Spark Streaming and GraphX

Amir H. Payberah

amir@sics.se

SICS Swedish ICT

SICS

Spark Streaming

Motivation

» Many applications must process large streams of live data and pro-
vide results in real-time.

e Wireless sensor networks

e Traffic management applications

e Stock marketing

¢ Environmental monitoring applications

* Fraud detection tools

Stream Processing Systems

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.

Stream Processing Systems

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.

» Stream Processing Systems (SPS): data-in-motion analytics
e Processing information as it flows, without storing them persistently.

L
DBMS vs. SPS (1/2)

» DBMS: persistent data where updates are relatively infrequent.

» SPS: transient data that is continuously updated.

.
DBMS vs. SPS (2/2)

» DBMS: runs queries just once to return a complete answer.

» SPS: executes standing queries, which run continuously and provide
updated answers as new data arrives.

NSNS
Core Idea of Spark Streaming

» Run a streaming computation as a series of very small and deter-
ministic batch jobs.

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic

batch jobs.

e Chop up the live stream into batches of X seconds.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

 Finally, the processed results of the RDD operations are returned in
batches.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

 Finally, the processed results of the RDD operations are returned in
batches.

* Discretized Stream Processing (DStream)

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

DStream

» DStream: sequence of RDDs representing a stream of data.

» Any operation applied on a DStream translates to operations on the

underlying RDDs.

input data
stream

RDD @ time 1

Spark
|:> Streaming

RDD @ time 2

batches of
processed data

T

batches of
input data

Spark
| A |

RDD @time3 RDD @ time 4

DStream = -{

data from
timeOto1

u

data from
time 1to 2

data from
time3to4

data from
time2to3

L -

DStream

» DStream: sequence of RDDs representing a stream of data.

» Any operation applied on a DStream translates to operations on the
underlying RDDs.

input data batches of batches of
stream Spark input data Spark processed data
C——| streaming [[JCIC)| Engine |

RDD @tme1 RDD@tme2 RDD@tme3 RDD @ time4
_| datafom | | datafiom | _| datafiom | o
time 1to 2

time2to3 time3to4

DStream = =4 datafrom
timeOto1

lines from | _ | linesfrom
time 1to 2 time2to3

lines .| linesfrom | o finesfrom L
DStream time Oto 1 time 3to 4

flatMap
operation

words | wordsfrom | _
DStream time0to 1

words from | _ | words from
time 1to 2 time2to3

words from
-I time3to4 F >

~ Amir H. Payberah (SICS) Spark Streaming and GraphX June 30,2016 9/ 1

StreamingContext

» StreamingContext: the main entry point of all Spark Streaming
functionality.

» To initialize a Spark Streaming program, a StreamingContext object
has to be created.

Source of Streaming

» Two categories of streaming sources.

» Basic sources directly available in the StreamingContext API, e.g.,
file systems, socket connections,

» Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter,

DStream Transformations

» Transformations: modify data from on DStream to a new DStream.
» Standard RDD operations, e.g., map, join, ...

» DStream operations, e.g., window operations

NN
DStream Transformation Example

lines from
+ time3to4 F >

lines | linesfrom | _| linesfrom | _ | linesfrom
DStream timeOto 1 time 1t0 2 time 2to 3
flatMap

operation

words | wordsfrom | _| wordsfrom | _ | wordsfrom |_ | wordsfrom >
DStream time 0to 1 time 1to 2 time2to3 time 3to 4

I
Window Operations

» Apply transformations over a sliding window of data: window length
and slide interval.

time 1 time 2 time 3 time 4 time 5
S
original] e[H
DStream LQ'______'I_:_I ______ B
window-based
operation
windowed
DStream B o
window window window

attime 1 attime 3 attime 5

MapWithState Operation

» Maintains state while continuously updating it with new information.
» It requires the checkpoint directory.
» A new operation after updateStateByKey.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint (".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(
StateSpec.function(mappingFunc))

val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {
val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
state.update (sum)
(word, sum)

}

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 15/1

Transform Operation

» Allows arbitrary RDD-to-RDD functions to be applied on a DStream.

» Apply any RDD operation that is not exposed in the DStream API,
e.g., joining every RDD in a DStream with another RDD.

Spark Streaming and DataFrame

val words: DStream[String]l = ...

words.foreachRDD { rdd =>
// Get the singleton instance of SULContext
val sqlContext = SQLContext.getOrCreate(rdd.sparkContext)
import sqlContext.implicits._

// Convert RDD[String] to DataFrame
val wordsDataFrame = rdd.toDF("word")

// Register as table
wordsDataFrame.registerTempTable ("words")

// Do word count on DataFrame using SUL and print it
val wordCountsDataFrame =

sqlContext.sql("select word, count(*) as total from words group by word")
wordCountsDataFrame . show ()

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 17 /1

GraphX

vﬂ"""m‘

\SOUNDCLOUD/

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 19/1

Introduction

» Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

» Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.

BN
Large Graph

Can we use platforms like MapReduce or Spark, which are based on data-parallel
model, for large-scale graph proceeding?

Sporl‘gZ

Result

Graph-Parallel Processing

v

Restricts the types of computation.

v

New techniques to partition and distribute graphs.

v

Exploit graph structure.

v

Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.

SN
GraphL(ab\

Pregel

Data-Parallel vs. Graph-Parallel Computation (1/3)

Data-Parallel

Sporl‘gz

Graph-Parallel

Pregel Grapnlab' #a4

Property Graph

BN
Data-Parallel vs. Graph-Parallel Computation (2/3)

» Graph-parallel computation: restricting the types of computation to
achieve performance.

- |
Data-Parallel vs. Graph-Parallel Computation (2/3)

» Graph-parallel computation: restricting the types of computation to
achieve performance.

» But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Preprocessing Compute Post Proc.

@. @ Grapkfét;\ “?,

Dk

Compute

{ Initil | Subgraph | PageRank
! Graph 4

Spark Streaming and GraphX June 30, 2016 25 /1

Data-Parallel vs. Graph-Parallel Computation (3/3)

S E

gé; ‘ - 1r”ﬂLab -~ Q%WI
G s G

» Moving between table and graph views of the same physical data.

» Inefficient: extensive data movement and duplication across the net-
work and file system.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 26 /1

GraphX

» Unifies data-parallel and graph-parallel systems.
» Tables and Graphs are composable views of the same physical data.

» Implemented on top of Spark.

Table View GraphX Unified Graph View
Representation

.
GraphX vs. Data-Parallel/Graph-Parallel Systems

Live-Journal: 69 Million Edges

Mahout/Hadoop 1B40
Naive Spark 54
Giraph 207
GraphX 68
GraphlLab | 22

200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for |0 iterations)

-
GraphX vs. Data-Parallel/Graph-Parallel Systems

Live-Journal: 69 Million Edges

Mahout/Hadoop 1B40
Naive Spark 54
Giraph 207
GraphX 68
Graphlab | 22

0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for |0 iterations)

Raw Wikipedia Hyperlinks PageRank Top 20 Pages
——

||= % —
Spark Preprocess ompute Spark Post.

Spark
Giraph + Spark
GraphX
Graphlab + Spark] | | | | | |
0 200 400 600 800 1000 1200 1400 1600

Total Runtime (in Seconds)

June 30, 2016 28 /1

Property Graph

Property Graph

» Represented using two Spark RDDs: (3= - @,‘

e Edge collection: VertexRDD
e Vertex collection: EdgeRDD

Vertex Table

Edge Table

Srcld

Dstld

[e

~|o|w

|
Triplets

» The triplet view logically joins the vertex and edge properties yielding
an RDD[EdgeTriplet [VD, ED]].

Vertices: % Edges: Triplets:

NSNS
Example Property Graph (1/3)

Property Graph Vertex Table
P Ty
ef o 3 (rxin, student)
;:f. = 7 (jgonzal, postdoc)
S (franklin, professor)
a 2 (istoica, professor)
o
E Edge Table
Srcd | Dsdd | Property (E)
3 7 Collaborator
e 5 3 Advisor
istoica 2 5 Colleague
prof. 5 7 Al

Example Property Graph (2/3)

val sc: SparkContext

// Create an RDD for the vertices
val users: VertexRDD[(String, String)] = sc.parallelize(
Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges
val relationships: EdgeRDD[String] = sc.parallelize(
Array(Edge (3L, 7L, "collab"), Edge (5L, 3L, "advisor"),
Edge (2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")

// Build the initial Graph

val userGraph: Graph[(String, String), String] =
Graph (users, relationships, defaultUser)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 32/1

I
Example Property Graph (3/3)

I
Property Operators

Structural Operators
~ Amir H. Payberah (SICS) Spark Streaming and GraphX June 30,2016 35/1

Join Operators

Neighborhood Aggregation

def aggregateMessages[Msg: ClassTag] (
sendMsg: EdgeContext[VD, ED, Msgl => Unit, // map
mergeMsg: (Msg, Msg) => Msg, // reduce
tripletFields: TripletFields = TripletFields.All):
VertexRDD [Msg]

val graph: Graph[Double, Int] = ...

val olderFollowers: VertexRDD[(Int, Double)] =
graph.aggregateMessages [(Int, Double)] (triplet =>
{ // Map Function
if (triplet.srcAttr > triplet.dstAttr) {
// Send message to destination vertex containing counter and age
triplet.sendToDst (1, triplet.srcAttr)
}
e
// Reduce Function
(a, b) => (a._1 + b._1, a._2 + b._2)

val avgAgeOfOlderFollowers: VertexRDD[Double] = olderFollowers.mapValues(
(id, value) => value match {case (count, totalAge) => totalAge / count})

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 37 /1

Summary

Summary

» Spark streaming
e Mini-batch processing
e DStream (sequence of RDDs)
e Transformations, e.g., stateful, window, join, transform, ...

» GraphX

e Unifies graph-parallel and data-prallel models
= Property graph (VertexRDD and EdgeRDD)

Questions?

