
The Spark Big Data Analytics Platform

Amir H. Payberah
Swedish Institute of Computer Science

amir@sics.se
June 17, 2014

Amir H. Payberah (SICS) Spark June 17, 2014 1 / 125

Amir H. Payberah (SICS) Spark June 17, 2014 2 / 125

I Big Data refers to datasets and flows large
enough that has outpaced our capability to
store, process, analyze, and understand.

Amir H. Payberah (SICS) Spark June 17, 2014 3 / 125

Where Does
Big Data Come From?

Amir H. Payberah (SICS) Spark June 17, 2014 4 / 125

Big Data Market Driving Factors

The number of web pages indexed by Google, which were around
one million in 1998, have exceeded one trillion in 2008, and its
expansion is accelerated by appearance of the social networks.∗

∗“Mining big data: current status, and forecast to the future” [Wei Fan et al., 2013]

Amir H. Payberah (SICS) Spark June 17, 2014 5 / 125

Big Data Market Driving Factors

The amount of mobile data traffic is expected to grow to 10.8
Exabyte per month by 2016.∗

∗“Worldwide Big Data Technology and Services 2012-2015 Forecast” [Dan Vesset et al., 2013]

Amir H. Payberah (SICS) Spark June 17, 2014 6 / 125

Big Data Market Driving Factors

More than 65 billion devices were connected to the Internet by
2010, and this number will go up to 230 billion by 2020.∗

∗“The Internet of Things Is Coming” [John Mahoney et al., 2013]

Amir H. Payberah (SICS) Spark June 17, 2014 7 / 125

Big Data Market Driving Factors

Many companies are moving towards using Cloud services to
access Big Data analytical tools.

Amir H. Payberah (SICS) Spark June 17, 2014 8 / 125

Big Data Market Driving Factors

Open source communities

Amir H. Payberah (SICS) Spark June 17, 2014 9 / 125

How To Process
Big Data?

Amir H. Payberah (SICS) Spark June 17, 2014 10 / 125

Scale Up vs. Scale Out (1/2)

I Scale up or scale vertically: adding resources to a single node in a
system.

I Scale out or scale horizontally: adding more nodes to a system.

Amir H. Payberah (SICS) Spark June 17, 2014 11 / 125

Scale Up vs. Scale Out (2/2)

I Scale up: more expensive than scaling out.

I Scale out: more challenging for fault tolerance and software devel-
opment.

Amir H. Payberah (SICS) Spark June 17, 2014 12 / 125

Taxonomy of Parallel Architectures

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

Amir H. Payberah (SICS) Spark June 17, 2014 13 / 125

Taxonomy of Parallel Architectures

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

Amir H. Payberah (SICS) Spark June 17, 2014 13 / 125

Amir H. Payberah (SICS) Spark June 17, 2014 14 / 125

Big Data Analytics Stack

Amir H. Payberah (SICS) Spark June 17, 2014 15 / 125

Outline

I Introduction to Scala

I Data exploration using Spark

I Stream processing with Spark Streaming

I Graph analytics with GraphX

Amir H. Payberah (SICS) Spark June 17, 2014 16 / 125

Amir H. Payberah (SICS) Spark June 17, 2014 17 / 125

Scala

I Scala: scalable language

I A blend of object-oriented and functional programming

I Runs on the Java Virtual Machine

I Designed by Martin Odersky at EPFL

Amir H. Payberah (SICS) Spark June 17, 2014 18 / 125

Functional Programming Languages

I In a restricted sense: a language that does not have mutable vari-
ables, assignments, or imperative control structures.

I In a wider sense: it enables the construction of programs that focus
on functions.

I Functions are first-class citizens:
• Defined anywhere (including inside other functions).
• Passed as parameters to functions and returned as results.
• Operators to compose functions.

Amir H. Payberah (SICS) Spark June 17, 2014 19 / 125

Functional Programming Languages

I In a restricted sense: a language that does not have mutable vari-
ables, assignments, or imperative control structures.

I In a wider sense: it enables the construction of programs that focus
on functions.

I Functions are first-class citizens:
• Defined anywhere (including inside other functions).
• Passed as parameters to functions and returned as results.
• Operators to compose functions.

Amir H. Payberah (SICS) Spark June 17, 2014 19 / 125

Scala Variables

I Values: immutable

I Variables: mutable

var myVar: Int = 0

val myVal: Int = 1

I Scala data types:
• Boolean, Byte, Short, Char, Int, Long, Float, Double, String

Amir H. Payberah (SICS) Spark June 17, 2014 20 / 125

If ... Else

var x = 30;

if (x == 10) {

println("Value of X is 10");

} else if (x == 20) {

println("Value of X is 20");

} else {

println("This is else statement");

}

Amir H. Payberah (SICS) Spark June 17, 2014 21 / 125

Loop

var a = 0

var b = 0

for (a <- 1 to 3; b <- 1 until 3) {

println("Value of a: " + a + ", b: " + b)

}

// loop with collections

val numList = List(1, 2, 3, 4, 5, 6)

for (a <- numList) {

println("Value of a: " + a)

}

Amir H. Payberah (SICS) Spark June 17, 2014 22 / 125

Functions

def functionName([list of parameters]): [return type] = {

function body

return [expr]

}

def addInt(a: Int, b: Int): Int = {

var sum: Int = 0

sum = a + b

sum

}

println("Returned Value: " + addInt(5, 7))

Amir H. Payberah (SICS) Spark June 17, 2014 23 / 125

Anonymous Functions

I Lightweight syntax for defining functions.

var mul = (x: Int, y: Int) => x * y

println(mul(3, 4))

Amir H. Payberah (SICS) Spark June 17, 2014 24 / 125

Higher-Order Functions

def apply(f: Int => String, v: Int) = f(v)

def layout(x: Int) = "[" + x.toString() + "]"

println(apply(layout, 10))

Amir H. Payberah (SICS) Spark June 17, 2014 25 / 125

Collections (1/2)

I Array: fixed-size sequential collection of elements of the same type

val t = Array("zero", "one", "two")

val b = t(0) // b = zero

I List: sequential collection of elements of the same type

val t = List("zero", "one", "two")

val b = t(0) // b = zero

I Set: sequential collection of elements of the same type without
duplicates

val t = Set("zero", "one", "two")

val t.contains("zero")

Amir H. Payberah (SICS) Spark June 17, 2014 26 / 125

Collections (1/2)

I Array: fixed-size sequential collection of elements of the same type

val t = Array("zero", "one", "two")

val b = t(0) // b = zero

I List: sequential collection of elements of the same type

val t = List("zero", "one", "two")

val b = t(0) // b = zero

I Set: sequential collection of elements of the same type without
duplicates

val t = Set("zero", "one", "two")

val t.contains("zero")

Amir H. Payberah (SICS) Spark June 17, 2014 26 / 125

Collections (1/2)

I Array: fixed-size sequential collection of elements of the same type

val t = Array("zero", "one", "two")

val b = t(0) // b = zero

I List: sequential collection of elements of the same type

val t = List("zero", "one", "two")

val b = t(0) // b = zero

I Set: sequential collection of elements of the same type without
duplicates

val t = Set("zero", "one", "two")

val t.contains("zero")

Amir H. Payberah (SICS) Spark June 17, 2014 26 / 125

Collections (2/2)

I Map: collection of key/value pairs

val m = Map(1 -> "sics", 2 -> "kth")

val b = m(1) // b = sics

I Tuple: A fixed number of items of different types together

val t = (1, "hello")

val b = t._1 // b = 1

val c = t._2 // c = hello

Amir H. Payberah (SICS) Spark June 17, 2014 27 / 125

Collections (2/2)

I Map: collection of key/value pairs

val m = Map(1 -> "sics", 2 -> "kth")

val b = m(1) // b = sics

I Tuple: A fixed number of items of different types together

val t = (1, "hello")

val b = t._1 // b = 1

val c = t._2 // c = hello

Amir H. Payberah (SICS) Spark June 17, 2014 27 / 125

Functional Combinators

I map: applies a function over each element in the list

val numbers = List(1, 2, 3, 4)

numbers.map(i => i * 2) // List(2, 4, 6, 8)

I flatten: it collapses one level of nested structure

List(List(1, 2), List(3, 4)).flatten // List(1, 2, 3, 4)

I flatMap: map + flatten

I foreach: it is like map but returns nothing

Amir H. Payberah (SICS) Spark June 17, 2014 28 / 125

Classes and Objects

class Calculator {

val brand: String = "HP"

def add(m: Int, n: Int): Int = m + n

}

val calc = new Calculator

calc.add(1, 2)

println(calc.brand)

I A singleton is a class that can have only one instance.

object Test {

def main(args: Array[String]) { ... }

}

Test.main(null)

Amir H. Payberah (SICS) Spark June 17, 2014 29 / 125

Classes and Objects

class Calculator {

val brand: String = "HP"

def add(m: Int, n: Int): Int = m + n

}

val calc = new Calculator

calc.add(1, 2)

println(calc.brand)

I A singleton is a class that can have only one instance.

object Test {

def main(args: Array[String]) { ... }

}

Test.main(null)

Amir H. Payberah (SICS) Spark June 17, 2014 29 / 125

Case Classes and Pattern Matching

I Case classes are used to store and match on the contents of a class.

I They are designed to be used with pattern matching.

I You can construct them without using new.

case class Calc(brand: String, model: String)

def calcType(calc: Calc) = calc match {

case Calc("hp", "20B") => "financial"

case Calc("hp", "48G") => "scientific"

case Calc("hp", "30B") => "business"

case _ => "Calculator of unknown type"

}

calcType(Calc("hp", "20B"))

Amir H. Payberah (SICS) Spark June 17, 2014 30 / 125

Simple Build Tool (SBT)

I An open source build tool for Scala and Java projects.

I Similar to Java’s Maven or Ant.

I It is written in Scala.

Amir H. Payberah (SICS) Spark June 17, 2014 31 / 125

SBT - Hello World!

// make dir hello and edit Hello.scala

object Hello {

def main(args: Array[String]) {

println("Hello world.")

}

}

$ cd hello

$ sbt compile run

Amir H. Payberah (SICS) Spark June 17, 2014 32 / 125

Common Commands

I compile: compiles the main sources.

I run <argument>*: run the main class.

I package: creates a jar file.

I console: starts the Scala interpreter.

I clean: deletes all generated files.

I help <command>: displays detailed help for the specified command.

Amir H. Payberah (SICS) Spark June 17, 2014 33 / 125

Create a Simple Project

I Create project directory.

I Create src/main/scala directory.

I Create build.sbt in the project root.

Amir H. Payberah (SICS) Spark June 17, 2014 34 / 125

build.sbt

I A list of Scala expressions, separated by blank lines.

I Located in the project’s base directory.

$ cat build.sbt

name := "hello"

version := "1.0"

scalaVersion := "2.10.4"

Amir H. Payberah (SICS) Spark June 17, 2014 35 / 125

Add Dependencies

I Add in build.sbt.

I Module ID format:
"groupID" %% "artifact" % "version" % "configuration"

libraryDependencies += "org.apache.spark" %% "spark-core" % "1.0.0"

// multiple dependencies

libraryDependencies ++= Seq(

"org.apache.spark" %% "spark-core" % "1.0.0",

"org.apache.spark" %% "spark-streaming" % "1.0.0"

)

I sbt uses the standard Maven2 repository by default, but you can add
more resolvers.

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

Amir H. Payberah (SICS) Spark June 17, 2014 36 / 125

Scala Hands-on Exercises (1/4)

I Declare a list of integers as a variable called myNumbers

val myNumbers = List(1, 2, 5, 4, 7, 3)

I Declare a function, pow, that computes the second power of an Int

def pow(a: Int): Int = a * a

Amir H. Payberah (SICS) Spark June 17, 2014 37 / 125

Scala Hands-on Exercises (1/4)

I Declare a list of integers as a variable called myNumbers

val myNumbers = List(1, 2, 5, 4, 7, 3)

I Declare a function, pow, that computes the second power of an Int

def pow(a: Int): Int = a * a

Amir H. Payberah (SICS) Spark June 17, 2014 37 / 125

Scala Hands-on Exercises (1/4)

I Declare a list of integers as a variable called myNumbers

val myNumbers = List(1, 2, 5, 4, 7, 3)

I Declare a function, pow, that computes the second power of an Int

def pow(a: Int): Int = a * a

Amir H. Payberah (SICS) Spark June 17, 2014 37 / 125

Scala Hands-on Exercises (1/4)

I Declare a list of integers as a variable called myNumbers

val myNumbers = List(1, 2, 5, 4, 7, 3)

I Declare a function, pow, that computes the second power of an Int

def pow(a: Int): Int = a * a

Amir H. Payberah (SICS) Spark June 17, 2014 37 / 125

Scala Hands-on Exercises (2/4)

I Apply the function to myNumbers using the map function

myNumbers.map(x => pow(x))

// or

myNumbers.map(pow(_))

// or

myNumbers.map(pow)

I Write the pow function inline in a map call, using closure notation

myNumbers.map(x => x * x)

I Iterate through myNumbers and print out its items

for (i <- myNumbers)

println(i)

// or

myNumbers.foreach(println)

Amir H. Payberah (SICS) Spark June 17, 2014 38 / 125

Scala Hands-on Exercises (2/4)

I Apply the function to myNumbers using the map function

myNumbers.map(x => pow(x))

// or

myNumbers.map(pow(_))

// or

myNumbers.map(pow)

I Write the pow function inline in a map call, using closure notation

myNumbers.map(x => x * x)

I Iterate through myNumbers and print out its items

for (i <- myNumbers)

println(i)

// or

myNumbers.foreach(println)

Amir H. Payberah (SICS) Spark June 17, 2014 38 / 125

Scala Hands-on Exercises (2/4)

I Apply the function to myNumbers using the map function

myNumbers.map(x => pow(x))

// or

myNumbers.map(pow(_))

// or

myNumbers.map(pow)

I Write the pow function inline in a map call, using closure notation

myNumbers.map(x => x * x)

I Iterate through myNumbers and print out its items

for (i <- myNumbers)

println(i)

// or

myNumbers.foreach(println)

Amir H. Payberah (SICS) Spark June 17, 2014 38 / 125

Scala Hands-on Exercises (2/4)

I Apply the function to myNumbers using the map function

myNumbers.map(x => pow(x))

// or

myNumbers.map(pow(_))

// or

myNumbers.map(pow)

I Write the pow function inline in a map call, using closure notation

myNumbers.map(x => x * x)

I Iterate through myNumbers and print out its items

for (i <- myNumbers)

println(i)

// or

myNumbers.foreach(println)

Amir H. Payberah (SICS) Spark June 17, 2014 38 / 125

Scala Hands-on Exercises (2/4)

I Apply the function to myNumbers using the map function

myNumbers.map(x => pow(x))

// or

myNumbers.map(pow(_))

// or

myNumbers.map(pow)

I Write the pow function inline in a map call, using closure notation

myNumbers.map(x => x * x)

I Iterate through myNumbers and print out its items

for (i <- myNumbers)

println(i)

// or

myNumbers.foreach(println)

Amir H. Payberah (SICS) Spark June 17, 2014 38 / 125

Scala Hands-on Exercises (2/4)

I Apply the function to myNumbers using the map function

myNumbers.map(x => pow(x))

// or

myNumbers.map(pow(_))

// or

myNumbers.map(pow)

I Write the pow function inline in a map call, using closure notation

myNumbers.map(x => x * x)

I Iterate through myNumbers and print out its items

for (i <- myNumbers)

println(i)

// or

myNumbers.foreach(println)

Amir H. Payberah (SICS) Spark June 17, 2014 38 / 125

Scala Hands-on Exercises (3/4)

I Declare a list of pair of string and integers as a variable called myList

val myList = List[(String, Int)](("a", 1), ("b", 2), ("c", 3))

I Write an inline function to increment the integer values of the list
myList

val x = v.map { case (name, age) => age + 1 }

// or

val x = v.map(i => i._2 + 1)

// or

val x = v.map(_._2 + 1)

Amir H. Payberah (SICS) Spark June 17, 2014 39 / 125

Scala Hands-on Exercises (3/4)

I Declare a list of pair of string and integers as a variable called myList

val myList = List[(String, Int)](("a", 1), ("b", 2), ("c", 3))

I Write an inline function to increment the integer values of the list
myList

val x = v.map { case (name, age) => age + 1 }

// or

val x = v.map(i => i._2 + 1)

// or

val x = v.map(_._2 + 1)

Amir H. Payberah (SICS) Spark June 17, 2014 39 / 125

Scala Hands-on Exercises (3/4)

I Declare a list of pair of string and integers as a variable called myList

val myList = List[(String, Int)](("a", 1), ("b", 2), ("c", 3))

I Write an inline function to increment the integer values of the list
myList

val x = v.map { case (name, age) => age + 1 }

// or

val x = v.map(i => i._2 + 1)

// or

val x = v.map(_._2 + 1)

Amir H. Payberah (SICS) Spark June 17, 2014 39 / 125

Scala Hands-on Exercises (3/4)

I Declare a list of pair of string and integers as a variable called myList

val myList = List[(String, Int)](("a", 1), ("b", 2), ("c", 3))

I Write an inline function to increment the integer values of the list
myList

val x = v.map { case (name, age) => age + 1 }

// or

val x = v.map(i => i._2 + 1)

// or

val x = v.map(_._2 + 1)

Amir H. Payberah (SICS) Spark June 17, 2014 39 / 125

Scala Hands-on Exercises (4/4)

I Do a word-count of a text file: create a Map with words as keys and
counts of the number of occurrences of the word as values

I You can load a text file as an array of lines as shown below:

import scala.io.Source

val lines = Source.fromFile("/root/spark/README.md").getLines.toArray

I Then, instantiate a HashMap[String, Int] and use functional
methods to populate it with word-counts

val counts = new collection.mutable.HashMap[String, Int].withDefaultValue(0)

lines.flatMap(_.split("""\W+""")).foreach(word => counts(word) += 1)

counts.foreach(println)

Amir H. Payberah (SICS) Spark June 17, 2014 40 / 125

Scala Hands-on Exercises (4/4)

I Do a word-count of a text file: create a Map with words as keys and
counts of the number of occurrences of the word as values

I You can load a text file as an array of lines as shown below:

import scala.io.Source

val lines = Source.fromFile("/root/spark/README.md").getLines.toArray

I Then, instantiate a HashMap[String, Int] and use functional
methods to populate it with word-counts

val counts = new collection.mutable.HashMap[String, Int].withDefaultValue(0)

lines.flatMap(_.split("""\W+""")).foreach(word => counts(word) += 1)

counts.foreach(println)

Amir H. Payberah (SICS) Spark June 17, 2014 40 / 125

Scala Hands-on Exercises (4/4)

I Do a word-count of a text file: create a Map with words as keys and
counts of the number of occurrences of the word as values

I You can load a text file as an array of lines as shown below:

import scala.io.Source

val lines = Source.fromFile("/root/spark/README.md").getLines.toArray

I Then, instantiate a HashMap[String, Int] and use functional
methods to populate it with word-counts

val counts = new collection.mutable.HashMap[String, Int].withDefaultValue(0)

lines.flatMap(_.split("""\W+""")).foreach(word => counts(word) += 1)

counts.foreach(println)

Amir H. Payberah (SICS) Spark June 17, 2014 40 / 125

Scala Hands-on Exercises (4/4)

I Do a word-count of a text file: create a Map with words as keys and
counts of the number of occurrences of the word as values

I You can load a text file as an array of lines as shown below:

import scala.io.Source

val lines = Source.fromFile("/root/spark/README.md").getLines.toArray

I Then, instantiate a HashMap[String, Int] and use functional
methods to populate it with word-counts

val counts = new collection.mutable.HashMap[String, Int].withDefaultValue(0)

lines.flatMap(_.split("""\W+""")).foreach(word => counts(word) += 1)

counts.foreach(println)

Amir H. Payberah (SICS) Spark June 17, 2014 40 / 125

Amir H. Payberah (SICS) Spark June 17, 2014 41 / 125

What is Spark?

I An efficient distributed general-purpose data analysis platform.

I Focusing on ease of programming and high performance.

Amir H. Payberah (SICS) Spark June 17, 2014 42 / 125

Spark Big Data Analytics Stack

Amir H. Payberah (SICS) Spark June 17, 2014 43 / 125

Motivation

I MapReduce programming model has not been designed for complex
operations, e.g., data mining.

I Very expensive, i.e., always goes to disk and HDFS.

Amir H. Payberah (SICS) Spark June 17, 2014 44 / 125

Solution

I Extends MapReduce with more operators.

I Support for advanced data flow graphs.

I In-memory and out-of-core processing.

Amir H. Payberah (SICS) Spark June 17, 2014 45 / 125

Spark vs. Hadoop

Amir H. Payberah (SICS) Spark June 17, 2014 46 / 125

Spark vs. Hadoop

Amir H. Payberah (SICS) Spark June 17, 2014 46 / 125

Spark vs. Hadoop

Amir H. Payberah (SICS) Spark June 17, 2014 47 / 125

Spark vs. Hadoop

Amir H. Payberah (SICS) Spark June 17, 2014 47 / 125

Resilient Distributed Datasets (RDD) (1/2)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.

Amir H. Payberah (SICS) Spark June 17, 2014 48 / 125

Resilient Distributed Datasets (RDD) (1/2)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.

Amir H. Payberah (SICS) Spark June 17, 2014 48 / 125

Resilient Distributed Datasets (RDD) (2/2)

I An RDD is divided into a number of partitions, which are atomic
pieces of information.

I Partitions of an RDD can be stored on different nodes of a cluster.

Amir H. Payberah (SICS) Spark June 17, 2014 49 / 125

RDD Operators

I Higher-order functions: transformations and actions.

I Transformations: lazy operators that create new RDDs.

I Actions: launch a computation and return a value to the program
or write data to the external storage.

Amir H. Payberah (SICS) Spark June 17, 2014 50 / 125

Transformations vs. Actions

Amir H. Payberah (SICS) Spark June 17, 2014 51 / 125

RDD Transformations - Map

I All pairs are independently processed.

// passing each element through a function.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x) // {1, 4, 9}

Amir H. Payberah (SICS) Spark June 17, 2014 52 / 125

RDD Transformations - Map

I All pairs are independently processed.

// passing each element through a function.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x) // {1, 4, 9}

Amir H. Payberah (SICS) Spark June 17, 2014 52 / 125

RDD Transformations - GroupBy

I Pairs with identical key are grouped.

I Groups are independently processed.

val schools = sc.parallelize(Seq(("sics", 1), ("kth", 1), ("sics", 2)))

schools.groupByKey()

// {("sics", (1, 2)), ("kth", (1))}

schools.reduceByKey((x, y) => x + y)

// {("sics", 3), ("kth", 1)}

Amir H. Payberah (SICS) Spark June 17, 2014 53 / 125

RDD Transformations - GroupBy

I Pairs with identical key are grouped.

I Groups are independently processed.

val schools = sc.parallelize(Seq(("sics", 1), ("kth", 1), ("sics", 2)))

schools.groupByKey()

// {("sics", (1, 2)), ("kth", (1))}

schools.reduceByKey((x, y) => x + y)

// {("sics", 3), ("kth", 1)}

Amir H. Payberah (SICS) Spark June 17, 2014 53 / 125

RDD Transformations - Join

I Performs an equi-join on the key.

I Join candidates are independently pro-
cessed.

val list1 = sc.parallelize(Seq(("sics", "10"),

("kth", "50"),

("sics", "20")))

val list2 = sc.parallelize(Seq(("sics", "upsala"),

("kth", "stockholm")))

list1.join(list2)

// ("sics", ("10", "upsala"))

// ("sics", ("20", "upsala"))

// ("kth", ("50", "stockholm"))

Amir H. Payberah (SICS) Spark June 17, 2014 54 / 125

RDD Transformations - Join

I Performs an equi-join on the key.

I Join candidates are independently pro-
cessed.

val list1 = sc.parallelize(Seq(("sics", "10"),

("kth", "50"),

("sics", "20")))

val list2 = sc.parallelize(Seq(("sics", "upsala"),

("kth", "stockholm")))

list1.join(list2)

// ("sics", ("10", "upsala"))

// ("sics", ("20", "upsala"))

// ("kth", ("50", "stockholm"))

Amir H. Payberah (SICS) Spark June 17, 2014 54 / 125

Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Spark June 17, 2014 55 / 125

Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Spark June 17, 2014 55 / 125

Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Spark June 17, 2014 55 / 125

Basic RDD Actions

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y) // 6

Amir H. Payberah (SICS) Spark June 17, 2014 55 / 125

Creating RDDs

I Turn a collection into an RDD.

val a = sc.parallelize(Array(1, 2, 3))

I Load text file from local FS, HDFS, or S3.

val a = sc.textFile("file.txt")

val b = sc.textFile("directory/*.txt")

val c = sc.textFile("hdfs://namenode:9000/path/file")

Amir H. Payberah (SICS) Spark June 17, 2014 56 / 125

SparkContext

I Main entry point to Spark functionality.

I Available in shell as variable sc.

I In standalone programs, you should make your own.

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

val sc = new SparkContext(master, appName, [sparkHome], [jars])

Amir H. Payberah (SICS) Spark June 17, 2014 57 / 125

Spark Hands-on Exercises (1/3)

I Read data from the given file hamlet and create an RDD named
pagecounts

val pagecounts = sc.textFile("hamlet")

I Get the first 10 lines of hamlet

pagecounts.take(10).foreach(println)

I Count the total records in the data set pagecounts

pagecounts.count

Amir H. Payberah (SICS) Spark June 17, 2014 58 / 125

Spark Hands-on Exercises (1/3)

I Read data from the given file hamlet and create an RDD named
pagecounts

val pagecounts = sc.textFile("hamlet")

I Get the first 10 lines of hamlet

pagecounts.take(10).foreach(println)

I Count the total records in the data set pagecounts

pagecounts.count

Amir H. Payberah (SICS) Spark June 17, 2014 58 / 125

Spark Hands-on Exercises (1/3)

I Read data from the given file hamlet and create an RDD named
pagecounts

val pagecounts = sc.textFile("hamlet")

I Get the first 10 lines of hamlet

pagecounts.take(10).foreach(println)

I Count the total records in the data set pagecounts

pagecounts.count

Amir H. Payberah (SICS) Spark June 17, 2014 58 / 125

Spark Hands-on Exercises (1/3)

I Read data from the given file hamlet and create an RDD named
pagecounts

val pagecounts = sc.textFile("hamlet")

I Get the first 10 lines of hamlet

pagecounts.take(10).foreach(println)

I Count the total records in the data set pagecounts

pagecounts.count

Amir H. Payberah (SICS) Spark June 17, 2014 58 / 125

Spark Hands-on Exercises (1/3)

I Read data from the given file hamlet and create an RDD named
pagecounts

val pagecounts = sc.textFile("hamlet")

I Get the first 10 lines of hamlet

pagecounts.take(10).foreach(println)

I Count the total records in the data set pagecounts

pagecounts.count

Amir H. Payberah (SICS) Spark June 17, 2014 58 / 125

Spark Hands-on Exercises (1/3)

I Read data from the given file hamlet and create an RDD named
pagecounts

val pagecounts = sc.textFile("hamlet")

I Get the first 10 lines of hamlet

pagecounts.take(10).foreach(println)

I Count the total records in the data set pagecounts

pagecounts.count

Amir H. Payberah (SICS) Spark June 17, 2014 58 / 125

Spark Hands-on Exercises (2/3)

I Filter the data set pagecounts and return the items that have the
word this, and cache in the memory

val linesWithThis = pagecounts.filter(line => line.contains("this")).cache

\\ or

val linesWithThis = pagecounts.filter(_.contains("this")).cache

I Find the lines with the most number of words.

linesWithThis.map(line => line.split(" ").size)

.reduce((a, b) => if (a > b) a else b)

I Count the total number of words

val wordCounts = linesWithThis.flatMap(line => line.split(" ")).count

\\ or

val wordCounts = linesWithThis.flatMap(_.split(" ")).count

Amir H. Payberah (SICS) Spark June 17, 2014 59 / 125

Spark Hands-on Exercises (2/3)

I Filter the data set pagecounts and return the items that have the
word this, and cache in the memory

val linesWithThis = pagecounts.filter(line => line.contains("this")).cache

\\ or

val linesWithThis = pagecounts.filter(_.contains("this")).cache

I Find the lines with the most number of words.

linesWithThis.map(line => line.split(" ").size)

.reduce((a, b) => if (a > b) a else b)

I Count the total number of words

val wordCounts = linesWithThis.flatMap(line => line.split(" ")).count

\\ or

val wordCounts = linesWithThis.flatMap(_.split(" ")).count

Amir H. Payberah (SICS) Spark June 17, 2014 59 / 125

Spark Hands-on Exercises (2/3)

I Filter the data set pagecounts and return the items that have the
word this, and cache in the memory

val linesWithThis = pagecounts.filter(line => line.contains("this")).cache

\\ or

val linesWithThis = pagecounts.filter(_.contains("this")).cache

I Find the lines with the most number of words.

linesWithThis.map(line => line.split(" ").size)

.reduce((a, b) => if (a > b) a else b)

I Count the total number of words

val wordCounts = linesWithThis.flatMap(line => line.split(" ")).count

\\ or

val wordCounts = linesWithThis.flatMap(_.split(" ")).count

Amir H. Payberah (SICS) Spark June 17, 2014 59 / 125

Spark Hands-on Exercises (2/3)

I Filter the data set pagecounts and return the items that have the
word this, and cache in the memory

val linesWithThis = pagecounts.filter(line => line.contains("this")).cache

\\ or

val linesWithThis = pagecounts.filter(_.contains("this")).cache

I Find the lines with the most number of words.

linesWithThis.map(line => line.split(" ").size)

.reduce((a, b) => if (a > b) a else b)

I Count the total number of words

val wordCounts = linesWithThis.flatMap(line => line.split(" ")).count

\\ or

val wordCounts = linesWithThis.flatMap(_.split(" ")).count

Amir H. Payberah (SICS) Spark June 17, 2014 59 / 125

Spark Hands-on Exercises (2/3)

I Filter the data set pagecounts and return the items that have the
word this, and cache in the memory

val linesWithThis = pagecounts.filter(line => line.contains("this")).cache

\\ or

val linesWithThis = pagecounts.filter(_.contains("this")).cache

I Find the lines with the most number of words.

linesWithThis.map(line => line.split(" ").size)

.reduce((a, b) => if (a > b) a else b)

I Count the total number of words

val wordCounts = linesWithThis.flatMap(line => line.split(" ")).count

\\ or

val wordCounts = linesWithThis.flatMap(_.split(" ")).count

Amir H. Payberah (SICS) Spark June 17, 2014 59 / 125

Spark Hands-on Exercises (2/3)

I Filter the data set pagecounts and return the items that have the
word this, and cache in the memory

val linesWithThis = pagecounts.filter(line => line.contains("this")).cache

\\ or

val linesWithThis = pagecounts.filter(_.contains("this")).cache

I Find the lines with the most number of words.

linesWithThis.map(line => line.split(" ").size)

.reduce((a, b) => if (a > b) a else b)

I Count the total number of words

val wordCounts = linesWithThis.flatMap(line => line.split(" ")).count

\\ or

val wordCounts = linesWithThis.flatMap(_.split(" ")).count

Amir H. Payberah (SICS) Spark June 17, 2014 59 / 125

Spark Hands-on Exercises (3/3)

I Count the number of distinct words

val uniqueWordCounts = linesWithThis.flatMap(_.split(" ")).distinct.count

I Count the number of each word

val eachWordCounts = linesWithThis.flatMap(_.split(" "))

.map(word => (word, 1))

.reduceByKey((a, b) => a + b)

Amir H. Payberah (SICS) Spark June 17, 2014 60 / 125

Spark Hands-on Exercises (3/3)

I Count the number of distinct words

val uniqueWordCounts = linesWithThis.flatMap(_.split(" ")).distinct.count

I Count the number of each word

val eachWordCounts = linesWithThis.flatMap(_.split(" "))

.map(word => (word, 1))

.reduceByKey((a, b) => a + b)

Amir H. Payberah (SICS) Spark June 17, 2014 60 / 125

Spark Hands-on Exercises (3/3)

I Count the number of distinct words

val uniqueWordCounts = linesWithThis.flatMap(_.split(" ")).distinct.count

I Count the number of each word

val eachWordCounts = linesWithThis.flatMap(_.split(" "))

.map(word => (word, 1))

.reduceByKey((a, b) => a + b)

Amir H. Payberah (SICS) Spark June 17, 2014 60 / 125

Spark Hands-on Exercises (3/3)

I Count the number of distinct words

val uniqueWordCounts = linesWithThis.flatMap(_.split(" ")).distinct.count

I Count the number of each word

val eachWordCounts = linesWithThis.flatMap(_.split(" "))

.map(word => (word, 1))

.reduceByKey((a, b) => a + b)

Amir H. Payberah (SICS) Spark June 17, 2014 60 / 125

Amir H. Payberah (SICS) Spark June 17, 2014 61 / 125

Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.

Amir H. Payberah (SICS) Spark June 17, 2014 62 / 125

Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.

Amir H. Payberah (SICS) Spark June 17, 2014 62 / 125

DBMS vs. DSMS (1/3)

I DBMS: persistent data where updates are relatively infrequent.

I DSMS: transient data that is continuously updated.

Amir H. Payberah (SICS) Spark June 17, 2014 63 / 125

DBMS vs. DSMS (2/3)

I DBMS: runs queries just once to return a complete answer.

I DSMS: executes standing queries, which run continuously and pro-
vide updated answers as new data arrives.

Amir H. Payberah (SICS) Spark June 17, 2014 64 / 125

DBMS vs. DSMS (3/3)

I Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.

Amir H. Payberah (SICS) Spark June 17, 2014 65 / 125

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

Amir H. Payberah (SICS) Spark June 17, 2014 66 / 125

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

Amir H. Payberah (SICS) Spark June 17, 2014 66 / 125

Spark Streaming API (1/4)

I DStream: sequence of RDDs representing a stream of data.
• TCP sockets, Twitter, HDFS, Kafka, ...

I Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,

[sparkHome], [jars])

Amir H. Payberah (SICS) Spark June 17, 2014 67 / 125

Spark Streaming API (1/4)

I DStream: sequence of RDDs representing a stream of data.
• TCP sockets, Twitter, HDFS, Kafka, ...

I Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,

[sparkHome], [jars])

Amir H. Payberah (SICS) Spark June 17, 2014 67 / 125

Spark Streaming API (2/4)

I Transformations: modify data from on DStream to a new DStream.
• Standard RDD operations (stateless operations): map, join, ...

• Stateful operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.

Amir H. Payberah (SICS) Spark June 17, 2014 68 / 125

Spark Streaming API (2/4)

I Transformations: modify data from on DStream to a new DStream.
• Standard RDD operations (stateless operations): map, join, ...

• Stateful operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.

Amir H. Payberah (SICS) Spark June 17, 2014 68 / 125

Spark Streaming API (3/4)

I Output operations: send data to external entity
• saveAsHadoopFiles, foreach, print, ...

I Attaching input sources

ssc.textFileStream(directory)

ssc.socketStream(hostname, port)

Amir H. Payberah (SICS) Spark June 17, 2014 69 / 125

Spark Streaming API (3/4)

I Output operations: send data to external entity
• saveAsHadoopFiles, foreach, print, ...

I Attaching input sources

ssc.textFileStream(directory)

ssc.socketStream(hostname, port)

Amir H. Payberah (SICS) Spark June 17, 2014 69 / 125

Spark Streaming API (4/4)

I Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

val spamInfoRDD = sparkContext.hadoopFile(...)

// join data stream with spam information to do data cleaning

val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))

I Stream + Interactive: Interactive queries on stream state from the
Spark interpreter

freqs.slice("21:00", "21:05").topK(10)

I Starting/stopping the streaming computation

ssc.start()

ssc.stop()

ssc.awaitTermination()

Amir H. Payberah (SICS) Spark June 17, 2014 70 / 125

Spark Streaming API (4/4)

I Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

val spamInfoRDD = sparkContext.hadoopFile(...)

// join data stream with spam information to do data cleaning

val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))

I Stream + Interactive: Interactive queries on stream state from the
Spark interpreter

freqs.slice("21:00", "21:05").topK(10)

I Starting/stopping the streaming computation

ssc.start()

ssc.stop()

ssc.awaitTermination()

Amir H. Payberah (SICS) Spark June 17, 2014 70 / 125

Spark Streaming API (4/4)

I Stream + Batch: It can be used to apply any RDD operation that
is not exposed in the DStream API.

val spamInfoRDD = sparkContext.hadoopFile(...)

// join data stream with spam information to do data cleaning

val cleanedDStream = inputDStream.transform(_.join(spamInfoRDD).filter(...))

I Stream + Interactive: Interactive queries on stream state from the
Spark interpreter

freqs.slice("21:00", "21:05").topK(10)

I Starting/stopping the streaming computation

ssc.start()

ssc.stop()

ssc.awaitTermination()

Amir H. Payberah (SICS) Spark June 17, 2014 70 / 125

Example 1 (1/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

DStream: a sequence of RDD representing a stream of data

Amir H. Payberah (SICS) Spark June 17, 2014 71 / 125

Example 1 (2/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

val hashTags = tweets.flatMap(status => getTags(status))

transformation: modify data in one DStream
to create another DStream

Amir H. Payberah (SICS) Spark June 17, 2014 72 / 125

Example 1 (3/3)

I Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))

val tweets = TwitterUtils.createStream(ssc, None)

val hashTags = tweets.flatMap(status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Amir H. Payberah (SICS) Spark June 17, 2014 73 / 125

Example 2

I Count frequency of words received every second.

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(ip, port)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey(_ + _)

Amir H. Payberah (SICS) Spark June 17, 2014 74 / 125

Example 3

I Count frequency of words received in last minute.

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(ip, port)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs = ones.reduceByKey(_ + _)

val freqs_60s = freqs.window(Seconds(60), Second(1)).reduceByKey(_ + _)

window length window movement

Amir H. Payberah (SICS) Spark June 17, 2014 75 / 125

Example 3 - Simpler Model

I Count frequency of words received in last minute.

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream(ip, port)

val words = lines.flatMap(_.split(" "))

val ones = words.map(x => (x, 1))

val freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))

Amir H. Payberah (SICS) Spark June 17, 2014 76 / 125

Example 3 - Incremental Window Operators

I Count frequency of words received in last minute.

// Associative only

freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))

// Associative and invertible

freqs_60s = ones.reduceByKeyAndWindow(_ + _, _ - _, Seconds(60), Seconds(1))

Associative only Associative and invertible

Amir H. Payberah (SICS) Spark June 17, 2014 77 / 125

Spark Streaming Hands-on Exercises (1/2)

I Stream data through a TCP connection and port 9999

nc -lk 9999

I import the streaming libraries

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

I Print out the incoming stream every five seconds at port 9999

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(5))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

lines.print()

Amir H. Payberah (SICS) Spark June 17, 2014 78 / 125

Spark Streaming Hands-on Exercises (1/2)

I Stream data through a TCP connection and port 9999

nc -lk 9999

I import the streaming libraries

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

I Print out the incoming stream every five seconds at port 9999

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(5))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

lines.print()

Amir H. Payberah (SICS) Spark June 17, 2014 78 / 125

Spark Streaming Hands-on Exercises (1/2)

I Stream data through a TCP connection and port 9999

nc -lk 9999

I import the streaming libraries

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

I Print out the incoming stream every five seconds at port 9999

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(5))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

lines.print()

Amir H. Payberah (SICS) Spark June 17, 2014 78 / 125

Spark Streaming Hands-on Exercises (1/2)

I Stream data through a TCP connection and port 9999

nc -lk 9999

I import the streaming libraries

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

I Print out the incoming stream every five seconds at port 9999

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(5))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

lines.print()

Amir H. Payberah (SICS) Spark June 17, 2014 78 / 125

Spark Streaming Hands-on Exercises (1/2)

I Stream data through a TCP connection and port 9999

nc -lk 9999

I import the streaming libraries

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

I Print out the incoming stream every five seconds at port 9999

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(5))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

lines.print()

Amir H. Payberah (SICS) Spark June 17, 2014 78 / 125

Spark Streaming Hands-on Exercises (1/2)

I Count the number of each word in the incoming stream every five
seconds at port 9999

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(x => (x, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

Amir H. Payberah (SICS) Spark June 17, 2014 79 / 125

Spark Streaming Hands-on Exercises (1/2)

I Count the number of each word in the incoming stream every five
seconds at port 9999

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(1))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(x => (x, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

Amir H. Payberah (SICS) Spark June 17, 2014 79 / 125

Spark Streaming Hands-on Exercises (2/2)

I Extend the code to generate word count over last 30 seconds of
data, and repeat the computation every 10 seconds

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(5))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs

.reduceByKeyAndWindow(_ + _, _ - _, Seconds(30), Seconds(10))

windowedWordCounts.print()

wordCounts.print()

Amir H. Payberah (SICS) Spark June 17, 2014 80 / 125

Spark Streaming Hands-on Exercises (2/2)

I Extend the code to generate word count over last 30 seconds of
data, and repeat the computation every 10 seconds

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.StreamingContext._

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(5))

val lines = ssc.socketTextStream("127.0.0.1", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs

.reduceByKeyAndWindow(_ + _, _ - _, Seconds(30), Seconds(10))

windowedWordCounts.print()

wordCounts.print()

Amir H. Payberah (SICS) Spark June 17, 2014 80 / 125

Spark Streaming Hands-on Exercises - Twitter (1/7)

I Twitter credential setup: to access Twitter’s sample tweet stream

I Open the link: https://apps.twitter.com/

Amir H. Payberah (SICS) Spark June 17, 2014 81 / 125

Spark Streaming Hands-on Exercises - Twitter (1/7)

I Twitter credential setup: to access Twitter’s sample tweet stream

I Open the link: https://apps.twitter.com/

Amir H. Payberah (SICS) Spark June 17, 2014 81 / 125

Spark Streaming Hands-on Exercises - Twitter (2/7)

Amir H. Payberah (SICS) Spark June 17, 2014 82 / 125

Spark Streaming Hands-on Exercises - Twitter (3/7)

Amir H. Payberah (SICS) Spark June 17, 2014 83 / 125

Spark Streaming Hands-on Exercises - Twitter (4/7)

Amir H. Payberah (SICS) Spark June 17, 2014 84 / 125

Spark Streaming Hands-on Exercises - Twitter (5/7)

Amir H. Payberah (SICS) Spark June 17, 2014 85 / 125

Spark Streaming Hands-on Exercises - Twitter (6/7)

I Create an StreamingContext for a batch duration of 5 seconds
and use this context to create a stream of tweets

import org.apache.spark.streaming.twitter._

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(5))

val tweets = TwitterUtils.createStream(ssc, None)

I Print the status text of the some of the tweets
val statuses = tweets.map(status => status.getText())

statuses.print()

I Get the stream of hashtags from the stream of tweets

val words = statuses.flatMap(status => status.split(" "))

val hashtags = words.filter(word => word.startsWith("#"))

hashtags.print()

Amir H. Payberah (SICS) Spark June 17, 2014 86 / 125

Spark Streaming Hands-on Exercises - Twitter (6/7)

I Create an StreamingContext for a batch duration of 5 seconds
and use this context to create a stream of tweets

import org.apache.spark.streaming.twitter._

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(5))

val tweets = TwitterUtils.createStream(ssc, None)

I Print the status text of the some of the tweets
val statuses = tweets.map(status => status.getText())

statuses.print()

I Get the stream of hashtags from the stream of tweets

val words = statuses.flatMap(status => status.split(" "))

val hashtags = words.filter(word => word.startsWith("#"))

hashtags.print()

Amir H. Payberah (SICS) Spark June 17, 2014 86 / 125

Spark Streaming Hands-on Exercises - Twitter (6/7)

I Create an StreamingContext for a batch duration of 5 seconds
and use this context to create a stream of tweets

import org.apache.spark.streaming.twitter._

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(5))

val tweets = TwitterUtils.createStream(ssc, None)

I Print the status text of the some of the tweets

val statuses = tweets.map(status => status.getText())

statuses.print()

I Get the stream of hashtags from the stream of tweets

val words = statuses.flatMap(status => status.split(" "))

val hashtags = words.filter(word => word.startsWith("#"))

hashtags.print()

Amir H. Payberah (SICS) Spark June 17, 2014 86 / 125

Spark Streaming Hands-on Exercises - Twitter (6/7)

I Create an StreamingContext for a batch duration of 5 seconds
and use this context to create a stream of tweets

import org.apache.spark.streaming.twitter._

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(5))

val tweets = TwitterUtils.createStream(ssc, None)

I Print the status text of the some of the tweets
val statuses = tweets.map(status => status.getText())

statuses.print()

I Get the stream of hashtags from the stream of tweets

val words = statuses.flatMap(status => status.split(" "))

val hashtags = words.filter(word => word.startsWith("#"))

hashtags.print()

Amir H. Payberah (SICS) Spark June 17, 2014 86 / 125

Spark Streaming Hands-on Exercises - Twitter (6/7)

I Create an StreamingContext for a batch duration of 5 seconds
and use this context to create a stream of tweets

import org.apache.spark.streaming.twitter._

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(5))

val tweets = TwitterUtils.createStream(ssc, None)

I Print the status text of the some of the tweets
val statuses = tweets.map(status => status.getText())

statuses.print()

I Get the stream of hashtags from the stream of tweets

val words = statuses.flatMap(status => status.split(" "))

val hashtags = words.filter(word => word.startsWith("#"))

hashtags.print()

Amir H. Payberah (SICS) Spark June 17, 2014 86 / 125

Spark Streaming Hands-on Exercises - Twitter (6/7)

I Create an StreamingContext for a batch duration of 5 seconds
and use this context to create a stream of tweets

import org.apache.spark.streaming.twitter._

val ssc = new StreamingContext("local[2]", "Tweets", Seconds(5))

val tweets = TwitterUtils.createStream(ssc, None)

I Print the status text of the some of the tweets
val statuses = tweets.map(status => status.getText())

statuses.print()

I Get the stream of hashtags from the stream of tweets

val words = statuses.flatMap(status => status.split(" "))

val hashtags = words.filter(word => word.startsWith("#"))

hashtags.print()

Amir H. Payberah (SICS) Spark June 17, 2014 86 / 125

Spark Streaming Hands-on Exercises - Twitter (7/7)

I Set a path for periodic checkpointing of the intermediate data, and
then count the hashtags over a one minute window

ssc.checkpoint("/home/sics/temp")

val counts = hashtags.map(tag => (tag, 1))

.reduceByKeyAndWindow(_ + _, _ - _, Seconds(60), Seconds(5))

counts.print()

I Find the top 10 hashtags based on their counts

val sortedCounts = counts.map { case (tag, count) => (count, tag) }

.transform(rdd => rdd.sortByKey(false))

sortedCounts.foreachRDD(rdd =>

println("\nTop 10 hashtags:\n" + rdd.take(10).mkString("\n")))

Amir H. Payberah (SICS) Spark June 17, 2014 87 / 125

Spark Streaming Hands-on Exercises - Twitter (7/7)

I Set a path for periodic checkpointing of the intermediate data, and
then count the hashtags over a one minute window

ssc.checkpoint("/home/sics/temp")

val counts = hashtags.map(tag => (tag, 1))

.reduceByKeyAndWindow(_ + _, _ - _, Seconds(60), Seconds(5))

counts.print()

I Find the top 10 hashtags based on their counts

val sortedCounts = counts.map { case (tag, count) => (count, tag) }

.transform(rdd => rdd.sortByKey(false))

sortedCounts.foreachRDD(rdd =>

println("\nTop 10 hashtags:\n" + rdd.take(10).mkString("\n")))

Amir H. Payberah (SICS) Spark June 17, 2014 87 / 125

Spark Streaming Hands-on Exercises - Twitter (7/7)

I Set a path for periodic checkpointing of the intermediate data, and
then count the hashtags over a one minute window

ssc.checkpoint("/home/sics/temp")

val counts = hashtags.map(tag => (tag, 1))

.reduceByKeyAndWindow(_ + _, _ - _, Seconds(60), Seconds(5))

counts.print()

I Find the top 10 hashtags based on their counts

val sortedCounts = counts.map { case (tag, count) => (count, tag) }

.transform(rdd => rdd.sortByKey(false))

sortedCounts.foreachRDD(rdd =>

println("\nTop 10 hashtags:\n" + rdd.take(10).mkString("\n")))

Amir H. Payberah (SICS) Spark June 17, 2014 87 / 125

Spark Streaming Hands-on Exercises - Twitter (7/7)

I Set a path for periodic checkpointing of the intermediate data, and
then count the hashtags over a one minute window

ssc.checkpoint("/home/sics/temp")

val counts = hashtags.map(tag => (tag, 1))

.reduceByKeyAndWindow(_ + _, _ - _, Seconds(60), Seconds(5))

counts.print()

I Find the top 10 hashtags based on their counts

val sortedCounts = counts.map { case (tag, count) => (count, tag) }

.transform(rdd => rdd.sortByKey(false))

sortedCounts.foreachRDD(rdd =>

println("\nTop 10 hashtags:\n" + rdd.take(10).mkString("\n")))

Amir H. Payberah (SICS) Spark June 17, 2014 87 / 125

Amir H. Payberah (SICS) Spark June 17, 2014 88 / 125

Amir H. Payberah (SICS) Spark June 17, 2014 89 / 125

Introduction

I Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

I Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.

Amir H. Payberah (SICS) Spark June 17, 2014 90 / 125

Large Graph

Amir H. Payberah (SICS) Spark June 17, 2014 91 / 125

Large-Scale Graph Processing

I Large graphs need large-scale processing.

I A large graph either cannot fit into memory of single computer or
it fits with huge cost.

Amir H. Payberah (SICS) Spark June 17, 2014 92 / 125

Question

Can we use platforms like MapReduce or Spark, which are based on data-parallel

model, for large-scale graph proceeding?

Amir H. Payberah (SICS) Spark June 17, 2014 93 / 125

Data-Parallel Model for Large-Scale Graph Processing

I The platforms that have worked well for developing parallel applica-
tions are not necessarily effective for large-scale graph problems.

I Why?

Amir H. Payberah (SICS) Spark June 17, 2014 94 / 125

Graph Algorithms Characteristics (1/2)

I Unstructured problems

• Difficult to extract parallelism based on partitioning of the data: the
irregular structure of graphs.

• Limited scalability: unbalanced computational loads resulting from
poorly partitioned data.

I Data-driven computations

• Difficult to express parallelism based on partitioning of computation:
the structure of computations in the algorithm is not known a priori.

• The computations are dictated by nodes and links of the graph.

Amir H. Payberah (SICS) Spark June 17, 2014 95 / 125

Graph Algorithms Characteristics (1/2)

I Unstructured problems

• Difficult to extract parallelism based on partitioning of the data: the
irregular structure of graphs.

• Limited scalability: unbalanced computational loads resulting from
poorly partitioned data.

I Data-driven computations

• Difficult to express parallelism based on partitioning of computation:
the structure of computations in the algorithm is not known a priori.

• The computations are dictated by nodes and links of the graph.

Amir H. Payberah (SICS) Spark June 17, 2014 95 / 125

Graph Algorithms Characteristics (2/2)

I Poor data locality

• The computations and data access patterns do not have much local-
ity: the irregular structure of graphs.

I High data access to computation ratio

• Graph algorithms are often based on exploring the structure of a
graph to perform computations on the graph data.

• Runtime can be dominated by waiting memory fetches: low locality.

Amir H. Payberah (SICS) Spark June 17, 2014 96 / 125

Graph Algorithms Characteristics (2/2)

I Poor data locality

• The computations and data access patterns do not have much local-
ity: the irregular structure of graphs.

I High data access to computation ratio

• Graph algorithms are often based on exploring the structure of a
graph to perform computations on the graph data.

• Runtime can be dominated by waiting memory fetches: low locality.

Amir H. Payberah (SICS) Spark June 17, 2014 96 / 125

Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.

Amir H. Payberah (SICS) Spark June 17, 2014 97 / 125

Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.

Amir H. Payberah (SICS) Spark June 17, 2014 97 / 125

Graph-Parallel Processing

I Restricts the types of computation.

I New techniques to partition and distribute graphs.

I Exploit graph structure.

I Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.

Amir H. Payberah (SICS) Spark June 17, 2014 98 / 125

Data-Parallel vs. Graph-Parallel Computation

Amir H. Payberah (SICS) Spark June 17, 2014 99 / 125

Data-Parallel vs. Graph-Parallel Computation

I Data-parallel computation
• Record-centric view of data.
• Parallelism: processing independent data on separate resources.

I Graph-parallel computation
• Vertex-centric view of graphs.
• Parallelism: partitioning graph (dependent) data across processing

resources, and resolving dependencies (along edges) through
iterative computation and communication.

Amir H. Payberah (SICS) Spark June 17, 2014 100 / 125

Graph-Parallel Computation Frameworks

Amir H. Payberah (SICS) Spark June 17, 2014 101 / 125

Data-Parallel vs. Graph-Parallel Computation

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Amir H. Payberah (SICS) Spark June 17, 2014 102 / 125

Data-Parallel vs. Graph-Parallel Computation

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Amir H. Payberah (SICS) Spark June 17, 2014 102 / 125

Data-Parallel and Graph-Parallel Pipeline

I Moving between table and graph views of the same physical data.

I Inefficient: extensive data movement and duplication across the net-
work and file system.

Amir H. Payberah (SICS) Spark June 17, 2014 103 / 125

GraphX vs. Data-Parallel/Graph-Parallel Systems

Amir H. Payberah (SICS) Spark June 17, 2014 104 / 125

GraphX vs. Data-Parallel/Graph-Parallel Systems

Amir H. Payberah (SICS) Spark June 17, 2014 104 / 125

GraphX

I New API that blurs the distinction between Tables and Graphs.

I New system that unifies Data-Parallel and Graph-Parallel systems.

I It is implemented on top of Spark.

Amir H. Payberah (SICS) Spark June 17, 2014 105 / 125

Unifying Data-Parallel and Graph-Parallel Analytics

I Tables and Graphs are composable views of the same physical data.

I Each view has its own operators that exploit the semantics of the
view to achieve efficient execution.

Amir H. Payberah (SICS) Spark June 17, 2014 106 / 125

Data Model

I Property Graph: represented using two Spark RDDs:
• Edge collection: VertexRDD
• Vertex collection: EdgeRDD

// VD: the type of the vertex attribute

// ED: the type of the edge attribute

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED, VD]

}

Amir H. Payberah (SICS) Spark June 17, 2014 107 / 125

Primitive Data Types

// Vertex collection

class VertexRDD[VD] extends RDD[(VertexId, VD)]

// Edge collection

class EdgeRDD[ED] extends RDD[Edge[ED]]

case class Edge[ED, VD](srcId: VertexId = 0, dstId: VertexId = 0,

attr: ED = null.asInstanceOf[ED])

// Edge Triple

class EdgeTriplet[VD, ED] extends Edge[ED]

I EdgeTriplet represents an edge along with the vertex attributes of
its neighboring vertices.

Amir H. Payberah (SICS) Spark June 17, 2014 108 / 125

Example (1/3)

Amir H. Payberah (SICS) Spark June 17, 2014 109 / 125

Example (2/3)

val sc: SparkContext

// Create an RDD for the vertices

val users: RDD[(Long, (String, String))] = sc.parallelize(

Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),

(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges

val relationships: RDD[Edge[String]] = sc.parallelize(

Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),

Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user

val defaultUser = ("John Doe", "Missing")

// Build the initial Graph

val userGraph: Graph[(String, String), String] =

Graph(users, relationships, defaultUser)

Amir H. Payberah (SICS) Spark June 17, 2014 110 / 125

Example (3/3)

// Constructed from above

val userGraph: Graph[(String, String), String]

// Count all users which are postdocs

userGraph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count

// Count all the edges where src > dst

userGraph.edges.filter(e => e.srcId > e.dstId).count

// Use the triplets view to create an RDD of facts

val facts: RDD[String] = graph.triplets.map(triplet =>

triplet.srcAttr._1 + " is the " +

triplet.attr + " of " + triplet.dstAttr._1)

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

facts.collect.foreach(println)

Amir H. Payberah (SICS) Spark June 17, 2014 111 / 125

Property Operators (1/2)

class Graph[VD, ED] {

def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]

def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]

def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

}

I They yield new graphs with the vertex or edge properties modified
by the map function.

I The graph structure is unaffected.

Amir H. Payberah (SICS) Spark June 17, 2014 112 / 125

Property Operators (2/2)

val newGraph = graph.mapVertices((id, attr) => mapUdf(id, attr))

val newVertices = graph.vertices.map((id, attr) => (id, mapUdf(id, attr)))

val newGraph = Graph(newVertices, graph.edges)

I Both are logically equivalent, but the second one does not preserve
the structural indices and would not benefit from the GraphX system
optimizations.

Amir H. Payberah (SICS) Spark June 17, 2014 113 / 125

Map Reduce Triplets

I Map-Reduce for each vertex

// what is the age of the oldest follower for each user?

val oldestFollowerAge = graph.mapReduceTriplets(

e => Iterator((e.dstAttr, e.srcAttr)), // Map

(a, b) => max(a, b) // Reduce

).vertices

Amir H. Payberah (SICS) Spark June 17, 2014 114 / 125

Map Reduce Triplets

I Map-Reduce for each vertex

// what is the age of the oldest follower for each user?

val oldestFollowerAge = graph.mapReduceTriplets(

e => Iterator((e.dstAttr, e.srcAttr)), // Map

(a, b) => max(a, b) // Reduce

).vertices

Amir H. Payberah (SICS) Spark June 17, 2014 114 / 125

Structural Operators

class Graph[VD, ED] {

// returns a new graph with all the edge directions reversed

def reverse: Graph[VD, ED]

// returns the graph containing only the vertices and edges that satisfy

// the vertex predicate

def subgraph(epred: EdgeTriplet[VD,ED] => Boolean,

vpred: (VertexId, VD) => Boolean): Graph[VD, ED]

// a subgraph by returning a graph that contains the vertices and edges

// that are also found in the input graph

def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]

}

Amir H. Payberah (SICS) Spark June 17, 2014 115 / 125

Structural Operators Example

// Build the initial Graph

val graph = Graph(users, relationships, defaultUser)

// Run Connected Components

val ccGraph = graph.connectedComponents()

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

// Restrict the answer to the valid subgraph

val validCCGraph = ccGraph.mask(validGraph)

Amir H. Payberah (SICS) Spark June 17, 2014 116 / 125

Join Operators

I To join data from external collections (RDDs) with graphs.

class Graph[VD, ED] {

// joins the vertices with the input RDD and returns a new graph

// by applying the map function to the result of the joined vertices

def joinVertices[U](table: RDD[(VertexId, U)])

(map: (VertexId, VD, U) => VD): Graph[VD, ED]

// similarly to joinVertices, but the map function is applied to

// all vertices and can change the vertex property type

def outerJoinVertices[U, VD2](table: RDD[(VertexId, U)])

(map: (VertexId, VD, Option[U]) => VD2): Graph[VD2, ED]

}

Amir H. Payberah (SICS) Spark June 17, 2014 117 / 125

GraphX Hands-on Exercises (1/7)

Amir H. Payberah (SICS) Spark June 17, 2014 118 / 125

GraphX Hands-on Exercises (2/7)

I import the streaming libraries

import org.apache.spark.graphx._

import org.apache.spark.rdd.RDD

I Build the property graph shown in the last page

val vertexArray = Array(

(1L, ("Alice", 28)), (2L, ("Bob", 27)), (3L, ("Charlie", 65)),

(4L, ("David", 42)), (5L, ("Ed", 55)), (6L, ("Fran", 50)))

val edgeArray = Array(

Edge(2L, 1L, 7), Edge(2L, 4L, 2), Edge(3L, 2L, 4),

Edge(3L, 6L, 3), Edge(4L, 1L, 1), Edge(5L, 2L, 2),

Edge(5L, 3L, 8), Edge(5L, 6L, 3))

val vertexRDD: RDD[(Long, (String, Int))] = sc.parallelize(vertexArray)

val edgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray)

val graph: Graph[(String, Int), Int] = Graph(vertexRDD, edgeRDD)

Amir H. Payberah (SICS) Spark June 17, 2014 119 / 125

GraphX Hands-on Exercises (2/7)

I import the streaming libraries

import org.apache.spark.graphx._

import org.apache.spark.rdd.RDD

I Build the property graph shown in the last page

val vertexArray = Array(

(1L, ("Alice", 28)), (2L, ("Bob", 27)), (3L, ("Charlie", 65)),

(4L, ("David", 42)), (5L, ("Ed", 55)), (6L, ("Fran", 50)))

val edgeArray = Array(

Edge(2L, 1L, 7), Edge(2L, 4L, 2), Edge(3L, 2L, 4),

Edge(3L, 6L, 3), Edge(4L, 1L, 1), Edge(5L, 2L, 2),

Edge(5L, 3L, 8), Edge(5L, 6L, 3))

val vertexRDD: RDD[(Long, (String, Int))] = sc.parallelize(vertexArray)

val edgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray)

val graph: Graph[(String, Int), Int] = Graph(vertexRDD, edgeRDD)

Amir H. Payberah (SICS) Spark June 17, 2014 119 / 125

GraphX Hands-on Exercises (2/7)

I import the streaming libraries

import org.apache.spark.graphx._

import org.apache.spark.rdd.RDD

I Build the property graph shown in the last page

val vertexArray = Array(

(1L, ("Alice", 28)), (2L, ("Bob", 27)), (3L, ("Charlie", 65)),

(4L, ("David", 42)), (5L, ("Ed", 55)), (6L, ("Fran", 50)))

val edgeArray = Array(

Edge(2L, 1L, 7), Edge(2L, 4L, 2), Edge(3L, 2L, 4),

Edge(3L, 6L, 3), Edge(4L, 1L, 1), Edge(5L, 2L, 2),

Edge(5L, 3L, 8), Edge(5L, 6L, 3))

val vertexRDD: RDD[(Long, (String, Int))] = sc.parallelize(vertexArray)

val edgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray)

val graph: Graph[(String, Int), Int] = Graph(vertexRDD, edgeRDD)

Amir H. Payberah (SICS) Spark June 17, 2014 119 / 125

GraphX Hands-on Exercises (2/7)

I import the streaming libraries

import org.apache.spark.graphx._

import org.apache.spark.rdd.RDD

I Build the property graph shown in the last page

val vertexArray = Array(

(1L, ("Alice", 28)), (2L, ("Bob", 27)), (3L, ("Charlie", 65)),

(4L, ("David", 42)), (5L, ("Ed", 55)), (6L, ("Fran", 50)))

val edgeArray = Array(

Edge(2L, 1L, 7), Edge(2L, 4L, 2), Edge(3L, 2L, 4),

Edge(3L, 6L, 3), Edge(4L, 1L, 1), Edge(5L, 2L, 2),

Edge(5L, 3L, 8), Edge(5L, 6L, 3))

val vertexRDD: RDD[(Long, (String, Int))] = sc.parallelize(vertexArray)

val edgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray)

val graph: Graph[(String, Int), Int] = Graph(vertexRDD, edgeRDD)

Amir H. Payberah (SICS) Spark June 17, 2014 119 / 125

GraphX Hands-on Exercises (3/7)

I Display the name of the users older than 30 years old

graph.vertices.filter { case (id, (name, age)) => age > 30 }.foreach {

case (id, (name, age)) => println(s"$name is $age")

}

I Display who follows who (through the edges direction).

/**

* Triplet has the following Fields:

* triplet.srcAttr: (String, Int)

* triplet.dstAttr: (String, Int)

* triplet.attr: Int

* triplet.srcId: VertexId

* triplet.dstId: VertexId

*/

graph.triplets.foreach(t =>

println(s"${t.srcAttr._1} follows ${t.dstAttr._1}"))

Amir H. Payberah (SICS) Spark June 17, 2014 120 / 125

GraphX Hands-on Exercises (3/7)

I Display the name of the users older than 30 years old

graph.vertices.filter { case (id, (name, age)) => age > 30 }.foreach {

case (id, (name, age)) => println(s"$name is $age")

}

I Display who follows who (through the edges direction).

/**

* Triplet has the following Fields:

* triplet.srcAttr: (String, Int)

* triplet.dstAttr: (String, Int)

* triplet.attr: Int

* triplet.srcId: VertexId

* triplet.dstId: VertexId

*/

graph.triplets.foreach(t =>

println(s"${t.srcAttr._1} follows ${t.dstAttr._1}"))

Amir H. Payberah (SICS) Spark June 17, 2014 120 / 125

GraphX Hands-on Exercises (3/7)

I Display the name of the users older than 30 years old

graph.vertices.filter { case (id, (name, age)) => age > 30 }.foreach {

case (id, (name, age)) => println(s"$name is $age")

}

I Display who follows who (through the edges direction).

/**

* Triplet has the following Fields:

* triplet.srcAttr: (String, Int)

* triplet.dstAttr: (String, Int)

* triplet.attr: Int

* triplet.srcId: VertexId

* triplet.dstId: VertexId

*/

graph.triplets.foreach(t =>

println(s"${t.srcAttr._1} follows ${t.dstAttr._1}"))

Amir H. Payberah (SICS) Spark June 17, 2014 120 / 125

GraphX Hands-on Exercises (3/7)

I Display the name of the users older than 30 years old

graph.vertices.filter { case (id, (name, age)) => age > 30 }.foreach {

case (id, (name, age)) => println(s"$name is $age")

}

I Display who follows who (through the edges direction).

/**

* Triplet has the following Fields:

* triplet.srcAttr: (String, Int)

* triplet.dstAttr: (String, Int)

* triplet.attr: Int

* triplet.srcId: VertexId

* triplet.dstId: VertexId

*/

graph.triplets.foreach(t =>

println(s"${t.srcAttr._1} follows ${t.dstAttr._1}"))

Amir H. Payberah (SICS) Spark June 17, 2014 120 / 125

GraphX Hands-on Exercises (4/7)

I Compute the total age of followers of each user and print them out

val followers: VertexRDD[Int] = graph.mapReduceTriplets[Int](

triplet => Iterator(...), // map

(a, b) => ... // reduce

)

val followers: VertexRDD[Int] = graph.mapReduceTriplets[Int](

triplet => Iterator((triplet.dstId, triplet.srcAttr._2)),

(a, b) => a + b)

followers.collect.foreach(print)

Amir H. Payberah (SICS) Spark June 17, 2014 121 / 125

GraphX Hands-on Exercises (4/7)

I Compute the total age of followers of each user and print them out

val followers: VertexRDD[Int] = graph.mapReduceTriplets[Int](

triplet => Iterator(...), // map

(a, b) => ... // reduce

)

val followers: VertexRDD[Int] = graph.mapReduceTriplets[Int](

triplet => Iterator((triplet.dstId, triplet.srcAttr._2)),

(a, b) => a + b)

followers.collect.foreach(print)

Amir H. Payberah (SICS) Spark June 17, 2014 121 / 125

GraphX Hands-on Exercises (4/7)

I Compute the total age of followers of each user and print them out

val followers: VertexRDD[Int] = graph.mapReduceTriplets[Int](

triplet => Iterator(...), // map

(a, b) => ... // reduce

)

val followers: VertexRDD[Int] = graph.mapReduceTriplets[Int](

triplet => Iterator((triplet.dstId, triplet.srcAttr._2)),

(a, b) => a + b)

followers.collect.foreach(print)

Amir H. Payberah (SICS) Spark June 17, 2014 121 / 125

GraphX Hands-on Exercises (5/7)

I Compute the average age of followers of each user and print them
out

val followers: VertexRDD[(Int, Double)] = graph

.mapReduceTriplets[(Int, Double)](

triplet => Iterator(...), // map

(a, b) => (...) // reduce

)

val avgAgeOfFollowers: VertexRDD[Double] = followers.mapValues(...)

val followers: VertexRDD[(Int, Double)] = graph

.mapReduceTriplets[(Int, Double)](

triplet => Iterator((triplet.dstId, (1, triplet.srcAttr._2))),

(a, b) => (a._1 + b._1, a._2 + b._2))

val avgAgeOfFollowers: VertexRDD[Double] =

followers.mapValues((id, value) => value match {

case (count, totalAge) => totalAge / count

})

avgAgeOfFollowers.collect.foreach(print)

Amir H. Payberah (SICS) Spark June 17, 2014 122 / 125

GraphX Hands-on Exercises (5/7)

I Compute the average age of followers of each user and print them
out

val followers: VertexRDD[(Int, Double)] = graph

.mapReduceTriplets[(Int, Double)](

triplet => Iterator(...), // map

(a, b) => (...) // reduce

)

val avgAgeOfFollowers: VertexRDD[Double] = followers.mapValues(...)

val followers: VertexRDD[(Int, Double)] = graph

.mapReduceTriplets[(Int, Double)](

triplet => Iterator((triplet.dstId, (1, triplet.srcAttr._2))),

(a, b) => (a._1 + b._1, a._2 + b._2))

val avgAgeOfFollowers: VertexRDD[Double] =

followers.mapValues((id, value) => value match {

case (count, totalAge) => totalAge / count

})

avgAgeOfFollowers.collect.foreach(print)

Amir H. Payberah (SICS) Spark June 17, 2014 122 / 125

GraphX Hands-on Exercises (5/7)

I Compute the average age of followers of each user and print them
out

val followers: VertexRDD[(Int, Double)] = graph

.mapReduceTriplets[(Int, Double)](

triplet => Iterator(...), // map

(a, b) => (...) // reduce

)

val avgAgeOfFollowers: VertexRDD[Double] = followers.mapValues(...)

val followers: VertexRDD[(Int, Double)] = graph

.mapReduceTriplets[(Int, Double)](

triplet => Iterator((triplet.dstId, (1, triplet.srcAttr._2))),

(a, b) => (a._1 + b._1, a._2 + b._2))

val avgAgeOfFollowers: VertexRDD[Double] =

followers.mapValues((id, value) => value match {

case (count, totalAge) => totalAge / count

})

avgAgeOfFollowers.collect.foreach(print)

Amir H. Payberah (SICS) Spark June 17, 2014 122 / 125

GraphX Hands-on Exercises (6/7)

I Make a subgraph of the users that are 30 or older

val olderGraph = graph.subgraph(vpred = ...)

val olderGraph = graph.subgraph(vpred = (id, u) => u._2 >= 30)

Amir H. Payberah (SICS) Spark June 17, 2014 123 / 125

GraphX Hands-on Exercises (6/7)

I Make a subgraph of the users that are 30 or older

val olderGraph = graph.subgraph(vpred = ...)

val olderGraph = graph.subgraph(vpred = (id, u) => u._2 >= 30)

Amir H. Payberah (SICS) Spark June 17, 2014 123 / 125

GraphX Hands-on Exercises (6/7)

I Make a subgraph of the users that are 30 or older

val olderGraph = graph.subgraph(vpred = ...)

val olderGraph = graph.subgraph(vpred = (id, u) => u._2 >= 30)

Amir H. Payberah (SICS) Spark June 17, 2014 123 / 125

GraphX Hands-on Exercises (7/7)

I Compute the connected components and display the component id
of each user in oldGraph

val cc = olderGraph...

olderGraph.vertices.leftJoin(cc.vertices) {

...

}.foreach{...}

val cc = olderGraph.connectedComponents

olderGraph.vertices.leftJoin(cc.vertices) {

case (id, u, comp) => s"${u._1} is in component ${comp.get}"

}.foreach{ case (id, str) => println(str) }

Amir H. Payberah (SICS) Spark June 17, 2014 124 / 125

GraphX Hands-on Exercises (7/7)

I Compute the connected components and display the component id
of each user in oldGraph

val cc = olderGraph...

olderGraph.vertices.leftJoin(cc.vertices) {

...

}.foreach{...}

val cc = olderGraph.connectedComponents

olderGraph.vertices.leftJoin(cc.vertices) {

case (id, u, comp) => s"${u._1} is in component ${comp.get}"

}.foreach{ case (id, str) => println(str) }

Amir H. Payberah (SICS) Spark June 17, 2014 124 / 125

GraphX Hands-on Exercises (7/7)

I Compute the connected components and display the component id
of each user in oldGraph

val cc = olderGraph...

olderGraph.vertices.leftJoin(cc.vertices) {

...

}.foreach{...}

val cc = olderGraph.connectedComponents

olderGraph.vertices.leftJoin(cc.vertices) {

case (id, u, comp) => s"${u._1} is in component ${comp.get}"

}.foreach{ case (id, str) => println(str) }

Amir H. Payberah (SICS) Spark June 17, 2014 124 / 125

Questions?

Amir H. Payberah (SICS) Spark June 17, 2014 125 / 125

