Spark and Spark SQL

Amir H. Payberah

amir@sics.se

SICS Swedish ICT

SICS

What is Big Data?

Big Data

everyone talks about it, nobody really knows how to do it, ev-
eryone thinks everyone else is doing it, so everyone claims they are

doing it.
- Dan Ariely

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 3/71

-
Big Data

Big data is the data characterized by 4 key attributes: volume,
variety, velocity and value.

- Oracle

ORACLE

~ AmirH. Payberah (SICS) Sparkand Spark SQL June 29,2016 4 /71

-
Big Data

Big data is the data characterize&%bﬁkey attributes: volume,
variety, velocity and value. ,LN

Q)\) - Oracle
ORACLE

~ AmirH. Payberah (SICS) Sparkand Spark SQL June 29,2016 4 /71

Big Data In Simple Words

T DevOps Borat
&8 @DEVOPS_BORAT

Small Data is when is fit in RAM.
Big Data is when is crash because
is not fit in RAM.

2/6/13, 8:22 AM

« 1T K eee

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 5/71

The Four Dimensions of Big Data

> Volume: data size
Volume Velocity
_ _ -_ —
> Velocity: data generation rate -_:
» Variety: data heterogeneity H o e
L
Variety Veracity
» This 4th V is for Vacillation:

Veracity/Variability/Value

How To Store and Process
Big Data?

Scale Up vs. Scale Out

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 8/71

HBASE
i@’hadaap

B
g
)
>

Dato YK Spark
‘"fw**‘m;di ')

computing platform ‘\‘
Google Cloud plarform

VAVAY

AVAVA
AVAVAYA

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 9/71

The Big Data Stack

Machine Learning and Data Mining

Programming Language

Data Processing

Data Storage

Resource Management

June 29, 2016

|
Data Analysis

Machine Learning and Data Mining

Mining Tools

Programming Languages

Programming Languages

Imperative Languages

Declarative Languages

Visual Languages

Platform - Data Processing

Data Processing

Processing Engines

Metadata

|
Platform - Data Storage

Data Storage

Operational Store

Logging System

Distributed File System

Resource Management

Resource Management

Resource Management Tools

Spark Processing Engine

Spoﬁzz

Spark

Streaming il

Why Spark?

Motivation (1/4)

» Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

N
Input Output

Motivation (1/4)
» Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

» Benefits of data flow: runtime can decide where to run tasks and
can automatically recover from failures.

N
Input Output

Motivation (1/4)

» Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

» Benefits of data flow: runtime can decide where to run tasks and
can automatically recover from failures.

» E.g., MapReduce

N
Input Output

o,e

Motivation (2/4)

» MapReduce programming model has not been designed for complex
operations, e.g., data mining.

Input Output
(W—®
(™) (O—®
©

_/ ~—

.
Motivation (3/4)

» Very expensive (slow), i.e., always goes to disk and HDFS.

HDFS HDFS HDFS HDFS HDFS
1 Read - Write [~ Read f—— Read
Iter. 1

Write
- - -

Input

.
Motivation (4/4)

» Extends MapReduce with more operators.
» Support for advanced data flow graphs.

» In-memory and out-of-core processing.

(D—®
O~

| Hadoop |1 Spark |

.
Spark vs. MapReduce (1/2)

HDFS HDFS HDFS HDFS HDFS

] Read Write [———] Read Write [——— Read
- - -

Input

.
Spark vs. MapReduce (1/2)

HDFS HDFS HDFS HDFS HDFS

] Read Write [———] Read Write [——— Read
- - -

Input

3
o & 1 &

Input

.
Spark vs. MapReduce (2/2)

|

Resultsl

!

Resultsl

|

Resultsl

\

.
Spark vs. MapReduce (2/2)

|

Resultsl

\

Resultsl

|

Resultsl

\

Results1
J

I

Resultsl
\/_

Input

Resultsl
— —

Challenge

How to design a distributed memory abstraction
that is both fault tolerant and efficient?

Challenge

How to design a distributed memory abstraction
that is both fault tolerant and efficient?

Solution

Resilient Distributed Datasets (RDD) J

.
Resilient Distributed Datasets (RDD) (1/2)

» A distributed memory abstraction.

» Immutable collections of objects spread across a cluster.
e Like a LinkedList <MyObjects>

.
Resilient Distributed Datasets (RDD) (2/2)

» An RDD is divided into a number of partitions, which are atomic
pieces of information.

» Partitions of an RDD can be stored on different nodes of a cluster.

Resilient Distributed Datasets (RDD) (2/2)

» An RDD is divided into a number of partitions, which are atomic
pieces of information.

» Partitions of an RDD can be stored on different nodes of a cluster.

» Built through coarse grained transformations, e.g., map, filter,
join.

.
Resilient Distributed Datasets (RDD) (2/2)

v

An RDD is divided into a number of partitions, which are atomic
pieces of information.

v

Partitions of an RDD can be stored on different nodes of a cluster.

v

Built through coarse grained transformations, e.g., map, filter,
join.

v

Fault tolerance via automatic rebuild (no replication).

Programming Model

NSNS
Spark Programming Model

» A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

NSNS
Spark Programming Model

» A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

» Operators are higher-order functions that execute user-defined func-
tions in parallel.

-
Spark Programming Model

» A data flow is composed of any number of data sources, operators,
and data sinks by connecting their inputs and outputs.

» Operators are higher-order functions that execute user-defined func-
tions in parallel.

» Two types of RDD operators: transformations and actions.

June 29, 2016 28 /71

I
RDD Operators (1/2)

» Transformations: lazy operators that create new RDDs.

» Actions: lunch a computation and return a value to the program or
write data to the external storage.

RDD Operators (2/2)

map(f:T=U)

filter(f : T = Bool)
flatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()

RDD[T] = RDD[U]

RDD[T] = RDD[T]

RDD[T] = RDD[U]

RDD[T] = RDD[T] (Deterministic sampling)
RDD[(K, V)] = RDD[(K, Seq[V])]

reduceByKey(f : (V,V) = V) RDDI[(K, V)] = RDD[(K, V)]
Transformations union() (RDD[T],RDD[T]) = RDDIT]
Jjoin() (RDDI(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K; (Seq[V], Seq[W]))]
crossProduct() (RDDI[T],RDD[U]) = RDD[(T, U)]
mapValues(f: V= W) RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDDI[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]
count() RDD[T] = Long
collect() RDDIT] = Seq[T]
Actions reduce(f : (T,T)=T) RDD[T]=T
lookup(k : K) RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS

Amir H. Payberah (SICS)

Spark and Spark SQL

June 29, 2016

30 /71

I
RDD Transformations - Map

» All pairs are independently processed.

AR AR
}

I
RDD Transformations - Map

» All pairs are independently processed.

AR AR
}

RDD Transformations - Reduce

- jmm

» Pairs with identical key are grouped. -;I-_I_:::_-E-:i
. [ieimel ¥

» Groups are independently processed. | E:::E

RDD Transformations - Reduce

» Pairs with identical key are grouped.

» Groups are independently processed.

RDD Transformations - Join

» Performs an equi-join on the key.

» Join candidates are independently pro-
cessed.

RDD Transformations - Join

» Performs an equi-join on the key.

» Join candidates are independently pro-
cessed.

I
RDD Transformations - CoGroup

» Groups each input on key.

» Groups with identical keys are processed
together.

I
RDD Transformations - CoGroup

» Groups each input on key.

» Groups with identical keys are processed
together.

RDD Transformations - Union and Sample

» Union: merges two RDDs and returns a single RDD using bag se-
mantics, i.e., duplicates are not removed.

» Sample: similar to mapping, except that the RDD stores a random
number generator seed for each partition to deterministically sample
parent records.

Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

I
Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

» Return an array with the first n elements of the RDD.

I
Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

» Return an array with the first n elements of the RDD.

» Return the number of elements in the RDD.

I
Basic RDD Actions (2/2)

» Aggregate the elements of the RDD using the given function.

I
Basic RDD Actions (2/2)

» Aggregate the elements of the RDD using the given function.

» Write the elements of the RDD as a text file.

I
SparkContext

» Main entry point to Spark functionality.

» Available in shell as variable sc.

» Only one SparkContext may be active per JVM.

Creating RDDs

» Turn a collection into an RDD.

BN
Creating RDDs

» Turn a collection into an RDD.

» Load text file from local FS, HDFS, or S3.

-
Example 1

val textFile = sc.textFile("hdfs://...")

val words = textFile.flatMap(line => line.split(" "))
val ones = words.map(word => (word, 1))
val counts = ones.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

textFile (RDD words (RDD) ones (RDD)

HDFS Hello (Hello, 1)
World (World, 1)
Bye (Bye, 1)
- - World (World, 1)
Hello (Hello, 1)
Hadoop (Hadoop, 1)

counts (RDD) HDFS

(Hello, 2)
(World, 2)

(Bye, 1)
(Hadoop, 2)
(Goodbye, 1)

Goodbye (Goodbye, 1)
Hadoop (Hadoop, 1)

Hello World Bye World
Hello Hadoop Goodbye Hadoop

June 29, 2016 40 / 71

I
Example 2

I
Example 2

Execution Engine

Spark Programming Interface

» A Spark application consists of a driver program that runs the user’s
main function and executes various parallel operations on a cluster.

Lineage
file: | panthatsile
» Lineage: transformations used to build _ Filtered Dataset
sics: func = _.contains(...)
an RDD.

» RDDs are stored as a chain of objects cachedsics:
capturing the lineage of each RDD.

Mapped Dataset
func=_=>1

ones:

val file = sc.textFile("hdfs://...")

val sics = file.filter(_.contains("SICS"))
val cachedSics = sics.cache()

val ones = cachedSics.map(_ => 1)

val count = ones.reduce(_+_)

~ AmirH. Payberah (SICS) Sparkand Spark SQL June 29,2016 44 /71

BN
RDD Dependencies (1/3)

» Two types of dependencies between RDDs: Narrow and Wide.

BN
RDD Dependencies: Narrow (2/3)

([mnin)

ap, filter

i

—l

L—

)
)
)

000y 00y
000D

| —

union

000000

join with inputs
co-partitioned

» Narrow: each partition of a parent RDD is used by at most one

partition of the child RDD.

» Narrow dependencies allow pipelined execution on one cluster node,

e.g., a map followed by a filter.

RDD Dependencies: Wide (3/3)

groupByKey

Join with inputs not
co-partitioned

» Wide: each partition of a parent RDD is used by multiple partitions
of the child RDDs.

.
Job Scheduling (1/2)

» When a user runs an action on an RDD:
the scheduler builds a DAG of stages
from the RDD lineage graph.

» A stage contains as many pipelined
transformations with narrow dependen-
cies.

» The boundary of a stage:

e Shuffles for wide dependencies.
e Already computed partitions.

.
Job Scheduling (2/2)

» The scheduler launches tasks to compute
missing partitions from each stage until
it computes the target RDD.

» Tasks are assigned to machines based on
data locality.
e If a task needs a partition, which is
available in the memory of a node, the
task is sent to that node.

B
RDD Fault Tolerance

» Logging lineage rather than the actual data.
» No replication.

» Recompute only the lost partitions of an RDD.

HDFS Text File

file: path = hdfs://...

Filtered Dataset
func = _.contains(...)

sics:

cachedSics: Cached Dataset

ones: Mapped Dataset
func=_=>1

Spark SQL

Spark and Spark SQL

User Programs
(Java, Scala, Python)

v v v
Spark SQL DataFrame API ‘

JDBC Console

‘ Catalyst Optimizer ‘

+ h 4
Spark

‘ Resilient Distributed Datasets ‘

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 52 /71

DataFrame

» A DataFrame is a distributed collection of rows

» Homogeneous schema.

» Equivalent to a table in a relational database.

|
Adding Schema to RDDs

» Spark + RDD: functional transformations on partitioned collections
of opaque objects.

» SQL + DataFrame: declarative transformations on partitioned col-
lections of tuples.

RDD

partition

S
—
S

June 29, 2016 54 /71

Creating DataFrames

» The entry point into all functionality in Spark SQL is the
SQLContext.

» With a SQLContext, applications can create DataFrames from an
existing RDD, from a Hive table, or from data sources.

DataFrame Operations (1/2)

» Domain-specific language for structured data manipulation.

DataFrame Operations (2/2)

» Domain-specific language for structured data manipulation.

BN
Running SQL Queries Programmatically

» Running SQL queries programmatically and returns the result as a
DataFrame.

» Using the sql function on a SQLContext.

Converting RDDs into DataFrames

» Inferring the schema using reflection.

// Define the schema using a case class.
case class Person(name: String, age: Int)

// Create an RDD of Person objects and register it as a table.
val people = sc.textFile(...).map(_.split(","))

.map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable ("people")

// SQL statements can be Tun by using the sql methods provided by sqlContext.
val teenagers = sqlContext
.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are DataFrames.

teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

teenagers.map(t => "Name: " + t.getAs[String] ("name")).collect()
.foreach(println)

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 59 /71

Data Sources

» Supports on a variety of data sources.

» A DataFrame can be operated on as normal RDDs or as a temporary
table.

» Registering a DataFrame as a table allows you to run SQL queries
over its data.

% Parquet st EL

{JSON} “anzms3 B G

and more ...

Advanced Programming

B
Shared Variables

» When Spark runs a function in parallel as a set of tasks on different
nodes, it ships a copy of each variable used in the function to each
task.

» Sometimes, a variable needs to be shared across tasks, or between
tasks and the driver program.

» General read-write shared variables across tasks is inefficient.

» Two types of shared variables: accumulators and broadcast vari-
ables.

.
Accumulators (1/2)

» Aggregating values from worker nodes back to the driver program.
e Example: counting events that occur during job execution.

» Worker code can add to the accumulator with its += method.

» The driver program can access the value by calling the value prop-
erty on the accumulator.

.
Accumulators (2/2)

» How many lines of the input file were blank?

B
Broadcast Variables (1/4)

» The broadcast values are sent to each node only once, and should
be treated as read-only variables.

» The process of using broadcast variables can access its value with
the value property.

B
Broadcast Variables (2/4)

Map tasks Reduce tasks

B
Broadcast Variables (3/4)

Runs locally on each
visits.txt block of visits.txt

pages.txt
e
master

pageMap sent anng it
W|th every task map resu

B
Broadcast Variables (4/4)

visits.txt

&

master

Only sends pageMap
map result
to each node once

f
f

Summary

Summary

v

Dataflow programming

v

Spark: RDD

» Two types of operations: Transformations and Actions.

v

Spark execution engine

v

Spark SQL: DataFrame

Questions?

