Spark Machine Learning

Amir H. Payberah amir@sics.se

SICS Swedish ICT June 30, 2016

Data

That is roughly the problem that Machine Learning addresses!

▶ Is this email spam or no spam?

▶ Is this email spam or no spam?

Is this email spam or no spam?

Is there a face in this picture?

Is this email spam or no spam?

Is there a face in this picture?

Is this email spam or no spam?

Is there a face in this picture?

Should I lend money to this customer given his spending be

Is this email spam or no spam?

Data _

Is there a face in this picture?

Should I lend money to this customer given his spending behaviour?

_____ Knowledge

Knowledge is not concrete

- Spam is an abstraction
- ► Face is an abstraction
- Who to lend to is an abstraction

You do not find spam, faces, and financial advice in datasets, you just find bits!

Knowledge Discovery from Data (KDD)

- Preprocessing
- Data mining
- Result validation

KDD - Preprocessing

- Data cleaning
- Data integration
- ► Data reduction, e.g., sampling
- Data transformation, e.g., normalization

KDD - Mining Functionalities

- Classification and regression (supervised learning)
- Clustering (unsupervised learning)
- Mining the frequent patterns
- Outlier detection

KDD - Result Validation

- ▶ Needs to evaluate the performance of the model on some criteria.
- Depends on the application and its requirements.

MLlib - Data Types

Data Types - Local Vector

- Stored on a single machine
- Dense and sparse
 - Dense (1.0, 0.0, 3.0): [1.0, 0.0, 3.0]
 - Sparse (1.0, 0.0, 3.0): (3, [0, 2], [1.0, 3.0])

```
val dv: Vector = Vectors.dense(1.0, 0.0, 3.0)
val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))
val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0)))
```

Data Types - Labeled Point

- ► A local vector (dense or sparse) associated with a label.
- label: label for this data point.
- features: list of features for this data point.

```
case class LabeledPoint(label: Double, features: Vector)
val pos = LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0))
val neg = LabeledPoint(0.0, Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0)))
```

MLlib - Preprocessing

Data Transformation - Normalizing Features

► To get data in a standard Gaussian distribution: <u>x-mean</u> <u>sqrt(variance)</u>

MLlib - Data Mining

Data Mining Functionalities

- Classification and regression (supervised learning)
- Clustering (unsupervised learning)
- Mining the frequent patterns
- Outlier detection

Classification and Regression (Supervised Learning)

Supervised Learning (1/3)

- Right answers are given.
 - Training data (input data) is labeled, e.g., spam/not-spam or a stock price at a time.
- ► A model is prepared through a training process.
- The training process continues until the model achieves a desired level of accuracy on the training data.

Supervised Learning (2/3)

► Face recognition

Training data

Testing data

[ORL dataset, AT&T Laboratories, Cambridge UK]

- Set of N training examples: $(x_1, y_1), \dots, (x_n, y_n)$.
- $x_i = \langle x_{i1}, x_{i2}, \cdots, x_{im} \rangle$ is the feature vector of the *i*th example.
- y_i is the *i*th feature vector label.
- A learning algorithm seeks a function $y_i = f(X_i)$.

Classification vs. Regression

- Classification: the output variable takes class labels.
- ► Regression: the output variable takes continuous values.

Types of Classification/Regression Models in Spark

- Linear models
- Decision trees
- Naive Bayes models

Linear Models

Linear Models

- Training dataset: $(x_1, y_1), \cdots, (x_n, y_n)$.
- $\blacktriangleright \mathbf{x}_{\mathtt{i}} = \langle \mathtt{x}_{\mathtt{i}\mathtt{1}}, \mathtt{x}_{\mathtt{i}\mathtt{2}}, \cdots, \mathtt{x}_{\mathtt{i}\mathtt{m}} \rangle$
- ► Model the target as a function of a linear predictor applied to the input variables: y_i = g(w^Tx_i).
 - E.g., $y_i = w_1 x_{i1} + w_2 x_{i2} + \dots + w_m x_{im}$

Linear Models

- Training dataset: $(x_1, y_1), \cdots, (x_n, y_n)$.
- $\blacktriangleright \mathbf{x}_{\mathtt{i}} = \langle \mathtt{x}_{\mathtt{i}\mathtt{1}}, \mathtt{x}_{\mathtt{i}\mathtt{2}}, \cdots, \mathtt{x}_{\mathtt{i}\mathtt{m}} \rangle$
- Model the target as a function of a linear predictor applied to the input variables: y_i = g(w^Tx_i).
 - E.g., $y_i = w_1 x_{i1} + w_2 x_{i2} + \dots + w_m x_{im}$
- Loss function: $f(\mathbf{w}) := \sum_{i=1}^{n} L(g(\mathbf{w}^T \mathbf{x}_i), y_i)$
- An optimization problem $\min_{\mathbf{w} \in \mathbb{R}^{n}} f(\mathbf{w})$

Linear Models - Regression (1/2)

- $\blacktriangleright g(\mathbf{w}^{T}\mathbf{x}_{i}) = w_{1}x_{i1} + w_{2}x_{i2} + \cdots + w_{m}x_{im}$
- ► Loss function: minimizing squared different between predicted value and actual value: L(g(w^Tx_i), y_i) := ¹/₂(w^Tx_i - y_i)²

Linear Models - Regression (1/2)

- $\blacktriangleright g(\mathbf{w}^{T}\mathbf{x}_{i}) = w_{1}x_{i1} + w_{2}x_{i2} + \cdots + w_{m}x_{im}$
- ► Loss function: minimizing squared different between predicted value and actual value: L(g(w^Tx_i), y_i) := ¹/₂(w^Tx_i - y_i)²
- Gradient descent

Linear Models - Regression (2/2)

```
val data: RDD[LabeledPoint] = ...
val splits = labelData.randomSplit(Array(0.7, 0.3))
val (trainigData, testData) = (splits(0), splits(1))
val numIterations = 100
val stepSize = 0.00000001
val model = LinearRegressionWithSGD
.train(trainigData, numIterations, stepSize)
val valuesAndPreds = testData.map { point =>
val prediction = model.predict(point.features)
 (point.label, prediction)
}
```

Linear Models - Classification (Logistic Regression) (1/2)

▶ Binary classification: output values between 0 and 1

•
$$g(\mathbf{w}^T \mathbf{x}) := \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$
 (sigmoid function)

• If
$$g(\mathbf{w}^T \mathbf{x}_i) > 0.5$$
, then $y_i = 1$, else $y_i = 0$

Linear Models - Classification (Logistic Regression) (2/2)

```
val data: RDD[LabeledPoint] = ...
val splits = labelData.randomSplit(Array(0.7, 0.3))
val (trainigData, testData) = (splits(0), splits(1))
val model = new LogisticRegressionWithLBFGS()
   .setNumClasses(10)
   .run(trainingData)
val predictionAndLabels = testData.map { point =>
   val prediction = model.predict(point.features)
   (prediction, point.label)
}
```
Decision Tree

Decision Tree

- A greedy algorithm.
- ► It performs a recursive binary partitioning of the feature space.
- Decision tree construction algorithm:
 - Find the best split condition (quantified based on the impurity measure).
 - Stops when no improvement possible.

Impurity Measure

- Measures how well are the two classes separated.
- ▶ The current implementation in Spark:
 - Regression: variance
 - Classification: gini and entropy

- ► The node depth is equal to the maxDepth training parameter.
- No split candidate leads to an information gain greater than minInfoGain.
- No split candidate produces child nodes which each have at least minInstancesPerNode training instances.

Decision Tree - Regression

```
val data: RDD[LabeledPoint] = ...
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(0), splits(1))
val categoricalFeaturesInfo = Map[Int, Int]()
val impurity = "variance"
val maxDepth = 5
val maxBins = 32
val model = DecisionTree.trainRegressor(trainingData,
  categoricalFeaturesInfo, impurity, maxDepth, maxBins)
val labelsAndPredictions = testData.map { point =>
 val prediction = model.predict(point.features)
  (point.label, prediction)
```

Decision Tree - Classification

```
val data: RDD[LabeledPoint] = ...
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(0), splits(1))
val numClasses = 2
val categoricalFeaturesInfo = Map[Int, Int]()
val impurity = "gini"
val maxDepth = 5
val maxBins = 32
val model = DecisionTree.trainClassifier(trainingData, numClasses,
 categoricalFeaturesInfo, impurity, maxDepth, maxBins)
val labelAndPreds = testData.map { point =>
 val prediction = model.predict(point.features)
  (point.label, prediction)
```

- Train a set of decision trees separately.
- The training can be done in parallel.
- The algorithm injects randomness into the training process, so that each decision tree is a bit different.

Random Forest - Regression

```
val numClasses = 2
val categoricalFeaturesInfo = Map[Int, Int]()
val numTrees = 3
val featureSubsetStrategy = "auto"
val impurity = "variance"
val maxDepth = 4
val maxBins = 32
val model = RandomForest.trainRegressor(trainingData, categoricalFeaturesInfo,
  numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins)
val labelsAndPredictions = testData.map { point =>
  val prediction = model.predict(point.features)
  (point.label, prediction)
```

Random Forest - Classification

```
val numClasses = 2
val categoricalFeaturesInfo = Map[Int, Int]()
val numTrees = 3
val featureSubsetStrategy = "auto"
val impurity = "gini"
val maxDepth = 4
val maxBins = 32
val model = RandomForest.trainClassifier(trainingData, numClasses,
  categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity,
 maxDepth. maxBins)
val labelAndPreds = testData.map { point =>
 val prediction = model.predict(point.features)
  (point.label, prediction)
```

Naive Bayes

- Using the probability theory to classify things.
- ► Assumption: independency between every pair of features.

- Using the probability theory to classify things.
- ► Assumption: independency between every pair of features.

- ► y₁: circles, and y₂: triangles.
- (x_1, x_2) belongs to y_1 or y_2 ?

- (x_1, x_2) belongs to y_1 or y_2 ?
- If $p(y_1|x_1, x_2) > p(y_2|x_1, x_2)$, the class is y_1 .
- If $p(y_1|x_1, x_2) < p(y_2|x_1, x_2)$, the class is y_2 .

- (x_1, x_2) belongs to y_1 or y_2 ?
- If $p(y_1|x_1, x_2) > p(y_2|x_1, x_2)$, the class is y_1 .
- If $p(y_1|x_1, x_2) < p(y_2|x_1, x_2)$, the class is y_2 .

- Bayes theorem: $p(y|x) = \frac{p(x|y)p(y)}{p(x)}$
- p(y|x): probability of instance x being in class y.
- p(x|y): probability of generating instance x given class y.
- ▶ p(y): probability of occurrence of class y
- ▶ p(x): probability of instance x occurring.

Is officer Drew male or female?

Name	Sex
Drew	Male
Claudia	Female
Drew	Female
Drew	Female
Alberto	Male
Karin	Female
Nina	Female
Sergio	Male

- $p(y|x) = \frac{p(x|y)p(y)}{p(x)}$
- ▶ p(male|drew) = ?
- ▶ p(female|drew) = ?

Name	Sex
Drew	Male
Claudia	Female
Drew	Female
Drew	Female
Alberto	Male
Karin	Female
Nina	Female
Sergio	Male

\frown	Name	Sex
	Drew	Male
	Claudia	Female
	Drew	Female
	Drew	Female
	Alberto	Male
	Karin	Female
	Nina	Female
p(x y)p(y)	Sergio	Male
$\mathbf{p}(\mathbf{\hat{x}} \mathbf{x}) \equiv \frac{\mathbf{p}(\mathbf{x})}{\mathbf{p}(\mathbf{x})}$		
• $p(\texttt{male} \texttt{drew}) = \frac{p(\texttt{drew} \texttt{male})p(\texttt{male})}{p(\texttt{drew})} = \frac{\frac{1}{3} \times \frac{3}{8}}{\frac{3}{8}} = 0.33$		
• $p(\texttt{female} \texttt{drew}) = \frac{p(\texttt{drew} \texttt{female})p(\texttt{female})}{p(\texttt{drew})} = \frac{\frac{2}{5} \times \frac{5}{8}}{\frac{3}{8}} = 0.66$		

-)
A	

Officer Drew is female.

Name	Sex
Drew	Male
Claudia	Female
Drew	Female
Drew	Female
Alberto	Male
Karin	Female
Nina	Female
Sergio	Male

Amir H. Payberah (SICS)

Naive Bayes

```
val data: RDD[LabeledPoint] = ...
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(0), splits(1))
val model = NaiveBayes.train(trainingData, lambda = 1.0,
modelType = "multinomial")
val predictionAndLabel = test.map(p =>
(model.predict(p.features), p.label))
```

Clustering (Unsupervised Learning)

 Clustering is a technique for finding similarity groups in data, called clusters.

- Clustering is a technique for finding similarity groups in data, called clusters.
- It groups data instances that are similar to each other in one cluster, and data instances that are very different from each other into different clusters.

- Clustering is a technique for finding similarity groups in data, called clusters.
- It groups data instances that are similar to each other in one cluster, and data instances that are very different from each other into different clusters.
- Clustering is often called an unsupervised learning task as no class values denoting an a priori grouping of the data instances are given.

▶ k-means clustering is a popular method for clustering.

- ► K: number of clusters (given)
 - One mean per cluster.
- ▶ Initialize means: by picking k samples at random.
- Iterate:
 - Assign each point to nearest mean.
 - Move mean to center of its cluster.


```
val data: RDD[LabeledPoint] = ...
val numClusters = 2
val numIterations = 20
val clusters = KMeans.train(data, numClusters, numIterations)
// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(data)
println("Within Set Sum of Squared Errors = " + WSSSE)
```

MLlib - Result Validation

Classification Model Evaluation

- There exists a true output and a model-generated predicted output for each data point.
- The results for each data point can be assigned to one of four categories:
 - **1** True Positive (TP): label is positive and prediction is also positive
 - **2** True Negative (TN): label is negative and prediction is also negative
 - 3 False Positive (FP): label is negative but prediction is positive
 - ④ False Negative (FN): label is positive but prediction is negative

Binary Classification (1/2)

- Precision (positive predictive value): the fraction of retrieved instances that are relevant.
- Recall (sensitivity): the fraction of relevant instances that are retrieved.
- F-measure: $(1 + \beta^2) \frac{\text{precision.recall}}{\beta^2.\text{precision+recall}}$

Binary Classification (2/2)

```
val model = new LogisticRegressionWithLBFGS()
  setNumClasses(2)
  .run(trainingData)
val predictionAndLabels = testData.map { point =>
  val prediction = model.predict(point.features)
  (prediction, point.label)
val metrics = new BinaryClassificationMetrics(predictionAndLabels)
val precision = metrics.precisionByThreshold
precision.foreach { case (t, p) => println(s"Threshold: $t, Precision: $p") }
val recall = metrics.recallBvThreshold
recall.foreach { case (t, r) => println(s"Threshold: $t, Recall: $r") }
val beta = 0.5
val fScore = metrics.fMeasureByThreshold(beta)
fScore.foreach { case (t, f) => println(s"Threshold: $t, F-score: $f") }
```

Regression Model Evaluation (1/2)

- Mean Squared Error (MSE): $\frac{\sum_{i=0}^{N-1} (y_i \hat{y}_i)^2}{N}$
- Root Mean Squared Error (RMSE): $\sqrt{\frac{\sum_{i=0}^{N-1}(y_i-\hat{y}_i)^2}{N}}$
- Mean Absolute Error (MAE): $\sum_{i=0}^{N-1} |y_i \hat{y}_i|$

Regression Model Evaluation (2/2)

```
val numIterations = 100
val model = LinearRegressionWithSGD.train(trainigData, numIterations)
val valuesAndPreds = testData.map{ point =>
  val prediction = model.predict(point.features)
  (prediction, point.label)
}
val metrics = new RegressionMetrics(valuesAndPreds)
println(s"MSE = ${metrics.meanSquaredError}")
println(s"RMSE = ${metrics.rootMeanSquaredError}")
println(s"MAE = ${metrics.meanAbsoluteError}")
```


- ▶ Preprocessing: cleaning, integration, reduction, transformation
- > Data mining: classification, clustering, frequent patterns, anomaly
- Result validation

Questions?