
Spark and Spark SQL

Amir H. Payberah
amir@sics.se

SICS Swedish ICT

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 1 / 71



What is Big Data?

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 2 / 71



Big Data

... everyone talks about it, nobody really knows how to do it, ev-
eryone thinks everyone else is doing it, so everyone claims they are
doing it.

- Dan Ariely

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 3 / 71



Big Data

Big data is the data characterized by 4 key attributes: volume,
variety, velocity and value.

- Oracle

Buz
zwo

rds

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 4 / 71



Big Data

Big data is the data characterized by 4 key attributes: volume,
variety, velocity and value.

- OracleBuz
zwo

rds

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 4 / 71



Big Data In Simple Words

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 5 / 71



The Four Dimensions of Big Data

I Volume: data size

I Velocity: data generation rate

I Variety: data heterogeneity

I This 4th V is for Vacillation:
Veracity/Variability/Value

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 6 / 71



How To Store and Process
Big Data?

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 7 / 71



Scale Up vs. Scale Out

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 8 / 71



Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 9 / 71



The Big Data Stack

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 10 / 71



Data Analysis

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 11 / 71



Programming Languages

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 12 / 71



Platform - Data Processing

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 13 / 71



Platform - Data Storage

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 14 / 71



Resource Management

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 15 / 71



Spark Processing Engine

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 16 / 71



Why Spark?

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 17 / 71



Motivation (1/4)

I Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

I Benefits of data flow: runtime can decide where to run tasks and
can automatically recover from failures.

I E.g., MapReduce

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 18 / 71



Motivation (1/4)

I Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

I Benefits of data flow: runtime can decide where to run tasks and
can automatically recover from failures.

I E.g., MapReduce

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 18 / 71



Motivation (1/4)

I Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

I Benefits of data flow: runtime can decide where to run tasks and
can automatically recover from failures.

I E.g., MapReduce

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 18 / 71



Motivation (2/4)

I MapReduce programming model has not been designed for complex
operations, e.g., data mining.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 19 / 71



Motivation (3/4)

I Very expensive (slow), i.e., always goes to disk and HDFS.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 20 / 71



Motivation (4/4)

I Extends MapReduce with more operators.

I Support for advanced data flow graphs.

I In-memory and out-of-core processing.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 21 / 71



Spark vs. MapReduce (1/2)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 22 / 71



Spark vs. MapReduce (1/2)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 22 / 71



Spark vs. MapReduce (2/2)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 23 / 71



Spark vs. MapReduce (2/2)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 23 / 71



Challenge

How to design a distributed memory abstraction
that is both fault tolerant and efficient?

Solution

Resilient Distributed Datasets (RDD)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 24 / 71



Challenge

How to design a distributed memory abstraction
that is both fault tolerant and efficient?

Solution

Resilient Distributed Datasets (RDD)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 24 / 71



Resilient Distributed Datasets (RDD) (1/2)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.
• Like a LinkedList <MyObjects>

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 25 / 71



Resilient Distributed Datasets (RDD) (2/2)

I An RDD is divided into a number of partitions, which are atomic
pieces of information.

I Partitions of an RDD can be stored on different nodes of a cluster.

I Built through coarse grained transformations, e.g., map, filter,
join.

I Fault tolerance via automatic rebuild (no replication).

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 26 / 71



Resilient Distributed Datasets (RDD) (2/2)

I An RDD is divided into a number of partitions, which are atomic
pieces of information.

I Partitions of an RDD can be stored on different nodes of a cluster.

I Built through coarse grained transformations, e.g., map, filter,
join.

I Fault tolerance via automatic rebuild (no replication).

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 26 / 71



Resilient Distributed Datasets (RDD) (2/2)

I An RDD is divided into a number of partitions, which are atomic
pieces of information.

I Partitions of an RDD can be stored on different nodes of a cluster.

I Built through coarse grained transformations, e.g., map, filter,
join.

I Fault tolerance via automatic rebuild (no replication).

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 26 / 71



Programming Model

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 27 / 71



Spark Programming Model

I A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

I Operators are higher-order functions that execute user-defined func-
tions in parallel.

I Two types of RDD operators: transformations and actions.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 28 / 71



Spark Programming Model

I A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

I Operators are higher-order functions that execute user-defined func-
tions in parallel.

I Two types of RDD operators: transformations and actions.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 28 / 71



Spark Programming Model

I A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

I Operators are higher-order functions that execute user-defined func-
tions in parallel.

I Two types of RDD operators: transformations and actions.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 28 / 71



RDD Operators (1/2)

I Transformations: lazy operators that create new RDDs.

I Actions: lunch a computation and return a value to the program or
write data to the external storage.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 29 / 71



RDD Operators (2/2)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 30 / 71



RDD Transformations - Map

I All pairs are independently processed.

// passing each element through a function.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x) // {1, 4, 9}

// selecting those elements that func returns true.

val even = squares.filter(_ % 2 == 0) // {4}

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 31 / 71



RDD Transformations - Map

I All pairs are independently processed.

// passing each element through a function.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x) // {1, 4, 9}

// selecting those elements that func returns true.

val even = squares.filter(_ % 2 == 0) // {4}

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 31 / 71



RDD Transformations - Reduce

I Pairs with identical key are grouped.

I Groups are independently processed.

val pets = sc.parallelize(Seq(("cat", 1), ("dog", 1), ("cat", 2)))

pets.groupByKey()

// {(cat, (1, 2)), (dog, (1))}

pets.reduceByKey((x, y) => x + y)

or

pets.reduceByKey(_ + _)

// {(cat, 3), (dog, 1)}

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 32 / 71



RDD Transformations - Reduce

I Pairs with identical key are grouped.

I Groups are independently processed.

val pets = sc.parallelize(Seq(("cat", 1), ("dog", 1), ("cat", 2)))

pets.groupByKey()

// {(cat, (1, 2)), (dog, (1))}

pets.reduceByKey((x, y) => x + y)

or

pets.reduceByKey(_ + _)

// {(cat, 3), (dog, 1)}

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 32 / 71



RDD Transformations - Join

I Performs an equi-join on the key.

I Join candidates are independently pro-
cessed.

val visits = sc.parallelize(Seq(("h", "1.2.3.4"),

("a", "3.4.5.6"),

("h", "1.3.3.1")))

val pageNames = sc.parallelize(Seq(("h", "Home"),

("a", "About")))

visits.join(pageNames)

// ("h", ("1.2.3.4", "Home"))

// ("h", ("1.3.3.1", "Home"))

// ("a", ("3.4.5.6", "About"))

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 33 / 71



RDD Transformations - Join

I Performs an equi-join on the key.

I Join candidates are independently pro-
cessed.

val visits = sc.parallelize(Seq(("h", "1.2.3.4"),

("a", "3.4.5.6"),

("h", "1.3.3.1")))

val pageNames = sc.parallelize(Seq(("h", "Home"),

("a", "About")))

visits.join(pageNames)

// ("h", ("1.2.3.4", "Home"))

// ("h", ("1.3.3.1", "Home"))

// ("a", ("3.4.5.6", "About"))

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 33 / 71



RDD Transformations - CoGroup

I Groups each input on key.

I Groups with identical keys are processed
together.

val visits = sc.parallelize(Seq(("h", "1.2.3.4"),

("a", "3.4.5.6"),

("h", "1.3.3.1")))

val pageNames = sc.parallelize(Seq(("h", "Home"),

("a", "About")))

visits.cogroup(pageNames)

// ("h", (("1.2.3.4", "1.3.3.1"), ("Home")))

// ("a", (("3.4.5.6"), ("About")))

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 34 / 71



RDD Transformations - CoGroup

I Groups each input on key.

I Groups with identical keys are processed
together.

val visits = sc.parallelize(Seq(("h", "1.2.3.4"),

("a", "3.4.5.6"),

("h", "1.3.3.1")))

val pageNames = sc.parallelize(Seq(("h", "Home"),

("a", "About")))

visits.cogroup(pageNames)

// ("h", (("1.2.3.4", "1.3.3.1"), ("Home")))

// ("a", (("3.4.5.6"), ("About")))

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 34 / 71



RDD Transformations - Union and Sample

I Union: merges two RDDs and returns a single RDD using bag se-
mantics, i.e., duplicates are not removed.

I Sample: similar to mapping, except that the RDD stores a random
number generator seed for each partition to deterministically sample
parent records.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 35 / 71



Basic RDD Actions (1/2)

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 36 / 71



Basic RDD Actions (1/2)

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 36 / 71



Basic RDD Actions (1/2)

I Return all the elements of the RDD as an array.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect() // Array(1, 2, 3)

I Return an array with the first n elements of the RDD.

nums.take(2) // Array(1, 2)

I Return the number of elements in the RDD.

nums.count() // 3

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 36 / 71



Basic RDD Actions (2/2)

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y)

or

nums.reduce(_ + _) // 6

I Write the elements of the RDD as a text file.

nums.saveAsTextFile("hdfs://file.txt")

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 37 / 71



Basic RDD Actions (2/2)

I Aggregate the elements of the RDD using the given function.

nums.reduce((x, y) => x + y)

or

nums.reduce(_ + _) // 6

I Write the elements of the RDD as a text file.

nums.saveAsTextFile("hdfs://file.txt")

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 37 / 71



SparkContext

I Main entry point to Spark functionality.

I Available in shell as variable sc.

I Only one SparkContext may be active per JVM.

// master: the master URL to connect to, e.g.,

// "local", "local[4]", "spark://master:7077"

val conf = new SparkConf().setAppName(appName).setMaster(master)

new SparkContext(conf)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 38 / 71



Creating RDDs

I Turn a collection into an RDD.

val a = sc.parallelize(Array(1, 2, 3))

I Load text file from local FS, HDFS, or S3.

val a = sc.textFile("file.txt")

val b = sc.textFile("directory/*.txt")

val c = sc.textFile("hdfs://namenode:9000/path/file")

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 39 / 71



Creating RDDs

I Turn a collection into an RDD.

val a = sc.parallelize(Array(1, 2, 3))

I Load text file from local FS, HDFS, or S3.

val a = sc.textFile("file.txt")

val b = sc.textFile("directory/*.txt")

val c = sc.textFile("hdfs://namenode:9000/path/file")

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 39 / 71



Example 1

val textFile = sc.textFile("hdfs://...")

val words = textFile.flatMap(line => line.split(" "))

val ones = words.map(word => (word, 1))

val counts = ones.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 40 / 71



Example 2

val textFile = sc.textFile("hdfs://...")

val sics = textFile.filter(_.contains("SICS"))

val cachedSics = sics.cache()

val ones = cachedSics.map(_ => 1)

val count = ones.reduce(_ + _)

val textFile = sc.textFile("hdfs://...")

val count = textFile.filter(_.contains("SICS")).count()

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 41 / 71



Example 2

val textFile = sc.textFile("hdfs://...")

val sics = textFile.filter(_.contains("SICS"))

val cachedSics = sics.cache()

val ones = cachedSics.map(_ => 1)

val count = ones.reduce(_ + _)

val textFile = sc.textFile("hdfs://...")

val count = textFile.filter(_.contains("SICS")).count()

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 41 / 71



Execution Engine

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 42 / 71



Spark Programming Interface

I A Spark application consists of a driver program that runs the user’s
main function and executes various parallel operations on a cluster.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 43 / 71



Lineage

I Lineage: transformations used to build
an RDD.

I RDDs are stored as a chain of objects
capturing the lineage of each RDD.

val file = sc.textFile("hdfs://...")

val sics = file.filter(_.contains("SICS"))

val cachedSics = sics.cache()

val ones = cachedSics.map(_ => 1)

val count = ones.reduce(_+_)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 44 / 71



RDD Dependencies (1/3)

I Two types of dependencies between RDDs: Narrow and Wide.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 45 / 71



RDD Dependencies: Narrow (2/3)

I Narrow: each partition of a parent RDD is used by at most one
partition of the child RDD.

I Narrow dependencies allow pipelined execution on one cluster node,
e.g., a map followed by a filter.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 46 / 71



RDD Dependencies: Wide (3/3)

I Wide: each partition of a parent RDD is used by multiple partitions
of the child RDDs.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 47 / 71



Job Scheduling (1/2)

I When a user runs an action on an RDD:
the scheduler builds a DAG of stages
from the RDD lineage graph.

I A stage contains as many pipelined
transformations with narrow dependen-
cies.

I The boundary of a stage:
• Shuffles for wide dependencies.
• Already computed partitions.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 48 / 71



Job Scheduling (2/2)

I The scheduler launches tasks to compute
missing partitions from each stage until
it computes the target RDD.

I Tasks are assigned to machines based on
data locality.

• If a task needs a partition, which is
available in the memory of a node, the
task is sent to that node.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 49 / 71



RDD Fault Tolerance

I Logging lineage rather than the actual data.

I No replication.

I Recompute only the lost partitions of an RDD.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 50 / 71



Spark SQL

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 51 / 71



Spark and Spark SQL

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 52 / 71



DataFrame

I A DataFrame is a distributed collection of rows

I Homogeneous schema.

I Equivalent to a table in a relational database.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 53 / 71



Adding Schema to RDDs

I Spark + RDD: functional transformations on partitioned collections
of opaque objects.

I SQL + DataFrame: declarative transformations on partitioned col-
lections of tuples.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 54 / 71



Creating DataFrames

I The entry point into all functionality in Spark SQL is the
SQLContext.

I With a SQLContext, applications can create DataFrames from an
existing RDD, from a Hive table, or from data sources.

val sc: SparkContext // An existing SparkContext.

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

val df = sqlContext.read.json(...)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 55 / 71



DataFrame Operations (1/2)

I Domain-specific language for structured data manipulation.

// Show the content of the DataFrame

df.show()

// age name

// null Michael

// 30 Andy

// 19 Justin

// Print the schema in a tree format

df.printSchema()

// root

// |-- age: long (nullable = true)

// |-- name: string (nullable = true)

// Select only the "name" column

df.select("name").show()

// name

// Michael

// Andy

// Justin

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 56 / 71



DataFrame Operations (2/2)

I Domain-specific language for structured data manipulation.

// Select everybody, but increment the age by 1

df.select(df("name"), df("age") + 1).show()

// name (age + 1)

// Michael null

// Andy 31

// Justin 20

// Select people older than 21

df.filter(df("age") > 21).show()

// age name

// 30 Andy

// Count people by age

df.groupBy("age").count().show()

// age count

// null 1

// 19 1

// 30 1

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 57 / 71



Running SQL Queries Programmatically

I Running SQL queries programmatically and returns the result as a
DataFrame.

I Using the sql function on a SQLContext.

val sqlContext = ... // An existing SQLContext

val df = sqlContext.sql("SELECT * FROM table")

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 58 / 71



Converting RDDs into DataFrames

I Inferring the schema using reflection.

// Define the schema using a case class.

case class Person(name: String, age: Int)

// Create an RDD of Person objects and register it as a table.

val people = sc.textFile(...).map(_.split(","))

.map(p => Person(p(0), p(1).trim.toInt)).toDF()

people.registerTempTable("people")

// SQL statements can be run by using the sql methods provided by sqlContext.

val teenagers = sqlContext

.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are DataFrames.

teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

teenagers.map(t => "Name: " + t.getAs[String]("name")).collect()

.foreach(println)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 59 / 71



Data Sources

I Supports on a variety of data sources.

I A DataFrame can be operated on as normal RDDs or as a temporary
table.

I Registering a DataFrame as a table allows you to run SQL queries
over its data.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 60 / 71



Advanced Programming

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 61 / 71



Shared Variables

I When Spark runs a function in parallel as a set of tasks on different
nodes, it ships a copy of each variable used in the function to each
task.

I Sometimes, a variable needs to be shared across tasks, or between
tasks and the driver program.

I General read-write shared variables across tasks is inefficient.

I Two types of shared variables: accumulators and broadcast vari-
ables.

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 62 / 71



Accumulators (1/2)

I Aggregating values from worker nodes back to the driver program.
• Example: counting events that occur during job execution.

I Worker code can add to the accumulator with its += method.

I The driver program can access the value by calling the value prop-
erty on the accumulator.

scala> val accum = sc.accumulator(0)

accum: spark.Accumulator[Int] = 0

scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)

...

scala> accum.value

res2: Int = 10

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 63 / 71



Accumulators (2/2)

I How many lines of the input file were blank?

val sc = new SparkContext(...)

val file = sc.textFile("file.txt")

val blankLines = sc.accumulator(0)

// Create an Accumulator[Int] initialized to 0

val callSigns = file.flatMap(line => {

if (line == "") {

blankLines += 1 // Add to the accumulator

}

line.split(" ")

})

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 64 / 71



Broadcast Variables (1/4)

I The broadcast values are sent to each node only once, and should
be treated as read-only variables.

I The process of using broadcast variables can access its value with
the value property.

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))

broadcastVar: spark.Broadcast[Array[Int]] = spark.Broadcast(b5c40191-...)

scala> broadcastVar.value

res0: Array[Int] = Array(1, 2, 3)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 65 / 71



Broadcast Variables (2/4)

// Load RDD of (URL, name) pairs

val pageNames = sc.textFile("pages.txt").map(...)

// Load RDD of (URL, visit) pairs

val visits = sc.textFile("visits.txt").map(...)

val joined = visits.join(pageNames)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 66 / 71



Broadcast Variables (3/4)

// Load RDD of (URL, name) pairs

val pageNames = sc.textFile("pages.txt").map(...)

val pageMap = pageNames.collect().toMap()

// Load RDD of (URL, visit) pairs

val visits = sc.textFile("visits.txt").map(...)

val joined = visits.map(v => (v._1, (pageMap(v._1), v._2)))

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 67 / 71



Broadcast Variables (4/4)

// Load RDD of (URL, name) pairs

val pageNames = sc.textFile("pages.txt").map(...)

val pageMap = pageNames.collect().toMap()

val bc = sc.broadcast(pageMap)

// Load RDD of (URL, visit) pairs

val visits = sc.textFile("visits.txt").map(...)

val joined = visits.map(v => (v._1, (bc.value(v._1), v._2)))

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 68 / 71



Summary

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 69 / 71



Summary

I Dataflow programming

I Spark: RDD

I Two types of operations: Transformations and Actions.

I Spark execution engine

I Spark SQL: DataFrame

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 70 / 71



Questions?

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 71 / 71


