& verenscar 55
38 OCH KONST 235
S%%m@g?gg

Distributed Deep Learning

Amir H. Payberah
payberah@kth.se
2020-08-20

What is the problem?

Training Deep Neural Networks

» Computationally intensive

> Time consuming

i
Convolution
AvgPool
MaxPool
Coneat
@ Dropout
@ Fully connected
& Softmax

[https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.pngl

» Massive amount of training dataset

» Large number of parameters

SEE, T TOLD You
THAT BIG DATA
WAS TOO SCARY

—

Jﬁ\‘ ne

\/J‘Ol’k{of(.?. Ir\novm*‘non TL\O\T ‘W’GrkS'M
KEONOS. (oM

Accuracy vs. Data/Model Size

1980s and 1990s
A

Accuracy neural networks

— other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Accuracy vs. Data/Model Size

1980s and 1990s
A

more

Accuracy compute neural networks

other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Accuracy vs. Data/Model Size

Now

A more

Accuracy compute neural networks

1
other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Scale Matters

Scalabill

Fundamentals of Machine Learning

Training Dataset

Entities

Society and Culture

Health | Education and Reference.

Entertainment and Music | Family and Relationships] politics and Government

does anyone here play habbohotel and want 2 be

friends? Answer:
second part. |

Family and _Reationshi

Actions Offsite conversions
161

Impressions Clicks.
4 s65¢

No on the fist part and maybe on the
got to think it over first

29. 5 an
7408 1331 16 18170 1340
76.00 1349 2 18877 1357
7679 1382 8 19757 1378
728 141 21 18598 118
68.62 1 18 14847 1046
649 1 2 13004 1

65.12 137 2 15952 1145
6698 1185 7 17970 1190
6494 1118 5 14410 1116
663 1 6 15123 1

6738 143 15298 1159
6559 147 3 14072 a3
68.19 129 4 17959 116
6478 1081 25810 1059

» E.g., linear models, neural networks, etc.

Model

» E.g., linear models, neural networks, etc.

> §=fu(x)

Loss function

» How good ¥ is able to predict the expected outcome y.

Loss function

» How good ¥ is able to predict the expected outcome y.

> J(w) =31 1(yi,941)

Loss function

» How good ¥ is able to predict the expected outcome y.
> J(w) =325 1y, 1)

J =wo + wixl
J

h=0,-3)] n=0,-7)

N

Loss function

» How good ¥ is able to predict the expected outcome y.
> J(w) =325 1y, 1)

J =wo + wixl
J

h=0,-3)] n=0,-7)

Objective

» Minimize the loss function

Objective

» Minimize the loss function

» arg miny J(w)

> J(w) =371 1y, 91)

Training

> J(w) =21, 1y, ¥1)

Training

> J(w) =21, 1y, ¥1)

» Gradient descent, i.e., w :=w — nVJ(w)

Training

> J(w) =25 (v, 91)
» Gradient descent, i.e., w :=w — nVJ(w)

» Stochastic gradient descent, i.e., w := w — ngJ(w)
e g: gradient at a randomly chosen point.

Training

> J(w) =21, 1y, ¥1)

v

Gradient descent, i.e., w :=w —nVJ(w)

v

Stochastic gradient descent, i.e., w := w — ngJ(w)
e g: gradient at a randomly chosen point.

v

Mini-barch gradient descent, i.e., w := w — nggJ(w)
e g: gradient with respect to a set of B randomly chosen points.

Let's Scale the Learning

Scalable Training

» Data parallelism

» Model parallelism

Data Parallelism

Data Parallelization (1/4)

> Replicate a whole model on every device.

Communication
[t 1 | ([T (it [l
ke kN o <

wila
IXIXIXT IXIXIXT
M. Ao
P AR
R
XXX

_ Worker 2 Worker 3

IXIXIXIXIX]
i

% d O Update
1 i 1t D Low
T D) ﬁ)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (1/4)

> Replicate a whole model on every device.

» Train all replicas simultaneously, using a different mini-batch for each.

Communication
oo Lot [[]
ke kN o <

Worker |

Worker 2 Worker 3
I RRRR RRAR

........................ Update

1 i 1t D Low
T D) ﬁ)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (2/4)

» k devices

Communication

Workcr 3

Update

x it "
ad data
‘(Mn.mm) ‘(wz)‘(mmmz)@ Mini-batch4)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (2/4)

» k devices

b; - .
> ‘]J(w) - ZiJ:1 1(yi7yi)' VJ - 1727 e 7k

Communication

Workcr 3

Update

x it "
ad data
‘(Mn.mm) ‘(wz)‘(mmmz)@ Mini-batch4)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (2/4)

» k devices
b . .
> ‘]J(w) - ZiJ:1 1(yi7yi)' VJ - 17 27 ok
> gpJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at

device j.

Communication
Grad':r‘ Gradient 2 Gradient 3 Gradient 4
T 1 r o
e et [Rnan
M\
b B, R
.“. .1- .“.

.............................. Update

0 O 1t A Lo daa
G Gonand) Ginwers) ﬁ

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (2/4)

» k devices
b . .
> ‘]J(w) - ZiJ:1 1(yi7yi)' VJ - 17 27 ok
> gpJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at
device j.
>

Compute ggJ;(w) on each device j.

Gradient Average

Communication

ks r r r

T Worker 2

Worker 3 Worker 4

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (3/4)

» Compute the mean of the gradients.

> gd(w) = £ 35 8sJ5(w)

Communication
[t | [Gmtien] [t | [omiinn]
ke kN

Worker 2
—

Worker 3 Worker 4

SYEEERY LYY 0% Update
0 D Lowaua

‘(Mm.mcnl) ((umz)((mimmz) Mini-batchd.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (4/4)

» Update the model.
> wi=w—nggl(w)

Communication
o] o] [] []
T ko

Worker 2 Worker 3 Worker 4

Worker |

Update
ad data

£ @ 0t
(Gonivaen 1) Cnivarenz) (yamivaens) uamitaena

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization Design Issues

» Gradient aggregation: how to update the parameters

Data Parallelization Design Issues

» Gradient aggregation: how to update the parameters

» Synchronization: when to synchronize the parameters

Gradient Aggregation

Gradient Aggregation

» Centralized - parameter server

» Decentralized - all-reduce

Worker |
Local ca
Model 1 Model 2 Model n-1 Model n

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Gradient Aggregation - Centralized

» Store the model parameters outside of the workers.

» Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s).

Global model

Worker 1 Worker 2 Workern-1 ~ Workern
Local Local Local Local
Model 1 Model 2 Model n-1 Model n

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Gradient Aggregation - Decentralized

» Mirror all the model parameters across all workers (No PS).

Worker 1 Worker n

4R

Worker 2 Worker n-1

€D
s e &

A Comprehensive Survey, 2020]

[Tang et al., Communication-Efficient Distributed Deep Learning:

Gradient Aggregation - Decentralized

» Mirror all the model parameters across all workers (No PS).

» Workers exchange parameter updates directly via an allreduce operation.

Worker 1 Worker n

W

Workern-1

e
s e &

[Tang et al., Communication-Efficient Distributed Deep Learning:

A Comprehensive Survey, 2020]

Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.

Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.

» E.g., sum([1, 2, 3, 4, 5]) = 15

Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.
» E.g., sum([1, 2, 3, 4, 5]) = 15

» Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

Reduce

Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.
» E.g., sum([1, 2, 3, 4, 5]) = 15

» Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

Reduce

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

Reduce and AllReduce (2/2)

» AllReduce stores reduced results across all processes rather than the root process.

Reduce and AllReduce (2/2)

» AllReduce stores reduced results across all processes rather than the root process.

Allreduce

oluolslouulofe

S|
®|18|14| ®|18|14| @|18|14|

UM
[18]14|

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

VETENSKAP

AllReduce Example

Initial state After AllReduce operation

Worker A Worker B Worker A Worker B

SEAne [l EleEz

Worker C Worker D Worker C Worker D

[ol (N el

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal

AllReduce Implementation

>

» Master-worker allreduce

All-to-all allreduce

v

Tree allreduce

v

Round-robin allreduce

v

Butterfly allreduce

v

Ring allreduce

AllReduce Implementation - Ring-AllReduce

Worker A
o
/ \

Worker D Worker B
[« o e e] canns
N Worker C) /
(= [a1

AllReduce Implementation - Ring-AllReduce

Worker A Worker A
ey PR i
/ \ / \

/ \ £
Worker D Worker B Worker D Worker B
o Lo o =] OO0 e s L~ |~]
\ - Werlerc o / \\ Worker C) /D‘
> le o s] BENE

AllReduce Implementation - Ring-AllReduce

Worker A Worker A Worker A
) - —— - <
\ / \ / \

/ \ / \
Worker D Worker B Worker D Worker B Worker D Worker B
[« o e e] L | 4 o el] | [[=]»]
% % Jj ‘\]
i N Worker C % / \\) Worker C /b‘ " h % e 4 fbu
CIEEE | AN (- | | [-]

AllReduce Implementation - Ring-AllReduce

Worker A Worker A Worker A
j CICEIED B “’/ j B
Worker D Worker B Worker D Worker B Worker D Worker B
ﬂﬂﬂﬂ annn -ﬂﬂ. O -- L] ----
Worker C - Worker C A .. Worker C o
j CEESESES B N CIENINES B pOEEDE

Worker A
PR

W il |
INED

neagtbored,

AllReduce Implementation - Ring-AllReduce

Worker A Worker A Worker A
e P =i ey o —
\ / \ \

Worker D Worker B Worker D Worker B Worker D Worker B
aPEes OO0 e s apEs EHEDD
\\\ Worker C I g \}1\) Worker C ,,‘ " l\“\ - Worker C P 4’;
BB | D Ll

Worker A Worker A
gl " g N

Worker B Worker D

PN Worker C

neagtbored, rsactbred,

Synchronization

Synchronization

» When to synchronize the parameters among the parallel workers?

e Synchronous
* Asynchronous

Synchronization - Synchronous

» Before the next training, every worker must wait for all workers to finish the trans-
mission of all parameters in the current iteration.

[Feed-Forward
. . B ackwand Propagation
Multi-device o] GrdientModel A ggregation
BSP 8 e
L]
Single-device
[

t

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Synchronization - Asynchronous

» Eliminates the synchronization.

[JFeed Farward
[Backwand Propagation
[GrdientModel Aggregation

Multi-device [Update

[
ASP 8
L

Single-devi
ingle e\maeO

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Synchronization - Asynchronous

» Eliminates the synchronization.

» Each work transmits its gradients to the parameter server after it calculates the

gradients.
[JFeed Farward
[IBackwand Propagation
[GrdientModel Aggregation
Multi-device R updaee
>
ASP
Q2
@
Single-device

(5

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Synchronization - Asynchronous

» Eliminates the synchronization.

» Each work transmits its gradients to the parameter server after it calculates the
gradients.

» The parameter server updates the global model without waiting for the other workers.

[JFeed Farward
[Backwand Propagation
[GrdientModel Aggregation

Multi-device [Update

Q2
ASPg
Q
Si -devi
ingle e\maeO

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Model Parallelism

Model
dissection

Data

(3 samples)

o4 fr @ :
ounitrch G Geies) G G

Gradient

Part 1 PmtSle4|

Forward and
backward
Worker 2 propagation yy 4.3
) Q

Model
dissection | &

Worker 1 O |Worker 4

Data
o Gema) - Gamed)

(3 samples)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Model Parallelization

» The model is split across multiple devices.

» Depends on the architecture of the NN.

Model
dissection

A I . . :
ounitrch G Geies) G G

(3 samples)

Gradient

o [s | rs [e

Forward and

backward
propagation 4.3

Model
dissection |

Worker 1 O |Worker 4

Data
o Gema) - Gamed)

(3 samples)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Model Parallelization - Hash Partitioning

Randomly assign vertices to devices proportionally to the capacity of the devices by
using a hash function.

|

1

I
1 I
i \Y |
| 1
! i I
1 g

select randomly

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

Model Parallelization - Critical Path

» Assigning the complete critical path to the fastest device.

» Critical path: the path with the longest computation time from source to sink vertex.

A
oo A

find Critical Path
R
assign CP to
fastest device
1 v

[Mayer, R. et al.,

The TensorFlow Partitioning and Scheduling Problem, 2017]

Model Parallelization - Multi-Objective Heuristics

» Different objectives, e.g., memory, importance, traffic, and execution time

I
;I ! traversal
]

F

best score

s

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

Model Parallelization - Reinforcement Learning (1/5)

Input RL model Output

Neural model
g3 -

Set of available devices

Assignment of ops in
neural model to devices

Policy

CPU

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

Model Parallelization - Reinforcement Learning (2/5)

Input RL model Output

Neural model

Set of available devices

Assignment of ops in
neural model to devices

CPU

Evaluate
runtime

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

Model Parallelization - Reinforcement Learning (3/5)

> J(w) = Epr(pigq) R(P)|I]
» Objective: arg miny J(w)

Model Parallelization - Reinforcement Learning (3/5)

> J(w) = Epr(pigq) R(P)|I]
» Objective: arg miny J(w)

» G: input neural graph

Model Parallelization - Reinforcement Learning (3/5)

>

I(w) = Epr(pig) [R(P)[9]
Objective: arg miny J(w)

v

>

» R: runtime

G: input neural graph

Model Parallelization - Reinforcement Learning (3/5)

>

I(w) = Epr(pig) [R(P)[9]
Objective: arg miny J(w)

v

v

G: input neural graph

» R: runtime

» J(w): expected runtime

Model Parallelization - Reinforcement Learning (3/5)

>

I(w) = Epr(pig) [R(P)[9]
Objective: arg miny J(w)

v

v

G: input neural graph
» R: runtime

» J(w): expected runtime

v

w: trainable parameters of policy

Model Parallelization - Reinforcement Learning (3/5)

>

I(w) = Epr(pig) [R(P)[9]
Objective: arg miny J(w)

v

v

G: input neural graph
» R: runtime

» J(w): expected runtime

v

w: trainable parameters of policy

w(P|G,w): policy

v

Model Parallelization - Reinforcement Learning (3/5)

>

I(w) = Epr(pig) [R(P)[9]
Objective: arg miny J(w)

v

v

G: input neural graph
» R: runtime

» J(w): expected runtime

v

w: trainable parameters of policy
w(P|G,w): policy
P: output placements € {1,2, ..., num_ops

v

v

}num,devices

Model Parallelization - Reinforcement Learning (4/5)

» RL reward function based on execution runtime

\
\
Attention
Hidden
state

Embedding |‘W’

=

i A

ype

\
=8 [~]°

0p100 N

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

Model Parallelization - Reinforcement Learning (4/5)

» RL reward function based on execution runtime.

» The RL policy is defined as a seg-to-seq model.

Softmax

Attention

Hidden
state

Embedding |‘W’ Sapes [

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

Model Parallelization - Reinforcement Learning (4/5)

» RL reward function based on execution runtime

» The RL policy is defined as a seg-to-seq model.

» RNN Encoder receives graph embedding for each

operation.
Softmax

Attention

Device Device
for opl “ for 0p100
\
\ \
Hidden
state
\ \
Embedding | st o] o] s [l wle=] [~] |
\
f T i '
opl op2 0p100
[Mirhoseini et al.

’
Device Placement Optimization with Reinforcement Learning, 2017]

Model Parallelization - Reinforcement Learning (4/5)

» RL reward function based on execution runtime.
» The RL policy is defined as a seg-to-seq model.
» RNN Encoder receives graph embedding for each operation.

» RNN Decoder predicts a device placement for each operation.

Device
'
\
Attention
Hidden
state
\ \
Embedding | st o] o] s [l wle=] [~] |
\ v
B))
\ \
opl op2 0p100 ’ ’

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

» Grouping operations.

» Prediction is for group placement, not for a single operation.

Placer

Softmax

Attention

Hidden
state

Embedding

Grouper

Softmax

Embedding

0p10000

[Mirhoseini et al., A Hierarchical Model for Device Placement, 2018]

Summary

Summary

>

Scalability matters

v

Parallelization

v

Data Parallelization

» Parameter server vs. AllReduce
e Synchronized vs. asynchronized

v

Model Parallelization

e Random, critical path, multi-objective, RL

Thanks!

