An Introduction to Apache Spark

Amir H. Payberah

amir@sics.se

SICS Swedish ICT

SICS

-
Big Data

Congratulatiens, “
it only took you |
65298 seconds

wrerer jolyon 6o uk

small data big data

 AmirH, Pagbersh (SICS) Apache Spark Feb. 2,2016 2/ 67

Big Data

T DevOps Borat
"\,-’ @DEVOPS_BORAT

Small Data is when is fit in RAM.
Big Data is when is crash because
is not fit in RAM.

2/6/13, 8:22 AM

« 1T K eee

Amir H. Payberah (SICS) Apache Spark Feb. 2, 2016

3/67

How To Store and Process
Big Data?

Scale Up vs. Scale Out

» Scale up or scale vertically

» Scale out or scale horizontally

Amir H. Payberah (SICS) Apache Spark Feb. 2, 2016 5/ 67

HBASE
i@’hadaap

B
g
)
>

Dato YK Spark
‘"fw**‘m;di ')

computing platform ‘\‘
Google Cloud plarform

VAVAY

AVAVA
AVAVAYA

Amir H. Payberah (SICS) Apache Spark Feb. 2, 2016 6 /67

-
Three Main Layers: Big Data Stack

Data Processing Layer

Storage Layer

Resource Management Layer

C AmiH Pabersh (SICS) ApacheSpak TR

Resource Management Layer

Data Processing Layer

Storage Layer

Resource Management Layer

Resource Management Tools

C AmiH Pabersh (SICS) ApacheSpak .

Storage Layer

Data Processing Layer

Storage Layer

Cache
Operational Store

Logging System

Distributed File System

Resource Management Layer

Processing Layer

Data Processing Layer

Higher Interface

Processing Engines

Metadata

Storage Layer

Resource Management Layer

Spark Processing Engine

Spcﬁ‘(z

Spark Spark _
Streaming GraphX MLIib

Spark

Cluster Programming Model

Warm-up Task (1/2)

» We have a huge text document.
» Count the number of times each distinct word appears in the file

» Application: analyze web server logs to find popular URLs.

N

I
Warm-up Task (2/2)

» File is too large for memory, but all (word, count) pairs fit in mem-
ory.

» words(doc.txt) | sort | uniq -c

NN
Warm-up Task in MapReduce

» words(doc.txt) | sort | uniq -c

NN
Warm-up Task in MapReduce

» words(doc.txt) | sort | uniq -c

» Sequentially read a lot of data.

Map Shuffle Reduce
A

NN
Warm-up Task in MapReduce

» words(doc.txt) | sort | uniq -c
» Sequentially read a lot of data.

» Map: extract something you care about.

Map Shuffle Reduce
A

NN
Warm-up Task in MapReduce

» words(doc.txt) | sort | uniq -c
» Sequentially read a lot of data.
» Map: extract something you care about.

» Group by key: sort and shuffle.

Map Shuffle Reduce
A

NN
Warm-up Task in MapReduce

» words(doc.txt) | sort | uniq -c

v

Sequentially read a lot of data.

v

Map: extract something you care about.

v

Group by key: sort and shuffle.

v

Reduce: aggregate, summarize, filter or transform.

Map Shuffle Reduce
A

NN
Warm-up Task in MapReduce

» words(doc.txt) | sort | uniq -c

v

Sequentially read a lot of data.

v

Map: extract something you care about.

v

Group by key: sort and shuffle.

v

Reduce: aggregate, summarize, filter or transform.

v

Write the result. Map Shuffle Reduce

NS
Example: Word Count

» Consider doing a word count of the following file using MapReduce:

Hello World Bye World
Hello Hadoop Goodbye Hadoop

NS
Example: Word Count - map

» The map function reads in words one a time and outputs (word, 1)
for each parsed input word.

» The map function output is:

(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)

NS
Example: Word Count - shuffle

» The shuffle phase between map and reduce phase creates a list of
values associated with each key.

» The reduce function input is:

(Bye, (1))
(Goodbye, (1))
(Hadoop, (1, 1))
(Hello, (1, 1))
(World, (1, 1))

Example: Word Count - reduce

» The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

» The output of the reduce function is the output of the MapReduce
job:

(Bye, 1)
(Goodbye, 1)
(Hadoop, 2)
(Hello, 2)
(World, 2)

Example: Word Count - map

Example: Word Count - reduce

Example: Word Count - driver

Data Flow Programming Model

» Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

» Benefits of data flow: runtime can decide where to run tasks and
can automatically recover from failures.

)
Input Output

-
Data Flow Programming Model

» Most current cluster programming models are based on acyclic data
flow from stable storage to stable storage.

» Benefits of data flow:

can automatically recover from failures.

runtime can decide where to run tasks and

» MapReduce greatly simplified big data analysis on large unreliable

clusters.

Input

(W)

=0
O3
(W)

SR
Output

Feb. 2, 2016

23/ 67

I
MapReduce Limitation

» MapReduce programming model has not been designed for complex
operations, e.g., data mining.

» Very expensive (slow), i.e., always goes to disk and HDFS.

)

)
Input 0 0 Output

(™) (O—®
©

HDFS HDFS HDFS HDFsS HDFS
<

" Read

Read Write [~ Read Write
_ - -

Input

I
Spark (1/3)

» Extends MapReduce with more operators.
» Support for advanced data flow graphs.

» In-memory and out-of-core processing.

(D—®
O~

| Hadoop |1 Spark |

I
Spark (2/3)

I
Spark (2/3)

=)

NSNS
Spark (3/3)

|

Resultsl

!

Resultsl

|

Resultsl

\

NSNS
Spark (3/3)

|

Resultsl

\

Resultsl

|

Resultsl

\

Results1
J

Resultsl
\/_

I

Input Resultsl

—

.
Resilient Distributed Datasets (RDD) (1/2)

» A distributed memory abstraction.

» Immutable collections of objects spread across a cluster.
e Like a LinkedList <MyObjects>

.
Resilient Distributed Datasets (RDD) (2/2)

» An RDD is divided into a number of partitions, which are atomic
pieces of information.

» Partitions of an RDD can be stored on different nodes of a cluster.

Resilient Distributed Datasets (RDD) (2/2)

» An RDD is divided into a number of partitions, which are atomic
pieces of information.

» Partitions of an RDD can be stored on different nodes of a cluster.

» Built through coarse grained transformations, e.g., map, filter,
join.

NSNS
Spark Programming Model

» Job description based on directed acyclic graphs (DAG).

Creating RDDs

» Turn a collection into an RDD.

BN
Creating RDDs

» Turn a collection into an RDD.

» Load text file from local FS, HDFS, or S3.

S
RDD Higher-Order Functions

» Higher-order functions: RDDs operators.

» There are two types of RDD operators: transformations and actions.

I
RDD Transformations - Map

» All pairs are independently processed.

RRAR
L

I
RDD Transformations - Map

» All pairs are independently processed.

RRAR
L

RDD Transformations - Reduce

- Em

» Pairs with identical key are grouped. -;IE:.—E—:E
. - =

> ===
Groups are independently processed. -—)i.---i

RDD Transformations - Reduce

I |

» Pairs with identical key are grouped. -E::E-:E
. - =

» s
Groups are independently processed. -'_>=..---i

RDD Transformations - Join

» Performs an equi-join on the key.

» Join candidates are independently pro-
cessed.

RDD Transformations - Join

» Performs an equi-join on the key.

» Join candidates are independently pro-
cessed.

Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

I
Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

» Return an array with the first n elements of the RDD.

I
Basic RDD Actions (1/2)

» Return all the elements of the RDD as an array.

» Return an array with the first n elements of the RDD.

» Return the number of elements in the RDD.

I
Basic RDD Actions (2/2)

» Aggregate the elements of the RDD using the given function.

I
Basic RDD Actions (2/2)

» Aggregate the elements of the RDD using the given function.

» Write the elements of the RDD as a text file.

I
SparkContext

» Main entry point to Spark functionality.
» Available in shell as variable sc.

» In standalone programs, you should make your own.

-
Example: Word Count

val textFile = sc.textFile("hdfs://...")
val words = textFile.flatMap(line => line.split(" "))
val ones = words.map(word => (word, 1))

val counts = ones.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

textFile (RDD) words (RDD) ones (RDD)
HDFS k Hello (Hello, 1) counts (RDD) HDFS
World (World, 1) (Hello,2)
50 (Bye, 1) (World, 2)
- World (World, 1) .

(Bye, 1)

Hello (Hello, 1)
Hadoop (Hadoop, 1)
Goodbye (Goodbye, 1)
Hadoop (Hadoop, 1)

(Hadoop, 2)
(Goodbye, 1)

Hello World Bye World
Hello Hadoop Goodbye Hadoop

Feb. 2, 2016 39 / 67

-
Example: Word Count

val textFile = sc.textFile("hdfs://...")

val counts = textFile.flatMap(line => line.split(" "))
.map (word => (word, 1))
.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

textFile (RDD) words (RDD) ones (RDD)

HDFS Hello (Hello, 1)
k World (World, 1)

Bye (Bye, 1)
- World (World, 1)

counts (RDD) HDFS

(Hello, 2)
(World, 2)

(Bye, 1)
(Hadoop, 2)
(Goodbye, 1)

Hello (Hello, 1)
Hadoop (Hadoop, 1)
Goodbye (Goodbye, 1)
Hadoop (Hadoop, 1)

Hello World Bye World
Hello Hadoop Goodbye Hadoop

Feb. 2, 2016 40 / 67

Lineage
file: | Do
» Lineage: transformations used to build) Filtered Dataset
sics: func = _.contains(...)
an RDD.

» RDDs are stored as a chain of objects cachedsics:
capturing the lineage of each RDD.

Mapped Dataset

ones:
func=_=>1

Spark Execution Plan

@ Connects to a cluster manager, which allocate resources across ap-

plications.

@ Acquires executors on cluster nodes (worker processes) to run com-
putations and store data.

@ Sends app code to the executors.

@ Sends tasks for the executors to run.

/

Driver Program

Worker Node

Exectuor m
[task] task |

Cluster M

SparkContext

N\

Worker Node

R cache |
[task] task |

Feb. 2, 2016

42 / 67

Spark SQL

Spark SQL

.‘ipcwr‘llz'z sQL

Spark .

DataFrame API

Spark
Streaming

Spark

DataFrame
» A DataFrame is a distributed collection of rows with a homogeneous
schema.
» It is equivalent to a table in a relational database.

v

It can also be manipulated in similar ways to RDDs.

v

DataFrames are lazy.

|
Adding Schema to RDDs

» Spark + RDD: functional transformations on partitioned collections
of opaque objects.

» SQL + DataFrame: declarative transformations on partitioned col-
lections of tuples.

EEnER > -

 AmirH, Pagberah (SICS) Apache Spark Feb. 2,2016 46 / 67

Creating DataFrames

» The entry point into all functionality in Spark SQL is the
SQLContext.

DataFrame Operations (1/2)

» Domain-specific language for structured data manipulation.

DataFrame Operations (2/2)

» Domain-specific language for structured data manipulation.

BN
Running SQL Queries Programmatically

» Running SQL queries programmatically and returns the result as a
DataFrame.

» Using the sql function on a SQLContext.

|
Converting RDDs into DataFrames

Converting RDDs into DataFrames

// Define the schema using a case class.
case class Person(name: String, age: Int)

// Create an RDD of Person objects and register it as a table.
val people = sc.textFile(...).map(_.split(","))
.map(p => Person(p(0), p(1).trim.toInt)).toDF()

people.registerTempTable ("people")

// SQL statements can be rTun by using the sql methods provided by sqlContext.
val teenagers = sqlContext
.sql ("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are DataFrames.

teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
teenagers.map(t => "Name: " + t.getAs[String] ("name")).collect()
.foreach(println)

Amir H. Payberah (SICS) Apache Spark Feb. 2, 2016 51 / 67

Spark Streaming

[
Data Streaming

» Many applications must process large streams of live data and pro-
vide results in real-time.

e Wireless sensor networks

e Traffic management applications

e Stock marketing

¢ Environmental monitoring applications

* Fraud detection tools

Stream Processing Systems

» Stream Processing Systems (SPS): data-in-motion analytics
* Processing information as it flows, without storing them persistently.

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.

L
DBMS vs. SPS (1/2)

» DBMS: persistent data where updates are relatively infrequent.

» SPS: transient data that is continuously updated.

.
DBMS vs. SPS (2/2)

» DBMS: runs queries just once to return a complete answer.

» SPS: executes standing queries, which run continuously and provide
updated answers as new data arrives.

SPS Architecture

» Data source: producer of streaming data.
» Data sink: consumer of results.

» Data stream is unbound and broken into a sequence of individual
data items, called tuples.

—>©
—)>©

Sink

Oessse>

Source

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Treats each batch of data as RDDs and processes them using RDD
operations.

» Finally, the processed results of the RDD operations are returned in

batches.
input data batches of batches of
stream Spark input data Spark processed data
| streaming |1 Engine |1

Discretized Stream Processing (DStream)

» DStream: sequence of RDDs representing a stream of data.
o TCP sockets, Twitter, HDFS, Kafka, ...

input data batches of batches of
stream Spark input data Spark processed data
| streaming |CICJ,>| Engine |CJIC)

RDD@time1 RDD@time2 RDD@time3 RDD @ time4
- data from data from .| datafrom >
time 1to 2 time2to3 time3to4

DStream == datafrom
timeOtol

Discretized Stream Processing (DStream)

» DStream: sequence of RDDs representing a stream of data.
o TCP sockets, Twitter, HDFS, Kafka, ...

input data batches of batches of
stream Spark input data Spark processed data
C——| streaming [[JCIC)| Engine |

RDD@time1 RDD@time2 RDD@time3 RDD @ time4
- data from . datafrom .| datafrom >
time 1to 2

time2to3 time3to4

DStream == datafrom
timeOtol

» Initializing Spark streaming

val scc = new StreamingContext(master, appName, batchDuration,
[sparkHome] , [jars])

C AmiH Pabersh SICS) ApacheSpak FENETEESe

B
DStream API

» Transformations: modify data from on DStream to a new DStream.
» Standard RDD operations: map, join, ...

lines | finesfrom | _| linesfrom | _| linesfrom | _ | linesfrom | .
DStream time Oto 1 time 1to 2 time2to3 time3to 4
flatMap
operation

words from | _ | words from
time 1to 2 time2to3

words | wordsfrom | _| .| words from >
DStream timeOto1 time3tod

N
DStream API

» Transformations: modify data from on DStream to a new DStream.
» Standard RDD operations: map, join, ...

lines from
'I time3to 4 I- >

lines from I__{ lines from

lines | linesfrom |
DStream time Oto 1 time 1to 2 time 2to3

flathap
operation

words | wordsfrom | _|
DStream time 0to 1

words from
'I time 3to 4 |' >

words from | _ | words from
time 1to 2 time2to3

» Window operations: group all the records from a sliding window of the
past time intervals into one RDD: window, reduceByAndWindow, ...

tme1 tme2 tme3 time4 tme5
original
DStream o a
window-based
operation

windowed
DStream L

window window window

attime 1 attime 3 attime 5

Window length: the duration of the window.
Slide interval: the interval at which the operation is performed.

C AmiH Pabersh (SICS) ApacheSpak FENETEEe

.
Example 1 (1/3)

» Get hash-tags from Twitter.

Twitter streaming API | batch @ t | | batch @ t+1 | batch @ t+2 | |:>

tweetsDstream (] |] (L1 J LL1J)— Stored in memory as an RDD
ﬂﬂﬂ mﬂ (immutable, distributed)

.
Example 1 (2/3)

» Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))
val tweets = ssc.twitterStream(<username>, <password>)
val hashTags = tweets.flatMap(status => getTags(status))

Twitter streaming APl [_batch @t | [batch @ t+1_| [batch @ t+2 |[:>

tweets DStream

I flatMap ’ flatMap ’ flatMap

hashTags Dstream [
[#cat, #dog, .

New RDDs created for
every batch

-
Example 1 (3/3)

» Get hash-tags from Twitter.

val ssc = new StreamingContext("local[2]", "test", Seconds(1))
val tweets = ssc.twitterStream(<username>, <password>)

val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles ("hdfs://...")

Twitter streaming APl [_batch @t | [[batch @ t+1_| [batch @ t+2 ||:>

tweets DStream

‘ flatMap | flatMap ‘ flatMap

hashTags Dstream (

@Q@ 'Q@ UQ@

Every batch saved
to HDFS

Feb. 2,2016 63/ 67

-
Example 2

| 4

val
val
val
val
val

Count frequency of words received in last minute.

ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
lines = ssc.socketTextStream(args(1), args(2).tolInt)

words = lines.flatMap(_.split(" "))

ones = words.map(x => (x, 1))

freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))

words ones freqs
Time= 0-1 (] freqs_60s

C AmiH Pabersh (SICS) ApacheSpak YR

Summary

Summary

v

How to store and process big data? scale up vs. scalue out

v

Cluster programming model: dataflow

v

Spark: RDD (transformations and actions)

v

Spark SQL: DataFrame (RDD + schema)

v

Spark Streaming: DStream (sequence of RDDs)

Questions?

