
DEGREE PROJECT IN TECHNOLOGY,
SECOND CYCLE, 30 CREDITS
STOCKHOLM, SWEDEN 2021

Distributed Robust
Learning
Akhil Yerrapragada

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Authors
Akhil Yerrapragada, akhily@kth.se
Master in Software Engineering of Distributed Systems
KTH Royal Institute of Technology

Place for Project
Stockholm, Sweden
KTH Royal Institute of Technology

Examiner
Amir H. Payberah, payberah@kth.se
KTH Royal Institute of Technology

Supervisor
Nicolae Paladi, nicolae.paladi@ri.se
Research Institutes of Sweden

ii

Abstract

Accuracy obtained when training deep learning models with large amounts of data

is high, however, training a model with such huge amounts of data on a single node

is not feasible due to various reasons. For example, it might not be possible to fit

the entire data set in the memory of a single node, training times can significantly

increase since the data­set is huge. To avoid these problems decentralized training

is devised. In decentralized training, using the technique of Data parallelism, multiple

nodes/workers make a local copy of the model and train it using a partition of the

data­set. Each of these locally trained models are aggregated at some point to obtain

the final trainedmodel. Architectures such as Parameter server, All­reduce andGossip

use their own network topology to implement decentralized training. However, there

is a vulnerability in this decentralized setting, any of the worker nodes may behave

arbitrarily and fail. This type of failure is called byzantine failure. Here, arbitrary

means any of the worker nodes may send incorrect parameters to others, which may

lead to inaccuracy of the global model or failure of the entire system sometimes. To

tolerate such arbitrary failures, aggregation rules were devised and are tested using

Parameter server architecture. In this thesis we analyse the fault tolerance of Ring

all­reduce architecture to byzantine gradients using various aggregation rules such as

Krum, Brute and Bulyan. We will also inject adversaries during the model training

to observe, which of the aforementioned aggregation rules provide better resilience to

byzantine gradients.

Keywords

Byzantine resilient decentralized training, Gradient aggregation rules, (α,f)­Byzantine

resilience, Fault tolerance, Ring all­reduce.

iii

Abstract

Noggrannheten som erhålls vid träning av djupinlärningsmodeller med stora

datamängder är hög, men det är inte möjligt att utbilda en modell med så stora

mängder data på en enda nod av olika skäl. Det kan till exempel inte vara möjligt

att passa hela datamängden i minnet på en enda nod, träningstiderna kan öka

avsevärt eftersom datamängden är enorm. För att undvika dessa problem utformas

decentraliserad träning. I decentraliserad utbildning, med hjälp av tekniken för

dataparallellism, gör flera noder / arbetare en lokal kopia av modellen och tränar

den med hjälp av en partition av datamängden. Var och en av dessa lokalt

utbildade modeller samlas vid någon tidpunkt för att få den slutliga utbildade

modellen. Arkitekturer som Parameterserver, All­reduce och Gossip använder sin

egen nätverkstopologi för att implementera decentraliserad utbildning. Det finns

dock en sårbarhet i denna decentraliserade inställning, någon av arbetarnoderna

kan uppträda godtyckligt och misslyckas. Denna typ av fel kallas bysantinskt

fel. Här betyder godtyckligt att någon av arbetarnoderna kan skicka felaktiga

parametrar till andra, vilket ibland kan leda till felaktighet i den globala modellen

eller att hela systemet misslyckas. För att tolerera sådana godtyckliga fel utformades

aggregeringsregler som testas med hjälp av parametern serverarkitektur. I den

här avhandlingen analyserar vi feltoleransen för Ring all­reduceringsarkitektur till

bysantinska gradienter med hjälp av olika aggregeringsregler som Krum, Brute

och Bulyan. Vi kommer också att injicera motståndare under modellutbildningen

för att observera vilka av de ovannämnda aggregeringsreglerna som ger bättre

motståndskraft mot bysantinska lutningar.

Nyckelord

Byzantinsk motståndskraftig decentraliserad träning, Gradientaggregeringsregler, (α,

f)­Byzantinsk motståndskraft, Feltolerans, Ring all­reducera.

iv

Acknowledgements

Firstly I would like to thank my parents, sisters and other family members for their

incredible support throughout the period.

Special thanks to Amir H. Payberah, a benevolent professor from whom I received a

lot of support over the thesis period and my supervisor Nicolae Paladi, for trusting in

my ability and providing an opportunity to work under their leadership. Your support

and feedback over the course of my thesis greatly assisted my overall understanding

on the concept and motivated to explore further.

I would also like to thank Bank of India for sponsoring my education from past

two years. It has been a fascinating journey with loads of learning that will assist

throughout my carrier.

v

Contents

1 Introduction 1
1.1 Problem . 2
1.2 Methodology . 3
1.3 Limitations . 3
1.4 Ethics and Sustainability . 3
1.5 Structure . 4

2 Background 5
2.1 Kompics . 5
2.2 Data Parallelism . 6
2.3 Multi­Layer Perceptron (MLP) . 7
2.4 The Optimization Algorithm . 8
2.5 System Architectures . 9

2.5.1 Parameter Server . 9
2.5.2 All­Reduce . 10

2.6 Byzantine Resilience . 12
2.7 Gradient Aggregation Rules (GAR’s) . 13

2.7.1 (α, f) ­ Byzantine Resilience . 13
2.7.2 Krum . 14
2.7.3 Brute . 15
2.7.4 Bulyan . 16

3 Ring All­Reduce Robust to Byzantine Failures 17
3.1 Topology . 17
3.2 Share­Reduce . 19
3.3 Byzantine Resilience using Krum/M­Krum 21
3.4 Byzantine Resilience using Brute . 23

vi

CONTENTS

3.5 Byzantine Resilience using Bulyan . 25
3.6 All­Share . 28
3.7 Training MLP with MNIST . 28
3.8 Attack on GAR’s . 29

4 Result 31

5 Conclusion 33
5.1 Summary . 33
5.2 Future Work . 34

Bibliography 35

vii

Chapter 1

Introduction

Decentralizeddeep learning is becomingwidely important considering the capability to

process huge information faster [1] and generate accuratemodels [2]. It cando so using

techniques such asModel parallelism andData parallelism [3]. InModel parallelism,

we split the model’s layers on every worker and and train the layers with the entire

data­set. Such approach has the capacity to train large models in a decentralized way,

however, it is also important to note that the Model parallelism can create imbalances

when split across workers. On the other hand, in Data parallelism we replicate the

entiremodel on every physicalworker and train themusing amini­batch of the data­set

in each iteration. This approach is widely adopted considering the ease of computing

gradients at each iteration with reference to themini­batch the worker has and sharing

them with other workers.

Two important factors to consider here are the optimization algorithm, and

architectural design that makes the communication between workers less latent.

Among the optimization algorithms available [4], Stochastic Gradient Descent (SGD)

is adopted considering the sub linear rate of convergence in a large scale learning

perspective. Some of the well known architectures such as Parameter server [5] [6],

All­reduce [7] and Gossip [8] can be used to implement decentralized model training.

Such architectures have their own limitations on different factors such as latency and

model convergence.

However, when operating under such decentralized conditions it is important to make

sure that the chosen decentralized architecture is robust to failures. A failure can be

anything that tries to make the architecture digress from the actual behaviour. One

1

CHAPTER 1. INTRODUCTION

of such failure is known as Byzantine failure [9] where a worker behaves arbitrarily

and fail. More specifically, a worker may send incorrect gradients to other workers

and cause the model to not converge to an acceptable level. The reason is because the

aggregation rule used by the workers cannot tolerate even a single byzantine gradient.

To address this problem, Gradient Aggregation Rules (GAR’s) are devised, namely,

Brute [10], Krum [11], DRACO [12] and Bulyan [10]. These algorithms are known to

provide (α, f)­Byzantine Resilience [11], meaning, the gradient that deviates the most

fromactual gradients atmost by an anglewill be considered as a byzantine gradient and

will be excluded from the aggregation. The goal of each of these algorithms is to make

sure that the model training remains unaffected despite receiving byzantine gradients

from a byzantine worker.

Despite using a GAR if themodel training still remains effected by byzantine gradients,

then the aggregation rule offered weak/no byzantine resilience and vice versa. While

Brute and Krum are known to offer weak byzantine resilience, Bulyan and DRACO

offers strong byzantine resilience. Multi­Bulyan [13] was proposed proving that a

GAR can also be fast along with being strong byzantine resilient. Other algorithms

such as Guan Yu [14] and LiuBei [15] are known to offer byzantine resilience to both

Parameter servers and workers.

In order to simulate the behaviour of any of the above on a single computing device,

it is important to have a distributed message passing platform that helps to test

the resilience of aforementioned architectures to byzantine workers. Kompics [16] a

peer­to­peer component framework for implementing distributed algorithms greatly

assists in such a scenario, which we will be using for analyzing the the architecture’s

behaviour.

1.1 Problem

The byzantine resilient GAR’s stated above are analysed for resilience using Parameter

server approach but not on all­reduce architecture.

The goal of this thesis is to analyze the fault tolerance of Ring all­reduce

architecture to byzantine gradients by using Krum/M­Krum, Brute and

Bulyan GAR’s.

2

CHAPTER 1. INTRODUCTION

1.2 Methodology

The objective of this thesis is to observe the effects of byzantine gradients on Ring all­

reduce architecture and understanding the architecture’s resilience to such in presence

of a byzantine resilient GAR. The approach of this project is empirical as it involves

experimentingwith variousGARby injecting byzantine attacks. Below are themethods

required fro completion of this thesis:

• Implementation of a communication efficient Ring all­reduce architecture,

which will be made robust to byzantine failures by GAR’s.

• IntegratingMulti Layered Perceptron (MLP) [17] to the byzantine resilient Ring

all­reduce.

• Injecting adversaries when training MLP usingMNIST data­set [18].

• Observing resilience of the architecture to adversaries with increase in worker

count.

1.3 Limitations

The scope of this thesis is limited to analyzing the byzantine resilience of Ring all­

reduce architecture using Krum, Brute and Bulyan GAR’s. Deeplearning4j [19], a

library to build artificial neural networks for java based implementations will be used

for building deep learning models and the experiments will only be carried out using

MNIST data­set. The implementation will be carried out using Scala programming

language [20], therefore, when building a deep learningmodel, the number of neurons

per layer are limited to a specific number considering the Java thread limitation of

65535 bytes per thread. This may lead to slightly less accurate model. Analysis using

other distributed architectures, programming languages, message passing libraries

and data­sets will be left for future work.

1.4 Ethics and Sustainability

The code base and analysis performed on the All­reduce architecture by injecting

adversaries is implemented independently by the student. Therefore, it will not lead

to any ethical issues. Regarding sustainability, the overall project is carried out using

3

CHAPTER 1. INTRODUCTION

open source software’s that are free of cost and using a single computing source, which

makes it both economical and sustainable.

1.5 Structure

The structure of thesis is as follows:

Chapter 2 covers all the relevant background information including system

architectures and aggregation rules required to get an in­depth understanding of this

thesis.

Chapter 3 explains the Ring all­reduce architecture and integration of it with various

GAR’s.

Chapter 4 describes the adversary and the effect it has on aggregation rules.

Chapter 5 depicts the robustness of Ring all­reduce architecture to byzantine

gradients when using various GAR’s under varying worker counts.

Chapter 6 discusses the possible future work in building distributed systems robust

to byzantine failures.

4

Chapter 2

Background

2.1 Kompics

Kompics is a message passing framework used to build distributed abstractions. It

helps simulating the real world behaviour of peer­to­peer systems. It does so by

building protocols using components. Components are the building blocks of the

Kompics framework and are considered to have the facility to be reusable. These

components execute concurrently and will respond to the incoming events. An event

is considered as a message that is being transferred between components or services

within a component. This is called Event­based communication.

One component can communicate with other using ports and the component that is

being communicated to can be in a different node. These ports are connected by

channels and can pass information in First In First Out (FIFO) order. A component

can internally have many services such as a broadcast service that can transmit events

to all nodes. Handlers in a component run the algorithm being implemented and

are subscribed to a port that constantly listens to the incoming events. Components

in Kompics are stateful, meaning, we can achieve synchrony between multiple

components in different nodes or in the same node using the state.

In our implementation, we use Kompics Scala [21]. Kompics Scala is an extension of

Kompics, which enables us with better utilization of pattern matching features and in­

return eases implementation of distributed algorithms such as distributed SGD. Also

we use two components, one for generating the network topology and the other for

running services. The former component is responsible for generating the required

5

CHAPTER 2. BACKGROUND

communication structure for each node, meaning, each node in the network will

receive the information via this component on the topology in which they should be

communicating. Here it is important to note that only one node from the list of

subscribed nodes is responsible for generating the network topology for all nodes. The

latter component can also be called as theMain component since it hosts our services

namely, Byzantine resilience and Distributed model training. While former service

is responsible for making the architecture byzantine resilient, the latter is responsible

for training the deep learning models.

Every node taking part in the architecture has this componentwith the aforementioned

services internally andwill execute it in parallel with other nodes. The executionwill be

triggered once the handler subscribed to a port receives an event. This incoming event

will be patternmatchedwith reference to the implementation in the handler to trigger a

specific function. Thisway nodes in the network communicatewith each other. Each of

the nodes will have three states, namely,Waiting, Collecting and Seeding. These states

will be used in accordance with the role a node plays in the implemented architectures.

The timer is responsible to listen to the incoming events periodically.

2.2 Data Parallelism

Data parallelism is one of ways that assist training the deep learning models

quickly [22]. As explained earlier the idea behind Data parallelism is simple, we

replicate the model to multiple nodes and train the model with a mini­batch of the

data­set in each node. The gradients computed by each node are shared with other

nodes to update their weights and biases with respect to received gradients. The main

reason for adopting this approach is considering that it reduces the training time

significantly. To ensure this, various communication mechanisms have originated,

namely, synchronous, asynchronous, stale­synchronous and local stochastic gradient

descent. While synchronous mechanism being the traditional approach where the

nodes participating in communication process will wait for others to complete their

computation before proceeding to next step, asynchronous ensures vise versa. The

problem with synchronous approach is that even a single node can cause significant

delay. To eliminate this, we have stale­synchronous approach where we just ignore

the worker that is slow and proceed with the computation. Finally, local SGD ensures

that the nodes perform computation for multiple iterations before performing the

6

CHAPTER 2. BACKGROUND

model aggregation. Another key aspect in Data parallelism is the communication

congestion. When sharing the parameters with other nodes, it is important for the

entire topology to make sure that the network traffic is optimal since the whole

point of Data parallelism is to ensure computation is fast. Techniques such as

Quantization and Sparsification have evolved to ensure minimum congestion. While

the former considers only certain bits of a dimension in a vector, the latter zeros out

an unimportant dimension while transmitting the vector in a network. Though these

approaches appear to have provided a solution for communication congestion, they

have significant effect onmodel consistency as the truncated vector can only contribute

to the delay in convergence.

Overall, the performance of the above discussed approaches strictly depend on the

architecture they are in. We have three important architectures overall to implement

data parallelization, namely, Parameter server, All­reduce and Gossip. In Parameter

server approach we can achieve an accurate model using synchronous communication

but it comes with significantly high network traffic. One the other hand, using

asynchronous communication can lead to less accurate model but reduces network

traffic greatly. Using other approaches such as local SGD and stale synchronous can

only lead to moderate accuracy and congestion levels. In All­reduce approach can

only have synchronous and local SGD approaches considering that the architecture’s

topology is not suitable for asynchronous and stale synchronous communication

framework. The synchronous approach is capable in achieving better accurate models

with low traffic congestion though the communication frequency among nodes is quite

high, on the other hand, using local SGDcan lead tomoderate accuracymaintaining the

traffic congestion similar to the synchronous approach. Finally, the gossip architecture

can be operated with synchronous, asynchronous and local SGD communication

frameworks. This architecture is known to provide low model accuracy and network

congestion considering that a node can only communicate with peers. In this thesis we

will be using All­reduce with synchronous approach [3].

2.3 Multi­Layer Perceptron (MLP)

Before looking intoMulti­Layer Perceptron [23], let us quickly understand Perceptron

[24]. A perceptron or a neuron is a binary classifier that is known to solve linearly

separable problems. It takes weighted inputs and passes them through an activation

7

CHAPTER 2. BACKGROUND

function to generate output. For example, ANDandOR logic gates can be considered as

linearly separable, meaning, if we assume a cartesian plane, we will be able to clearly

separate the data points into two where one side of it referring to data belonging to

one type and the other side belonging to another. However, imagine if we have a non

linearly separable problem like XOR as shown in figure 2.3.1 or ability to classify a

number between ten different classes.

Figure 2.3.1: The XOR Problem [25]

In such a case perceptron cannot provide a solution, which leads to multi layer

perceptrons that has not just one but multiple perceptrons spread across multiple

layers. Generally, we have input layer, hidden layer and an output layer. The weighted

input will now pass from input layer to output layer via hidden layer and this is called

as a fully connected feed­forward neural network. It uses backpropagation to train and

update the gradients of it.

2.4 The Optimization Algorithm

In this thesis we will using stochastic gradient descent as our optimization algorithm.

We parallelize the implementation of it among multiple nodes [26], meaning, each

worker will compute a mini­batch gradient descent [27] of the available training

samples and the equation for it can be represented as mentioned in 2.1. Here G

represents the gradient of the loss function ∇l computed locally on a node, x is the

mini­batch chosen for training, w is the computed weight.

Gi (w, βi) =
1

|βi|
∑
x∈βi

∇l(w, x) (2.1)

At each iteration on the mini­batch we have two phases, feed forward and back

8

CHAPTER 2. BACKGROUND

propagation. While the feed­forward phase computes the loss value of chosen mini­

batch w.r.to weights and biases during an iteration, the back propagation computes

the gradients w.r.to the loss value computed in the earlier phase. These gradients on a

node are then shared with other nodes and an aggregation is then performed at some

point depending on the architecture the node is in. The aggregation looks asmentioned

in 2.2. Here F represents the function in a node that performs the aggregation of all

received gradients. k represents the total number of workers.

F (G1, · · · , Gk) =
1

k

k∑
i=1

Gi (w, βi) (2.2)

These aggregated gradients are then used to update the weights locally on a node as

mentioned in 2.3 and we proceed with next iteration. The number of iterations η

are custom specified and we choose it depending on obtained model accuracy at each

iteration.

w := w − ηF (G1, · · · , Gk) (2.3)

2.5 System Architectures

Among the abovementioned three system architectures, we will be discussingmore on

the Parameter server and All­reduce approaches. The Gossip architecture will not be

discussed in this thesis and will be considered out of scope.

2.5.1 Parameter Server

InParameter server architecture, a node can act in two roles. One as a Parameter server

and the other as aWorker. During an iteration, a worker is responsible to compute the

gradient of amini­batch asmentioned in equation 2.1 and shares it with the Parameter

server. The parameters server is responsible to receive the gradients fromworkers and

perform the gradient aggregation mentioned in equation 2.2 and updates the weights

asmentioned in equation 2.3. These updated weights are then shared with the workers

to update their local weights before continuing with the next iteration. Though this

architecture is widely known and adopted, it is known to cause network congestion

with linear increase of Parameter servers or workers and is prone to single point of

failure [28]. Figure 2.5.1 depicts workers sharing gradients to Parameter server to

9

CHAPTER 2. BACKGROUND

perform the aggregation.

Figure 2.5.1: Parameter server architecture

2.5.2 All­Reduce

Before looking into All­reduce architecture and variants of it, let us quickly understand

the Reduce operation. A Reduce operation simply converts a set of numbers

into smaller set. Let us look into an example, imagine our Reduce operation is

multiplication and we have four workers where three of them send an input to fourth

worker. The role of fourth worker is to reduce the inputs received and the output

will now be the multiplied (reduced) value. It is important to observe here that the

final output is in fourth worker but not in the one’s that shared their inputs. In All­

reduce, all workers including the one’s shared inputs will have the final output. Here

a node can play only one role, i.e. worker. We have two phases in All­reduce, one

is the share phase and the other is the reduce phase. The final goal is to ensure that

all workers participating in the communication process has the reduced results. In our

implementation, during share phase, a worker is responsible to compute gradients and

share them with other workers. During the reduce phase, a worker is responsible to

receive the gradients from all other workers and reduce them to a single vector before

updating the weights w.r.to them, meaning, all workers will have identical parameters

at the end of each round. We will discuss further on this in detail in the upcoming

sections.

Considering linear increase in data and necessity for computational power, this

architecture canprovide better support compared to theParameter server architecture.

This is also known to use optimal network bandwidth [28]. Here it is important to

note that all workers in the network will execute the aggregation rule where as in the

Parameter server approach only the Parameter server is responsible to perform the

aggregation.

The topology of All­reduce can be built in a way that it is communication efficient.

10

CHAPTER 2. BACKGROUND

Some of the known types are, All­to­all all­reduce, Master­worker all­reduce [29], Tree

all­reduce, Round­robin all­reduce, Butterfly all­reduce [30] and Ring all­reduce [31].

Figure 2.5.2 is an example of All­to­all all­reduce topology.

Figure 2.5.2: All­to­all all­reduce architecture

In All­to all­reduce topology, every worker sends the data to every other worker. Post

receiving the data from all other workers, a worker will perform reduce operation.

Though this approach looks straightforward, there is a lot of network traffic that

might cause delay in transmitting messages and linear increase in workers can only

contribute to additional latency. In Master­worker all­reduce, one of the workers act

as a master and receives all the data from other workers. Post receiving it reduces

the data and re­shares with all workers. Though this approach appear to have solved

the network traffic problem, it is still vulnerable to single point of failure and is not

scalable. We have other approaches such as Tree all­reduce, Round­robin all­reduce

and Butterfly all­reduce that tries to reduce the bandwidth and latency, however, Ring

all­reduce is known to provide scalability with less traffic congestion. In Ring all­

reduce we have two phases, the first is Share­reduce and the second is All­share phase;

for each round we have both the phases executed. During Share­reduce phase, each

worker w will split the data into n partitions and send the data at ith position to the

worker at (w + 1)%nth position. Here n is total number of workers and i refers to the

current worker index in the topology. The worker receiving the data at index i will

perform a reduce operation on it with its own data on same index and forwards it to

successor in the ring. Finally, at the end of n − 1 Share­reduce rounds, each worker

in the topology will hold a completely reduced data for a specific index. During share­

only phase a worker will share the reduced data it has with all other worker in the same

ring fashion.

11

CHAPTER 2. BACKGROUND

Let us draw a quick comparison betweenMaster­worker all­reduce andRing all­reduce

in terms of network latency. For master­worker variant, the communication cost to

send data from the master to all the workers is N(n − 1) and for all workers to send

their data to the master is N(n − 1). Here N is the data length and n is the total

number of workers participating in communication. The total communication cost

for master­worker is 2(N ∗ (n − 1)). In Ring all­reduce, during the Share­reduce

phase, each worker sendsN/n ∗ (n− 1) data to other workers. During All­share phase

the communication cost remains the same, which makes it 2(N/n ∗ (n − 1)) in total.

This clearly shows that the Ring all­reduce is communication efficient when compared

to master­worker variant. In this thesis implementation we will be using Ring all­

reduce variant considering the advantages like less communication traffic and high

scalability.

2.6 Byzantine Resilience

From equation 2.2, we can understand that each node will perform an aggregation of

the gradients. This function can be referred to as the aggregation rule that takes all

gradients computed from nodes as an input and outputs a single gradient vector that

will be shared with all the nodes. Now let us imagine if our aggregation rule is Average

and one of the inputs received is byzantine, meaning, one of the node that shared the

gradients is behaving arbitrarily and sharing incorrect gradients. In such case, the

average aggregation rule will simply include the byzantine gradient sent by byzantine

worker and share the aggregated vector with all other nodes, meaning, all the nodes

involved in communication are effected by this byzantine worker.

Now the solution to this problem is to make sure that the aggregation rule somehow

filters out the incorrect gradients received from byzantine workers to make the entire

architecture robust to byzantine failures. To address this we have distance andmedian

based aggregation rules. The distance based rules being Krum/M­Krum and Brute

and the median based being Bulyan. The idea behind the distance based is simple,

if a computed N­dimensional gradient received from a node is far by distance from

other N­dimensional gradients received from remaining nodes, we can consider it as

a byzantine. Consider the figure 2.6.1, where we can see the the byzantine gradient

(red arrow) is far by distance from non byzantine gradients (dashed black arrow) while

the optima is pointing towards minimum (blue arrow). Here, it is important to know

12

CHAPTER 2. BACKGROUND

how far a byzantine gradient is from actual gradient before terming it as a byzantine

gradient by a node. To address this problem the aggregation rules employed various

strategies, however, they sometimes fail to differentiate between byzantine and actual

gradients. Therefore, they were known to offer weak byzantine resilience.

Figure 2.6.1: A byzantine gradient digressing from reaching optima during gradient
descent [11, Figure 1]

On the other hand we have median based aggregation rules such as Bulyan that are

known to offer strong byzantine resilience. The idea is that each co­ordinate of the

N­dimensional vector is agreed by majority of the vectors instead of a specific number

[10] as in distance based aggregation rules.

2.7 Gradient Aggregation Rules (GAR’s)

In this section we will discuss more on GAR’s and their byzantine resilience. Let us

first look into the problem with Average aggregation rule. The Average aggregation

rule cannot tolerate even a single byzantine gradient. To prove this let us look into

the equation 2.2, which simply averages all the gradients. Now let us assume that one

worker Gk is byzantine and proposed kU −
∑k−1

i=1 Gi. If we include the value proposed

by this worker in averaging i.e. in equation 2.2, it will then be F = U , which clearly

shows that the average GAR doesn’t tolerate a byzantine worker and can lead to a

model convergence that is unacceptable. In the result section, we will look into an

example to see if this holds true in real­time analysis and also to prove correctness of

the implementation [11, Lemma 1].

2.7.1 (α, f) ­ Byzantine Resilience

(α, f) ­ ByzantineResilience is a condition that aGARmust satisfy in order to be proven

to provide either weak or strong byzantine resilience. For a GAR to be considered

13

CHAPTER 2. BACKGROUND

(α, f) ­ byzantine resilient, it must satisfy two conditions. As shown in figure 2.7.1,

first the vector F must not be far from the estimated actual gradient (non byzantine)

E[g] = J = ∇J(w). ”How far?” is measured by the angle α, which is of range [0°, 90°].

Overall, ∥E[F]− J ∥ should be ≤ r. Second, moments of F must only be controlled by

J i.e. the correct gradient estimator.

Figure 2.7.1: (α, f) ­ Byzantine Resilience [11, Figure 2]

In the upcoming sections we will discuss further in detail on some GAR’s that satisfy

the (α, f) ­ Byzantine Resilience criteria.

2.7.2 Krum

Krum is one of the most recognized algorithms, which is being referred to as a base

implementation either for comparison or for the advancement of analysis in the field

of federated learning, building robust performance efficient distributed systems and

building byzantine resilient GAR’s [32] [33] [34] [35] [36]. The idea behind Krum

GAR is simple, for n ≥ 2f +3where n is the total worker count and f are the byzantine

workers, we exclude the gradients that are too far away from the current gradient. In

detail, for every gradient received from a worker we pick n − f − 2 closest vectors

and compute the score of it. The equation for computing the score is determined as

mentioned in 2.4. HereGi refers to as the current gradient andGj refers to the gradient

in n− f − 2 closest vectors.

s(i) =
∑
i→j

∥Gi −Gj∥2 (2.4)

Finally, we pick a gradient Gi∗ from a worker i that has the least computed score as

mentioned in 2.5. We determine this Gi∗ and n − f − 2 closest vectors of it to be in a

14

CHAPTER 2. BACKGROUND

tightly packed clusterwhen compared to other gradients and their closest vectors.

F (G1, · · · , Gn) = Gi∗ (2.5)

In Multi­Krum (M­Krum) a variant of Krum, we select m gradients among the

proposedGn gradients whose score is the lowest. Herem is in range 1 ≤ m ≤ n−f−2.

Finally we compute the average of these selectedm gradients as shown in the equation

2.6.

1

m

∑
i

Gi∗ (2.6)

Though this approach appear to be a stronger solution to provide byzantine resilience

in shorter dimensions, it suffers from Data Concentration problem in The Curse of

Dimensionality [37] for higher dimensions. To mitigate this problem BRIDGE [38] is

devised. Krum or M­Krum is known to provide weak byzantine resilience since it is

distance a based function that agrees on only some gradients.

2.7.3 Brute

Brute is an (α, f) ­ byzantine resilient GAR that offers weak byzantine resilience. For

it to tolerate f byzantine workers, it must satisfy the condition n ≥ 2f + 1 where n

is the total worker count. We first obtain subsets R each of length n − f from overall

submitted gradients. As mentioned in equation 2.7, we pick a subset whose maximum

computed distance between the gradients in that subset is minimum when compared

with other subsets. Here, Gi∗ and Gj∗ represents gradients belonging to a subset and

X represents the set of gradients.

argmin
X∈R

(
max

(Gi,Gj)∈X 2
(∥Gi −Gj∥)

)
(2.7)

We finally take that subset and average all the gradients as mentioned in equation

2.8. Though this approach offers good resilience to byzantine gradients, it is

computationally expensive and is not feasible approach when having a large worker

15

CHAPTER 2. BACKGROUND

count.

F (G1, · · · , Gn) =
1

n− f

∑
G∈S

G (2.8)

2.7.4 Bulyan

Finally we have Bulyan, which is also an (α, f) ­ byzantine resilient GAR but it

offers strong byzantine resilience. This algorithm acts as a solution for the high

dimensionality problemwe discussed earlier since it ismedian based and requires each

coordinate to agree on majority of the gradients. Also, Bulyan is currently being used

to analyse the fault tolerance to byzantine gradients in the field federated learning [39]

[40]. For it to tolerate f byzantine workers, it must satisfy the condition n ≥ 4f + 3

where n is the number of workers and f are the byzantine workers. Bulyan has two

stages, during stage one we recursively use a weak byzantine resilience GAR until θ

iterations to obtain a set of gradientsS that aremostly non­byzantine. Here, θ = n−2f .

During stage two, we first obtain the median of θ selected gradients as mentioned in

equation 2.9. Here i ∈ [1..d] where d is the total dimension count.

median[i] = arg min
m=Y [i],Y ∈S

(∑
z∈S

|Z[i]−m|

)
(2.9)

Post obtaining the median, we find β closest coordinates to the median coordinate as

mentioned in equation 2.10. Here β = θ − 2f ≥ 3.

M [i] = arg min
R⊂S,|R|=β

(∑
x∈R

|X[i]−median[i]|

)
(2.10)

Finally, we compute the average of the β selected gradients as mentioned in equation

2.11.

F [i] =
1

β

∑
X∈M [i]

X[i] (2.11)

Now this approach guarantees model convergence even in presence of byzantine

gradients. The two stage approach of it appears as if the model is being updated only

with non­byzantine gradients. We will discuss more on this in Results chapter.

16

Chapter 3

Ring All­Reduce Robust to Byzantine
Failures

In this section we will be discussing in depth on how the ring topology is obtained

using Kompics and how the presence of a byzantine worker effects the Ring all­reduce

architecture. We will also delve into the implementation of deep learning model

and provide a thorough analysis on how the chosen GAR’s provide resilience to such

byzantine workers when training the deep learning model.

3.1 Topology

In previous sections, we have discussed on various services hosted on components

in Kompics and how the All­reduce topology works. As a beginning step we spawn

multiple workers that will trigger their components internally. The ports of these

components are open to receive any incoming events from other workers. Here, it

is important for one of the workers to take the responsibility of knowing the addresses

of all the workers to generate the topology. For the convenience of differentiating

with other workers we call this worker as Bootstrap Server and the rest as Bootstrap

Client’s. The bootstrap serverwill first be initiated, and it waits for the bootstrap clients

to connect to it as shown in 3.1.1. Once bootstrap server reaches the threshold (n), i.e.,

minimum number of connecting workers (including itself), it initiates ring topology by

assigning predecessors and successors to each worker.

17

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

Figure 3.1.1: Bootstrap server waiting for clients to connect

The bootstrap server will then share the assigned predecessor and successor

information to all the connected clients including itself as shown in 3.1.2.

Figure 3.1.2: Bootstrap server sending predecessor and successor information to
clients

Once the information is sent to all workers, the bootstrapping is complete. We can

assume the ring­topology as shown in 3.1.3 and each node in the ring can only

communicate via Transmission Control Protocol (TCP) ports with its successor.

Figure 3.1.3: Ring topology

18

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

3.2 Share­Reduce

This is the first phase of Ring all­reduce. Before beginning Share­reduce, each worker

will trigger the Distributed model training service available in the main component.

We will discuss more about this service in the next section. The output of this service

is a generated list of gradients. For example, let us consider the following figure 3.2.1,

which depicts each worker with the computed gradients. Here, it is important to

note that the worker in red (Node one) is byzantine and the gradients of it are clearly

digressing from rest of the workers. We will use this example to delve deeper into the

Ring all­reduce working mechanisms.

(a) Gradient vector length proportional to
number of workers (b) Gradient vector with each index containing

partitions of gradients

Figure 3.2.1: Workers with computed gradients

For a total of five workers, we have four Share­reduce and All­share phases

respectively. During Share one as shown in 3.2.2a, eachworker iwill send the gradient

at index i to the successor. In our example, we have chosen the length of gradient vector

to be proportional to the number of workers for the ease of understanding. Generally,

the number of gradients are significantly larger. In such a case we assume the total

number of gradients to be split into k partitions where k is the total number of workers

and each worker will then share the partition at index i instead of a gradient. This is

depicted in 3.2.1b. The worker receiving the gradient of index i will select from its

own data the gradient matching the incoming index. In case if the worker received a

partition of gradients, it will select its own partition matching the incoming index and

each gradient at index j in partition will be matched with the gradient j of incoming

partition.

19

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

During Reduce one as shown in 3.2.2b, the incoming gradient and the one selected

by the current worker will then be appended together. This will then be shared again

(Share two) to the successor of current worker as shown in 3.2.3a and so on.

(a) Share one
(b) Reduce one

Figure 3.2.2: Share­Reduce phase one

(a) Share two (b) Reduce two

Figure 3.2.3: Share­Reduce phase two

(a) Share three (b) Reduce three

Figure 3.2.4: Share­Reduce phase three

20

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

(a) Share four
(b) Reduce four

Figure 3.2.5: Share­Reduce phase four

At the end of Share­reduce phase, each worker will hold a list of gradients computed

by all workers for a specific index. For example, in Reduce four, worker five will hold

all the information belonging to index zero of each worker. Here, it is important to

note how the gradients from a byzantine worker got spread across all workers in the

ring.

3.3 Byzantine Resilience using Krum/M­Krum

Once Share­reduce phase is completed, we trigger the GAR function in each worker by

giving the received gradients as input. Let us consider we give below as input in worker

five and our GAR to be M­Krum.

Figure 3.3.1: Gradient vector with one byzantine gradient

Here, we obtain two closest gradients for each gradient. For example, the closest

gradients for 0.12 is 0.69 and 0.68 in our example. Post obtaining the closest for all

other gradients in the list, we start computing scores for each of them. The score can

be computed using the following:

s(i) =
∑
i→j

∥Gi −Gj∥2 (3.1)

Below are the scores,

21

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

Figure 3.3.2: Two closest vectors from first gradient

s(0) = (0.69–0.12)2 + (0.68–0.12)2 => 0.3249 + 0.3136 => 0.6385

Figure 3.3.3: Two closest vectors from second gradient

s(1) = (0.69–0.68)2 + (0.71–0.69)2 => 0.0001 + 0.0004 => 0.0005

Figure 3.3.4: Two closest vectors from third gradient

s(2) = (0.71–0.69)2 + (0.72–0.71)2 => 0.0004 + 0.0001 => 0.0005

Figure 3.3.5: Two closest vectors from fourth gradient

s(3) = (0.72–0.71)2 + (0.72− 0.69)2 = 0.0001 + 0.0009 => 0.001

Figure 3.3.6: Two closest vectors from fifth gradient

s(4) = (0.69–0.68)2 + (0.71–0.68)2 = 0.0001 + 0.0009 = 0.001

22

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

After computing the scores, we can sort the values obtained in the ascending order to

obtain the least two (m) scores. The order will be s(1) < s(2) < s(3) < s(4) < s(0),

therefore we can pick s(1) and s(2). Hence, gradients one and two will be selected for

being averaged ignoring the byzantine gradient.

Figure 3.3.7: Selected gradients as non­byzantine by M­Krum

The average of both would be 0.70, which is our value for G(0). Similarly, every

other worker will compute for G(1), G(2), G(3), G(4) respectively and will share with

other workers during All­share phase, which we will be discussing in the upcoming

sections.

3.4 Byzantine Resilience using Brute

Let us assume that the GAR in each worker is Brute using the same input as depicted

in figure 3.3.1. Though Brute is capable of tolerating more byzantine workers in this

case, say, for five workers it can tolerate gradients from two byzantine workers, we will

proceed in our example using one byzantine worker considering ease of comparison

between Brute and other GAR’s. Firstly, we obtain subsets of length n − f from the

given input as show in figure 3.4.1.

Figure 3.4.1: Generated subsets S of input figure 3.3.1

Post obtaining all the subsets, for each subset we computemaximum distance between

the gradients. Let us take for instance the subset S(0) shown in figure 3.4.2

23

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

Figure 3.4.2: Distance from gradient one to every other

s(0) = (0.69)2–(0.71)2 + (0.69)2–(0.72)2 + (0.69)2–(0.68)2 => −0.028 − 0.0423 +

0.0137 => 0.0566

Figure 3.4.3: Distance from gradient two to every other

s(1) = (0.71)2–(0.69)2+(0.71)2–(0.72)2+(0.71)2–(0.68)2 => 0.028−0.0143+0.0417 =>

0.0554

Figure 3.4.4: Distance from gradient three to every other

s(2) = (0.72)2–(0.69)2+(0.72)2–(0.71)2+(0.72)2–(0.68)2 => 0.0423+0.0143+0.056 =>

0.1126

Figure 3.4.5: Distance from gradient four to every other

s(3) = (0.68)2–(0.69)2 + (0.68)2–(0.71)2 + (0.68)2–(0.72)2 => −0.0137 − 0.0417 −
0.056 => 0.1114

Here, s(1) < s(0) < s(3) < s(2), meaning, the maximum value obtained in this subset

s(2). Similarly, we compute for other subsets to obtain the maximum value in their

subset. It can be clearly understood that the one’s with byzantine gradients will surely

have larger maximum distances compared to one’s that have non byzantine gradients.

This way we can conclude that S(0)will have small maximumdistance when compared

to other subsets since it doesn’t have any byzantine gradients.

24

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

Figure 3.4.6: Chosen non­byzantine gradients to perform averaging

Finally, with reference to equation 2.7 we compute the average of the chosen gradients

and share it with other worker during the All­share phase.

3.5 Byzantine Resilience using Bulyan

Let us now assume that the GAR in each worker is Bulyan. We cannot assume the

same input as shown in figure 3.3.1 since Bulyan requires at­least seven workers to

tolerate one byzantine worker. Let us consider the following input as shown in figure

3.5.1

Figure 3.5.1: Gradient vector with one byzantine gradient

During phase one, we give the aforementioned input to one of the weak byzantine

resilience GAR’s to obtain θ gradients. Let us assume we choose Brute as this GAR.

From equation θ = n− 2f , we can say that our θ value in this case will be 5. Therefore,

we use Brute until θ iterations and obtain five gradients which will mostly be the

non­byzantine gradients since the vector chosen as example is not high dimensional.

However, this might not be the case in high dimensional scenarios where there can be

byzantine gradients that escape Brute since it offers weak byzantine resilience. Let us

nowassume thatBrute failed to filter out the byzantine gradient and after five iterations

the output at the end of phase one looks as depicted in figure 3.5.2.

Figure 3.5.2: Gradients chosen by Brute after θ iterations

At the beginning of phase two, we first obtain the median of θ selected gradients. The

median co­ordinate with reference to equation 2.9 in this case is fourth co­ordinate i.e.

0.62. Let us now obtain subsets of length β, where β = θ − 2f ≥ 3, therefore, in our

case β = 3.

25

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

Since we now have subsets and the median value, let us compute for each subset

Figure 3.5.3: Subset 1 of 10

s(0) = (0.44−0.62)+(0.68−0.62)+(0.64−0.62) => −0.18+0.06+0.02 => |−0.1| =>

0.1

Figure 3.5.4: Subset 2 of 10

s(1) = (0.44−0.62)+(0.68−0.62)+(0.61−0.62) => −0.18+0.06−0.01 => |−0.13| =>

0.13

Figure 3.5.5: Subset 3 of 10

s(2) = (0.44−0.62)+(0.64−0.62)+(0.61−0.62) => −0.18+0.02−0.01 => |−0.17| =>

0.17

Figure 3.5.6: Subset 4 of 10

s(3) = (0.68− 0.62) + (0.64− 0.62) + (0.61− 0.62) => 0.06 + 0.02− 0.01 => |0.07| =>

0.07

Figure 3.5.7: Subset 5 of 10

s(4) = (0.44− 0.62) + (0.68− 0.62) + (0.62− 0.62) => −0.18 + 0.06 + 0 => |−0.12| =>

0.12

Figure 3.5.8: Subset 6 of 10

26

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

s(5) = (0.44− 0.62) + (0.64− 0.62) + (0.62− 0.62) => −0.18 + 0.02 + 0 => |−0.16| =>

0.16

Figure 3.5.9: Subset 7 of 10

s(6) = (0.68 − 0.62) + (0.64 − 0.62) + (0.62 − 0.62) => 0.06 + 0.02 + 0 => |0.08| =>

0.08

Figure 3.5.10: Subset 8 of 10

s(7) = (0.44− 0.62) + (0.61− 0.62) + (0.62− 0.62) => −0.18− 0.01 + 0 => |−0.19| =>

0.19

Figure 3.5.11: Subset 9 of 10

s(8) = (0.68 − 0.62) + (0.61 − 0.62) + (0.62 − 0.62) => 0.06 − 0.01 + 0 => |0.05| =>

0.05

Figure 3.5.12: Subset 10 of 10

s(9) = (0.64 − 0.62) + (0.61 − 0.62) + (0.62 − 0.62) => 0.02 − 0.01 + 0 => |0.01| =>

0.01

With reference to equation 2.10 If we sort the above in ascending order, we have

s(9) < s(8) < s(3) < s(6) < s(0) < s(4) < s(4) < s(11) < s(5) < s(2) < s(7),

therefore our minimum is s(9) and the gradients are as depicted in 3.5.13.

Figure 3.5.13: Generated subsets from θ selected gradients

With reference to equation 2.11, we will now compute the average of all the selected

gradients and use them to share it with other workers during the All­share phase.

27

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

3.6 All­Share

During All­share phase each worker will share the final computed gradient with other

workers as shown in 3.6.1.

Figure 3.6.1: All­share Phase

At the end of All­share phase, eachworkerwill hold a copy of final gradients as depicted

in 3.6.2

Figure 3.6.2: Workers with non­byzantine byzantine gradients

3.7 Training MLP with MNIST

In this section we will discuss further on Distributed model training service. This

service receives the input from Byzantine resilience service i.e. gradients that are

non­byzantine (mostly) and outputs new set of gradients. It hosts our deep learning

model, which is a multi layer network provided by deeplearning4j that has SGD as

the optimisation algorithm and contains one layer that accepts inputs of size 28*28

28

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

and outputs 10 classes. This makes a total of 7840 weights and 10 biases that will

be generated by the model per iteration. In our above example we used a gradient

vector of length five for ease of understanding. In real time, we share a total of 7850

gradients among the workers. Each worker in topology will build a model with the

same structure as mentioned earlier. TheMNIST data­set, which is being used to train

the model has 60,000 images each of it being a 28*28 pixel grey scale image. Here,

it is important to note that the data­set is split into mini batches of size 128 and each

worker will only train on specific number of mini batches and not on entire data­set,

which is because we want to achieve Data parallelism. We also use a test data­set of

10,000 samples from MNIST to measure accuracy of the model. To inject byzantine

gradients, we use a random function provided by deeplearning4j to replace themodel’s

gradients with these custom generated and update the weights and biases of it. We

share these gradients with other worker during Share­reduce phase instead of actual

generated gradients. In the next section, we will discuss further on how these injected

byzantine gradients are used to formulate an attack.

3.8 Attack on GAR’s

With reference to [41] [10] we formulate an attack and observe the effect it has on

M­Krum, Brute and Bulyan in Ring all­reduce architecture. The attack is simple,

when the GAR receives a set of n gradients among which f are byzantine, it picks f

gradients which are assumed to be byzantine and use these set of gradients for further

computation according to the algorithm.

Let us now observe the effect of such attack on GAR’s starting with M­Krum Brute and

Bulyan. M­Krum is a distance based GAR that suffers from the curse of dimensionality

and is known to offer weak byzantine resilience. Since it is an lp norm based GAR

that filters out byzantine gradients based on distance minimization scheme, it does

allow considerable margin to accommodate byzantine gradients as gradients from

correct workers. Such GAR can only contribute to prevent convergence of a model

to an acceptable level. Brute on the other hand also filters out byzantine gradients

based on distance minimization scheme, which made it to provide weaker resilience

to byzantine gradients just like M­Krum. We take inspiration of our attack from

this drawback to prove stronger resilience of Bulyan. When attacked M­Krum and

Brute, they pick f gradients instead of n − f , meaning, they accommodate byzantine

29

CHAPTER 3. RING ALL­REDUCE ROBUST TO BYZANTINE FAILURES

gradients as real gradients when under attack. We also attack Bulyan and ensure that

the weak byzantine resilience algorithm picks always f gradients at the end of phase

one. These gradients are then given as an input for phase two execution of Bulyan.

The median based approach in phase two of Bulyan reduces the probability of picking

the byzantine gradients chosen in phase one as much as by O(1/
√
d) [10]. This phase

two median approach ensures as an extra protection from byzantine gradients missed

by the weak byzantine resilience GAR and ensures Bulyan to provide strong byzantine

resilience.

30

Chapter 4

Result

In this section, wewill be discussing the results obtained in this thesis implementation.

We observe the resilience of Ring all­reduce to byzantine gradients in the presence of

M­Krum, Brute and Bulyan GAR’s by injecting the adversary mentioned in chapter

3.8. In our experiments, when training the deeplearning model with MNIST data­set,

we attack until 300 epochs to see which of the aforementioned GAR’s offered better

resilience to byzantine gradients by extrapolating a graph with X axis representing

number of epochs and Y axis representing the accuracy. The learning rate of the

model in this case is 0.5 which is considerably high. The reason for choosing such high

learning rate is because it can significantly increases the effectiveness of the attack and

vice versa.

(a) Resilience offered by Ring all­reduce with
two byzantine’s (f) among 11 workers (n)

(b) Resilience offered by Ring all­reduce with
three byzantine’s (f) among 15 workers (n)

Figure 4.0.1: Accuracy obtained on testing until 500 epochs using MNIST data­set

31

CHAPTER 4. RESULT

From figures 4.0.1a and 4.0.1b, we can clearly observe that the Bulyan GAR showed

significant resistance to the attack when compared to M­Krum and Brute. This also

shows that the byzantine gradients missed by the weak byzantine resilience GAR

during phase one of Bulyan are successfully filtered out during themedian based phase

two. Phase two of Bulyan is capable of obtaining a subset of gradients that are closest to

the median and not on specific coordinates like M­Krum or Brute. On the other hand,

M­Krum sufferedmore than Brute when attacked. This is because when the attack lets

GAR’s to choose f among the total submitted gradients, M­Krum averages withm i.e.

in our case n−f −2; the weight added by correct gradients is lower compared to Brute

which averages with n− f . Therefore, with increase in number of byzantine gradients

M­Krum suffered to the attack more than Brute. Overall, it can be concluded that

Bulyan offers strong byzantine resilience in ring all­reduce approach with good model

convergence compared toM­Krum and Brute. Since Parameter server server approach

is known to perform poorly with linear increase in number of workers, ring all­reduce

can be adopted in such a case which is capable of achieving similar performance in the

presence of GAR’s which can be observed from the above result.

32

Chapter 5

Conclusion

In this section we provide a brief summary of the results and potential future works

that can extend the current implementation.

5.1 Summary

So far we have discussed M­Krum, Brute and Bulyan GAR’s, and Ring all­reduce

architecture in depth. First we generate the required ring topology with workers

and build necessary components and services using Kompics. We use one of the

service to train the deeplearning model using MNIST data­set and another to run a

GAR that provides byzantine resilience during the training process. We have also

provided an example for each GAR used in this implementation to have a clear

understanding of their capabilities to filter out byzantine gradients. Post setup, we

have conducted experiments using the aforementionedwith varyingworker counts and

injecting adversaries. Overall, Bulyan performed well when compared toM­Krum and

Brute, and showed better resilience to byzantine gradients under adversary in Ring

all­reduce architecture. The adversary enables workers to choose byzantine gradients

until certain number of epochs to observe which of the aforementioned GAR’s provide

better resilience. This approach indeed proves that Bulyan is capable of achieving

performance similar to the Average GAR not only in Parameter server approach as

mentioned in [10] but also in All­reduce architecture.

33

CHAPTER 5. CONCLUSION

5.2 Future Work

Below are some ideas for possible future implementations:

Analyzing M­Krum, Brute and Bulyan GAR’s performance in Gossip architecture:

considering Gossip architecture’s capabilities such as less communication frequency

and traffic, it will be interesting to draw a comparison between the training times

overall between All­reduce and Gossip architecture’s. Slow to moderate model

convergence can also be taken into consideration in expansion to the above.

Observing the effects of byzantine gradients on GAR’s with larger worker counts:

current experiments are conducted with the number of workers being less than

30. This is due to physical machine limitations. Considering Bulyan’s requirement

of having high worker counts to tolerate moderate to low byzantine workers, the

experiments are conducted with a smaller number of byzantine workers, say, for

30 workers we can only have six byzantines. To ensure clear understanding on

performance of GAR’s, all other experiments were conducted with the same worker

and byzantine count. Conducting experiments on larger counts may assist with better

understanding on effects of byzantine gradients on GAR’s.

More experiments using All­reduce variants: current experiments are conducted

using Ring all­reduce. As discussed earlier we have variants of All­reduce, whichmight

assist with reducing training times and it will be interesting to see if there is a trade off

between model convergence and training times.

AnalyzingMulti­Bulyan in both All­reduce and Gossip architectures: Multi­Bulyan is

aGAR that has beenproposed at the time of this implementation andhas been analyzed

for byzantine resilience in Parameter server architecture. Further analysis on it can be

implemented using both All­reduce and Gossip architectures.

Experiments using other data­sets and largermodels: In our current implementation

we usedMNIST data­set formodel training andGAR experimentation purposes. It will

be interesting to see if the aforementioned GAR’s can achieve performance similar to

MNIST when using CIFAR and other data­sets. Also, as mentioned in the limitations

section, the Java thread limitation of 65535 bytes has caused us to build shortermodels

by means of the number of free parameters. It will be greatly beneficial to compare if

the GAR’s, especially distance based functions perform the same with reference to our

result.

34

Bibliography

[1] You, Yang, Li, Jing, Reddi, Sashank, Hseu, Jonathan, Kumar, Sanjiv,

Bhojanapalli, Srinadh, Song, Xiaodan, Demmel, James, Keutzer, Kurt, and

Hsieh, Cho­Jui. Large Batch Optimization for Deep Learning: Training BERT

in 76 minutes. 2020. arXiv: 1904.00962 [cs.LG].

[2] Sun, Chen, Shrivastava, Abhinav, Singh, Saurabh, and Gupta, Abhinav.

Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. 2017.

arXiv: 1707.02968 [cs.CV].

[3] Tang, Zhenheng, Shi, Shaohuai, Chu,

Xiaowen, Wang, Wei, and Li, Bo. Communication­Efficient Distributed Deep

Learning: A Comprehensive Survey. 2020. arXiv: 2003.06307 [cs.DC].

[4] Bottou, Léon, Curtis, Frank E., and Nocedal, Jorge. Optimization Methods for

Large­Scale Machine Learning. 2018. arXiv: 1606.04838 [stat.ML].

[5] Li, Mu, Andersen, David G., Park, JunWoo, Smola, Alexander J., Ahmed, Amr,

Josifovski, Vanja, Long, James, Shekita, Eugene J., and Su, Bor­Yiing. “Scaling

Distributed Machine Learning with the Parameter Server”. In: 11th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 14).

Broomfield, CO: USENIX Association, Oct. 2014, pp. 583–598. ISBN: 978­1­

931971­16­4. URL: https://www.usenix.org/conference/osdi14/technical-

sessions/presentation/li_mu.

[6] Chilimbi, Trishul, Suzue, Yutaka, Apacible, Johnson, and Kalyanaraman,

Karthik. “Project Adam: Building an Efficient and Scalable Deep Learning

Training System”. In: 11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 14). Broomfield, CO: USENIX Association, Oct.

2014, pp. 571–582. ISBN: 978­1­931971­16­4. URL: https://www.usenix.org/

conference/osdi14/technical-sessions/presentation/chilimbi.

35

https://arxiv.org/abs/1904.00962
https://arxiv.org/abs/1707.02968
https://arxiv.org/abs/2003.06307
https://arxiv.org/abs/1606.04838
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi

BIBLIOGRAPHY

[7] Kendall, Wes.MPI Reduce and Allreduce. 2014. URL: https://mpitutorial.

com/tutorials/mpi-reduce-and-allreduce/ (visited on 06/01/2021).

[8] Yates, Roy D. The Age of Gossip in Networks. 2021. arXiv: 2102.02893 [cs.IT].

[9] Lamport, Leslie, Shostak, Robert, and Pease,Marshall. “The ByzantineGenerals

Problem”. In: ACM Trans. Program. Lang. Syst. 4.3 (July 1982), pp. 382–401.

ISSN: 0164­0925. DOI: 10.1145/357172.357176. URL: https://doi.org/10.

1145/357172.357176.

[10] Mhamdi, El Mahdi El, Guerraoui, Rachid, and Rouault, Sébastien. The Hidden

Vulnerability of Distributed Learning in Byzantium. 2018. arXiv: 1802.07927

[stat.ML].

[11] Blanchard, Peva, El Mhamdi, El Mahdi, Guerraoui, Rachid, and Stainer, Julien.

“Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent”.

In: Proceedings of the 31st International Conference on Neural Information

Processing Systems. NIPS’17. Long Beach, California, USA: Curran Associates

Inc., 2017, pp. 118–128. ISBN: 9781510860964.

[12] Chen, Lingjiao, Wang, Hongyi, Charles, Zachary, and Papailiopoulos, Dimitris.

DRACO: Byzantine­resilient Distributed Training via Redundant Gradients.

2018. arXiv: 1803.09877 [stat.ML].

[13] El­Mhamdi, El­Mahdi, Guerraoui, Rachid, and Rouault, Sébastien. “Fast and

Robust Distributed Learning in High Dimension”. In: 2020 International

Symposium on Reliable Distributed Systems (SRDS). 2020, pp. 71–80. DOI:

10.1109/SRDS51746.2020.00015.

[14] Mhamdi, El Mahdi El, Guerraoui, R., Guirguis, A., and Rouault, Sébastien.

“SGD: Decentralized Byzantine Resilience”. In: ArXiv abs/1905.03853 (2019).

[15] Mhamdi, El Mahdi El, Guerraoui, Rachid, and Guirguis, Arsany. Fast Machine

Learning with Byzantine Workers and Servers. 2020. arXiv: 1911 . 07537

[cs.LG].

[16] Arad, Cosmin, Dowling, Jim, and Haridi, Seif. “Developing, Simulating, and

Deploying Peer­to­Peer Systems Using the Kompics Component Model”. In:

Proceedings of the Fourth International ICST Conference on COMmunication

System SoftWAre and MiddlewaRE. COMSWARE ’09. Dublin, Ireland:

Association for Computing Machinery, 2009. ISBN: 9781605583532. DOI: 10.

1145/1621890.1621911. URL: https://doi.org/10.1145/1621890.1621911.

36

https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
https://arxiv.org/abs/2102.02893
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://arxiv.org/abs/1802.07927
https://arxiv.org/abs/1802.07927
https://arxiv.org/abs/1803.09877
https://doi.org/10.1109/SRDS51746.2020.00015
https://arxiv.org/abs/1911.07537
https://arxiv.org/abs/1911.07537
https://doi.org/10.1145/1621890.1621911
https://doi.org/10.1145/1621890.1621911
https://doi.org/10.1145/1621890.1621911

BIBLIOGRAPHY

[17] Peng, Zhao. Multilayer Perceptron Algebra. 2017. arXiv: 1701 . 04968

[stat.ML].

[18] LeCun, Yann and Cortes, Corinna. “MNIST handwritten digit database”. In:

(2010). URL: http://yann.lecun.com/exdb/mnist/.

[19] Team, Eclipse Deeplearning4j Development. Deeplearning4j: Open­source

distributed deep learning for the JVM, Apache Software Foundation License

2.0. 2016. URL: https://deeplearning4j.org/ (visited on 06/02/2021).

[20] Odersky, Martin, Spoon, Lex, and Venners, Bill. Programming in Scala:

Updated for Scala 2.12. 3rd. Sunnyvale, CA, USA: Artima Incorporation, 2016.

ISBN: 0981531687.

[21] Kroll, Lars, Carbone, Paris, and Haridi, Seif. “Kompics Scala: Narrowing the

Gap between Algorithmic Specification and Executable Code (Short Paper)”.

In: Proceedings of the 8th ACM SIGPLAN International Symposium on Scala.

SCALA 2017. Vancouver, BC, Canada: Association for Computing Machinery,

2017, pp. 73–77. ISBN: 9781450355292. DOI: 10.1145/3136000.3136009. URL:

https://doi.org/10.1145/3136000.3136009.

[22] Shallue, Christopher J., Lee, Jaehoon, Antognini, Joseph, Sohl­Dickstein,

Jascha, Frostig, Roy, and Dahl, George E. Measuring the Effects of Data

Parallelism on Neural Network Training. 2019. arXiv: 1811.03600 [cs.LG].

[23] Brownlee, Jason. Crash Course On Multi­Layer Perceptron Neural Networks.

2016. URL: https://machinelearningmastery.com/neural-networks-crash-

course/ (visited on 06/06/2021).

[24] Minsky, Marvin and Papert, Seymour. Perceptrons: An Introduction to

Computational Geometry. Cambridge, MA, USA: MIT Press, 1969.

[25] Ahire, Jayesh Bapu.Demystifying theXORproblem. 2020. URL: https://dev.

to/jbahire/demystifying-the-xor-problem-1blk (visited on 06/06/2021).

[26] Sharma, Anuraganand. “Guided parallelized stochastic gradient descent for

delay compensation”. In: Applied Soft Computing 102 (Apr. 2021), p. 107084.

ISSN: 1568­4946. DOI: 10.1016/j.asoc.2021.107084. URL: http://dx.doi.

org/10.1016/j.asoc.2021.107084.

[27] Ruder, Sebastian. An overview of gradient descent optimization algorithms.

2017. arXiv: 1609.04747 [cs.LG].

37

https://arxiv.org/abs/1701.04968
https://arxiv.org/abs/1701.04968
http://yann.lecun.com/exdb/mnist/
https://deeplearning4j.org/
https://doi.org/10.1145/3136000.3136009
https://doi.org/10.1145/3136000.3136009
https://arxiv.org/abs/1811.03600
https://machinelearningmastery.com/neural-networks-crash-course/
https://machinelearningmastery.com/neural-networks-crash-course/
https://dev.to/jbahire/demystifying-the-xor-problem-1blk
https://dev.to/jbahire/demystifying-the-xor-problem-1blk
https://doi.org/10.1016/j.asoc.2021.107084
http://dx.doi.org/10.1016/j.asoc.2021.107084
http://dx.doi.org/10.1016/j.asoc.2021.107084
https://arxiv.org/abs/1609.04747

BIBLIOGRAPHY

[28] Alqahtani, Salem

and Demirbas, Murat. Performance Analysis and Comparison of Distributed

Machine Learning Systems. 2019. arXiv: 1909.02061 [cs.DC].

[29] Garcia, Edir. Visual intuition on ring­Allreduce for distributed Deep Learning.

2017. URL: https : / / towardsdatascience . com / visual - intuition - on -

ring- allreduce- for- distributed- deep- learning- d1f34b4911da (visited

on 05/30/2021).

[30] Zhao, Huasha and Canny, John. Sparse Allreduce: Efficient Scalable

Communication for Power­Law Data. 2013. arXiv: 1312.3020 [cs.DC].

[31] Gibiansky, Andrew. Bringing HPC techniques to deep learning. 2017. URL:

https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/

(visited on 05/29/2021).

[32] Baruch, Moran, Baruch, Gilad, and Goldberg, Yoav. A Little Is Enough:

Circumventing Defenses For Distributed Learning. 2019. arXiv: 1902.06156

[cs.LG].

[33] Muñoz­González, Luis, Co, Kenneth T., and Lupu, Emil C. Byzantine­Robust

FederatedMachine Learning through AdaptiveModel Averaging. 2019. arXiv:

1909.05125 [stat.ML].

[34] Rajput, Shashank, Wang, Hongyi, Charles, Zachary, and Papailiopoulos,

Dimitris. DETOX: A Redundancy­based Framework for Faster and More

Robust Gradient Aggregation. 2020. arXiv: 1907.12205 [cs.LG].

[35] Yang, Zhixiong, Gang, Arpita, and Bajwa, Waheed U. “Adversary­Resilient

Distributed and Decentralized Statistical Inference and Machine Learning: An

Overview of Recent Advances Under the Byzantine Threat Model”. In: IEEE

Signal Processing Magazine 37.3 (May 2020), pp. 146–159. ISSN: 1558­0792.

DOI: 10.1109/msp.2020.2973345. URL: http://dx.doi.org/10.1109/MSP.

2020.2973345.

[36] Xie, Cong, Koyejo, Oluwasanmi, and Gupta, Indranil. Phocas: dimensional

Byzantine­resilient stochastic gradient descent. 2018. arXiv: 1805 . 09682

[cs.DC].

[37] Team, Great Learning. Understanding Curse of Dimensionality. 2020. URL:

https : / / www . mygreatlearning . com / blog / understanding - curse - of -

dimensionality/ (visited on 05/31/2021).

38

https://arxiv.org/abs/1909.02061
https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da
https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da
https://arxiv.org/abs/1312.3020
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://arxiv.org/abs/1902.06156
https://arxiv.org/abs/1902.06156
https://arxiv.org/abs/1909.05125
https://arxiv.org/abs/1907.12205
https://doi.org/10.1109/msp.2020.2973345
http://dx.doi.org/10.1109/MSP.2020.2973345
http://dx.doi.org/10.1109/MSP.2020.2973345
https://arxiv.org/abs/1805.09682
https://arxiv.org/abs/1805.09682
https://www.mygreatlearning.com/blog/understanding-curse-of-dimensionality/
https://www.mygreatlearning.com/blog/understanding-curse-of-dimensionality/

BIBLIOGRAPHY

[38] Yang, Zhixiong

and Bajwa, Waheed U. BRIDGE: Byzantine­resilient Decentralized Gradient

Descent. 2019. arXiv: 1908.08098 [stat.ML].

[39] Prakash, Saurav and Avestimehr, Salman. Mitigating Byzantine Attacks in

Federated Learning. 2021. arXiv: 2010.07541 [cs.DC].

[40] Zizzo, Giulio, Rawat, Ambrish, Sinn, Mathieu, and Buesser, Beat. FAT:

Federated Adversarial Training. 2020. arXiv: 2012.01791 [cs.LG].

[41] Lyu, Lingjuan, Yu, Han, Ma, Xingjun, Sun, Lichao, Zhao, Jun, Yang, Qiang,

and Yu, Philip S. Privacy and Robustness in Federated Learning: Attacks and

Defenses. 2020. arXiv: 2012.06337 [cs.CR].

39

https://arxiv.org/abs/1908.08098
https://arxiv.org/abs/2010.07541
https://arxiv.org/abs/2012.01791
https://arxiv.org/abs/2012.06337

Appendix ­ Contents

A Ring All­Reduce Snippet 41
A.1 Topology Generator . 41
A.2 Gradient Sharing . 42
A.3 Handler . 43
A.4 Handler Triggering All­Share Phase . 43
A.5 Pre Processor . 44
A.6 Model generation . 44

B Byzantine Resilient GAR’s Snippet 46
B.1 M­Krum . 46
B.2 Brute . 48
B.3 Bulyan . 49

C MLP Snippet 51
C.1 Model . 51
C.2 Byzantine Gradients . 51

40

Appendix A

Ring All­Reduce Snippet

A.1 Topology Generator
import com.larskroll.common.collections._;
import java.util.Collection;
import se.kth.rise.networking.NetAddress;

@SerialVersionUID(6322485231428233902L)
// Node
class Node(self: NetAddress, pred: NetAddress, succ: NetAddress, index: Int,

succIndex : Int) extends Serializable
{

def get_current_address(): NetAddress = {
return self

}
def get_pred_address(): NetAddress = {
return pred

}
def get_succ_address(): NetAddress = {
return succ

}
def get_index(): Int = {
return index

}
def get_succ_index(): Int = {
return succIndex

}
override def toString(): String =
{

val sb = new StringBuilder();
sb.append("Predecessor: " + pred);
sb.append("Current node: " + self);
sb.append("Successor:" , succ);
sb.append("My index in ring: ", index)
sb.append("My succesor index in ring: ", succIndex)
return sb.toString();

}
}

object RingTopology {
var successorN : NetAddress = _ ;
var predecessorN : NetAddress =_ ;

41

APPENDIX A. RING ALL­REDUCE SNIPPET

var currentN : NetAddress =_ ;
var succI : Int = 0;

def generate(nodes: Set[NetAddress]): scala.collection.immutable.Set[Node]
= {

val sortedAddress = nodes.toList sortBy (_.getPort())
val leng: Int = sortedAddress.length - 1
var allNodes = scala.collection.immutable.Set[Node]()

sortedAddress.zipWithIndex.foreach{ case (item, index) =>
currentN = sortedAddress(index);
index match {
case index if index == 0 => {
succI = index + 1;
successorN = sortedAddress(index + 1);
predecessorN = sortedAddress(leng);
}
case index if index == leng => {
succI = 0;
successorN = sortedAddress(0);
predecessorN = sortedAddress(index - 1);
}
case _ => {
succI = index + 1;
successorN = sortedAddress(index + 1);
predecessorN = sortedAddress(index - 1);
}

}
allNodes += new Node(currentN, predecessorN, successorN, index, succI);

}
// All nodes with predecessors and successors assigned
allNodes
}

}

Listing A.1.1: Topology generator component generating ring topology for all
connected nodes

A.2 Gradient Sharing
boot uponEvent {
// Receive all assignments from Topology generator component
case InitialAssignments(assignment) => {
// Set BootstrapServer's predecessor and successor
assignment foreach { node =>

if(self == node.get_current_address()){
currentNI = node.get_index()
succNI = node.get_succ_index()
predecessorN = node.get_pred_address()
successorN = node.get_succ_address()

}
}
// Send the generated topology to all workers
active foreach { node =>
trigger(NetMessage(self, node, Boot(assignment)) -> net);

}
// BootstrapServer open to receive gradients

42

APPENDIX A. RING ALL­REDUCE SNIPPET

ready += self;
// Create a model and generate gradinets
generateGradients(1, bootThreshold, finalGradients);
var converter = transporter(currentNI).map(Array(_))
// Trigger Share-Reduce phase
trigger(NetMessage(self, successorN, Msg(converter, currentNI)) -> net);

}
}

Listing A.2.1: BootstrapServer sending ring topology and gradients to all other workers

A.3 Handler
net uponEvent {

case NetMessage(header, Msg(incGradient, index)) => {
var preProcessor = transporter(index).map(Array(_))
// Process and add the received gradinets from workers
receivedGradients = allVals(incGradient, index, preProcessor);
index match {
// Trigger Share - Reduce
case index if index != succNI => trigger(NetMessage(self, successorN,

Msg(receivedGradients(index), index)) -> net);
// Trigger All share phase
case _ =>
finalGradients += (index -> ListBuffer());
receivedGradients(succNI) foreach { eachList =>
// Byzantine resilience GAR
avg = MultiKrum.MultiKrumInit(eachList.toList, closestVectors,

bruteAvg, epochCount);
// Update final gradients of an index
finalGradients.update(index, finalGradients(index) :++

ListBuffer(Array(avg)));
}
println("Computed final gradient " + finalGradients(index) + " for index

" + index);
// Share with all other workers
trigger(NetMessage(self, successorN, SharePhase(finalGradients(index),

index)) -> net);
}

}
}

Listing A.3.1: Handler in workers sending and receiving events (gradients)

A.4 Handler Triggering All­Share Phase
net uponEvent {

case NetMessage(header, SharePhase(incGradient, index)) => {
index match {
// Update received gradinets and forward the index to next worker
case index if index != succNI => println("Final gradient for index ",

index, incGradient);
finalGradients += (index -> ListBuffer());
finalGradients.update(index, incGradient);

43

APPENDIX A. RING ALL­REDUCE SNIPPET

trigger(NetMessage(self, successorN, SharePhase(incGradient, index)) ->
net);

// Trigger model training once Share-reduce is completed
case index if index == succNI =>
// Begin model training with received gradients
// Train the model until 500 epochs
if(epochCount <= epochs){
// Final gradients given as an input to model
var trainedGrads = generateGradients(2, bootThreshold, finalGradients);
// Reset variables
receivedGradients = scala.collection.mutable.Map()
finalGradients = scala.collection.mutable.Map()
processGradients = scala.collection.mutable.Map()
// Increment epochs
epochCount += 1;
var preProcessor = trainedGrads(currentNI).map(Array(_))
// Trigger Share-reduce again
trigger(NetMessage(self, successorN, Msg(preProcessor, currentNI)) ->

net);
}
case _ => // Do Nothing
}

}
}

Listing A.4.1: Handler receiving gradients in all­share phase and triggering model
training

A.5 Pre Processor
def allVals(incGradient: ListBuffer[Array[Float]], index : Int, currGradient:

ListBuffer[Array[Float]]):
scala.collection.mutable.Map[Int,ListBuffer[Array[Float]]] = {
processGradients += (index -> ListBuffer())
incGradient.zipWithIndex.foreach{ case(x,i) =>
processGradients.update(index, processGradients(index) :++

ListBuffer(currGradient(i) ++ x))
}
processGradients

}

Listing A.5.1: Pre­processor including gradients received from workers

A.6 Model generation
def generateGradients(incPhase : Int, threshold: Int, sharedGrads:

scala.collection.mutable.Map[Int,ListBuffer[Array[Float]]]):
ListBuffer[ListBuffer[Float]] = {
// Initiate model and generate gradinets
if(incPhase == 1) {

MLPMnist.modelInit(currentNI);
gradient = MLPMnist.triggerInitialGradinets(currentNI);
transporter = round(gradient.toList, threshold)

}

44

APPENDIX A. RING ALL­REDUCE SNIPPET

// Begin training with the updated gradinets
if(incPhase == 2) {

val sortProcess =
scala.collection.mutable.Map(sharedGrads.toSeq.sortBy(_._1):_*)

val buffer = sortProcess.map{case(i, x) => x};
gradient = MLPMnist.triggerTraining(buffer.flatten.flatten.toArray,

epochCount, currentNI, epochs);
transporter = round(gradient.toList, threshold)

}
transporter

}

Listing A.6.1: Workers generating model and beginning training

45

Appendix B

Byzantine Resilient GAR’s Snippet

B.1 M­Krum
import Ordering.Float.IeeeOrdering;
import scala.collection.mutable.ListBuffer;

object MultiKrum {
// Search index to set searchable points
def findCrossOver(arr: List[Float], num: Float, start: Int, end: Int): Int

= {
if (arr(start) <= num) {
return start

}
if (arr(end) > num) {
return end

}
val center: Int = (end + start) / 2
if (arr(center) <= num && arr(center + 1) > num) {
return center

}
if (arr(center) < num) {
return findCrossOver(arr, num, center + 1, start)

}
return findCrossOver(arr, num, end, center - 1)

}
// Obtain n-f-2 closest vectors
def closestVectorsToEach(arr: List[Float], eachNum: Float, k: Int, len:

Int): Float = {
var count: Int = 0
var summation: Float = 0.0f
var left: Int = findCrossOver(arr, eachNum, 0, len - 1)
var right: Int = left + 1
if (arr(left) == eachNum) {
left -= 1; left + 1

}
while (left >= 0 && right < len && count < k) {
if (eachNum - arr(left) < arr(right) - eachNum){
var num = arr({ left -= 1; left + 1 })
summation += MKrum(num, eachNum)

}
else{
var num = arr({ right += 1; right - 1 })

46

APPENDIX B. BYZANTINE RESILIENT GAR’S SNIPPET

summation += MKrum(num, eachNum)
}
count += 1; count - 1

}
while (count < k && left >= 0) {
var num = arr({ left -= 1; left + 1 })
summation += MKrum(num, eachNum)
count += 1; count - 1

}
while (count < k && right < len) {
var num = arr({ right += 1; right - 1 });
summation += MKrum(num, eachNum)
count += 1; count - 1

}
summation

}
// Begin M-Krum
def MultiKrumInit(arr: List[Float], closestVectors: Int, mKrumAvg: Int,

epochC: Int): Float = {
var length = arr.length;
var sortedList = arr.sorted
var squared = scala.collection.mutable.ListBuffer.empty[Float]
sortedList foreach { each =>
var eachGen = closestVectorsToEach(sortedList, each, closestVectors,

length)
squared += eachGen
}
MKrumAvg(squared, sortedList, mKrumAvg, epochC)

}
// Compute squared distance
def MKrum(inp : Float, grad: Float): Float = {
var sqrdDist: Float = 0;
sqrdDist = Math.abs(Math.pow((inp - grad),2).toFloat);
sqrdDist

}
// Compute average with m = n-f-2
def MKrumAvg(lb: ListBuffer[Float], sl: List[Float], mKrumAvg: Int, epochC:

Int): Float = {
val clb = lb.toList;
val map = clb.zipWithIndex.map{ case (v,i) => (i,v) }.toMap
var count: Int = 0
var sum: Float = 0.0f;
var avg: Float = 0.0f;
// Attack until 300 epochs picking f gradients
if(epochC <= 300){
val smap = map.toList.sortBy(_._2).reverse
while(count < mKrumAvg){
val (key, vals) = smap(count)
sum += sl(key)
count += 1;
}

}
if(epochC > 300){
val smap = map.toList.sortBy(_._2)
while(count < mKrumAvg){
val (key, vals) = smap(count)
sum += sl(key)
count += 1;
}

}

47

APPENDIX B. BYZANTINE RESILIENT GAR’S SNIPPET

avg = sum/mKrumAvg;
println(avg)
avg

}
}

Listing B.1.1: M­Krum GAR

B.2 Brute
import Ordering.Float.IeeeOrdering;
import scala.collection.mutable.ListBuffer;

object Brute {
def BruteInit(input: List[Float], subSets: Int, bruteAvg: Int, epochCount:

Int): Float = {
var allCombinations = input.combinations(subSets).toList;
var maxVal: Float = 0.0f;
var maxed : List[(Float, List[Float])] = List()
// Subsets of length n-f
allCombinations foreach { each =>
var squaredList = each.map(x => x*x);
squaredList.zipWithIndex.foreach{ case(x,i) =>

squaredList.zipWithIndex.foreach{ case(y,j) =>
if(i!=j){

var diff = Math.abs(x-y)
if(diff > maxVal){

maxVal = diff;
}

}
}

}
// Maximum value in a subset
maxed = maxed:+((maxVal, each));
maxVal = 0.0f;

}
var sorted : List[(Float, List[Float])] = List()
// Attack until 300 epochs picking f gradients
if(epochCount <= 300) {
sorted = maxed.sortBy(r => (r._1)).reverse
}
// No attack
if(epochCount > 300) {
sorted = maxed.sortBy(r => (r._1))
}
// Minimum of maximum
var finlGrads = sorted(0)._2
var summed = finlGrads.reduceLeft(_ + _) / bruteAvg;
summed

}
}

Listing B.2.1: Brute GAR

48

APPENDIX B. BYZANTINE RESILIENT GAR’S SNIPPET

B.3 Bulyan
import Ordering.Float.IeeeOrdering;
import scala.collection.mutable.ListBuffer;

object Bulyan {
def closestNumber(inputLst: List[Float], target: Float): Float = {
var index: Int = 0
var dist: Float = Math.abs(inputLst(0) - target)
for (i <- 1 until inputLst.length) {
val closestDist: Float = Math.abs(inputLst(i) - target)
if (closestDist < dist) {
index = i
dist = closestDist

}
}
inputLst(index)

}
def BulyanInit(input: List[Float], slectionSetLen: Int, byzantineCount:

Int, epochC: Int): Float = {
println("Bulyan Initiated")
var chosen: Float = 0.0f;
var receivedSet: ListBuffer[Float] = ListBuffer();
receivedSet ++= input
var selectionSet: ListBuffer[Float] = ListBuffer();
var maxVal: Float = 0.0f;
var maxed : List[(Float, Float)] = List();
var minBulVal: Float = 0.0f;
var minedBul : List[(Float, List[Float])] = List();
// Step 1
// theta = n - 2f
while(selectionSet.length < slectionSetLen){

println("ReceivedSet "+ receivedSet)
chosen = bruteInit(receivedSet.toList, receivedSet.length -

byzantineCount, receivedSet.length - byzantineCount, epochC);
var closestVal = closestNumber(receivedSet.toList, chosen);
receivedSet -= closestVal;
selectionSet += closestVal;
println("Selection set ", selectionSet)

}
// Step 2
// Median calculation
selectionSet.zipWithIndex.foreach{ case(x,i) =>

selectionSet.zipWithIndex.foreach{ case(y,j) =>
if(i!=j){

var diff = Math.abs(x-y);
maxVal = maxVal + diff;

}
}
maxed = maxed:+ ((x, maxVal));
println("All median values ",maxed)
maxVal = 0.0f;

}
// beta = theta - 2f
var allCombinations = selectionSet.toList.combinations(3).toList;
var incSort = maxed.sortBy(r => (r._2))
var medianGrad = incSort(0)._1
println("Min of Max ", medianGrad);
// Subset verification
allCombinations foreach { each =>

49

APPENDIX B. BYZANTINE RESILIENT GAR’S SNIPPET

each.zipWithIndex.foreach{ case(y,j) =>
var diff = Math.abs(y - medianGrad);
minBulVal = minBulVal + diff;

}
minedBul = minedBul :+ ((minBulVal, each));
minBulVal = 0.0f;

}
println("Min bulyan vals ", minedBul)
var sorted : List[(Float, List[Float])] = List()
sorted = minedBul.sortBy(r => (r._1))
var finlGrads = sorted(0)._2
println("Min of Max ", finlGrads);
var summed = finlGrads.reduceLeft(_ + _) / 3;
summed

}
// Brute GAR
def bruteInit(input: List[Float], closestVectors: Int, bruteAvg: Int,

epochC: Int): Float = {
println("Brute Initiated")
var allCombinations = input.combinations(closestVectors).toList;
var maxVal: Float = 0.0f;
var maxed : List[(Float, List[Float])] = List()
allCombinations foreach { each =>
var squaredList = each.map(x => x*x);
squaredList.zipWithIndex.foreach{ case(x,i) =>

squaredList.zipWithIndex.foreach{ case(y,j) =>
if(i!=j){

var diff = Math.abs(x-y)
if(diff > maxVal){

maxVal = diff;
}

}
}

}
maxed = maxed:+((maxVal, each));
maxVal = 0.0f;

}
var sorted : List[(Float, List[Float])] = List()
// Attack until 300 epochs picking f gradients
if(epochC <= 300) {
sorted = maxed.sortBy(r => (r._1)).reverse
println("Sorted descending ",sorted);
}
if(epochC > 300) {
sorted = maxed.sortBy(r => (r._1))
println("Sorted acsending ",sorted);
}
var finalGrads = sorted(0)._2
println("Min of Max ", finalGrads);
var summed = finalGrads.reduceLeft(_ + _) / bruteAvg;
summed

}
}

Listing B.3.1: Bulyan GAR

50

Appendix C

MLP Snippet

C.1 Model
val conf = new NeuralNetConfiguration.Builder()

.seed(rngSeed)

.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)

.learningRate(0.5)

.list

.layer(0, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD) //
0_W (weights - 784 * 10) // 0_b (bias - 10)

.nIn(numRows * numColumns)

.nOut(10)

.activation(Activation.SOFTMAX)

.weightInit(WeightInit.XAVIER)

.build)
.pretrain(false).backprop(true)
.build

var model = new MultiLayerNetwork(conf)
model.init()
model.setListeners(new ScoreIterationListener(5))

Listing C.1.1: MLP implemented using deeplearning4j and Scala

C.2 Byzantine Gradients
// Random gradients for weights
var weightShape = Array(784, 10)
var b_1d = Nd4j.rand(weightShape, Nd4j.getDistributions().createUniform(-1,

999))
// Random gradients for biases
var biasShape = Array(10)
var b_2d = Nd4j.rand(biasShape, Nd4j.getDistributions().createUniform(-100,

900))
// Update the model with the above generated byzantine gradients
model.gradient().setGradientFor("0_W", b_1d)
model.gradient().setGradientFor("0_b", b_2d)
// Update weights
model.update(model.gradient())

Listing C.2.1: Randombyzantine gradients being injected to the above discussedmodel

51

www.kth.se

	Introduction
	Problem
	Methodology
	Limitations
	Ethics and Sustainability
	Structure

	Background
	Kompics
	Data Parallelism
	Multi-Layer Perceptron (MLP)
	The Optimization Algorithm
	System Architectures
	Parameter Server
	All-Reduce

	Byzantine Resilience
	Gradient Aggregation Rules (GAR's)
	(, f) - Byzantine Resilience
	Krum
	Brute
	Bulyan

	Ring All-Reduce Robust to Byzantine Failures
	Topology
	Share-Reduce
	Byzantine Resilience using Krum/M-Krum
	Byzantine Resilience using Brute
	Byzantine Resilience using Bulyan
	All-Share
	Training MLP with MNIST
	Attack on GAR's

	Result
	Conclusion
	Summary
	Future Work

	Bibliography
	Ring All-Reduce Snippet
	Topology Generator
	Gradient Sharing
	Handler
	Handler Triggering All-Share Phase
	Pre Processor
	Model generation

	Byzantine Resilient GAR's Snippet
	M-Krum
	Brute
	Bulyan

	MLP Snippet
	Model
	Byzantine Gradients

