

Generalized Reinforcement Learning for Gameplay

Amir H. Payberah payberah@kth.se 2021-09-27

Scalable Learning Systems (SCALES)

- ► Francisco Pena, Postdoc
- Sara Karimi, Industrial PhD student (King)
- Sina Sheikholeslami, PhD student
- Kamal Hakimzadeh, PhD student
- Shirin Tahmasebi, PhD student
- Amirhossein Layegh, PhD student
- ► Tianze Wang, PhD student

SCALES Research Topics

- Distributed Deep Learning
- Reinforcement Learning
- Natural Language Processing
- Big Data Processing Systems

SCALES Research Topics

- Distributed Deep Learning
- Reinforcement Learning
- ► Natural Language Processing
- ► Big Data Processing Systems

Let's Start

AI and Games

From Scripted to Smart Games

- Games and AI have a long history.
- Through the years, games became more intelligent and less scripted.

From Scripted to Smart Games

- Games and AI have a long history.
- Through the years, games became more intelligent and less scripted.
- ▶ 1980 Pacman
- 1991 Civilization
- ▶ 1998 Starcraft: Brood War
- ▶ 2005 World of Warcraft
- ► 2016 AlphaGo

What Is The Challenge?

Generalization: the ability of an agent that is trained on one environment to perform well in a new environment with different characteristics.

Problem Setting

Candy Crush Friends Saga (CCFS)

► Match-3 game

- ► Match-3 game
- Stochastic transitions

- ► Match-3 game
- Stochastic transitions
- ► Various game elements, e.g., Candy and Blocker

- ► Match-3 game
- Stochastic transitions
- ► Various game elements, e.g., Candy and Blocker
- ► Various game objectives, e.g., Spreading Jam

Supervised Learning for CCFS

Supervised Learning for CCFS (1/5)

Supervised learning: given lots of labelled observations, predict the label of an unseen observation.

Supervised Learning for CCFS (1/5)

Supervised learning: given lots of labelled observations, predict the label of an unseen observation.

Supervised Learning for CCFS (2/5)

[Gudmundsson et al., Human-Like Playtesting with Deep Learning, IEEE CIG 2018.]

Supervised Learning for CCFS (3/5)

[Gudmundsson et al., Human-Like Playtesting with Deep Learning, IEEE CIG 2018.]

Supervised Learning for CCFS (4/5)

135 136

66 67

137 138 139 140 141 142 143

68 69 70

71

[Gudmundsson et al., Human-Like Playtesting with Deep Learning, IEEE CIG 2018.]

Supervised Learning for CCFS (5/5)

[Gudmundsson et al., Human-Like Playtesting with Deep Learning, IEEE CIG 2018.]

Supervised Learning for CCFS - Challenges

- Requires large volume of players data.
- Generalization over wide variety of game content.

Supervised Learning for CCFS - Challenges

- Requires large volume of players data.
- Generalization over wide variety of game content.

Possible solution: using Reinforcement Learning (RL) as a general framework that does not require player data.

Reinforcement Learning

Reinforcement Learning

RL: an agent learns from the environment by interacting with it and receiving rewards for performing actions.

[https://www.kdnuggets.com/2019/10/mathworks-reinforcement-learning.html]

• Environment: physical world in which the agent operates.

- Environment: physical world in which the agent operates.
- State: current situation of the agent/environment.

RL - Basic Concepts

- Environment: physical world in which the agent operates.
- ► State: current situation of the agent/environment.
- Policy: method to map agent's state to actions.

RL - Basic Concepts

- Environment: physical world in which the agent operates.
- ► State: current situation of the agent/environment.
- Policy: method to map agent's state to actions.
- Reward: feedback from the environment.

RL - Basic Concepts

- Environment: physical world in which the agent operates.
- ► State: current situation of the agent/environment.
- Policy: method to map agent's state to actions.
- Reward: feedback from the environment.
- Value: future reward that an agent would receive by taking an action in a particular state.

Markov Decision Processes (MDP): modeling sequential decision making, where actions influence not just immediate rewards, but also subsequent states.

[P. Dayan et al., Reinforcement learning: The Good, The Bad and The Ugly, 2008.]

RL - Markov Decision Processes (2/2)

• Goal: maximizing the expected cumulative reward.

 $\mathtt{G}_{\mathtt{t}} = \mathtt{R}_{\mathtt{t}+1} + \mathtt{R}_{\mathtt{t}+2} + \mathtt{R}_{\mathtt{t}+3} + \cdots$

RL - Markov Decision Processes (2/2)

► Goal: maximizing the expected cumulative reward.

 $\mathtt{G}_{\mathtt{t}} = \mathtt{R}_{\mathtt{t}+1} + \mathtt{R}_{\mathtt{t}+2} + \mathtt{R}_{\mathtt{t}+3} + \cdots$

But, the rewards that come sooner are more probable to happen (they are more predictable).

RL - Markov Decision Processes (2/2)

► Goal: maximizing the expected cumulative reward.

 $\mathtt{G}_{\mathtt{t}} = \mathtt{R}_{\mathtt{t}+1} + \mathtt{R}_{\mathtt{t}+2} + \mathtt{R}_{\mathtt{t}+3} + \cdots$

- But, the rewards that come sooner are more probable to happen (they are more predictable).
- Discounted cumulative expected.

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots, \gamma \in [0, 1)$$

RL - Q-Value

 $\blacktriangleright \ \mathbf{G}_{t} = \mathbf{R}_{t+1} + \gamma \mathbf{R}_{t+2} + \gamma^{2} \mathbf{R}_{t+3} + \cdots$

RL - Q-Value

- $\blacktriangleright \ \mathbf{G}_{\texttt{t}} = \mathbf{R}_{\texttt{t}+1} + \gamma \mathbf{R}_{\texttt{t}+2} + \gamma^2 \mathbf{R}_{\texttt{t}+3} + \cdots$
- Q-value: $Q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$

RL - Q-Value

$$\blacktriangleright \ \mathsf{G}_{t} = \mathsf{R}_{t+1} + \gamma \mathsf{R}_{t+2} + \gamma^2 \mathsf{R}_{t+3} + \cdots$$

 $\blacktriangleright \text{ Q-value: } Q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$

RL - Q-Value

- $\blacktriangleright \ \mathbf{G}_{t} = \mathbf{R}_{t+1} + \gamma \mathbf{R}_{t+2} + \gamma^{2} \mathbf{R}_{t+3} + \cdots$
- $\blacktriangleright \text{ Q-value: } Q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$
- Optimal Q-value?

Model: mimics the behavior of the environment

Model: mimics the behavior of the environment

Model-based: using an explicit representation of the model of the environment

Model: mimics the behavior of the environment

Model-based: using an explicit representation of the model of the environment

Model-free: a representative of the model of the environment is not available or not practical

Model: mimics the behavior of the environment

- Model-based: using an explicit representation of the model of the environment
 - Dynamic Programming
- Model-free: a representative of the model of the environment is not available or not practical

Model: mimics the behavior of the environment

- Model-based: using an explicit representation of the model of the environment
 - Dynamic Programming
- Model-free: a representative of the model of the environment is not available or not practical
 - Monte Carlo and Temporal Difference (e.g., Q-learning)

• A model-free approach to learn the value of an action, i.e., $Q_{\pi}(s, a)$.

• A model-free approach to learn the value of an action, i.e., $Q_{\pi}(s, a)$.

[S. Ravichandiran, Deep Reinforcement Learning with Python, Packt Publishing Ltd., 2018.]

Value

0.5

0.3

0.5

0.1

0.8

0.5

RL - Deep Q-Network (DQN)

▶ When the number of states and actions becomes very large.

RL - Deep Q-Network (DQN)

▶ When the number of states and actions becomes very large.

[https://medium.com/@novacek_48158/connect-x-with-dqn-and-pbt-be11915dd860]

RL for CCFS

RL for CCFS

[Shao et al., A Survey of Deep Reinforcement Learning in Video Games, arXive 2019.]

State Space and Action Space

135 136

64 66 67 68 69 71

65

137 138 139 140 141 142 143

- 70

[Gudmundsson et al., Human-Like Playtesting with Deep Learning, IEEE CIG 2018.]

► DQN algorithm.

- ► DQN algorithm.
- ► CNN with five convolutional layers and two fully-connected layers.

- ► DQN algorithm.
- ► CNN with five convolutional layers and two fully-connected layers.
- One Q-value for each action.

- DQN algorithm.
- ► CNN with five convolutional layers and two fully-connected layers.
- One Q-value for each action.

What about the policy and reward function?

• Extrinsic motivation: do something because of some external reward.

- **Extrinsic** motivation: do something because of some external reward.
- ► E.g., Progressive Jam (PJ): rewards an agent for making a move that spreads at least one more tile with Jam.

- Extrinsic motivation: do something because of some external reward.
- ► E.g., Progressive Jam (PJ): rewards an agent for making a move that spreads at least one more tile with Jam.

- Extrinsic motivation: do something because of some external reward.
- ► E.g., Progressive Jam (PJ): rewards an agent for making a move that spreads at least one more tile with Jam.
- Limition: not generalized and only focused on external rewards.

▶ Intrinsic motivation: do something because it is inherently enjoyable.

- ▶ Intrinsic motivation: do something because it is inherently enjoyable.
- E.g., Learning basic skills (helps human players to achieve the level objective faster).

- Intrinsic motivation: do something because it is inherently enjoyable.
- ► E.g., Learning basic skills (helps human players to achieve the level objective faster).
- An agent rewards itself for completing sub-goals that can be different from the goal of the environment.

Using intrinsic rewards, can an agent learn a set of basic skills to achieve extrinsic rewards?

- Using intrinsic rewards, can an agent learn a set of basic skills to achieve extrinsic rewards?
- Can an agent employ this set of skills to win new levels? (generalization)

Find a good reward function to learn basic skills.

- Find a good reward function to learn basic skills.
- Creating a Special candy is a basic skill.

- Find a good reward function to learn basic skills.
- Creating a Special candy is a basic skill.

- Six skills, one for each Special Candy: $\mathtt{X} = \{\mathtt{x}_1, \mathtt{x}_2, \cdots, \mathtt{x}_6\}$

- Find a good reward function to learn basic skills.
- Creating a Special candy is a basic skill.

- Six skills, one for each Special Candy: $\mathtt{X} = \{\mathtt{x}_1, \mathtt{x}_2, \cdots, \mathtt{x}_6\}$
- ► Train an RL agent to use these skills more frequently.

- Find a good reward function to learn basic skills.
- Creating a Special candy is a basic skill.

- Six skills, one for each Special Candy: $\mathtt{X} = \{\mathtt{x}_1, \mathtt{x}_2, \cdots, \mathtt{x}_6\}$
- ► Train an RL agent to use these skills more frequently.
- Problem: some special candies are easier to create than others, thus they will be created more often.

Rarity of Events (RoE)

Use the frequency of occurrence of each skill as a weight.

Rarity of Events (RoE)

- Use the frequency of occurrence of each skill as a weight.
 - Skills that are used less are rewarded more.

Rarity of Events (RoE)

- Use the frequency of occurrence of each skill as a weight.
 - Skills that are used less are rewarded more.

creation of candy x

Rarity of Events (RoE)

- Use the frequency of occurrence of each skill as a weight.
 - Skills that are used less are rewarded more.
- Issue 1: Rewards might be much higher than 1 (If µ_t^(x) < 1), thus gradient updates become unstable.

mean frequency of creation of candy x

[Niels et al., Automated curriculum learning by rewarding temporally rare events, IEEE CIG, 2018.]

Rarity of Events (RoE)

- Use the frequency of occurrence of each skill as a weight.
 - Skills that are used less are rewarded more.
- Issue 1: Rewards might be much higher than 1 (If µ_t^(x) < 1), thus gradient updates become unstable.
- Issue 2: Requires an hyperparameter to prevent cold start problem.

creation of candy x

[Niels et al., Automated curriculum learning by rewarding temporally rare events, IEEE CIG, 2018.]

Balanced Rarity of Events (BRoE)

- ► Same concept as RoE
 - Use the frequency as a weight.
 - The more a skill is used, the less it is rewarded.

Balanced Rarity of Events (BRoE)

- Same concept as RoE
 - Use the frequency as a weight.
 - The more a skill is used, the less it is rewarded.
- Take into account the proportion of occurrence of a skill with respect to all the other skills.

[F. Lorenzo et al., Use All Your Skills, Not Only The Most Popular Ones, IEEE CoG, 2020.]

Basic Skill Results

Basic Skill Results

More Basic Skills

Special Candies Skills

Blockers skills

Creating Special Candies (BRoE): reward given when a Special Candy is created.

Special Candies Skills

- ► Creating Special Candies (BRoE): reward given when a Special Candy is created.
- ► Using Special Candies (CU): reward given when a Special Candy is used.

Special Candies Skills

- ► Creating Special Candies (BRoE): reward given when a Special Candy is created.
- ▶ Using Special Candies (CU): reward given when a Special Candy is used.

Reward	Win Rate		Creation (%)	
	Train	Test	Train	Test
Random	4.03	1.77	1.93	2.10
PJ	7.56	3.20	1.71	1.90
CU	6.54	3.44	1.70	1.90
BRoE	7.54	4.03	9.06	6.71

[F. Lorenzo et al., Generalized Reinforcement Learning for Gameplay, AAAI RLG, 2021.]

► Damaging Blockers (DB): rewards for each layer removed from a Blocker.

- ► Damaging Blockers (DB): rewards for each layer removed from a Blocker.
- ▶ Progressive Tiles (PT): rewards for removing a Blocker completely from a tile.

- ► Damaging Blockers (DB): rewards for each layer removed from a Blocker.
- ▶ Progressive Tiles (PT): rewards for removing a Blocker completely from a tile.

			2		
Reward	Win rate		Clearing (%)		
	Train	Test	Train	Test	
Random	0.21	0.05	54.81	63.63	
PJ	1.14	0.35	65.08	71.18	
РТ	2.76	0.50	78.92	73.29	
DB	1.95	0.34	75.82	71.35	

[F. Lorenzo et al., Generalized Reinforcement Learning for Gameplay, AAAI RLG, 2021.]

Let's Use All The Skills (1/3)

- Hybrid model: Average Baging (AB)
- ► The basic skills are pre-trained.

Let's Use All The Skills (1/3)

- ► Hybrid model: Average Baging (AB)
- ► The basic skills are pre-trained.

[F. Lorenzo et al., Generalized Reinforcement Learning for Gameplay, AAAI RLG, 2021.]

Let's Use All The Skills (2/3)

Level	Combination	Win Rate	
		L2	None
82	PJ+PT+BRoE	7.02	7.40
	PJ+PT+DB+BRoE	7.33	8.08
62	PJ+BRoE	16.44 16.25	
	PJ+BRoE+CU	17.37	15.83
136	PJ+PT+BRoE	3.84	4.12
	PJ+PT+DB+BRoE	3.51	4.41
147	PJ+PT+BRoE	2.39	2.65
	PJ+PT+DB+BRoE	2.45	3.01
163	PJ+PT+BRoE	0.1	0.12
	PJ+PT+DB+BRoE	0.09	0.14

Let's Use All The Skills (2/3)

Level	Combination	Win	Rate
		L2	None
82	PJ+PT+BRoE	7.02	7.40
	PJ+PT+DB+BRoE	7.33	8.08
62	PJ+BRoE	16.44	16.25
	PJ+BRoE+CU	17.37	15.83
136	PJ+PT+BRoE	3.84	4.12
	PJ+PT+DB+BRoE	3.51	4.41
147	PJ+PT+BRoE	2.39	2.65
	PJ+PT+DB+BRoE	2.45	3.01
163	PJ+PT+BRoE	0.1	0.12
	PJ+PT+DB+BRoE	0.09	0.14

Level	Humans	AB	PJ	Random
82	9.60	8.08	1.33	0.13
62	21.92	17.37	10.21	5.22
136	3.10	4.41	0.81	0.08
147	6.90	3.01	0.55	0.08
163	1.03	0.14	0.01	0

[F. Lorenzo et al., Generalized Reinforcement Learning for Gameplay, AAAI RLG, 2021.]

Let's Use All The Skills (3/3)

► Hybrid model controller.

Let's Use All The Skills (3/3)

- ► Hybrid model controller.
- ► Under development.

Summary and Future Work

- ► AI and Games
- Candy Crush Friends Saga (CCFS)
- Supervised learning for CCFS
- ► RL for CCFS
- Extrinsic vs. intrinsic rewards
- Hybrid model

Future Work

- Beyond CCFS
- Scalability

Questions?

Acknowledgements

Some content and images are derived from Sahar Asadi, Sara Karimi, and Francesco Lorenzo's slides from King