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[https://medium.com/free-code-camp/an-introduction-to-reinforcement-learning-4339519de419]
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From Scripted to Smart Games

Games and Al have a long history.

Through the years, games became more intelligent
and less scripted.

1980 - Pacman

1991 - Civilization

1998 - Starcraft: Brood War
2005 - World of Warcraft
2016 - AlphaGo
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What Is The Challenge?

» Generalization: the ability of an agent that is trained on one environment to
perform well in a new environment with different characteristics.

GENERALIZATION




Problem Setting



Candy Crush Friends Saga (CCFS)
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CCFS Features

>

Match-3 game

Stochastic transitions

v

v

Various game elements, e.g., Candy and Blocker

v

Various game objectives, e.g., Spreading Jam




Supervised Learning for CCFS



Supervised Learning for CCFS (1/5)

» Supervised learning: given lots of labelled observations, predict the label of an unseen
observation.




Supervised Learning for CCFS (1/5)

» Supervised learning: given lots of labelled observations, predict the label of an unseen
observation.

Dog 6%

Cat 91%

Moose 2%

Whale 1%
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MY  Supervised Learning for CCFS (2/5)

New state 5%

Supervised learning 94%
Cloud Machine Learning

Most human-like move
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[Gudmundsson et al., Human-Like Playtesting with Deep Learning, IEEE CIG 2018.]




Supervised Learning for CCFS (3/5)

Action
State Made by human

Observed by human

Supervised learning
Cloud Machine Learning

[Gudmundsson et al., Human-Like Playtesting with Deep Learning, IEEE CIG 2018.]




Supervised Learning for CCFS (4/5)

100+ binary
feature layers
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[Gudmundsson et al., Human-Like Playtesting with Deep Learning, IEEE CIG 2018.]




Supervised Learning for CCFS (5/5)
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[Gudmundsson et al., Human-Like Playtesting with Deep Learning, IEEE CIG 2018.]




Supervised Learning for CCFS - Challenges

» Requires large volume of players data.

» Generalization over wide variety of game content.




Supervised Learning for CCFS - Challenges

» Requires large volume of players data.

» Generalization over wide variety of game content.

» Possible solution: using Reinforcement Learning (RL) as a general framework that
does not require player data.




Reinforcement Learning



Reinforcement Learning

» RL: an agent learns from the environment by interacting with it and receiving rewards
for performing actions.

environment

» )

agent
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rewards y
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actions

[https://www.kdnuggets.com/2019/10/mathworks-reinforcement-learning.html]
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» Environment: physical world in which the agent operates.
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RL - Basic Concepts

» Environment: physical world in which the agent operates.
» State: current situation of the agent/environment. @
Agent
» Policy: method to map agent's state to actions. e ﬁ
State Action
. St Ac
> Reward: feedback from the environment.
» Value: future reward that an agent would receive

by taking an action in a particular state.




RL - Markov Decision Processes (1/2)

» Markov Decision Processes (MDP): modeling sequential decision making, where ac-
tions influence not just immediate rewards, but also subsequent states.
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The Good, The Bad and The Ugly, 2008.]




RL - Markov Decision Processes (2/2)

» Goal: maximizing the expected cumulative reward.

Gt = Re41 + Repo +Reyz + -

[https://medium.com/free-code-camp/an-introduction-to-reinforcement-learning-4339519de419]




RL - Markov Decision Processes (2/2)

» Goal: maximizing the expected cumulative reward.

Gt =Rt + Reqpo +Reqpa + - hd

» But, the rewards that come sooner are more probable
to happen (they are more predictable).
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RL - Markov Decision Processes (2/2)

» Goal: maximizing the expected cumulative reward.

Gt =Rt + Reqpo +Reqpa + - hd

» But, the rewards that come sooner are more probable
to happen (they are more predictable).

» Discounted cumulative expected.

Gt =Rist +YReio +7°Rega+ - ,v € [0,1)

[https://medium.com/free-code-camp/an-introduction-to-reinforcement-learning-4339519de419]
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RL - Q-Value

» Gt =Rep1 + YRy + Y Reqs +
> Q-value: Qr(s,a) = E;[G¢|Sy = s,A: = &
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v
P E F Q™(A,down) = [R(7)|sq = 4,ay = down]
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Q(Adown)=14+14+1+1=4
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[P. Dayan et al., Reinforcement learning: The Good, The Bad and The Ugly, 2008.]




RL - Q-Value

» Gy = Ryy1 +YReto + V2 Reja + -

> Q-value: Qr(s,a) = E;[G¢|Sy = s,A: = &
» Optimal Q-value?
A B C
v
P E F Q™(A,down) = [R(7)|sq = 4,ay = down]
> = v
Q(A,down)=14+14+1+1=4
G H I
7

Down Right Right Down
+1 +1 +1 +1

[P. Dayan et al., Reinforcement learning: The Good, The Bad and The Ugly, 2008.]
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Model based Model free
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» Model-based: using an explicit representation
of the model of the environment

[P. Dayan et al., Reinforcement learning: The Good, The Bad and The Ugly, 2008.]
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Model based Model free

i "2 _don't take
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» Model-based: using an explicit representation
of the model of the environment

e Dynamic Programming
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RL - Model-Based vs. Model-Free

» Model: mimics the behavior of the environment

Model based Model free

i "2 _don't take
p = freeway

» Model-based: using an explicit representation
of the model of the environment

e Dynamic Programming

» Model-free: a representative of the model
of the environment is not available or not practical | —

¢ Monte Carlo and Temporal Difference (e.g., Q-learning) |

[P. Dayan et al., Reinforcement learning: The Good, The Bad and The Ugly, 2008.]




RL - Q-Learning

» A model-free approach to learn the value of an action, i.e., Q-(s,a).




RL - Q-Learning

1 2 3 4
State Action | Value
1 S F F F (1,0 Up 0.5
2 F H F H 4,2) Up 0.3
42) Down 0.5
3 F F F H (42 Left 0.1
[@2 Right 08|
4| H F F2 G : : :
(4,4) Right 0.5
Right

[S. Ravichandiran, Deep Reinforcement Learning with Python, Packt Publishing Ltd., 2018.]




RL - Deep Q-Network (DQN)

» When the number of states and actions becomes very large.




RL - Deep Q-Network (DQN)

» When the number of states and actions becomes very large.

e
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_gon : :
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R

Deep Q Learning

[https://medium.com/@novacek-48158/connect-x-with-dgqn-and-pbt-be11915dd860]
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RL for CCFS

Actions
Value-based
Policy gradient
Rewards
W Model-based
etc. ..
Environments RL Agents
CNN, LSTM, etc...
A AN
States Features

[Shao et al., A Survey of Deep Reinforcement Learning in Video Games, arXive 2019.]




State Space and Action Space

100+ binary
feature layers
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[Gudmundsson et al., Human-Like Playtesting with Deep Learning, IEEE CIG 2018.]




Network Architecture

» DQN algorithm.
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Conv1l Conv2 Conv3 Conv4 Convx Qs.)

FCL

State input, s

[A. Karnsund, DQN Tackling the Game of Candy Crush Friends Saga, KTH/King 2019.]




Network Architecture

» DQN algorithm.

» CNN with five convolutional layers and two fully-connected layers.
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State input, s

[A. Karnsund, DQN Tackling the Game of Candy Crush Friends Saga, KTH/King 2019.]




Network Architecture

» DQN algorithm.
» CNN with five convolutional layers and two fully-connected layers.

» One Q-value for each action.

{08 rgim = s

Conv1l Conv2 Conv3 Conv4 Convx Qs.)

FCL

State input, s

[A. Karnsund, DQN Tackling the Game of Candy Crush Friends Saga, KTH/King 2019.]




Network Architecture

» DQN algorithm.
» CNN with five convolutional layers and two fully-connected layers.

» One Q-value for each action.

O IR RS E S O e
Conv1l Conv2 Conv3 Conv4 Convx Qs.)
FCL

State input, s

» What about the policy and reward function?

[A. Karnsund, DQN Tackling the Game of Candy Crush Friends Saga, KTH/King 2019.]
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E.g., Progressive Jam (PJ): rewards an agent for making a move that spreads at
least one more tile with Jam.
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Extrinsic and Intrinsic Motivation (1/2)

>

Extrinsic motivation: do something because of some external reward.

v

E.g., Progressive Jam (PJ): rewards an agent for making a move that spreads at
least one more tile with Jam.

v

Limition: not generalized and only focused on external rewards.

1

#(tiles covered in jam)
#(tiles on the board)

g Aj>0
R St, At|) = ’ ]
T jr 0, Aj=0
r”w “r““ r*
[ ==\ state and action
at step t




Extrinsic and Intrinsic Motivation (2/2)

» Intrinsic motivation: do something because it is inherently enjoyable.
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Extrinsic and Intrinsic Motivation (2/2)

» Intrinsic motivation: do something because it is inherently enjoyable.

» E.g., Learning basic skills (helps human players to achieve the level objective faster).

» An agent rewards itself for completing sub-goals that can be different from the goal
of the environment.




Question?

» Using intrinsic rewards, can an agent learn a set of basic skills to achieve extrinsic
rewards?




Question?

» Using intrinsic rewards, can an agent learn a set of basic skills to achieve extrinsic
rewards?

» Can an agent employ this set of skills to win new levels? (generalization)
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» Train an RL agent to use these skills more frequently.




Basic Skills and Generalization

>

Find a good reward function to learn basic skills.

v

Creating a Special candy is a basic skill.

e Six skills, one for each Special Candy: X = {x4,%9, -, %6}

v

Train an RL agent to use these skills more frequently.

v

Problem: some special candies are easier to create than others, thus they will be
created more often.
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Rarity of Events (RoE)

> Use the frequency of occurrence of each skill
as a weight.

. #(candies of type x created at time t)
 Skills that are used less are rewarded more.

R = 3|7

state and action
atstept hyperparameter

mean frequency of
creation of candy x

[Niels et al., Automated curriculum learning by rewarding temporally rare events, IEEE CIG, 2018.]




Rarity of Events (RoE)

> Use the frequency of occurrence of each skill
as a weight.

. #(candies of type x created at time t)
 Skills that are used less are rewarded more.

> Issue 1: Rewards might be much higher (@
x )
than 1 (If 1{) < 1), thus gradient updates rad = 3 o™~
become unstable.

state and action

atstept hyperparameter

mean frequency of
creation of candy x

[Niels et al., Automated curriculum learning by rewarding temporally rare events, IEEE CIG, 2018.]




Rarity of Events (RoE)

> Use the frequency of occurrence of each skill
as a weight.

. #(candies of type x created at time t)
 Skills that are used less are rewarded more.

> Issue 1: Rewards might be much higher

(=)
than 1 (If /L1(:X) < 1), thus gradient updates ? :ceXé

become unstable.

e

state and action
atstept hyperparameter

» Issue 2: Requires an hyperparameter to
prevent cold start prob|em. mean frequency of

creation of candy x

[Niels et al., Automated curriculum learning by rewarding temporally rare events, IEEE CIG, 2018.]




Balanced Rarity of Events (BRoE)

» Same concept as RoE
e Use the frequency as a weight.
e The more a skill is used, the less it
is rewarded.




Balanced Rarity of Events (BRoE)

» Same concept as RoE

. fr f

+ Use the frequency as a weight. areation of candy x

e The more a skill is used, the less it #(candies of type x created at time t)

is rewarded.
= M(m)
RSt,atZZX 1- ¢ =
» Take into account the proportion of occurrence veX Zx'ex
of a skill with respect to all the other skills. state and action
atstept

mean frequency of
creation of candy x

[F. Lorenzo et al.

, Use All Your Skills, Not Only The Most Popular Ones, IEEE CoG, 2020.]




Basic Skill Results
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Basic Skill Results
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Average Win Rate (scaled)
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Average win rate.
[F. Lorenzo et al., Use All Your Skills, Not Only The ular Ones, IEEE CoG, 2020.]
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Special Candies Skills

» Creating Special Candies (BRoE): reward given when a Special Candy is created.

» Using Special Candies (CU): reward given when a Special Candy is used.

Reward Win Rate | Creation (%)

Train  Test | Train  Test
Random 4.03 1.77 1.93 2.10

PJ 756 3.20 | 1.71  1.90
CuU 6.54 3.44 | 1.70 1.90
BRoE 7.54 403 | 9.06 6.71

[F. Lorenzo et al., Generalized Reinforcement Learning for Gameplay, AAAI RLG, 2021.]




Blockers Skills

» Damaging Blockers (DB): rewards for each layer removed from a Blocker.




Blockers Skills

» Damaging Blockers (DB): rewards for each layer removed from a Blocker.

» Progressive Tiles (PT): rewards for removing a Blocker completely from a tile.




Blockers Skills

» Damaging Blockers (DB): rewards for each layer removed from a Blocker.

» Progressive Tiles (PT): rewards for removing a Blocker completely from a tile.

L3
Reward Win rate | Clearing (%)

Train  Test | Train  Test

Random 0.21 0.05 | 54.81 63.63

PJ 1.14  0.35 | 65.08 71.18
PT 276 050 | 7892 73.29
DB 1.95 0.34 | 75.82 71.35

[F. Lorenzo et al., Generalized Reinforcement Learning for Gameplay, AAAI RLG, 2021.]




Let's Use All The Skills (1/3)

» Hybrid model: Average Baging (AB)

> The basic skills are pre-trained.




Let's Use All The Skills (1/3)

» Hybrid model: Average Baging (AB)

> The basic skills are pre-trained.

Q-Values
o
o
[Normalized Q-Values|

argmax

Q-Values

~

o
[Normalized Q-Values|

[F. Lorenzo et al., Generalized Reinforcement Learning for Gameplay, AAAI RLG, 2021.]




Let's Use All The Skills (2/3)

Level Combination ‘Win Rate
| L2 None
82 PJ+PT+BRoE 7.02 7.40

PJ+PT+DB+BRoE | 7.33 8.08

62 PJ+BRoE 16.44 16.25
PJ+BRoE+CU 17.37 15.83
136 PJ+PT+BRoE 3.84 4.12

PJ+PT+DB+BRoE | 3.51 4.41
147 PJ+PT+BRoE 2.39 2.65

PJ+PT+DB+BRoE | 2.45 3.01
163 PJ+PT+BRoOE 0.1 0.12

PJ+PT+DB+BRoE | 0.09 0.14




Let's Use All The Skills (2/3)

Level Combination |  Win Rate
| L2 None
82 PJ+PT+BRoE 7.02 7.40

PJ+PT+DB+BRoE | 7.33 8.08

Level | Humans AB PJ Random

62 PJ+BRoE 16.44 16.25
82 9.60 808 1.33 0.13
PI+BROE+CU 1737 15.83 62 21.92 17.37 1021 5.22
136 PJ+PT+BRoE 3.84 4.12 136 3.10 4.41 0.81 0.08
147 | 6.90 301 055  0.08
PJ+PT+DB+BRoE 3.51 4.41 163 1.03 0.14 0.01 0

147 PJ+PT+BRoE 2.39 2.65

PJ+PT+DB+BRoE | 2.45 3.01
163 PJ+PT+BRoOE 0.1 0.12

PJ+PT+DB+BRoE | 0.09 0.14

[F. Lorenzo et al., Generalized Reinforcement Learning for Gameplay, AAAI RLG, 2021.]
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» Hybrid model controller.
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Let's Use All The Skills (3/3)

» Hybrid model controller.

» Under development.

RL Meta Controller
(PPO that outputs a i
Wi, w2}
sampled
r
n




Summary and Future Work
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Candy Crush Friends Saga (CCFS)
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Supervised learning for CCFS

v

RL for CCFS

v

Extrinsic vs. intrinsic rewards

v

Hybrid model



Future Work

» Beyond CCFS

» Scalability
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