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Abstract

PyTorch is becoming a really important library for any deep learning practitioner, as

it provides many low-level functionalities that allow a fine-grained control of neural

networks from training to inference, and for this reason it is also heavily used in

deep learning research, where ablation studies are often conducted to validate neural

architectures that researchers come up with. To the best of our knowledge, Maggy

is the first open-source framework for asynchronous parallel ablation studies and

hyperparameter optimization for TensorFlow, and in this work we added important

functionalities such as the possibility to execute ablation studies on PyTorchmodels as

well as the generalization of feature ablation on any data type. This work also shows the

main challenges and interesting points of developing a framework on top of PyTorch

and how these challenges have been addressed in the extension of Maggy.
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Abstract

PyTorch blir ett oerhört viktigt bibliotek för alla utövare inom djupinlärning, detta

eftersom PyTorch innehåller flertalet lågnivåfunktioner som möjliggör en finkorning

kontroll av neurala nätverk - från träning till inferens. Av den anledningen används

PyTorch också kraftigt i forskning om djupinlärning, där ablationsstudier ofta

genomförs för att validera neurala arkitekturer som forskare framtagit. Så vitt vi vet

är Maggy det första open-source ramverk för asynkrona parallella ablationsstudier

och hyperparameteroptimering för TensorFlow. I detta arbete har vi lagt till viktiga

funktioner såsom möjligheten att utföra ablationsstudier på PyTorch-modeller samt

generalisering av funktionsablation för alla datatyper. Detta arbete upplyser också

dem viktigaste utmaningarna och mest intressanta punkterna för att utveckla en

ram ovanpå PyTorch och hur dessa utmaningar har hanterats i förlängningen av

Maggy.

Nyckelord

Ablation Study, PyTorch, Neural Architecture Search, Spark
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Chapter 1

Introduction

In this chapter we are going to introduce the key concepts of this thesis: we start

by introducing problem, motivation, purpose and goal for this project. We will also

present sections on ethics and sustainability, methodology, as well as the delimitations

and outline for this work.

1.1 Problem

In Machine Learning (ML), ablation studies are the removal of one or more

components from a neural architecture or its training dataset. Theirmain purpose is to

show how a certain component of the system impacts some relevant metrics (e.g. the

accuracy of the model). Ablation studies are of primary importance in ML research as

well as in real-world applications since they are useful to validate and justify proposed

neural networkmodels and datasets. However, they are not carried out very frequently

because they require a lot of code changes, and in general they are considered time-

consuming since they require retraining a model multiple times, especially if many

configurations need to be validated. In general, for every new configuration that one

wishes to test, it is necessary to make some code modifications and then retrain the

model from scratch. On top of this, researchers need to keep track of all the conducted

experimentswith details onwhat has been changed in the neuralmodel and the various

metrics that have been collected. This can result in a lot of work that can be automated

with an adequate framework. In this thesis work we will introduce Maggy [23]: a

framework that aims to removemost of that complexity, automating themodel training

process and leaving to the user the only task of specifying the ablation process that

1



CHAPTER 1. INTRODUCTION

needs to be executed.

Maggy was developed in 2019 by Logical Clocks AB [21] and provides Application

Programming Interfaces (APIs) for ablation studies and hyperparameter search

in TensorFlow [1]. We believe that providing data scientists with a tool to test

their models in a flexible and easy way will produce higher-quality research and,

furthermore, it will save them a considerable amount of time that otherwise should

be dedicated to manual model search.

1.2 Motivation

Many influential papers [11, 19, 38, 43] contain sections on ablation studies, showing

that they are indeed a useful tool to gain some more information about complex

models. Some of them describe simple removals or neural network layers (or groups

of layers), while other papers show complex ablations that involves loss functions or

small details in the neural architecture. Some of these examples on how broad ablation

studies can be are reported in section 5.3.

Even though TensorFlow is still a popular framework for deep learning, PyTorch has

also gained a lot of attention in the last recent years (especially in academia, as we can

see in Figure 1.2.1), because of some interesting features that allow low-level control

of neural models. One of the main reasons of PyTorch’s success is certainly the fact

the it is a Pythonic framework [35]: this means that it exposes a familiar interface for

programmers that are already familiar with Python (e.g. the model training loop is a

normal Python program and the necessary data structures are simple Python classes

that the user needs to subclass). On the other hand, in TensorFlow, the objects and

functions exposed to the user hide most of the complexity underneath the training

process, which makes it very easy and intuitive to use, but at the same time it does not

provide the same fine-grained control that PyTorch has (we will discuss this concept

more in detail in Section 3.3.1). Regarding the optimization, even though it is difficult

to quantifywith precisionwhich framework is faster, PyTorch is appreciated for the fact

its core functionalities are written in C++ to ensure high performance. Specifically,

the control flow is handled by a C++ core and the data flow (tensor management) is

optimized throughComputeUnifiedDevice Architecture (CUDA) [32], which executes

tensor operations on one or more Graphics Processing Units (GPUs) when these are

available (this mechanism is transparent to the user). To the best of our knowledge,

2



CHAPTER 1. INTRODUCTION

Figure 1.2.1: TensorFlow and PyTorch mentions in arXiv.org over time [37]

there was no framework for ablation studies in PyTorch [35] prior to this work, and

that is why my supervisors and I decided to explore the possibility of such techniques,

eventually integrating this functionality into Maggy [23].

1.3 Goal and Research Question

The goal of this thesis work is to produce a framework for ablation studies that is

simple to use, requires minimal code changes compared to ordinary PyTorch code,

is performant and can be used in a distributed Spark [34] environment. Furthermore,

since an API for Maggy is already available, we also kept that interface unchanged to

allow Maggy users to switch from PyTorch to TensorFlow in a seamless fashion. This

work also aims to explore the strength as well as the limitations of PyTorch, illustrating

the main challenges and interesting points in the development of Maggy: by analyzing

PyTorch in depth we shed some light on the difficulties that stem from building a

framework on top of it, as well as some features that can be harnessed to make it

flexible and easy to use. Sections 3.2 and 3.3.1 will reprise and elaborate these points

to show exactly what has been done in the design and development of this framework.

The research question can be formulated as follows: “Can we provide an intuitive API

for PyTorch users to efficiently conduct ablation studies with minimal code changes

compared to normal PyTorch code?”

3



CHAPTER 1. INTRODUCTION

1.4 Ethics and Sustainability

Even though sustainability is a topic that is not often mentioned together with

Artitificial Intelligence (AI), it has major importance nowadays more than ever.

Schwartz et al. published in 2019 a paper on “Green AI” [38] which points out that

throughout the development of AI, the size of neural networks have increased at a

pace even faster than Moore’s law. Nowadays, to produce accurate AI models we

often need a huge amount of GPUs and energy. Ironically, these models should be

inspired to the neural mechanisms in our brain which, on the contrary, are extremely

efficient. Their work suggest that research on AI so far has not been organic and

methodical, but rather rushed and only focused to publish many new models as fast

as possible, as it is confirmed also by Lindauer & Hutter [19]. What deep learning

research needs in this moment is first of all more common guidelines on how to build

and evaluate new models, and secondly it needs a way to make models more efficient

and accessible.

We really do not perceive the link between energy inefficiency and Information

Technology (IT), maybe because we use terms like “cloud”, “intelligence” and others

that sound very positive. However, in September 2018, Nature reported that the energy

needed to run and cool down only data centers added up to 1% of the total world

energetic consumption. If we consider also personal devices (like computers, tablets

andmobile phones) this share increases up to 2% [12]. Recently, also Cryptocurrencies

mining has taken a toll on this numbers, and only in these years we begin to see

statistics on the specific consumption of AImodels becausewe just realized the amount

of energy that they demand. In Figure 1.4.1 we can see a prediction of the energy

demand due to Information and Communication Technology (ICT) according to

Nature.

Automating Neural Architecture Search (NAS) and Hyperparameter Optimization

(HO) is a first crucial step to build efficient models because humans are just not good

at performing these tasks [37]. Secondly, we have to make this processes efficient:

an exhaustive search that runs for months trying all possible alternatives for a certain

neural architecture is fully automated but completely inefficient. We have to harness

domain knowledge for specific problems to optimize the resources that we have. Early

stopping is a possible way to achieve this, by stopping experiments that most likely

won’t give rise to accurate models, therefore saving training time. Support for early

4



CHAPTER 1. INTRODUCTION

Figure 1.4.1: Prediction of energy demand in ICT [31]
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CHAPTER 1. INTRODUCTION

stopping is already implemented in Maggy for HO experiments [22].

1.5 Methodology

A common thesis work involves devising an experiment, collecting data and then

validating the results obtained. This thesis presents the design and implementation

of a framework that is conceived to be used by other developers and therefore does

not follow the classic experimental methodology (collecting information, devising

an experiment and showing the results). Here are the main steps that defined the

realization of this degree project:

• Recognize the need for ablation study frameworks as well as the value of PyTorch

in deep learning research and identify a gap in academic literature (the absence

of ablation study frameworks for PyTorch).

• Study PyTorch extensively, especially the most common ways of using it, since

one of the goals of this project is to build a tool that would be easily usable by

developers that already know how to write PyTorch code. This aspect will be

elaborated more in Chapter 3.

• Get information on the state of the art in ablation studies and NAS.

• Define the design principles: ease of use, efficiency and minimal code changes

compared to PyTorch code (described more in detail in Section 3.1).

• Identify the main problems in feature and model ablation in PyTorch.

• ExtendMaggy with model and feature ablation for PyTorch following its original

programming model [29]. In this case, an alternative API was also studied and

presented in the thesis in Section 3.5.

• Evaluating the framework with different neural architectures and ablation

studies.

In the scope of this thesis we will look at ablation studies that involve mainly neural

network layers and parts of datasets, but this should not lead the reader to think that

these are the only possible ways of conducting an ablation study: many parts of a

neural architecture can be removed to understand the effect they produce and, more

in general, they do not even need to be neurons or layers to be considered ablation

6



CHAPTER 1. INTRODUCTION

studies (for instance, the removal of loss functions would still be consider an ablation

study).

If we narrow down this to the work that has been made regarding model ablation, we

can link it toNASbecause as amatter of fact we are trying different neural architectures

and we are selecting the best one according to some optimization strategy that we

define. However, we must clarify that NAS and ablation studies are not the same

thing: NAS consists in searching different neural architectures and choosing the best

one according to some specified metrics, while ablation studies in ML are experiments

that aim to understand causality in a system by removing its components (this specific

definition is inspired by a famous tweet by F. Chollet1).

1.6 Delimitations

The focus of this work is on ablation studies, involving mainly neural network layers

andparts of datasets. Other related fields of AI optimization likeHOwill bementioned,

but they do not constitute the main point of the thesis, and they are presented only

for the sake of completeness, to give the reader a clearer picture of the topic of the

dissertation. Regarding the frameworks and platform that will be discussed, it is easy

to understand that we will mostly refer to PyTorch, often compared to TensorFlow to

stress how they differ in the usage and to highlight what needs to be implemented for

a framework that will operate on top of them.

1.7 Outline

In the next chapters of this thesis we are going to present, first, the necessary

background knowledge to understand the work, followed by the design of the ablation

study framework implemented in Maggy; finally we illustrate the results obtained and

the conclusions that can be drawn.

1https://twitter.com/fchollet/status/1012721582148550662?lang=en
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Chapter 2

Background

In this chapter we are going to present all the necessary concepts that the reader needs

to follow this dissertation. At first we give a general overview on AI and its meaning,

then neural networks, Automated Machine Learning (AutoML) and ablation studies

are explained. Lastly, we present the frameworks and platforms that have been used

for this thesis work, together with the original architecture of Maggy [23], the key

framework on which this work has been conducted on.

2.1 A Brief History of AI

AI has always been a topic of great interest in computer science. Its ultimate goal

is to produce machines able to take decision autonomously, but we can see that the

meaning of AI has muted considerably throughout the years. We will now provide a

brief overview of AI from the first appearance in modern history until today.

2.1.1 What is Considered AI

Many definitions of AI have been given and, as technology advances, more and more

are proposed. To look at some of them we can cite:

• John McCarthy1, during the Dartmouth AI conference in 1956, which is

considered as the one what that gave birth to AI said “The study is to proceed

on the basis of the conjecture that every aspect of learning or any other feature

1https://www.livinginternet.com/i/ii_ai.htm
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CHAPTER 2. BACKGROUND

of intelligence can in principle be so precisely described that a machine can be

made to simulate it.”

• The Encyclopedia Britannica2 reports “AI, the ability of a digital computer

or computer-controlled robot to perform tasks commonly associated with

intelligent beings.”

• The dictionary Merriem-Webster3 defines AI as “a branch of computer science

dealing with the simulation of intelligent behavior in computers” or “the

capability of a machine to imitate intelligent human behavior”

According to Alan Turing, sometimes referred to as the “father of computer science”,

an AI agent should be able to trick a human into thinking that she is talking to another

human after receiving an answer given by a computer. This process is defined by the

Turing Test [39], proposed by A. Turing in 1950 and since then, many things changed.

Nowadays, this test is not a popular choice to measure machine intelligence anymore,

and computer scientists prefer more complex tasks such as describing pictures with

correct sentences [18], object detection or classification [33], understanding human

language [42] and so on. We have reached a point where it’s hard to quantify the

performance of suchmachines because sometimes not even humans agree on the same

evaluation.

2.1.2 Artificial Intelligence Today

AI is becoming more and more popular in these last few years thanks to the important

results that we continuously see in research: fields such as computer vision, automatic

translation andmany others have reached surprising results through the development

of specific neural network models that outperform by far any previous approach

ever attempted. Neural networks are becoming so popular despite the fact that very

few people understand them deeply and, even when result seem very promising,

data scientists and engineers really struggle to interpret and explain such good

performances. For this reason, neural networks have been frequently referred to as

“black box” models since sometimes they can be overly complicated: we do know

what is happening inside them in the sense that the mathematics of these models

is completely specified, but we as humans still can not interpret or explain the true

2https://www.britannica.com/technology/artificial-intelligence
3https://www.merriam-webster.com/dictionary/artificial%20intelligence
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CHAPTER 2. BACKGROUND

reason why machines make certain predictions. What we do is just feed a model

with a large number of examples together with the output that we expect, and we

hope that the model will learn the general underlying rule to link input and output.

Neural networks have existed for decades, but only recently they have outperformed

previous approaches thanks to large datasets, powerful hardware and new training

algorithms.

2.2 Neural Networks

In this section we are going to present the basic concepts to understand neural

networks, their components and how these models are trained. This section is

important to understand the architecture from which we start when we define an

ablation study.

2.2.1 What is a Neural Network

Currently many AI algorithms are implemented with a neural network, and the best

way to explain a neural network is probably with a visual example, as it is shown in

Figure 2.2.1. This specific example shows a feed-forward neural network because the

nodes in the network do not form a cycle. A network is made of many layers, in turn

made of nodes (also called artificial neurons) connected to one another in subsequent

layers.

The first layer is called the input layer because every node in it receives a numeric

input that will be propagated throughout the network, whereas every other node in the

network takes different inputs (the outputs of the previous nodes), multiplies them by

the weight that is associated to each connection, and finally sums up all together. An

activation function is then applied to the output that is generated from each of these

nodes. Activation functions are non-linearities introduced in the network to make it

able to produce non-linear space segmentation, and therefore solve complex problems.

Often, layers have a special input called “bias” which is nothing but a node in the layer

whose input is always set to 1 and from a geometrical perspective, biases are needed to

separate the n-dimensional problem space with hyperplanes that do not intersect the

origin. The final layer (or output layer) produces the final decision of the network for

a classification or a regression problem. There are many other types of neural network

10
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Figure 2.2.1: An example of deep neural network [27]

that we will not mention here for brevity, but the general principle remains the one

that we just illustrated.

Everything that is referred to as deep learning is implemented through a neural

network, even though that is not the only way for computer scientists to implement

ML algorithms as we can see in the taxonomy in Figure 2.2.2. Even though neural

networks are so popular nowadays they were invented in the 1950s [5] but they were

hardly considered useful due to the famous Exclusive OR (XOR) problem (a thorough

explanation of the problem is given in Chapter 6 of the Deep Learning Book [10]).

Given an input of two bits, a neural network can not learn the logical XOR function

without the introduction of non-linear activation functions. The problem is well

understandable when seen from a geometrical point of view: if we imagine each layer

as a linear transformation of the previous outputs, the final output is still a combination

of this linear transformations and so it is linear itself. However, as we can see in

Figure 2.2.3 a straight line can not separate our two classes in the correct way. The

introduction of non-linear activation functions between layers solves this problem as

it produces non-straight lines in the same space.

The XOR problem led to the first “AI winter” because it was deemed that neural

networks were inadequate to solve most problems. From that point on, other AI

winters followed, mainly because computers were not powerful enough to run AI

models or because no model was found adequate to solve a certain task.

11
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Figure 2.2.2: Machine Learning Taxonomy [20]

Figure 2.2.3: The XOR problem from a geometrical perspective [26]

12
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Figure 2.2.4: A simplified Deep Learning pipeline

2.2.2 Training a Model

Once a neural network model has been built, it is time to train it: this is the major

difference compared to more traditional algorithms with which computer scientists

have always worked. In fact, instead of instructing a machine with what to do for

every possible input, we just show it a series of examples and the output that we

expect, and we just hope the machine will learn the general rule in between through

the minimization of a cost function that we define.

Mathematically speaking, the training of a feed-forward neural network happens with

a process called backpropagation, which is nothing but the minimization of the error

(that we define) between the machine prediction (i.e. the output of the final layer)

and what we expect to be predicted. Backpropagation consists of a forward pass

and a backward pass: the forward pass is when the data is fed into the model and

this produces an outcome which is in turn used to compute a loss metric. In the

backward pass, the gradient of the loss with respect to every weight is computed, and

it is used to update the model weights. For this reason, model training is by far the

most computationally heavy phase in the entire deep learning pipeline (we can see a

simplified representation in Figure 2.2.4).

Training a network requires two main steps:

• Defining the model architecture

• Defining the model hyperparameters (i.e. all the variables that will not be learnt

during training)

Both these tasks are quite difficult for humans, in the sense that people just follow

best practices to choose them (e.g. Convolutional Neural Networks (CNNs) are used

for image and video processing (such as object detection and recognition), Recurrent

Neural Networks (RNNs) are used for Natural Language Processing (NLP) and time

13
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series analysis), while coming up with a new architecture or a novel strategy for

hyperparameter choice is only a research topic. It is for this reason that recently two

important fields in AI, namely NAS and HO, have gained more and more popularity.

As these names suggest, NAS refers to the automatic search of the best model for a

given problem, and HO refers to the search for the best model hyperparameters.

Currently, even though NAS and HO are often mentioned together, as they are two

really close topics inML,many complete tools forHOare already available and ready to

use (to name a fewwe can list Optuna [2], Auto Sklearn [9], Hyperband [17], Automatic

Model Tuning for Amazon SageMaker4, etc.), while NAS tools (like Autokeras [15],

ENAS [7, 8], NNI [30]) offer simple functionalities like the comparison of differentML

techniques and libraries or they provide neural search limited to small components of

the architecture, like the design of a single RNN cell [36]. Especially in these past few

years, the research on AutoML is proceeding at a fast pace, but there is certainly still

a lot to do. More information on the aforementioned tools can be found in Section

4.3.

2.3 Why an Ablation Study

Even though the term “ablation study” is now used mostly in AI, the term is taken

from medicine and dates back to the XIX century. We are now going to introduce the

terminology and the concepts that will be reprised throughout this thesis work.

2.3.1 Ablation Studies in the Past

The term “ablation study” is borrowed from the medical field, since originally it was

a technique introduced by the French physiologist M.J.P. Flourens [25] consisting in

removing parts of the nervous system of vertebrates to understand their purpose. In

the early 1800s he conducted various experiments on pigeon brains and successfully

proved the functions of cerebral areas like the Cerebellum, the Medulla Oblungata

and some brain lobes, although only to an approximate understanding. The approach

that we take with neural networks is very similar (yet, less cruel) to what Flourens

did with vertebrates in the sense that we remove parts of our models to see how well

the model performs without them. To a certain extent we could also argue that we

4https://aws.amazon.com/sagemaker/
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try to understand the purpose of these ablated parts, even though the link between

performance and purpose is often not well understood.

A prominent difference with physiology is that even though an animal brain is

enormously more complex than an Artificial Neural Network (ANN), it is not

modifiable, while in ANNs we can move parts and layers in different positions, tune

parameters and produce an infinite number of combinations with the components

at our disposal. Since the problem is so complex, best practices have always helped

data scientists in the quest for the right model, but there is still no evidence for a

universally correct method for how to build a neural network. Maybe in the future we

will have more sophisticated tools to examine such complex models, in the same way

that we found new tools andmethods to study our own brains in 200 years of scientific

progress.

2.3.2 Ablation Studies in this Work

In this thesis we are going to talk mainly about layer ablation and feature ablation.

The former consists in removing entire layers of a neural network, while the latter

focuses on removing parts of training datasets (by “parts” we really mean any type

of data that the user can come up with). In the version of Maggy previous to this thesis

it was only possible to ablate entire columns of a dataset, and this extension is one

of the major contributions of this work. We will refer to the ablator as the logic that

defines how layers and features are removed. For instance, Maggy implements the

Leave One Component Out (LOCO) policy, which requires the user to specify a series

of components that will be removed one by one: a series of trials will be run, and for

each of them only one component will be removed from the initial system (model and

dataset). To produce the ablated models and datasets, Maggy uses some generators:

these are functions that take a layer (or a feature) identifier in the systemas a parameter

and return the code to instantiate that samemodel (or dataset) without the component

indicated by the identifier.

2.3.3 The Role of Ablation Studies in Research

In the academic community an ablation study is useful to validate research results

before publishing them. For instance, coming up with one well-performing model

could be just a lucky coincidence, whereas an ablation study allows the researchers
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to justify with more confidence the model choice, suggesting the necessity of some

components rather than others. Unfortunately, these studies are not found so

frequently in scientific literature since it takes time and energy to arrange them. To

the best of our knowledge, Maggy is at the moment the only tool to devise automated

ablation studies for deep learning models in Python.

2.4 The Concept of AutoML

There has been a lot of excitement about AutoML in the last years and, as it generally

happens, definitions are often too broad and vague to be used with a precise meaning.

In this work we are going to refer to AutoML according to the definition given in [13],

where it is divided in three categories:

• HO

• Meta-learning

• NAS

HO consists in finding good values for parameters such as learning rate, number of

epochs, size of convolutional filters, etc. that are normally fixed during the training

process. Meta-learning means “learning to learn” as Y. Bengio et al. describe in their

paper [4]. At a high-level meta-learning can be represented with two loops one inside

the other, where the inner loop is the usual training loop and the outer one modifies

the structure of the network itself over time. NAS aims to optimize neural architectures

as the name suggests. We can further divide this field in three sub-tasks for which we

have to define:

• a search space

• a search strategy

• a performance estimation strategy

Firstly we need to decide which possible architectures we are going to try (search

space), then we choose how to explore these architectures (search strategy) and finally

we choose how to evaluate what we have explored. In theory, there are infinite

possibilities to explore new models, but in practice it’s quite common to start from

a well-known and well performing architecture and apply little tweaks here and there
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to define a search space.

Regarding the search strategy there are two big families of methods that we can apply:

directed and undirected search. The first one means that we choose the next model to

explore based on the result thatwe obtain in other explorations, while in the second one

every search is independent. Classic examples of undirected search are random search

or grid search: randomsearch picks (as the name suggests) randomly somepoints from

the search space, while grid search is an exhaustive search through amanually specified

subset of the entire search space. Finally, regarding the strategy to estimate model

performance one can choose metrics such as accuracy, loss, speed or other metrics

according to the final goal that is to be achieved.

Of the three branches of AutoML that we have mentioned, this thesis focuses mainly

on NAS as an ablation study canmodify the structure of the neural network that we are

dealing with.

2.5 Frameworks and Platforms

In this section we will briefly go through the platforms and frameworks that have been

used in the thesis. We will also provide a description of the original Maggy framework

and its functioning.

2.5.1 Hopsworks

Hopsworks [14] is a platform developed by Logical Clocks [21] that provides a suite of

tools for ML tasks, especially in a distributed environment. Originally, it started with

the creation of HopsFS, a distributed File System (FS) underneath Hopsworks based

onHadoop File System (HDFS) [3] that achieves better performance dealing with both

small and large files (HDFS is not optimized for small files). Hopsworks offers a series

of tool to support ML from training to production and gives the user the possibility

to create end-to-end pipelines comprising data ingestion, preparation and storage, as

well as model training, analysis and deployment.

On top of HopsFS and together with Hopsworks, Logical Clocks created also an open-

source Feature Store5. A feature store is a tool to ingest, store and version the data

(features) of an ML system. Among the advantages that it provides we can find:

5https://github.com/logicalclocks/feature-store-api
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• Ensuring consistent features in both training and serving: poor cohesion of data

used in model training and serving is one of the most frequent causes for models

to perform poorly. With a feature store it just takes a glance at a dashboard to

see if the two data sources are comparable.

• Data versioning and time travel queries: many developers are already used to

Version Control Systems (VCSs) to monitor the changes in a code base, but

data can change too, and exactly like code it can be versioned and accessed with

queries that refer to a specific point in time.

• Feature data validation: this means that we can validate data points during

ingestion before adding them to one or more features. This is necessary as poor-

quality data will most certainly reduce the quality of amodel built on top of them.

We will briefly demonstrate how to use the Hopsworks Feature Store in the context of

ablation studies in Chapter 3.

2.5.2 PyTorch

In the past few years, TensorFlow [1] with its API Keras [6] has been the most popular

choice for data scientists to build deep learning models. The reason is that Keras

provides an intuitive an easy-to-use interface while TensorFlow provides the core

functionalities for the execution. However, PyTorch [35] has recently gained much

popularity as it can be seen in Figure 1.2.1 for some of its most interesting features,

which are:

• Being Pythonic: data are represented as tensors and they provide an interface

really similar to NumPy [40], datasets and models are Python class, the

training function is a simple Python function (debugging a training function

in TensorFlow is not immediate, while in PyTorch a standard debugger would

work).

• Being researchers-oriented: the simplicity as well as the low-level control that

PyTorch gives to its users is one of the main reasons for its spike in popularity in

academia as we saw in Section 1.2.

• High performance: especially PyTorch implementation splits control flow and

data flow, leveraging CUDA [32] to optimize the computation among different

GPUs and an relying on optimized C++ code executed on the Central Processing
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Unit (CPU).

2.5.3 Apache Spark

Apache Spark [34] is a unified analytics engine for large-scale data processing that

offers APIs in Scala, Python, Java and Structured Query Language (SQL). Spark saves

intermediate results in memory and it optimizes its pipelines before every execution.

It was created to handle really large datasets and therefore is a very popular tool in

the field of Big Data. Two of the main data structures that it provides are Dataframes

and Resilient Distributed Datasets (RDDs): these are both implemented in a way

that allows data to be stored and processed in parallel across multiple nodes of a

cluster, resulting in a much faster computation compared to traditional data analysis

frameworks (such as Pandas6). In Maggy, Spark is used as back-end for distributed

computing: a Spark driver keeps information on the whole experiment (which might

be an ablation study or HO) and the various trials run in parallel on different Spark

executors, eventually reporting back to the driver. We illustrate this mechanism more

in detail in Section 2.6.

2.6 Maggy

We are now going to show a high-level overview of the architecture of Maggy. Except

for the componentMaggyAPI this architecture has not beenmodified, and constitutes

a previous work by M. Meister and S. Sheikholeslami presented in [28].

In Figure 2.6.1 we can see four main components:

• the Maggy API

• the Spark Driver

• the Spark Executor

• the Distributed FS (which in the scope of the thesis is HopsFS)

The Maggy API component is the only one that is exposed to the end user, and it

supports both ablation studies and HO experiments. Within ablation studies we can

distinguish modules for TensorFlow (already existing previous to this thesis work)

6https://pandas.pydata.org/
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Figure 2.6.1: Architectural overview of Maggy

and PyTorch (main scope of the thesis). Even though Maggy is framework-agnostic

(i.e. allows to run experiments without imposing a single deep learning framework),

the support for TensorFlow and PyTorch reduces considerably the complexity for the

final user. Without this support, the only way to define new experiments would be to

write the code for the whole deep learning pipeline for every configuration that one

wants to run, and this would be obviously really inefficient. Some of the contributions

of this thesis work are the support for ablation studies in PyTorch, as well as the

simplification of the developer API by separating the PyTorch-specific ablation logic

from the logic regarding genericMaggy functioning (it is in fact possible for developers

to write custom ablators that best suit their needs).

Since an API optimized for TensorFlow was already present when I started this thesis

work, I kept the original API unaltered, to allow a seamless transition for users that

want to test models in both PyTorch and TensorFlow. The other components in the

graph underlying the API purely concern back-end and have not been modified in this

thesis work, but we will mention them anyway for completeness’s sake.
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First of all, we need to specify themeaning of trial. Maggy is a framework that provides

functionalities for asynchronous execution of ablation studies and HO experiments.

We will refer to a trial as the execution of the code for either HO or ablation on a Spark

executor. Since generally many trials are executed in parallel in a single experiment,

these trials are stored in a queue waiting to be run and they are represented as Python

dictionaries. As soon as a Spark executor is idle, it will poll the queue, taking the

necessary information to run that trial and finally it will report the results. The code

to run the trial is specified by the user before starting the experiment, as we can see in

Section 3.4

The Spark driver takes care of scheduling trials and manages the Remote Procedure

Call (RPC) Server thread, which communicates with the RPC client in the Spark

executor, periodically receiving trial metrics and status messages. This information

is later passed onto the message queue. The Global Controller polls the trials queue,

checks if trials need to be early-stopped, gets new trials and assigns them to the

Spark executors (only one is represented in the figure, but of course a classic Spark

configuration supports multiple executors).

On the Spark executors, the actual trials are run until they are successfully completed

or early-stopped. If an executor is not running any trial, it queries the Spark driver

to obtain another one to execute until there are no more trials in the queue. The

RPC client communicates the trial outcome to the RPC server. Maggy supports early-

stopping only for HO through median rule, this means that it stops a trial if it is

performing worse than the median of all the metrics of the trials previously executed.

Finally, the Distributed FS is used as a persistent storage layer, essentially used to

retrieve the dataset used to run the experiments and to store the obtained results.
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Design and Implementation

In this chapter we are going to discuss what actually has been developed to provide

support for ablation studies in PyTorch. First, wewill present the design principles that

have been followed through the whole project, and then we show how layer ablation

and feature ablation have been designed and implemented. We also provide the code to

run both layer and feature ablation experiments with Maggy and finally we propose an

alternativeAPI that has not been implemented inMaggy but that can still be considered

interesting for the extension of the framework.

3.1 Design Principles

Developing a framework that will be used by other developers is not an easy process.

Throughout the project, three key points were set as guidelines:

1. Efficiency: training a model is a lengthy and computationally-heavy task and

therefore it is necessary where possible to save compute and time, which increase

linearly with the number of trials that the user wants to run. Maggy supports

early-stopping of trials that perform worse than the median of the metrics of

the previously executed trials and in this way it can save resources that can be

allocated for more promising trials.

2. Ease of use: a necessary condition for a framework to be largely adopted is its

ease of use. I tried to keep the interface really simple, with a few classes exposing

only the necessary methods that should be straightforward and usable with just

a glance at the documentation. Let us remember that most ablation studies are
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currently carried outmanually, and peoplewill continue to do so if the framework

that we propose is complicated to use.

3. Minimal code changes (compared to normal PyTorch code): an important goal

for this project was to minimize the additional code - compared to the initial

PyTorch code without ablations - that one needs to write in order to use Maggy.

Since PyTorch is already quite a verbose framework, and since ablation studies

are useful but require a lot of code changes (when conducted manually), one

of the main goals of this framework is to allow developers to perform ablation

studies writing only a few more lines of code.

3.2 Implementation of Layer Ablation

Ablation studies in Maggy consist of two main branches: layer ablation and feature

ablation. The former regards the removal of layers from a neural network, while the

latter focuses on the removal of features intended as parts of the training dataset. These

features might be, for instance, simple columns in a tabular dataset, channels in an

image dataset or even words in a text corpus. We will now illustrate how layer ablation

has been implemented as well as the main challenges along the path.

3.2.1 LOCO Ablator

An ablator here is defined as the logic implemented to remove the desired components

from a neural architecture. As we are going to show in this chapter, the Maggy API

requires first the users to specify the components to be removed and then the way in

which they will be removed (in other words, the ablator). At the moment, the only

ablator that Maggy supports is LOCO, but others can be defines through the developer

API. LOCO is a simple ablation policy that consists in removing a single component

from a system, and in case of a feed-forward neural network this means removing a

single layer. Stacking more layers in a neural network is considered an easy best-

practice to increase the accuracy of the model; the downside is that the complexity

of the model increases accordingly. Large models are slower both during training

and inference, and sometimes it is not so easy to understand what is a good trade-

off between complexity and accuracy. By removing unnecessary layers and collecting

relevant metrics, Maggy can help find this desired trade-off. A visual example of how
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LOCO works is displayed in Figure 3.2.1.

Figure 3.2.1: LOCO policy: layer ablation

The implementation of the ablation logic can be resumed in four steps:

1. Getting the list of the model’s modules: modules are defined as the single parts

forming a PyTorch model (in the scope of this thesis they are often Linear layers,

Convolutional layers, Dropout layers, etc.) and in this phase it is necessary to

retrieve them in a form of Python list that we will later use to edit the shape of

the overall model.

2. Removing the necessarymodules: here the real ablation is performed, in fact this

is the phase when the modules that must be ablated are actually removed from

the model (which is still represented as a Python list of different modules).

3. Matching the modules’ attributes: after the ablation we need to restore the

network because modules in a Sequential PyTorch model are arranged in such

a way that by removing a module we will probably not be able to use our model

anymore. This is due to the fact that there are some conditions that must be

respected between modules in the neural network; for instance, when there are

two subsequent Linear layers in the model, the attribute output_features of the

first one must match the attribute input_features of the second one. Since this

is an important point of this work we will elaborate on that in Section 3.2.2.

4. Instantiating the newmodelwith the correct attributes: finally, whenwe restored

the model after the ablation we still have the single modules in a Python list,

hence we need to instantiate again the whole PyTorch model to be able to use it

again for training and inference.

24



CHAPTER 3. DESIGN AND IMPLEMENTATION

These steps are executed every time Maggy runs an ablation trial. We also need to

specify that a new couple model/dataset is generated at every trial through some

functions that we defined as generators. The functions take as parameter the identifier

of the component to ablate in the system (model or dataset) and return the code that

is needed to instantiate the ablated system. In this way we do not have to take care

of restoring the original system after the ablation trials have been completed because

that is never altered. In Section 3.4.2 we are going to discuss more in depth the role of

generators.

3.2.2 Shape Inference

Shape inference was the main challenge in the implementation of layer ablation: to

describe this problem we need to take a step back and analyze the difference between

the APIs to build neural networks that PyTorch and TensorFlow provide. In Listing

3.1, taken from the official website, we can see that TensorFlow provides a really

straightforward method to instantiate layers and models: for Dense layers we just

need to specify how many neurons we want in them and, additionally, we can attach

an activation function (e.g. ‘relu’) to a layer. In general, we need to specify the input

shape of the data in the first layer of the network.

1 model = tf.keras.models.Sequential([

2 tf.keras.layers.Flatten(input_shape=(28, 28)),

3 tf.keras.layers.Dense(128, activation='relu'),

4 tf.keras.layers.Dense(10)

5 ])

Listing 3.1: Model instance in TensorFlow

Taking a look at PyTorch’s API in Listing 3.2 we can see a few differences compared to

TensorFlow:

• For each Linear layer (equivalent of Dense in TensorFlow) we need to specify

both input and output features, which do not refer to nodes in a layer but to the

size of the tensor before and after passing through the layer. In other words,

we must specify the connections between two layers, instead of the number of

nodes of the layers themselves. In this case the input tensor is an image of 28 ×
28 pixels that after flattening becomes a 784-dimensional vector (note that we
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do not have to specify the vector dimension after flattening in TensorFlow), and

after passing through two Linear layers we get a resulting vector of 10 elements.

Eventually, the instantiation of the Linear layer is nothing but a matrix of shape

(output_features, input_features) that is multiplied by the input tensor.

• There is no specification of the input shape in the model. Even if in some cases

it can be inferred from the first layer, we will see that this cause some problems

during feature ablation. In fact, if wemodify the structure of our input data there

is no general rule to modify the first layer accordingly, unless the user specifies

it.

• Activation functions are not part of layers but they are separate objects not

linked to anything else in themodel. This causes some complication during layer

ablation, as it would be natural to think that when we remove a layer we remove

also the activation function associated with it.

1 model = torch.nn.Sequential(

2 torch.nn.Flatten()

3 torch.nn.Linear(in_features=784, out_features=128),

4 torch.nn.ReLU(),

5 torch.nn.Linear(in_features=128, out_features=10),

6 )

Listing 3.2: Model instance in PyTorch

This problem has been solved creating a random tensor of the input shape that the

model requires, and then passing it through the model layers, tracking its shape step

by step. If PyTorch accepts the tensor it means no changes must be applied, otherwise,

if the tensor is not compatible with a certain layer, Maggy will take care of resizing

the network accordingly to allow the tensor to pass through it. Let us make a visual

example to clarify this.
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Figure 3.2.2: The illustrated shape inference problem in PyTorch

In Figure 3.2.2 we can see an example of a very simple CNNwith the MNIST dataset, a

famous dataset containing hand-written digits that range from0 to 9. The original data

are tensors of shape 1 × 28 × 28 (one channel, 28 × 28 pixels each image). Passing

through the first layer we lose 2 pixels on each dimension (because the convolutional

filter is 3 × 3) and we get 5 channels as we specified 5 out channels in the first layer.

Following the same reasoning, passing through the second layer the tensor becomes of

shape 10× 24× 24 and finally, after flattening, all the features in the tensor are aligned

in a vector. The size of this vector is 24× 24× 10 = 5760, so if we want to add a linear

layer after the flattening one (as it is a common step for classification) we need a layer

with 5760 features. Now, let us say that we want to ablate the second layer because we

are not sure if that really contributes to the accuracy of our model: how many input

features do we need in the Linear layer now? There is quite some math to do, which

is not too difficult for this specific model, but chances are that the user will have a far

more complex model and she will want to specify multiple ablations, and we can see

that it quickly becomes a lot of work. NowMaggy takes care of this automatically before

the actual training function is called, specifically it passes a random tensor of the shape

that the user specifies through the model and, if an ValueError is raised, it can see the

last valid shape of the tensor before the error, and reistantiate the layer that caused the

exception with the correct parameters.
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Someone might argue that the specification of the input shape is not necessary as it

can be inferred from the dataset of our ML task. Unfortunately, unlike TensorFlow

with TFRecords (where data are quite structured) PyTorch Datasets are extremely

flexible and have absolutely no specification on the data they contain. In this way a

PyTorchDataset could contain, for instance, images in a tensor of shape (image_height

× image_width × channels) as well as (channels × image_height × image_width).

Even though the first form is more frequently used, both are valid conventions and the

framework should not impose one over the other. For this reason, if the user wants to

ablate the first layer of a model, Maggy has no way to know what will be the new input

shape of the model after the feature ablation has been executed, unless the user herself

specifies it.

3.3 Implementation of Feature Ablation

As we mentioned previously, feature ablation concerns the removal of parts of a

dataset. Previous to this thesis work, Maggy supported only the ablation of dataset

columns, but we are going to discuss how this concept can be generalized and extended

to the ablation of any data type. Also for feature ablation, LOCO is the only supported

ablator for now, but the user can decide to implement her own custom ablator through

the developer API. Here in Figure 3.3.1 is a visual example of the LOCO policy

behavior.

Figure 3.3.1: LOCO policy: example of feature ablation

The next three sections are going to describe the implementation of the LOCO policy

for feature ablation. First, it was necessary to come up with a way to identify the data

to include in the ablation study since PyTorch provides a very flexible interface to store

datasets as we will see in Section 3.3.1. Once the data is identified, we can proceed in

two directions: we can harness either the class Dataset or the class DataLoader for
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the ablation: since PyTorch defines both to handle data, Section 3.3.2 is an analysis

of which one we should use to perform feature ablation. Finally, in Section 3.3.3 we

observe that feature ablation involves also the modification of the model architecture,

so we describe in what way the model has to be changed to be compatible with the

ablated dataset.

3.3.1 The Fixed Points of PyTorch

The design of this framework has been particularly challenging because of the great

flexibility that PyTorch allows. Ifwe look at theDataset class defined in torch.utils.data

(Listing 3.3) we can see that the code is really simple and it provides the minimum

support for everything to work smoothly, and at the same time it lets the user code

most other functionalities.

1 class Dataset(object):

2

3 def __getitem__(self, index):

4 raise NotImplementedError

5

6 def __add__(self, other):

7 return ConcatDataset([self, other])

Listing 3.3: Dataset class implementation in PyTorch

The only thing that is necessary to implement a PyTorch Dataset is to subclass

torch.utils.data.Dataset and overload its __getitem__ method. Additionally, the

user can also overload the method __len__ but this is not compulsory. There is no

specification onwhere the actual data should be stored, nor in what format it should be

returned when calling __getitem__, nor any other metadata that are generally useful

for a dataset class. It is perfectly fine for PyTorch if the user instantiates a Dataset and

stores the data in self.data, or self.table.data, or any other attribute inside or outside

the class.

The __getitem__ method will be called inside the training function (still completely

specified by the user), in turn called when iterating over another PyTorch class (the

Dataloader) to feed the data into the model. Again, to give an example of the flexibility

of the framework we can say that __getitem__ can return either objects like tuples in

the form (label, data), Numpy [40] arrays, PIL images or anything that the user can
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think of. Since theDataLoader is called inside the training function defined by the user,

the data can still be processed inside such function before being fed into themodel (the

code in Listing 3.4 gives a practical example of this).

If we compare training functions in PyTorch and TensorFlow, as we can see in Listing

3.4, TensorFlow generally requires one line of code for the training while PyTorch

requires a lot more. This is one of PyTorch’s most appreciated features as it allows

users a lot more control on what is happening and if some things do not go as expected

this function is easy to debug. On the flip side, there is a lot more code to write, and

some concepts (like accuracy) are not even defined by the framework.

1 # Implementation of a training function in PyTorch

2 # (taken from the official PyTorch documentation https://pytorch.org/

tutorials/beginner/blitz/cifar10_tutorial.html)

3

4 for epoch in range(2): # loop over the dataset multiple times

5

6 running_loss = 0.0

7 for i, data in enumerate(trainloader , 0):

8 # get the inputs; data is a list of [inputs , labels]

9 inputs , labels = data

10

11 # zero the parameter gradients

12 optimizer.zero_grad()

13

14 # forward + backward + optimize

15 outputs = net(inputs)

16 loss = criterion(outputs , labels)

17 loss.backward()

18 optimizer.step()

19

20 # print statistics

21 running_loss += loss.item()

22 if i % 2000 == 1999: # print every 2000 mini-batches

23 print('[%d, %5d] loss: %.3f' %

24 (epoch + 1, i + 1, running_loss / 2000))

25 running_loss = 0.0

26

27 print('Finished Training')

28
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29 # Implementation of a training function in TensorFlow

30 # (taken from the official TensorFlow documentation , https://www.

tensorflow.org/api_docs/python/tf/keras/Model)

31

32 model.compile(optimizer="Adam", loss="mse", metrics=["mae"])

Listing 3.4: Comparison of training functions, in PyTorch and TensorFlow

This flexibility is key for the design choices in Maggy. Following the same

philosophy I have decided to implement feature ablation by letting the user

subclassMaggyDataset: an abstract class containing only one method to implement

(ablate_feature), as we can see in Listing 3.5. The method ablate_feature takes a

feature as parameter and should specify how the dataset class should remove such

feature from where the data is stored. There is no need to restore the dataset to its

original version because Maggy generates a new ablated dataset every time that a trial

is executed. In this way we can keep feature ablation simple, elegant and flexible: it is

implemented with a few lines of code, it respects PyTorch philosophy and it allows the

user to ablate any type of data (not just columns of a tabular dataset but also channels

of images, parts of time series and, in general, anything that the user can come up

with). Furthermore, with this implementation, Maggy does not need to know where

the data is stored or how it is retrieved by the DataLoader, as the user will code the

ablate_featuremethod according to the way that she had previously coded the Dataset

class. We will see some possible applications of this in Chapter 4.

1 from torch.utils.data import Dataset

2 class MaggyDataset(Dataset):

3

4 def ablate_feature(self, feature):

5 raise NotImplementedError

Listing 3.5: Class MaggyDataset

Even though this solution covers as a matter of fact every possible feature ablation, it

is also true that the user has to specify how these ablations will occur by overriding the

ablate_feature method. Since there might be some recurrent types of dataset across

many data science projects, it makes sense for the framework to hide some of the

complexity to the user by defining some more classes that can deal with predefined

data structures. For instance, a typical dataset that most data scientists come across is
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the PandasDataFrame1, and that is whywe decided to include inMaggy a class that can

handle it, defining all themethods and attributes that the user herself should otherwise

code. In Listing 3.6 we can see how this class, called PandasDataset, is implemented.

1 # This class subclasses torch.utils.data.Dataset

2 class PandasDataset(Dataset):

3 def __init__(self, df, label):

4 super(Dataset).__init__()

5 self.label = label

6 self.columns = df.columns.values.tolist()

7

8 if self.label not in self.columns:

9 raise ValueError(

10 "The specified label can't be found among the dataset

columns"

11 )

12

13 label_idx = self.columns.index(label)

14 self.columns.pop(label_idx)

15 self.data = np.delete(df.values , obj=label_idx , axis=1)

16 self.labels = df.values[:, label_idx]

17

18 def __getitem__(self, item):

19 return self.labels[item], self.data[item]

20

21 def __len__(self):

22 return self.data.shape[0]

23

24 def ablate_feature(self, feature):

25 lowercase_columns = [col.lower() for col in self.columns]

26 feature = feature.lower()

27 if feature.lower() in lowercase_columns:

28 print("Ablating feature {}".format(feature))

29 idx = lowercase_columns.index(feature)

30 self.data = np.delete(self.data, obj=idx, axis=1)

31 else:

32 raise RuntimeError("Ablation failed: column not found")

Listing 3.6: Class PandasDataset in Maggy

1https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
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3.3.2 Ablation of Dataset or DataLoader

As we already mentioned in Section 3.3.1, PyTorch defines two classes for data

handling: Dataset and DataLoader. The Dataset generally contains the actual data

plus some other metadata that the user can include, while the DataLoader is the class

that is called inside the training loop which splits the dataset into batches and feeds

them to the neural network.

There are two points in which feature ablation can happen:

1. Where the data is stored (the class Dataset)

2. Where the data is retrieved (the method __getitem__ of the class DataLoader)

In the first case we remove the data from where it is supposed to be stored (i.e. the

class Dataset), while in the second case we let the user specify a different __getitem__

method (in the class DataLoader) for every possible type of ablation, so only the

way in which the data is returned changes, while the dataset is never altered. This

second solution has eventually been discarded as it is conceptually more complex and

because the class DataLoader takes some useful parameters for the training phase (like

batch_size, shuffle, num_workers, etc.) therefore it needs to be fully accessible by the

user, and Maggy should not interfere with it. We can see how the API would look like

implementing the two different solutions in Listing 3.7.

1 # Option 1: pass the dataset [Implemented]

2

3 def training_fn(dataset_function , model_function):

4 model = model_function()

5 dataset = dataset_function()

6

7 from torch.utils.data import DataLoader

8 dataloader = DataLoader(dataset , batch_size=64, shuffle=False)

9

10 for (batch_id , data) in enumerate(dataloader):

11 # Training loop

12

13 return loss

14

15 # Option 2: pass the dataloader [Discarded]

16 from maggy.ablation import AblationStudy
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17

18 dataloder_kwargs = {"batch_size": 64, "shuffle": False}

19 ablation_study = AblationStudy('titanic_train_dataset',

training_dataset_version=1, label_name='survived', dataloader_kwargs=

dataloader_kwargs)

20

21 def training_fn(dataloader_function , model_function):

22 model = model_function()

23 dataloader = dataloader_function()

24

25 for (batch_id , data) in enumerate(dataloader):

26 # Training loop

27

28 return loss

Listing 3.7: Two possible options to handle PyTorch DataLoader with Maggy

3.3.3 Impact of Feature Ablation on the Input Shape

Model ablation and feature ablation are not independent: the first layer of a PyTorch

model contains information on the shape of the input tensor, and therefore it must

be changed if the input tensor changes. With feature ablation we remove some

components from the dataset, and this has repercussions on the model architecture.

Even though different layers have different attributes that define the tensors that

they accept, it is quite common for them to have an input attribute and an output

attribute: for instance, Linear2 layers have in_features and out_features (dimension

of the tensor before and after the Linear layer), while Conv2d3 layers have in_channels

and out_channels (number of channels of the tensor before and after the Conv2d

layer). So, if the first layer of our neural network is a Linear with in_features equals to

10, the network expects 10 input features, and if we ablate one of them we will need to

reshape that layer accordingly.

Even thoughwe can define some rules for simple recurrent cases (e.g. “Ablate a dataset

column” =⇒ ”Reduce the input features of the first layer of one unit”), for most of the

user-defined ablations we can not predict how the first layer of the neural network

should be reshaped. For this reason, in order to preserve simplicity and flexibility, the

best solution is to provide both an interface for data types that aremost frequently used

2https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
3https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d
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(in Maggy such interface has been implemented for Pandas DataFrames, as seen in

Listing 3.6) and an interface for custom feature ablation that requires the specification

for the input shape of the neural network for every trial (Listing 3.5).

The API that has been implemented for Pandas DataFrames implements the same

functionalities thatMaggy already offered for LOCOablationwith TFRecords4. Section

3.4 is a comprehensive view of how to use this interface, but in general what needs to

be done is passing a Pandas DataFrame to the class PandasDataset, together with the

label of the predictor (i.e. the name of the column that we want to predict with our

model) and the framework will take care of the followings things:

• It will automatically define the methods necessary to run PyTorch code

(__getitem__ and __len__).

• It will define an ablation function that is called when the ablation study is run.

• It will store the dataset schema (otherwise this should be done manually in

PyTorch).

In this way, when the feature ablation trials are run there will be no need for the user to

specify the input shape of the first layer because Maggy knows already how to reshape

themodel if we are dealingwith PandasDataFrames. For the reasons thatwe explained

in this section, even the order in which the dataset and model generator are called is

important: in case both layer ablation and feature ablation should be executed in the

same trial, Maggy must generate the model after the dataset because, as we pointed

out, it needs to know the shape of the dataset to set the right parameters for the first

layer of the model.

3.4 Maggy API

In this sectionwewill discuss the general functioning of theMaggyAPIwith an example

that includes both feature and layer ablation. We will cover the definition of the

experiment, its execution, as well as model and dataset generators.

4https://www.tensorflow.org/api_docs/python/tf/data/TFRecordDataset
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3.4.1 Definition of the Ablation Study

We will now take a look at the interface with which we can define ablation studies in

Maggy. We start from the idea that the most ablation studies involve the deletion of

model layers or columns of a tabular dataset. Within Hopsworks Feature Store (see

Section 2.5.1) the user just needs to specify the name and the version of the dataset that

she wants to use, together with the name of the predictor column. In Listing 3.8 we can

see an example of how to define an ablation study in Maggy: for this experiment we

chose the famous Titanic dataset5 (which contains data on a few hundred passengers

of the Titanic, like age, sex, type of cabin and ticket, etc.) and it is used to train a ML

model to predict if these passenger survived the shipwreck.

1 from maggy.ablation import AblationStudy

2

3 ablation_study = AblationStudy('titanic_train_dataset',

training_dataset_version=1, label_name='survived')

Listing 3.8: Instantiate an Ablation Study in Maggy

3.4.2 Model and Dataset Generator

As a second step we need to specify the model on which the ablation study will be

performed. The model should be defined in a wrapper function (in the example it

is called base_model_generator) that returns the model itself. This is done in the

purpose of simplicity (only a few lines of code to add to your model) and flexibility

(the wrapper function does not impose any constraint on how the model should be

defined). Finally, we pass the function that we have just defined to the ablation study

instance through set_base_model_generator. Here is a simple example of what we

just discussed in Listing 3.9. As a matter of fact, in this listing we just need three more

lines of code (lines 1 and 14 for the function wrapper and line 16 to pass the model to

the class ablation_study) compared to normal PyTorch code.

1 def base_model_generator():

2 import torch.nn as nn

3 model = nn.Sequential(nn.Linear(6, 64),

4 nn.ReLU(),

5(https://www.kaggle.com/c/titanic
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5 nn.Linear(64, 64),

6 nn.ReLU(),

7 nn.Linear(64, 32),

8 nn.ReLU(),

9 nn.Linear(32, 2),

10 nn.ReLU(),

11 nn.Linear(2, 1),

12 nn.Sigmoid()

13 )

14 return model

15

16 ablation_study.model.set_base_model_generator(base_model_generator)

Listing 3.9: Defining the base model generator in Maggy

After the definition of the base model it is time to let Maggy know what trials we want

to execute. As we can see in Listing 3.10 this is quite straightforward: in line 1 we

tell Maggy to remove singularly layer 2 and layer 4, but we can also choose to remove

multiple layers in a single trial as it is reported in line 2. Finally, to ablate dataset

features we follow the same procedure that we just mentioned, only indicating the

name of the feature that we want to remove, as it is shown in line 3.

1 ablation_study.model.layers.include(2, 4)

2 ablation_study.model.layers.include_groups([2, 3], [4, 5])

3 ablation_study.model.features.include("Fare")

Listing 3.10: Defining the ablation trials in Maggy

Maggy stores its trials in the form of Python dictionaries containing all the

necessary information to execute the ablation studies (or HO experiments).

Each of these dictionaries stores two important functions: get_model_generator

and get_dataset_generator. The former is a function that takes a parameter

layer_identifier that returns a function containing the code to instantiate a model

without the layer indicated by layer_identifier. An analogous process happens with

get_dataset_generator that returns the code to instantiate a dataset without the

feature indicated by the parameter ablated_feature. These functions are called to

generate a new couple model-dataset every time that a new trial is executed.

37



CHAPTER 3. DESIGN AND IMPLEMENTATION

3.4.3 Launching the Experiment

The last step of the ablation study is to wrap the training code for themodel in a Python

function and launch the ablation study as we can see in Listing 3.11.

1 from maggy import experiment

2

3 def training_fn(dataset_function , model_function):

4 model = model_function()

5 dataset = dataset_function()

6

7 from torch.utils.data import DataLoader

8 dataloader = DataLoader(dataset , batch_size=64, shuffle=False)

9

10 criterion = nn.BCELoss()

11

12 optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

13 epochs = 3

14

15 for epoch in range(epochs):

16

17 epoch_loss = 0

18

19 for i, (labels , inputs) in enumerate(dataloader):

20 # print("load number {}".format(i))

21

22 inputs , labels = Variable(inputs), Variable(labels)

23 inputs = inputs.float()

24 labels = labels.float().view(-1, 1)

25

26 optimizer.zero_grad()

27 y_pred = model(inputs)

28

29 loss = criterion(y_pred , labels)

30 epoch_loss += loss

31

32 loss.backward()

33 optimizer.step()

34 print("Training complete\n")

35 return loss

36
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37 result = experiment.lagom(map_fun=training_fn ,

38 experiment_type='ablation',

39 ablation_study=ablation_study ,

40 ablator='loco_pytorch',

41 name='Titanic -LOCO',

42 direction="min"

43 )

Listing 3.11: Wrap the training function and launch the ablation study

It is worth spending a fewwords on this listing to illustrate the key points. Compared to

plain PyTorch code, the training function has only a few differences: themodel and the

dataset are taken in lines 4 and 5 from the functions that we have previously defined

and, in addition, there is an object returned by the training functionwhich is themetric

needed to evaluate the trials. In this case it is the training loss, but it could also be the

accuracy or any other metric that we want to maximize or minimize. Just bear in mind

that PyTorch does not define accuracy by default (only losses are defined in PyTorch),

so the user needs to create a custommetric if shewants to track training accuracy.

To launch the experiment we call the method lagom (lagom is a Swedish word that

means “just the right amount”) of our experiment instance. The LOCO ablator will

execute all the trials that we have defined, plus a trial with only the base model

and dataset (no ablation whatsoever), measure the metric that we are tracking and

returning the best configuration for our experiment . In this case we need to tell Maggy

to minimize the metric returned by the training function because we are tracking the

training loss. Here in Listing 3.12 we can see an example of the results returned after

running the ablation experiment.

1 >>> Started Maggy Experiment: Titanic -LOCO, application_1591955574705_0098 ,

run 1

2

3 ------ LOCOPyTorch Results ------

4 BEST Config Excludes {"ablated_feature": "sibsp", "ablated_layer": "None"}

-- metric 0.5779947638511658

5 WORST Config Excludes {"ablated_feature": "None", "ablated_layer": "[4, 5]"

} -- metric 0.7479431629180908

6

7 AVERAGE metric -- 0.6663087904453278

8 Total Job Time 0 hours , 0 minutes , 51 seconds
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9

10 Finished Experiment

Listing 3.12: Results returned after an ablation experiment

3.5 Designing the API: Simplicity or Flexibility

Extreme flexibility is appealing, but sometimes it can lead to a lot of extra work for

the programmers, as we have illustrated in Listing 3.4. Another requirement of this

framework was also respecting the original interface that Maggy already provided

before this thesis work (i.e. the API that we described in Listing 3.10). In Listing 3.13 is

reported an alternative user API for Maggy that I came up with during my thesis work.

Despite this interface was not implemented in the framework in order to preserve the

original API, it still has some interesting points that are worth being discussed.

• This API is easily extensible. The method new_trial requires the list of model

layers and dataset features to be ablated, but it can take additional parameters:

for instance, infer_ablation is used to remove together with the ablated layers

also the subsequent activation functions. Addingmore parameters to themethod

new_trial can change the ablator behaviour, hence there would be no need to

change the interface every time that the ablation policy changes.

• Model and dataset are inherently linked together. This is an advantage as the

deep learning community is going towards a more tightly coupling of model and

dataset as, for instance, F. Chollet stated inhis conference at ScaledML2020 [37],

saying that pre-processing layers will be soon available as part of Keras models.

This is due to the fact that many models score high accuracy during the training

phase, but then perform poorly when serving, often because data pre-processing

is neglected in the deep learning pipeline, and the data in input during serving is

not what the model (and the developer) would expect.

• Everything in one class: there is only one class (Ablator) that is exposed to the

user together with three methods (the constructor, a method to create new trials

and a method to execute them).

1 ablator = Ablator(model , dataset , training_function)

2
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3 ablator.new_trial((6,), ablated_layers=None, ablated_features=None)

4 ablator.new_trial((5,), None, "Sex")

5 ablator.new_trial((6,), 2, None, infer_activation=True)

6 ablator.new_trial((5,), 4, "Pclass")

7 ablator.new_trial((6,), [3, 4, 5, 6], None)

8 ablator.execute_trials()

Listing 3.13: An alternative user API for Maggy

For these reason I believe thatMaggy could provide anAPI similar to the one presented

here as it makes the usage more intuitive and simple compared to the original user

interface, presented in Section 3.4. However, as I mentioned before, one of the goals

of this thesis was also to preserve the original API to allow a seamless switch between

different deep learning frameworks (PyTorch and TensorFlow) and for this reason the

solution presented here has not been implemented in Maggy.

3.6 Extensibility

Another feature that I kept inmind during the design of the interface was extensibility.

Since the project is open-source, other programmers will hopefully contribute to it,

and they should have the possibility to extend it in a way that suit their needs. From an

easy developer API you can get more engagement from the community, and therefore

a continuously improved tool.

When I had to replicate the LOCO ablation policy for PyTorch starting from the

TensorFlow module, I realized that all the logic for the ablation was in a single Python

file. Of course, this prevents the developers to write Don’t Repeat Yourself (DRY)

code when a different ablation policy is to be implemented. I paid close attention to

the separation of the function related to the ablation in the PyTorch framework (all

placed in a module called pytorch_ablator.py) and the ones related to the specific

functioning of Maggy, so that a new developer can just call a few functions from

pytorch_ablator.py if she wants to create a new ablation policy.

The specific logic that concerns ablation in PyTorch involve functionalities like

layer deletion in a Sequential model, matching features in subsequent layers (the

problem that we discussed in Section 3.2.2), feature ablation and other accessory

functions.
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Results

In this chapter we describe the result of the degree project. First, we give a general

overview of what has been built, then we also present some possible applications of

Maggy, together with a comparison of similar frameworks.

4.1 Outcome

The result of this thesis work consists in the extension of Maggy: a framework for

ablation studies and hyperparameter search, running on top of Apache Spark. Maggy

has been successfully extended to support ablation studies in PyTorch, deep learning

framework that is gaining a lot of popularity in the ML community in the last recent

years, for the reasons illustrated in Chapter 1. Feature ablation has been generalized to

all type of data rather than simple dataset columns, and the logic for ablation has been

simplified as explained in Section 3.6. Finally, an API alternative to the one currently

implemented in Maggy has been discussed, together with its pros and cons. This work

also sheds some light on the virtues and limitations of PyTorch, especially in the context

of building a framework on top of it, exploring in particular the flexibility of this tool,

which has been harnessed to enable a wider variety of application, compared to the

previous version of Maggy, that we will discuss in Section 4.2.

4.2 Applications

We are now going to illustrate a few relevant examples of what can be done with

Maggy ablation. This list is not exhaustive and, in principle, all ablations that involve
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the modification of any data type (or layers of Sequential PyTorch models) have been

enabled in Maggy.

4.2.1 Layer Ablation

In Section 3.4.2 we showed how to wrap a PyTorch sequential model in a function that

will be used by Maggy to generate all the other ablated models that the user specifies.

We will now compare that same initial model that we defined in Listing 3.9 with the

ones produced after some of the ablation trials illustrated in Listing 3.10. In Listing

4.1 we can see the string representation our initial Sequential model, while in Listing

4.2 we reported the same model after two layer ablations: the first one includes layers

2 and 3, and the second one includes layers 4 and 5. Since all the trials are executed in

parallel, they all remove components from the initial model and they do not harness

the results of previously finished trials. The first ablation just removes the layer and

its subsequent activation functionwithoutmodifying other layers in the network, while

the second one applies a correction to the Linear layer 6 (which after ablation becomes

layer 4) to match its input_features to the output_features of layer 2 as it has been

explained in Section 3.2.2.

1 >>> Original model:

2 Sequential(

3 (0): Linear(in_features=6, out_features=64, bias=True)

4 (1): ReLU()

5 (2): Linear(in_features=64, out_features=64, bias=True)

6 (3): ReLU()

7 (4): Linear(in_features=64, out_features=32, bias=True)

8 (5): ReLU()

9 (6): Linear(in_features=32, out_features=2, bias=True)

10 (7): ReLU()

11 (8): Linear(in_features=2, out_features=1, bias=True)

12 (9): Sigmoid()

13 )

Listing 4.1: Initial PyTorch model

1 >>> Ablating layer 3 - ReLU()

2 >>> Ablating layer 2 - Linear(in_features=64, out_features=64, bias=True)

3 Sequential(

4 (0): Linear(in_features=6, out_features=64, bias=True)
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5 (1): ReLU()

6 (2): Linear(in_features=64, out_features=32, bias=True)

7 (3): ReLU()

8 (4): Linear(in_features=32, out_features=2, bias=True)

9 (5): ReLU()

10 (6): Linear(in_features=2, out_features=1, bias=True)

11 (7): Sigmoid()

12 )

13

14 >>> Ablating layer 5 - ReLU()

15 >>> Ablating layer 4 - Linear(in_features=64, out_features=32, bias=True)

16 Sequential(

17 (0): Linear(in_features=6, out_features=64, bias=True)

18 (1): ReLU()

19 (2): Linear(in_features=64, out_features=64, bias=True)

20 (3): ReLU()

21 (4): Linear(in_features=64, out_features=2, bias=True)

22 (5): ReLU()

23 (6): Linear(in_features=2, out_features=1, bias=True)

24 (7): Sigmoid()

25 )

Listing 4.2: Resulting models after two different layer ablation

4.2.2 Column Ablation

A first simple scenario is the one that has already been presented in Chapter 3, that

is the ablation of columns of tabular datasets. This is also a very common scenario

as tabular datasets are quite frequent in ML. In Maggy, the user just needs to pass a

Pandas DataFrame to the ablation study and specify which columns are to be included

in it, aswe illustrated in Listings 3.8 and3.10. After feature ablation in a tabular dataset

we expect to see the same dataset minus a column that we excluded: in the case of

Titanic dataset with the ablation of feature “Pclass” here is the outcome that we obtain

(some columns were omitted to fit the representation of this dataset to the page).
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Id Survived Pclass Name Sex Age Fare
1 0 3 “Braund & Mr. Owen Harris” m 22 7.25
2 1 1 “Cumings, Mrs. John Bradley” f 38 71.2833
3 1 3 “Heikkinen, Miss. Laina” f 26 7.925
... ... ... ... ... ... ...

Table 4.2.1: Sample from Titanic dataset

Id Survived Name Sex Age Fare
1 0 “Braund & Mr. Owen Harris” m 22 7.25
2 1 “Cumings, Mrs. John Bradley” f 38 71.2833
3 1 “Heikkinen, Miss. Laina” f 26 7.925
... ... ... ... ... ...

Table 4.2.2: Same sample as Table 4.2.1 after ablation of feature “Pclass”

4.2.3 Channel Ablation

What if we are not dealing with a tabular dataset? For instance, many tasks in deep

learning regard image captioning, image classification, audio or video analysis and

they are generally solved through the use of CNNs, which are neural networks that use

convolutional filters to learn pattern from the dataset. A convolutional filter is a tensor

of arbitrary shape that contains some information learned from the training data: in

the case of an image dataset, these features might be textures, colors, shapes or even

clear pictures (like animals, humans, cars, according to the entity of our dataset).

If we have anRGB1 set of images to train ourmodel wemight want to test if all channels

of our dataset are useful for the training or if we can lighten the model by excluding of

some of them. In this case the user just needs to define the input shape of the training

data after the ablation, together with the function that actually performs the ablation,

reported in Listing 4.3. In Listing 4.4 we can see the outcome of feature ablation of the

first channel on the CIFAR102 dataset. Since the images in the dataset are of size 32×
32 × 3, we just printed a portion of the first image for the sake of space on the page,

but a visual representation of this process can be observed also in Figure 4.2.1.

1 def ablate_feature(self, feature):

2 if feature == "ch1":

3 self.data = np.delete(self.data, obj=0, axis=3)

1an RGB image is made of three layers, each one representing levels of red, blue and green in the
picture

2https://www.cs.toronto.edu/ kriz/cifar.html
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4 if feature == "ch2":

5 self.data = np.delete(self.data, obj=1, axis=3)

6 if feature == "ch3":

7 self.data = np.delete(self.data, obj=2, axis=3)

Listing 4.3: Example of channel ablation

1 >>> Ablating features: ch1

2 # Before feature ablation

3 [[[ 59 62 63]

4 [ 43 46 45]

5 [ 50 48 43]

6 ...

7 [158 132 108]

8 [152 125 102]

9 [148 124 103]]

10

11 ...

12

13

14 # After feature ablation

15 [[[ 62 63]

16 [ 46 45]

17 [ 48 43]

18 ...

19 [132 108]

20 [125 102]

21 [124 103]]

22

23 ...

Listing 4.4: First image of CIFAR10, not yet normalized, before and after feature

ablation.

4.2.4 Word Masking

Even thoughwe always refer to ablation as the deletion of something, we can generalize

this concept to the exclusion of certain features of our model/dataset even when we

modify them instead of cancelling them. Here is an example that will clarify this

section: imagine that you want to train a transformer [41] to recognize positive and

negative sentiment in English sentences (this task is commonly known as “Sentiment
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Figure 4.2.1: Visual represenation of channel ablation in an RGB dataset

Analysis” and it is quite popular in NLP). Chances are that you already have a pre-

trained model that has a grasp of the English language that will map the words of a

sentence to feature vectors (also known as “embeddings”) that in turn will be used

to train a classifier that can split these vectors into two classes: positive and negative.

Without getting too bogged down in the details, the intuition here is that the words that

we used to train the classifier are the discriminant element for a sentence to recognized

as positive or negative.

For instance, if we are dealing with articles taken from financial newspapers and in

our dataset a certain bank ABC was going through a period of crisis, many articles in

training dataset will report Bank ABC associated with a negative sentiment and the

model is likely to learn that association (“Bank ABC is present in the article” =⇒
”Negative sentiment”). Now, after one year, Bank ABC is doing well and the crisis is

only a distant memory, but our model is up and running with training data sampled

during the crisis, so the prediction might still be biased (and therefore erroneous).

What can we do to prevent this bias? A simple trick is to “mask” bank names in the

article by replacing them with a placeholder (e.g. the word “bank”): in this way we
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are making explicit to the model that it should not focus on the bank name to make a

prediction.

Here in Listing 4.5 is reported a snippet of code that shows how to do this.

1 def ablate_feature(self, feature):

2 banks = ["Bank A", "Bank B", "Bank C"] # List of bank names to mask

3

4 if feature == "bank_names":

5 for article in self.data:

6 for bank in banks:

7 article.replace(bank, "placeholder")

Listing 4.5: Example of word masking

Of course, this does not prevent the user to define at the same time other types of

ablation in the same function. The only thing that is necessary is another if branch in

the code. In Tables 4.2.3 and 4.2.4we can see an extract of the dataset Financial Phrase

Bank [24] before and after applying word masking.

Sentiment Sentence

neutral
“According toGran , the companyhas noplans tomove all production
to Russia , although that is where the company is growing .”

negative
“The international electronic industry company Elcoteq has laid off
tens of employees from its Tallinn facility.

positive

With the new production plant the company would increase its
capacity tomeet the expected increase in demand andwould improve
the use of raw materials and therefore increase the production
profitability .

Table 4.2.3: Sample from Financial Phrase Bank

4.3 Comparison with Other Existing Frameworks

Aswe alreadymentioned, to the best of our knowledge there are no specific frameworks

for ablation studies other thanMaggy. Although, there aremany available frameworks

for NAS and HO. Since we are not focusing on HO in this thesis, we will now make a

comparison with some of the most popular frameworks for NAS, which can coincide

with an ablation study if the latter involves only the model architecture (and not the

features).
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Sentiment Sentence

neutral
“According to placeholder , the company has no plans to move all
production to Russia , although that is where the company is growing
.”

negative
“The international electronic industry company placeholder has laid
off tens of employees from its Tallinn facility.

positive

With the new production plant the company would increase its
capacity tomeet the expected increase in demand andwould improve
the use of raw materials and therefore increase the production
profitability .

Table 4.2.4: Sample from Financial Phrase Bank after word masking

4.3.1 Autokeras

Autokeras [15] is a library developed to find the best ML model given a specific task,

and together with Keras-tuner [16] they are among the most popular libraries for

AutoML. However, Keras Tuner is quite amature tool, while for Autokeras the authors

state explicitly that the project is only a pre-release and it is far from being a finished

product.

4.3.2 ENAS

ENAS (Efficient Neural Architecture Search) [7, 8] is a library available for PyTorch

and TensorFlow that is used to discover good configurations of parts of some particular

neural networks. It is based on the homonymous paper [36] that presents the

idea of a graph search in a Directed Acyclic Graph (DAG) representing different

neural architectures harnessing parameter sharing to speed up the computation. The

implementation in TensorFlow supports already RNN and CNN cells, while in the

PyTorch implementation only RNN are supported at the moment.

4.3.3 NNI

NNI [30] (Neural Network Intelligence) is a framework developed by Microsoft for

NAS, HO, feature engineering and model compression. It is quite a complete toolkit

for AutoML but regarding architecture search it provides only some benchmark to

select between a series of candidatemodels or candidate operations to tweak the initial

architecture.
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4.3.4 Other Frameworks

As I write this thesis, probably a lot more frameworks are being developed for NAS

and AutoML in general, because it is a hot topic that is gaining a lot of attention

lately, especially because the ML community is realizing that relying on automated

searches for neural architectures is often much faster and optimized than exploring

them manually.

50



Chapter 5

Conclusions and future work

In this chapter we are going to finalize the dissertation drawing the conclusions: first

a general summary is presented, then, we show a few considerations on the results

obtained, and finally we list some possible prompts for future work.

5.1 Conclusion

In this thesis project we presented how to build a framework for ablation studies on top

of PyTorch. We listed its key points which are efficiency, ease of use and minimal code

changes (compared to normal PyTorch code), and we illustrated the main challenges

and interesting points in the development. We showed some examples of how Maggy

can be used for ablation studies, highlighting in particular its flexibility, as well as its

simplicity for recurrent use cases (e.g. feature ablation of Pandas DataFrames). We

mentioned the impact of PyTorch in the deep learning community as the motivation

for the choice of the topic of this thesis, and we presented the comparison of Maggy

with other popular tools for NAS.

5.2 Considerations on the Results

Looking back at the initial research question presented in Chapter 1 (“Can we provide

an intuitive API for PyTorch users to efficiently conduct ablation studies with minimal

code changes compared to normal PyTorch code?”) we should now try to answer it.

Intuitiveness and efficiency are hard to quantify: we can all agree that it is easy to
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recognize a really intuitive interface but it is quite difficult to agree on what really

makes something easy to use. On the other hand, even though efficiency seems like an

easily quantifiable property, it is not (especially in deep learning research) because of

the lack of common benchmarks, as highlighted by Lindauer & Hutter [19]: every new

paper affirms to be the state of the art but often there is very little or no comparison to

other similar work and, even when there is, there are so many parameters to take into

account (such as hardware, datasets, hyperparameters, etc.) that tracing parallels is

almost impossible for researchers. When other computer scientists try to replicate the

results obtained in previous literature, matching the setups of these studies is quite

a hard task, and consequently the replicated results differ a lot. In any science, and

therefore also computer science, replicability is a key point for any good work, and if

we can’t ensure that we can not ensure high quality research in AI.

So, what can really define the quality of a framework? Maybe adoption, impact and

in general the engagement of the community is what defines success best in this

case. Unfortunately, the extended version of Maggy described in this thesis has not

been made publicly available yet, so I can not include any data on the framework

adoption.

5.3 Future Work

Here are listed some ideas for some possible future work:

• Include support for functional models: what has been developed so far leverages

some principles that belong only to sequential models, especially to match the

feature coherence between layers after the ablation. It would be interesting to

add support for PyTorch functional models since they are also widely adopted in

the ML community.

• Speed up trials with even more parallelization: PyTorch is optimized for

parallelization through CUDA [32]. Even though Maggy already executes trials

in parallel through Spark, one trial is assigned to one executor. Since it might

happen that certain trials are particularly heavy computationally speaking, we

can explore what happens if we assign a single trial to multiple executors

optimizing the workload with CUDA, or even performing distributed training on

top of Apache Spark.
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• Leverage early-stopping for ablation studies: at the moment, Maggy supports

early-stopping only for hyperparameter search throughmedian rule. It would be

interesting to explore the amount of resources that can be saved by defining an

early-stopping strategy for the ablation studies that do not perform well enough,

in favour of the more promising ones.

• Universal ablation: this thesis work enable Maggy to ablate any type of data, in

any format, provided that the user specifies how that ablation will happen. Still,

we can take another step further and re-think ablation for literally anything. To

clarify this, the paper on DistilBERT [11] (a popular model in NLP) has a section

where it describes the ablation of single parts of a triplet loss, while the paper “The

unreasonable effectiveness of the forget gate” [43] describes indeed the ablation

of a forget gate in an Long-Short Term Memory (LSTM).
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