
Distributed Deep Learning

Amir H. Payberah
payberah@kth.se

2020-08-20

What is the problem?

1 / 47

Training Deep Neural Networks

I Computationally intensive

I Time consuming

[https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.png]

2 / 47

Why?

I Massive amount of training dataset

I Large number of parameters

3 / 47

Accuracy vs. Data/Model Size

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

4 / 47

Accuracy vs. Data/Model Size

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

5 / 47

Accuracy vs. Data/Model Size

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

6 / 47

Scale Matters

7 / 47

Fundamentals of Machine Learning

8 / 47

Training Dataset

I E.g., tabular data, image, text, etc.

9 / 47

Model

I E.g., linear models, neural networks, etc.

I ŷ = fw(x)

10 / 47

Model

I E.g., linear models, neural networks, etc.

I ŷ = fw(x)

10 / 47

Loss function

I How good ŷ is able to predict the expected outcome y.

I J(w) =
∑m

i=1 l(yi, ŷi)

I E.g., J(w) = 1
m

∑m
i=1(yi − ŷi)2

11 / 47

Loss function

I How good ŷ is able to predict the expected outcome y.

I J(w) =
∑m

i=1 l(yi, ŷi)

I E.g., J(w) = 1
m

∑m
i=1(yi − ŷi)2

11 / 47

Loss function

I How good ŷ is able to predict the expected outcome y.

I J(w) =
∑m

i=1 l(yi, ŷi)

I E.g., J(w) = 1
m

∑m
i=1(yi − ŷi)2

11 / 47

Loss function

I How good ŷ is able to predict the expected outcome y.

I J(w) =
∑m

i=1 l(yi, ŷi)

I E.g., J(w) = 1
m

∑m
i=1(yi − ŷi)2

11 / 47

Objective

I Minimize the loss function

I arg minw J(w)

I J(w) =
∑m

i=1 l(yi, ŷi)

12 / 47

Objective

I Minimize the loss function

I arg minw J(w)

I J(w) =
∑m

i=1 l(yi, ŷi)

12 / 47

Training

I J(w) =
∑m

i=1 l(yi, ŷi)

I Gradient descent, i.e., w := w − η∇J(w)

I Stochastic gradient descent, i.e., w := w − η~gJ(w)
• ~g: gradient at a randomly chosen point.

I Mini-barch gradient descent, i.e., w := w − η~gBJ(w)
• ~g: gradient with respect to a set of B randomly chosen points.

13 / 47

Training

I J(w) =
∑m

i=1 l(yi, ŷi)

I Gradient descent, i.e., w := w − η∇J(w)

I Stochastic gradient descent, i.e., w := w − η~gJ(w)
• ~g: gradient at a randomly chosen point.

I Mini-barch gradient descent, i.e., w := w − η~gBJ(w)
• ~g: gradient with respect to a set of B randomly chosen points.

13 / 47

Training

I J(w) =
∑m

i=1 l(yi, ŷi)

I Gradient descent, i.e., w := w − η∇J(w)

I Stochastic gradient descent, i.e., w := w − η~gJ(w)
• ~g: gradient at a randomly chosen point.

I Mini-barch gradient descent, i.e., w := w − η~gBJ(w)
• ~g: gradient with respect to a set of B randomly chosen points.

13 / 47

Training

I J(w) =
∑m

i=1 l(yi, ŷi)

I Gradient descent, i.e., w := w − η∇J(w)

I Stochastic gradient descent, i.e., w := w − η~gJ(w)
• ~g: gradient at a randomly chosen point.

I Mini-barch gradient descent, i.e., w := w − η~gBJ(w)
• ~g: gradient with respect to a set of B randomly chosen points.

13 / 47

Let’s Scale the Learning

14 / 47

Scalable Training

I Data parallelism

I Model parallelism

15 / 47

Data Parallelism

16 / 47

Data Parallelization (1/4)

I Replicate a whole model on every device.

I Train all replicas simultaneously, using a different mini-batch for each.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

17 / 47

Data Parallelization (1/4)

I Replicate a whole model on every device.

I Train all replicas simultaneously, using a different mini-batch for each.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

17 / 47

Data Parallelization (2/4)

I k devices

I Jj(w) =
∑bj

i=1 l(yi, ŷi), ∀j = 1, 2, · · · , k
I ~gBJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at

device j.

I Compute ~gBJj(w) on each device j.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

18 / 47

Data Parallelization (2/4)

I k devices

I Jj(w) =
∑bj

i=1 l(yi, ŷi), ∀j = 1, 2, · · · , k

I ~gBJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at
device j.

I Compute ~gBJj(w) on each device j.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

18 / 47

Data Parallelization (2/4)

I k devices

I Jj(w) =
∑bj

i=1 l(yi, ŷi), ∀j = 1, 2, · · · , k
I ~gBJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at

device j.

I Compute ~gBJj(w) on each device j.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

18 / 47

Data Parallelization (2/4)

I k devices

I Jj(w) =
∑bj

i=1 l(yi, ŷi), ∀j = 1, 2, · · · , k
I ~gBJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at

device j.

I Compute ~gBJj(w) on each device j.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

18 / 47

Data Parallelization (3/4)

I Compute the mean of the gradients.

I ~gBJ(w) = 1
k

∑k
j=1 ~gBJj(w)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

19 / 47

Data Parallelization (4/4)

I Update the model.

I w := w − η~gBJ(w)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

20 / 47

Data Parallelization Design Issues

I Gradient aggregation: how to update the parameters

I Synchronization: when to synchronize the parameters

21 / 47

Data Parallelization Design Issues

I Gradient aggregation: how to update the parameters

I Synchronization: when to synchronize the parameters

21 / 47

Gradient Aggregation

22 / 47

Gradient Aggregation

I Centralized - parameter server

I Decentralized - all-reduce

23 / 47

Gradient Aggregation - Centralized

I Store the model parameters outside of the workers.

I Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

24 / 47

Gradient Aggregation - Centralized

I Store the model parameters outside of the workers.

I Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

24 / 47

Gradient Aggregation - Decentralized

I Mirror all the model parameters across all workers (No PS).

I Workers exchange parameter updates directly via an allreduce operation.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

25 / 47

Gradient Aggregation - Decentralized

I Mirror all the model parameters across all workers (No PS).

I Workers exchange parameter updates directly via an allreduce operation.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

25 / 47

Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

26 / 47

Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

26 / 47

Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

26 / 47

Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

26 / 47

Reduce and AllReduce (2/2)

I AllReduce stores reduced results across all processes rather than the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

27 / 47

Reduce and AllReduce (2/2)

I AllReduce stores reduced results across all processes rather than the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

27 / 47

AllReduce Example

Initial state After AllReduce operation

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

28 / 47

AllReduce Implementation

I All-to-all allreduce

I Master-worker allreduce

I Tree allreduce

I Round-robin allreduce

I Butterfly allreduce

I Ring allreduce

29 / 47

AllReduce Implementation - Ring-AllReduce

30 / 47

AllReduce Implementation - Ring-AllReduce

30 / 47

AllReduce Implementation - Ring-AllReduce

30 / 47

AllReduce Implementation - Ring-AllReduce

30 / 47

AllReduce Implementation - Ring-AllReduce

30 / 47

Synchronization

31 / 47

Synchronization

I When to synchronize the parameters among the parallel workers?
• Synchronous
• Asynchronous

32 / 47

Synchronization - Synchronous

I Before the next training, every worker must wait for all workers to finish the trans-
mission of all parameters in the current iteration.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

33 / 47

Synchronization - Asynchronous

I Eliminates the synchronization.

I Each work transmits its gradients to the parameter server after it calculates the
gradients.

I The parameter server updates the global model without waiting for the other workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

34 / 47

Synchronization - Asynchronous

I Eliminates the synchronization.

I Each work transmits its gradients to the parameter server after it calculates the
gradients.

I The parameter server updates the global model without waiting for the other workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

34 / 47

Synchronization - Asynchronous

I Eliminates the synchronization.

I Each work transmits its gradients to the parameter server after it calculates the
gradients.

I The parameter server updates the global model without waiting for the other workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

34 / 47

Model Parallelism

35 / 47

Model Parallelization

I The model is split across multiple devices.

I Depends on the architecture of the NN.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

36 / 47

Model Parallelization

I The model is split across multiple devices.

I Depends on the architecture of the NN.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

36 / 47

Model Parallelization - Hash Partitioning

I Randomly assign vertices to devices proportionally to the capacity of the devices by
using a hash function.

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

37 / 47

Model Parallelization - Critical Path

I Assigning the complete critical path to the fastest device.

I Critical path: the path with the longest computation time from source to sink vertex.

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

38 / 47

Model Parallelization - Multi-Objective Heuristics

I Different objectives, e.g., memory, importance, traffic, and execution time

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

39 / 47

Model Parallelization - Reinforcement Learning (1/5)

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

40 / 47

Model Parallelization - Reinforcement Learning (2/5)

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

41 / 47

Model Parallelization - Reinforcement Learning (3/5)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(w): expected runtime

I w: trainable parameters of policy

I π(P|G, w): policy

I P: output placements ∈ {1, 2, ..., num ops}num devices

42 / 47

Model Parallelization - Reinforcement Learning (3/5)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(w): expected runtime

I w: trainable parameters of policy

I π(P|G, w): policy

I P: output placements ∈ {1, 2, ..., num ops}num devices

42 / 47

Model Parallelization - Reinforcement Learning (3/5)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(w): expected runtime

I w: trainable parameters of policy

I π(P|G, w): policy

I P: output placements ∈ {1, 2, ..., num ops}num devices

42 / 47

Model Parallelization - Reinforcement Learning (3/5)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(w): expected runtime

I w: trainable parameters of policy

I π(P|G, w): policy

I P: output placements ∈ {1, 2, ..., num ops}num devices

42 / 47

Model Parallelization - Reinforcement Learning (3/5)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(w): expected runtime

I w: trainable parameters of policy

I π(P|G, w): policy

I P: output placements ∈ {1, 2, ..., num ops}num devices

42 / 47

Model Parallelization - Reinforcement Learning (3/5)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(w): expected runtime

I w: trainable parameters of policy

I π(P|G, w): policy

I P: output placements ∈ {1, 2, ..., num ops}num devices

42 / 47

Model Parallelization - Reinforcement Learning (3/5)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(w): expected runtime

I w: trainable parameters of policy

I π(P|G, w): policy

I P: output placements ∈ {1, 2, ..., num ops}num devices

42 / 47

Model Parallelization - Reinforcement Learning (4/5)

I RL reward function based on execution runtime.

I The RL policy is defined as a seq-to-seq model.

I RNN Encoder receives graph embedding for each operation.

I RNN Decoder predicts a device placement for each operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

43 / 47

Model Parallelization - Reinforcement Learning (4/5)

I RL reward function based on execution runtime.

I The RL policy is defined as a seq-to-seq model.

I RNN Encoder receives graph embedding for each operation.

I RNN Decoder predicts a device placement for each operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

43 / 47

Model Parallelization - Reinforcement Learning (4/5)

I RL reward function based on execution runtime.

I The RL policy is defined as a seq-to-seq model.

I RNN Encoder receives graph embedding for each operation.

I RNN Decoder predicts a device placement for each operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

43 / 47

Model Parallelization - Reinforcement Learning (4/5)

I RL reward function based on execution runtime.

I The RL policy is defined as a seq-to-seq model.

I RNN Encoder receives graph embedding for each operation.

I RNN Decoder predicts a device placement for each operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

43 / 47

Model Parallelization - Reinforcement Learning (5/5)

I Grouping operations.

I Prediction is for group placement, not for a single operation.

[Mirhoseini et al., A Hierarchical Model for Device Placement, 2018]

44 / 47

Summary

45 / 47

Summary

I Scalability matters

I Parallelization

I Data Parallelization
• Parameter server vs. AllReduce
• Synchronized vs. asynchronized

I Model Parallelization
• Random, critical path, multi-objective, RL

46 / 47

Thanks!

47 / 47

