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What is the problem?
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Training Deep Neural Networks

I Computationally intensive

I Time consuming

[https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.png]
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Why?

I Massive amount of training dataset

I Large number of parameters

3 / 47



Accuracy vs. Data/Model Size

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]
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Scale Matters
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Fundamentals of Machine Learning
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Training Dataset

I E.g., tabular data, image, text, etc.
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Model

I E.g., linear models, neural networks, etc.

I ŷ = fw(x)
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Loss function

I How good ŷ is able to predict the expected outcome y.

I J(w) =
∑m

i=1 l(yi, ŷi)

I E.g., J(w) = 1
m

∑m
i=1(yi − ŷi)2
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I E.g., J(w) = 1
m

∑m
i=1(yi − ŷi)2
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Objective

I Minimize the loss function

I arg minw J(w)

I J(w) =
∑m

i=1 l(yi, ŷi)
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Training

I J(w) =
∑m

i=1 l(yi, ŷi)

I Gradient descent, i.e., w := w − η∇J(w)

I Stochastic gradient descent, i.e., w := w − η~gJ(w)
• ~g: gradient at a randomly chosen point.

I Mini-barch gradient descent, i.e., w := w − η~gBJ(w)
• ~g: gradient with respect to a set of B randomly chosen points.
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Let’s Scale the Learning
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Scalable Training

I Data parallelism

I Model parallelism
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Data Parallelism
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Data Parallelization (1/4)

I Replicate a whole model on every device.

I Train all replicas simultaneously, using a different mini-batch for each.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Data Parallelization (2/4)

I k devices

I Jj(w) =
∑bj

i=1 l(yi, ŷi), ∀j = 1, 2, · · · , k
I ~gBJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at

device j.

I Compute ~gBJj(w) on each device j.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Data Parallelization (3/4)

I Compute the mean of the gradients.

I ~gBJ(w) = 1
k

∑k
j=1 ~gBJj(w)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Data Parallelization (4/4)

I Update the model.

I w := w − η~gBJ(w)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Data Parallelization Design Issues

I Gradient aggregation: how to update the parameters

I Synchronization: when to synchronize the parameters
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Gradient Aggregation

22 / 47



Gradient Aggregation

I Centralized - parameter server

I Decentralized - all-reduce
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Gradient Aggregation - Centralized

I Store the model parameters outside of the workers.

I Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Gradient Aggregation - Decentralized

I Mirror all the model parameters across all workers (No PS).

I Workers exchange parameter updates directly via an allreduce operation.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]
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Reduce and AllReduce (2/2)

I AllReduce stores reduced results across all processes rather than the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]
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AllReduce Example

Initial state After AllReduce operation

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation

I All-to-all allreduce

I Master-worker allreduce

I Tree allreduce

I Round-robin allreduce

I Butterfly allreduce

I Ring allreduce
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AllReduce Implementation - Ring-AllReduce
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AllReduce Implementation - Ring-AllReduce
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AllReduce Implementation - Ring-AllReduce
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Synchronization
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Synchronization

I When to synchronize the parameters among the parallel workers?
• Synchronous
• Asynchronous
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Synchronization - Synchronous

I Before the next training, every worker must wait for all workers to finish the trans-
mission of all parameters in the current iteration.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Synchronization - Asynchronous

I Eliminates the synchronization.

I Each work transmits its gradients to the parameter server after it calculates the
gradients.

I The parameter server updates the global model without waiting for the other workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Model Parallelism
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Model Parallelization

I The model is split across multiple devices.

I Depends on the architecture of the NN.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Model Parallelization - Hash Partitioning

I Randomly assign vertices to devices proportionally to the capacity of the devices by
using a hash function.

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]
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Model Parallelization - Critical Path

I Assigning the complete critical path to the fastest device.

I Critical path: the path with the longest computation time from source to sink vertex.

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]
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Model Parallelization - Multi-Objective Heuristics

I Different objectives, e.g., memory, importance, traffic, and execution time

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]
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Model Parallelization - Reinforcement Learning (1/5)

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]
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Model Parallelization - Reinforcement Learning (2/5)

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]
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Model Parallelization - Reinforcement Learning (3/5)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(w): expected runtime

I w: trainable parameters of policy

I π(P|G, w): policy

I P: output placements ∈ {1, 2, ..., num ops}num devices
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Model Parallelization - Reinforcement Learning (4/5)

I RL reward function based on execution runtime.

I The RL policy is defined as a seq-to-seq model.

I RNN Encoder receives graph embedding for each operation.

I RNN Decoder predicts a device placement for each operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]
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Model Parallelization - Reinforcement Learning (5/5)

I Grouping operations.

I Prediction is for group placement, not for a single operation.

[Mirhoseini et al., A Hierarchical Model for Device Placement, 2018]
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Summary
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Summary

I Scalability matters

I Parallelization

I Data Parallelization
• Parameter server vs. AllReduce
• Synchronized vs. asynchronized

I Model Parallelization
• Random, critical path, multi-objective, RL
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Thanks!
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