An Introduction to Apache Spark

Amir H. Payberah amir@sics.se

SICS Swedish ICT

Big Data

small data

big data

Big Data

DevOps Borat

@DEVOPS_BORAT

Small Data is when is fit in RAM. Big Data is when is crash because is not fit in RAM.

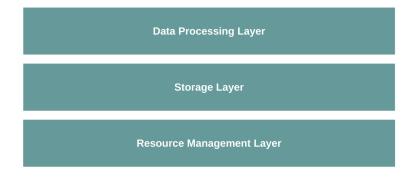
2/6/13, 8:22 AM

How To Store and Process Big Data?

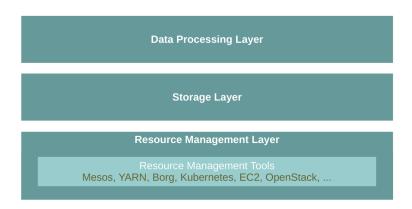
Scale Up vs. Scale Out

- ► Scale up or scale vertically
- ► Scale out or scale horizontally

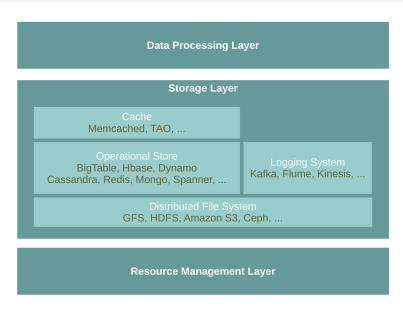
Three Main Layers: Big Data Stack



Resource Management Layer



Storage Layer



Processing Layer

Spark Processing Engine



Cluster Programming Model

Warm-up Task (1/2)

- ► We have a huge text document.
- ► Count the number of times each distinct word appears in the file
- ► Application: analyze web server logs to find popular URLs.

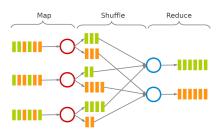
Warm-up Task (2/2)

► File is too large for memory, but all ⟨word, count⟩ pairs fit in memory.

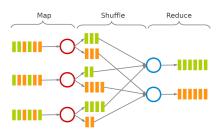
▶ words(doc.txt) | sort | uniq -c

► words(doc.txt) | sort | uniq -c

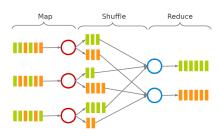
- ▶ words(doc.txt) | sort | uniq -c
- ► Sequentially read a lot of data.



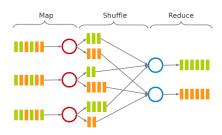
- ▶ words(doc.txt) | sort | uniq -c
- Sequentially read a lot of data.
- ► Map: extract something you care about.



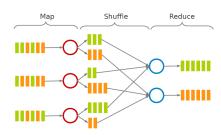
- ▶ words(doc.txt) | sort | uniq -c
- Sequentially read a lot of data.
- ► Map: extract something you care about.
- ► Group by key: sort and shuffle.



- ▶ words(doc.txt) | sort | uniq -c
- Sequentially read a lot of data.
- ► Map: extract something you care about.
- ► Group by key: sort and shuffle.
- ► Reduce: aggregate, summarize, filter or transform.



- ▶ words(doc.txt) | sort | uniq -c
- Sequentially read a lot of data.
- ► Map: extract something you care about.
- ► Group by key: sort and shuffle.
- ► Reduce: aggregate, summarize, filter or transform.
- Write the result.



Example: Word Count

► Consider doing a word count of the following file using MapReduce:

Hello World Bye World Hello Hadoop Goodbye Hadoop

Example: Word Count - map

- ► The map function reads in words one a time and outputs (word, 1) for each parsed input word.
- ► The map function output is:

```
(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)
```

Example: Word Count - shuffle

- ► The shuffle phase between map and reduce phase creates a list of values associated with each key.
- ► The reduce function input is:

```
(Bye, (1))
(Goodbye, (1))
(Hadoop, (1, 1))
(Hello, (1, 1))
(World, (1, 1))
```

Example: Word Count - reduce

- The reduce function sums the numbers in the list for each key and outputs (word, count) pairs.
- ► The output of the reduce function is the output of the MapReduce job:

```
(Bye, 1)
(Goodbye, 1)
(Hadoop, 2)
(Hello, 2)
(World, 2)
```

Example: Word Count - map

```
public static class MyMap extends Mapper<...> {
 private final static IntWritable one = new IntWritable(1):
 private Text word = new Text();
 public void map(LongWritable key, Text value, Context context)
   throws IOException, InterruptedException {
   String line = value.toString();
   StringTokenizer tokenizer = new StringTokenizer(line);
   while (tokenizer.hasMoreTokens()) {
      word.set(tokenizer.nextToken());
      context.write(word, one);
```

Example: Word Count - reduce

```
public static class MyReduce extends Reducer<...> {
  public void reduce(Text key, Iterator<...> values, Context context)
    throws IOException, InterruptedException {
    int sum = 0;

    while (values.hasNext())
        sum += values.next().get();

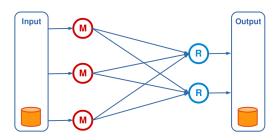
    context.write(key, new IntWritable(sum));
    }
}
```

Example: Word Count - driver

```
public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = new Job(conf, "wordcount");
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 job.setMapperClass(MyMap.class);
 job.setCombinerClass(MyReduce.class);
 job.setReducerClass(MyReduce.class);
 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 job.waitForCompletion(true);
```

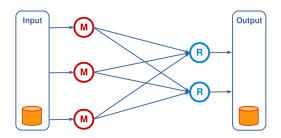
Data Flow Programming Model

- Most current cluster programming models are based on acyclic data flow from stable storage to stable storage.
- ► Benefits of data flow: runtime can decide where to run tasks and can automatically recover from failures.



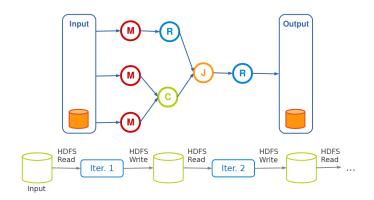
Data Flow Programming Model

- Most current cluster programming models are based on acyclic data flow from stable storage to stable storage.
- ► Benefits of data flow: runtime can decide where to run tasks and can automatically recover from failures.
- MapReduce greatly simplified big data analysis on large unreliable clusters.



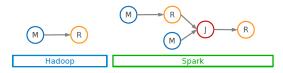
MapReduce Limitation

- MapReduce programming model has not been designed for complex operations, e.g., data mining.
- ▶ Very expensive (slow), i.e., always goes to disk and HDFS.



Spark (1/3)

- ► Extends MapReduce with more operators.
- ► Support for advanced data flow graphs.
- ► In-memory and out-of-core processing.

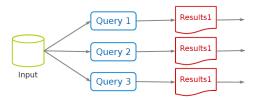


Spark (2/3)

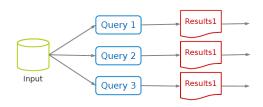


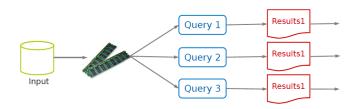
Spark (2/3)

Spark (3/3)



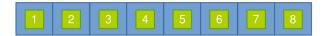
Spark (3/3)





Resilient Distributed Datasets (RDD) (1/2)

- ► A distributed memory abstraction.
- ▶ Immutable collections of objects spread across a cluster.
 - Like a LinkedList <MyObjects>



Resilient Distributed Datasets (RDD) (2/2)

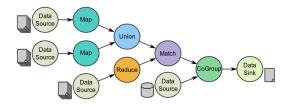
- ► An RDD is divided into a number of partitions, which are atomic pieces of information.
- ▶ Partitions of an RDD can be stored on different nodes of a cluster.

Resilient Distributed Datasets (RDD) (2/2)

- ► An RDD is divided into a number of partitions, which are atomic pieces of information.
- ▶ Partitions of an RDD can be stored on different nodes of a cluster.
- ▶ Built through coarse grained transformations, e.g., map, filter, join.

Spark Programming Model

▶ Job description based on directed acyclic graphs (DAG).



Creating RDDs

► Turn a collection into an RDD.

```
val a = sc.parallelize(Array(1, 2, 3))
```

Creating RDDs

► Turn a collection into an RDD.

```
val a = sc.parallelize(Array(1, 2, 3))
```

▶ Load text file from local FS, HDFS, or S3.

```
val a = sc.textFile("file.txt")
val b = sc.textFile("directory/*.txt")
val c = sc.textFile("hdfs://namenode:9000/path/file")
```

RDD Higher-Order Functions

- ► Higher-order functions: RDDs operators.
- ► There are two types of RDD operators: transformations and actions.

RDD Transformations - Map

► All pairs are independently processed.

RDD Transformations - Map

► All pairs are independently processed.


```
// passing each element through a function.
val nums = sc.parallelize(Array(1, 2, 3))
val squares = nums.map(x => x * x) // {1, 4, 9}

// selecting those elements that func returns true.
val even = squares.filter(x => x % 2 == 0) // {4}

// mapping each element to zero or more others.
nums.flatMap(x => Range(0, x, 1)) // {0, 0, 1, 0, 1, 2}
```

RDD Transformations - Reduce

- ► Pairs with identical key are grouped.
- ► Groups are independently processed.

RDD Transformations - Reduce

- Pairs with identical key are grouped.
- Groups are independently processed.


```
val pets = sc.parallelize(Seq(("cat", 1), ("dog", 1), ("cat", 2)))
pets.reduceByKey((x, y) => x + y)
// {(cat, 3), (dog, 1)}

pets.groupByKey()
// {(cat, (1, 2)), (dog, (1))}
```

RDD Transformations - Join

- ► Performs an equi-join on the key.
- ▶ Join candidates are independently processed.

RDD Transformations - Join

- ▶ Performs an equi-join on the key.
- Join candidates are independently processed.

Basic RDD Actions (1/2)

▶ Return all the elements of the RDD as an array.

```
val nums = sc.parallelize(Array(1, 2, 3))
nums.collect() // Array(1, 2, 3)
```

Basic RDD Actions (1/2)

▶ Return all the elements of the RDD as an array.

```
val nums = sc.parallelize(Array(1, 2, 3))
nums.collect() // Array(1, 2, 3)
```

▶ Return an array with the first n elements of the RDD.

```
nums.take(2) // Array(1, 2)
```

Basic RDD Actions (1/2)

Return all the elements of the RDD as an array.

```
val nums = sc.parallelize(Array(1, 2, 3))
nums.collect() // Array(1, 2, 3)
```

▶ Return an array with the first n elements of the RDD.

```
nums.take(2) // Array(1, 2)
```

▶ Return the number of elements in the RDD.

```
nums.count() // 3
```

Basic RDD Actions (2/2)

▶ Aggregate the elements of the RDD using the given function.

```
nums.reduce((x, y) => x + y)
or
nums.reduce(_ + _) // 6
```

Basic RDD Actions (2/2)

► Aggregate the elements of the RDD using the given function.

```
nums.reduce((x, y) => x + y)
or
nums.reduce(_ + _) // 6
```

▶ Write the elements of the RDD as a text file.

```
nums.saveAsTextFile("hdfs://file.txt")
```

SparkContext

- ► Main entry point to Spark functionality.
- Available in shell as variable sc.
- ▶ In standalone programs, you should make your own.

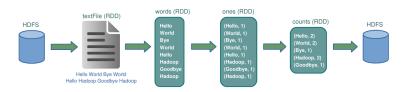
```
val sc = new SparkContext(master, appName, [sparkHome], [jars])
```

Example: Word Count

```
val textFile = sc.textFile("hdfs://...")

val words = textFile.flatMap(line => line.split(" "))
val ones = words.map(word => (word, 1))
val counts = ones.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")
```



Example: Word Count

Lineage

- Lineage: transformations used to build an RDD.
- RDDs are stored as a chain of objects capturing the lineage of each RDD.

```
file: HDFS Text File path = hdfs://...

sics: Filtered Dataset func = _.contains(...)

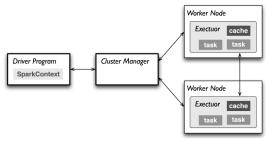
cachedSics: Cached Dataset

ones: Mapped Dataset func = _ => 1
```

```
val file = sc.textFile("hdfs://...")
val sics = file.filter(_.contains("SICS"))
val cachedSics = sics.cache()
val ones = cachedSics.map(_ => 1)
val count = ones.reduce(_+_)
```

Spark Execution Plan

- ① Connects to a cluster manager, which allocate resources across applications.
- Acquires executors on cluster nodes (worker processes) to run computations and store data.
- 3 Sends app code to the executors.
- Sends tasks for the executors to run.



Spark SQL

Spark SQL

Spark
Streaming

Spark
SQL

GraphX

MLlib

DataFrame API

Spark

DataFrame

► A DataFrame is a distributed collection of rows with a homogeneous schema.

- ▶ It is equivalent to a table in a relational database.
- ▶ It can also be manipulated in similar ways to RDDs.
- DataFrames are lazy.

Adding Schema to RDDs

- ► Spark + RDD: functional transformations on partitioned collections of opaque objects.
- ► SQL + DataFrame: declarative transformations on partitioned collections of tuples.

Name	Age	Height
Name	Age	Height

Creating DataFrames

► The entry point into all functionality in Spark SQL is the SQLContext.

```
val sc: SparkContext // An existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val df = sqlContext.read.json(...)
```

DataFrame Operations (1/2)

► Domain-specific language for structured data manipulation.

```
// Show the content of the DataFrame
df.show()
// age name
// null Michael
// 30 Andy
// 19 Justin
// Print the schema in a tree format
df.printSchema()
// root.
// |-- age: long (nullable = true)
// |-- name: string (nullable = true)
// Select only the "name" column
df.select("name").show()
// name
// Michael
// Andu
// Justin
```

DataFrame Operations (2/2)

► Domain-specific language for structured data manipulation.

```
// Select everybody, but increment the age by 1
df.select(df("name"), df("age") + 1).show()
// name (age + 1)
// Michael null
// Andy 31
// Justin 20
// Select people older than 21
df.filter(df("age") > 21).show()
// age name
// 30 Andy
// Count people by age
df.groupBy("age").count().show()
// age count
// null 1
// 19 1
// 30 1
```

Running SQL Queries Programmatically

- ► Running SQL queries programmatically and returns the result as a DataFrame.
- ▶ Using the sql function on a SQLContext.

```
val sqlContext = ... // An existing SQLContext
val df = sqlContext.sql("SELECT * FROM table")
```

Converting RDDs into DataFrames

Converting RDDs into DataFrames

```
// Define the schema using a case class.
case class Person(name: String, age: Int)
// Create an RDD of Person objects and register it as a table.
val people = sc.textFile(...).map(_.split(","))
               .map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people")
// SQL statements can be run by using the sql methods provided by sqlContext.
val teenagers = sqlContext
    .sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")
// The results of SQL queries are DataFrames.
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
teenagers.map(t => "Name: " + t.getAs[String]("name")).collect()
         .foreach(println)
```

Spark Streaming

Data Streaming

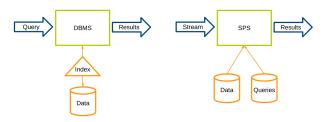
- Many applications must process large streams of live data and provide results in real-time.
 - · Wireless sensor networks
 - Traffic management applications
 - Stock marketing
 - Environmental monitoring applications
 - Fraud detection tools
 - ...

Stream Processing Systems

- ► Stream Processing Systems (SPS): data-in-motion analytics
 - Processing information as it flows, without storing them persistently.
- ► Database Management Systems (DBMS): data-at-rest analytics
 - Store and index data before processing it.
 - Process data only when explicitly asked by the users.

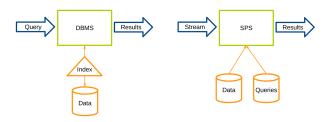
DBMS vs. SPS (1/2)

- ▶ DBMS: persistent data where updates are relatively infrequent.
- ► SPS: transient data that is continuously updated.



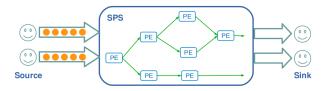
DBMS vs. SPS (2/2)

- ▶ DBMS: runs queries just once to return a complete answer.
- ► SPS: executes standing queries, which run continuously and provide updated answers as new data arrives.



SPS Architecture

- ▶ Data source: producer of streaming data.
- ► Data sink: consumer of results.
- Data stream is unbound and broken into a sequence of individual data items, called tuples.

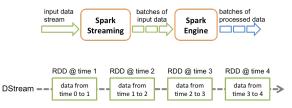


Spark Streaming

- Run a streaming computation as a series of very small, deterministic batch jobs.
 - Chop up the live stream into batches of X seconds.
 - Treats each batch of data as RDDs and processes them using RDD operations.
 - Finally, the processed results of the RDD operations are returned in batches.

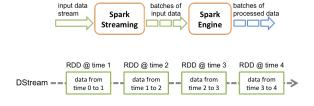
Discretized Stream Processing (DStream)

- ▶ DStream: sequence of RDDs representing a stream of data.
 - TCP sockets, Twitter, HDFS, Kafka, ...



Discretized Stream Processing (DStream)

- ▶ DStream: sequence of RDDs representing a stream of data.
 - TCP sockets, Twitter, HDFS, Kafka, ...



Initializing Spark streaming

```
val scc = new StreamingContext(master, appName, batchDuration,
[sparkHome], [jars])
```

DStream API

- ► Transformations: modify data from on DStream to a new DStream.
 - Standard RDD operations: map, join, ...

DStream API

- ► Transformations: modify data from on DStream to a new DStream.
 - Standard RDD operations: map, join, ...

 Window operations: group all the records from a sliding window of the past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.

Slide interval: the interval at which the operation is performed.

Example 1 (1/3)

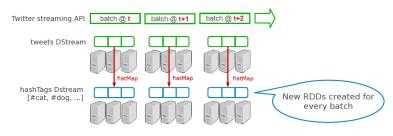
► Get hash-tags from Twitter.

```
val ssc = new StreamingContext("local[2]", "test", Seconds(1))
val tweets = ssc.twitterStream(<username>, <password>)
```


Example 1 (2/3)

► Get hash-tags from Twitter.

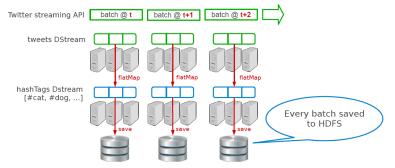
```
val ssc = new StreamingContext("local[2]", "test", Seconds(1))
val tweets = ssc.twitterStream(<username>, <password>)
val hashTags = tweets.flatMap(status => getTags(status))
```



Example 1 (3/3)

Get hash-tags from Twitter.

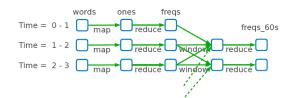
```
val ssc = new StreamingContext("local[2]", "test", Seconds(1))
val tweets = ssc.twitterStream(<username>, <password>)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```



Example 2

► Count frequency of words received in last minute.

```
val ssc = new StreamingContext(args(0), "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(args(1), args(2).toInt)
val words = lines.flatMap(_.split(" "))
val ones = words.map(x => (x, 1))
val freqs_60s = ones.reduceByKeyAndWindow(_ + _, Seconds(60), Seconds(1))
```



Summary

Summary

- ▶ How to store and process big data? scale up vs. scalue out
- Cluster programming model: dataflow
- Spark: RDD (transformations and actions)
- Spark SQL: DataFrame (RDD + schema)
- ► Spark Streaming: DStream (sequence of RDDs)

Questions?