
IN DEGREE PROJECT INFORMATION AND COMMUNICATION
TECHNOLOGY,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2017

daGui: A DataFlow Graphical
User Interface

ADAM UHLIR

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

www.kth.se

i

Abstract

Big Data is growing trend. It focuses on storing and processing a vast
amount of data in distributed environment. There are many frameworks
and tools which enable to work with this data. Many of them utilise Directed
Acyclic Graph (DAG) in some way. It is often used for expressing the dataflow
of computation as it offers a possibility to optimise the execution because
it contains the overview of the whole computation and not only its limited
scopes. This thesis aims at creating Integrated Development Environment
(IDE) like software, which is user-friendly, interactive and easily extendable.
The software enables to draw a DAG which represents the dataflow of a
program. The DAG then can be transformed into a launchable source code.
Moreover, the software offers simple way how to execute the generated source
code. It compiles the code (if necessary), and launches it based on the user’s
configuration either on localhost or cluster. The software primarily aims at
helping beginners with learning these technologies, but experts can also use it
as visualisation for their workflow or as a prototyping tool. The software was
implemented using Electron and Web technologies, which ensures its platform
independence. Its main features are code generation (e.g., translation of a
DAG into the source code) and code execution. It is created with extensibility
in mind, to be able to plug-in support for more frameworks and tools in future.

Big Data är en växande trend. Det fokuserar på att lagra och bearbeta
stora mängder data i en distribuerad omgivning. Det finns flera ramverk och
verktyg med vilka man kan arbeta med denna data. Flera av dem använder
Direct Acyclic Graph (DAG) på något sätt. Det används ofta för att uttrycka
dataflödet av beräkningen tack vare möjligheten att optimera utförandet i och
med att det innehåller en överblick över hela beräkningen och inte bara en
begränsad del. Detta arbetets syfte är att skapa en Integrated Development
Environment (IDE) programvara, vilken är användarvänlig, interaktiv och lätt
att utvidga. Programvaran gör det möjligt att rita en DAG som representerar
ett programs dataflöde. DAG:en kan sedan omvandlas till en utförbar käl-
lkod. Dessutom erbjuder programvaran ett simpelt sätt att köra den skapade
källkoden. Den kompilerar koden (ifall nödvändigt) och kör den baserat på
användarens konfiguration som localhost eller cluster. Programvaran syftar
primärt på att hjälpa nybörjare att lära sig dessa teknologier, men experter
kan också använda den som en visualisation för deras arbetsflöde eller som
ett prototypsverktyg. Programvaran implementerades med Electron och web
teknologier vilka försäkrar plattformens självständighet. Huvudfunktionerna
är skapande av kod (t.ex. översättning av DAG till källkod) och utförande av
kod. Programvaran har skapats så att en utvidgning är möjlig, så att plug-ins
för mer strukturer och verktyg kan stödas i framtiden.

iii

Acknowledgements

I am very grateful to my supervisor Amir H. Payberah, for his guidance and help
during the thesis writing process. He welcomed me with open hands and was always
ready to spend a time to explain me the right way or his point of view on a problem.

My thanks also belong to my next supervisor Keijo Heljanko, who gave me
valuable feedbacks during the writing process and offered me many bits of advice.

I would also like to thank Jim Dowling for making possible to create this thesis
and his valuable feedback.

Lastly, big thanks belong to my friend Peter Sykora, who created the visual
design of daGui and helped me with styling problems.

Contents

Contents v

List of Figures vii

1 Introduction 1
1.1 Contribution . 2

2 Background 3
2.1 Cloud Computing . 3

2.1.1 Scaling . 4
2.1.2 Challenges of distributed environment 5

2.2 Hadoop . 5
2.3 Directed Acyclic Graph (DAG) . 6

2.3.1 Characteristics . 6
2.4 Frameworks overview . 6

2.4.1 Spark . 7
2.4.2 TensorFlow . 8
2.4.3 Storm . 9

2.5 Related work . 10
2.5.1 Seahorse . 10
2.5.2 Spark Web Interfaces . 10
2.5.3 Dataiku . 11

3 Design 13
3.1 Overview . 13

3.1.1 Use-cases and users . 14
3.1.2 Goals . 15

3.2 Graph and its components . 15
3.3 Adapters . 16
3.4 Graph validation . 17
3.5 Code generation . 18
3.6 Code execution . 19
3.7 Code parsing . 19

v

vi CONTENTS

4 Implementation 23
4.1 Technologies . 23
4.2 Other features . 25

4.2.1 Nodes highlighting . 25
4.2.2 Image export . 25

4.3 User Interface . 25
4.4 Platform adapter . 26

4.4.1 Persisting daGui’s files . 28
4.5 Components . 29

4.5.1 App container . 30
4.5.2 Canvas component . 31
4.5.3 Modals component . 32
4.5.4 CodeView component . 32

5 Adapters 33
5.1 Implementing an adapter . 33

5.1.1 Implementing the adapter’s class 33
5.1.2 Node Templates . 35
5.1.3 Adapter’s components . 37
5.1.4 Adapter’s tasks . 38

5.2 Spark adapter . 39
5.2.1 Graph definition . 39
5.2.2 Code generation . 40
5.2.3 Code execution . 44

6 Evaluation 47
6.1 Graph and generated code examples 47
6.2 Discussion . 51

7 Conclusion 53

Bibliography 55

List of Figures

2.1 Example of Spark’s DAG Dataflow. 7
2.2 Example of Spark’s API as presented in [1]. 8
2.3 Example of TensorFlow’s DAG as presented in [2]. 9
2.4 Example of TensorFlow’s API as presented in [2]. 9
2.5 Example of Storm’s DAG. 10
2.6 The interface of Seahorse editor [3]. 11
2.7 Example of Spark’s DAG visualization. 12

3.1 daGui’s logo. 13
3.2 Mock-up of daGui interface with Spark adapter. 14
3.3 Example of nodes, ports (input ports are green and output ports are

red), links and editable fields (grey text outside of the nodes). 16
3.4 Example how the code presented in Listing 3.2 could be parsed and how

the graph could look like with the control flow. 21

4.1 Look of daGui editor. 26
4.2 Execution Configuration modal window with displayed help for config-

uration parameter. 27
4.3 Detail of a node with displayed help for its parameter. 27
4.4 Errors View which informs the user about graph’s error. 28
4.5 Overview of the architecture of daGui. 28
4.6 Overview of the main component in daGui. 30

5.1 Example of a Spark’s DAG with branching. The red line indicates walk-
through of the DFS. 42

5.2 Example of cross-graph dependency between two graphs. The red line
indicates the dependency. 44

5.3 Example of branch dependency between two branches of the same graph.
The red line indicates the dependency. 45

6.1 An example of simple RDD based graph 47
6.2 An example with graph that contains two different types of nodes based

on RDD and DataFram API. 48

vii

viii List of Figures

6.3 An example of conversion an RDD branch into DataFrame. 49
6.4 An example that contains code dependencies between the graph nodes . 50
6.5 An example that contains several not connected graphs that has code

dependencies between them . 51

List of Listings

3.1 Pseudocode of validation of the graph. 18
3.2 Example code which could be parsed. 21
5.1 Example of chaining methods in Python. 40
5.2 Pseudocode of the code generation of the graph. 40
6.1 Generated code for Figure 6.1. 47
6.2 Generated code for Figure 6.2. 48
6.3 Generated code for Figure 6.3. 49
6.4 Generated code for Figure 6.4. 49
6.5 Generated code for Figure 6.5. 50

ix

Chapter 1

Introduction

Data — the primary drive of our time. The birth of Internet enabled easy commu-
nication and exchange of data across any distances. In its beginning, the usage was
very limited, but after several decades Internet became an important part of our
lives. People use the World-Wide-Web to access information, E-Mails to communi-
cate and more recently the uprise of social networks made possible to share small
bits of everybody’s daily lives with their surroundings. But this visible type of data
is just a tip of the “data iceberg”. Just the data exchange itself generates infor-
mation (traffic logs, server logs and so on). Many companies understood that they
need to monitor their infrastructure (for example electric grid, highway traffic and
so on) and lastly the Internet of Things promises to interconnect a vast amount of
devices. All these aspects generate secondary data, which has its primary meaning
(for example logs primarily serves as a tool for the system administrators to resolve
issues), but when the amount of the data is big (units, hundreds, thousands and
more of terabytes), additional processing can bring valuable insights.

Storing and processing of such a large amount of data brings new challenges and
problems. To tackle these issues, there was an important shift toward a distributed
environment, since no single monolith server can store or process that much data
in a reasonable manner (processing time, a price of hardware and so on). To
support such a new paradigm, the community created new projects, tools and
frameworks, which requires a bit different mindset while working with them as the
distributed environment possess specific restrictions and characteristics. To tackle
these challenges authors of several of the frameworks used Directed-Acyclic-Graph
(DAG) dataflow, for example, Apache Spark, TensorFlow and more. The authors
usually employ the DAG for defining the dataflow of computation, which is then
used for planning the execution as it offers ways to optimise it. The developers do
not necessarily need to come in touch with the DAG representation, but for the
in-depth understanding of the technology and advanced usage such as tweaking the
performance of the programs, the understanding is critical.

This thesis aims at creating a simple integrated development environment (IDE)

1

2 CHAPTER 1. INTRODUCTION

like software, which will ease the learning curve of earlier described technologies
based on DAG dataflow execution. The software has to have an easy-to-use envi-
ronment, with high interactivity to create a playground for beginners, where they
can easily explore the technologies without any big hassle of setting up the envi-
ronment (simple as download, install and use). For advanced users, this software
can help them to present their programs as it offers a nice way to visualise the pro-
grams. Lastly, it can be used as prototyping tool as some technologies require more
thinking about the program than others. Developers write less code but need to
think more about its function. An example of such technology can be TensorFlow,
which focus on distributed machine learning. For these kinds of technologies, the
IDE-like software can bring valuable visualisation of the program, which helps the
developer’s mental process and therefore eases the development.

Chapter 2 introduces concepts and overview of distributed computation. Chap-
ter 3 presents the high-level design of the software, which is created as part of this
thesis. Chapter 4 presents used technologies and implementation details. Chap-
ter 5 describes the referential implementation of the Spark adapter and how to
implement custom adapter. Chapter 6 evaluates the results of the software and
Chapter 7 offers concluding remarks.

1.1 Contribution

The main contribution of this thesis is the creation of the IDE-like software which
I released under Open Source licence. Therefore it is simply accessible to the
whole community and ready for further development if the community will find
this software useful.

Chapter 2

Background

This Chapter will present the fundamental information to understand the context
of the thesis and the software which was created as part of this thesis.

Section 2.1 explains the different types of distributed environments and its prop-
erties. Section 2.2 presents the basic overview of Hadoop which is the main platform
for Big Data. After that, the definition of Directed Acyclic Graph (DAG) and its
properties are presented by Section 2.3. In following Section 2.4 introduces several
of frameworks which utilise a DAG in one way or another. The last Section 2.5
surveys projects which are similar or related to this thesis.

2.1 Cloud Computing

The concept of Cloud Computing can be hard to grasp. There are several defini-
tions which specify its attributes, the most widely accepted definition is from the
National Institute of Standards and Technology (NIST) [4]. It defines five basic
Cloud characteristics: on-demand self-service, broad network access, resource pool-
ing, rapid elasticity and measured service. Moreover, it defines two models – service
model and deployment model.

Service model defines what kind of interaction users have with the cloud ser-
vice. It splits the interaction into three levels based on what area of the cloud
infrastructure is accessible to the user.

• Software as a Service (SaaS) – users interact with an application which is
deployed on a cloud infrastructure, and they access it through various kinds
of devices (for example a web browser or mobile devices). The application
behaves as a monolithic unit, so the user is not aware of the deployment setup,
nor application design and implementation.

• Platform as a Service (PaaS) – users create an application, which then they
can deploy on to the provided platform. They can manipulate the application

3

4 CHAPTER 2. BACKGROUND

(configure the application, update it and so on), but can not affect underly-
ing infrastructure (operation system, storage and other configurations). The
platform behaves as a monolithic unit.

• Infrastructure as a Service (IaaS) – users are provided with computing re-
sources (processing units, storage, networks), which they can use for creating
their custom infrastructure for deploying their application.

Deployment model defines by who is the Cloud infrastructure managed and by
whom it is accessible.

• Private cloud – the infrastructure is completely managed by a single organi-
sation for the organisation’s purpose or usage to granted entities.

• Public cloud – the infrastructure is managed by a single organisation, but its
service is accessible to general public.

• Community cloud – the infrastructure is run by one or more organisations
and is intended for a specific community which shares a similar concern.

• Hybrid cloud – the infrastructure is a combination of several distinct types of
deployment infrastructure (private, public or community), but are connected
for usage of the customer.

2.1.1 Scaling
Cloud Computing as described earlier is more focused on the infrastructure. The
infrastructure can be used for wide variety of tasks. An example can be web hosting,
database platform and more. One important use case is to process a large amount
of data. The community started to use the term Big Data for this use case. The size
of the Big Data can vary a lot, for example on Flicker there was uploaded around
611 millions of pictures during the year 2016 [5]. With average picture size of 2
MB, that makes 3,3 TB of photos per day. Just to store such an amount of data
the scalability of the infrastructure is critical. There are two main approaches to
scalability in Cloud environment mentioned by Vaquero et al. [6] – scale vertically
or scale horizontally.

• Vertical scaling – improving the current set up by scaling the machine’s re-
sources. For example by improving the power of CPU or other resources.

• Horizontal scaling – improving the current set up by adding more machines
into the cluster.

Vertical scaling has its limits because increasing the power of the machine is
restricted by the power of its components. Moreover, adding highly powerful com-
ponents is often very expensive, as it requires more specialised hardware, then the

2.2. HADOOP 5

standard commodity components. On the other hand, horizontal scaling can take
advantage of using cheap commodity hardware, but it brings high demands on the
software to manage the distributed environment.

2.1.2 Challenges of distributed environment

Distributed environment for computation brings several problems which need to be
tackled by the software which runs in this environment. Katal et al. [7] surveyed the
main difficulties and issues. They categorised them into five categories – Privacy
and Security, Data Access and Sharing of Information, Storage and Processing
Issues, Analytical challenges, Skill Requirement and Technical challenges.

This section will focus mostly on the Technical challenges.
Fault tolerance: Because of horizontal scaling the cluster contains a high number

of machines, which means that the probability of error of a machine or some of
its component increase enormously. Therefore the fault tolerance and recovery
need to be taken into consideration when designing a software running in such an
environment.

Scalability: As many machines work on the same job, there is a need for coordi-
nation of the tasks. Also, the programs running the computation need to be created
for the distributed environment. As the computation demand might variate, the
platform needs to be flexible about increasing or decreasing the numbers of workers
running the execution.

2.2 Hadoop

In 2003 Ghemawat et al. from Google published work on Google File System
(GFS) [8] and a year later Dean et al. also from Google published work about their
distributed computation framework MapReduce [9]. These two papers inspired
open source community to create open source versions of these projects, and so the
Apache Hadoop platform was created. It is a platform for distributed computa-
tion that tackles challenges mentioned in the previous section. In basic version it
incorporates several modules:

• Hadoop Distribute File System (HDFS) – storage module which creates dis-
tributed file system and handles fault tolerance.

• Yet Another Resource Manager (YARN) – resource manager which schedule
the computation jobs in a cluster.

• MapReduce – a YARN-based system for distributed computation.

As the Hadoop platform was continuously developing, more projects were cre-
ated compatible with Hadoop such as Apache Spark, Apache Hive and more.

6 CHAPTER 2. BACKGROUND

2.3 Directed Acyclic Graph (DAG)

The computation frameworks which will describe the following section, employ di-
rected acyclic graph (DAG) for defining the dataflow of the program’s computation.
This section will define DAG and its characteristics. The definitions follow K. Thu-
lasiraman and M. N. S. Swamy [10].

Definition 1. (Graph) Graph G = (V, E), where V is a finite set of vertices and
E is a finite set of edges. Each edge is defined by a pair of vertices.

Definition 2. (Directed graph) Graph G = (V, E) is called directed graph, if edges
are defined by ordered pairs of vertices.

Definition 3. (Walk) A walk in a graph G = (V, E) is a finite sequence of vertices
v0, v1, v2, ..., vk, where (vi−1, vi), 1 ≤ i ≤ k is an edge in the graph G.

Definition 4. (Closed walk) A walk in a graph G = (V, E) is called closed walk
if the starting and ending vertices are the same, otherwise the walk is called open
walk.

Definition 5. (Cycle) There is a cycle in a graph G = (V, E), if there exists a
closed walk inside the graph.

Definition 6. (Directed acyclic graph) Graph G = (V, E) is called directed acyclic
graph, if the graph is directed and does not contain any cycles.

2.3.1 Characteristics

One of the significant characteristics of DAG is that it has topological ordering and
vice versa, if for directed graph exists topological order, then the graph is a directed
acyclic graph. This characteristic can be used for detecting a DAG as there does
not exist a topological order for a directed graph which contains cycles.

Definition 7. (Topological order) Topological order is a labeling of vertices of n-
vertex directed acyclic graph G with integers from set {1, 2, ..., n}, where an edge
(i, j) in G implies that i < j and the edge is directed from vertex i to vertex j.

2.4 Frameworks overview

This section will enlist several of frameworks for processing Big Data, which in some
way utilise DAG, describe how they employ it and explain the basic programming
paradigm of the frameworks.

2.4. FRAMEWORKS OVERVIEW 7

2.4.1 Spark
As researchers tried to improve upon MapReduce performance, they realised that
there is one main issue – reuse of intermediate data (for example in iterative al-
gorithms). To reuse intermediate data in MapReduce job, the job needs to write
the data into storage system (for example HDFS) between each MapReduce cycle,
which results in expensive I/O operations and slows down the execution.

Figure 2.1: Example of Spark’s DAG Dataflow.

Hence Zaharia et al. [1] proposed resilient distributed datasets (RDDs) that
is an in-memory, fault-tolerant, parallel data structure, which they implemented
into project call Spark (now under Apache Foundation). As it is an in-memory
data structure, it increases performance and eliminates the I/O bottleneck. When
Zaharia et al. were solving fault tolerance of this data structure, they had to
consider the specific characteristics of the in-memory approach. They could not
use replication approach, which was one of the common approaches as it would add
significant computation overhead and memory usage. Instead of that, they came
up with programming model which defines transformations over a data where the
data structure is immutable, so every transformation results in a new object. This
shift enabled to create a lineage of transformations, which then can be used for
re-computation in a case of lost data. An important fact is that, when a data loss
occurs, Spark recomputes only the lost data.

Spark uses a DAG for defining the dataflow of the computation execution.
Through the Spark’s API, the code defines an operator DAG, that is then passed
to DAG Scheduler which performs set of optimisations. It splits the operators into
stages of tasks. A stage consists of tasks based on the partitions of the input data.
The scheduler compress as most tasks as possible into the single stage as all tasks
of a stage are performed on single partitions of the data and does not need any
exchange of data (shuffling). After dividing tasks into stages, they are passed to
Task Scheduler, which handles the planning of execution in cooperation with the
cluster manager.

There are two types of functions in Spark RDD API – transformations and
actions. Transformations take as input an RDD and output also an RDD (for

8 CHAPTER 2. BACKGROUND

example map, filter). Actions take as input an RDD, but output can be anything.
The transformations behave in a lazy manner, and when the code’s executor reach
an action, it evaluates all the previously defined transformations up to the action
and then continues to rest of the code. Figure 2.2 presents a basic list of Spark’s
functions. Except for RDDs API, Spark consists of several other modules which
extend the basic RDDs behaviour:

• DataFrames/Dataset – Declarative API, which enables to use similar con-
structs as in SQL (where, groupBy and so on), even using limited SQL itself.

• Structured Streaming – API to build a streaming application (i.e. application
where the flow of data is continues).

• MLlib – high-level API for using Machine Learning algorithms in distributed
environment.

• GraphX – API for processing graph structures.

Figure 2.2: Example of Spark’s API as presented in [1].

2.4.2 TensorFlow
TensorFlow [2] is a project of Google which was open sourced. It is designed for
large-scale machine learning computation. One of its advantages is the range of
devices which it can operate on, starting from smartphones (Android and iOS),
single machine setup to distributed clusters. Moreover, it supports computation on
both CPU and more importantly GPU, where computation parallelism is used in
very efficient manner.

Compared to Spark’s MLlib, TensorFlow is rather low-level. Instead of being
constrained only to several implemented algorithms (as in MLlib), in TensorFlow

2.4. FRAMEWORKS OVERVIEW 9

Figure 2.3: Example of TensorFlow’s DAG as presented in [2].

you define the exact computation yourself. The computation is defined as a directed
graph, where nodes are operators which modifies tensors that flow along the normal
edges in the graph. Operators can have zero or more inputs and zero or more
outputs. In the case of TensorFlow, the underlying representation is not a DAG
but just a directed graph as it supports looping.

Figure 2.4: Example of TensorFlow’s API as presented in [2].

2.4.3 Storm

Storm [11] is a real-time stream data processing system originally developed in
Twitter (now under Apache Foundation). Twitter developed it to perform real-
time analysis of their data.

Storm uses a directed graph to define the dataflow and computation over the
data. It defines two types of nodes – spouts and bolts. Spouts are input nodes,
which load the from other systems. Bolts are processing nodes which transform the

10 CHAPTER 2. BACKGROUND

incoming data and pass the results to next set of bolts. Similarly, as in TensorFlow,
the representation is not a DAG, but directed graph as Storm supports loops.

Figure 2.5: Example of Storm’s DAG.

2.5 Related work

There are several projects which in some way tackle a similar problem or has other
similarities with the software created in this thesis. This section will describe them.

2.5.1 Seahorse
Seahorse [3] is a graphical user interface for creating Spark jobs developed by com-
pany Deepsense, which specialise on Big Data Science.

The editor focuses on high-level programming of Spark jobs as it offers pre-
defined transformations, so the users do not have to write any code, just simple
drag&drop nodes, connect them and specify its properties. This simplicity enables
to create Spark jobs even for people not so proficient in programming, but still, it
preserves enough flexibility since anybody can define his or her own transformations
in Python or R [3].

Except defining the Spark jobs, Seahorse can execute the jobs in either local or
cluster mode (YARN, Mesos, Standalone).

In the end, Seahorse mainly focuses on data science jobs, and for that, they
adapted whole user interface and range of features.

2.5.2 Spark Web Interfaces
In Spark 1.4 release, the Spark’s developers added DAG visualisation to Spark
Web Interfaces. When a user submits Spark job to cluster, it has its Web inter-
faces, where the user can monitor the status of the job. To make it more easy to
debug Spark jobs, the developers added the Execution DAG visualisation, which
shows how the code of the job, defines the underlying DAG that is used for the
computation. It is purely a visualisation and does not offer any interactivity.

2.5. RELATED WORK 11

Figure 2.6: The interface of Seahorse editor [3].

2.5.3 Dataiku
Where Seahorse is the specialised tool for creating Spark jobs, Dataiku [12] is more
a data science Swiss knife. It is a collaborative platform for data science integrating
wide variate of tools: data connectors (HDFS, No-SQL, SQL...), machine learning
(Scikit-Learn, MLlib, XGboost), data visualisations, data mining, data workflow
and more. All these features are integrated into an easy to use environment, where
many of the definitions can be done by „code or click”. Moreover, Dataiku created
the whole platform with cooperation in mind so the entire team can work in one
environment.

12 CHAPTER 2. BACKGROUND

Figure 2.7: Example of Spark’s DAG visualization.

Chapter 3

Design

This Chapter will cover the high level details of the software which is developed
as part of the thesis. It will describe the basic goals of the software (Section 3.1),
the used Adapter design patter (Section 3.3), graph validation (Section 3.4), code
generation (Section 3.5), code execution (Section 3.6) and lastly code parsing (Sec-
tion 3.7). The software is called daGui and its GitHub repository can be found on
https://github.com/AuHau/daGui.

3.1 Overview

daGui is an integrated development environment (IDE) like software, which is
meant to support an easy development of programs which are based on frame-
works that use directed graph for program representation. It is a general tool,
which provides an extensible platform for working with these frameworks.

Figure 3.1: daGui’s logo.

To have an idea what daGui does and how is it doing see a mock-up of its
basic interface on Figure 3.2. Users drag&drop nodes from the node’s pallet. Then
connect the nodes with directed links, to form a dataflow. After that, fill the
parameters of the nodes (for example filtering function for filter node in Spark)
and if the graph is valid, the code then is generated and can be executed locally or
on a cluster, based on a settings.

13

https://github.com/AuHau/daGui

14 CHAPTER 3. DESIGN

Figure 3.2: Mock-up of daGui interface with Spark adapter.

3.1.1 Use-cases and users

When designing and developing software, it is important to need to know its purpose
and its users. daGui most probably will not be utilised by experienced developers as
primary IDE, because it is more efficient to write the code directly over drag&drop
nodes, link them and fill their properties, but still, there are several valid use-cases
for such software.

One valid use-case for daGui is related to teaching these technologies. For stu-
dents, it might be hard to understand the underlying principles of the technologies,
so the graphical representation of graph can be very helpful. This use-case implies
users who might not be so skilled in programming or with computer interaction,
on the other hand, the users most probably will not be complete beginners in com-
puter science either as the field of Big Data is already a specific subset of computer
science, so some level of programming knowledge is assumed.

Another use-case is a presentation of the programs. Explaining what some piece
of code does, can be sometimes bit challenging. With the graph representation of
the code, this task can become much easier.

The last use-case is connected to prototyping. Some tasks require more thinking

3.2. GRAPH AND ITS COMPONENTS 15

about a problem and playing with the code. An example can be developing machine
learning programs in TensorFlow. This type of tasks does not need huge efficiency,
but more an overview of the problem so new ideas of how to solve a particular
challenge can be developed.

3.1.2 Goals

Before the start of works on daGui, there were several goals defined, that the
program should fulfil.

As it is mainly graphical user interface program, with high interactivity, the
User Experience (UX) of the program is critical. It needs to be easy to control,
with very natural control flow. Particularly since it incorporates graph editor, the
interactivity is higher than in any other typical IDE. This goal also correlates with
the beginner users group identified in Section 3.1.1.

When comes to the main features set of daGui, there were set three main goals
— code generation, code execution and code parsing. Code generation (translation
of DAG into runnable code) is the main purpose as it lays in the core of the whole
concept. Code execution was derived from the UX goal as it introduces a very
convenient way of working with the software, moreover typical IDEs provide ways
how to run and debug code easily. Lastly code parsing is a logical step as it would
introduce more flexibility of usage of the software because it would enable to edit
source code files which were not created with daGui.

As there are many libraries, frameworks and tools which utilise DAG in some
way, daGui aims to be a general platform, which can be easily extended with
support for any of these frameworks in future.

3.2 Graph and its components

This Section will define and describe the graph and its parts that users create in
daGui. On a general level, it is a directed graph with nodes and directed links
(edges). It is up to adapter’s authors to give the nodes and links some specific
meaning.

Every node has a label, which should express the function of the node. Moreover,
it can have an editable field which is placed outside of the node, the adapter’s author
can utilise that, but are not required to do so. For example, Spark’s adapter uses
it for naming variables in generated code.

Node has ports which define the input and output degrees of the node. Ports
are two types: input ports and output ports. The ports are visualised as small
dots on the node with a different colour for each type of the ports. The links
between nodes are created between ports. daGui restricts the input ports, where
one input port can accept only one link, but the output ports are not restricted, so
there can be an unlimited number of links going from an output port (hence every
node needs only one or zero output ports). This configuration currently meets

16 CHAPTER 3. DESIGN

all requirements of the Spark’s adapter, but it might happen that in future these
settings will be generalised and it will be possible to set these constraints with the
adapter’s configuration.

In graph validation, there is used term input nodes. The adapter’s authors
define the input nodes. Often input nodes are those nodes which have zero input
ports (zero input degree), but it does not have to be always the case.

Figure 3.3 shows an example of nodes, ports and links.

Figure 3.3: Example of nodes, ports (input ports are green and output ports are
red), links and editable fields (grey text outside of the nodes).

3.3 Adapters

To fulfil the extensibility goal of daGui, its architecture needed to be built with this
goal kept in mind from the early beginning of its development. daGui uses Adapter
design pattern to define a clear interface between the daGui’s core, which handles
the GUI of the application and parts which define the framework specifics areas. In
this way, every task which is somehow related to the framework is delegated to the
frameworks adapter, and daGui’s core only process the results passed back from the
adapter. An example of such a delegation can be a code generation, where daGui’s
core passes the user’s graph to the adapter and then only presents the adapter’s
output, which is the generated source code that represents the graph together with
some metadata.

Information which defines an adapter:

• Framework’s/library’s/tool’s name.

• Supported programming languages and their versions.

• Supported versions of the framework/library/tool.

• Node templates – definitions of supported nodes.

• Node template grouping – it is possible to group the nodes by their function-
ality, for a better overview.

3.4. GRAPH VALIDATION 17

• Graph validation – the validation of the graph is not delegated to the adapter.
Instead, the adapter defines criteria, which the graph needs to fulfil so that
the adapter could generate valid code. More details in Section 3.4.

Node template defines a type of node in the graph, which is usually translated
into function call during source code generation. The template defines the proper-
ties of the node such as visual look in the graph canvas, the node’s type name and
label, input and output ports, parameters of the function which it will be translated
into and several other details.

Tasks which are delegated to the adapter:

• Code generation – the task translates the given graph into runnable source
code. More details in Section 3.5.

• Code execution – the task takes a generated code from Code generation task
and user’s configuration which specifies the parameters of the execution and
launch it. More details in Section 3.6

• Code parsing – the task takes a source code file and produces graph represen-
tation which is then displayed to a user. More details in Section 3.7.

There are several other tasks which both adapter and node templates perform,
but those are mainly related to the implementation side of the software and are
detailed in Chapter 5.

3.4 Graph validation

To be able to generate code out of the graph, it needs to be verified, that it is valid
by the adapter’s definition. As mentioned in Section 3.3, the framework’s adapter
does not perform the validation itself, but only defines the criteria which the graph
needs to fulfil, and daGui core then evaluates them.

The currently implemented criteria are:

• Has Inputs nodes – the adapter defines what node templates are Input nodes
and then check that there is at least one Input node in the graph present.

• Has all ports connected – check that all ports in all nodes inside of the graph
are linked with some other port.

• Has all required parameters filled in – check that all parameters of the graph’s
nodes, that are required are filled.

• No cycles are present in the graph.

The cycle detection uses the property of DAG that every DAG has a topological
ordering as stated in Section 2.3.1. daGui implements topological sorting algorithm

18 CHAPTER 3. DESIGN

for cycle detection, which works well, but this algorithm does not convey any in-
formation about the location of the cycle, only about its presence. daGui uses for
topological sorting an implementation from JavaScript library written by Marcel
Klehr called toposort 1.

Future improvement will be to implement an algorithm for searching Strongly
connected components, which exactly identifies the cycle inside the graph to better
convey the error information to the user.

def validateGraph (graph , checks):
inputs = []

for node in graph:
if checks . hasConnectedPorts and not

checkAllPortsConnected (node):
addError ()

if checks . hasRequiredParamsFilled and not
checkAllRequiredParamsFilled (node):
addError ()

if isNodeInput (node):
inputs . append (node)

if checks . hasInputNodes and inputs . isEmpty ():
addError ()

if checks . noCycles and graphContainsCycles (graph):
addError ()

Listing 3.1: Pseudocode of validation of the graph.

3.5 Code generation

Code generation (i.e., translation of a graph into the runnable source code) is the
core feature of daGui. The task can vary significantly between frameworks, which
is why it is delegated to the framework’s adapter and not implemented in the daGui
core. For details about the referential implementation see Section 5.2.2.

1https://github.com/marcelklehr/toposort

https://github.com/marcelklehr/toposort

3.6. CODE EXECUTION 19

3.6 Code execution

Code execution is another task which is delegated to the framework’s adapter be-
cause each adapter can use different dependencies, various process calls and so on.

The execution flow is split into two stages:

• Build – a compilation of the generated source code and linking required li-
braries.

• Run – executes the computation with specified configurations.

Not all stages have to be used by the authors of adapters as scripting languages
such as Python does not require the build stage.

Run stage usually needs some parameters for the execution itself. For example
in Spark, these parameters specify where the job should be launched (local mode,
cluster mode, YARN mode and others), how many resources should be allocated
for the job, what libraries should be linked with the program and so on. All these
parameters need to be able to be set. Otherwise, it will limit the users of daGui.
Moreover, from the user experience point of view, it would be convenient if the user
could easily switch between sets of parameters, so the user could try something in
local mode to validate that the code runs as expected on a limited range of data
and then launch it on a cluster with full data range. daGui has a solution, which
is inspired by other IDE software, that is called Execution configurations. The user
can set up an unlimited number of Execution configurations, each can have its set
of parameters, and then the user can easily switch between them.

3.7 Code parsing

Code parsing is the last main feature which was defined to be achieved. Its im-
portance is in the fact that it will enable to import any source file into daGui and
therefore it will remove the restriction that only files originating from daGui are
compatible with daGui. As this task is again adapter and language specific, it
will be delegated to the adapter. When importing the file, there is no information
about it, so there will be an import dialogue where daGui will ask the user about
which framework is used in the file, which version of the framework is targeted,
and which language version is used. This information is then used for calling the
proper adapter’s parsing function.

At the beginning of the work on this feature, we realised that it would not be
any easy task. There were two possible solutions to this task.

1. Use the framework to generate the graph.

2. Directly parse the code to generate the graph.

20 CHAPTER 3. DESIGN

The first approach uses the actual framework. It launches the source code with
some dummy data on localhost, and as the framework builds the graph for the
execution, the graph is saved in daGui and used as the source code representation.
This approach has one significant advantage that there is no need of parsing the
code in daGui as the framework takes care of that 2. However, also it consists
of many disadvantages. First of all the generated graph might not fully represent
the code in the file. When developers use some dynamic constructs (conditions,
looping), then these constructs can change the shape of the graph based on the
input data. Therefore the extracted graph can represent only one branch of possible
walkthroughs of the source code. Another related problem is what data should be
used for the execution? The simple solution is to ask the user as he should have
knowledge of the code and therefore should know what data it will need, but this
might not always be the case as users might want to explore some unknown source
code in daGui. Lastly, it is not much user-friendly as the import process would
require the user to provide the dummy data.

The second approach consists of parsing the code directly by daGui (or more
accurately by the framework’s adapter). The problem with this method is that
daGui would have to have support for control flow as the graph will need to be
able to express branching situations for conditions in the code, cycle support for
looping and all other language’s features. Parsing of the code would consist of
building Abstract Syntax Tree, which represents the structure of code and then
analyses the tree to deduce the graph which represents the code. Another issue
relates to tools used for the parsing. It is not a trivial task to write a library for
building an AST. There are tools for working with AST for a specific language
usually written in that language. As daGui supports a broad range of languages,
parsing all of them might be very challenging. One possible solution to this problem
is to call some external dependency for retrieving the AST and then work with it
inside daGui. However, the need for external dependency brings extra burden as the
dependency might not always be satisfied on the user’s system, which can introduce
user experience problems with requests to satisfy such a dependencies. We did a
basic search for tools written in JavaScript for parsing AST of other languages,
and we found several of them, but further research will be needed to compare their
functionality and reliability. Lastly, the biggest problem of directly parsing the
code is the complexity of the task itself. An example how the control flow could be
expressed in the graph is in Figure 3.4.

After doing the research about this feature, we decided that implementation of
this feature would be highly complex and the result unsure as creating a general
parser, which would process any written code would be very time-consuming. In-
stead, we decided to put the focus on the previously listed features to ensure, that
we will deliver reliable and stable software. However, in future this feature could
highly improve daGui’s capabilities. Therefore it will be one of the main points of
the future work.

2The framework does not parse the code but based on the API calls, it builds the graph.

3.7. CODE PARSING 21

from pyspark import SparkConf , SparkContext

conf = SparkConf ()
sc = SparkContext (’local ’, ’text ’, conf=conf)

textFile = sc. textFile (...). filter (...) .cache ()
count = textFile .count ()

if count < 10:
temp = textFile . groupBy (...)
for i in range (count):

temp = temp.map (...)

temp. saveAsText (...)
else:

textFile .sort (...) . saveAsText (...)

Listing 3.2: Example code which could be parsed.

TextFile Filter Count

IFGroupBy Sort

SaveAsText

Map

SaveAsText

FOR
loop

count < 10

False

i < count

True

Figure 3.4: Example how the code presented in Listing 3.2 could be parsed and
how the graph could look like with the control flow.

Chapter 4

Implementation

This Chapter will describe the low-level details of daGui.

4.1 Technologies

During a survey of technologies for daGui, there was one important factor, and it
was a portability of the software. The core technology has to be platform inde-
pendent to reach as many users as possible with as little effort as possible. Also
already in the beginning of daGui’s development, the authors of Hops Hadoop
distribution [13] approached the thesis author, that they would like to integrate
daGui into their environment. This introduced another requirement of simplicity
of porting the daGui into the web environment.

The result of the survey were two possible solutions:

• Packaged web application with a local server;

• Electron standalone application.

The packaged web application would consist of a local server written in Python,
which would be the back-end of the application and would serve the interactive
web application over HTTP protocol to user’s browser. The web browser would
be the main entry point for the user. The advantage of this approach is mainly
straightforward access to the user’s OS and utilising well-known principles of web
development. The big disadvantage is a distribution of such software as packaging
and distributing is possible, but rather hard and inconvenient from user’s point of
view.

Electron [14] on the other hand is an entirely stand-alone program. It is es-
sentially packed Chromium web browser with Node.JS as the application back-end
and V8 JavaScript engine. Therefore writing an application with Electron is al-
most same as writing Front-end JavaScript web application. The main difference
with Electron is the additional JavaScript APIs for accessing the underlying OS

23

24 CHAPTER 4. IMPLEMENTATION

resources and the application GUI management (e.g., opening windows, dialogues).
The advantage of this approach is much better user experience as the application
behaves as a monolithic unit. Moreover, as Electron development is almost iden-
tical as web development, it will be simple to convert daGui into a proper web
application. The disadvantage of Electron is the size of distributed program, as it
contains a standalone web browser which adds up to hundreds of megabytes to the
final package.

After comparing these two approaches, the chosen one was the Electron solution,
for its better user experience and also the fact that nowadays the size of programs
is not a big problem as the high-speed internet is becoming standard and most of
the users also have big memory storage.

Next step was to decide which tools, libraries and framework to use for the
front-end development. In the end, React + Redux are the main used libraries and
other small tools which only some of them will be described here.

React [15] is a rendering library which holds Virtual Document-Object-Model
(DOM) representation and through that tries to minimise the changes in actual
browser’s DOM as they are rather expensive. Through React the developers create
Components which defines some element on the web page with its full life-cycle.
This architecture is highly useful for daGui, as a rendering of some adapter’s specific
parts can be delegated to adapter’s authors (for example Run Configuration form),
where a result of a call to the adapter’s function can be a Component which will
be rendered through React.

Redux [16] is built on the idea of Facebook’s Flux 1 and functional programming.
It is a tool which keeps a synchronised state of the whole application. When there
is a change in the state of an application, Redux emits a new state with the changes
incorporated in it. This design is very useful, as it is very easy to implement history
(undo/redo) in the application because Redux’s state is immutable. Therefore the
application can easily keep track of the previously states and roll back or forward
as the user requests. As in JavaScript objects are generally mutable another used
tool is Immutable.JS [17], which has special API that enforces immutability on its
special objects.

Last valuable library is JointJS [18]. daGui needs rich support for diagramming
because users will need to create and manipulate the graph. There are several
JavaScript diagramming libraries. After comparing their feature sets and especially
their licensing, the chosen one is JointJS. It is a high-level library for creating
interactive diagrams, with rich event support and easy customization.

To build the whole environment into an executable program with all the previ-
ously mentioned libraries there is a tool which serves as „ glue” with name Web-
pack [19]. It is a handy tool which optimises the building process and especially
it supports Hot Module Reload. It replaces the changed components directly in
the website, which means that the developer does not have to refresh the whole
program (or website) and the changes propagate immediately.

1https://facebook.github.io/flux/

https://facebook.github.io/flux/

4.2. OTHER FEATURES 25

As setting up all these technologies together takes much time, there are many
boilerplate projects for a different combination of technologies. These projects have
the basic environment with all technologies already set up and are ready for the
developer to start to work with it right away. Electron React boilerplate [20] was
chosen for daGui as it incorporates all the technologies mentioned earlier. There
are several features, which were not needed and because of that they were removed,
mainly it concerns React Router. There are some other features which are not
actively used in daGui but remains in the project as in future development they
might prove handy. The main feature is support for Flow (static type check for
JavaScript) and ESLint (linter for JavaScript, a tool which enforces consistency of
the format of the source code).

4.2 Other features

Except for the main features which were set in Section 3.1.2, there are several
smaller features included in daGui, which this Section will describe.

4.2.1 Nodes highlighting
Nodes highlighting is a feature which helps in orientation inside of the graph and
the generated code. When a user hovers over graph’s node, it highlights the proper
part of the code which the node represents. The highlighting also works in the
other direction, when a user hovers over a piece of code, the appropriate node is
highlighted.

The highlighting is possible because of a special class called CodeBuilder. During
the code generation part, this class is used for storing the generated code. Its crucial
feature is that it internally notes which parts of the code is linked to which node’s
ID. This information is then used in CodeView together with the Ace editor to
create so-called Markers for the Ace editor. They are used for handling the hover
action over the code and also to highlight proper part of the code when needed.

4.2.2 Image export
The last feature is handy for a presentation of a program. daGui can export the
graph as a PNG image. It is easier than taking screenshots as it automatically
renders whole graph and not just the visible part.

4.3 User Interface

As one of the set goals was to have a good UX, the user interface is a critical part of
daGui. Moreover, software nowadays also needs to look nice to have good feedback
from the users. To make daGui visually appealing, Petr Sykora a graphic designer
helped with the visual design of the editor. He created a dark styled theme and also

26 CHAPTER 4. IMPLEMENTATION

the logo and icon for daGui. The main daGui window can be seen on Figure 4.1.
Except for the main editor view, daGui also has modal windows, an example of
such a window can be seen on Figure 4.2.

As an important user target group of daGui are beginner users who might be
confused about the parameters they are supposed to configure, daGui tries to help
them as much as possible. In several places of daGui, there are prepared either icons
that on hover display a help tooltip, or similarly help tooltip is shown on hovering
over some input fields. An example of such a help can be seen on Figure 4.3 and
Figure 4.2.

Figure 4.1: Look of daGui editor.

4.4 Platform adapter

As in future, daGui will be ported into a web environment the daGui’s architecture
have to be prepared for this transition already from the beginning of its develop-
ment. daGui needs a back-end for several tasks: saving and opening files, compiling
and launching the execution of files and some other small tasks. These tasks are
environment specific as in Electron they will be implemented directly using NodeJs,
but in the web environment, they will be most likely delegated to a remote server
using AJAX call.

4.4. PLATFORM ADAPTER 27

Figure 4.2: Execution Configuration modal window with displayed help for config-
uration parameter.

Figure 4.3: Detail of a node with displayed help for its parameter.

There is a special adapter called Platform adapter to shield daGui from the
back-end’s implementation specifics. This adapter is not related to the framework’s
adapters. Figure 4.5 shows the role of Platform adapter in daGui’s architecture.

The tasks of the Platform adapter are:

• Open source files – only those source files which were generated by daGui can
be opened.

• Save source files – saves generated source code into the proper source file on
the memory storage.

• Launch execution – calls the appropriate AdapterExecutor on the backend
which handles the whole execution.

28 CHAPTER 4. IMPLEMENTATION

Figure 4.4: Errors View which informs the user about graph’s error.

daGui core

P
la

tfo
rm

 a
da

pt
er

daGui back-end

Ad
ap

te
r #

1

Ad
ap

te
r #

2

Ad
ap

te
r #

N

Ad
ap

te
rE

xe
cu

to
r

#1

Ad
ap

te
rE

xe
cu

to
r

#N

Figure 4.5: Overview of the architecture of daGui.

4.4.1 Persisting daGui’s files

As Code parsing feature turned out as too challenging (as described in Section 3.7)
and daGui is currently not supporting it, there has to be another way how to save
and load the work. In the end, the work is saved into a proper source file, based
on the currently used language. This source file contains the generated source code
of the build DAG, and at the end of the file, there is serialised daGui specific
meta-data about the work. This serialised meta-data contains:

• Version of daGui which generated the file.

• Hash of the whole file.

• Name of the used adapter and the framework’s version.

• Name of the used language and the language’s version.

• Serialised JointJS object of the built graph.

4.5. COMPONENTS 29

From this meta-data, daGui can completely reconstruct the original work. As
parsing of the source code is not supported, there is a control mechanism which
detects if anybody changed anything inside of the source code. During saving of
the work, daGui generates a hash of the source code which is then stored alongside
with other daGui’s metadata at the end of the source code file. If during loading
of the file is detected any difference, daGui raises warning to the user, that the
original DAG and the source code might not match and loading and sequentially
saving it might overwrite any changes in the source code.

Also when daGui saves the work, it regenerates the source code. If there are
any validation errors and therefore it is not able to generate the source code, daGui
offers to the user, that only the meta-data will be saved into the file and the old
source code in the file is preserved.

4.5 Components

As mentioned already in Section 4.1, React library defines Components which then
can be used in other Components. This Section will lay out an overview of main
Components which were created for daGui, and it will detail the most important
ones.

Excepts Components in React there is also often used a concept of Containers.
A container is essentially a Component which introduces some hierarchy into the
Components layout. Containers often correlate with different layouts and pages in
the application. As daGui is mainly one-page application, because the editor is
always visible and for all other parts (settings, new file dialogue and others) is used
the modal window, there is only one main container called App. This Container
encapsulates all other Components and facilitates some interaction which does not
need to be incorporated in Redux’s state. The container and its functionality will
be detailed later.

The overview of the key components can be seen on Figure 4.6.

• Menu – control component where all the control icons are placed. Also, it is
the main place where the keyboard shortcuts are defined and handled (i.e.,
fired the proper Redux’s action).

• NodesSidebar – a component which lists all possible nodes of the adapter of
the current file. It features search of the nodes and also hiding/displaying less
used nodes. Internally it uses a component called NodesGroup.

• Tabs – a component which enables to have opened several files at once and
switching between them.

• Canvas – the most complex component of daGui. It manages the whole
graph drawing and all related functions. It is more detailed in the following
subsections.

30 CHAPTER 4. IMPLEMENTATION

Figure 4.6: Overview of the main component in daGui.

• DetailSidebar – component that displays details of selected node. The details
mainly consist of parameters which are used for the code generation step.

• CodeView – an important component which displays the generated code and
offers several interactive features. It is more detailed in the following subsec-
tions.

• Footer – component which shows status information. It displays used lan-
guage and framework of the active file. Moreover, when there are some errors,
it has a sub-component which display them to the user.

• Modals – component which is by default hidden. It encapsulates components
which display modal windows for different dialogues (new file dialogue, set-
tings, execution configurations and more).

4.5.1 App container

The App container is the only React container in daGui. It mounts all the other
components and therefore creates the layout of the application.

For optimisation reason, it is good to have as least as possible Redux’s connected
components (i.e., components that can directly access the Redux’s state and fire

4.5. COMPONENTS 31

Redux’s actions). One way to achieve that is to have just a few connected com-
ponents which distribute the proper callbacks into its sub-components. The App
container is the main connected component, where the many callbacks are created
and passed to the proper sub-components.

Moreover, this container facilitates some level of interactivity through its state.
It manages actions which do not need to be incorporated in Redux’s state. The
main events the container handles are linked to highlighting of nodes/code blocks.
It distributes the highlighting callbacks to CodeView and Canvas components and
based on the information passed through the callbacks it keeps overview which
nodes should be highlighted and in which component.

4.5.2 Canvas component

The Canvas component is the most complex component in daGui. It is based on
the JointJS [18] library, but as the library has support only for very basic features,
many of the features had to be implemented from the bottom up. At the beginning
of the development the length and the complexity of the component started to grow
very fast, so at one point, when the code of the component begun to be impossible
to manage, there was a need for better architecture. It resulted in creating Canvas
components, which are components that are not connected to React in any way.
Instead, they manage some part of the Canvas’s functionality. It is not the perfect
solution as the components have shared state (the Canvas component’s state) and
therefore there can be error states when several Canvas components try to modify
some part of the shared state which can cause „deadlock” 2. On the other hand,
this architecture helped with the readability of the code and separation of concern,
which was the main motivation behind it. Until now there were no major issues
with the current solution, but if some problems appear, a better solution will be
created.

The list of current Canvas components:

• Grid – servers for drawing a grid on the canvas’s background.

• PanAndZoom – implements panning and zooming support for the canvas.

• Link – handles any linking related events: link’s creation, link’s modification,
link’s validation and link’s deletion.

• Nodes – handles any node’s related events: node’s movement and node’s
deletion.

• Highlights – servers for highlighting nodes which were passed through Canvas’s
components properties from the App container.

2JavaScript is single-threaded, so the meaning of deadlock is not meant as in the multi-
threading vocabulary, rather as error state after unexpected modification.

32 CHAPTER 4. IMPLEMENTATION

• Variables – handles changes of node’s variable name.

• Selecting – implements multiple selection of nodes: adding and removing
nodes from the selection.

4.5.3 Modals component
Even though daGui is a single-page based application, there are still some cases
which need bit different layout (e.g., settings, new file dialogue). daGui follows the
example of other IDE’s, which use modal windows for this task. However, daGui
has bit different implementation. The usual way is to open new system window and
display the content in it. The modal window is separated from the main window.
As daGui will be ported to web environment in future, the system windows are
not used for the task and instead daGui displays them as an overlay in the main
window.

Currently, there are three types of modal windows: new file dialogue, execution
configurations and settings view.

4.5.4 CodeView component
Last critical component is CodeView. It serves for displaying the generated code
and offers a little degree of interactivity. The component employs Ace Editor 3 for
highlighting the code’s syntax. Additionally, it implements node’s highlighting and
also it is possible to rename the name of the variables inside the CodeView.

3https://ace.c9.io/

https://ace.c9.io/

Chapter 5

Adapters

5.1 Implementing an adapter

It is a relatively simple process to implement a custom adapter, but it requires a
bit of programming. First of all the author needs to have a good overview of the
framework/tool/library which he will write the support for. He needs to understand
how does the framework relates to the graph, how does it use it and how the
framework’s API is related to the graph.

To integrate a new adapter with daGui, the author has to implement the
adapter’s class which extends the BaseAdapter class and register it in the daGui’s
configuration /app/config/index.js, then daGui will include the new adapter in
its selection. If the adapter is supposed to support also code execution, then the
author also has to implement adapter’s execution class which have to extends the
BaseAdapterExecutor class and register it in the Electron’s configuration /app/
config/electron.js.

This Section will guide the adapter’s author with the implementation. The
recommendation is to have a look at the referential implementation of Spark’s
adapter as many of the code can be reused in the new adapter. How much depends
on the differences between the two frameworks.

5.1.1 Implementing the adapter’s class
The adapter’s class consists of static methods that are called by daGui to retrieve
information about the adapter or to delegate some tasks to it. BaseAdapter class
serves as interface definition, and all its methods have to be overridden in the
adapter’s class otherwise daGui will raise errors.

The first part relates to presentation of the adapter. getId() method should
return some short unique identifier string. The string should contain only alphanu-
merical values without spaces and should be reasonable short. This ID is used
for example in meta-data which are stored with the graph while saving the work.
Method getName() on the other hand can return any string with a reasonable

33

34 CHAPTER 5. ADAPTERS

length, that will be displayed to the users for example in the footer of the editor.
Lastly, method getIcon() should return path to an image which will be displayed
as the representation of the adapter. Usually, it should be a logo of the framework.
This is not mandatory and getIcon() can return null, in such a case daGui will
display the adaptor’s name instead.

Next part is associated with supported versions of the framework and its lan-
guages. Method getSupportedVersions() has to return an array of strings which
represents the versions of the framework, which the adapter supports. The version
is then always given for all other adapter’s tasks such as code generation, execution
and so on. Following is method getSupportedLanguages(adapterVersion), that
have to return an array of supported programming languages for given adapter’s
version. The languages in the array should be an imported classes from /app/
core/languages/. If there is a language missing, then the author can create a
new language in the earlier specified folder by implementing a class which extends
the BaseLanguage class and then register it in daGui’s configuration. However,
daGui has already support for the major languages, so this should not be needed.
The last method in this area is method getSupportedLanguageVersions(langId
, adaptersVersion), that have to return an array of strings that represents the
supported language versions for given language and adapter’s version.

Following part is connected to the graph’s nodes. daGui uses a term Node
Template as it represents only a template and not the node directly 1. Method
getNodeTemplates(adaptersVersion) have to return an object that contains all
supported node templates for given adapter’s version. The keys of the object are
the node template’s types, and the values are the classes of the node templates.
Next method is getGroupedNodeTemplates(adaptersVersion) which enables to
group node templates into groups that represents some similar function of the node
templates. It should return an array of objects, which represents the group, but
this method also can return null, if the author does not want to use this feature.

Another part is linked to graph validation. As described in Section 3.4 the
adapter only defines the criteria of the validation and daGui then performs the
validation. Method getValidationCriteria(adaptersVersion) defines the cri-
teria which have to return an array of criteria. The enum ValidationCriteria
defines all possible criteria. If the author decides to use the „has input nodes” crite-
rion then he must also implement method isTypeInput(type, adapterVersion),
which specifies if for given adapter’s version is a node template’s type an input
node. The method returns boolean.

The second to last part relates to adapter’s components. daGui currently
needs two components from the adapter — ExecutionConfigurationForm and
SettingsForm. They will be detailed in following Section 5.1.3.

The last part is connected to the adapter’s tasks. daGui delegates two tasks
to the adapter — code generation and code execution. The Section 5.1.4 will
describe these tasks. With code execution is connected the last method called

1It is a similar concept to Objected Oriented Programming: a class versus an instance

5.1. IMPLEMENTING AN ADAPTER 35

hasExecutionSupport(), which returns boolean that specifies if the adapter sup-
ports code execution and has all necessary support implemented.

5.1.2 Node Templates
Node Template contains all information about how the node looks in the graph,
what parameters it has and more. Node Template is a class which extends
NodeTemplate class, that defines an interface for the Node Templates. It has fol-
lowing methods that the author have to implement.

• getType() – Returns a string that uniquely identifies the node across all
daGui’s adapters. It is advised to use adapter’s name as prefix to ensure
cross-adapters uniqueness.

• getName() – Returns a string which represents the node template name and
which is displayed as label of the node in Canvas.

• getModel() – Returns a JointJs model which represents the look of the node
in Canvas. More details will follow.

• getWidth() – Returns an integer that represents the width of the node. If
the width was not changed from the default one, it does not need to be
implemented.

• getHeight() – Returns an integer that represents the height of the node.
If the height was not changed from the default one, it does not need to be
implemented.

• isNodeHidden() – Returns a boolean if the node should be by default hidden
in the NodesSidebar component.

• getCodePrefix(langId) – Returns a prefix that precede the parameters list-
ing for given language ID. In most cases that means the name of the method
the node is converted into. Important is that in case the node translates into
method call, this prefix should also have start of the brackets, for example
„filter(”.

• getCodeSuffix(langId) – Similar to getCodePrefix(), but returns suffix
instead.

• getCodeParameters(langId) – For given language ID returns array of ob-
jects that represents all possible parameters for the node.

• getOutputDataType(langId) – Returns string that represents the data type
which the node template emits.

• isInputDataTypeValid(dataType, langId) – Returns true if the passed
data type is valid input data type of the node template.

36 CHAPTER 5. ADAPTERS

• (requiresBreakChaining()) – Returns true if the presence of the node should
interrupt the chain of method calls, otherwise return false. Does not need to
be implemented if it does not need to break the chain.

• generateCode(parameters, langId) – Only method which does not need
to be implemented. It is a method which is called during code generation
with the node’s parameters and language ID and have to return a string with
source code that represents the node and its parameters. There is default
implementation which uses getCodePrefix(), getCodeSuffix(langId) and
getCodeParameters(langId) to deduce the source code which should be
generated. But the author can overload this implementation and use his
own.

The object that represents the parameters in getCodeParameters() can have
up to five attributes, but only the name is required.

• name – name of the parameter.

• description – explanation of what does the parameter do.

• required – boolean which specifies if the parameter is required or not.

• template – string which is by default placed in the input box.

• selectionStart – it is possible that when the user focus on the input field of
the parameter, only part of the text is selected. This parameter specifies on
which position the selection should start.

• selectionEnd – similar as selectionStart, but specifies the end position of the
selection. If the value is „all” then the rest of the string is selected.

As mentioned earlier getName() requires a JointJs model. In JointJs the devel-
opers can define custom shapes of the nodes through defining custom models. To
ease the development, there is already prepared model DefaultShape, which has
most of the parameters already predefined and follows the visual style of daGui.
Only things that the author have to specify are the name, the type and the ports
of the node. It is also essential to add the new shape into the JointJs names-
pace. To better understand the possibilities, the author should consult the JointJs
documentation 2 and the DefaultShape model.

2http://resources.jointjs.com/docs/jointjs/v1.0/joint.html

http://resources.jointjs.com/docs/jointjs/v1.0/joint.html

5.1. IMPLEMENTING AN ADAPTER 37

5.1.3 Adapter’s components

daGui needs two components from the adapter’s author —
ExecutionConfigurationForm and SettingsForm.

ExecutionConfigurationForm is a component where the adapter presents to
the user possible configuration parameters for the execution configuration. Its life-
cycle is simple. The user selects a configuration which he would like to modify.
The configuration is passed to this component, which displays all the possible pa-
rameters with prefilled current values if there are any. The component handles the
whole modification cycle and only when the user saves the configuration it is also
saved in daGui. That means that validation of the parameters is also up to the
form component. The important exception is the name of the configuration. As
the name has to be unique across the adapter’s configuration, there is special call-
back dedicated for validation of the name, which is handled by a daGui’s wrapper
component. When the configuration is saved, it is persisted by daGui and later on
retrieved for the execution purposes. The component is fetched from the adapter’s
class with method getExecutionConfigurationForm(). The component has four
properties which are used for passing data and callbacks from daGui.

• configuration – a property which holds the currently selected configuration.
It can also be null, when no configuration is selected.

• onUpdate – a callback which is called by the form component when the user
decides to save the configuration and the configuration is valid.

• onClose – a callback which closes the modal window.

• isNameValid – callback for validation of the name of the configuration.

SettingsForm is another component which serves for the adapter’s specific set-
tings. It is similar with the ExecutionConfigurationForm. When the user switches
to the adapter’s settings, daGui will fetch the already defined settings, pass them
to the component and the component display the settings with prefilled data. The
component is responsible for the data validation. It is expected to have these fol-
lowing properties:

• data – the user’s settings for the adapter, which were already previously set.

• onUpdate – a callback which the component is supposed to call with an object
that represents the settings that are supposed to be saved.

• onClose – a callback which the component can call if it wants to close the
Settings modal window.

38 CHAPTER 5. ADAPTERS

5.1.4 Adapter’s tasks
There are two main tasks for the adapter — code generation and code execution.

The principle of code generation is rather simple. daGui calls an adapter’s
method generateCode(...) which takes a graph and some other parameters as
input and returns generated source code. How is the source code generated is
up to the adapter’s author to decide and to implement. Inspiration can be the
referential implementation of Spark adapter as there are several issues which need
to be solved (e.g., variable dependencies, branching). From the implementation
perspective, there is important to know that the generateCode(...) does not
directly return the code as a string. Instead, it has to use a CodeBuilder instance
for storing the generated code which is passed as a parameter. The parameters of
the generateCode(...) method are in the order:

• output – CodeBuilder instance for storing the generated code.

• graph – the input graph.

• inputs – the input nodes of the graph.

• usedVariables – an object which contains all used variables, where the key is
the variable name and the value is the ID of the node to which the variable
belongs to.

• conf – the currently active Execution Configuration, it can be null as the
configuration is passed to it only during code generation for execution.

• language – the language for which the code should be generated for.

• languageVersion – the version of the language for which the code should be
generated for.

• adaptersVersion – the version of the framework for which the code should be
generated for.

The second adapter’s task is the code execution. Electron uses an architecture
which splits the backend of the application (the main process, which can reach the
operation system resources) and the front end of the application (the renderer pro-
cess, that renders the web content). These two parts are completely divided, and
the code from one part can not be used or imported in the other one. For com-
munication between the parts Electron implements a system called Inter Process
Communication (IPC), which sends messages through channels and on each end
there are callbacks registered for specific channels. Because of this architecture,
the execution part of the adapter is split from the main adapter class and is imple-
mented in special adapter’s executor which is based on the BaseAdapterExecutor
class. It has following methods which some of them have to be overridden.

5.2. SPARK ADAPTER 39

• getId() – a method which have to return the same string Id as the adapter
class.

• handleStartExecution(event, generatedCode, conf, settings)
– a method which is called upon start of the execution and implements the
whole execution process of the adapter (if needed compilation of a source code,
launching the execution). The conf parameter consists of the selected exe-
cution configuration, the settings parameter contains the adapter’s settings
and the event parameter is an Electron object through which the executor
can communicate with the renderer process.

• handleTerminateExecution(event) – a method which should terminate the
running execution when called.

• bootstrap() – a method which is not needed to override. It is called upon
initiation of the Electron to registrate the IPC channels handlers.

• sendData(event, type, data) – a helper method which is not needed to
override. It sends data over to renderer process over channel specified by type
parameter.

5.2 Spark adapter

Apache Spark was chosen as a referential implementation of a framework’s adapter.
It has a simple API which serves well for the development process of daGui. How-
ever, as described in Section 2.4.1 Spark consists of several modules which mean
that there are several groups of APIs. For the beginning, it was decided to imple-
ment the basic RDD and DataSet (DataFrame) API for Python binding.

As these two APIs are not compatible, there has to be defined which nodes can
be linked with what type of nodes. Therefore when a user starts to drag new link,
daGui will allow connecting the link with only compatible nodes.

Moreover, there is a high number of nodes which are not used often. The Nodes
Sidebar has a feature which hides these irregular nodes. Currently the definition if
node should be hidden or not is hard coded by my judgement. In future, a user will
be able to set this labelling in the daGui’s settings, and in further future, daGui
should automatically learn which nodes are frequently used and which are not.

5.2.1 Graph definition
The graph is an operator directed acyclic graph, where nodes are an operation per-
formed on a data and the links connect an operation’s output with next operation’s
input. A node can have an unlimited number of outgoing nodes (output degree) if
it has an outgoing port but can have only as much of incoming links as the number
of incoming ports (input degree).

A graph is a valid graph for this adapter if it fulfils all the four possible criteria:

40 CHAPTER 5. ADAPTERS

• Has Inputs nodes – the adapter defines what node templates are Input nodes
and then check that there is at least one Input node in the graph present.

• Has all ports connected – check that all ports in all nodes inside of the graph
are connected.

• Has all required parameters filled in – check that all parameters of the graph’s
nodes, that are required are filled.

• No cycles are present in the graph.

5.2.2 Code generation
The basic concept behind the code generation is a walk through the graph in Depth-
First-Search (DFS) manner, while the rendering of the code is based on the principle
of chaining of method calls which can be seen on Listing 5.1. Additionally, there
are several other issues which needed to be taken into consideration – branching,
variable naming and code dependencies. The pseudocode of the code generation
algorithm is shown in Listing 5.2.

class Example :
call(self):

... some code ...
return self

anotherFunction (self , ...):
... some code ...

return self

variable = Example () \
.call () \
. anotherFunction (...)

Listing 5.1: Example of chaining methods in Python.

def processNode (output , node , graph , variableStack):

if isInBreakSituation (node): # i.e., input degree of
node > 1
assignPreviousNodeVariableName (node ,

variableStack .pop ())

if not allPreviousNodesHaveVariableName (node):

5.2. SPARK ADAPTER 41

return ; # Not all in - break dependencies are
satisfied => backtrack

else:
output .add(generateCodeWithNewVariableName (

node , variableStack .pop ())) # breaks the
chain and starts new one: newVariable =
generatedCode (...)

variableStack .push(theNewVariableName)

else: # normal or out -break situation
if afterOutBreakSituation (node): # i.e., output

degree of previous node > 1
output .add(generateCodeWithNewVariableName (

node , variableStack .pop ())) # breaks the
chain and starts new one: newVariable =
oldVariable . someMethod (...)

variableStack .push(theNewVariableName)
else:

output .add(generateCode (node)) # continues
the chain

if isOutBreakSituation (node):
multiplyTopVariableByOutputDegree (node ,

variableStack)

if endOfBranch (node):
variableStack .pop () # As the chain is at the end ,

the top variable won ’t be needed anymore .
return # No more next nodes => backtrack

for nextNode of node. nextNodes :
process (output , nextNode , graph , variableStack)

def generateCode (graph , inputs):
variableStack = Stack ()
output = CodeBuilder ()
output .add(getInitBlock ()) # All includes and

initialisation part of the code

for inputNode in inputs :
variableStack .push(inputNode . variableName)
output += processNode (output , node , graph ,

variableStack)

42 CHAPTER 5. ADAPTERS

return output

Listing 5.2: Pseudocode of the code generation of the graph.

Figure 5.1: Example of a Spark’s DAG with branching. The red line indicates
walk-through of the DFS.

5.2.2.1 Branching and variable naming

During the DFS there is a need for generating variable names. These names are
stored in variable stack which is used during branching situations as described later.
For every Input node, there is generated a variable name and is placed on top of
the variable stack. Moreover, when the DFS reaches the end of the graph, it pops
a top variable name out of the variable stack as it will not be needed anymore.

While the DFS walkthrough there can be three branching situations based on
the input and output degree of the current node:

1. normal situation (input and output degree of the current node is one)

5.2. SPARK ADAPTER 43

2. out-break situation (output degree of the current node is higher than one)

3. in-break situation (input degree of current node is higher than one)

During a normal situation the node is translated into method call and appended
to previous method calls based on the chaining principle.

When an out-break situation happens, then the chaining of methods needs to be
interrupted. The node where the out-break happens multiplies the variable on top
of the variable stack by the output degree of the node and then calls the generation
on the following nodes with a special flag, which indicates the there was an out-
break situation. These nodes then based on this flag pops a variable name from
the variable stack which is used for starting a new chain. In the same time, a new
variable name for the new branch is generated and pushed on top of the variable
stack. Example of this situation is in Figure 5.1.

When an in-break situation happens, it is needed that all the previous nodes
were processed before the DFS can continue out of the in-break situation. Therefore
if some previous node is not processed the recursive process is halted, and back-
tracking is applied as it is guaranteed that all previous nodes will be eventually
processed because the graph is valid in a sense as described in Section 5.2.1. The
need of all previous nodes to be processed is based on the fact that for generating
the method call for the in-break node all previous variable names are needed.

Figure 5.1 shows examples of both in-break and out-break situations with vi-
sualising the walkthrough of the DFS. Also from the Figure is visible that both
in-break and out-break situations can happen simultaneously.

5.2.2.2 Code dependencies

As the order of evaluation in the source code is defined, because the source code
is read sequentially, it enables to use the results of previous evaluations in later on
expressions. Most, if not all, programmers take this as granted and do not think
much about it, but since the graph does not behave in a sequential manner, the use
of results of some evaluation in the graph becomes more complicated.

There needs to be way how to reuse results of evaluation in some other parts of
the graph. As described in Section 5.2.2.1 the nodes are assigned variables name
when Input node is processed, during in-break and out-break situations. Therefore
these variables can be used to reference the output of some other evaluation, for
example in the anonymous functions of map or filter. This referencing creates
code dependencies between parts of a graph, which needs to be resolved during
the code generation as the referenced variables need to be created and evaluated
before its usage. There are two types of dependencies – cross-graph and branch
dependencies.

Cross-graph dependencies emerge when there are at least two independent graphs
present, and some node of one graph is dependent on a variable from the second
graph. Therefore the second graph needs to be evaluated before the first graph.
An example of such a dependency can be seen on Figure 5.2.

44 CHAPTER 5. ADAPTERS

Figure 5.2: Example of cross-graph dependency between two graphs. The red line
indicates the dependency.

Branch dependencies arise when some branch reference a variable created by
another branch of the same graph. This requires evaluating first the branch which
is referenced by the other one. Example of such a dependency can be seen on
Figure 5.3

To resolve these dependencies, there is a pre-processing step before actual code
generation, which walks through the graph in DFS way and gather the dependency
graph. Then based on the dependency graph the order of iterating through Input
nodes is defined to resolve the cross-graph dependencies and order of iterating
through branches is also defined to resolve the branching dependencies. Orders are
determined using a topological sorting. The topological sorting ensures to detect
circular dependencies. When a circular dependency is found, then an error is raised
because it is not possible to generate code with circular dependencies.

5.2.3 Code execution

As the referential implementation of Spark consists only of support for Python
language, it simplifies the code execution because Python is a scripting language
which does not need a compilation step like Scala or Java languages.

For launching the execution, Spark has a special command line utility called
spark-submit. This utility submits the Spark job to given environment (local,
cluster, Mesos or Yarn mode). It has several of parameters which can be set and
all these parameters are possible to set in the Execution Configuration of Spark
adapter. They are then used during launching the execution.

5.2. SPARK ADAPTER 45

Figure 5.3: Example of branch dependency between two branches of the same
graph. The red line indicates the dependency.

For the launching and compilation, the Spark’s binaries and libraries are needed.
Currently, daGui expects that this dependency is fulfilled by the user. It searches
the Spark’s home folder using the typical environment variable SPARK_HOME. If
the binaries or the variable is not found then an error is raised, and execution is
terminated. As leaving this dependency resolution on the user is not user-friendly,
in future daGui will have a system, which will automatically download the Spark
binaries from Spark’s homepage. This will also enable easy switching between
the execution of different Spark’s version because currently, the user has to set
the SPARK_HOME environment variable to point to the directory which contains the
desired version.

When the execution is launched, daGui ask the adapter to generate the source
code for given execution configuration. This code together with the execution con-
figuration and adapter’s settings is then passed through the Platform adapter to
Adapter Executor. The executor builds the command line command from the
Execution Configuration and then spawn a new process with it. All the out-
put from STDOUT and STDERR is transferred back through Platform adapter to
ExecutionReporter component, which displays the execution process.

In future when the Spark’s adapter will be expended with support for Spark
and Java languages. The compilation step will be needed to create a Jar file which
will be submitted to spark-submit. For that, the Java Development Kit and Scala
binaries will be needed to compile the source code into bytecode and then bundled
into the needed Jar file. This step will happen prior the execution, and the Jar file
will be stored in a temporary directory.

Chapter 6

Evaluation

This Chapter will offer an evaluation of daGui through several examples and also
discussion about its achievements and future work.

6.1 Graph and generated code examples

This Section will present five examples of graphs and the generated source code for
them. The reader should keep in mind that the code does not have any rational
function, it only serves to demonstrate the code generation possibilities of daGui.

The first example is a simple one, with one out-break situation. It fully consists
of RDD based nodes and has no code dependencies inside the graph. You can see
the graph on Figure 6.1 and the generated code on Listing 6.1.

Figure 6.1: An example of simple RDD based graph

from pyspark import SparkConf , SparkContext , SparkSession

conf = SparkConf ()
sc = SparkContext (’local ’, ’test ’, conf=conf)

range1 = sc.range (5) \
. filter (lambda x: x%2 == 0) \

47

48 CHAPTER 6. EVALUATION

.cache ()

map1 = range1 .map(lambda x: x*2) \
.sum ()

count1 = range1 . count ()

Listing 6.1: Generated code for Figure 6.1.

The second example contains both types of nodes — RDD and DataFrames.
It has a conversion of the DataFrame branch into an RDD. Moreover, it has an
in-break situation. Notice that SparkSession is created, because daGui detected
the presence of the DataFrame’s nodes. The graph can be seen on Figure 6.2 and
the generated code on Listing 6.2

Figure 6.2: An example with graph that contains two different types of nodes based
on RDD and DataFram API.

from pyspark import SparkConf , SparkContext
from pyspark .sql import SparkSession

conf = SparkConf ()
sc = SparkContext (’local ’, ’test ’, conf=conf)
sparkSession = SparkSession . builder . getOrCreate ()

dfInput = sparkSession .read. parquet ("/user/test. parquet ")
\
. select ("id", "name") \
.where("name LIKE ’%adam ’") \
.rdd

range1 = sc.range (5) \
.map(lambda x: x*2)

union1 = sc.union ([range1 , dfInput]) \
.count ()

6.1. GRAPH AND GENERATED CODE EXAMPLES 49

Listing 6.2: Generated code for Figure 6.2.

The third example contains conversion of RDD to DataFrame. This conver-
sion is a special case because it requires breaking the chaining even though there
is no in-break or out-break situation. The need of breaking the chain is de-
tected through the node’s definition, where the method of the node’s template
requiresBreakChaining() returns true. The graph of this example can be seen
on Figure 6.3 and the generated code on Listing 6.3.

Figure 6.3: An example of conversion an RDD branch into DataFrame.

from pyspark import SparkConf , SparkContext
from pyspark .sql import SparkSession

conf = SparkConf ()
sc = SparkContext (’local ’, ’test ’, conf=conf)
sparkSession = SparkSession . builder . getOrCreate ()

load_text_file1 = sc. textFile ("some/text/file.txt") \
. filter (lambda x: x > someValue) \

convert_rdd_to_df1 = sparkSession . createDataFrame (
load_text_file1) \
. orderBy ([" someColumn "]) \
.write. parquet ("some/path/file. parquet ")

Listing 6.3: Generated code for Figure 6.3.

The fourth example has code dependencies between the branches. The Filter
node’s function depends on the result of the Count node. Therefore the lower branch
which contains Map and Count nodes have to be evaluated first so the result could
be used in the Filter node. The graph of this example can be seen on Figure 6.4 and
the generated code on Listing 6.4, notice that mappedValues precedes the filter
function.

from pyspark import SparkConf , SparkContext
from pyspark .sql import SparkSession

conf = SparkConf ()
sc = SparkContext (’local ’, ’test ’, conf=conf)

50 CHAPTER 6. EVALUATION

Figure 6.4: An example that contains code dependencies between the graph nodes

range1 = sc.range (5) \
.cache ()

mappedValues = range1 .map(lambda x: x*2) \
.count ()

filter1 = range1 . filter (lambda x: mappedValues > x) \
.sum ()

Listing 6.4: Generated code for Figure 6.4.

The last example also contains code dependencies but between several graphs.
In the last graph the Filter’s function is dependent on the load_text_file1 vari-
able and in the first graph the Map’ function is dependent on the range1 variable.
Therefore the order of the evaluation has to be: second graph, third graph and first
graph. The graph can be seen on Figure 6.5 and the generated code on Listing 6.5.

from pyspark import SparkConf , SparkContext
from pyspark .sql import SparkSession

conf = SparkConf ()
sc = SparkContext (’local ’, ’test ’, conf=conf)

load_text_file1 = sc. textFile ("some/path/file.txt") \
.count ()

range1 = sc.range (5) \
. filter (lambda x: x - load_text_file1 > 2) \
. saveAsTextFile ("some/path/ newFile .txt")

parallelize1 = sc. parallelize ([1 , 2, 3]) \
.map(lambda x: x % range1 == 0) \

6.2. DISCUSSION 51

Figure 6.5: An example that contains several not connected graphs that has code
dependencies between them

.sum ()

Listing 6.5: Generated code for Figure 6.5.

6.2 Discussion

daGui fulfilled two out of three set main features — code generation and code
execution. Code parsing was dropped because of its big complexity. The current
implementation of daGui presents well the concept and has basic user-experience
features such as history (undo/redo), copy&pasting support, multi-node selections
and so on. However, it is clear that there is still much work on daGui to have fully
featured IDE-like software with great user experience.

There are three categories which will need to be worked up in the future — code
quality, user experience and additional features.

Current code quality is not the best one. In software development, one third of
the coding time should be devoted to refactoring and maintaining the code so that
it would be well manageable and clear. During daGui’s development, some time
for this maintaining was spent, but as the complexity of daGui is rather high, the
main development was focused on the defined feature set. Additional better code
coverage will be needed to ensure stability in future development.

As mentioned several times, the user experience is critical for daGui’s success.
Even though there was much time devoted to creating daGui in a user-friendly way,
there is still space for improvement. Especially the execution part of daGui will
need to be improved, so the user does not have to resolve some of the dependencies
himself.

52 CHAPTER 6. EVALUATION

Lastly, there are still many features which can be added in future to daGui.
Support for more languages and frameworks will be crucial. The left out parsing
feature and many more small, but handy features waits to be added.

Chapter 7

Conclusion

The size of data in information systems grows rapidly. In recent years new trend
called Big Data emerged. It focuses on storing and processing a vast amount of
data in distributed environment. With a development of this trend, the community
created new tools, libraries and frameworks. Several of these tools utilise Directed-
Acyclic-Graph (DAG) for the execution in the distributed environment.

In this thesis the essential characteristics of Cloud computing and Big Data
systems were gathered, leading frameworks which utilise DAG were surveyed, and
several projects which focus on visualisation or visual programming concerning Big
Data were listed. The main contribution of the thesis is Integrated Development
Environment (IDE) like software, which was designed from the bottom up and
implemented. It is a multiplatform standalone application based on the Electron
technology. The application is ready to be ported into web environment as the
core of the application is mostly web application. During designing phase of the
software, three main features were set: code generation, code execution and code
parsing. From these three features, the code parsing feature was not implemented
for two reasons. Firstly the feature proved as very challenging mainly because it
would require implementing Control flow support to enable parsing conditions and
looping in a source code. Secondly, the scope of developing IDE like software is very
time-consuming as it needs to have many features to support good user experience
because otherwise, nobody will use it. Therefore it was decided to drop the code
parsing function, and instead, focus on delivering easy to use and stable software.

The software was evaluated by implementing several examples in daGui, and
then the output code was analysed. Additionally, discussion about the software
was presented.

Even though we believe that we have delivered useful software, there is still
plenty of work to do. The main things which need to be focused on in future
are increasing the test coverage, extend the support for more adapters for other
frameworks, port the core of the application to fully functional web application and
lastly, and work on the user experience side of the software.

53

Bibliography

[1] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Proceedings of the
9th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2012, San Jose, CA, USA, April 25-27, 2012 (S. D. Gribble and
D. Katabi, eds.), pp. 15–28, USENIX Association, 2012.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasude-
van, F. B. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
distributed systems,” CoRR, vol. abs/1603.04467, 2016.

[3] “Deepsense seahorse product webpage. Cited on 15.3.2017.” https://
seahorse.deepsense.io/.

[4] P. Mell, T. Grance, et al., “The NIST definition of cloud computing,” 2011.

[5] F. Michel, “How many public photos are uploaded to Flickr every day,
month, year? Cited on 25.2.2017.” https://www.flickr.com/photos/
franckmichel/6855169886/.

[6] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling ap-
plications in the cloud,” Computer Communication Review, vol. 41, no. 1,
pp. 45–52, 2011.

[7] A. Katal, M. Wazid, and R. H. Goudar, “Big data: Issues, challenges, tools and
good practices,” in Sixth International Conference on Contemporary Comput-
ing, IC3 2013, Noida, India, August 8-10, 2013 (M. Parashar, A. Y. Zomaya,
J. Chen, J. Cao, P. Bouvry, and S. K. Prasad, eds.), pp. 404–409, IEEE, 2013.

[8] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,” in Pro-
ceedings of the 19th ACM Symposium on Operating Systems Principles 2003,

55

https://seahorse.deepsense.io/
https://seahorse.deepsense.io/
https://www.flickr.com/photos/franckmichel/6855169886/
https://www.flickr.com/photos/franckmichel/6855169886/

56 BIBLIOGRAPHY

SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003 (M. L. Scott and
L. L. Peterson, eds.), pp. 29–43, ACM, 2003.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[10] K. Thulasiraman and M. N. S. Swamy, Graphs - theory and algorithms. Wiley,
1992.

[11] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and
D. V. Ryaboy, “Storm@twitter,” in International Conference on Management
of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014 (C. E. Dyre-
son, F. Li, and M. T. Özsu, eds.), pp. 147–156, ACM, 2014.

[12] “Dataiku. Cited on 15.3.2017.” https://www.dataiku.com/.

[13] “Hops: Hadoop open platform. Cited on 5.5.2017.” http://www.hops.io/.

[14] “Electron homepage. Cited on 5.5.2017.” https://electron.atom.io/.

[15] “React: A javascript library for building user interfaces. Cited on 5.5.2017.”
https://facebook.github.io/react/.

[16] “Redux homepage. Cited on 5.5.2017.” http://redux.js.org/.

[17] “Immutable.JS homepage. Cited on 5.5.2017.” https://facebook.github.
io/immutable-js/.

[18] “JointJS diagramming library. Cited on 5.5.2017.” https://www.jointjs.
com/.

[19] “Webpack homepage. Cited on 15.5.2017.” https://webpack.github.io/.

[20] “Electron React boilerplate GitHub repository. Cited on 15.5.2017.” https:
//github.com/chentsulin/electron-react-boilerplate.

https://www.dataiku.com/
http://www.hops.io/
https://electron.atom.io/
https://facebook.github.io/react/
http://redux.js.org/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://www.jointjs.com/
https://www.jointjs.com/
https://webpack.github.io/
https://github.com/chentsulin/electron-react-boilerplate
https://github.com/chentsulin/electron-react-boilerplate

	Contents
	List of Figures
	Introduction
	Contribution

	Background
	Cloud Computing
	Scaling
	Challenges of distributed environment

	Hadoop
	Directed Acyclic Graph (DAG)
	Characteristics

	Frameworks overview
	Spark
	TensorFlow
	Storm

	Related work
	Seahorse
	Spark Web Interfaces
	Dataiku

	Design
	Overview
	Use-cases and users
	Goals

	Graph and its components
	Adapters
	Graph validation
	Code generation
	Code execution
	Code parsing

	Implementation
	Technologies
	Other features
	Nodes highlighting
	Image export

	User Interface
	Platform adapter
	Persisting daGui's files

	Components
	App container
	Canvas component
	Modals component
	CodeView component

	Adapters
	Implementing an adapter
	Implementing the adapter's class
	Node Templates
	Adapter's components
	Adapter's tasks

	Spark adapter
	Graph definition
	Code generation
	Code execution

	Evaluation
	Graph and generated code examples
	Discussion

	Conclusion
	Bibliography

