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What is the problem?



Training Deep Neural Networks

» Computationally intensive

> Time consuming

i
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[https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.pngl




» Massive amount of training dataset

» Large number of parameters
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Accuracy vs. Data/Model Size

1980s and 1990s
A

Accuracy neural networks

— other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]
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Accuracy vs. Data/Model Size

Now

A more

Accuracy compute neural networks

1
other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]




Scale Matters

Scalabill




Fundamentals of Machine Learning



Training Dataset

Entities
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Health | Education and Reference.
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does anyone here play habbohotel and want 2 be
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» E.g., linear models, neural networks, etc.




Model

» E.g., linear models, neural networks, etc.

> §=fu(x)




Loss function
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Loss function
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Objective

» Minimize the loss function




Objective

» Minimize the loss function

» arg miny J(w)

> J(w) =371 1y, 91)
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Training

> J(w) =25 (v, 91)
» Gradient descent, i.e., w :=w — nVJ(w)

» Stochastic gradient descent, i.e., w := w — ngJ(w)
e g: gradient at a randomly chosen point.




Training

> J(w) =21, 1y, ¥1)

v

Gradient descent, i.e., w :=w —nVJ(w)

v

Stochastic gradient descent, i.e., w := w — ngJ(w)
e g: gradient at a randomly chosen point.

v

Mini-barch gradient descent, i.e., w := w — nggJ(w)
e g: gradient with respect to a set of B randomly chosen points.




Let's Scale the Learning



Scalable Training

» Data parallelism

» Model parallelism




Data Parallelism




Data Parallelization (1/4)

> Replicate a whole model on every device.
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Data Parallelization (1/4)

> Replicate a whole model on every device.

» Train all replicas simultaneously, using a different mini-batch for each.
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Data Parallelization (2/4)

» k devices
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Data Parallelization (2/4)

» k devices
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Data Parallelization (2/4)

» k devices
b . .
> ‘]J(w) - ZiJ:1 1(yi7yi)' VJ - 17 27 ok
> gpJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at

device j.
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Data Parallelization (2/4)

» k devices
b . .
> ‘]J(w) - ZiJ:1 1(yi7yi)' VJ - 17 27 ok
> gpJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at
device j.
>

Compute ggJ;(w) on each device j.

Gradient Average

Communication

ks r r r

T Worker 2

Worker 3 Worker 4

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Data Parallelization (3/4)

» Compute the mean of the gradients.

> gd(w) = £ 35 8sJ5(w)

Communication
[t | [Gmtien ] [t | [omiinn ]
ke kN

Worker 2
—

Worker 3 Worker 4

SYEEERY LYY 0% Update
0 D Lowaua

‘(Mm.mcnl) ((umz)((mimmz) Mini-batchd.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Data Parallelization (4/4)

» Update the model.
> wi=w—nggl(w)
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Data Parallelization Design Issues

» Gradient aggregation: how to update the parameters




Data Parallelization Design Issues

» Gradient aggregation: how to update the parameters

» Synchronization: when to synchronize the parameters




Gradient Aggregation



Gradient Aggregation

» Centralized - parameter server

» Decentralized - all-reduce




Worker |
Local ca
Model 1 Model 2 Model n-1 Model n

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Gradient Aggregation - Centralized

» Store the model parameters outside of the workers.

» Workers periodically report their computed parameters or parameter updates to a
(set of ) parameter server(s).

Global model

Worker 1 Worker 2 Workern-1 ~ Workern
Local Local Local Local
Model 1 Model 2 Model n-1 Model n

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Gradient Aggregation - Decentralized

» Mirror all the model parameters across all workers (No PS).

Worker 1 Worker n
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[Tang et al., Communication-Efficient Distributed Deep Learning:




Gradient Aggregation - Decentralized

» Mirror all the model parameters across all workers (No PS).

» Workers exchange parameter updates directly via an allreduce operation.
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[Tang et al., Communication-Efficient Distributed Deep Learning:

A Comprehensive Survey, 2020]




Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.
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Reduce and AllReduce (1/2)
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output elements to the root process.
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Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.
» E.g., sum([1, 2, 3, 4, 5]) = 15

» Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

Reduce

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]




Reduce and AllReduce (2/2)

» AllReduce stores reduced results across all processes rather than the root process.




Reduce and AllReduce (2/2)

» AllReduce stores reduced results across all processes rather than the root process.

Allreduce
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[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]




VETENSKAP

AllReduce Example

Initial state After AllReduce operation

Worker A Worker B Worker A Worker B
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[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal




AllReduce Implementation

>

» Master-worker allreduce

All-to-all allreduce

v

Tree allreduce

v

Round-robin allreduce

v

Butterfly allreduce

v

Ring allreduce




AllReduce Implementation - Ring-AllReduce
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AllReduce Implementation - Ring-AllReduce
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AllReduce Implementation - Ring-AllReduce
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AllReduce Implementation - Ring-AllReduce
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AllReduce Implementation - Ring-AllReduce
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Synchronization



Synchronization

» When to synchronize the parameters among the parallel workers?

e Synchronous
* Asynchronous




Synchronization - Synchronous

» Before the next training, every worker must wait for all workers to finish the trans-
mission of all parameters in the current iteration.
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Synchronization - Asynchronous

» Eliminates the synchronization.
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Synchronization - Asynchronous

» Eliminates the synchronization.

» Each work transmits its gradients to the parameter server after it calculates the

gradients.
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Synchronization - Asynchronous

» Eliminates the synchronization.

» Each work transmits its gradients to the parameter server after it calculates the
gradients.

» The parameter server updates the global model without waiting for the other workers.
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Model Parallelism
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Model Parallelization

» The model is split across multiple devices.

» Depends on the architecture of the NN.
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Model Parallelization - Hash Partitioning

Randomly assign vertices to devices proportionally to the capacity of the devices by
using a hash function.
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[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]




Model Parallelization - Critical Path

» Assigning the complete critical path to the fastest device.

» Critical path: the path with the longest computation time from source to sink vertex.

A
oo A

find Critical Path
R
assign CP to
fastest device
1 v

[Mayer, R. et al.,

The TensorFlow Partitioning and Scheduling Problem, 2017]




Model Parallelization - Multi-Objective Heuristics

» Different objectives, e.g., memory, importance, traffic, and execution time

I
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[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]




Model Parallelization - Reinforcement Learning (1/5)

Input RL model Output

Neural model
g3 -

Set of available devices

Assignment of ops in
neural model to devices

Policy

CPU

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




Model Parallelization - Reinforcement Learning (2/5)

Input RL model Output

Neural model

Set of available devices

Assignment of ops in
neural model to devices

CPU

Evaluate
runtime

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




Model Parallelization - Reinforcement Learning (3/5)

> J(w) = Epr(pigq) R(P)|I]
» Objective: arg miny J(w)
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Model Parallelization - Reinforcement Learning (3/5)

>

I(w) = Epr(pig) [R(P)[9]
Objective: arg miny J(w)
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» R: runtime

G: input neural graph




Model Parallelization - Reinforcement Learning (3/5)
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Model Parallelization - Reinforcement Learning (3/5)

>

I(w) = Epr(pig) [R(P)[9]
Objective: arg miny J(w)

v
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w(P|G,w): policy
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Model Parallelization - Reinforcement Learning (3/5)

>

I(w) = Epr(pig) [R(P)[9]
Objective: arg miny J(w)

v

v

G: input neural graph
» R: runtime

» J(w): expected runtime

v

w: trainable parameters of policy
w(P|G,w): policy
P: output placements € {1,2, ..., num_ops

v

v

}num,devices




Model Parallelization - Reinforcement Learning (4/5)

» RL reward function based on execution runtime
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[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




Model Parallelization - Reinforcement Learning (4/5)

» RL reward function based on execution runtime.

» The RL policy is defined as a seg-to-seq model.

Softmax

Attention

Hidden
state

Embedding |‘W’ Sapes [

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




Model Parallelization - Reinforcement Learning (4/5)

» RL reward function based on execution runtime

» The RL policy is defined as a seg-to-seq model.

» RNN Encoder receives graph embedding for each

operation.
Softmax
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Model Parallelization - Reinforcement Learning (4/5)

» RL reward function based on execution runtime.
» The RL policy is defined as a seg-to-seq model.
» RNN Encoder receives graph embedding for each operation.

» RNN Decoder predicts a device placement for each operation.

Device
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Attention
Hidden
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[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




» Grouping operations.

» Prediction is for group placement, not for a single operation.

Placer

Softmax

Attention

Hidden
state

Embedding

Grouper

Softmax

Embedding

0p10000

[Mirhoseini et al., A Hierarchical Model for Device Placement, 2018]




Summary




Summary

>

Scalability matters

v

Parallelization

v

Data Parallelization

» Parameter server vs. AllReduce
e Synchronized vs. asynchronized

v

Model Parallelization

e Random, critical path, multi-objective, RL




Thanks!




