
Spark Streaming and GraphX

Amir H. Payberah
amir@sics.se

SICS Swedish ICT

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 1 / 1

Spark Streaming

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 2 / 1

Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

• Wireless sensor networks

• Traffic management applications

• Stock marketing

• Environmental monitoring applications

• Fraud detection tools

• ...

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 3 / 1

Stream Processing Systems

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 4 / 1

Stream Processing Systems

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 4 / 1

DBMS vs. SPS (1/2)

I DBMS: persistent data where updates are relatively infrequent.

I SPS: transient data that is continuously updated.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 5 / 1

DBMS vs. SPS (2/2)

I DBMS: runs queries just once to return a complete answer.

I SPS: executes standing queries, which run continuously and provide
updated answers as new data arrives.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 6 / 1

Core Idea of Spark Streaming

I Run a streaming computation as a series of very small and deter-
ministic batch jobs.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 7 / 1

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 8 / 1

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 8 / 1

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 8 / 1

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 8 / 1

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 8 / 1

DStream

I DStream: sequence of RDDs representing a stream of data.

I Any operation applied on a DStream translates to operations on the
underlying RDDs.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 9 / 1

DStream

I DStream: sequence of RDDs representing a stream of data.

I Any operation applied on a DStream translates to operations on the
underlying RDDs.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 9 / 1

StreamingContext

I StreamingContext: the main entry point of all Spark Streaming
functionality.

I To initialize a Spark Streaming program, a StreamingContext object
has to be created.

val conf = new SparkConf().setAppName(appName).setMaster(master)

val ssc = new StreamingContext(conf, Seconds(1))

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 10 / 1

Source of Streaming

I Two categories of streaming sources.

I Basic sources directly available in the StreamingContext API, e.g.,
file systems, socket connections,

I Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter,

ssc.socketTextStream("localhost", 9999)

TwitterUtils.createStream(ssc, None)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 11 / 1

DStream Transformations

I Transformations: modify data from on DStream to a new DStream.

I Standard RDD operations, e.g., map, join, ...

I DStream operations, e.g., window operations

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 12 / 1

DStream Transformation Example

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 13 / 1

Window Operations

I Apply transformations over a sliding window of data: window length
and slide interval.

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _,

Seconds(30), Seconds(10))

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 14 / 1

MapWithState Operation

I Maintains state while continuously updating it with new information.

I It requires the checkpoint directory.

I A new operation after updateStateByKey.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint(".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(

StateSpec.function(mappingFunc))

val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {

val sum = one.getOrElse(0) + state.getOption.getOrElse(0)

state.update(sum)

(word, sum)

}

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 15 / 1

Transform Operation

I Allows arbitrary RDD-to-RDD functions to be applied on a DStream.

I Apply any RDD operation that is not exposed in the DStream API,
e.g., joining every RDD in a DStream with another RDD.

// RDD containing spam information

val spamInfoRDD = ssc.sparkContext.newAPIHadoopRDD(...)

val cleanedDStream = wordCounts.transform(rdd => {

// join data stream with spam information to do data cleaning

rdd.join(spamInfoRDD).filter(...)

...

})

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 16 / 1

Spark Streaming and DataFrame

val words: DStream[String] = ...

words.foreachRDD { rdd =>

// Get the singleton instance of SQLContext

val sqlContext = SQLContext.getOrCreate(rdd.sparkContext)

import sqlContext.implicits._

// Convert RDD[String] to DataFrame

val wordsDataFrame = rdd.toDF("word")

// Register as table

wordsDataFrame.registerTempTable("words")

// Do word count on DataFrame using SQL and print it

val wordCountsDataFrame =

sqlContext.sql("select word, count(*) as total from words group by word")

wordCountsDataFrame.show()

}

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 17 / 1

GraphX

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 18 / 1

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 19 / 1

Introduction

I Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

I Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 20 / 1

Large Graph

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 21 / 1

Can we use platforms like MapReduce or Spark, which are based on data-parallel

model, for large-scale graph proceeding?

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 22 / 1

Graph-Parallel Processing

I Restricts the types of computation.

I New techniques to partition and distribute graphs.

I Exploit graph structure.

I Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 23 / 1

Data-Parallel vs. Graph-Parallel Computation (1/3)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 24 / 1

Data-Parallel vs. Graph-Parallel Computation (2/3)

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 25 / 1

Data-Parallel vs. Graph-Parallel Computation (2/3)

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 25 / 1

Data-Parallel vs. Graph-Parallel Computation (3/3)

I Moving between table and graph views of the same physical data.

I Inefficient: extensive data movement and duplication across the net-
work and file system.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 26 / 1

GraphX

I Unifies data-parallel and graph-parallel systems.

I Tables and Graphs are composable views of the same physical data.

I Implemented on top of Spark.

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 27 / 1

GraphX vs. Data-Parallel/Graph-Parallel Systems

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 28 / 1

GraphX vs. Data-Parallel/Graph-Parallel Systems

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 28 / 1

Property Graph

I Represented using two Spark RDDs:
• Edge collection: VertexRDD
• Vertex collection: EdgeRDD

// VD: the type of the vertex attribute

// ED: the type of the edge attribute

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 29 / 1

Triplets

I The triplet view logically joins the vertex and edge properties yielding
an RDD[EdgeTriplet[VD, ED]].

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 30 / 1

Example Property Graph (1/3)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 31 / 1

Example Property Graph (2/3)

val sc: SparkContext

// Create an RDD for the vertices

val users: VertexRDD[(String, String)] = sc.parallelize(

Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),

(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges

val relationships: EdgeRDD[String] = sc.parallelize(

Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),

Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user

val defaultUser = ("John Doe", "Missing")

// Build the initial Graph

val userGraph: Graph[(String, String), String] =

Graph(users, relationships, defaultUser)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 32 / 1

Example Property Graph (3/3)

// Constructed from above

val userGraph: Graph[(String, String), String]

// Count all users which are postdocs

userGraph.vertices.filter((id, (name, pos)) => pos == "postdoc").count

// Count all the edges where src > dst

userGraph.edges.filter(e => e.srcId > e.dstId).count

// Use the triplets view to create an RDD of facts

val facts: RDD[String] = graph.triplets.map(triplet =>

triplet.srcAttr._1 + " is the " +

triplet.attr + " of " + triplet.dstAttr._1)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 33 / 1

Property Operators

def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]

def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]

def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

val newGraph = graph.mapVertices((id, attr) => mapUdf(id, attr))

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 34 / 1

Structural Operators

def reverse: Graph[VD, ED]

def subgraph(epred: EdgeTriplet[VD, ED] => Boolean,

vpred: (VertexId, VD) => Boolean): Graph[VD, ED]

def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]

// Run Connected Components

val ccGraph = graph.connectedComponents() // No longer contains missing field

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

// Restrict the answer to the valid subgraph

val validCCGraph = ccGraph.mask(validGraph)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 35 / 1

Join Operators

def joinVertices[U](table: RDD[(VertexId, U)])(map: (VertexId, VD, U) => VD):

Graph[VD, ED]

def outerJoinVertices[U, VD2](table: RDD[(VertexId, U)])

(map: (VertexId, VD, Option[U]) => VD2):

Graph[VD2, ED]

val outDegrees: VertexRDD[Int] = graph.outDegrees

val degreeGraph = graph.outerJoinVertices(outDegrees) {

(id, oldAttr, outDegOpt) =>

outDegOpt match {

case Some(outDeg) => outDeg

case None => 0 // No outDegree means zero outDegree

}

}

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 36 / 1

Neighborhood Aggregation

def aggregateMessages[Msg: ClassTag](

sendMsg: EdgeContext[VD, ED, Msg] => Unit, // map

mergeMsg: (Msg, Msg) => Msg, // reduce

tripletFields: TripletFields = TripletFields.All):

VertexRDD[Msg]

val graph: Graph[Double, Int] = ...

val olderFollowers: VertexRDD[(Int, Double)] =

graph.aggregateMessages[(Int, Double)](triplet =>

{ // Map Function

if (triplet.srcAttr > triplet.dstAttr) {

// Send message to destination vertex containing counter and age

triplet.sendToDst(1, triplet.srcAttr)

}

},

// Reduce Function

(a, b) => (a._1 + b._1, a._2 + b._2)

)

val avgAgeOfOlderFollowers: VertexRDD[Double] = olderFollowers.mapValues(

(id, value) => value match {case (count, totalAge) => totalAge / count})

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 37 / 1

Summary

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 38 / 1

Summary

I Spark streaming
• Mini-batch processing
• DStream (sequence of RDDs)
• Transformations, e.g., stateful, window, join, transform, ...

I GraphX
• Unifies graph-parallel and data-prallel models
• Property graph (VertexRDD and EdgeRDD)

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 39 / 1

Questions?

Amir H. Payberah (SICS) Spark Streaming and GraphX June 30, 2016 40 / 1

