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Motivation

» Many applications must process large streams of live data and pro-
vide results in real-time.

e Wireless sensor networks

e Traffic management applications

e Stock marketing

¢ Environmental monitoring applications

* Fraud detection tools



Stream Processing Systems

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.



Stream Processing Systems

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.

» Stream Processing Systems (SPS): data-in-motion analytics
e Processing information as it flows, without storing them persistently.
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DBMS vs. SPS (1/2)

» DBMS: persistent data where updates are relatively infrequent.

» SPS: transient data that is continuously updated.
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DBMS vs. SPS (2/2)

» DBMS: runs queries just once to return a complete answer.

» SPS: executes standing queries, which run continuously and provide
updated answers as new data arrives.
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Core Idea of Spark Streaming

» Run a streaming computation as a series of very small and deter-
ministic batch jobs.
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EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

 Finally, the processed results of the RDD operations are returned in
batches.

* Discretized Stream Processing (DStream)
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DStream

» DStream: sequence of RDDs representing a stream of data.

» Any operation applied on a DStream translates to operations on the

underlying RDDs.
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DStream

» DStream: sequence of RDDs representing a stream of data.

» Any operation applied on a DStream translates to operations on the
underlying RDDs.
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StreamingContext

» StreamingContext: the main entry point of all Spark Streaming
functionality.

» To initialize a Spark Streaming program, a StreamingContext object
has to be created.




Source of Streaming

» Two categories of streaming sources.

» Basic sources directly available in the StreamingContext API, e.g.,
file systems, socket connections, ....

» Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter, ....




DStream Transformations

» Transformations: modify data from on DStream to a new DStream.
» Standard RDD operations, e.g., map, join, ...

» DStream operations, e.g., window operations
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DStream Transformation Example
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Window Operations

» Apply transformations over a sliding window of data: window length
and slide interval.
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MapWithState Operation

» Maintains state while continuously updating it with new information.
» It requires the checkpoint directory.
» A new operation after updateStateByKey.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint (".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(
StateSpec.function(mappingFunc))

val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {
val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
state.update (sum)
(word, sum)

}
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Transform Operation

» Allows arbitrary RDD-to-RDD functions to be applied on a DStream.

» Apply any RDD operation that is not exposed in the DStream API,
e.g., joining every RDD in a DStream with another RDD.




Spark Streaming and DataFrame

val words: DStream[String]l = ...

words.foreachRDD { rdd =>
// Get the singleton instance of SULContext
val sqlContext = SQLContext.getOrCreate(rdd.sparkContext)
import sqlContext.implicits._

// Convert RDD[String] to DataFrame
val wordsDataFrame = rdd.toDF("word")

// Register as table
wordsDataFrame.registerTempTable ("words")

// Do word count on DataFrame using SUL and print it
val wordCountsDataFrame =

sqlContext.sql("select word, count(*) as total from words group by word")
wordCountsDataFrame . show ()
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GraphX
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Introduction

» Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

» Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.
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Large Graph




Can we use platforms like MapReduce or Spark, which are based on data-parallel
model, for large-scale graph proceeding?

Sporl‘gZ

Result




Graph-Parallel Processing

v

Restricts the types of computation.

v

New techniques to partition and distribute graphs.

v

Exploit graph structure.

v

Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.
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Data-Parallel vs. Graph-Parallel Computation (1/3)

Data-Parallel
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Graph-Parallel

Pregel Grapnlab' #a4

Property Graph




BN
Data-Parallel vs. Graph-Parallel Computation (2/3)

» Graph-parallel computation: restricting the types of computation to
achieve performance.
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Data-Parallel vs. Graph-Parallel Computation (2/3)

» Graph-parallel computation: restricting the types of computation to
achieve performance.

» But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Preprocessing Compute Post Proc.
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Data-Parallel vs. Graph-Parallel Computation (3/3)
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» Moving between table and graph views of the same physical data.

» Inefficient: extensive data movement and duplication across the net-
work and file system.
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GraphX

» Unifies data-parallel and graph-parallel systems.
» Tables and Graphs are composable views of the same physical data.

» Implemented on top of Spark.

Table View GraphX Unified Graph View
Representation
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GraphX vs. Data-Parallel/Graph-Parallel Systems
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Property Graph

Property Graph

» Represented using two Spark RDDs: (3= - @,‘

e Edge collection: VertexRDD
e Vertex collection: EdgeRDD

Vertex Table

Edge Table

Srcld

Dstld

[ e

~|o|w
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Triplets

» The triplet view logically joins the vertex and edge properties yielding
an RDD[EdgeTriplet [VD, ED]].

Vertices: % Edges: Triplets:
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Example Property Graph (1/3)

Property Graph Vertex Table
P Ty
ef o 3 (rxin, student)
;:f. = 7 (jgonzal, postdoc)
S (franklin, professor)
a 2 (istoica, professor)
o
E Edge Table
Srcd | Dsdd | Property (E)
3 7 Collaborator
e 5 3 Advisor
istoica 2 5 Colleague
prof. 5 7 Al




Example Property Graph (2/3)

val sc: SparkContext

// Create an RDD for the vertices
val users: VertexRDD[(String, String)] = sc.parallelize(
Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges
val relationships: EdgeRDD[String] = sc.parallelize(
Array(Edge (3L, 7L, "collab"), Edge (5L, 3L, "advisor"),
Edge (2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")

// Build the initial Graph

val userGraph: Graph[(String, String), String] =
Graph (users, relationships, defaultUser)
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Example Property Graph (3/3)




I
Property Operators



Structural Operators
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Join Operators




Neighborhood Aggregation

def aggregateMessages[Msg: ClassTag] (
sendMsg: EdgeContext[VD, ED, Msgl => Unit, // map
mergeMsg: (Msg, Msg) => Msg, // reduce
tripletFields: TripletFields = TripletFields.All):
VertexRDD [Msg]

val graph: Graph[Double, Int] = ...

val olderFollowers: VertexRDD[(Int, Double)] =
graph.aggregateMessages [(Int, Double)] (triplet =>
{ // Map Function
if (triplet.srcAttr > triplet.dstAttr) {
// Send message to destination vertex containing counter and age
triplet.sendToDst (1, triplet.srcAttr)
}
e
// Reduce Function
(a, b) => (a._1 + b._1, a._2 + b._2)

val avgAgeOfOlderFollowers: VertexRDD[Double] = olderFollowers.mapValues(
(id, value) => value match {case (count, totalAge) => totalAge / count})
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Summary



Summary

» Spark streaming
e Mini-batch processing
e DStream (sequence of RDDs)
e Transformations, e.g., stateful, window, join, transform, ...

» GraphX

e Unifies graph-parallel and data-prallel models
= Property graph (VertexRDD and EdgeRDD)



Questions?



