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Abstract

Resource management is an important component in many distributed
clusters. A resource manager handles which server a task should run
on and which user’s task that should be allocated. If a system has mul-
tiple users with similar demands, all users should have an equal share
of the cluster, making the system fair. This is typically done today
using a centralized server which has full knowledge of all servers in
the cluster and the different users. Having a centralized server brings
problems such as single point of failure, and vertical scaling on the re-
source manager.

This thesis focuses on fairness for users during task allocation with a
decentralized resource manager. A solution called, Parallel Distributed
Gradient-based Dominant Resource Fairness, is propoesd. It allows servers
to handle a subset of users and to allocate tasks in parallel, while main-
taining fairness results close to a centralized server. The solution uti-
lizes a gradient network topology overlay to sort the servers based on
their users’ current usage and allows a server to know if it has the user
with the currently lowest resource usage.

The solution is compared to pre-existing solutions[33, 35, 18], based on
fairness and allocation time. The results show that the solution is more
fair than the pre-existing solutions based on the gini-coefficient. The
results also show that the allocation time scales based on the number
of users in the cluster because it allows more parallel allocations by
the servers. It does not scale as well though as existing distributed
solutions. With 40 users and over 100 servers the solution has an equal
time to a centralized solution and outperforms a centralized solution
with more users.
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Sammanfattning

Resurshantering är en viktig komponent i många distribuerade klus-
ter. En resurshanterare bestämmer vilken server som skall exekvera en
uppgift, och vilken användares uppgift som skall allokeras. Om ett sy-
stem har flera användare med liknande krav, bör resurserna tilldelas
jämnlikt mellan användarna. Idag implementeras resurshanterare of-
tast som en centraliserad server som har information om alla servrar i
klustret och de olika användarna. En centraliserad server skapar dock
problem som driftstopp vid avbrott på ett enda ställe, även enbart ver-
tikal skalning för resurshanteraren.

Denna uppsats fokuserar på jämnlikhet för användare med en de-
centraliserad resurshanterare. En lösning föreslås, Parallel Distributed
Gradient-based Dominant Resource Fairness, som tillåter servrar att han-
tera en delmängd av användare i systemet, detta med en liknande
jämnlikhet jämförande med en centraliserad server. Lösningen använ-
der en så kallad gradient network topology overlay för att sortera serv-
rarna baserat på deras användares resursanvändning och tillåter en
server att veta om den har användaren med lägst resursanvändning i
klustret.

Lösningen jämförs med existerande lösningar baserat på jämnlikhet
och allokeringstid. Resultaten visar att lösningen ger en mer jämnlik
allokering än existerande lösningar utifrån gini-koefficienten. Resul-
taten visar även att systemets skallbarhet angående allokeringstid är
beroende på antalet användare i klustret eftersom det tillåter fler paral-
lella allokeringar. Lösningen skalar inte lika bra dock som existerande
distribuerade lösningar. Med 40 användare och över 100 servrar har
lösningen liknande tid som en centraliserad server, och är snabbare
med fler användare.
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Chapter 1

Introduction

Resource management is an important component in many computer
systems. It can, for instance, be found in operating systems where it
manages the amount of memory each program has access to[25]. The
core concept of a resource manager is to manage resources with lim-
ited availability. Today resource management is not only handling re-
sources in a single machine though. With the increase in popularity
of data collection and data analytics, large clusters have been built to
store and process the data. These clusters can contain thousand of ma-
chines and require resource managers to orchestrate where and when
a data processing task should be run and should try to keep the re-
source distribution fair between its users. Fairness is an important part
of resource managers since every user should get the same amount of
resources. This thesis will focus on fairness for distributed resource
managers for large scale clusters, also called distributed resource man-
agers, handling many different types of resources.

1.1 Problem

There are many different problems a distributed resource manage-
ment have to solve. One existing problem today is the use of a cen-
tralized resource manager. This hinders the scalability of the cluster
and its availability. One example is YARN[28], which has a max ca-
pacity of around 10 000 nodes[11], this hinders scalability of the clus-
ter. A trend in growing cluster sizes has been observed by different
sources[2, 34, 32]. One way to solve scalability is using a decentralized
algorithm[20]. Systems today though use a centralized solution since

1



2 CHAPTER 1. INTRODUCTION

it allows a global view of all the available resources and the different
users which enable a best-fit algorithm to allocate a task for a user that
has the lowest resource usage to the best suitable node. In section 2.1
it can be seen that different fairness algorithms require some global
view of system resources which is then also a major advantage of us-
ing a centralized solution.

Allocation time is a requirement identified in the development of
the resource manager Sparrow[18]. The authors of Sparrow mention
that there is a trend for shorter tasks in data analytics frameworks,
where a job may finish under 100 ms. Resource managers today may
take over one second to schedule a task, which gives a significant over-
head compared to the run-time of a task[18]. An issue with sparrow
though is that it does not account for heterogeneous resource demand
on tasks. It works instead based on slots where a task take up a certain
slot with a fixed resource cost.

Another requirement is that allocations in the system should be fair
for all users[7]. This means that all users should feel that they received
a fair amount of resources compared to the other users of the system.
Fairness is a property important in Yarn[28], Borg[30] and Mesos[9].

The problem this thesis aims to solve is how one can create a de-
centralized resource manager with a focus fairness policy. While also
trying to utilize the cluster’s resources with heterogeneous resource
demands for tasks, with a shorter allocation time in comparison to a
centralized solution. The main challenges in this problem are:

• How can one implement a fairness policy without access to a
global view of currently allocated tasks and all the users in the
system? In section 2.1 it can be seen that most fairness policies
require some global knowledge, which may require an approxi-
mation to be made of global data.

• How can one minimize the allocation time in regards to cluster
utilization. It may require nodes to allocate in parallel.

• How can one ensure scalability of the system? No node, for ex-
ample, should have to contain a global view of all users which
would limit the system based on memory requirements.
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1.2 Aim

The aim of this thesis is to evaluate if it is possible to apply a network
topology to the servers, such as a gradient overlay to create a fair re-
source manager.

1.3 Limitations

This thesis builds upon the ideas from the papers Dominant Resource
Fairness Heterogeneous[33] and Distributed Dominant Resource Fairness
(DDRF)[35]. Both have a limitation that a specific user will not change
their resource demand of a task, to create comparable results to these
papers, this limitations was applied as well. DDRF also have further
limitations to create simulation results: a user will submit an endless
amount of tasks and a task does not end. These limitations are applied
in this thesis as well, again to create comparable results.

The limitations does not simulate real world scenarios though, and
this can be seen as a basic scenario. The limitations help to create easy
to compare results between the solutions, and can show if there is po-
tential to further investigate and build upon specficic solutions.

1.4 Contribution

This thesis investigates a solution to the challenges above by build-
ing by building upon Distruted Dominant Resource Fairness(DDRF)[35].
DDRF creates a directed graph with the servers in the cluster and as-
signs users to different servers. A user gets a task allocated if the server
it is on, has no connections (neighbors) to other servers with a user
with a lesser resource share. The proposed solution uses a gradient
network topology overlay to create a dynamic directed sorted graph
based on their users’ resource share. If possible a server only has links
to servers with a lower value than itself. This is done to reduce the
dependency of the initial graph in DDRF.

To achieve a faster allocation time, it is proposed to allow servers to
allocate in parallel. To do this, a server calculates an approximation
of the Gini-coefficient (a fairness evaluation method from economics)
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based on its neighbors’ users. If the Gini-coefficient can be reduced by
allocating the task (meaning a more fair result), the task is allowed to
be allocated.

The proposed solutions are evaluated based on fairness and allocation
time against a centralized solution implementing Dominant Resource
Fairness[7], a Sparrow[18] inspired solution, and DDRF.

1.4.1 Achievements

This thesis evaluates four different distributed solutions, two existing:
Distributed Dominant Resource Fairness, and Sparrow, and two proposed
solutions: Distributed Gradient-based Dominant Resource Fairness, and,
Parallel Distributed Gradient-based Dominant Resource Fairness. The so-
lutions are evaluated based on fairness and their allocation time (time
between a task has been submitted until it is allocated).

It is shown that the proposed solutions both give a better fairness re-
sult than the pre-existing ones with the tested datasets. Only one pro-
posed solution, Parallel Distributed Gradient-based Domiannt Resource
Fairness (PDGDRF) showed potential of being able to have a faster allo-
cation time than a centralized server, and both proposals were beaten
in allocation time by the pre-existing solutions. PDGDRF’s allocation
time is shown to scale based on the number of users in the cluster and
passes a centralized solution with 40 users in a cluster with 100 ma-
chines. PDGDRF is a good candidate to do future work on if one want
to have a distributed solution instead of a centralized one, to enable
parallel allocations on multiple machines. It can also be a candidate
against other distributed solutions if fairness is of more importance
than allocation speed.

1.5 Definitions

In this section the definition of different terms are explained, what they
mean in the context of this thesis.
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1.5.1 Fairness

Fairness in the sense of resource allocation means that all users feel
that they have received a fair amount of resources compared to other
users. In the simplest case consider of two users, A and B. Both want
to allocate tasks with a demand vector of 2 CPUs and 2 GB of ram,
< 2CPU, 2GB >, for an unlimited amount of tasks, in a system with 12
CPUs and 12 GB of RAM, < 12CPU, 12GB >. Both users should then
have three tasks running at the same time, giving them< 6CPU, 6GB >

at all time, which equalizes their resource usage. Fairness in a system
can also be defined by different fairness properties that are useful to
look at[7]:

• Envy-freeness: a user should not prefer the allocation of another
user.

• Truthfulness: a user should not benefit by lying about their re-
source demand.

• Pareto-efficiency: it is not possible to increase the allocation of
one user, without decreasing it from another user.

• Sharing incentive: each user is better of by sharing the cluster
with others. Encouraging sharing their cluster.

• Single resource fairness: if there exist only one resource in the
system, the solution should be reduced to a max-min fairness.

• Bottleneck fairness: if there is one resource that is demanded
most by every user the solution should reduce to a max-min fair-
ness for that resource.

• Population monotonicity: when a user leaves the system, none
of the resources of the remaining users should reduce.

• Resource monotonicity: if more resources are added to the sys-
tem, no users allocation should be reduced.

Envy-freeness can be compared to the simple example given above,
where one user should not prefer another users allocation. Truthfulness
and Pareto-efficiency is necessary to maximize the amount of tasks that
can run in the system. If a user lies about their demand, it will take
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resources from another user, while Pareto-efficiency means that all re-
sources should be utilized. Lastly sharing-incentive is a desirable prop-
erty in data-center environments, which means that one user should
not be better of by keeping a part of the cluster to themselves. The
last four properties are considered to be nice-to-have properties for a
fairness algorithm[7, 33].

1.5.2 Cluster utilization

Cluster utilization is similar to pareto-efficiency mentioned in section 2.1.
In this thesis cluster utlization means that the resources in the system
should be used to its fullest capacity. This will be looked at by checking
the ratio between the usage of the system against the total capacity.

utility =
usage

capacity
(1.1)

1.5.3 Scalability

Scalability refers to horizontal scalability in the cluster. Horizontal scalabil-
ity means that the performance of resource allocation should be depen-
dent on the amount of machines in the cluster. In this thesis, scalability
will be looked upon in the context of allocation time, how long it takes
to allocate a task, and how many tasks that can be allocated in parallel
by multiple machines.

1.5.4 Latency

Latency refers to the time for a task to get an allocation in the system.
Latency is measured from the moment a user submits a task to the
resource manager until the resource manager has proposed a suitable
node and the task have started executing on that node.

1.5.5 Run-time

Run-time refers to when all user tasks have been allocated. In this
thesis, all tasks are running endlessly, and users submit an endless
amount of tasks. The run-time is, therefore, the time between starting
a simulation and when no new task from any user can be allocated to
the cluster.
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1.5.6 Fault-tolerance

Fault-tolerance is a property a distributed system has if it tolerates node
failures while still being operational[8]. In this thesis, fault-tolerance
will not be looked at in the perspective of restarting tasks to guarantee
task completion. Instead, fault-tolerance will be considered so that
new tasks can be submitted to the system.

1.5.7 Heterogeneous resource demand

Heterogeneous resource demand in this thesis means that tasks do not
need to want similar resources or resource amounts. A task from user
x may want 1 CPU, 2 GB of ram and no GPU, < 1CPU, 2GB, 0GPU >,
while user y want < 4CPU, 1GB, 1GPU >. This is what is called a
heterogeneous resource demand, the opposite would instead be a fixed
resource demand where every task would receive the same amount of
resources, such as < 4CP, 2GB, 1GPU > to cover both users demand.

1.5.8 Allocation tick

In the thesis, allocation tick refers to a time-based interval that ticks
each node between a set time. When a node gets an allocation tick, it
tries to allocate a task from a user.



Chapter 2

Relevant theory and related work

2.1 Fairness techniques

This section explains fairness techniques and how fairness can be im-
plemented in a distributed environment using dominant resource fair-
ness.

2.1.1 Max-Min fairness

Max-Min Fairness is called Max-Min since it "maximizes the minimum
share of a source whose demand is not fully satisfied"[17]. It works by
guaranteeing that each user will get at least 1

N
of the shared resource,

where N is the amount of users in the system. If a user has a lesser
demand, he/she will only get its requested share, and the users with
unsatisfied demands will share the remaining resources.

2.1.2 Asset fairness

Asset fairness is an extension to Max-Min fairness which allows mul-
tiple different resource types by assigning each resource type a dif-
ferent weight[19]. One example for this would be a system with two
resources, CPU cores and memory. One could set that one CPU core
is equal to 2 GB of RAM. This is then reduced to Max-Min fairness. A
problem with Asset Fairness is that it can violate that each user gets at
least 1

N
of the shared resources. Consider a system with 28 CPU cores

and 56 GB of ram, with two users each wanting to allocate as many
tasks as possible. User A has a demand of < 1CPU, 2GB > for each

8
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task and user B has a demand of < 1CPU, 4GB > per task. If one
weighted the resources at 1 CPU core = 2 GB of ram, one would get
the following equation system:

max(x, y)

A+B < 28

2A+ 4B < 56

4A = 6B

(2.1)

This has the solution: A = 12, B = 8, where user A gets 12 CPUs,
and 24 GB of ram. User B, on the other hand, gets 8 CPUs and 32 GB of
ram. User A does then not get at least 1

N
of any resource in the system.

Asset fairness also break the propeties of Sharing incentive, bottleneck
fairness and resource monotonicity[7].

2.1.3 Dominant Resource Fairness (DRF)

Dominant resource fairness (DRF)[7] is a generalization of max-min fair-
ness to allow multiple different resource types. It works by picking
the dominant resource for each user. For example if user A wants to
allocate 1 CPU and 2 GB of ram on a machine with 3 CPUs and 8
GB of ram, the dominant resource would be calculated as following:
< 1

3
CPU, 2

8
GB >, thus the dominant resource would be the CPU since

1
3
> 2

8
. When every user’s dominant resource has been found, max-

min fairness is applied on their dominant resource. The implementation
of DRF differs from max-min fairness though in that it does not give
partial resources to a user. Every task gets resources equal to their
demand vector. DRF ensures that the system is envy-free, truthful,
Pareto-efficient and have a sharing incentive[7].

2.1.4 Dominant Resource Fairness Heterogeneous (DRFH)

Dominant resource fairness heterogeneous (DRFH)[33] is an extension of
DRF to handle a large number of heterogeneous servers, since DRF
only handles a single server in theory. DRFH reformulates the defi-
nition of DRF by defining a cluster of heterogeneous server as: S =

{1, ...k}, and the users as U = {1, ..., N}. The capacity of a server is
defined as cl = (cl1, ..., clm)

T , l ∈ S, the capacities are normalized based
on the total amount of resources in the cluster:
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∑
l∈S

clr = 1, r = 1, 2, ...,m (2.2)

Every user i ∈ U have a resource demand vector Di = (Di1, ..., Dim)
T

whereDir is the fraction of the resource demand over the total resource
capacity in the system. The global dominant resource of user i is then
defined as r∗i ∈ argmaxr∈RDir. A user i’s allocation share on a server
l is denoted by Ail = (Ail1, ..., Ailm)

T . So the number of tasks user i
can allocate resources for on server l is minr∈R{Ailr/Dir}. Wei Wang
et. al. introduce Gil(Ail) = minr∈R{Ailr/Dir}Dir∗i

which is the global
dominant share that user i receives from a server l under an allocation
Ail. Gi(Ai) =

∑
l∈S Gil(Ail) is then the users global dominant share

based on all its allocations in the cluster. From this the problem can be
defined as:

max
A

min
i∈U

Gi(Ai)

s.t.
∑
i∈U

Ailr ≤ clr,∀l ∈ S, r ∈ R
(2.3)

This aims to maximize the minimum global dominant share among all
users in the cluster. They prove that the solution to this problem en-
sures envy-freeness, pareto-optimality and truthfulness. In the implemen-
tation, they compared two approximation algorithms to the problem, a
first fit solution which allocates resources on the first server that can fit
the task. The second solution was a best-fit algorithm that choose the
best server based on the heuristicH(i, l) = ‖Di/Di1−cl/cl1‖1, where clr
is the remaining resources on server l. Their experiments showed that
the best-fit solution gave the best cluster utilization compared to both
first-fit and a slot based scheduler. One major setback of this solution
is that it requires a global view of the cluster resources and its users.

2.1.5 Distributed dominant resource fairness (DDRF)

Distributed dominant resource fairness (DDRF)[35] builds up on DRFH
and tries to solve the problems of it having a centralized server con-
taining a global view. DDRF defines an additional set on the DRFH
model, Ul ⊂ U ,

⋃
l∈S Ul = U , where Ul are the users on a specific server

l. The reformulated problem from DRFH is then instead dependent on
Ul instead of U :
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f(l) = min
i∈Ul

Gi(Ai)

max
A

min
l∈S

f(l)

s.t.
∑
i∈U

Ailr ≤ clr,∀l ∈ S, r ∈ R
(2.4)

This does require some global resource knowledge, such as the global
resource capacity in the system and the global resource allocations of a
specific user i. Based on (2.4) they show that since

⋃
l∈S Ul = U it gives

minl∈S f(l) = minl∈S mini∈Ul
Gi(Ai) = mini∈UGi(Ai). Which results in:

max
A

min
l∈S

f(l) = max
A

min
i∈U

Gi(Ai) (2.5)

Equation (2.5) shows that (2.4) then gives the same problem as seen
in equation (2.3). Thus it keeps the same properties as DRFH such
as envy-freeness, pareto-optimality and truthfulness. The main benefit of
DDRF over DRFH is that each server can compute its global dominant
share based on its own users.

Qinyun Zhu and Jae C. Oh implementation of DDRF was an approxi-
mation algorithm, where each user in the system is assigned to a spe-
cific server. Each server in the cluster also has knowledge of a subset
of other servers, called neighbors. To allocate a task, a server calculates
the dominant share of its users in Ul. It selects the user with the lowest
dominant share and checks with its neighbors if it is the lowest among
them as well. If it is, the server allocates a task for that user. The result
then depends on what neighbors a server have, and what users that
are allocated on those servers.

2.2 Fairness evaluation

This section describes different metrics to evaluate the fairness in the
system. These metrics are based on measuring income equality in eco-
nomics but have been used for measuring fairness[35].

2.2.1 Gini-coefficient

The gini-coefficient can be used to measure inequality. It is based on
the Lorenz-Curve which in economics and ecology is used to describe
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inequality[4]. The gini-coefficient is defined as the area between the
lorenz-curve and the uniform distribution line, also called the 45 degree
line. For unordered data the gini-coefficient can be calculated as fol-
lows[3]:

G =

∑n
i=1

∑n
j=1 |xi − xj|

2n
∑n

i xi
(2.6)

For testing inequality in a resource manager, each xi represents a user
i and is equal to either its total resource allocations, or its current allo-
cations at time t. Following on section 2.1.5, using the DDRF model,
calculation of the gini-coefficient on their global dominant share given
an allocation matrix A this would equal to:

G =

∑
i∈U

∑
j∈U |Gi(Ai)−Gj(Aj)|

2|U |
∑

i∈U Gi(Ai)
(2.7)

2.2.2 20:20 ratio

The 20:20 ratio is another inequality test that was considered but later
skipped, it is a measure of inequality which is the ratio between the
20% richest in the population in comparison to the 20% poorest. The
20:20 ratio is used by the United Nations Development Programme[21],
and is calculated by their total share of income. If X ⊂ U is the rich-
est 20% and Y ⊂ U is the poorest 20% the 20:20 ratio based on global
dominant share can be calculated as follows:

R =

∑
x∈X Gx(Ax)/

∑
i∈U Gi(Ai)∑

y∈Y Gy(Ay)/
∑

i∈U Gi(Ai)
(2.8)

If the system is completely fair R would be equal to 1, while R > 1

indicates unfairness. One downside of the 20:20 ratio is that it does not
account for complete inequality where one user has all the resources.
This would create a division by zero, and R would go to infinity.

2.3 Gossip protocols

In peer-to-peer systems gossip protocols are an information spread-
ing mechanism which takes inspiration of rumor spreading in the real
world[24]. A gossip is an unreliable and asynchronous message which
contains information that may be useful to another node. A gossip
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protocol is based on that each node has a set of links to other nodes,
called neighbors. A node sends a gossip with information to a neigh-
bor, which that neighbor stores and can send to one of its neighbors.
This is the basis of gossip based information dissemination. A simple
pseudocode for a gossip based information dissemination protocol can
look like the following:

Algorithm 1 Simple push based gossip algorithm
loop

p← random neighbor
update← random known information
sendUpdate(p, update)

end loop

procedure ONUPDATE(U)
store U to known information

end procedure

Algorithm 1 would run on every node in the network, which would
spread information in the network.

2.3.1 Aggregation protocols, Push Sum

Aggregation Protocols are a subset of gossip protocols and can be used
to create a summary of data[12]. One example is calculating the av-
erage of a value across all nodes or calculating the sum. Some of the
benefits of an aggregation protocol is that it is scalable to large systems
based on that is has a small message size and sends a low amount of
messages per node and provides local access to global data, but it does
come with the cost of not providing it in real-time[14].

In this thesis aggregations will be used to compute the sum of val-
ues. The sum can be computed by initializing two variables on all
nodes, st,i and wt,i where t is the value at a certain timestep and i is
a node in the network[15]. Each node initialize s0,i = xi where xi is
their value to be summed, and the initiating node of the aggregating
sum set w0,i = 1, while the other nodes set w0,i = 0. The algorithm for
calculating push sum looks as follows:
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Algorithm 2 Push Sum aggregation for a single round
procedure PUSHSUMROUND()

p← random neighbor
sendData(p, 1

2
st,i, 1

2
wt,i)

sendData(self, 1
2
st,i, 1

2
wt,i)

st+1,i ← 0

wt+1,i ← 0

end procedure

procedure ONDATARECIEVE(m)
st+1,i ← st+1,i +m.s

wt+1,i ← wt+1,i +m.w

end procedure

procedure GETSUM()
return st,i

wt,i

end procedure

This kind of push sum aggregation in algorithm 2 have been proven
with probability at least 1 − δ that the approximation error drops to ε
in at most O(log n+ log 1

ε
+ log 1

δ
) rounds[15].

2.4 Topologies

A decentralized network can be built using different overlay topolo-
gies, and these topologies can for example help increase the robustness
of the system to hinder network partitions, but also allow the network
to be traversable in search for a particular node.

2.4.1 Random topology

A random overlay topology is an unstructured topology which resembles
a random graph. A random topology can be created by using a peer
sampling service such as Cyclon[31] or Croupier sampling[5]. These
algorithms work by creating a partial view of the network for each
node, which is called its neighbors. Through gossiping rounds, the
nodes exchange a random subset of their partial view with each other
to receive a random subset of the graph. A random graph comes with
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the property that it is a good expander[6], and thus random walks mix
fast[29].

2.4.2 Gradient topology

Gradient Topology can be defined as: For any two nodes p and q that
have local utility values U(p) and U(q), if U(p) ≥ U(q) then dist(p, r) ≤
dist(q, r), where r is a node with the highest utility in the system and
dist(x, y) is the shortest path length between node x and y[26]. This
creates a topology overlay where nodes are ordered in descending or-
der from the gradient core, which contains the nodes with the highest
utility. The gradient core will be referenced to as the gradient center
in the thesis. A gradient topology is built by having some peer sam-
pling service providing random peers to each node. Each node prefers
other nodes with as similar utility as possible but higher than itself.
This creates the topology. There are ways to speed up the creation of
a gradient topology such using the T-Man protocol[13]. The gradient
topology enables efficient search for nodes with a high utility value,
while still being robust because of its p2p nature[23].

2.5 Resource management systems

This section describes some resource management systems in use to-
day. An implementation based on the concepts of Sparrow will be used
in the thesis to see how it compares to the other solutions. Yarn and
Mesos gives an overview on how resource managers are used today in
large clusters.

2.5.1 Sparrow

Sparrow is a distributed resource manager which aims to reduce the
latency of scheduling tasks. The motivation behind this is because
there is a trend for shorter jobs in data analytics frameworks, where
a job may finish in under 100 ms. Their results show that Sparrow can
provide median response times within 12 % of an ideal scheduler (a
scheduler which has full network knowledge and schedules on the
first available machine). This is solved by treating each node in the
network as a resource manager. A scheduler sends probes to different
nodes in the cluster and requests task allocation. If a node has a free
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slot, it proposes that slot to the scheduler, in which the scheduler can
accept or reject the offer. If a node does not have a free slot, it reserves
a place for the task on the node and proposes that slot to the scheduler
when available. Sparrow does not handle different resource require-
ments though. Instead, it has a fixed number of slots on a machine,
in which each task can be run. This means that different tasks can not
have different resource requirements and may result in tasks having
more resources than they need. This is one of the challenges to find a
solution to in this thesis, allowing heterogeneous resource demand can
increase cluster utilization. Sparrow also implements fairness policies
such as min-max fairness. This is done by running min-max fairness in-
dividually on each node, independently from other nodes. This can be
seen as a naive solution though[33], since it violates Pareto optimality.
Similar to task demand this is also a challenge for the thesis derived
from Sparrow. A non-naive implementation of fairness requires access
to a global view of a certain extent.

2.5.2 Yarn

YARN[28] is a resource manager/negotiator which is designed for use
in Apache Hadoop. It was created since the usage of MapReduce in
Hadoop had shifted from indexation of web crawlers to more com-
plex usage areas which required workarounds. Yarn operates with
three main components: Application master (AM), Resource Manager
(RM) and Node Manager (NM). The RM runs on a single dedicated ma-
chine and is the heart of YARN. The RM’s job is to mediate resources to
the different applications that run in the cluster. This includes allocat-
ing containers on worker nodes for different applications that they can
use. All resource requests from an application go through the RM. The
RM works together with different NM’s which are nodes that handle
a specific part of the cluster. Each NM keeps track on their workers’
available resources and heartbeats them to check for liveness, and this
data is then transferred to the RM. Comparing Yarn to the proposed so-
lution in this thesis, the RM and NM’s would be replaced with the de-
centralized system which may both reduce stress and allow increased
scalability of the system. Finally, the AM handles the resources for a
single application, it handles which tasks should be placed on which
machines and send the resource requirements to the RM. For fairness
there are implementations of DRF with YARN, one example is Horton-
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works implementation[10].

2.5.3 Mesos

Mesos is a platform for sharing a cluster between several different frame-
works, such as Hadoop, Elasticsearch, etc. It works by allowing differ-
ent type of schedulers from frameworks, such as YARN for Hadoop
to request resources. These schedulers are connected to a mesos master.
Mesos is built on the idea that there is no best-generalized scheduler,
and the different frameworks handle their own task scheduling. In-
stead, the Mesos-master can receive resource requests from the sched-
ulers, and propose an allocation on a certain worker to the scheduler.
This is similar to the implementation in this thesis where the resource
manager trusts the ordering of tasks from the users and does not in-
clude a scheduler of its own. A scheduler does not have to send a
request though: Mesos master works proactively and sends propos-
als to schedulers using a fairness policy when resources are available.
Fairness is implemented in Mesos by having fairness between differ-
ent schedulers (or frameworks). Mesos fairness policy for multiple re-
sources is based on dominant resource fairness, which is relevant for this
thesis since Mesos allows the original DRF algorithm to be run without
any major alternations. Making the thesis implementation proactive is
a possible enhancement to make the implementation work together
with the Mesos framework.
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Method

3.1 System Model

The system model assumed in the following parts, is similar to those
seen in DRFH[33] and DDRF[35]. In the system, there are different
types of resources that can be allocated, this set of resources will be
denoted R = {1, ...,m}. There exists a set of K servers called S =

{1, ..., K}, each server with a capacity vector cl = {cl1, cl2, ..., clm}. The
total capacity of the cluster is called C = (C1, ...Cm)

T and can then be
computed by the following:

Cr =
∑
l∈S

clr (3.1)

Each server l ∈ S will allocate a set number of tasks that will run
endlessly until the servers capacity is met. There exists a set of users
U = {1, ..., N}. Each user i ∈ U have a non-heterogeneous demand
vector Di = (Di1, ..., Dim)

T , which is the demand for the tasks that
each user will submit to the servers in S. The allocations made in the
system at a time-step t = [0, P ] for a specific user i ∈ U at server l ∈ S
is denoted as Atil = (Atil1, ..., A

t
ilm)

T , all allocations for users at a specific
server l ∈ S will be called Atl = (At1l, A

t
il)
T , and the allocations for all

users at time-step t will be denoted At = (At1, ..., A
t
N)

T . A user i ∈ U

allocation on a server l ∈ S is increased by adding its demand vector
to the allocation vector of server l if the total allocation on that server
does not exceed its capacity. A users allocation can never be reduced
since it is assumed that tasks will never stop running.

18
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At+1
il = Atil +Di

s.t.
∑
i∈U

At+1
ilr ≤ clr, r ∈ R (3.2)

3.1.1 Adding dominant resource fairness

The fairness method chosen for this thesis is dominant resource fair-
ness, since it has been proven in a system with several heterogeneous
servers to the following properties explained in section 1.5.1: envy-
freeness, pareto-efficiency, truthfulness, single resource fairness, bottleneck
fairness, population monotonicity, and resource monotonicity[7]. This with
support for several resources compared to Max-Min fairness. Sharing
incentive is not mentioned in the above properties since it is not well
defined yet for a system with multiple heterogeneous servers[33]. This
can be compared to Asset Fairness which has been proven to break shar-
ing incentive, bottleneck fairness and resource monotonicity[7].

As DRF was the selected algorithm to use, each user i ∈ U needs to
have a global dominant share Gi, which is the resource that they have
used the most in regards to the cluster capacity. This is calculated by
using the method seen in DRFH[33] by taking the sum of the dominant
share Gil that a user has on all servers. The dominant share for a user
i ∈ U on a specific server l ∈ S can be calculated as follows[33]:

Gil(A
t
il) = max

r∈R

Atilr
Cr

Gi(A
t
i) =

∑
l∈S

Gil(A
t
il)

(3.3)

The idea of dominant resource fairness is to achieve Max-Min fair-
ness on each user’s global dominant resource. To achieve this and
allow distributing the algorithm, methods from DDRF is used which
has a subset of users contained on each server which will be called
Ul ⊂ U ,

⋃
l∈S Ul = U . The maximization problem is then identical to

that in DDRF[35] which can be seen in equation 3.4.
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max
AP

min
l∈S

min
i∈Ul

Gi(A
P
i )

s.t.
∑
i∈U

APilr ≤ clr,∀l ∈ S, r ∈ R
(3.4)

Equation 3.4 can be explained as that at the last time-step P of the sys-
tem, the allocation made should have maximized the server that con-
tained the user with the minimum global dominant share.

3.1.2 Difference from the original DRFH

The model differs slightly from DRFH in that Wei Wang et. al. as-
sumed that the capacity of the servers is normalized and the demand
vector of a user is the fraction of the resource demand over the total
resource capacity. Below it is shown that using Wei Wang et. al.’s
method gives equal results of the global dominant resource as seen in
section 3.1. Their calculation for the dominant resource can be seen in
equation 3.5[33]:

Gil(A
t
il) = min

r∈R
{A

t
ilr

Cr
/
Dir

Cr
}max
r∈R

Dir

Cr
= min

r∈R

Atilr
Dir

max
r∈R

Dir

Cr
(3.5)

In equation 3.5, minr∈R{Atilr/Dir} is the maximum number of tasks
user i can have allocated on server l[33]. The global dominant share
in equation 3.5 is thus calculated by taking the number of tasks allo-
cated multiplied with the dominant share of the demand vector. Since
the demand vector is not heterogeneous, Atil can be seen as an integer
multiple of the demand vector.

Atil = z ∗Di, z = 1, 2, ...

s.t.
∑
i∈U

Atilr ≤ clr,∀l ∈ S, r ∈ R (3.6)

Using the fact that minr∈R{Atilr/Dir} gives the multiple z seen in equa-
tion 3.6, it can be seen that one gets the same formula as presented in
equation 3.3.

Gil(A
t
il) = max

r∈R

z ∗Dir

Cr
= max

r∈R

Atilr
Cr

(3.7)
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This modification was made to make the calculations more similar to
the original DRF algorithm[19]. Since it also only uses the original de-
mand and capacity vectors, no values have to be converted by the sys-
tem. This while maintaining that no allocation on a server can exceed
its capacity.

3.2 Problems with Sparrow and DDRF

This section looks upon some of the problems with other suggested
distributed fairness protocols before looking at the suggested imple-
mentation in this thesis. Firstly let’s consider Sparrow[18]. Every
server in Sparrow handles the fairness individually by themselves based
on what users that have allocated on that server. It is therefore similar
to the naive model mentioned by Wei Wang et. al.[33]. In the origi-
nal Sparrow implementation, servers handled fairness completely by
themselves, in this example, let’s assume that the servers also have
access to a particular user’s global dominant share, extending the so-
lution. Let’s consider two servers (S1, S2) with two users (U1, U2). U1
has a demand vector of < 1, 1 > and U2 < 0.1, 0.1 >. S1 has a capacity
C1 =< 1.2, 1.2 > and S2 has a capacity of C2 =< 1, 1 >, with a total
cluster capacity of C1 + C2 =< 2.2, 2.2 >. One way to create a bad
allocation can then be made by the following:

Table 3.1: Table showing the steps of a bad allocation with a naive
model. Operation explains what happens at that step, Gi is each users
dominant share, Ci is each servers current capacity, Qi is the queue of
tasks on a server from each user.

Time Operation G1 G2 C1 C2 Q1 Q2

1 U1 submit on S1 0 0 < 1.2, 1.2 > < 1, 1 > {U1} {}
2 U2 submit on S1 0 0 < 1.2, 1.2 > < 1, 1 > {U1, U2} {}
3 S1 allocate U2 task 0 0.045 < 1.1, 1.1 > < 1, 1 > {U1} {}
4 U2 submit on S1 0 0.045 < 1.1, 1.1 > < 1, 1 > {U1, U2} {}
5 S1 allocate U1 task 0.45 0.045 < 0.1, 0.1 > < 1, 1 > {U2} {}
6 U1 submit on S2 0.45 0.045 < 0.1, 0.1 > < 1, 1 > {U2} {U1}
7 S1 allocate U2 task 0.45 0.09 < 0, 0 > < 1, 1 > {} {}
8 S2 allocate U1 task 0.9 0.09 < 0, 0 > < 0, 0 > {} {}

As seen in table 3.1 an allocation was achieved where one user had ten
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times as high dominant resource than the other. The main problem
seen in table 3.1 is that S2 has no knowledge of the existence of U2 on
S1. To follow the DRF algorithm a global knowledge of the user with
the lowest dominant resource is needed as well. This enables a server
to hold allocating its lowest user in its queue until that user have the
global lowest dominant share.

If one looks on DDRF implementation instead, it is based on that each
server l ∈ S handles a subset of users Ul ⊂ U . Each server has a set
of neighbors Sl, which is random links to other servers in the system.
A server l ∈ S is allowed to allocate for one of its users based on the
following requirement:

∀q ∈ Sl,min
i∈Ul

Gi(A
t
i) < min

i∈Uq

Gi(A
t
i) (3.8)

If a server has the user with the lowest dominant resource, compared
to all its neighbors it is allowed to allocate for its lowest user. It can be
seen though that this solution also allows the creation of bad allocation
scenarios in regards to fairness. Consider a scenario with four nodes:
A, B, C, D. That start with their lowest dominant share set to: A = 0.1,
B = 4, C = 3, D = 4 and their demand vector is the same as their initial
dominant share. Each user only requires a single resource and the
total cluster capacity is 18.3. Figure 3.1 shows how this configuration
creates an unfair allocation based on this scenario.

Figure 3.1: A scenario where DDRF returns an unfair allocation. DS
represents each nodes lowest users dominant share.

In figure 3.1 it can be seen that the node with the least amount of re-
sources (node A) only got around 1.6 % of the total cluster capacity
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with four users. While a centralized solution would give the final re-
sult of: {4.3, 4, 6, 4}, where the lowest user receives 21.8 % of the cluster
resources. DDRF is therefore dependent on the initial cluster configu-
ration, how the servers are linked together. If they would instead be
ordered in increasing order:

Figure 3.2: Shows when the servers have been sorted in increasing
order based on users dominant resource share.

The results from the allocations shown in figure 3.2 is that the user
with the lowest cluster usage has 21.8 % of the total cluster resources,
same results as with the DRF algorithm.

3.3 Distributing DRF with a gradient topol-
ogy

As seen in section 3.1.1, the idea of the distributed dominant resource
fairness is to maximize the server that has the user with the lowest
dominant resource. A gradient topology can help solve this problem
since it orders the server in a network topology based on a utility func-
tion, which can help to locate the server that handles the user with
the lowest dominant resource, as also in section 3.2 where sorting the
servers resulted in the correct allocations. But firstly let’s define what
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is needed to be added to the system model. In a gradient topology,
each server i ∈ U requires a set of neighbors which will be denoted
Sti , which is the neighbors a server has at time-step t. The out-degree
of each server will be constant to a predefined number P. Each server
l ∈ S also have a utility function as mentioned which indicates the
value of that server, which will be denoted U(Atl), which is dependent
on the current allocations made on a server l at time-step t.

The gradient topology, as mentioned in section 2.4.2, will order the
servers so that for two servers p, q, with utility U(Atp) ≥ U(Atq), in a
fully converged gradient topology, so that the distance (shortest num-
ber of hops in the topology) will be dist(p, r) ≤ dist(q, r), where r is
a node with the highest utility in the system. This ordering is done
with a preference function as seen in Converging an overlay network to a
gradient topology[27], where a server l prefers server a over b if:

(i). U(Ata) ≥ U(Atl) ≥ U(Atb) or if
(ii). |U(Ata)− U(Atl)| < |U(Atb)− U(Atl)|when

U(Ata), U(A
t
b) > U(Atl) or U(Ata), U(A

t
b) < U(Atl)

(3.9)

From the neighbor selection function above, it is possible to see how a
server can know that it has the highest utility in the cluster. Consider
a server r which has the highest utility in the cluster:

∀l ∈ S \ {r}, U(Atr) > U(Atl) (3.10)

Then the only neighbor selection condition from equation 3.9 which
applies is (ii), which will give server r a neighbor set Sti containing the
servers with the highest utility value in the cluster, excluding r: ∀l ∈
S \ {r, Str},∀n ∈ Str, U(Atn) > U(Atl). For any other server in the cluster
that does not have the maximum utility, condition (i) can be applied
which means that it has a neighbor that has a higher utility than itself.
Based on this, a server can know that it has the highest utility value in a
fully converged gradient topology by checking if it only has neighbors
that have a smaller utility than itself, equation 3.11. From equation 3.9
it is is also seen that each server l ∈ Str have neighbors only to each
other and create a complete graph, which will be called the gradient
center and will be denoted Gt.

∀l ∈ Str, U(Atr) > U(Atl) (3.11)
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To keep the properties of the DRF algorithm, it requires that the
user with the lowest dominant resource should allocate for the next
time-step. Therefore the utility function is defined so that the server
that has the user with the lowest dominant resource should be located
in the center. For any server l ∈ S the utility function looks the follow-
ing:

U(Atl) = −min
i∈Ul

Gi(A
t
i) (3.12)

Equation 3.11 and 3.12 now provides a way to locate which user
that should allocate in the system to maintain the properties of DRF
by having only the user with the lowest dominant resource to allocate.

At+1
il =

{
Atil +Di if ∀n ∈ Stl , U(Atl) > U(Atn)

Atil otherwise

s.t.
∑
i∈U

At+1
ilr ≤ clr,∀l ∈ S, r ∈ R

(3.13)

This only covers when the gradient topology is fully converged
though, and every server has found its optimal neighbor set. After
the node with the maximum utility value has allocated for its user, as-
sume that its utility value becomes lower than all other servers in its
neighbor set, ∀l ∈ Str, U(A

t
r) < U(Atl). The servers in its neighbor set

Str will now remove r as a neighbor in favor of another server. One
of these servers, called q, will now have the maximum utility function
and will create a new gradient center with its neighbor set Stq that will
contain Str \{q}, with the addition of a random node until the gradient
topology have converged.

The node q will be able to check with equation 3.11 that it has the high-
est utility value and allocate for the correct user. But this is only true
while the number of allocations made in the system is less than the
out-degree for the servers. If the number of alloations is above the out-
degree, and the gradient has not converged, the center might be full of
nodes selected at random which cannot guarantee that the correct user
is allocated to. The main problem to keep the algorithm consistent is
then to always have the correct nodes at the gradient center.
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3.3.1 Keeping the gradient center nodes converged

Maintaining the correct servers in gradient center can be done in two
ways: wait enough number of cycles to be sure that the gradient has
converged, or validate the center correctness with the use of messages
between the servers located in the center. Waiting enough of cycles
can be difficult because of the random selection of nodes to exchange
neighbors with, and can result in either waiting too long until doing
an allocation or waiting to short, resulting in allocating the wrong user
eventually. To use messages to validate the correctness of the gradient
center, the following method is proposed:

1. The center node r selects its neighbor node p with the lowest util-
ity value.

2. It sends a message msgr containing the nodes (Str \ {p}) ∪ {r} to
server p.

3. Server p compares the nodes in msgr to its neighbor set Stp, if
msgr = Stp is true, it is the correct center and it messages back to
server r.

If one considers when a new server tries to enter the gradient cen-
ter after the maximum utility server has allocated, it will from before
the allocation has had its optimal neighbors. If it is the correct server,
which will be called A, that should be included in the gradient cen-
ter, and it will already have its neighbor set StA = Gt. Meaning that
the gradient center is already converged. If it is an incorrect server,
called B, that is included with utility ∀l ∈ Gt ∪ A,U(AtB) < U(Atl), it
is known that all its neighbors have a higher utility value than itself,
∀l ∈ StB, U(A

t
l) > U(AtB). It is also known that U(AtA) > U(AtB) and

∀l ∈ Gt, U(Atl) > U(AtA). Looking on equation 3.9 it is possible to see,
∀l ∈ Gt \ A, |U(AtA) − U(AtB)| < |U(Atl) − U(AtB)|, since server A is
not included in Gt server B does not have the correct neighbor links
to all servers in Gt, and an allocation can not happen until server A is
included in the gradient center. This method will be tested with simu-
lations to see how it performs in a more realistic scenario.
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Implementation

The implementation of the system for simulation is done using the
Kompics framework[1] which is developed at SICS, which allows the
simulation of distributed systems containing thousands of different
nodes. Kompics toolbox[16] is also used, which contains different dis-
tributed tools such as a gradient topology implementation, and a boot-
strap server, both used in the implementation. Kompics toolbox is also
developed at SICS. When simulating with Kompics, the simulation
time is based on ticks of the framework instead of the actual machine
time. This allows the simulation of large networks, without affect-
ing the resulting simulation time based on program complexity. This
comes with side-problems though, a complex algorithm running dur-
ing a single system tick will not be considered in the simulation time.
This will therefore be approximated in the implementations with a set
time-interval for certain algorithms, this time interval will be called al-
location tick.

A base simulation setup was used when implementing the solutions.
This was setup by having four different type of server nodes: resource
nodes, users, bootstrap server, and a gateway node. The resource
nodes are the servers which will have tasks allocated on them. The
user nodes each represents a user which want to allocate tasks on the
cluster. The bootstrap server allows the different resource nodes to lo-
cate each other during startup and create a network topology. Lastly
the gateway node functions as a redirect node which depending on
implementation can direct users to different resource nodes. The gate-
way can for instance redirect to a single server (centralized), or picking

27
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a server uniformly at random.

The aim of the simulation is to try and get the lowest gini-coefficient
based on users dominant share in the system, and maximum lowest
global dominant share, when each user will allocate endless amount
of forever running tasks with a non-changing demand vector. Each
user will therefore send a new task to the system each time its previ-
ous task have been allocated. This to not overflow the system with
user tasks. A basic pseudo code on this can be seen in algorithm 3. It
first requests a server from the gateway node, when the gateway node
responds, the user sends its allocation request to the returned server.
When that server has found an allocation for the user, it will send a
proposal. If the user accepts, the task will be allocated and the server
responds with a message informing the user that the task has been al-
located. When the task is allocated the user repeat the process with a
new task id.

In the following subsections each implementation done will be ex-
plained. First a centralized implementation based on the DRF/DRFH
paper[7, 33]. A probe implementation is also made, which is inspired
by Sparrow[18] but with a few changes to make it comparable to the
other results. DDRF is implemented without any major changes, but
instead focuses on examining how different network topologies can
change its results. Lastly two suggested algorithms are explained, the
Distributed Gradient-based Dominant Resource Fairness (DGDRF) which
focuses on mimicking the original DRF algorithm in a distributed man-
ner, and the Parallel Distributed Gradient-based Dominant Resource Fair-
ness (PDGDRF) which tries to allow parallel allocations by multiple
nodes.
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Algorithm 3 Pseudo code for task allocation requests for a user i ∈ U .
taskId← 0

acceptedTaskId← 0

procedure ONSTART

RequestServerFromGateway()
end procedure

procedure ONGATEWAYRESPONSE(s)
task← (user: i, id: taskId, demand: Di, dominantShare: Gi(A

t
i))

Send task to server s
end procedure

procedure ONPROPOSAL(s, task)
if acceptedTaskId < askId then

Send accept to server s
acceptedTaskId← acceptedTaskId + 1

end if
end procedure

procedure ONTASKALLOCATED(t)
At+1
i ← Ati +Di

taskId← taskId +1

RequestServerFromGateway()
end procedure

4.1 Centralized implementation

The centralized server implementation, implements two algorithms.
Firstly DRFH using a first-fit selection algorithm on which server that
should handle what task. First-Fit was chosen to create comparable re-
sults to the distributed solutions, since they also select a server based
on a first-fit scenario. First-Fit was also one of the test-cases of the orig-
inal DRFH algorithm. The other implementation is a FIFO based algo-
rithm which allocates the tasks in the order they come into the system.
The centralized DRFH solution, will be a base case in the simulations,
which shows the resulting fairness, based on full system knowledge.
The FIFO based algorithm will instead give a worst-case scenario with
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no fairness at all. The network setup of the centralized server can be
seen in figure 4.1.

Figure 4.1: Shows the network setup of the centralized server imple-
mentation. The users contact the gateway node, to get info about the
centralized server, which handles all the allocations.

As seen in figure 4.1 the users have contact to the centralized server. In
the implementation each user gets redirected by the gateway node to
the centralized server when they want to allocate a task. The central-
ized server will store the users requested tasks, and select the next task
from the user with the lowest dominant share to allocate on a time-
based interval (allocation tick interval). This time interval is added to
simulate the complexity of finding the user with the lowest dominant
share and a suitable server. This time interval also allows all users to
send their new task to the centralized server before the next allocation
is made.

4.2 Probe-based implementation

This implementation works similar to Sparrow[18] with a few addi-
tions. Each user gets a resource node uniformly at random each time
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it wants to allocate a task from the gateway node and sends its request
to that node. In Sparrow, each server handles fairness based only on
what allocations that has been made on that node. In this implementa-
tion an addition is that users keep track of their own global dominant
share, which allows a server to know how much a user has allocated
globally. This addition was added since this is assumed to exist for
other implementations later on, and may help improve the fairness re-
sults. It does not have information about other users that did not send
an allocation request though, therefore a server can only handle fair-
ness based on which users sent a request to that specific node.

Every resource node l ∈ S has a set of fixed neighbors Sl with a static
out-degree which is generated at random to create a random graph. A
resource node can get information about its neighbors, which contains
how much of its resources that are currently in use.

When a user sends a request to a resource node, it stores that request
in a list, and that server is the primary handler of that request. Spar-
row utilized the power of two choices technique, where it sends a a
request to two of its neighbors with the lowest load. Since sparrow
was a slot based scheduler, and did not consider heterogeneous re-
source demand, it could approximate load based on number of slots
left, or the size of its request queue. Approximating load with multi-
ple resources is difficult since even though one resource on the server
might be completely used, a task may not require that resource. In this
simulation, the load will be estimated based on CPU usage though,
since the test data in the experiments which is from Google cluster data,
are CPU heavy[35]. The load is therefore calculated as:

load = CPUused/CPUcapacity (4.1)

Sparrow uses the power of two choices technique to reduce the la-
tency on task allocations, but since the task get propagated to more
resource nodes, it can have an effect on fairness as well. A resource
node, therefore sends a request to its two neighbors that have the low-
est CPU load. The first server that sends its proposal to the user, al-
locates the task. To ensure that a server gets to see tasks from other
servers, a time-interval is added as in the centralized server implemen-
tation where only one task is allocated between each time interval. A
pseudo code for task allocation can be seen in algorithm 4.
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Algorithm 4 Pseudo code that shows the allocation algorithm for any
server l ∈ S.

list← []

procedure ONREQUEST(task)
add task to list
send task to two neighbors with the lowest load

end procedure

procedure ONTASKFROMSERVER(task)
add task to list

end procedure

procedure ONTICK

sort list in ascending order, based on t.dominantShare, t ∈ list
available =

∑
i∈U A

t
ilr,∀r ∈ R

for each t ∈ list do
if t.Demandr < clr − availabler,∀r ∈ R then

send proposal to t.user
list← list \ t
break

end if
end for

end procedure

procedure ONACCEPT(task)
run task
send submit message to task.user

end procedure

In regards to cluster utilization, the hypothesis is that it will be lower
than in a centralized solution, since a resource node can only allocate
on itself. If a user is selected to allocate on an already full server, and all
its neighbors are full as well, that task and user cannot allocate a task
anymore. Sparrow was not designed though to have endless running
tasks, and have to be taken into consideration when comparing the
results.
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4.3 DDRF implementation

The DDRF implementation was made using Algorithm 1 (algorithm
5 in this thesis), from its paper, DDRF without task forwarding[35].
Which in its paper, received good results in fairness, based on the re-
sulting gini-coefficient.

As seen in section 3.2, dependent on initial neighbor selection for
each node, and its allocation condition can be seen in equation 3.8.
Since in DDRF there is no change in neighbors during runtime, two
different setups of selecting neighbors will be made in this implemen-
tation. First a uniformly at random selection will be made of all re-
source nodes in the system. The second neighbor selection implemen-
tation will utilize a gradient topology for the initial setup of the neigh-
bors. The utility function seen in equation 3.12 is used, but with slight
modifications.

U(Atl) =

{
−mini∈Ul

Gi(A
t
i) if |Ul| > 0

−∞ otherwise
(4.2)

By using the utility function in equation 4.2, nodes without users will
have the lowest possible utility, while nodes with users on them will
start with the utility of 0. This will create a network topology where
nodes with users will prioritize each other as neighbors. An example
can be seen in figure 4.2.

Figure 4.2: Shows a resulting network teopology from a gradient over-
lay, where each node has two neighbors.

When the gradient has converged, resulting in a similar result as in fig-
ure 4.2, the neighbors at that time-step is saved, and is non-changing
for the remainder of the simulation. This scenario was created to get
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Algorithm 5 Pseudo code that shows the allocation algorithm for any
server l ∈ S.

users← [[]]
neighbors← [∞,∞, ...,M ]

procedure ONREQUEST(task)
if users does not contain task.user then

add {user: task.user,tasks: [], dominantShare: 0} to users
end if
add task to users[task.user]
users[task.user].dominantShare← task.dominantShare

end procedure

procedure ONTICK

for each i ∈ users do
t← get task from i.tasks
if t.dominantShare ≤ minn∈neighbors n and t.Demandr < clr −

availabler,∀r ∈ R then
send proposal to t.user
i.tasks← users[i] \ t
break

end if
end for
for each n ∈ Sl do

send minimum dominant share update request to n
end for

end procedure

procedure ONRESOURCEUPDATEREQ(sender)
neighbors[server]← dominantShare

end procedure

procedure ONRESOURCEUPDATERESP(server, dominantShare)
neighbors[server]← dominantShare

end procedure

procedure ONACCEPT(task)
run task
send submit message to task.user

end procedure
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a good initial neighbor selection where the nodes with users have
knowledge about each other, and does not contain neighbor links to
servers without users. When the neighbors have been set, the nodes
will begin to allocate tasks from users. Each resource node will ask
its selected neighbors about their lowest dominant share, at a set time
interval, to get updates of the current state of its neighbors.

Similar to the centralized and naive implementation, there is a set time
interval between task allocations on a resource node. This to create
comparable results to the centralized server. If a resource node cannot
allocate a task on its own machine, it will utilize random walk, on an
underlying random graph of the network. The node sends the task it
cannot allocate to a random neighbor, and if the receiving node cannot
allocate it as well, it sends it further. Random walk of tasks does not
change the receiving nodes minimum dominant share, random walk
is simply a method to allow further cluster utilization. It is not optimal
in a real system, but for simulation purposes it allows the cluster to be
fully utilized.

By looking at algorithm 5 it can be seen that each node sends a update
request to all its neighbors each tick to get their latest information.
This creates an overhead in terms of message cost, when comparing
to the centralized server. Every node in the cluster does not need to
send these requests though: it is only necessary for the nodes that have
users on them. The worst case scenario though is that each server
in the cluster has a user located on them. This gives the following
message cost per tick:

O(2|S|P ) (4.3)

Equation 4.3 is then the number of servers in the cluster times the
constant out-degree of each server. It is multiplied by two since each
request has to be answered with a response as well. The information
necessary in this message is only the minimum dominant share from
a servers local users. In this case a double, giving the message 8 byte
cost in addition to the transmission overhead. The total cost in bytes
then becomes:

O(2|S|P ∗ (8 + overhead) (4.4)
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4.4 Distributed Gradient-based Dominant Re-
source Fairness (DGDRF)

This section describes the implementation of the first solution pro-
posed in the thesis, Distributed Gradient-based Dominant Resource Fair-
ness (DGDRF). It tries to mimic the DRF algorithm by always allocat-
ing the user with the lowest dominant share. The implementation fol-
lows section 3.3 and section 3.3.1. A user belongs to a single server
l ∈ S, and sends all its tasks to that server, as in the DDRF imple-
mentation. The server can therefore keep track of the users allocations
and its global dominant share. The same utility function is used as in
DDRF, equation 4.2, which allow the resource nodes to create a gra-
dient topology where the nodes without any users will not be consid-
ered to be near or in the center. The nodes will also be ordered based
on their lowest dominant share. The difference to DDRF with gradient
neighbor selection, is that the gradient will be used continuously to
get a dynamically changing graph.

Each node will at a set time-interval check its neighbors if it has the
user with the lowest global dominant share, based on equation 3.11. If
the node consider itself to have the user with the lowest global dom-
inant share in the network, it sends a message to its neighbor with
the lowest utility value, with descriptors to all its neighbors excluding
that neighbor. The receiving node then compares the descriptors to its
own neighbors, if all neighbors match it returns an acknowledgement
to the sending node, that it can allocate. First the node tries to allocate
on itself, if that does not work, random walk is used as explained in
the DDRF implementation, section 4.3.

The most important parameters for the DGDRF solution, which will be
looked upon in the experiments are view size and shuffle period. The
view size sets out-degree of a node, meaning how many neighbors it
will have in the gradient topology. The shuffle period is how often a
node will exchange information with one of its neighbors and may
change neighbor(s) if a more suitable node is found. The implementa-
tion of the gradient topology is as mentioned from SICS, in the Kom-
pics toolbox framework[16].
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In the gradient topology implementation, a node will randomly select
one of its neighbors to exchange information with. In these messages a
node will send information about its current neighbors and their util-
ity value together with its own utility value. The message size is there-
fore dependent on the number of neighbors. The response message
will send an equal size of information, but with information about its
own neighbors. If one assumes that the utility is expressed as the min-
imum dominant share, and an address size to a neighbor is expressed
by adr one gets the following cost per message:

(P + 1)(8 + adr) (4.5)

If each node sends this message x times during one tick, one gets
the following cost in bytes including overhead:

2 ∗ x|S|((P + 1)(8 + adr) + overhead) (4.6)

This is the cost for getting the nodes to receive information about
each other, but also to be able to update the gradient topology correctly
and locate better suited neighbors.

4.5 Parallel Distributed Gradient-based Dom-
inant Resource Fairness (PDGDRF)

Parallel Distributed Gradient-based Dominant Resource Fairness (PDG-
DRF) is the second proposed solution and builds upon the previous
section. This solution will look upon if the performance can be in-
creased by allowing resource nodes to allocate in parallel. This needs
to be done with an approximation since if one follows the DRF algo-
rithm, only one node can allocate at the same time. This means that the
only change in performance is dependent on that the resource nodes
can have a hypothetical lower load than the centralized server.

The addition to section 4.4 is that nodes will have the possibility to al-
locate for its users if an approximated gini-coefficient based on neigh-
bors lowest dominant share will be reduced. The idea behind this is,
that it is the benchmark that is used for the results. This gini-coefficient
is calculated in the following way for any server l ∈ S:
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Gini =

∑
i∈St

l

∑
j∈St

l
|(−U(i))− (−U(j))|

2|U |
∑

i∈St
l
(−U(i)) (4.7)

This information is already available from the gradient in the form of
the utility function, which does not require any new information to be
shared. A pseudo code on the allocation conditions can be seen in al-
gorithm 6.

In algorithm 6 it can be seen that there is no constant speed up. Initially
each node checks if they consider themselves the center node, the re-
quirement of comparing neighbors to a neighboring node is removed,
this to see the potential difference in allowing a non-perfect gradient
center. If a resource node does not consider itself the one with the
highest utility, it calculates the gini-coefficient at that time t, and how
it would become if its lowest user would allocate.
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Algorithm 6 Algorithm that shows the conditions when a server l ∈ S
can allocate for its lowest user.

procedure SHOULDALLOCATE(user)
if isCenterNode() then

return true
end if
utility← −Guser(A

t
user)

giniOld← calculateGini(utility)
newUtility← −Guser(A

t
user +Duser)

giniNew← calculateGini(newUtility)
if giniNew < giniOld then

return true
end if
return false

end procedure

procedure ISCENTERNODE

for each q ∈ Stl do
if U(q) > U(l) then

return false
end if

end for
return true

end procedure

procedure CALCULATEGINI(utility)
N← {-utility} //N is a list containing utility
for each q ∈ Stl do

if U(q) 6=∞ then
add -U(q) to N

end if
end for
gini← calculate gini-coefficient based on N
return gini

end procedure
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Evaluation

The simulation results will be evaluated on four different points: la-
tency for task allocation, fairness based on gini-coefficient, fairness
based on the minimum dominant share a user has, and the number
of incorrect allocations a solution does in comparison to the original
DRF algorithm.

Latency will be evaluated by looking at the final run-time for each al-
location. All solutions will have the same time between each alloca-
tion tick (100 ms), which is how often a node can allocate a task for a
user. The latency is then defined by how fast a solution can find which
user that should allocate next and how many tasks that can allocate in
parallel. The DGDRF solution based on this if it always allocates the
correct task (the one belonging to the user with minimum global dom-
inant share), can at most achieve the same speed as the centralized
solution. This is because it mimics the DRF algorithm and since the al-
location tick is the same in all solutions, only one user should allocate
each allocation tick when mimicing DRF. So its latency is dependent
on how fast it can locate the correct user. The PDGDRF solution can
instead lower the latency further since it allows parallel allocations by
nodes.

Fairness based on the gini-coefficient shows the overall fairness in the
system and provides comparable results to the DDRF paper[35]. It
has some problems though, for instance consider two results with five
users having the following global dominant share: (A) 1, 2, 3, 4, 5 and
(B) 1, 5, 5, 5, 5. The results from (A) would give a gini-coefficient of

40
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0.267, while (B) would give 0.152. Solution (B) is more fair for the ma-
jority of users but it does not accurately reflect that the system is more
unfair for a single user.

Fairness based on minimum dominant share is used to evaluate the
problem mentioned above. It is also the actual representation on the
maximization problem that DRF uses. It may therefore be a more ac-
curate way to evaluate the different solutions. Looking at the gini-
coefficient can still be interesting though since it highlights as men-
tioned if the majority of users considers it fair. Fairness based on mini-
mum dominant share is also more dependent on cluster utilization. If a
solution utilizes more resources, it have the change of getting a higher
minimum dominant share. The gini-coefficient is not dependent on
cluster utilization and may help bring more comparable results to so-
lutions with different cluster utilization.

Lastly, looking at the number of incorrect allocations provides a way
to see a possible correlation between the fairness results and incorrect
allocations. Having zero incorrect allocations is important if one wants
to keep the original properties in DRF.

5.1 Test-cases

The test cases used in the simulations are created from Google cluster
data[22], in a similar way done in DRFH and DDRF[33, 35], the dataset
with 100 machines and 20 users is identical to DDRF supplied by the
authors, but the other datasets have only been generated in a similar
way. Google cluster data contains information about 10 000 machines
and their resource capacity, and also 900 users and the different tasks
that was submitted to the cluster. X amount of machines are picked
at random from the google cluster trace, and Y amount of users. The
X amount of machines used in the datasets was: 100 and 200. The
different Y values used was: 10, 20, 40, 60, 80, 100 and 120. If a user
contains several different tasks, one will be picked at random from that
users tasks. This task is set to be allocated constantly by the user, and
run endlessly. The workload in the google cluster traces are heteroge-
neous in terms of resources available on a node, and also the resource
demands from a task[22]. The allocation tick time for all solutions and
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experiments will be set to 100 ms, meaning that a node can at maxi-
mum allocate 10 tasks per second.

The experiments for each solution is run only once, this is because
some solutions required an extensive run-time to simulate all the dif-
ferent nodes. All the comparisions in the graph are using the same
generated data-set and also the same random seed.

5.2 Fairness

In this section, the fairness is looked at for the different implementa-
tions. Both the minimum global dominant share, and the gini-coefficient
is looked at to see which solutions that are closest to the centralized
DRF solution.
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Figure 5.1: The minimum global dominant share, with 100 machines
and 20 users. Higher is better.
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Table 5.1: The minimum global dominant share, based on the different
solutions and the number of neighbors in the network. Displays the
same numbers used in figure 5.1

Solution 2 3 4 5 6 7 8 9 10
Centralized DRF 0.0561 0.0561 0.0561 0.0561 0.0561 0.0561 0.0561 0.0561 0.0561
Centralized FIFO 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059
Probes 0.0317 0.0280 0.0356 0.0343 0.0365 0.0402 0.0343 0.0288 0.0357
DDRF random 0.0122 0.0100 0.0224 0.0122 0.0104 0.0098 0.0113 0.0354 0.0506
DDRF gradient 0.0537 0.0518 0.0506 0.0549 0.0549 0.0550 0.0537 0.0549 0.0546
DGDRF 0.0549 0.0549 0.0549 0.0549 0.0549 0.0549 0.0554 0.0549 0.0549
PDGDRF 0.0546 0.0549 0.0549 0.0543 0.0549 0.0554 0.0549 0.0546 0.0549

The results from figure 5.1 and table 5.1 show that all algorithms give
a better result than an algorithm based on a FIFO-queue implemen-
tation. Using DDRF with a random neighbor selection creating a ran-
dom graph though presents problems when its neighbor count is lower
than 9 for this specific dataset. It can almost be compared to a fifo-
queue implementation with less neighbors. Using DDRF with a neigh-
bor selection using a gradient, to link nodes that have users with each
other provides a result almost comparable to the centralized DRF. It has
nearly the same minimum global dominant share as the centralized
DRF server, with some exceptions when reducing the neighbor count
to less than 5. The probes implementation results show that it does not
seem to be as dependent based on the number of neighbors, and no
obvious drop in minimum global dominant share could be observed
when the number of neighbors are reduced. This may be because it
randomly selects a new node for every task, compared to the DDRF
random solution where a user allocates to the same node every time.

The DGDRF solution has the second best minimum global dominant
share, when looking at all neighbors. The only solution with a better
minimum share is the centralized DRF solution. It also has a stable
result not depending on the number of neighbors each node has in the
gradient topology, if compared to DDRF with a random neighbor se-
lection. The PDGDRF solution provides similar results when compared
to the DGDRF solution. The addition to the DGDRF solution to allow
a task to be allocated if the gini-coefficient will be improved does not
seem to affect the final result much with this data-set when comparing
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to the DGDRF solution.
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Figure 5.2: The gini-coefficient, with 100 machines and 20 users. Lower
is better.
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Figure 5.3: Zoomed in version of figure 5.2 on the lower values, with
100 machines and 20 users. Lower is better.

Figure 5.2 instead shows the gini-coefficient for the different solutions
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when running 100 machines and 20 users. Figure 5.3 shows a zoomed
in version on the four lowest value solutions. An interesting note
when comparing the gini-coefficient to the minimum global dominant
share is that DDRF random is considered more unfair in some occasions
than the FIFO solution. This is logically the result of a larger standard
deviation, since the gini-coefficient result is dependent on the distance
between every users dominant share. To investigate this a study on all
different solutions standard deviation when they have 6 and 8 neigh-
bors was conducted, see table 5.2. This to check both a scenario when
DDRF random has a larger gini-coefficient and one when it is slightly
lower. It can be seen that DDRF random have a larger standard de-
viation than all other solutions with 8 neighbors, and a slightly lower
standard deviation than the centralized FIFO with 6 neighbors. Next
we will consider how the results change with 200 machines and 40
users.

Table 5.2: The sample standard deviation on the users final dominant
share with 100 machines and 20 users

Operation Sample standard deviation
8 neighbors 6 neighbors

Centralized DRF 0.000173 0.000173
Centralized FIFO 0.054938 0.054938
Probes 0.015692 0.011700
DDRF Random 0.095630 0.054062
DDRF Gradient 0.000748 0.000369
DGDRF 0.000333 0.000488
PDGDRF 0.000374 0.000483
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Figure 5.4: Results of looking at the minimum global dominant share,
with 200 machines and 40 users. Higher is better.

Figure 5.4 shows the minimum global dominant share for the differ-
ent solutions when having 200 machines with 40 users. Compared to
figure 5.1 with 100 machines and 20 users, the DDRF gradient solu-
tion does not give similar results to the DGDRF solution or PDGDRF
solution. The probe and DDRF random solution seem to largely un-
changed, except that DDRF random have a lower value with 10 neigh-
bors then before. The DDRF random solution gives a better result
with more neighbors, and the probe solution does not seem as affected
by the number of neighbors, having only a slightly lower minimum
global dominant share with fewer neighbors. The DGDRF solution and
PDGDRF solution still seem unaffected by the number of neighbors.
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Figure 5.5: Results of looking at the gini-coefficient, with 200 machines
and 40 users. Lower is better.

Looking at figure 5.5 which shows the gini-coefficient for 200 machines
and 40 users, a larger difference can be seen compared to 100 machines
and 20 users, where DDRF random is now considered to be more un-
fair in all cases than the centralized FIFO solution. DDRF gradient is
also considered more unfair with neighbor count 4,3 and 2, compared
to the probes solution. The DGDRF solution and PDGDRF solution re-
main similar to previous data-set, both with a low gini-coefficient.

From looking at these two data-sets it can be seen that two solutions,
DGDRF solution and the PDGDRF solution both provide more fair allo-
cations for all users when comparing to other distributed solutions.

5.3 Error

This section looks at the errors made by the solutions. An error is when
a users task get allocated when that user did not have the lowest global
dominant share. This results are looked at to see how well DGDRF can
mimic the DRF algorithm, and also if having errors have large effects
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on the fairness results seen in section 5.2.

Table 5.3: Percentage of wrong allocations made by each solution, with
100 machines and 20 users.

Neighbors Probes DDRF random DDRF gradient DGDRF PDGDRF
2 83.53% 86.71% 79.00% 0.00% 38.45%
3 83.05% 86.32% 71.74% 0.00% 22.28%
4 79.64% 85.91% 61.35% 0.00% 15.73%
5 79.22% 89.23% 48.75% 0.00% 16.05%
6 75.89% 88.42% 23.92% 0.00% 17.56%
7 76.26% 86.41% 26.03% 0.00% 20.45%
8 80.00% 88.89% 15.17% 0.00% 20.45%
9 75.86% 82.96% 9.57% 0.00% 22.41%
10 75.28% 74.51% 10.19% 0.00% 23.30%

Table 5.3 shows the percentage of errors for the different distributed
solutions with 100 machines and 20 users. For the probes solution, it
does not seem like the number of neighbors affects the error percent-
age much. The DDRF random solution only shows slightly less errors
with more neighbors, the number of errors does not seem to strongly
correlate with the minimum global dominant share for this solution.
The DDRF gradient solution also has a high error percentage at lower
amount of neighbors, even though it had a high minimum global dom-
inant share, the error percentage seems to have a correlation with the
number of neighbors though where it drops rapidly with more neigh-
bors. The DGDRF solution had a zero percent error, non dependent on
the number of neighbors in this data-set. The PDGDRF solution, has an
error around 20% for most number of neighbors, except at 2 neighbors
where it almost reaches 40%.

To see how the DDRF gradient solution and the PDGDRF solution can
still have a high minimum global dominant share, with a relatively
high error percentage, the error ratio will be plotted over the number
of allocations. This to see where a majority of the errors come from
during the run-time execution. It will also look on if the number of
errors are reduced, if a users’ dominant share is only 1 % or less from
the global minimum. The results can be seen in figure 5.6.
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Figure 5.6: The error ratio over the number of allocations made, with
100 machines and 20 users. Each server has two neighbors. > 1%

means that users with a minimum share only 1% from the global min-
imum is not considered as an error.

Figure 5.6 shows that the error ratio for the DDRF gradient goes up to
around 79% quite quickly and does not reduce the error ratio when the
cluster becomes saturated. If one looks at tasks from users that are only
1% of the global minimum though, the DDRF gradient solution has a
decline in error ratio with more allocations. The PDGDRF solution has
a similar curve, where it begins with allot of errors and the number of
errors are reduced further on. This can be compared to DDRF random
which had a low minimum global dominant share. It does not have
any reduction in error, even if allowing tasks that are 1% of the global
minimum to be considered correct.
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Table 5.4: Percentage of wrong allocations made by each solution. 200
machines and 40 users

Neighbors Probes DDRF random DDRF gradient DGDRF PDGDRF
2 86.32% 95.57% 90.30% 0.00% 64.01%
3 82.66% 95.57% 89.46% 0.00% 48.35%
4 83.78% 94.86% 76.80% 0.00% 37.80%
5 84.35% 94.93% 69.85% 0.00% 30.14%
6 81.95% 94.83% 67.38% 0.00% 23.34%
7 79.21% 94.28% 64.96% 0.00% 17.65%
8 83.13% 88.23% 62.43% 0.00% 11.67%
9 81.86% 85.47% 57.21% 0.00% 5.69%
10 82.52% 81.94% 55.68% 0.00% 5.04%

Table 5.4 shows the wrong allocations made in ratio to total number
of allocations with 200 machines and 40 users. The probes solution
as before does not seem to depend on the number of neighbors, with
no significant drop in error ratio with more neighbors. Both DDRF
random and DDRF gradient solutions now show a clear drop in error
ratio with more neighbors. For the DDRF gradient solution, the error
rate is increased by 62% when going from 10 neighbors to 2. The DG-
DRF solution still results in 0% errors, while the PDGDRF solution has
had an increase in errors for fewer neighbors when compared to be-
fore, but also a decrease for more neighbors. This is interesting since
it still gives similar minimum global dominant share, compared to the
DGDRF solution. The DDRF gradient solution with 10 neighbors also
has a lower error percentage compared to the PDGDRF solution with
2 neighbors, even though the PDGDRF solution resulted with a bet-
ter minimum global dominant share, and gini-coefficient. These two
results will be compared by looking at how their error rate changes
when allowing users that have a global dominant share close to the
minimum global dominant share to not count as an error. The solu-
tions will be looked at for 1%, 5%, 10% and 15% over the minimim
global dominant share, to not count as an error.
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Figure 5.7: The error ratio over the number of allocations made, with
200 machines and 40 users. PDGDRF solution has two neighbors and
DDRF gradient 10 neighbors. The x axis is how much above the mini-
mum global dominant share a user can be to not have its task counted
as an error.

As seen in figure 5.7 the DDRF gradient solution has a larger error
ratio than the PDGDRF solution when looking at tasks from users be-
ing allocated close to the minimum global dominant share. This may
then be why the PDGDRF solution can have a better fairness result,
even though it has more incorrect allocations if one follows the origi-
nal DRF algorithm.

From all results it could be seen that only looking at errors in the def-
inition of the DRF algorithm could not explain certain behaviors of
the solutions. Even though the PDGDRF solution had a larger amount
of errors than other solutions it could still give a good final fairness
result, both considering minimum global dominant share and gini-
coefficient. The fairness is also a result of the type of errors.If a user
with a dominant share twice as large as the minimum is allocated,
gives a much larger impact to the result, than if it is only 1% larger
than the minimum global dominant share.
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5.4 Latency / Run-time

This section looks on the latency and run-time for the different solu-
tions and how fast they can allocate the cluster until it becomes satu-
rated. The solutions that will be looked upon will be the centralized
DRF, Probes, DDRF gradient, DGDRF solution and PDGDRF solution.
The centralized FIFO will not be looked upon since it does not imple-
ment any type of fairness algorithm.
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Figure 5.8: Run-time for the different solutions with 100 machines and
20 users. Lower is better.

Figure 5.8 shows the execution time for the different solutions with
100 machines and 20 users. It can be seen that the DGDRF solution
has the worst run-time followed by the PDGDRF solution. The probes
solution and DDRF random both have a run-time lower than the central-
ized DRF solution. This is to be expected because they both result in a
worse fairness than the centralized solution, and allow parallel nodes
to allocate. The DDRF gradient solution has a slightly higher run-time
than the centralized solution when the neighbor count is 6 and above.
The interesting point from this graph is that both the DGDRF solution
and PDGDRF solution both have a smaller run-time with fewer neigh-
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bors. The PDGDRF solution with two neighbors, has a run-time of 794
seconds, compared to centralized DRFs’ 398 seconds. The increase of
run-time with more neighbors in these solutions is most probably be-
cause a node only sends its updates to one of its neighbors. This can be
compared to the DDRF solutions which sends updates to all its neigh-
bors.
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Figure 5.9: Run-time for the different solutions with 200 machines and
40 users. Lower is better.



54 CHAPTER 5. EVALUATION

2 3 4 5 6 7 8 9 10

Number of neighbors

0

100

200

300

400

500

600

700

800

900

1000

T
im

e
 i
n

 s
e

c
o

n
d

s

Centralized DRF

Probes

DDRF random

DDRF gradient

Figure 5.10: Zoomed in figure 5.9. Run-time with 200 machines and 40
users. Lower is better.

Figure 5.9 and figure 5.10 shows the execution time with 200 ma-
chines and 40 users. Figure 5.10 is a zoomed in version on the solu-
tions with lower values. From the previous result with 100 machines
and 20 users, it can be seen that DDRF gradient now is faster than the
centralized DRF for all neighbor counts. The time to fully allocate the
cluster for each solution seem also dependent on their fairness results.
The DDRF gradient had a better fairness result for all neighbor counts
compared to probes and DDRF random, and Probes had a better fair-
ness result than DDRF random.

In figure 5.9 it can be seen though that the PDGDRF solution with two
neighbors match the centralized DRF solution. It has a run-time of 783
seconds compared to centralized DRFs’ 804 seconds. This can be com-
pared to with 100 machines and 20 users, when it had twice as long
run-time as the centralized DRF solution. The PDGDRF solution seems
to be affected by the number of machines or users, while the DGDRF
solution does not get closer to the centralized solution with a larger
dataset, it instead seems only dependent on the number of neighbors
each node has.

Further on the PDGDRF solution will be examined if it is possible to
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speed up its allocation time by increasing the number of updates that
are sent between each allocation for two neighbors, also if the alloca-
tion time is further reduced with more users or servers.

5.4.1 Investigating the PDGDRF solution

The PDGDRF solution was selected to be improved over the DGDRF
solution, since it allows multiple servers to allocate tasks at the same
time in parallel while still having a fair allocation. Firstly it will be in-
vestigated if the solution scales depending on the number of servers in
the cluster, or the number of users. This is done by simulating the solu-
tion with both 100 machines and 200 machines with different amount
of users: 10, 20, 40, 60, 80, 100, 120. The centralized DRF solution is
also simulated on these data-sets, and the final result is a ratio on how
the PDGDRF solution differs from the centralized DRF solution.
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Figure 5.11: The PDGDRF solutions performance in ratio with the cen-
tralized DRF performance. It shows how it scales depending on the
number of users. The lower, the better.

Figure 5.11 shows that for both 100 and 200 machines, the PDGDRF
solution seem to scale based on the number of users. For both machine
counts, an equal result to the centralized DRF solution was made with
40 users. For a user amount lower than 40, the PDGDRF solution pro-
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vides a worse run-time than the centralized DRF. It can also be noted
that for 100 machines, the improvement stops at 100 users, with no
noticeable improvement with 120 users, meaning that it most proba-
bly scales depending on how many servers that have active users on
them, and not directly the amount of users. The fairness results from
these executions can be seen in figure A.1. Next it will be looked upon
how frequency of gradient topology update messages affect the run-
time. It will be looked upon for 20 users with 100 machines, to try and
get an equal performance to the centralized DRF solution. It will also
be investigated how few messages that need to be sent for 100 users
and 100 machines to get an equal performance to the centralized DRF
solution.
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Figure 5.12: Shows how the ratio between PDGDRF solution and cen-
tralized DRF solution depends on the frequency of the update mes-
sages. The dashed line represents equal run-time to the centralized
DRF solution. Both graphs is with 100 machines.

Figure 5.12 displays how the update frequency for gradient topology
update messages affects the run-time performance. With 20 users the
run-time is increasing almost linear when its not sending an update
between every allocation tick. It requires 3 messages between each al-
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location tick to be able to get an equal run-time as the centralized DRF
solution. For 100 users instead, getting an equal performance, requires
waiting at least 5 allocation ticks between updates. The fairness results
for this graph can be seen in figure A.2 and figure A.3.

The performance of the PDGDRF solution has been observed to depend
on many different type of factors. It depends on the number of neigh-
bors, number of users and update frequency. The number of machines
does not seem to affect the performance as much in regards to scaling,
more machines in these data-sets have also increased the total capacity
of the cluster and thus increasing the maximum number of tasks that
has to be allocated.
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Discussion and future work

This thesis has explored different types of approaches to allocating re-
sources to users fairly. The most accurate solution from the results was
our DGDRF solution, which tried to mimic the DRF algorithm[7] in a
distributed manner. The major problem with this solution though as
seen in the results is that it has a bad scaling in terms of run-time and
latency. Since it actively tries to only have one server to allocate at the
same time, its performance can and should then never be faster than a
centralized solution if they have the same allocation tick speed. This
does not work well to solve the problem identified in Sparrow[18] that
the latency in resource allocators should be reduced.

The PDGDRF solution on the other hand have shown potential of hav-
ing a scalable speed-up based on gradient topology update frequency
and number of users in the cluster. But these results only show the
performance where each users dominant share is consistently grow-
ing, and where each user want to allocate endlessly. Since the DG-
DRF solution and PDGDRF solution only want to allocate the user with
the lowest global dominant share, it does not have the Pareto-Efficiency
property. If the lowest user does not want to allocate another task, no
one else will be able to as well. This could possibly be solved by virtu-
ally growing their dominant share if no new allocation request is sent
from that user, this would then allow another user to allocate. Allow-
ing tasks to end would also give the problem of users getting a lower
dominant share than before. This could lead to large fluctuations in
the gradient topology.

58
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It was observed from the results that even though the DGDRF solution
had 0 % error, it did not achieve as good minimum global dominant
share, or gini-coefficient as the centralized DRF. We believe that the
difference in results is assumed to be because of the usage of random
walks to locate a suitable server. The centralized server, instead could
pack tasks into one server at the time, while the DGDRF solution picked
the first one at random.

Both the solutions based on a gradient topology can have problems
with shorter running tasks which was not evaluated in the thesis. When
a task ends, it will decrease a users dominant share directly and the
server that the user belongs to may have a higher utility than all its
neighbors. This could, specifically in PDGDRF create an unfair alloca-
tion. In DGDRF this may be partially solved by checking if the server
is in the gradient center. Another solution which can be tested in the
future is to have two gradient topologies for the servers. One which
orders the servers as seen in this thesis, where a lower dominant share
means a higher utility. The other would instead be the reverse, with a
higher dominant share meaning a higher utility. In the first gradient,
the server with the lowest dominant share would only see servers with
a lower utility than itself. In the second gradient, the neighbors for this
server should be identical, since they will all have a higher utility, but
with the minimum distance to the servers utility. Thus a server should
be able to know if it can allocate or not by comparing the neighbors
between the gradient topologies.

The probe implementation based on Sparrows concept of probes was
used outside of its original context and problem. The idea of Spar-
row was to allow quick allocations for short running tasks. It was also
not build for heterogeneous resource demand. Setting it in the context
of never ending tasks can still though show how the solution would
work in those scenarios. A resource allocator/manager should be able
to work for many different scenarios, both with short and long run-
ning tasks.

Both DDRF and DRFH also looked upon allocating the task on the cor-
rect server baesd on best-fit algorithms. This was something that was
left out from this thesis since it only focused on locating the correct
user to allocate for. But for a real system, this is something that should
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be included to allow maximum cluster utilization. This though may
give a further overhead on latency.

From the results, it is possible to see that getting a fair allocation has a
large impact on the latency. So if one knows that only short tasks will
be run, for example, less than the allocation time with a strongly fair
solution, it may be better to use a slightly more unfair solution such as
Sparrow.

This thesis did also not investigate the effect of churn on the cluster.
Both DDRF, DGDRF solution and PDGDRF solution may have some
problems with churn because one server is responsible for one user.
Any node in Sparrow can handle any users. This is something that
need to be looked at in the future, how churn can be handled effec-
tively in the DGDRF solution and PDGDRF solution, and how that effect
the run-time performance and fairness.

6.1 Ethics and sustainability

The usage of a gradient topology in a network can have sustainability
concerns, because all servers need to regularly send updates to each
other. With a centralized server, a working node/server can be shut-
down if it does not have any tasks on it, saving on power consump-
tion. With a gradient instead, all working nodes need to be active for
the communication. This is also true for both Sparrow and DDRF as
well, since they need all servers active for communication.

The concept of fairness is also a subject to ethics, as mentioned no user
should envy another user, and no user should benefit from lying. This
is a problem with approximate solutions such as PDGDRF, Sparrow,
DDRF. All three solutions have a chance of different probability to cre-
ate an unfair allocation. This may give a person an advantage over
another in completing their work in a shorter amount of time. DGDRF
may then be a better option in regards to ethics that the chance that
someone is treated unfair is reduced.
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Conclusion

Four different distributed solutions have been implemented and eval-
uated in regards to fairness and performance (latency). Two solutions
have been proposed in the thesis, the DGDRF solution and the PDG-
DRF solution. Both are utilizing a gradient topology overlay to create a
sorted graph, based on the users dominant shares that are located on
each server. The DGDRF solution’s purpose was to try and mimic the
original DRF algorithm in a distributed manner, while the PDGDRF
solution tries to reduce the latency for task allocation, by allowing par-
allel allocations, while still having a fair result.

In regards to fairness, the two proposed solutions, the DGDRF solu-
tion and PDGDRF solution both showed good results, nearly achiev-
ing similar results to a centralized solution. In terms of latency, only
the PDGDRF solution showed potential of being able to allocate faster
than a centralized solution while maintaining similar fairness results.
If fairness is not as an important property, both Sparrow and DDRF
can provide a lower latency while still being fairer than a FIFO-queue
solution.

It has been shown that the PDGDRF solution scales depending on the
number of users. Having more users, allows more servers to allocate
tasks in parallel as long as the gini-coefficient is reduced. In regards
to the problem description, the PDGDRF solution implements a fair-
ness policy without access to a global view, building upon DDRF with
the addition of a gradient topology. It also minimizes the allocation
time by allowing parallel allocations. As mentioned the system scales
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based on the number of users and does not require any global knowl-
edge about all users or servers in the cluster.

The scenarios tested in this thesis does not represent the real-world
though, and more extensive testing is needed, but it shows the po-
tential of using a gradient overlay to distribute Dominant Resource
Fairness.
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Appendix A

Fairness results
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Figure A.1: The minimum global dominant share results from the
executions shown in figure 5.11. Compares the centralized solution
against PDGDRF.
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Figure A.2: The minimum global dominant share results from the exe-
cutions shown in figure 5.12, with 100 users. Compares the centralized
solution against PDGDRF.
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Figure A.3: The minimum global dominant share results from the exe-
cutions shown in figure 5.12, with 20 users. Compares the centralized
solution against PDGDRF.
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