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I Big Data refers to datasets and flows large
enough that has outpaced our capability to
store, process, analyze, and understand.
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Where Does
Big Data Come From?
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Big Data Market Driving Factors

The number of web pages indexed by Google, which were around
one million in 1998, have exceeded one trillion in 2008, and its
expansion is accelerated by appearance of the social networks.∗

∗“Mining big data: current status, and forecast to the future” [Wei Fan et al., 2013]
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Big Data Market Driving Factors

The amount of mobile data traffic is expected to grow to 10.8
Exabyte per month by 2016.∗

∗“Worldwide Big Data Technology and Services 2012-2015 Forecast” [Dan Vesset et al., 2013]
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Big Data Market Driving Factors

More than 65 billion devices were connected to the Internet by
2010, and this number will go up to 230 billion by 2020.∗

∗“The Internet of Things Is Coming” [John Mahoney et al., 2013]
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Big Data Market Driving Factors

Many companies are moving towards using Cloud services to
access Big Data analytical tools.
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Big Data Market Driving Factors

Open source communities
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How To Store and Process
Big Data?
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Scale Up vs. Scale Out (1/2)

I Scale up or scale vertically: adding resources to a single node in a
system.

I Scale out or scale horizontally: adding more nodes to a system.
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Scale Up vs. Scale Out (2/2)

I Scale up: more expensive than scaling out.

I Scale out: more challenging for fault tolerance and software devel-
opment.
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Taxonomy of Parallel Architectures

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.
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Big Data Analytics Stack
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Hadoop Big Data Analytics Stack
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Spark Big Data Analytics Stack
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Big Data - File systems

I Traditional file-systems are not well-designed for large-scale data
processing systems.

I Efficiency has a higher priority than other features, e.g., directory
service.

I Massive size of data tends to store it across multiple machines in a
distributed way.

I HDFS/GFS, Amazon S3, ...
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Big Data - Database

I Relational Databases Management Systems (RDMS) were not de-
signed to be distributed.

I NoSQL databases relax one or more of the ACID properties: BASE

I Different data models: key/value, column-family, graph, document.

I Hbase/BigTable, Dynamo, Scalaris, Cassandra, MongoDB, Volde-
mort, Riak, Neo4J, ...

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 19 / 171



Big Data - Database

I Relational Databases Management Systems (RDMS) were not de-
signed to be distributed.

I NoSQL databases relax one or more of the ACID properties: BASE

I Different data models: key/value, column-family, graph, document.

I Hbase/BigTable, Dynamo, Scalaris, Cassandra, MongoDB, Volde-
mort, Riak, Neo4J, ...

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 19 / 171



Big Data - Database

I Relational Databases Management Systems (RDMS) were not de-
signed to be distributed.

I NoSQL databases relax one or more of the ACID properties: BASE

I Different data models: key/value, column-family, graph, document.

I Hbase/BigTable, Dynamo, Scalaris, Cassandra, MongoDB, Volde-
mort, Riak, Neo4J, ...

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 19 / 171



Big Data - Database

I Relational Databases Management Systems (RDMS) were not de-
signed to be distributed.

I NoSQL databases relax one or more of the ACID properties: BASE

I Different data models: key/value, column-family, graph, document.

I Hbase/BigTable, Dynamo, Scalaris, Cassandra, MongoDB, Volde-
mort, Riak, Neo4J, ...

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 19 / 171



Big Data - Resource Management

I Different frameworks require different computing resources.

I Large organizations need the ability to share data and resources
between multiple frameworks.

I Resource management share resources in a cluster between multiple
frameworks while providing resource isolation.

I Mesos, YARN, Quincy, ...
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Big Data - Execution Engine

I Scalable and fault tolerance parallel data processing on clusters of
unreliable machines.

I Data-parallel programming model for clusters of commodity ma-
chines.

I MapReduce, Spark, Stratosphere, Dryad, Hyracks, ...
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Big Data - Query/Scripting Language

I Low-level programming of execution engines, e.g., MapReduce, is
not easy for end users.

I Need high-level language to improve the query capabilities of exe-
cution engines.

I It translates user-defined functions to low-level API of the execution
engines.

I Pig, Hive, Shark, Meteor, DryadLINQ, SCOPE, ...
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Big Data - Stream Processing

I Providing users with fresh and low latency results.

I Database Management Systems (DBMS) vs. Data Stream Man-
agement Systems (DSMS)

I Storm, S4, SEEP, D-Stream, Naiad, ...
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Big Data - Graph Processing

I Many problems are expressed using graphs: sparse computational
dependencies, and multiple iterations to converge.

I Data-parallel frameworks, such as MapReduce, are not ideal for
these problems: slow

I Graph processing frameworks are optimized for graph-based prob-
lems.

I Pregel, Giraph, GraphX, GraphLab, PowerGraph, GraphChi, ...
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Big Data - Machine Learning

I Implementing and consuming machine learning techniques at scale
are difficult tasks for developers and end users.

I There exist platforms that address it by providing scalable machine-
learning and data mining libraries.

I Mahout, MLBase, SystemML, Ricardo, Presto, ...
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Big Data - Configuration and Synchronization Service

I A means to synchronize distributed applications accesses to shared
resources.

I Allows distributed processes to coordinate with each other.

I Zookeeper, Chubby, ...
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Outline

I Introduction to HDFS

I Data processing with MapReduce

I Introduction to Scala

I Data exploration using Spark

I Stream processing with Spark Streaming

I Graph analytics with GraphX
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What is Filesystem?

I Controls how data is stored in and retrieved from disk.
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Distributed Filesystems

I When data outgrows the storage capacity of a single machine: par-
tition it across a number of separate machines.

I Distributed filesystems: manage the storage across a network of
machines.
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HDFS

I Hadoop Distributed FileSystem

I Appears as a single disk

I Runs on top of a native filesystem, e.g., ext3

I Fault tolerant: can handle disk crashes, machine crashes, ...

I Based on Google’s filesystem GFS
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HDFS is Good for ...

I Storing large files
• Terabytes, Petabytes, etc...
• 100MB or more per file.

I Streaming data access
• Data is written once and read many times.
• Optimized for batch reads rather than random reads.

I Cheap commodity hardware
• No need for super-computers, use less reliable commodity hardware.
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HDFS is Not Good for ...

I Low-latency reads
• High-throughput rather than low latency for small chunks of data.
• HBase addresses this issue.

I Large amount of small files
• Better for millions of large files instead of billions of small files.

I Multiple writers
• Single writer per file.
• Writes only at the end of file, no-support for arbitrary offset.
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HDFS Daemons (1/2)

I HDFS cluster is manager by three types of processes.

I Namenode
• Manages the filesystem, e.g., namespace, meta-data, and file blocks
• Metadata is stored in memory.

I Datanode
• Stores and retrieves data blocks
• Reports to Namenode
• Runs on many machines

I Secondary Namenode
• Only for checkpointing.
• Not a backup for Namenode
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HDFS Daemons (2/2)
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Files and Blocks (1/2)

I Files are split into blocks.

I Blocks
• Single unit of storage: a contiguous piece of information on a disk.
• Transparent to user.
• Managed by Namenode, stored by Datanode.
• Blocks are traditionally either 64MB or 128MB: default is 64MB.
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Files and Blocks (2/2)

I Same block is replicated on multiple machines: default is 3
• Replica placements are rack aware.
• 1st replica on the local rack.
• 2nd replica on the local rack but different machine.
• 3rd replica on the different rack.

I Namenode determines replica placement.
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HDFS Client

I Client interacts with Namenode
• To update the Namenode namespace.
• To retrieve block locations for writing and reading.

I Client interacts directly with Datanode
• To read and write data.

I Namenode does not directly write or read data.

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 38 / 171



HDFS Write

I 1. Create a new file in the Namenode’s Namespace; calculate block
topology.

I 2, 3, 4. Stream data to the first, second and third node.

I 5, 6, 7. Success/failure acknowledgment.
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HDFS Read

I 1. Retrieve block locations.

I 2, 3. Read blocks to re-assemble the file.
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Namenode Memory Concerns

I For fast access Namenode keeps all block metadata in-memory.
• Will work well for clusters of 100 machines.

I Changing block size will affect how much space a cluster can host.
• 64MB to 128MB will reduce the number of blocks and increase the

space that Namenode can support.
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HDFS Federation

I Hadoop 2+

I Each Namenode will host part of the blocks.

I A Block Pool is a set of blocks that belong to a single namespace.

I Support for 1000+ machine clusters.
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Namenode Fault-Tolerance (1/2)

I Namenode is a single point of failure.

I If Namenode crashes then cluster is down.

I Secondary Namenode periodically merges the namespace image and
log and a persistent record of it written to disk (checkpointing).

I But, the state of the secondary Namenode lags that of the primary:
does not provide high-availability of the filesystem
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Namenode Fault-Tolerance (2/2)

I High availability Namenode.
• Hadoop 2+
• Active standby is always running and takes over in case main Namen-

ode fails.
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HDFS Installation and Shell
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HDFS Installation

I Three options

• Local (Standalone) Mode

• Pseudo-Distributed Mode

• Fully-Distributed Mode
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Installation - Local

I Default configuration after the download.

I Executes as a single Java process.

I Works directly with local filesystem.

I Useful for debugging.
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Installation - Pseudo-Distributed (1/6)

I Still runs on a single node.

I Each daemon runs in its own Java process.
• Namenode
• Secondary Namenode
• Datanode

I Configuration files:
• hadoop-env.sh
• core-site.xml
• hdfs-site.xml
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Installation - Pseudo-Distributed (2/6)

I Specify environment variables in hadoop-env.sh

export JAVA_HOME=/opt/jdk1.7.0_51
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Installation - Pseudo-Distributed (3/6)

I Specify location of Namenode in core-site.sh

<property>

<name>fs.defaultFS</name>

<value>hdfs://localhost:8020</value>

<description>NameNode URI</description>

</property>
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Installation - Pseudo-Distributed (4/6)

I Configurations of Namenode in hdfs-site.sh

I Path on the local filesystem where the Namenode stores the names-
pace and transaction logs persistently.

<property>

<name>dfs.namenode.name.dir</name>

<value>/opt/hadoop-2.2.0/hdfs/namenode</value>

<description>description...</description>

</property>
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Installation - Pseudo-Distributed (5/6)

I Configurations of Secondary Namenode in hdfs-site.sh

I Path on the local filesystem where the Secondary Namenode stores
the temporary images to merge.

<property>

<name>dfs.namenode.checkpoint.dir</name>

<value>/opt/hadoop-2.2.0/hdfs/secondary</value>

<description>description...</description>

</property>
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Installation - Pseudo-Distributed (6/6)

I Configurations of Datanode in hdfs-site.sh

I Comma separated list of paths on the local filesystem of a Datanode
where it should store its blocks.

<property>

<name>dfs.datanode.data.dir</name>

<value>/opt/hadoop-2.2.0/hdfs/datanode</value>

<description>description...</description>

</property>
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Start HDFS and Test

I Format the Namenode directory (do this only once, the first time).

hdfs namenode -format

I Start the Namenode, Secondary namenode and Datanode daemons.

hadoop-daemon.sh start namenode

hadoop-daemon.sh start secondarynamenode

hadoop-daemon.sh start datanode

jps

I Verify the deamons are running:
• Namenode: http://localhost:50070
• Secondary Namenode: http://localhost:50090
• Datanode: http://localhost:50075
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HDFS Shell

hdfs dfs -<command> -<option> <path>

hdfs dfs -ls /

hdfs dfs -ls file:///home/big

hdfs dfs -ls hdfs://localhost/

hdfs dfs -cat /dir/file.txt

hdfs dfs -cp /dir/file1 /otherDir/file2

hdfs dfs -mv /dir/file1 /dir2/file2

hdfs dfs -mkdir /newDir

hdfs dfs -put file.txt /dir/file.txt # can also use copyFromLocal

hdfs dfs -get /dir/file.txt file.txt # can also use copyToLocal

hdfs dfs -rm /dir/fileToDelete

hdfs dfs -help
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MapReduce

I A shared nothing architecture for processing large data sets with a
parallel/distributed algorithm on clusters.
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MapReduce Definition

I A programming model: to batch process large data sets (inspired
by functional programming).

I An execution framework: to run parallel algorithms on clusters of
commodity hardware.
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Simplicity

I Don’t worry about parallelization, fault tolerance, data distribution,
and load balancing (MapReduce takes care of these).

I Hide system-level details from programmers.

Simplicity!
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Programming Model
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MapReduce Dataflow

I map function: processes data and generates a set of intermediate
key/value pairs.

I reduce function: merges all intermediate values associated with the
same intermediate key.
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Example: Word Count

I Consider doing a word count of the following file using MapReduce:

Hello World Bye World

Hello Hadoop Goodbye Hadoop
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Example: Word Count - map

I The map function reads in words one a time and outputs (word, 1)
for each parsed input word.

I The map function output is:

(Hello, 1)

(World, 1)

(Bye, 1)

(World, 1)

(Hello, 1)

(Hadoop, 1)

(Goodbye, 1)

(Hadoop, 1)
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Example: Word Count - shuffle

I The shuffle phase between map and reduce phase creates a list of
values associated with each key.

I The reduce function input is:

(Bye, (1))

(Goodbye, (1))

(Hadoop, (1, 1)

(Hello, (1, 1))

(World, (1, 1))
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Example: Word Count - reduce

I The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

I The output of the reduce function is the output of the MapReduce
job:

(Bye, 1)

(Goodbye, 1)

(Hadoop, 2)

(Hello, 2)

(World, 2)
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Combiner Function (1/2)

I In some cases, there is significant repetition in the intermediate keys
produced by each map task, and the reduce function is commutative
and associative.

Machine 1:
(Hello, 1)

(World, 1)

(Bye, 1)

(World, 1)

Machine 2:
(Hello, 1)

(Hadoop, 1)

(Goodbye, 1)

(Hadoop, 1)
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Combiner Function (2/2)

I Users can specify an optional combiner function to merge partially
data before it is sent over the network to the reduce function.

I Typically the same code is used to implement both the combiner
and the reduce function.

Machine 1:
(Hello, 1)

(World, 2)

(Bye, 1)

Machine 2:
(Hello, 1)

(Hadoop, 2)

(Goodbye, 1)
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Example: Word Count - map

public static class MyMap extends Mapper<...> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

context.write(word, one);

}

}

}
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Example: Word Count - reduce

public static class MyReduce extends Reducer<...> {

public void reduce(Text key, Iterator<...> values, Context context)

throws IOException, InterruptedException {

int sum = 0;

while (values.hasNext())

sum += values.next().get();

context.write(key, new IntWritable(sum));

}

}
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Example: Word Count - driver

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.setMapperClass(MyMap.class);

job.setCombinerClass(MyReduce.class);

job.setReducerClass(MyReduce.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

}
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Example: Word Count - Compile and Run (1/2)

# start hdfs

> hadoop-daemon.sh start namenode

> hadoop-daemon.sh start datanode

# make the input folder in hdfs

> hdfs dfs -mkdir -p input

# copy input files from local filesystem into hdfs

> hdfs dfs -put file0 input/file0

> hdfs dfs -put file1 input/file1

> hdfs dfs -ls input/

input/file0

input/file1

> hdfs dfs -cat input/file0

Hello World Bye World

> hdfs dfs -cat input/file1

Hello Hadoop Goodbye Hadoop
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Example: Word Count - Compile and Run (2/2)

> mkdir wordcount_classes

> javac -classpath

$HADOOP_HOME/share/hadoop/common/hadoop-common-2.2.0.jar:

$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.2.0.jar:

$HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar

-d wordcount_classes sics/WordCount.java

> jar -cvf wordcount.jar -C wordcount_classes/ .

> hadoop jar wordcount.jar sics.WordCount input output

> hdfs dfs -ls output

output/part-00000

> hdfs dfs -cat output/part-00000

Bye 1

Goodbye 1

Hadoop 2

Hello 2

World 2
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Execution Engine
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MapReduce Execution (1/7)

I The user program divides the input files into M splits.
• A typical size of a split is the size of a HDFS block (64 MB).
• Converts them to key/value pairs.

I It starts up many copies of the program on a cluster of machines.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (2/7)

I One of the copies of the program is master, and the rest are workers.

I The master assigns works to the workers.
• It picks idle workers and assigns each one a map task or a reduce

task.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (3/7)

I A map worker reads the contents of the corresponding input splits.

I It parses key/value pairs out of the input data and passes each pair
to the user defined map function.

I The intermediate key/value pairs produced by the map function are
buffered in memory.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (4/7)

I The buffered pairs are periodically written to local disk.
• They are partitioned into R regions (hash(key) mod R).

I The locations of the buffered pairs on the local disk are passed back
to the master.

I The master forwards these locations to the reduce workers.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (5/7)

I A reduce worker reads the buffered data from the local disks of the
map workers.

I When a reduce worker has read all intermediate data, it sorts it by
the intermediate keys.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (6/7)

I The reduce worker iterates over the intermediate data.

I For each unique intermediate key, it passes the key and the cor-
responding set of intermediate values to the user defined reduce
function.

I The output of the reduce function is appended to a final output file
for this reduce partition.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 79 / 171



MapReduce Execution (7/7)

I When all map tasks and reduce tasks have been completed, the
master wakes up the user program.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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Hadoop MapReduce and HDFS
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Fault Tolerance

I On worker failure:

• Detect failure via periodic heartbeats.

• Re-execute in-progress map and reduce tasks.

• Re-execute completed map tasks: their output is stored on the local
disk of the failed machine and is therefore inaccessible.

• Completed reduce tasks do not need to be re-executed since their
output is stored in a global filesystem.

I On master failure:
• State is periodically checkpointed: a new copy of master starts from

the last checkpoint state.
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Scala

I Scala: scalable language

I A blend of object-oriented and functional programming

I Runs on the Java Virtual Machine

I Designed by Martin Odersky at EPFL

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 84 / 171



Functional Programming Languages

I In a restricted sense: a language that does not have mutable vari-
ables, assignments, or imperative control structures.

I In a wider sense: it enables the construction of programs that focus
on functions.

I Functions are first-class citizens:
• Defined anywhere (including inside other functions).
• Passed as parameters to functions and returned as results.
• Operators to compose functions.
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Scala Variables

I Values: immutable

I Variables: mutable

var myVar: Int = 0

val myVal: Int = 1

I Scala data types:
• Boolean, Byte, Short, Char, Int, Long, Float, Double, String
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If ... Else

var x = 30;

if (x == 10) {

println("Value of X is 10");

} else if (x == 20) {

println("Value of X is 20");

} else {

println("This is else statement");

}
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Loop

var a = 0

var b = 0

for (a <- 1 to 3; b <- 1 until 3) {

println("Value of a: " + a + ", b: " + b )

}

// loop with collections

val numList = List(1, 2, 3, 4, 5, 6)

for (a <- numList) {

println("Value of a: " + a)

}
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Functions

def functionName([list of parameters]): [return type] = {

function body

return [expr]

}

def addInt(a: Int, b: Int): Int = {

var sum: Int = 0

sum = a + b

sum

}

println("Returned Value: " + addInt(5, 7))
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Anonymous Functions

I Lightweight syntax for defining functions.

var mul = (x: Int, y: Int) => x * y

println(mul(3, 4))
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Higher-Order Functions

def apply(f: Int => String, v: Int) = f(v)

def layout(x: Int) = "[" + x.toString() + "]"

println(apply(layout, 10))
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Collections (1/2)

I Array: fixed-size sequential collection of elements of the same type

val t = Array("zero", "one", "two")

val b = t(0) // b = zero

I List: sequential collection of elements of the same type

val t = List("zero", "one", "two")

val b = t(0) // b = zero

I Set: sequential collection of elements of the same type without
duplicates

val t = Set("zero", "one", "two")

val t.contains("zero")
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Collections (2/2)

I Map: collection of key/value pairs

val m = Map(1 -> "sics", 2 -> "kth")

val b = m(1) // b = sics

I Tuple: A fixed number of items of different types together

val t = (1, "hello")

val b = t._1 // b = 1

val c = t._2 // c = hello
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Functional Combinators

I map: applies a function over each element in the list

val numbers = List(1, 2, 3, 4)

numbers.map(i => i * 2) // List(2, 4, 6, 8)

I flatten: it collapses one level of nested structure

List(List(1, 2), List(3, 4)).flatten // List(1, 2, 3, 4)

I flatMap: map + flatten

I foreach: it is like map but returns nothing
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Classes and Objects

class Calculator {

val brand: String = "HP"

def add(m: Int, n: Int): Int = m + n

}

val calc = new Calculator

calc.add(1, 2)

println(calc.brand)

I A singleton is a class that can have only one instance.

object Test {

def main(args: Array[String]) { ... }

}

Test.main(null)
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Case Classes and Pattern Matching

I Case classes are used to store and match on the contents of a class.

I They are designed to be used with pattern matching.

I You can construct them without using new.

case class Calc(brand: String, model: String)

def calcType(calc: Calc) = calc match {

case Calc("hp", "20B") => "financial"

case Calc("hp", "48G") => "scientific"

case Calc("hp", "30B") => "business"

case _ => "Calculator of unknown type"

}

calcType(Calc("hp", "20B"))
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Simple Build Tool (SBT)

I An open source build tool for Scala and Java projects.

I Similar to Java’s Maven or Ant.

I It is written in Scala.
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SBT - Hello World!

// make dir hello and edit Hello.scala

object Hello {

def main(args: Array[String]) {

println("Hello world.")

}

}

$ cd hello

$ sbt compile run
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Common Commands

I compile: compiles the main sources.

I run <argument>*: run the main class.

I package: creates a jar file.

I console: starts the Scala interpreter.

I clean: deletes all generated files.

I help <command>: displays detailed help for the specified command.

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 99 / 171



Create a Simple Project

I Create project directory.

I Create src/main/scala directory.

I Create build.sbt in the project root.
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build.sbt

I A list of Scala expressions, separated by blank lines.

I Located in the project’s base directory.

$ cat build.sbt

name := "hello"

version := "1.0"

scalaVersion := "2.10.4"
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Add Dependencies

I Add in build.sbt.

I Module ID format:
"groupID" %% "artifact" % "version" % "configuration"

libraryDependencies += "org.apache.spark" %% "spark-core" % "1.0.0"

// multiple dependencies

libraryDependencies ++= Seq(

"org.apache.spark" %% "spark-core" % "1.0.0",

"org.apache.spark" %% "spark-streaming" % "1.0.0"

)

I sbt uses the standard Maven2 repository by default, but you can add
more resolvers.

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"
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Scala Hands-on Exercises (1/3)

I Declare a list of integers as a variable called myNumbers

val myNumbers = List(1, 2, 5, 4, 7, 3)

I Declare a function, pow, that computes the second power of an Int

def pow(a: Int): Int = a * a

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 103 / 171



Scala Hands-on Exercises (1/3)

I Declare a list of integers as a variable called myNumbers

val myNumbers = List(1, 2, 5, 4, 7, 3)

I Declare a function, pow, that computes the second power of an Int

def pow(a: Int): Int = a * a

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 103 / 171



Scala Hands-on Exercises (1/3)

I Declare a list of integers as a variable called myNumbers

val myNumbers = List(1, 2, 5, 4, 7, 3)

I Declare a function, pow, that computes the second power of an Int

def pow(a: Int): Int = a * a

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 103 / 171



Scala Hands-on Exercises (1/3)

I Declare a list of integers as a variable called myNumbers

val myNumbers = List(1, 2, 5, 4, 7, 3)

I Declare a function, pow, that computes the second power of an Int

def pow(a: Int): Int = a * a

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 103 / 171



Scala Hands-on Exercises (2/3)

I Apply the function to myNumbers using the map function

myNumbers.map(x => pow(x))

// or

myNumbers.map(pow(_))

// or

myNumbers.map(pow)

I Write the pow function inline in a map call, using closure notation

myNumbers.map(x => x * x)

I Iterate through myNumbers and print out its items

for (i <- myNumbers)

println(i)

// or

myNumbers.foreach(println)
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myNumbers.foreach(println)
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Scala Hands-on Exercises (3/3)

I Declare a list of pair of string and integers as a variable called myList

val myList = List[(String, Int)](("a", 1), ("b", 2), ("c", 3))

I Write an inline function to increment the integer values of the list
myList

val x = v.map { case (name, age) => age + 1 }

// or

val x = v.map(i => i._2 + 1)

// or

val x = v.map(_._2 + 1)
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What is Spark?

I An efficient distributed general-purpose data analysis platform.

I Focusing on ease of programming and high performance.
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Motivation

I MapReduce programming model has not been designed for complex
operations, e.g., data mining.

I Very expensive, i.e., always goes to disk and HDFS.
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Solution

I Extends MapReduce with more operators.

I Support for advanced data flow graphs.

I In-memory and out-of-core processing.
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Spark vs. Hadoop
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Resilient Distributed Datasets (RDD) (1/2)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.
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Resilient Distributed Datasets (RDD) (2/2)

I An RDD is divided into a number of partitions, which are atomic
pieces of information.

I Partitions of an RDD can be stored on different nodes of a cluster.
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RDD Operators

I Higher-order functions: transformations and actions.

I Transformations: lazy operators that create new RDDs.

I Actions: launch a computation and return a value to the program
or write data to the external storage.
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Transformations vs. Actions
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RDD Transformations - Map

I All pairs are independently processed.

// passing each element through a function.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x) // {1, 4, 9}
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RDD Transformations - GroupBy

I Pairs with identical key are grouped.

I Groups are independently processed.

val schools = sc.parallelize(Seq(("sics", 1), ("kth", 1), ("sics", 2)))

schools.groupByKey()

// {("sics", (1, 2)), ("kth", (1))}

schools.reduceByKey((x, y) => x + y)

// {("sics", 3), ("kth", 1)}
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RDD Transformations - Join

I Performs an equi-join on the key.

I Join candidates are independently pro-
cessed.

val list1 = sc.parallelize(Seq(("sics", "10"),

("kth", "50"),

("sics", "20")))

val list2 = sc.parallelize(Seq(("sics", "upsala"),

("kth", "stockholm")))

list1.join(list2)

// ("sics", ("10", "upsala"))

// ("sics", ("20", "upsala"))

// ("kth", ("50", "stockholm"))
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Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6
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Creating RDDs

I Turn a collection into an RDD.

val a = sc.parallelize(Array(1, 2, 3))

I Load text file from local FS, HDFS, or S3.

val a = sc.textFile("file.txt")

val b = sc.textFile("directory/*.txt")

val c = sc.textFile("hdfs://namenode:9000/path/file")
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SparkContext

I Main entry point to Spark functionality.

I Available in shell as variable sc.

I In standalone programs, you should make your own.

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

val sc = new SparkContext(master, appName, [sparkHome], [jars])
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Spark Hands-on Exercises (1/3)

I Read data from a text file and create an RDD named pagecounts.

val pagecounts = sc.textFile("hamlet")

I Get the first 10 lines of the text file.

pagecounts.take(10).foreach(println)

I Count the total records in the data set pagecounts.

pagecounts.count
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Spark Hands-on Exercises (2/3)

I Filter the data set pagecounts and return the items that have the
word this, and cache in the memory.

val linesWithThis = pagecounts.filter(line => line.contains("this")).cache

\\ or

val linesWithThis = pagecounts.filter(_.contains("this")).cache

I Find the lines with the most number of words.

linesWithThis.map(line => line.split(" ").size)

.reduce((a, b) => if (a > b) a else b)

I Count the total number of words.

val wordCounts = linesWithThis.flatMap(line => line.split(" ")).count

\\ or

val wordCounts = linesWithThis.flatMap(_.split(" ")).count
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Spark Hands-on Exercises (3/3)

I Count the number of distinct words.

val uniqueWordCounts = linesWithThis.flatMap(_.split(" ")).distinct.count

I Count the number of each word.

val eachWordCounts = linesWithThis.flatMap(_.split(" "))

.map(word => (word, 1))

.reduceByKey((a, b) => a + b)
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Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.
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DBMS vs. DSMS (1/3)

I DBMS: persistent data where updates are relatively infrequent.

I DSMS: transient data that is continuously updated.
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DBMS vs. DSMS (2/3)

I DBMS: runs queries just once to return a complete answer.

I DSMS: executes standing queries, which run continuously and pro-
vide updated answers as new data arrives.
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DBMS vs. DSMS (3/3)

I Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.
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Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.
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DStream

I DStream: sequence of RDDs representing a stream of data.
• TCP sockets, Twitter, HDFS, Kafka, ...

I Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,

[sparkHome], [jars])
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DStream Operations (1/2)

I Transformations: modify data from on DStream to a new DStream.
• Standard RDD operations (stateless/stateful operations): map, join, ...

• Window operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.
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DStream Operations (2/2)

I Output operations: send data to external entity
• saveAsHadoopFiles, foreach, print, ...

I Attaching input sources

ssc.textFileStream(directory)

ssc.socketStream(hostname, port)
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Example 1 (1/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

DStream: a sequence of RDD representing a stream of data
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Example 1 (2/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

val hashTags = tweets.flatMap(status => getTags(status))

transformation: modify data in one DStream
to create another DStream
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Example 1 (3/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

val hashTags = tweets.flatMap(status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")
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Example 2

I Count frequency of words received every second.

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(ip, port)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey(_ + _)
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Example 3

I Count frequency of words received in last minute.

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(ip, port)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey(_ + _)

val freqs_60s = freqs.window(Seconds(60), Second(1)).reduceByKey(_ + _)

window length window movement
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Spark Streaming Hands-on Exercises (1/2)

I Stream data through a TCP connection and port 9999

nc -lk 9999

I import the streaming libraries

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

I Print out the incoming stream every five seconds at port 9999

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(5))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

lines.print()
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Spark Streaming Hands-on Exercises (1/2)

I Count the number of each word in the incoming stream every five
seconds at port 9999

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(x => (x, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()
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Spark Streaming Hands-on Exercises (2/2)

I Extend the code to generate word count over last 30 seconds of
data, and repeat the computation every 10 seconds

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(5))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs

.reduceByKeyAndWindow(_ + _, _ - _, Seconds(30), Seconds(10))

windowedWordCounts.print()

wordCounts.print()
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Introduction

I Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

I Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.
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Large Graph
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Large-Scale Graph Processing

I Large graphs need large-scale processing.

I A large graph either cannot fit into memory of single computer or
it fits with huge cost.
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Question

Can we use platforms like MapReduce or Spark, which are based on data-parallel

model, for large-scale graph proceeding?
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Data-Parallel Model for Large-Scale Graph Processing

I The platforms that have worked well for developing parallel applica-
tions are not necessarily effective for large-scale graph problems.

I Why?
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Graph Algorithms Characteristics (1/2)

I Unstructured problems

• Difficult to extract parallelism based on partitioning of the data: the
irregular structure of graphs.

• Limited scalability: unbalanced computational loads resulting from
poorly partitioned data.

I Data-driven computations

• Difficult to express parallelism based on partitioning of computation:
the structure of computations in the algorithm is not known a priori.

• The computations are dictated by nodes and links of the graph.
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Graph Algorithms Characteristics (2/2)

I Poor data locality

• The computations and data access patterns do not have much local-
ity: the irregular structure of graphs.

I High data access to computation ratio

• Graph algorithms are often based on exploring the structure of a
graph to perform computations on the graph data.

• Runtime can be dominated by waiting memory fetches: low locality.
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Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.
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Graph-Parallel Processing

I Restricts the types of computation.

I New techniques to partition and distribute graphs.

I Exploit graph structure.

I Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.
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Data-Parallel vs. Graph-Parallel Computation
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Data-Parallel vs. Graph-Parallel Computation

I Data-parallel computation
• Record-centric view of data.
• Parallelism: processing independent data on separate resources.

I Graph-parallel computation
• Vertex-centric view of graphs.
• Parallelism: partitioning graph (dependent) data across processing

resources, and resolving dependencies (along edges) through
iterative computation and communication.
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Graph-Parallel Computation Frameworks
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Data-Parallel vs. Graph-Parallel Computation

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.
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Data-Parallel and Graph-Parallel Pipeline

I Moving between table and graph views of the same physical data.

I Inefficient: extensive data movement and duplication across the net-
work and file system.
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GraphX vs. Data-Parallel/Graph-Parallel Systems
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GraphX

I New API that blurs the distinction between Tables and Graphs.

I New system that unifies Data-Parallel and Graph-Parallel systems.

I It is implemented on top of Spark.
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Unifying Data-Parallel and Graph-Parallel Analytics

I Tables and Graphs are composable views of the same physical data.

I Each view has its own operators that exploit the semantics of the
view to achieve efficient execution.
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Data Model

I Property Graph: represented using two Spark RDDs:
• Edge collection: VertexRDD
• Vertex collection: EdgeRDD

// VD: the type of the vertex attribute

// ED: the type of the edge attribute

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED, VD]

}
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Primitive Data Types

// Vertex collection

class VertexRDD[VD] extends RDD[(VertexId, VD)]

// Edge collection

class EdgeRDD[ED] extends RDD[Edge[ED]]

case class Edge[ED, VD](srcId: VertexId = 0, dstId: VertexId = 0,

attr: ED = null.asInstanceOf[ED])

// Edge Triple

class EdgeTriplet[VD, ED] extends Edge[ED]

I EdgeTriplet represents an edge along with the vertex attributes of
its neighboring vertices.

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 162 / 171



Example (1/3)
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Example (2/3)

val sc: SparkContext

// Create an RDD for the vertices

val users: RDD[(Long, (String, String))] = sc.parallelize(

Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),

(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges

val relationships: RDD[Edge[String]] = sc.parallelize(

Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),

Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user

val defaultUser = ("John Doe", "Missing")

// Build the initial Graph

val userGraph: Graph[(String, String), String] =

Graph(users, relationships, defaultUser)
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Example (3/3)

// Constructed from above

val userGraph: Graph[(String, String), String]

// Count all users which are postdocs

userGraph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count

// Count all the edges where src > dst

userGraph.edges.filter(e => e.srcId > e.dstId).count

// Use the triplets view to create an RDD of facts

val facts: RDD[String] = graph.triplets.map(triplet =>

triplet.srcAttr._1 + " is the " +

triplet.attr + " of " + triplet.dstAttr._1)

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

facts.collect.foreach(println)

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 165 / 171



Property Operators (1/2)

class Graph[VD, ED] {

def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]

def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]

def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

}

I They yield new graphs with the vertex or edge properties modified
by the map function.

I The graph structure is unaffected.
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Property Operators (2/2)

val newGraph = graph.mapVertices((id, attr) => mapUdf(id, attr))

val newVertices = graph.vertices.map((id, attr) => (id, mapUdf(id, attr)))

val newGraph = Graph(newVertices, graph.edges)

I Both are logically equivalent, but the second one does not preserve
the structural indices and would not benefit from the GraphX system
optimizations.

Amir H. Payberah (Tehran Polytechnic) Spark 1393/10/10 167 / 171



Map Reduce Triplets

I Map-Reduce for each vertex

// what is the age of the oldest follower for each user?

val oldestFollowerAge = graph.mapReduceTriplets(

e => Iterator((e.dstAttr, e.srcAttr)), // Map

(a, b) => max(a, b) // Reduce

).vertices
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Structural Operators

class Graph[VD, ED] {

// returns a new graph with all the edge directions reversed

def reverse: Graph[VD, ED]

// returns the graph containing only the vertices and edges that satisfy

// the vertex predicate

def subgraph(epred: EdgeTriplet[VD,ED] => Boolean,

vpred: (VertexId, VD) => Boolean): Graph[VD, ED]

// a subgraph by returning a graph that contains the vertices and edges

// that are also found in the input graph

def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]

}
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Structural Operators Example

// Build the initial Graph

val graph = Graph(users, relationships, defaultUser)

// Run Connected Components

val ccGraph = graph.connectedComponents()

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

// Restrict the answer to the valid subgraph

val validCCGraph = ccGraph.mask(validGraph)
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Questions?
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