
Data Intensive Computing Frameworks

Amir H. Payberah
Swedish Institute of Computer Science

amir@sics.se
1393/10/17

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 1 / 154



Big Data

small data big data

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 2 / 154



I Big Data refers to datasets and flows large
enough that has outpaced our capability to
store, process, analyze, and understand.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 3 / 154



Where Does
Big Data Come From?

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 4 / 154



Big Data Market Driving Factors

The number of web pages indexed by Google, which were around
one million in 1998, have exceeded one trillion in 2008, and its
expansion is accelerated by appearance of the social networks.∗

∗“Mining big data: current status, and forecast to the future” [Wei Fan et al., 2013]

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 5 / 154



Big Data Market Driving Factors

The amount of mobile data traffic is expected to grow to 10.8
Exabyte per month by 2016.∗

∗“Worldwide Big Data Technology and Services 2012-2015 Forecast” [Dan Vesset et al., 2013]

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 6 / 154



Big Data Market Driving Factors

More than 65 billion devices were connected to the Internet by
2010, and this number will go up to 230 billion by 2020.∗

∗“The Internet of Things Is Coming” [John Mahoney et al., 2013]

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 7 / 154



Big Data Market Driving Factors

Many companies are moving towards using Cloud services to
access Big Data analytical tools.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 8 / 154



Big Data Market Driving Factors

Open source communities

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 9 / 154



How To Store and Process
Big Data?

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 10 / 154



Scale Up vs. Scale Out (1/2)

I Scale up or scale vertically: adding resources to a single node in a
system.

I Scale out or scale horizontally: adding more nodes to a system.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 11 / 154



Scale Up vs. Scale Out (2/2)

I Scale up: more expensive than scaling out.

I Scale out: more challenging for fault tolerance and software devel-
opment.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 12 / 154



Taxonomy of Parallel Architectures

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 13 / 154



Taxonomy of Parallel Architectures

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 13 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 14 / 154



Big Data Analytics Stack

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 15 / 154



Hadoop Big Data Analytics Stack

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 16 / 154



Spark Big Data Analytics Stack

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 17 / 154



Outline

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 18 / 154



Outline

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 19 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 20 / 154



What is Filesystem?

I Controls how data is stored in and retrieved from disk.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 21 / 154



What is Filesystem?

I Controls how data is stored in and retrieved from disk.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 21 / 154



Distributed Filesystems

I When data outgrows the storage capacity of a single machine: par-
tition it across a number of separate machines.

I Distributed filesystems: manage the storage across a network of
machines.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 22 / 154



HDFS

I Hadoop Distributed FileSystem

I Appears as a single disk

I Runs on top of a native filesystem, e.g., ext3

I Fault tolerant: can handle disk crashes, machine crashes, ...

I Based on Google’s filesystem GFS

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 23 / 154



HDFS is Good for ...

I Storing large files
• Terabytes, Petabytes, etc...
• 100MB or more per file.

I Streaming data access
• Data is written once and read many times.
• Optimized for batch reads rather than random reads.

I Cheap commodity hardware
• No need for super-computers, use less reliable commodity hardware.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 24 / 154



HDFS is Not Good for ...

I Low-latency reads
• High-throughput rather than low latency for small chunks of data.
• HBase addresses this issue.

I Large amount of small files
• Better for millions of large files instead of billions of small files.

I Multiple writers
• Single writer per file.
• Writes only at the end of file, no-support for arbitrary offset.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 25 / 154



HDFS Daemons (1/2)

I HDFS cluster is manager by three types of processes.

I Namenode
• Manages the filesystem, e.g., namespace, meta-data, and file blocks
• Metadata is stored in memory.

I Datanode
• Stores and retrieves data blocks
• Reports to Namenode
• Runs on many machines

I Secondary Namenode
• Only for checkpointing.
• Not a backup for Namenode

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 26 / 154



HDFS Daemons (1/2)

I HDFS cluster is manager by three types of processes.

I Namenode
• Manages the filesystem, e.g., namespace, meta-data, and file blocks
• Metadata is stored in memory.

I Datanode
• Stores and retrieves data blocks
• Reports to Namenode
• Runs on many machines

I Secondary Namenode
• Only for checkpointing.
• Not a backup for Namenode

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 26 / 154



HDFS Daemons (1/2)

I HDFS cluster is manager by three types of processes.

I Namenode
• Manages the filesystem, e.g., namespace, meta-data, and file blocks
• Metadata is stored in memory.

I Datanode
• Stores and retrieves data blocks
• Reports to Namenode
• Runs on many machines

I Secondary Namenode
• Only for checkpointing.
• Not a backup for Namenode

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 26 / 154



HDFS Daemons (1/2)

I HDFS cluster is manager by three types of processes.

I Namenode
• Manages the filesystem, e.g., namespace, meta-data, and file blocks
• Metadata is stored in memory.

I Datanode
• Stores and retrieves data blocks
• Reports to Namenode
• Runs on many machines

I Secondary Namenode
• Only for checkpointing.
• Not a backup for Namenode

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 26 / 154



HDFS Daemons (2/2)

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 27 / 154



Files and Blocks (1/2)

I Files are split into blocks.

I Blocks
• Single unit of storage: a contiguous piece of information on a disk.
• Transparent to user.
• Managed by Namenode, stored by Datanode.
• Blocks are traditionally either 64MB or 128MB: default is 64MB.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 28 / 154



Files and Blocks (2/2)

I Same block is replicated on multiple machines: default is 3
• Replica placements are rack aware.
• 1st replica on the local rack.
• 2nd replica on the local rack but different machine.
• 3rd replica on the different rack.

I Namenode determines replica placement.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 29 / 154



HDFS Client

I Client interacts with Namenode
• To update the Namenode namespace.
• To retrieve block locations for writing and reading.

I Client interacts directly with Datanode
• To read and write data.

I Namenode does not directly write or read data.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 30 / 154



HDFS Write

I 1. Create a new file in the Namenode’s Namespace; calculate block
topology.

I 2, 3, 4. Stream data to the first, second and third node.

I 5, 6, 7. Success/failure acknowledgment.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 31 / 154



HDFS Read

I 1. Retrieve block locations.

I 2, 3. Read blocks to re-assemble the file.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 32 / 154



Outline

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 33 / 154



Database and Database Management System

I Database: an organized collection of data.

I Database Management System (DBMS): a software that interacts
with users, other applications, and the database itself to capture
and analyze data.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 34 / 154



Database and Database Management System

I Database: an organized collection of data.

I Database Management System (DBMS): a software that interacts
with users, other applications, and the database itself to capture
and analyze data.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 34 / 154



Relational Databases Management Systems (RDMBSs)

I RDMBSs: the dominant technology for storing structured data in
web and business applications.

I SQL is good
• Rich language
• Easy to use and integrate
• Rich toolset
• Many vendors

I They promise: ACID

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 35 / 154



ACID Properties

I Atomicity
• All included statements in a transaction are either executed or the

whole transaction is aborted without affecting the database.

I Consistency
• A database is in a consistent state before and after a transaction.

I Isolation
• Transactions can not see uncommitted changes in the database.

I Durability
• Changes are written to a disk before a database commits a transaction

so that committed data cannot be lost through a power failure.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 36 / 154



ACID Properties

I Atomicity
• All included statements in a transaction are either executed or the

whole transaction is aborted without affecting the database.

I Consistency
• A database is in a consistent state before and after a transaction.

I Isolation
• Transactions can not see uncommitted changes in the database.

I Durability
• Changes are written to a disk before a database commits a transaction

so that committed data cannot be lost through a power failure.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 36 / 154



ACID Properties

I Atomicity
• All included statements in a transaction are either executed or the

whole transaction is aborted without affecting the database.

I Consistency
• A database is in a consistent state before and after a transaction.

I Isolation
• Transactions can not see uncommitted changes in the database.

I Durability
• Changes are written to a disk before a database commits a transaction

so that committed data cannot be lost through a power failure.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 36 / 154



ACID Properties

I Atomicity
• All included statements in a transaction are either executed or the

whole transaction is aborted without affecting the database.

I Consistency
• A database is in a consistent state before and after a transaction.

I Isolation
• Transactions can not see uncommitted changes in the database.

I Durability
• Changes are written to a disk before a database commits a transaction

so that committed data cannot be lost through a power failure.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 36 / 154



RDBMS Challenges

I Web-based applications caused spikes.
• Internet-scale data size
• High read-write rates
• Frequent schema changes

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 37 / 154



Let’s Scale RDBMSs

I RDBMS were not designed to be distributed.

I Possible solutions:
• Replication
• Sharding

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 38 / 154



Let’s Scale RDBMSs - Replication

I Master/Slave architecture

I Scales read operations

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 39 / 154



Let’s Scale RDBMSs - Sharding

I Dividing the database across many machines.

I It scales read and write operations.

I Cannot execute transactions across shards (partitions).

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 40 / 154



Scaling RDBMSs is Expensive and Inefficient

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 41 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 42 / 154



NoSQL

I Avoidance of unneeded complexity

I High throughput

I Horizontal scalability and running on commodity hardware

I Compromising reliability for better performance

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 43 / 154



NoSQL Cost and Performance

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 44 / 154



RDBMS vs. NoSQL

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 45 / 154



NoSQL Data Models

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 46 / 154



NoSQL Data Models

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 47 / 154



Key-Value Data Model

I Collection of key/value pairs.

I Ordered Key-Value: processing over key ranges.

I Dynamo, Scalaris, Voldemort, Riak, ...

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 48 / 154



Column-Oriented Data Model

I Similar to a key/value store, but the value can have multiple at-
tributes (Columns).

I Column: a set of data values of a particular type.

I Store and process data by column instead of row.

I BigTable, Hbase, Cassandra, ...

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 49 / 154



Document Data Model

I Similar to a column-oriented store, but values can have complex
documents, instead of fixed format.

I Flexible schema.

I XML, YAML, JSON, and BSON.

I CouchDB, MongoDB, ...

{

FirstName: "Bob",

Address: "5 Oak St.",

Hobby: "sailing"

}

{

FirstName: "Jonathan",

Address: "15 Wanamassa Point Road",

Children: [

{Name: "Michael", Age: 10},

{Name: "Jennifer", Age: 8},

]

}

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 50 / 154



Graph Data Model

I Uses graph structures with nodes, edges, and properties to represent
and store data.

I Neo4J, InfoGrid, ...

[http://en.wikipedia.org/wiki/Graph database]

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 51 / 154



CAP Theorem

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 52 / 154



Consistency

I Strong consistency
• After an update completes, any subsequent access will return the

updated value.

I Eventual consistency
• Does not guarantee that subsequent accesses will return the

updated value.
• Inconsistency window.
• If no new updates are made to the object, eventually all accesses

will return the last updated value.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 53 / 154



Consistency

I Strong consistency
• After an update completes, any subsequent access will return the

updated value.

I Eventual consistency
• Does not guarantee that subsequent accesses will return the

updated value.
• Inconsistency window.
• If no new updates are made to the object, eventually all accesses

will return the last updated value.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 53 / 154



Quorum Model

I N: the number of nodes to which a data item is replicated.

I R: the number of nodes a value has to be read from to be accepted.

I W: the number of nodes a new value has to be written to before
the write operation is finished.

I To enforce strong consistency: R + W > N

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 54 / 154



Quorum Model

I N: the number of nodes to which a data item is replicated.

I R: the number of nodes a value has to be read from to be accepted.

I W: the number of nodes a new value has to be written to before
the write operation is finished.

I To enforce strong consistency: R + W > N

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 54 / 154



CAP Theorem

I Consistency
• Consistent state of data after the execution of an operation.

I Availability
• Clients can always read and write data.

I Partition Tolerance
• Continue the operation in the presence of network partitions.

I You can choose only two!

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 55 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 56 / 154



Outline

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 57 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 58 / 154



MapReduce

I A shared nothing architecture for processing large data sets with a
parallel/distributed algorithm on clusters.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 59 / 154



MapReduce Definition

I A programming model: to batch process large data sets (inspired
by functional programming).

I An execution framework: to run parallel algorithms on clusters of
commodity hardware.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 60 / 154



MapReduce Definition

I A programming model: to batch process large data sets (inspired
by functional programming).

I An execution framework: to run parallel algorithms on clusters of
commodity hardware.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 60 / 154



Simplicity

I Don’t worry about parallelization, fault tolerance, data distribution,
and load balancing (MapReduce takes care of these).

I Hide system-level details from programmers.

Simplicity!

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 61 / 154



Programming Model

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 62 / 154



MapReduce Dataflow

I map function: processes data and generates a set of intermediate
key/value pairs.

I reduce function: merges all intermediate values associated with the
same intermediate key.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 63 / 154



Example: Word Count

I Consider doing a word count of the following file using MapReduce:

Hello World Bye World

Hello Hadoop Goodbye Hadoop

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 64 / 154



Example: Word Count - map

I The map function reads in words one a time and outputs (word, 1)
for each parsed input word.

I The map function output is:

(Hello, 1)

(World, 1)

(Bye, 1)

(World, 1)

(Hello, 1)

(Hadoop, 1)

(Goodbye, 1)

(Hadoop, 1)

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 65 / 154



Example: Word Count - shuffle

I The shuffle phase between map and reduce phase creates a list of
values associated with each key.

I The reduce function input is:

(Bye, (1))

(Goodbye, (1))

(Hadoop, (1, 1))

(Hello, (1, 1))

(World, (1, 1))

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 66 / 154



Example: Word Count - reduce

I The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

I The output of the reduce function is the output of the MapReduce
job:

(Bye, 1)

(Goodbye, 1)

(Hadoop, 2)

(Hello, 2)

(World, 2)

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 67 / 154



Example: Word Count - map

public static class MyMap extends Mapper<...> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

context.write(word, one);

}

}

}

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 68 / 154



Example: Word Count - reduce

public static class MyReduce extends Reducer<...> {

public void reduce(Text key, Iterator<...> values, Context context)

throws IOException, InterruptedException {

int sum = 0;

while (values.hasNext())

sum += values.next().get();

context.write(key, new IntWritable(sum));

}

}

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 69 / 154



Example: Word Count - driver

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.setMapperClass(MyMap.class);

job.setReducerClass(MyReduce.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

}

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 70 / 154



Execution Engine

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 71 / 154



MapReduce Execution (1/7)

I The user program divides the input files into M splits.
• A typical size of a split is the size of a HDFS block (64 MB).
• Converts them to key/value pairs.

I It starts up many copies of the program on a cluster of machines.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 72 / 154



MapReduce Execution (2/7)

I One of the copies of the program is master, and the rest are workers.

I The master assigns works to the workers.
• It picks idle workers and assigns each one a map task or a reduce

task.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 73 / 154



MapReduce Execution (3/7)

I A map worker reads the contents of the corresponding input splits.

I It parses key/value pairs out of the input data and passes each pair
to the user defined map function.

I The intermediate key/value pairs produced by the map function are
buffered in memory.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 74 / 154



MapReduce Execution (4/7)

I The buffered pairs are periodically written to local disk.
• They are partitioned into R regions (hash(key) mod R).

I The locations of the buffered pairs on the local disk are passed back
to the master.

I The master forwards these locations to the reduce workers.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 75 / 154



MapReduce Execution (5/7)

I A reduce worker reads the buffered data from the local disks of the
map workers.

I When a reduce worker has read all intermediate data, it sorts it by
the intermediate keys.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 76 / 154



MapReduce Execution (6/7)

I The reduce worker iterates over the intermediate data.

I For each unique intermediate key, it passes the key and the cor-
responding set of intermediate values to the user defined reduce
function.

I The output of the reduce function is appended to a final output file
for this reduce partition.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 77 / 154



MapReduce Execution (7/7)

I When all map tasks and reduce tasks have been completed, the
master wakes up the user program.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 78 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 79 / 154



What is Spark?

I An efficient distributed general-purpose data analysis platform.

I Focusing on ease of programming and high performance.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 80 / 154



Motivation

I MapReduce programming model has not been designed for complex
operations, e.g., data mining.

I Very expensive, i.e., always goes to disk and HDFS.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 81 / 154



Solution

I Extends MapReduce with more operators.

I Support for advanced data flow graphs.

I In-memory and out-of-core processing.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 82 / 154



Spark vs. Hadoop

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 83 / 154



Spark vs. Hadoop

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 83 / 154



Spark vs. Hadoop

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 84 / 154



Spark vs. Hadoop

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 84 / 154



Resilient Distributed Datasets (RDD) (1/2)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 85 / 154



Resilient Distributed Datasets (RDD) (1/2)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 85 / 154



Resilient Distributed Datasets (RDD) (2/2)

I An RDD is divided into a number of partitions, which are atomic
pieces of information.

I Partitions of an RDD can be stored on different nodes of a cluster.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 86 / 154



RDD Operators

I Higher-order functions: transformations and actions.

I Transformations: lazy operators that create new RDDs.

I Actions: launch a computation and return a value to the program
or write data to the external storage.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 87 / 154



Transformations vs. Actions

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 88 / 154



RDD Transformations - Map

I All pairs are independently processed.

// passing each element through a function.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x) // {1, 4, 9}

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 89 / 154



RDD Transformations - Map

I All pairs are independently processed.

// passing each element through a function.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x) // {1, 4, 9}

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 89 / 154



RDD Transformations - GroupBy

I Pairs with identical key are grouped.

I Groups are independently processed.

val schools = sc.parallelize(Seq(("sics", 1), ("kth", 1), ("sics", 2)))

schools.groupByKey()

// {("sics", (1, 2)), ("kth", (1))}

schools.reduceByKey((x, y) => x + y)

// {("sics", 3), ("kth", 1)}

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 90 / 154



RDD Transformations - GroupBy

I Pairs with identical key are grouped.

I Groups are independently processed.

val schools = sc.parallelize(Seq(("sics", 1), ("kth", 1), ("sics", 2)))

schools.groupByKey()

// {("sics", (1, 2)), ("kth", (1))}

schools.reduceByKey((x, y) => x + y)

// {("sics", 3), ("kth", 1)}

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 90 / 154



RDD Transformations - Join

I Performs an equi-join on the key.

I Join candidates are independently pro-
cessed.

val list1 = sc.parallelize(Seq(("sics", "10"),

("kth", "50"),

("sics", "20")))

val list2 = sc.parallelize(Seq(("sics", "upsala"),

("kth", "stockholm")))

list1.join(list2)

// ("sics", ("10", "upsala"))

// ("sics", ("20", "upsala"))

// ("kth", ("50", "stockholm"))

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 91 / 154



RDD Transformations - Join

I Performs an equi-join on the key.

I Join candidates are independently pro-
cessed.

val list1 = sc.parallelize(Seq(("sics", "10"),

("kth", "50"),

("sics", "20")))

val list2 = sc.parallelize(Seq(("sics", "upsala"),

("kth", "stockholm")))

list1.join(list2)

// ("sics", ("10", "upsala"))

// ("sics", ("20", "upsala"))

// ("kth", ("50", "stockholm"))

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 91 / 154



Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 92 / 154



Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 92 / 154



Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 92 / 154



Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 92 / 154



Creating RDDs

I Turn a collection into an RDD.

val a = sc.parallelize(Array(1, 2, 3))

I Load text file from local FS, HDFS, or S3.

val a = sc.textFile("file.txt")

val b = sc.textFile("directory/*.txt")

val c = sc.textFile("hdfs://namenode:9000/path/file")

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 93 / 154



SparkContext

I Main entry point to Spark functionality.

I Available in shell as variable sc.

I In standalone programs, you should make your own.

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

val sc = new SparkContext(master, appName, [sparkHome], [jars])

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 94 / 154



Example

I Read data from a text file and count the total number of words..

val lines = sc.textFile("hamlet.txt")

val eachWordCounts = lines.flatMap(_.split(" "))

.map(word => (word, 1))

.reduceByKey((a, b) => a + b)

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 95 / 154



Example

I Read data from a text file and count the total number of words..

val lines = sc.textFile("hamlet.txt")

val eachWordCounts = lines.flatMap(_.split(" "))

.map(word => (word, 1))

.reduceByKey((a, b) => a + b)

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 95 / 154



Outline

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 96 / 154



Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 97 / 154



Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 97 / 154



DBMS vs. DSMS (1/3)

I DBMS: persistent data where updates are relatively infrequent.

I DSMS: transient data that is continuously updated.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 98 / 154



DBMS vs. DSMS (2/3)

I DBMS: runs queries just once to return a complete answer.

I DSMS: executes standing queries, which run continuously and pro-
vide updated answers as new data arrives.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 99 / 154



DBMS vs. DSMS (3/3)

I Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 100 / 154



DSMS

I Source: produces the incoming information flows

I Sink: consumes the results of processing

I IFP engine: processes incoming flows

I Processing rules: how to process the incoming flows

I Rule manager: adds/removes processing rules

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 101 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 102 / 154



Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 103 / 154



Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 103 / 154



DStream

I DStream: sequence of RDDs representing a stream of data.
• TCP sockets, Twitter, HDFS, Kafka, ...

I Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,

[sparkHome], [jars])

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 104 / 154



DStream

I DStream: sequence of RDDs representing a stream of data.
• TCP sockets, Twitter, HDFS, Kafka, ...

I Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,

[sparkHome], [jars])

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 104 / 154



DStream Operations (1/2)

I Transformations: modify data from on DStream to a new DStream.
• Standard RDD operations (stateless/stateful operations): map, join, ...

• Window operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 105 / 154



DStream Operations (1/2)

I Transformations: modify data from on DStream to a new DStream.
• Standard RDD operations (stateless/stateful operations): map, join, ...

• Window operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 105 / 154



DStream Operations (2/2)

I Output operations: send data to external entity
• saveAsHadoopFiles, foreach, print, ...

I Attaching input sources

ssc.textFileStream(directory)

ssc.socketStream(hostname, port)

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 106 / 154



DStream Operations (2/2)

I Output operations: send data to external entity
• saveAsHadoopFiles, foreach, print, ...

I Attaching input sources

ssc.textFileStream(directory)

ssc.socketStream(hostname, port)

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 106 / 154



Example (1/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

DStream: a sequence of RDD representing a stream of data

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 107 / 154



Example (2/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

val hashTags = tweets.flatMap(status => getTags(status))

transformation: modify data in one DStream
to create another DStream

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 108 / 154



Example (3/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

val hashTags = tweets.flatMap(status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 109 / 154



Outline

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 110 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 111 / 154



Introduction

I Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

I Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 112 / 154



Large Graph

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 113 / 154



Large-Scale Graph Processing

I Large graphs need large-scale processing.

I A large graph either cannot fit into memory of single computer or
it fits with huge cost.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 114 / 154



Question

Can we use platforms like MapReduce or Spark, which are based on data-parallel

model, for large-scale graph proceeding?

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 115 / 154



Data-Parallel Model for Large-Scale Graph Processing

I The platforms that have worked well for developing parallel applica-
tions are not necessarily effective for large-scale graph problems.

I Why?

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 116 / 154



Graph Algorithms Characteristics

I Unstructured problems: difficult to partition the data

I Data-driven computations: difficult to partition computation

I Poor data locality

I High data access to computation ratio

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 117 / 154



Graph Algorithms Characteristics

I Unstructured problems: difficult to partition the data

I Data-driven computations: difficult to partition computation

I Poor data locality

I High data access to computation ratio

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 117 / 154



Graph Algorithms Characteristics

I Unstructured problems: difficult to partition the data

I Data-driven computations: difficult to partition computation

I Poor data locality

I High data access to computation ratio

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 117 / 154



Graph Algorithms Characteristics

I Unstructured problems: difficult to partition the data

I Data-driven computations: difficult to partition computation

I Poor data locality

I High data access to computation ratio

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 117 / 154



Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 118 / 154



Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 118 / 154



Graph-Parallel Processing

I Restricts the types of computation.

I New techniques to partition and distribute graphs.

I Exploit graph structure.

I Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 119 / 154



Data-Parallel vs. Graph-Parallel Computation

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 120 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 121 / 154



Pregel

I Large-scale graph-parallel processing platform developed at Google.

I Inspired by bulk synchronous parallel (BSP) model.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 122 / 154



Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:

• A set of processor-memory pairs.
• A communications network that delivers messages in a point-

to-point manner.
• A mechanism for the efficient barrier synchronization for all or

a subset of the processes.
• There are no special combining, replicating, or broadcasting fa-

cilities.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 123 / 154



Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:
• A set of processor-memory pairs.

• A communications network that delivers messages in a point-
to-point manner.

• A mechanism for the efficient barrier synchronization for all or
a subset of the processes.

• There are no special combining, replicating, or broadcasting fa-
cilities.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 123 / 154



Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:
• A set of processor-memory pairs.
• A communications network that delivers messages in a point-

to-point manner.

• A mechanism for the efficient barrier synchronization for all or
a subset of the processes.

• There are no special combining, replicating, or broadcasting fa-
cilities.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 123 / 154



Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:
• A set of processor-memory pairs.
• A communications network that delivers messages in a point-

to-point manner.
• A mechanism for the efficient barrier synchronization for all or

a subset of the processes.

• There are no special combining, replicating, or broadcasting fa-
cilities.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 123 / 154



Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:
• A set of processor-memory pairs.
• A communications network that delivers messages in a point-

to-point manner.
• A mechanism for the efficient barrier synchronization for all or

a subset of the processes.
• There are no special combining, replicating, or broadcasting fa-

cilities.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 123 / 154



Bulk Synchronous Parallel (2/2)

All vertices update in parallel (at the same time).

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 124 / 154



Vertex-Centric Programs

I Think as a vertex.

I Each vertex computes individually its value: in parallel

I Each vertex can see its local context, and updates its value accord-
ingly.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 125 / 154



Vertex-Centric Programs

I Think as a vertex.

I Each vertex computes individually its value: in parallel

I Each vertex can see its local context, and updates its value accord-
ingly.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 125 / 154



Vertex-Centric Programs

I Think as a vertex.

I Each vertex computes individually its value: in parallel

I Each vertex can see its local context, and updates its value accord-
ingly.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 125 / 154



Data Model

I A directed graph that stores the program state, e.g., the current
value.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 126 / 154



Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 127 / 154



Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 127 / 154



Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 127 / 154



Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 127 / 154



Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 128 / 154



Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 128 / 154



Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 128 / 154



Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 128 / 154



Execution Model (3/3)

I Aggregation: a mechanism for global communication, monitoring,
and data.

I Runs after each superstep.

I Each vertex can provide a value to an aggregator in superstep S.

I The system combines those values and the resulting value is made
available to all vertices in superstep S + 1.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 129 / 154



Execution Model (3/3)

I Aggregation: a mechanism for global communication, monitoring,
and data.

I Runs after each superstep.

I Each vertex can provide a value to an aggregator in superstep S.

I The system combines those values and the resulting value is made
available to all vertices in superstep S + 1.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 129 / 154



Example: Max Value (1/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 130 / 154



Example: Max Value (2/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 131 / 154



Example: Max Value (3/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 132 / 154



Example: Max Value (4/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 133 / 154



Example: PageRank

I Update ranks in parallel.

I Iterate until convergence.

R[i ] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j ]

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 134 / 154



Example: PageRank

Pregel_PageRank(i, messages):

// receive all the messages

total = 0

foreach(msg in messages):

total = total + msg

// update the rank of this vertex

R[i] = 0.15 + total

// send new messages to neighbors

foreach(j in out_neighbors[i]):

sendmsg(R[i] * wij) to vertex j

R[i ] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j ]

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 135 / 154



Pregel Limitations

I Inefficient if different regions of the graph converge at different
speed.

I Can suffer if one task is more expensive than the others.

I Runtime of each phase is determined by the slowest machine.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 136 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 137 / 154



Data Model

I A directed graph that stores the program state, called data graph.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 138 / 154



Vertex Scope

I The scope of vertex v is the data stored in vertex v , in all adjacent
vertices and adjacent edges.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 139 / 154



Programming Model (1/3)

I Rather than adopting a message passing as in Pregel, GraphLab
allows the user defined function of a vertex to read and modify any
of the data in its scope.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 140 / 154



Programming Model (2/3)

I Update function: user-defined function similar to Compute in Pregel.

I Can read and modify the data within the scope of a vertex.

I Schedules the future execution of other update functions.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 141 / 154



Programming Model (3/3)

I Sync function: similar to aggregate in Pregel.

I Maintains global aggregates.

I Performs periodically in the background.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 142 / 154



Execution Model

I Each task in the set of tasks T , is a tuple (f, v) consisting of an
update function f and a vertex v.

I After executing an update function (f, g, · · ·) the modified scope
data in Sv is written back to the data graph.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 143 / 154



Execution Model

I Each task in the set of tasks T , is a tuple (f, v) consisting of an
update function f and a vertex v.

I After executing an update function (f, g, · · ·) the modified scope
data in Sv is written back to the data graph.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 143 / 154



Execution Model

I Each task in the set of tasks T , is a tuple (f, v) consisting of an
update function f and a vertex v.

I After executing an update function (f, g, · · ·) the modified scope
data in Sv is written back to the data graph.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 143 / 154



Example: PageRank

GraphLab_PageRank(i)

// compute sum over neighbors

total = 0

foreach(j in in_neighbors(i)):

total = total + R[j] * wji

// update the PageRank

R[i] = 0.15 + total

// trigger neighbors to run again

foreach(j in out_neighbors(i)):

signal vertex-program on j

R[i ] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j ]

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 144 / 154



Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 145 / 154



Data-Parallel vs. Graph-Parallel Computation

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 146 / 154



Data-Parallel vs. Graph-Parallel Computation

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 146 / 154



Data-Parallel and Graph-Parallel Pipeline

I Moving between table and graph views of the same physical data.

I Inefficient: extensive data movement and duplication across the net-
work and file system.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 147 / 154



GraphX vs. Data-Parallel/Graph-Parallel Systems

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 148 / 154



GraphX vs. Data-Parallel/Graph-Parallel Systems

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 148 / 154



GraphX

I New API that blurs the distinction between Tables and Graphs.

I New system that unifies Data-Parallel and Graph-Parallel systems.

I It is implemented on top of Spark.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 149 / 154



Unifying Data-Parallel and Graph-Parallel Analytics

I Tables and Graphs are composable views of the same physical data.

I Each view has its own operators that exploit the semantics of the
view to achieve efficient execution.

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 150 / 154



Data Model

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 151 / 154



Summary

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 152 / 154



Summary

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 153 / 154



Questions?

Amir H. Payberah (SICS) Data Intensive Computing 1393/10/17 154 / 154


