

Distributed Deep Learning

Amir H. Payberah payberah@kth.se 2020-08-20

What is the problem?

Training Deep Neural Networks

- Computationally intensive
- ► Time consuming

[https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.png]

- Massive amount of training dataset
- Large number of parameters

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Accuracy vs. Data/Model Size

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Accuracy vs. Data/Model Size

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Scale Matters

Scalability

Fundamentals of Machine Learning

► E.g., tabular data, image, text, etc.

Entities						
Society and Culture	Science and Mathematics	Health	Education and Refere	nce	Computers and Internet	Sports
Business and Finance	Entertainment and Music	Famil	y and Relationships \times	Pol	itics and Government	

does anyone here play habbohotel and want 2 be friends? Answer: No on the first part and maybe on the second part. I got to think it over first.

Family and Relationships

Date	Cost	Actions	Offsite conversions	Impressions	Clicks
2017-04-04	29.44	461	4	5655	477
2017-04-03	74.08	1331	16	18170	1340
2017-04-02	76.09	1349	12	16877	1357
2017-04-01	76.79	1382	8	19757	1378
2017-03-31	77.28	1141	21	18598	1116
2017-03-30	68.62	1065	18	14847	1046
2017-03-29	64.9	1111	25	13994	1094
2017-03-28	65.12	1137	12	15952	1145
2017-03-27	66.98	1185	7	17970	1190
2017-03-26	64.94	1118	5	14410	1116
2017-03-25	66.3	1208	6	15123	1204
2017-03-24	67.38	1143		15298	1159
2017-03-23	65.59	1147	13	14972	1143
2017-03-22	68.19	1129	4	17959	1116
2017-03-21	64.78	1081		25810	1059

• E.g., linear models, neural networks, etc.

- E.g., linear models, neural networks, etc.
- ► $\hat{y} = f_w(x)$

• How good \hat{y} is able to predict the expected outcome y.

- How good \hat{y} is able to predict the expected outcome y.
- \blacktriangleright J(w) = $\sum_{i=1}^{m} l(y_i, \hat{y}_i)$

- How good \hat{y} is able to predict the expected outcome y.
- \blacktriangleright J(w) = $\sum_{i=1}^{m} \mathtt{l}(\mathtt{y}_i, \boldsymbol{\hat{y}}_i)$

- How good \hat{y} is able to predict the expected outcome y.
- \blacktriangleright J(w) = $\sum_{i=1}^{m} \mathtt{l}(\mathtt{y}_i, \boldsymbol{\hat{y}}_i)$

Minimize the loss function

- Minimize the loss function
- ► arg min_w J(w)
- \blacktriangleright J(w) = $\sum_{i=1}^{m} \mathtt{l}(\mathtt{y}_i, \boldsymbol{\hat{y}}_i)$

\blacktriangleright J(w) = $\sum_{i=1}^{m} \mathtt{l}(\mathtt{y}_i, \boldsymbol{\hat{y}}_i)$

- \blacktriangleright J(w) = $\sum_{i=1}^{m} \mathtt{l}(\mathtt{y}_i, \boldsymbol{\hat{y}}_i)$
- Gradient descent, i.e., $\mathbf{w} := \mathbf{w} \eta \nabla J(\mathbf{w})$

- \blacktriangleright J(w) = $\sum_{i=1}^{m} \mathtt{l}(\mathtt{y}_i, \boldsymbol{\hat{y}}_i)$
- Gradient descent, i.e., $\mathbf{w} := \mathbf{w} \eta \nabla J(\mathbf{w})$
- Stochastic gradient descent, i.e., $\mathbf{w} := \mathbf{w} \eta \tilde{g} J(\mathbf{w})$
 - g̃: gradient at a randomly chosen point.

- \blacktriangleright J(w) = $\sum_{i=1}^{m} \mathtt{l}(\mathtt{y}_i, \boldsymbol{\hat{y}}_i)$
- Gradient descent, i.e., $\mathbf{w} := \mathbf{w} \eta \nabla J(\mathbf{w})$
- ► Stochastic gradient descent, i.e., w := w − ηğJ(w)
 - g: gradient at a randomly chosen point.

- Mini-barch gradient descent, i.e., $\mathbf{w} := \mathbf{w} \eta \tilde{\mathbf{g}}_{B} \mathbf{J}(\mathbf{w})$
 - \tilde{g} : gradient with respect to a set of B randomly chosen points.

Let's Scale the Learning

Scalable Training

- Data parallelism
- Model parallelism

Data Parallelism

Data Parallelization (1/4)

Replicate a whole model on every device.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (1/4)

- Replicate a whole model on every device.
- ► Train all replicas simultaneously, using a different mini-batch for each.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

k devices

Data Parallelization (2/4)

►
$$J_j(\mathbf{w}) = \sum_{i=1}^{b_j} l(y_i, \hat{y}_i), \forall j = 1, 2, \cdots, k$$

Data Parallelization (2/4)

- k devices
- $J_j(\mathbf{w}) = \sum_{i=1}^{b_j} l(y_i, \hat{y}_i), \ \forall j = 1, 2, \cdots, k$
- ▶ $\tilde{g}_B J_j(w)$: gradient of $J_j(w)$ with respect to a set of B randomly chosen points at device j.

Data Parallelization (2/4)

- k devices
- $J_j(\mathbf{w}) = \sum_{i=1}^{b_j} l(y_i, \hat{y}_i), \ \forall j = 1, 2, \cdots, k$
- ▶ $\tilde{g}_B J_j(w)$: gradient of $J_j(w)$ with respect to a set of B randomly chosen points at device j.
- Compute $\tilde{g}_B J_j(\mathbf{w})$ on each device j.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (3/4)

- Compute the mean of the gradients.
- $\tilde{g}_B J(\mathbf{w}) = \frac{1}{k} \sum_{j=1}^k \tilde{g}_B J_j(\mathbf{w})$

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (4/4)

- ► Update the model.
- $\blacktriangleright \mathbf{w} := \mathbf{w} \eta \tilde{\mathbf{g}}_{\mathrm{B}} \mathbf{J}(\mathbf{w})$

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization Design Issues

Gradient aggregation: how to update the parameters

Data Parallelization Design Issues

- Gradient aggregation: how to update the parameters
- ► Synchronization: when to synchronize the parameters

Gradient Aggregation

Gradient Aggregation

- Centralized parameter server
- Decentralized all-reduce

Gradient Aggregation - Centralized

• Store the model parameters outside of the workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Gradient Aggregation - Centralized

- Store the model parameters outside of the workers.
- Workers periodically report their computed parameters or parameter updates to a (set of) parameter server(s).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Gradient Aggregation - Decentralized

► Mirror all the model parameters across all workers (No PS).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Gradient Aggregation - Decentralized

- ► Mirror all the model parameters across all workers (No PS).
- ► Workers exchange parameter updates directly via an allreduce operation.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

▶ Reduce: reducing a set of numbers into a smaller set of numbers via a function.

- ▶ Reduce: reducing a set of numbers into a smaller set of numbers via a function.
- ▶ E.g., sum([1, 2, 3, 4, 5]) = 15

- ► Reduce: reducing a set of numbers into a smaller set of numbers via a function.
- ▶ E.g., sum([1, 2, 3, 4, 5]) = 15
- Reduce takes an array of input elements on each process and returns an array of output elements to the root process.

- ► Reduce: reducing a set of numbers into a smaller set of numbers via a function.
- ▶ E.g., sum([1, 2, 3, 4, 5]) = 15
- Reduce takes an array of input elements on each process and returns an array of output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

► AllReduce stores reduced results across all processes rather than the root process.

► AllReduce stores reduced results across all processes rather than the root process.

Allreduce

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

AllReduce Example

Initial state

After AllReduce operation

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

AllReduce Implementation

- All-to-all allreduce
- Master-worker allreduce
- ► Tree allreduce
- ► Round-robin allreduce
- Butterfly allreduce
- ► Ring allreduce

Synchronization

▶ When to synchronize the parameters among the parallel workers?

- Synchronous
- Asynchronous

Before the next training, every worker must wait for all workers to finish the transmission of all parameters in the current iteration.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Synchronization - Asynchronous

• Eliminates the synchronization.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Synchronization - Asynchronous

- Eliminates the synchronization.
- ► Each work transmits its gradients to the parameter server after it calculates the gradients.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Synchronization - Asynchronous

- Eliminates the synchronization.
- ► Each work transmits its gradients to the parameter server after it calculates the gradients.
- ► The parameter server updates the global model without waiting for the other workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Model Parallelism

• The model is split across multiple devices.

Model Parallelization

- ► The model is split across multiple devices.
- Depends on the architecture of the NN.

Model Parallelization - Hash Partitioning

Randomly assign vertices to devices proportionally to the capacity of the devices by using a hash function.

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

Model Parallelization - Critical Path

- ► Assigning the complete critical path to the fastest device.
- Critical path: the path with the longest computation time from source to sink vertex.

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

Model Parallelization - Multi-Objective Heuristics

▶ Different objectives, e.g., memory, importance, traffic, and execution time

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

- $\blacktriangleright J(\mathtt{w}) = \mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P}|\mathcal{G}, \mathtt{w})}[\mathtt{R}(\mathcal{P})|\mathcal{G}]$
- ► Objective: arg min_w J(w)

- $\blacktriangleright J(\mathtt{w}) = \mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P}|\mathcal{G}, \mathtt{w})}[\mathtt{R}(\mathcal{P})|\mathcal{G}]$
- ► Objective: arg min_w J(w)
- \mathcal{G} : input neural graph

- $\blacktriangleright J(\mathtt{w}) = \mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P}|\mathcal{G}, \mathtt{w})}[\mathtt{R}(\mathcal{P})|\mathcal{G}]$
- ► Objective: arg min_w J(w)
- ► *G*: input neural graph
- ▶ R: runtime

- $\blacktriangleright J(\mathtt{w}) = \mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P}|\mathcal{G}, \mathtt{w})}[\mathtt{R}(\mathcal{P})|\mathcal{G}]$
- ► Objective: arg min_w J(w)
- ► *G*: input neural graph
- ▶ R: runtime
- ► J(w): expected runtime

- $\blacktriangleright J(\mathtt{w}) = \mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P}|\mathcal{G}, \mathtt{w})}[\mathtt{R}(\mathcal{P})|\mathcal{G}]$
- ► Objective: arg min_w J(w)
- ▶ *G*: input neural graph
- R: runtime
- ► J(w): expected runtime
- ▶ w: trainable parameters of policy

- $\blacktriangleright J(\mathtt{w}) = \mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P}|\mathcal{G}, \mathtt{w})}[\mathtt{R}(\mathcal{P})|\mathcal{G}]$
- ► Objective: arg min_w J(w)
- ▶ *G*: input neural graph
- R: runtime
- ► J(w): expected runtime
- ► w: trainable parameters of policy
- $\pi(\mathcal{P}|\mathcal{G}, \mathbf{w})$: policy

- $\blacktriangleright J(\mathtt{w}) = \mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P}|\mathcal{G}, \mathtt{w})}[\mathtt{R}(\mathcal{P})|\mathcal{G}]$
- Objective: arg min_w J(w)
- ▶ *G*: input neural graph
- R: runtime
- ► J(w): expected runtime
- ► w: trainable parameters of policy
- $\pi(\mathcal{P}|\mathcal{G}, \mathbf{w})$: policy
- ▶ \mathcal{P} : output placements $\in \{1, 2, ..., num_ops\}^{num_devices}$

► RL reward function based on execution runtime.

- RL reward function based on execution runtime.
- ► The RL policy is defined as a seq-to-seq model.

- RL reward function based on execution runtime.
- ► The RL policy is defined as a seq-to-seq model.
- ► RNN Encoder receives graph embedding for each operation.

- ► RL reward function based on execution runtime.
- ► The RL policy is defined as a seq-to-seq model.
- ► RNN Encoder receives graph embedding for each operation.
- ► RNN Decoder predicts a device placement for each operation.

- Grouping operations.
- ▶ Prediction is for group placement, not for a single operation.

Summary

- Scalability matters
- Parallelization
- Data Parallelization
 - Parameter server vs. AllReduce
 - · Synchronized vs. asynchronized
- Model Parallelization
 - Random, critical path, multi-objective, RL

Thanks!