• σ is the sigmoid activation function
• zj = wjaj−1 + bj
• E.g., a4 = σ(z4) = sigmoid(w4a3 + b4)
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Vanishing/Exploding Gradients Problem (3/4)

I Let’s compute the gradient associated to the first hidden neuron ( ∂C∂b1 ).

∂C

∂b1
=

∂C

∂a4
×
∂a4

∂z4
×
∂z4

∂a3
×
∂a3

∂z3
×
∂z3

∂a2
×
∂a2

∂z2
×
∂z2

∂a1
×
∂a1

∂z1
×
∂z1

∂b1

∂C

∂b1
=

∂C

∂a4
×
∂a4

∂z4
×
∂w4a3 + b4

∂a3
×
∂a3

∂z3
×
∂w3a2 + b3

∂a2
×
∂a2

∂z2
×
∂w2a1 + b2

∂a1
×
∂a1

∂z1
×
∂w1a0 + b1

∂b1

∂C

∂b1
=

∂C

∂a4
× σ

′
(z4)× w4 × σ

′
(z3)× w3 × σ

′
(z2)××w2 × σ

′
(z1)× 1
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Vanishing/Exploding Gradients Problem (4/4)

I Now, consider ∂C
∂b3

.

∂C

∂b3
=

∂C

∂a4
× σ

′
(z4)× w4 × σ

′
(z3)

∂C

∂b1
=

∂C

∂a4
× σ

′
(z4)× w4 × σ

′
(z3)× w3 × σ

′
(z2)× w2 × σ

′
(z1)× 1

I Assume w3σ
′
(z2) < 1

4
and w2σ

′
(z1) < 1

4

• The gradient ∂C
∂b1

be a factor of 16 (or more) smaller than ∂C
∂b3

.
• This is the essential origin of the vanishing gradient problem.
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Overcoming the Vanishing Gradient

I Parameter initialization strategies

I Nonsaturating activation function

I Batch normalization
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Parameter Initialization Strategies (1/2)

I The non-linearity of a neural network causes the cost functions to become non-convex.

I The stochastic gradient descent on non-convex cost functions performs is sensitive
to the values of the initial parameters.

I Designing initialization strategies is a difficult task.
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Parameter Initialization Strategies (2/2)

I The initial parameters need to break symmetry between different units.

I Two hidden units with the same activation function connected to the same inputs,
must have different initial parameters.

• The goal of having each unit compute a different function.

I It motivates random initialization of the parameters.
• Typically, we set the biases to constants, and initialize only the weights randomly.
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Overcoming the Vanishing Gradient

I Parameter initiazlization strategies

I Nonsaturating activation function

I Batch normalization
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Nonsaturating Activation Functions (1/4)

I ReLU(z) = max(0, z)

I The dying ReLUs problem.

• During training, some neurons stop outputting anything other than 0.
• E.g., when the weighted sum of the neuron’s inputs is negative, it starts outputting 0.

I Use leaky ReLU instead: LeakyReLUα(z) = max(αz, z).
• α is the slope of the function for z < 0.
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Nonsaturating Activation Functions (2/4)

I Randomized Leaky ReLU (RReLU)
• α is picked randomly during training, and it is fixed during testing.

I Parametric Leaky ReLU (PReLU)
• Learn α during training (instead of being a hyperparameter).

I Exponential Linear Unit (ELU)

ELUα(z) =

{
α(exp(z)− 1) if z < 0

z if z ≥ 0
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Nonsaturating Activation Functions (3/4)

I Which activation function should we use?

I In general logistic < tanh < ReLU < leaky ReLU (and its variants) < ELU

I If you care about runtime performance, then leaky ReLUs works better than ELUs.
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Nonsaturating Activation Functions (4/4)

# leaky relu

def leaky_relu(z, name=None):

alpha = 0.01

return tf.maximum(alpha * z, z, name=name)

hidden = tf.layers.dense(X, n_neurons_h, activation=leaky_relu, name="hidden")

# elu

hidden = tf.layers.dense(X, n_neurons_h, activation=tf.nn.elu, name="hidden")
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Overcoming the Vanishing Gradient

I Parameter initiazlization strategies

I Nonsaturating activation function

I Batch normalization
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Batch Normalization (1/5)

I The gradient tells how to update each parameter, under the assumption that the
other layers do not change.

• In practice, we update all of the layers simultaneously.
• However, unexpected results can happen.

I Batch normalization makes the learning of layers in the network more independent
of each other.

• It is a technique to address the problem that the distribution of each layer’s inputs
changes during training, as the parameters of the previous layers change.

I The technique consists of adding an operation in the model just before the activation
function of each layer.
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Batch Normalization (2/5)

I It’s zero-centering and normalizing the inputs, then scaling and shifting the result.

• Estimates the inputs’ mean and standard deviation of the current mini-batch.

µB =
1

mB

mB∑
i=1

x(i)

σ2B =
1

mB

mB∑
i=1

(x(i) − µB)2

I µB: the empirical mean, evaluated over the whole mini-batch B.

I σB: the empirical standard deviation, also evaluated over the whole mini-batch.

I mB: the number of instances in the mini-batch.
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Batch Normalization (3/5)

x̂(i) =
x(i) − µB√
σ2B + ε

z(i) = γx̂(i) + β

I x̂(i): the zero-centered and normalized input.

I γ: the scaling parameter for the layer.

I β: the shifting parameter (offset) for the layer.

I ε: a tiny number to avoid division by zero.

I z(i): the output of the BN operation, which is a scaled and shifted version of the
inputs.
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Batch Normalization (4/5)

I Use tf.layers.batch normalization

# make the network

training = tf.placeholder_with_default(False, shape=(), name="training")

hidden = tf.layers.dense(X, n_neurons_h, name="hidden")

bn = tf.layers.batch_normalization(hidden, training=training)

bn_act = tf.sigmoid(bn)

logits_before_bn = tf.layers.dense(bn_act, n_outputs, name="output")

logits = tf.layers.batch_normalization(logits_before_bn, training=training)

# define the cost

cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)

cost = tf.reduce_mean(cross_entropy)

# train the model

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

training_op = optimizer.minimize(cost)
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Batch Normalization (5/5)

I We need to explicitly run the extra update operations needed by batch normalization
sess.run([training op, extra update ops], ....

extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

init = tf.global_variables_initializer()

with tf.Session() as sess:

init.run()

for epoch in range(n_epochs):

sess.run([training_op, extra_update_ops],

feed_dict={X: training_X, y_true: training_y, training: True})
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Training Speed
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Regular Gradient Descent Optimization (1/2)

I Gradient descent optimization algorithm

I It updates the weights w
(next)
i = wi − η ∂J(w)

∂wi

I Better optimization algorithms to improve the training speed
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Regular Gradient Descent Optimization (2/2)

# define the cost

cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(z, y_true)

cost = tf.reduce_mean(cross_entropy)

# train the model

learning_rate = 0.1

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

training_op = optimizer.minimize(cost)
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Optimization Algorithms

I Momentum

I AdaGrad

I RMSProp

I Adam Optimization
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Momentum (1/4)

I Momentum is a concept from physics: an object in motion will have a tendency to
keep moving.

I It measures the resistance to change in motion.
• The higher momentum an object has, the harder it is to stop it.
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Momentum (2/4)

I This is the very simple idea behind momentum optimization.

I We can see the change in the parameters w as motion: w
(next)
i = wi − η ∂J(w)

∂wi

I We can thus use the concept of momentum to give the update process a tendency
to keep moving in the same direction.

I It can help to escape from bad local minima pits.
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Momentum (3/4)

I Momentum optimization cares about what previous gradients were.

I At each iteration, it adds the local gradient to the momentum vector m.

mi = βmi + η
∂J(w)

∂wi

I β is called momentum, ans it is between 0 and 1.

I Updates the weights by subtracting this momentum vector.

w
(next)
i = wi − mi
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Momentum (4/4)

# train the model

optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
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Optimization Algorithms

I Momentum

I AdaGrad

I RMSProp

I Adam optimization
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AdaGrad (1/3)

I AdaGrad keeps track of a learning rate for each parameter.

I Adapts the learning rate over time (adaptive learning rate).

130 / 145



AdaGrad (2/3)

I For each feature wi, we do the following steps:

si = si + (
∂J(w)

∂wi
)2

w
(next)
i = wi −

η√
si + ε

∂J(w)

∂wi

I Parameters with large partial derivative of the cost have a rapid decrease in their
learning rate.

I Parameters with small partial derivatives have a small decrease in their learning rate.
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AdaGrad (3/3)

# train the model

optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)
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Optimization Algorithms

I Momentum

I AdaGrad

I RMSProp

I Adam optimization
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RMSProp (1/3)

I AdaGrad often stops too early when training neural networks.

I The learning rate gets scaled down so much that the algorithm ends up stopping
entirely before reaching the global optimum.
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RMSProp (2/3)

I The RMSProp fixed the AdaGrad problem.

I It is like the AdaGrad problem, but accumulates only the gradients from the most
recent iterations (not from the beginning of training).

I For each feature wi, we do the following steps:

si = βsi + (1− β)(
∂J(w)

∂wi
)2

w
(next)
i = wi −

η√
si + ε

∂J(w)

∂wi
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RMSProp (3/3)

# train the model

optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate, momentum=0.9,

decay=0.9, epsilon=1e-10)
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Optimization Algorithms

I Momentum

I AdaGrad

I RMSProp

I Adam optimization
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Adam Optimization (1/3)

I Adam (Adaptive moment estimation) combines the ideas of Momentum optimization
and RMSProp.

I Like Momentum optimization, it keeps track of an exponentially decaying average of
past gradients.

I Like RMSProp, it keeps track of an exponentially decaying average of past squared
gradients.
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Adam Optimization (2/3)

1. m(next) = β1m+ (1− β1)∇wJ(w)

2. s(next) = β2s+ (1− β2)∇wJ(w)⊗∇wJ(w)

3. m(next) =
m

1− βT1
4. s(next) =

s

1− βT2
5. w(next) = w − ηm�

√
s+ ε

I ⊗ and � represents the represents the element-wise multiplication and division.

I Steps 1, 2, and 5: similar to both Momentum optimization and RMSProp.

I Steps 3 and 4: since m and s are initialized at 0, they will be biased toward 0 at the
beginning of training, so these two steps will help boost m and s at the beginning of
training.
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Adam Optimization (3/3)

# train the model

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

140 / 145



Summary
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Summary

I LTU

I Perceptron

I Perceptron weakness

I MLP and feedforward neural network

I Gradient-based learning

I Backpropagation: forward pass and backward pass

I Output unit: linear, sigmoid, softmax

I Hidden units: sigmoid, tanh, relu
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Summary

I Overfitting
• Early stopping, l1 and l2 regularization, max-norm regularization
• Dropout, data augmentation

I Vanishing gradient
• Parameter initialization, nonsaturating activation functions
• Batch normalization

I Training speed
• Momentum, AdaGrad
• RMSProp, Adam optimization
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Reference

I Ian Goodfellow et al., Deep Learning (Ch. 6)

I Aurélien Géron, Hands-On Machine Learning (Ch. 10)
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Questions?
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