
IN DEGREE PROJECT INFORMATION AND COMMUNICATION
TECHNOLOGY,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2019

Sort Merge Buckets: Optimizing
Repeated Skewed Joins in Dataflow

ANDREA NARDELLI

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Sort Merge Buckets:
Optimizing Repeated Skewed
Joins in Dataflow

ANDREA NARDELLI

Master in Computer Science
Date: 21st June 2019
Supervisor: Amir H. Payberah
Examiner: Vladimir Vlassov
School of Electrical Engineering and Computer Science
Host company: Spotify AB

iii

Abstract
The amount of data being generated and consumed by today’s systems and
applications is staggering and increasing at a vertiginous rate. Many businesses
and entities rely on the analysis and the insights gained from this data to
deliver their service. Due to the massive scale of this data, it is not possible
to process it on a single machine, requiring instead parallel processing on
multiple workers through horizontal scaling. However, even simple operations
become complicated in a parallel environment. One such operation are joins,
used widely in order to connect data by matching on the value of a shared key.
Data-intensive platforms are used in order to make it easier to perform this and
other operations at scale. In 2004, MapReduce was presented, revolutionizing
the field by introducing a simpler programming model and a fault-tolerant and
scalable execution framework. MapReduce’s legacy went on to inspire many
processing frameworks, including contemporary ones such as Dataflow, used in
this work. The Dataflow programming model (2015) is a unified programming
model for parallel processing of data-at-rest and data-in-motion. Despite much
work going into optimizing joins in parallel processing, few tackle the problem
from a data perspective rather than an engine perspective, tying solutions to the
execution engine. The reference implementation of Dataflow, Apache Beam,
abstracts the execution engine away, requiring solutions that are platform-
independent. This work addresses the optimization of repeated joins, in which
the same operation is repeated multiple times by different consumers, e.g.,
user-specific decryption. These joins might also be skewed, creating uneven
work distribution among the workers with a negative impact on performance.
The solution introduced, sort merge buckets, is tested on Cloud Dataflow, the
platform that implements the eponymous model, achieving promising results
compared to the baseline both in terms of compute resources and network
traffic. Sort merge buckets uses fewer CPU resources after two join operations
and shuffles fewer data after four, for non-skewed inputs. Skew-adjusted sort
merge buckets is robust to all types and degrees of skewness tested, and is
better than a single join operation in cases of extreme skew.

iv

Sammanfattning
Mängden data som genereras av applikationer och system ökar med en ac-
celeration som inte tidigare skådats. Trots mängden data måste företag och
organisationer kunna dra rätt slutsater av sin data, även om mängden är så stor
att det går att behandla på en dator. Istället behövs parallella system för att be-
arbeta data, men de enklaste operationerna blir lätt komplicerade i ett parallellt
system. En sådan enkel operation är join, som grupperar matchande par av
datarader för en gemensam nyckel. Processningsramverk har implementerat
join och andra operationer för att underlätta utveckling av storskaliga parallella
system. MapReduce, som är ett sådant ramverk, presenterades 2004 och var
banbrytande genom att tillhandahålla en enkel modell för programmering och
en robust och skalbar exekveringsmiljö. MapReduce lade grunden för fler ram-
verk, till exempel Dataflow som används i denna uppsats. Dataflow (2015) är
en programmeringsmodell för att parallellt behandla lagrad data på hårddisk
och strömmande data. Join är en kostsam operation och trots att mycket arbete
läggs på att optimera join i parallell databehandling, angriper få problemet
från ett dataperspektiv istället för att optimera exekveringskod. Apache Beam,
referensimplementationen av Dataflow, abstraherar bort exekveringsmiljön och
ger utvecklare möjligheten att skriva databehandlingskod som är oberoende av
platformen där den exekveras. Denna uppsats utforskar metoder för att optimera
joins som utförs på ett repeterande sätt, där operationen utförs på en datamängd,
men flera gånger av olika data-pipelines. Ett exempel på en sådan operation är
kryptering av användarspecifik data. Join utförs ibland på data som är skev, det
vill säga där vissa join-nycklar förekommer oftare än andra, vilket ofta leder
till en negativ effekt på prestanda. Sort Merge Bucket Join, en optimering av
join operationen och en lösning för skeva datamängder, introduceras i denna
uppsats med tillhörande implementation för Cloud Dataflow. Resultaten av
denna optimering är lovande med anseende till minskad användning av resurser
för processning och nätverkstrafik.

Acknowledgments

Thanks a lot to all the people at Spotify, in particular Flávio Santos and Viktor
Jonsson, for their continuous support during this thesis work.

My great appreciation goes toAmir Payberah for his guidance and assistance
all through this project.

Finally, I would like to extend my gratitude to all my friends, Susanna, and
my mom for putting up with me in these sometimes challenging months.

v

Contents

1 Introduction 1
1.1 Research Question . 2
1.2 Goals . 3
1.3 Method . 3
1.4 Results . 5
1.5 Benefits, Ethics and Sustainability 5
1.6 Outline . 6

2 Background 7
2.1 Dataflow Programming . 7
2.2 Joins Overview . 14

2.2.1 Join Algorithms . 14
2.2.2 Distributed Joins . 18

2.3 Skewness . 21
2.4 Related Work . 23

3 Platforms 26
3.1 Cloud Dataflow & Apache Beam 26
3.2 Platform Comparison . 32
3.3 Event Delivery Infrastructure 33

4 Solution 35
4.1 Methodology . 35
4.2 Challenges . 36
4.3 SMB Join . 38
4.4 Skew-Adjusted SMB Join . 47
4.5 Analysis . 54

vi

CONTENTS vii

5 Results 56
5.1 Decryption Pipeline . 57
5.2 Generated Data . 61

5.2.1 Baseline . 61
5.2.2 SMB Join . 64
5.2.3 Skew-Adjusted SMB Join 66

6 Conclusions 69
6.1 Limitations . 70
6.2 Future Work . 71

Bibliography 72

List of Figures

2.1 Timeline of key contributions to MapReduce that resulted in
Dataflow. 13

2.2 Map- and reduce-side join between datasets R and S with
W = 5 workers. 20

3.1 Visualization of the Dataflow graph for a join job in Cloud
Dataflow. 27

3.2 The job summary for an example join job. 31
3.3 Collected metrics for an example join job. 31
3.4 Diagram of Spotify’s event delivery infrastructure. 34

4.1 High level overview of SMB join. 42
4.2 Bucketing pipeline in Cloud Dataflow. 45
4.3 Joining pipeline in Cloud Dataflow. 46
4.4 Visualization of joining between datasets with different number

of buckets. 49
4.5 Bucketing pipeline for skew-adjusted SMB in Cloud Dataflow. 53

5.1 Total CPU hours after n joins for regular join, SMB join, and
skew-adjusted SMB join. 60

5.2 Overhead of skew-adjusted SMB against regular SMB for CPU
and shuffled data over number of joins. 60

5.3 Frequency distribution for the first million most frequent keys
in generated Event for different values of s. 62

5.4 An example of a straggling join. 63
5.5 Comparison of CPU hours of SMB (bucketing and joining)

against one regular join for different values of s (one single
join operation). 64

5.6 Like Figure 5.5, but with skew-adjusted SMB in green (one
single join operation). 66

viii

LIST OF FIGURES ix

5.7 Value of breakeven n for skew-adjusted SMB compared against
the baseline, for different values of s. 68

List of Tables

3.1 Comparison of data-intensive platforms. 33

4.1 Comparison of network IO and running time between the joins
introduced and the joins in Hadoop. 55

5.1 Comparison of joins on the decryption pipeline. 58
5.2 Join between Keys and Events for different values of s. . . 63
5.3 Bucketing phase of sort merge bucket join for Keys and Events. 65
5.4 Joining phase of sort merge bucket join for Keys and Events. 65
5.5 Bucketing phase of skew-adjusted SMB join for Keys and

Events. 67
5.6 Joining phase of skew-adjusted SMB join for Keys and Events. 67

x

Listings

1 Hash join between datasets R and S. 15
2 Merge join between datasets R and S. 17

3 Bucketing phase for SMB. 39
4 Joining phase for SMB. 41
5 Bucketing phase for skew-adjusted SMB. 52

xi

Chapter 1

Introduction

In recent years, the words big data have been used to refer to datasets that are
too large to process through conventional approaches. As many businesses rely
on analyzing this data in order to e.g., obtain insights about their processes and
have a better understanding of their users, research in the field of data-intensive
computing is of high interest and utility.

Spotify is the world’s most popular music streaming service with over 200
million active users [1]. Every time a user performs an action (e.g. searching a
song, creating a playlist, . . .), a small piece of information, an event, is generated
and collected by Spotify’s systems. The scale of collected data is massive:
billions of events per day (average of millions every second). These datasets
are too large to be processed on a single machine, requiring instead processing
on data-intensive platforms consisting of multiple processing units working
in parallel. Events contain specific information such as which song finished
playing, which user was playing that song, which client (Android, web browser,
. . .) that user was using, and more. As part of the event delivery infrastructure,
the data undergoes transformations such as deduplication and encryption by
joining with other massive datasets. The programs responsible for these tasks
are written in the Dataflow programming model [2], and are called pipelines.

Joins are a relational operation, in which the records of two tables are
matched based on the value of a shared join key. As an example, an artist
dataset may be joined with the song dataset over a shared join key, the
artist_id, to compute artist collaborations. Joins are a standard opera-
tion for relational databases, but present several scalability challenges when
the magnitude of data is massive [3]. In a distributed, parallel share-nothing
architecture these challenges include network communication, as workers hold
a certain fraction of the records and must communicate with each other in order

1

2 CHAPTER 1. INTRODUCTION

to produce a join with correct results. As a consequence, compared to tradi-
tional processing in-memory on a single machine, these operations also have a
much higher latency. Other challenges such as uneven data distribution among
the workers, known as skewness [4], and failures (such as hardware failures)
may result in stragglers. Stragglers are processing units that are struggling to
process data and delaying pipeline completion.

In order to maintain users’ privacy and comply with privacy regulations, all
of Spotify’s sensitive data is stored in encrypted format using a set of encryption
keys unique to each user [5]. As an example, the data is stored in the events
table, while user keys are stored in the user_keys table. Each event consists
of a user_id and a variety of fields dependant on the event type, while each
entry in the user_keys table consists of the user_id and a user_key.
Batches of incoming events are joined with the user_keys table on the
user_id in order to be encrypted with the corresponding user_key before
storage. Many of Spotify’s features (such as user-specific recommendations)
are powered by processing the events, which however must first be decrypted
by joining again with the user encryption keys. As it is not possible to store
unencrypted data and storing the keys with the events would defeat the pur-
pose, all downstream consumers must first join the two tables and perform the
decryption operation before processing. The en/decryption operations consist
of joins that, as briefly explained before, are expensive in terms of time and
usually dominate the execution time of the pipelines. Over the years, the num-
ber of pipelines that depend on decrypting data is increasing, as data is being
mined for new insights. Hence, optimizations of these operations can present
improvements in performance or reduction of cost for Spotify and more broadly
for all that are engaging with distributed processing.

1.1 Research Question
This work addresses two research questions:

1. How to optimize repeated joining operations in the Dataflow model? Re-
peated describes the scenario as presented above, in which e.g. data can
not be stored unencrypted and must be decrypted every time before pro-
cessing via joining. Optimization refers to improving performance w.r.t.
multiple measurable quantities such as wall time, CPU time, network
and storage costs.

2. How to handle skewness in joins in Dataflow pipelines? For example, a
skewed dataset may contain a join key that is particularly frequent and

CHAPTER 1. INTRODUCTION 3

might overload a worker, creating stragglers. Note that skewness and its
consequences can arise even if joins are not repeated.

1.2 Goals
Correspondingly with the research question, the goals of this work are twofold:

1. First, it aims to optimize repeated join operations in a distributed set-
ting. This optimization is called sort-merge buckets (SMB) with the
associated sort-merge buckets join operation.

2. Secondly, it tackles the issue of skewness in Dataflow applications and
proposes a solution in the SMB framework.

1.3 Method
This work adopts an empirical methodology, due to the high complexity and
number of interconnected systems which need to be taken into account when
evaluating data-intensive platforms. At first, we introduce the sort-merge bucket
solution. Then, the solution is extended to handle skewed data and address
some limitations.

Sort-Merge Buckets (SMB)

In order to optimize the repeated join use-case, the main idea consists of
preprocessing the data so that it is easier to join later. The preprocessing
consists of sorting the data such that a merge join algorithm may be used
afterwards, instead of a hash join. From the perspective of network IO, a merge
join does not require any shuffling as it simply scans both sides of the join in
an interleaved fashion while outputting groups that satisfy the join condition,
whereas a hash join would need to hash the join key of each record in order to
determine which record is responsible for that key. Shuffling is explained in
Chapter 2: it refers to the process of forwarding records to the correct worker.
As the communication step has been removed at joining time when using a
merge join, it is expected that the cost of sorting the data is amortized in a
fixed number of repeated joins. However, the scale of data introduces several
problems with regards to sorting the datasets, as will be elaborated on Chapter 3.

In order to overcome these problems, the data is instead partitioned in
smaller buckets, each of which is sorted. Much like a hash join would, the

4 CHAPTER 1. INTRODUCTION

corresponding bucket for a record is determined through a hash function on
the join key. Instead of simply sorting the data, the preprocessing step (also
referred to as bucketing step) consists of creating these sorted buckets.

The dataset on the other side of the join is then preprocessed in the same
way for the same number of buckets and the same hash function. At this point,
the joining step simply becomes joining the respective buckets from the two
datasets through a merge join, as each bucket is sorted. However, this technique
still suffers skewness and has added complexity in the form of the parameter
for the number of buckets. In order to overcome these problems and tackle the
second research question, the sort-merge buckets solution is extended.

Skew-Adjusted SMB

A common approach in handling skew in Dataflow or similar parallel processing
systems consists of replicating data. Consider for example a join between a
skewed and a non-skewed dataset. The skewed data can be distributed randomly
across all workers, each of which receives a copy of the other side of the join. If
the source of skewness is known ahead of time, it is not necessary to replicate
the entirety of the non-skewed dataset. However, when both of these datasets
are very large and no assumptions can be made on types and degrees of skew,
this approach will not work as the amount of replicated data is linear in the
number of workers.

A similar idea of replicating data can be applied to SMB with a few modi-
fications. First, instead of setting a fixed number of buckets, a target size for
each bucket is set. A bucket is skewed if its contents would be greater than
the target bucket size. In this situation, the bucket is divided into a number of
shards, each of which is sorted. When joining two buckets, buckets that are
sharded compute the merge join over all pairs of shards.

In this scenario, the amount of replicated data is linear in the number
of shards on the other side of the join operation. Depending on number of
workers and size of each bucket this approach can be preferable to the regular
replication approach as the main “knob” for scalability in distributed processing
consists of more workers (horizontal scaling) as opposed to bigger workers
(vertical scaling): replication of data in the skew-adjusted SMB depends only
on skewness of the other side of the join.

CHAPTER 1. INTRODUCTION 5

1.4 Results
The solution is tested on two different types of datasets. First, we evaluate it
on real data from Spotify’s event delivery infrastructure. Sort merge buckets
uses less compute resources after two joins, and shuffles fewer data after four.
This dataset, however, does not suffer from skewness under normal operating
conditions. Hence, in order to perform a thorough evaluation, we generate a
similar dataset with increasing degrees of skew. While the performance of
regular join operations and sort-merge bucket degrades quickly with medium
degree of skew, skew-adjusted SMB proves to be effective even when high
degree of skew is present. In such scenarios of high skew, skew-adjusted SMB
performs better than regular joins even for a single join operation.

The solution is backwards-compatible with existing datasets, as the pre-
processing step of SMB simply consists of reordering the data by writing it
out in sorted buckets. A user unaware of the underlying structure can still join
the data using standard operations. As a result, SMB is also not tied to the
execution platform and applicable in other data-intensive platforms. Lastly,
skew-adjusted SMB is scalable and robust to all types and degrees of skew
tested in this project. It does so by engineering the data in such a way to prevent
the phenomenon of stragglers.

As a result of just preprocessing the data by sorting, a considerable improve-
ment in compression ratio is also achieved, reducing the size of a real-world
1.5TB dataset to a 1.1TB dataset.

1.5 Benefits, Ethics and Sustainability
In the wake of Europe’s General Data Protection Regulation (GDPR) on 25th
May 2018, privacy and sensitive user data has become a broadly discussed topic.
The text of GDPR mentions how “appropriate technical and organisational
measures” must be put in place in order to safeguard sensitive data through a
series of principles such as data protection, privacy-by-default and informed
consent. GDPR does not however specify the implementation details of these
principles. In Spotify, the scenario described in this thesis work (repeated
joins) arises when dealing with en/decryption of sensitive data. It is believable
that other businesses have adopted similar techniques in their implementation
of GDPR. This work can make these implementations faster and have better
performance, enabling a wide and efficient compliance with the regulation.

It is imperative that the optimization presented in this work do not come

6 CHAPTER 1. INTRODUCTION

at a price of correctness of the operation. When evaluating this methodology,
care must be given in order to ensure that results are correct and e.g., privacy
is not compromised.

The vertiginous growth in the amount of data is impacting the energy indus-
try. Many of the world’s businesses are powered by data-intensive processes in
data centers, amounting to almost 3% of the world’s total electricity [6]. Due
to the widespread need to match data through joins, this work contributes to
creating more efficient and sustainable data processing at scale.

1.6 Outline
Chapter 2 describes the theoretical framework of this project while analysing
related work in this field. Chapter 3 analyses the design and implementation
of relevant data-intensive platforms, including the one used for this project.
Chapter 4 presents the methodology used in this project and solution used in
this degree project. Chapter 5 describes the results of the work. Chapter 6
discusses and evaluates this work while presenting possible future work.

Chapter 2

Background

The growth of data over recent years has been staggering, with forecasts pre-
dicting the total amount of data to increase from 33 zettabytes in 2018 to 175

zettabytes by 2025 [7] (one zettabyte is equivalent to a trillion gigabytes). This
“big data” is characterized by four dimensions:

1. Volume: the amount of data.

2. Velocity: the rate at which data is being generated.

3. Variety: the heterogeneity of data.

4. Veracity: the uncertainty of data, e.g., due to its quality.

The field of data-intensive computing studies how to store and process data
at this scale, whereas the systems which handle the data are known as data-
intensive platforms. As the scale is too large to process on a single machine,
these platforms consist of multiple units working in parallel.

The remainder of this chapter is organized as follows. Section 2.1 presents
a brief history of the systems that led to the Dataflow model, used in this work.
Section 2.2 presents join algorithms and their parallel counterparts in Dataflow.
The concept of SMB reuses several ideas from these algorithms. Section 2.3
presents the concept of skewness. Section 2.4 presents related work.

2.1 Dataflow Programming
Before delving into the Dataflow programming model [2], it is important to
briefly go over its predecessors and the main contributions that have led to it.
The programming model of a data-intensive platform describes the operations

7

8 CHAPTER 2. BACKGROUND

available to users of that system (i.e. the programming “style”). The models
and the underlying platforms have been created with the same motivation:
processing of data that is at massive scale. In these scenarios, scaling up is
impossible or prohibitively expensive and the data is such that it can not fit in a
single machine, hence the need to store and process it across multiple machines
organized in clusters. Distributed computation and the design of data-intensive
platforms at this scale is a hard and interesting problem presenting several
challenges:

1. Performance: the efficiency in executing a task, for example in terms
of time, cost, or network communication.

2. Fault tolerance: the robustness of the platform in presence of software
or hardware faults and its ability to recover from these faults.

3. Scalability: the ability to scale the platform by adding or removing
workers.

Contributions to these challenges are important: users can benefit both from a
more transparent processing model and a more efficient platform.

One of the most significant contributions in the field of data-intensive com-
puting is MapReduce [8]. In 2004, the MapReduce programming model revolu-
tionized share-nothing parallel processing due to its simplicity and scalability.
Soon after the publication, Apache Hadoop, an open-source implementation of
MapReduce was created (its first version, 0.1.0, was released in April 2006) and
is still developed to this day. The original authors of [8] present MapReduce
and its underlying implementation as a platform for parallel, scalable, fault
tolerant data processing. A MapReduce program, or job, can be broken up in a
series of stages in which the user must specify the two eponymous operations
(map and reduce). In detail, the stages are:

1. The read stage – read input data.
For example, read each line of a text file and produce (key, value) pairs
(k1, v1) where k1 is the offset inside the file, and v1 is the line.

2. The map stage – map : (k1, v1) −→ List(k2, v2)

The user must implement this operation, which receives pairs (k1, v1) as
input and produces a List(k2, v2) as output. Each input pair is hence
mapped into a list of 0 or more output pairs of possibly different types.

3. The shuffle stage – connects the map stage to the reduce stage.
This communication step is responsible for forwarding records with the

CHAPTER 2. BACKGROUND 9

same key k2 to the same worker. In Hadoop, this is achieved through
a hash function on k2 modulo the number of available workers for the
reduce stage (also called reducers). This step is expensive as it requires
network communication, which is slower than direct memory access.

4. The reduce stage – reduce : (k2, List(v2)) −→ List(v2)

The usermust implement this operation, which receives pairs (k2, List(v2))
as input and produces a List(v2) as output.

5. The output stage – writes the List(v2) in the desired output format.

Whereas MapReduce manages the need for distributed processing, it is im-
portant to mention how it is deeply connected to the underlying filesystem it
was developed with, which handles the need for distributed storage. Much
like MapReduce inspired Hadoop, the Google File System [9] inspired its
open-source counterpart, the Hadoop Distributed File System [10]. Many of
the design decisions from the first versions of Hadoop are interconnected with
HDFS. For example, earlier versions of Apache Hadoop used replication, as
provided by HDFS, in order to have fault tolerance.

The stages in a MapReduce job are broken into partial tasks, which are
scheduled to the workers in the cluster. A task can be thought of as a work
“unit”, for which a single worker is responsible for. How tasks are split and
how they are scheduled to the workers is implementation-dependant, but in
general the goal is creating relatively small tasks have similar load in order
to easily distribute them across the cluster. As an example, early versions of
Hadoop used a FIFO scheduler for tasks, each block on HDFS (equivalent to
64 megabytes) was mapped to a map task and a reduce task was created for
each unique k2. The sizes of these tasks have a direct correlation with skewness:
if some task is too large, it will create a straggler that slows down completion
for the whole stage.

The initial version of Hadoop presented several drawbacks. Compared
to the systems of today, Hadoop had relatively long processing times and
latency. Surely performance improved as newer versions were released, but
part of it were due to design choices e.g., the intermediate output from each
stage was persisted on the local storage of each worker machine, and was
later fetched as part of the following stage which is a slow network-dependant
procedure. Furthermore, the programming model was fairly limited, with
operations only being able to be expressed in terms of map or reduce, exactly
once and exactly in this order (for example, multiple map operations required
multiple MapReduce jobs). Other disadvantages, such as the single point of

10 CHAPTER 2. BACKGROUND

failure of the master in the master-slave cluster configuration or the overhead
of replication for fault tolerance were amended by recent versions of Hadoop
and HDFS.

Over the years, MapReduce became the “golden standard” of parallel pro-
cessing systems and its legacy is still strong today by inspiring all works that
came after it. Figure 2.1 shows a timeline with some of the major advancements
described in this section starting from MapReduce. Some of these consist of
building on top of MapReduce, while others try to overcome shortcomings that
were inherent in the design of MapReduce. Note that many other contributions
and platforms exists but are omitted in this timeline for brevity. Entries on the
left of the left represent contributions or products by Google, whereas entries on
the right represent open-source projects from the Apache Software Foundation.
For a comparison between Cloud Dataflow and other data-intensive platforms,
see Section 3.2. Two key contributions to the Dataflow model, also initially
developed at Google, are:

• FlumeJava [11]: FlumeJava is a Java library created to make it easier to
write parallel processing jobs. Its main contribution is the introduction
and use of PCollections, immutable distributed data structures which
support a variety of operations. These data structures contain records
which are automatically distributed among all worker nodes, removing
the burden on the programmer of writing parallel code. The operations
on PCollections, called PTransform, are not executed immediately,
defining instead an execution plan which is optimized before being exe-
cuted. The execution plan can be represented as a directed acyclic graph
(DAG) in which data flows from PTransform to PTransform. The DAG
abstraction became very popular, and is used in all data-intensive plat-
forms today. When used on top of MapReduce, the operations called
on the PCollections are translated into a series of MapReduce jobs.
Optimizing the execution plan allows to fuse some operations together
in order to reduce the number of underlying map or reduce steps. The
programming interface for FlumeJava is for the most part responsible for
Apache Beam [12], the reference API which implements the Dataflow
model. FlumeJava’s open-source counterpart is Apache Crunch, but
its notion of PCollection went on to inspire the concept of Resilient
Distributed Datasets (RDDs) [13], which are at the core of Apache Spark.
Apache Spark is a data-intensive platform, originally released in 2012,
that improves on MapReduce and is widely used today. For a comparison
with Dataflow and other platforms, see Section 3.2.

CHAPTER 2. BACKGROUND 11

• MillWheel [14]: The systems discussed so far have been described in the
context of processing data-at-rest (batch processing), as opposed to data-
in-motion (stream processing). Attempts to extend the batch-processing
model of Hadoop and Spark resulted in systems like Spark Streaming [15],
with limited flexibility and limitations on predefined operators and user-
defined applications. MillWheel is a framework created to process data-
in-motion with a low latency by providing fault tolerance, scalability and
versatility without the drawbacks of previous systems. It was developed
to handle Google’s Zeitgeist pipeline, responsible for detecting trends
in web queries. At the core of MillWheel, data is not grouped in mini-
batches like it was in previous systems, being instead consumed as soon
as it is available. MillWheel also introduced the concept of watermarks
in order to define data that is delivered out-of-order. The open-source
implementation of MillWheel is Apache Storm, which however does
not have the same features: the former guarantees exactly-once delivery
where the latter does not. The programming model of MillWheel went
on to inspire Dataflow, which unifies batch and streaming processing.

The Dataflow programming model [2] unifies batch and streaming process-
ing by separating the notion of data processing from the physical implemen-
tation of the engine that runs the job. In other words, a Dataflow program
defines how data is processed, but whether this is done in batch, micro-batch,
or streaming fashion is up to the engine that executes teh program. Google
Cloud Platform implements the Dataflow programming model in its product,
Cloud Dataflow (more details on the implementation in Section 3.1), which is
based on FlumeJava and Millwheel. The reference API of Dataflow, Apache
Beam [12], is very similar to FlumeJava.

A Dataflow pipeline consists of data flowing through multiple computation
steps organized in a DAG. The data is first read through a source, goes through
a number of computation steps, and is eventually written out in a sink. The
source is a special PTransform that represents the input of the data e.g., a
database or a distributed filesystem and produces a PCollection as output. It is
similar to the read stage inMapReduce. Each “computation step” in the flow is a
PTransform, responsible of applying a function on the input PCollection and
producing a different output PCollection. The sink is a special PTransform
that writes the data instead of producing an output. It is similar to the output
stage in MapReduce. In general, data inside a PCollection is structured in
(key, value) pairs as a PCollection〈K, V〉 (where K and V denote the type)
even though a key may not be required for some operations. There are two
primitive PTransforms that are the building blocks of Dataflow programming:

12 CHAPTER 2. BACKGROUND

• ParDo:

PCollection〈K1, V1〉 −→ PCollection〈K2, V2〉

This transform applies a function (called DoFn) in parallel to each ele-
ment in the PCollection, producing 0 or more elements as output of a
possibly different type as output. It is very similar to a map operation in
the MapReduce world.

• GroupByKey:

PCollection〈K, V〉 −→ PCollection〈K, Iterable〈V〉〉

This transform groups together records with the same key in a list, much
like a reduce operation.

A key difference between Dataflow and MapReduce is that any number of
ParDo and GroupByKey may appear in a single pipeline in any order.

The next section gives an overview on join algorithms and how they are
applied in a parallel processing environment.

CHAPTER 2. BACKGROUND 13

2004 Programming Model

MapReduce

2005

2006

2010

2011

2012

2013

2014

2015

2016

Data-Intensive Platform

Apache Hadoop

used in

Java Library

FlumeJava

Java Library

Apache Crunch
Data-Intensive Platform

MillWheel

Data-Intensive Platform

Apache Storm
Programming Model

Dataflow

Java & Python SDK

Apache Beam

Data-Intensive Platform

Google Cloud Dataflow

used in

runs on

inspired

runs on

implemented in

Unified batch &

streaming model

Introduces parallel collec-

tions and makes it easier to

develop & test pipelines

Scalable model for dis-

tributed batch process-

ing

Open-source framework

that implements the

MapReduce model

Low-latency stream-

ing framework

inspired

Available publicly as

a product on Google

Cloud Platform Open-sourced from

the original Cloud

Dataflow API

improved through

Figure 2.1: Timeline of key contributions to MapReduce that resulted in
Dataflow.

14 CHAPTER 2. BACKGROUND

2.2 Joins Overview
This section will briefly present join operations. Initially, join operations on a
single machine will be presented: reasoning about these algorithms is important,
as the design and the ideas behind these algorithms can still be applied to a
parallel and distributed setting [16]. In fact, several distributed join algorithms
work on partitioning the data such that records whose join keys would match
end up in the same worker, which then applies one of the following algorithms.
In describing these algorithms, big O notation is used to describe the number
of IO operations required to compute the join of the two datasets R and S,
which consist of collections of semi-structured data and may or may not fit in
memory. The reasoning for analysing these algorithms from an IO perspective
is due to the large scale of joins considered and because accessing disk (or
network) is orders of magnitude slower than memory. Respectively, reading
the R dataset requires pR IOs and reading the S dataset requires pS IOs. For
example, if the tables were stored on disk, then pR and pS would represent the
number of pages on disk. Apart from the naive nested loop join in O(pRpS),
there are two fundamental joining algorithms [17, 18] which will be explained
below.

2.2.1 Join Algorithms
For the following two algorithms, the worst case scenario has the same com-
plexity as the nested loop join, but it arises when skewness is present. For more
information on skewness, see Section 2.3.

Hash join

This is the standard go-to join algorithm, with an example shown in Algorithm 1.
Assuming without loss of generality that |R| < |S| and it fits in memory, it
works by creating a hash table of R (the build input), then querying it while
reading S (the probe input). These two phases are respectively called the build
phase and the probe phase. Note that a MultiMap is used because each key may
be associated with multiple records. When the build input fits in memory, then
the hash join computes the result in O(pR + pS) IOs by simply reading R and
then S. If the build input is too large to fit in main memory, both datasets can be
partitioned using a hash function. This step is repeated recursively if resulting
partitions from the build input still do not fit in memory by using different
(orthogonal) hashing functions. In order to compute the result, Algorithm 1 is
then called for pair of partitions from R and S. In this scenario, the number

CHAPTER 2. BACKGROUND 15

Algorithm 1: Hash join between datasets R and S.
1 def HashJoin(R, S):

Data: Datasets R and S, R fits in memory
Result: R on S

2 H ← new HashMultiMap()

3 foreach r ∈ R do // build phase
4 H.put(r.key, r)

5 foreach s ∈ S do // probe phase
6 foreach r ∈ H.get(s.key) do
7 yield (r, s)

of IOs is still O(pR + pS), as R and S are read once to write the partitions,
then each pair of partitions is read once to compute the join. Consider the
scenario in which some partitions of R do not fit in memory, for example due
to a highly skewed key. In this situation, the build input partition are read in
blocks, which are used build the hash table and join with the corresponding
probe input partition. After processing one block, the hash table is emptied
and the next block is processed. In practice, the algorithm works similarly to a
block nested loop join. In an example worst-case scenario in which all keys
are identical in R and it does not fit in memory, the algorithm still performs
O(pRpS) IOs (with lower constants as data is read in blocks). Optimizations
such as hybrid hash join aim to improve the partitioning strategy and reduce
the number of IOs, but asympototic complexity remains the same and a more
detailed description is out of scope of this work. Picking “good” hash functions
reduces the probability of the worst-case scenario.

16 CHAPTER 2. BACKGROUND

Merge join

This algorithm is also divided in two phases. The first phase sorts the input
tables by their join key, which are then joined with a merge join. A merge
join works by scanning both tables in an interleaved fashion, while outputting
records that satisfy the join condition.

Algorithm 2 shows an example implementation. The algorithm works by
iterating over the two tables while comparing the join key. Records with the
same join key are buffered into the respective buffer for R and S. For every
key, the cross join of the two buffers is the output. If any buffer is empty, i.e.
there are no records for that key value, the cross join results in an empty set.

If both tables fit in memory, then the running time is O(pR + pS) by simply
readingR and S. If the data does not fit in memory, external sorting techniques
are used by writing runs of sorted data on disk. In this situation, the cost of
sorting both tables isO(pr log pR+pS log pS) [19]. In the average case, joining
the sorted tables can be done in O(pR + pS). Like a hash join, when skewness
is present, then it might not possible to buffer the data and a block nested
loop join is required in O(pRpS). In general, as sorting the input data takes
log-linear time, this method is not preferred to the alternative hash-based join.
As a summary, merge join is O(pr log pR + pS log pS) if sorting is needed and
O(pR + pS) if not, with better constants compared to hash join as no build step
is needed.

CHAPTER 2. BACKGROUND 17

Algorithm 2: Merge join between datasets R and S.
1 def MergeJoin(R, S):

Input: Datasets R and S
Output: R on S

2 sort(R) // External sort in O(pR log pR)

3 sort(S) // External sort in O(pS log pS)

4 rBuf ← ∅, sBuf ← ∅ // Buffers for R and S

5 i← 0, j ← 0 // Index variable for R and S

6 while i < |R| and j < |S| do
7 if R[i].key < S[j].key then
8 i← Advance(R, i, R[i].key, rBuf)

9 else if R[i].key > S[j].key then
10 j ← Advance(S, j, S[j].key, sBuf)

11 else // Note that R[i].key = S[j].key

12 i← Advance(R, i, R[i].key, rBuf)

13 j ← Advance(S, j, R[i].key, sBuf)

14 foreach r ∈ rBuf do
15 foreach s ∈ sBuf do
16 yield (r, s)

17 rBuf ← ∅, sBuf ← ∅ // Clear buffers

18 def Advance(T, idx, k, B):
/* Take records from T [idx] onwards and insert

them into buffer B as long as their key
is equal to k, then return idx */

19 while idx < |T | and T [idx].key = k do
20 B ← B ∪ T [idx]

21 idx← idx+ 1

22 return idx

18 CHAPTER 2. BACKGROUND

These two algorithms while being different also present a duality in several
aspects. Graefe, Linville, and Shapiro [20] identify and catalogue these aspects,
presenting advantages and disadvantages for the two algorithms. For example,
both algorithms use recursion with an in-memory base case, but whereas the
partitioning happens at a logical level for the former (based on hash value), it
happens at a physical level for the latter (the position in the sorted data). In
general however, hash joins perform significantly better than sort-merge joins
because the recursion level is only determined by the values or distribution
of the input data, whereas it is determined by the input size in the merge case.
Many ideas from these joining algorithms can still be refactored and applied to
parallel processing, and in particular the merge buckets optimization uses both
hashing and sorting as will be explained in more detail in Chapter 4.

Following up on those findings in [20], it seems like the years have been
kind to sort-merge joins. The current trend of bigger machines has narrowed
the gap between sort-merge and hash joins [21, 22], with sort-merge join “likely
to outperform hash join on upcoming chip multiprocessors” [22] due to better
scalability potential of multi-core processing.

2.2.2 Distributed Joins
It is however different in distributed processing. In these environments, there is
no shared memory and the cost of network communication dominates process-
ing time. To understand why this is the case, there are three important factors
that contribute to this:

1. Serialization: in order for the data to be communicated across the net-
work, it must first be translated from memory objects to a format that
can be transmitted over a connection. The serialized data is then used
to recreate that same object in memory (the reverse process is called
deserialization).

2. Network IO: when compared to hard disk IO, network operations are
on average slower in throughput and setup time, despite this gap getting
smaller and smaller over the years as data centers connection become
faster. At the same time however, secondary memory access has also
become faster with SSDs in place of HDDs.

3. Stragglers: “The wagon moves as fast as the slowest horse”. In other
words, a pipeline is not finished until all workers have finished process-
ing. In situations where a particular worker is handling an oversized

CHAPTER 2. BACKGROUND 19

partition of data or there are failures, stragglers will delay completion
time significantly.

In these algorithms, the big O notation describes the number of network
IOs in terms of number of records exchanged between the workers, of which
there are W in total. In Hadoop processing systems, two types of joins are
built-in [23], visualized in Figure 2.2:

1. Map-side join (or broadcast join): Shown in Figure 2.2a. In this type
of join, one of the datasets is very small and has |R| records that can
fit in main memory. This can be replicated across all the worker nodes
(“broadcast”) which can then use one of the algorithms presented above
to perform the join operation (usually, hash join is used by creating an
hash table on the replicated data). The name of this join comes from the
fact that the Reduce phase is technically not needed at all: each worker
can load the smaller table and join it with its share as part of the Map
step. The number of exchanged records is O(|R|W).

2. Reduce-side join (or shuffle join): Shown in Figure 2.2b. This is the
standard join operation in a MapReduce setting. As the two table are
too big to fit in memory, the data is partitioned according to its join key.
The partitioning is achieved by using a hash function on the value of
the key modulo the number of workers. The records are then shuffled to
their respective worker and joined. The number of exchanged records is
O(|R|+ |S|). Note that this is the default type of join used in Hadoop,
in which it is also called repartition join.

When |R|W < |R| + |S|, the map-side join incurs in a smaller num-
ber of network IO. In Dataflow, both types of join are possible. The shuf-
fle join is implemented through a CoGroupByKey operation, which uses the
GroupByKey primitive. The map-side join can be implemented through the
use of a SideInput, which represents an additional input that can be given to a
PTransform. Side inputs are always broadcasted to all workers: the map-side
join can be achieved as a ParDo in which each record from the larger dataset is
matched against the smaller dataset passed as a SideInput.

20 CHAPTER 2. BACKGROUND

R

S

Workers

(a) Map-side join.

R S

Workers

a

a

c

b

b

b

b

a

c

d

f

d

f

da

e

f

g

g

h

h

c

i

j

g, h

b

a, c

d, e, f

i, j

(b) Reduce-side join. Each worker is re-
sponsible for a subset of the join keys.

Figure 2.2: Map- and reduce-side join between datasets R and S withW = 5

workers.

Join types

Depending on the comparator function used in the join to match rows from
the tables, different types of joins are available. However, there are different
semantics w.r.t. the output and which comparator function is used:

• Inner join: return only rows for which the comparator function is true.

• Outer join: retain rows even if the comparator function is false. If
retaining the rows from the left/right table, it is a left/right outer join.
Both rows can be retained, in which case it is a full outer join.

• Equijoin: if the comparator function is an equality between two columns,
then it is called an equijoin.

• Natural join: It is an inner equijoin across all shared columns between
the two tables.

In this work unless specified, join refers to the natural join, with a single shared
column (the “join key”). It is also an equijoin, as the comparator function is
equality of the shared key.

CHAPTER 2. BACKGROUND 21

2.3 Skewness
In MapReduce and its evolutions, skewness refers to highly variable task run-
times which results in load imbalance between the worker machines [4]. Skew-
ness is a major contributor to stragglers in parallel processing and it can affect
both map or reduce operations (or their equivalents). Operations like map or
ParDo do not affect how data is distributed throughout the cluster. These are
also called narrow dependencies (as defined in Apache Spark), as opposed to
wide dependencies like reduce or GroupByKey that cause data to be moved
across workers. When shuffling data, additional sources of skewness are present
which make wide dependencies more susceptible to skew. Skewness arises
when a worker is overloaded by the data assigned to it, but determining its
source is a hard task as there are multiple factors that can contribute to this
phenomenon:

• Data skew: This is the traditional meaning of skew. Data skew refers to
having “hot keys”, a small set of keys that is shared by a large fraction
of the dataset. This type of skew is applicable for reduce operations in
which records are assigned to workers based on hash partitioning of the
key. Hence, data with the same key would hash to the same value and
be assigned to the same worker. Note that this side-effect is required in
order to correctly compute join operations: if data with the same key
would be distributed to different workers, the join output would not be
correct.

• Record skew: Record skew refers to skewness in individual record sizes.
Data that does not follow a strict structure may result in records having a
different number of fields/sizes. Record skew may arise if the records
contain fields of variable length, complex types, nullable fields, and more.
Consider the following example:

Example 1 The dataset in the table below contains two records. All
columns are typed as strings, encoded with an integer (four bytes) denot-
ing the length of the string and then the string itself with one byte per
character. The last three columns (email, ip_address and coun-
try) can be null, which is encoded as an empty byte.

user_id email ip_address country
6c68da null null null
6c68da andnar@kth.se 130.237.28.40 SE

22 CHAPTER 2. BACKGROUND

In this example, the first record has a serialized size of 13 bytes, whereas
the second record has a serialized size of 50. Despite both records
belonging to the same dataset, they suffer from record skew as the second
record is more than three times the size of the first one.

Record and data skew can combine their effects and create even greater
skew when hot keys correlate with high record size (as opposed to non-
hot keys with a small record size). Note that record skew can also affect
map operations e.g., when encrypting data (bigger records take more
time) or when the cardinality of the map varies with each record.

• Partitioning skew (or hash value skew): This skew is a side-effect of
the use of a hash function in order to partition the data when shuffling.
Consider the following example:

Example 2 Consider the task of partitioning some records over W = 3

workers. The hashed keys of the records are H = {0, 1, 2, 3, 4, 5, 7, 8,
11, 14, 17}. A worker is assigned through a modulo function on the hash
as w(h) = h mod W . The shares of each worker are

w0 = {0, 3},
w1 = {1, 4, 7},
w2 = {2, 5, 8, 11, 14, 17}.

In this example, the last worker is assigned more than half of the records.
Note that all records have different join keys as they hash to different
values: the skew in this scenario is independent of data skew.

When skewness, and hence stragglers, are present, the processing time
is no longer dominated by network processing but by the processing speed
of the slowest straggler. For example, consider the situation in which two
datasets R and S contain only the same key. When performing a join, all the
records will be shuffled to a single worker, who has to perform the join between
all records locally. In such a situation, despite the amount of shuffled data
being O(|R|+ |S|), the running time is more akin to O(|R||S|) (the worst case
scenario for an local join).

Handling skew is a hot topic in data-intensive computing research. The
next section presents related work in how to handle and optimize joins when
skewness is present in a MapReduce-like system.

CHAPTER 2. BACKGROUND 23

2.4 Related Work
Early work by Lin et al. [24] shows how power-law distributions and in particular
Zipf-like distributions lead to the creation of stragglers in parallel processing.
In particular, they argue that this distribution can arise not only in input data,
but also in intermediate data, imposing a limit on the degree of parallelism of
certain tasks. As an example, the author shows how rearranging the input cuts
running time in half for a pipeline that computed pairwise document similarity.
The main takeaways of the author include difficulty in expressing efficient
algorithms in MapReduce, and show how tight is the coupling between the
model and the framework. Hence, awareness of the model (MapReduce) and
the framework (Hadoop), is not only important but it is required in order to
design correct and efficient algorithms.

Kwon et al. [4] present a general overview of skewness in MapReduce,
including a list of different real-world applications which suffer from different
types of skewness. For example, PageRank can suffer from record skew as
some nodes in the computation have a significantly larger in-degree: processing
of these nodes requires more CPU and memory and than other nodes. A series
of best practices are provided in order to mitigate skew such as preaggregating
data through combiners after the map phase, which compute a local aggregation
of each worker before the reduce phase. Moreover, they suggest collecting
properties of the data in previous processing before MapReduce in order to
use different partitioning stragies. For example by collecting histograms on the
join key, range partitioning can be used. Lastly, they suggest writing pipelines
whose runtime do not depend on the data distribution, but only on the input
size.

Blanas et al. [23] provide a systematic comparison of join algorithms on
MapReduce. In addition to providing preprocessing tips to improve perfor-
mance on the standard joins defined in Section 2.1, they present an implemen-
tation of semi-join on MapReduce. The semi-join is inspired from a real-world
scenario similar to the one described in this work for the encryption pipeline.
The intuition states that in a few hours worth of logs (events in this case), the
number of unique users is actually in the few millions, hence joining with
the complete dataset is not necessary. The semi-join preprocesses the data to
determine the unique users and fetches only the corresponding part. The actual
join happens as a map-side join as the few users can usually fit in memory.

Gufler et al. [25] define a cost model for handling skewed partitions of data
and evaluate two solutions, fine partitioning and dynamic fragmentation. The
cost of a partition is defined as a function of the total size and total number of

24 CHAPTER 2. BACKGROUND

records of that partition. The first solution consists of partitioning data over
a number of partitions P > W , where W is the number of workers. When
scheduling tasks over the workers, the most expensive partition is assigned to
the worker with lowest load, where the load is the total cost of all partitions
assigned to that worker. The second solution splits larger partitions in smaller
fragments at the map stage. When fragments of a partition are sent to different
workers for the reduce stage, data from the corresponding partitions on other
mappers must be replicated across all the reducers which are assigned the
fragments. Dynamic fragmentation is also used in skew-adjusted SMB, in
which a bucket is split into shards. The solutions are evaluated on synthetic
data based on the Zipf distribution, lowering the standard deviation of worker
load by more than 50% when data is heavily skewed.

With SkewTune [26], the authors present a drop-in replacement for the
MapReduce implementation which automatically mitigates skew. At runtime,
SkewTune determines stragglers and automatically repartitions data for which
stragglers are responsible through range partitioning. A worker is defined
straggler if the cost of repartitioning its task is smaller than half of the remaining
time on that task. The cost of repartitioning (or repartitioning overhead) is
an input parameter. They achieve an improvement of 4× over the runtime of
Hadoop 0.21 with SkewTune for some real-world applications. Whereas this
solution is promising, it is tied to theMapReducemodel and also requires having
access to the implementation. In this work, modifying the implementation of
the engine was not possible as the implementation of Cloud Dataflow is not
available.

In [27], the authors tackle skewness in the context of join operations. Unlike
the previous work, the authors do not modify the MapReduce framework,
instead opting to handle skewness as part of their join algorithm, which is
called MRFA-Join (MapReduce Frequency Adaptive Join). They achieve this
by splitting the join in two MapReduce jobs. The first MapReduce job collects
statistics about the data by computing histograms of the join key, whereas the
second job uses the histograms to redistribute repeated (skewed) join attribute
values randomly among a number of workers. This is achieved by pairing each
record with a secondary key which represents the partition number for that join
key value. The number of workers depends on the degree of skew: the more
skewed is the key, the higher the number of workers. In order to evaluate their
results, they generate records whose join key follows a Zipf’s distribution for
uniform values of shape parameter s from 0.0 to 1.0. The MRFA-join in the
test scenario of a 400M×10M join achieves significant runtime improvements
(from approximately 10000 seconds to 4000) and a large reduction in amount

CHAPTER 2. BACKGROUND 25

of shuffled data compared to the join present in Hadoop (note that this join is
available in the contrib module of Hadoop). In adition, the MRFA join is
robust to all values of s tested, whereas the regular Hadoop join failed due to
out of memory errors for s > 0.5.

Afrati and Ullman [3] focus on optimizing joins in MapReduce. In par-
ticular, the paper studies the case of multi-way join, i.e. with more than two
relations at once. Instead of optimizing the order in which datasets are joined,
the authors propose replicating data and performing the join in a single MapRe-
duce job. As an example, the authors show how in a three-way joinR on S on T ,
replicating data from R and T to multiple Reduce processes might lower the
communication cost as opposed to communicating the results of the intermedi-
ate join. For example, in three-way join in which all tables have 107 records,
each pair of records matches with probability 10−5, and data is replicated using
the described algorithm to 1000 Reduce processes, the optimized multi-way
join in [3] reduces communication cost by a factor of 10. Despite the work
focusing on multi-way joins, the idea of replicating data inspired several other
works, which used it as a way to achieve straggler mitigation.

The previous skew-handling works are classified as speculative execution
solutions by [28]. Whereas these solutions work at runtime by monitoring
pipeline progress and mitigating stragglers, in [28] the authors propose using
proactive cloning, through which tasks (in the Hadoop terminology) are repli-
cated in a similar fashion to the previous work and the first available result
for each clone group is used. The cloning algorithm determines a number of
clones for each task based on the three input parameters: the number of tasks
n, the cluster-wide straggler probability p, and the acceptable risk of stragglers
ε. This approach limits the job straggler probability to at most ε. The authors
also tackle the problem of intermediate data contention as a result of cloning.
In order to mitigate the problem, they introduce delay assignment as an hybrid
approach in which downstream consumers first wait a certain amount of time
before reading intermediate data to get an exclusive copy. After that time, read
with contention is used. They achieve improvements up to 46% in average run-
ning time on small jobs (between one to ten tasks), with that number decreasing
to approximately 2% for large jobs (> 500 tasks). The use of replication in
parallel processing had been studied before, but this work is the first that applies
it to MapReduce-like systems. Note however, some limitations: computing
the cluster-wide straggler probability is not always possible e.g., when using a
managed service, and the solution modified the Hadoop implementation, which
does not make it applicable in a broader scope. A similar approach of shard
cloning is used in this work (see Section 4.4).

Chapter 3

Platforms

In order to properly evaluate the results of this work, this chapter describes
context and engineering details of Cloud Dataflow, Google’s service for data-
intensive processing which implements the Dataflow model, and the platform
used in this work. Section 3.2 provides a comparison of Cloud Dataflow with
other data-intensive platforms, while Section 3.3 provides additional details on
the event delivery infrastructure at Spotify.

3.1 Cloud Dataflow & Apache Beam
Google Cloud Dataflow is a fully-managed pay-per-use service for batch &
streaming processing, available on Google Cloud Platform. It implements
the Dataflow unified model as presented by the original paper [2]. Cloud
Dataflow provides several features, such as pipeline visualization, logging,
metrics, autoscaling, and more.

Figure 3.1 shows an example of a join operation in Cloud Dataflow. Each
block corresponds to an operation, flowing top to bottom. In this case, the job
is computing a join between two datasets. Each block reports the estimated
time spent for that operation: note how the CoGroupByKey operation which
shuffled data dominates all the others.

Figure 3.2 shows the job summary for previous join operation. It contains
information such as job name, the Beam version used, the region in which the
job executed, total elapsed time, and a plot of number of workers over time for
purposes of autoscaling. Note that autoscaling was disabled for this job and
the number of workers was fixed to 64.

Figure 3.3 shows metrics collected for the join operation, such as total
number of CPUs, main and secondary memory (PD, persistent disk), and the

26

CHAPTER 3. PLATFORMS 27

Figure 3.1: Visualization of the Dataflow graph for a join job in Cloud Dataflow.

respective CPU/memory/disk time used. The 64 workers in this job each had
one CPU, 3.75 GB of memory and a 250 GB disk.

Users do not have access to Dataflow itself, and instead submit pipelines
written with Apache Beam [12] SDKs, available in Java, Python and Go. The
Apache Beam SDKs have a very similar APIs to FlumeJava, defining operations
in terms of PTransforms on PCollections, but has two additional levels of
abstraction. Firstly, Beam pipelines are runner-independant. A runner is
defined as the back-end system that will execute that job. In this work, Beam
uses the Cloud Dataflow runner, but several other runners are available that
can translate the Beam job to other data-intensive platforms such as Spark and
Flink. Secondly, in the unified model of Dataflow, the same Beam pipeline
can be run in both streaming and batch mode. In other words, the user writing

28 CHAPTER 3. PLATFORMS

an Apache Beam pipeline does not need to be aware of which runner and
which semantics (batch or streaming) the pipeline will be used in, which has
advantages:

1. Portability: As the same pipeline can be used for multiple backends
and for both batch and streaming use-case, this greatly increases code
reusability. As Dataflow implies that “batch is a special case of stream-
ing”, Beam pipelines make can make the switch to streaming easier by
reusing the same code.

2. Low barrier of entry: As execution details are unknown and abstracted
away, writing pipelines in Apache Beam has a low barrier of entry as
users can get started more easily as fewer concepts need to be learned.

3. Testability: Beam comes with a DirectRunner, which executes a
pipeline locally. This makes it much easier to prototype & test pipelines
before running it on a cluster.

At the same time, it also presents disadvantages:

1. Runner abstraction: Whereas runners abstract away complicated de-
tails, the Beam model makes it impossible to use runner-specific opti-
mizations or mix runner and Beam code. Similarly, it is not possible to
implement low-level optimizations that operate on how a runner works,
as which runner will execute the pipeline is unknown at compile time.
In other words, how a job is executed is up to the runner, which is not
decided until the pipeline is actually executing. For example, this implies
that the notion and number of workers can be different if the pipeline is
running locally on a single machine, or on a Spark or Cloud Dataflow
cluster. In other words, this means that it is not known how tasks will be
split between each worker or having fine-grained code that is aware of
specific runner configurations.

2. Ordering: From an API perspective, PCollections are considered as
unordered bag of items, even if the underlying runner might support
ordering in their implementations (for example this is the case for Spark
and RDDs).

For purposes of fault tolerance and scalability, data in Beam is processed
as part of bundles. How bundles are created is runner-dependant (note that
this notion is different than the notion of windows in streaming). Bundles are
used in order to determine when and how data should be persisted: this allows

CHAPTER 3. PLATFORMS 29

the runner to implement fault tolerance per-bundle. In other words, if one or
multiple records fail processing in a bundle, only that bundle will be repeated.
Note that the failed bundle might be retried by different workers than the ones
that processed it originally. By default for batch processing pipelines in Cloud
Dataflow, a bundle is retried four times before the whole pipeline is deemed to
have failed.

In addition to the primitives of the Dataflow model, Apache Beam presents
four additional core PTransform:

1. CoGroupByKey: This operation performs a relational join operation
between two or more input PCollections. It can be seen in action in
Figure 3.1.

2. Combine: This operation is used to aggregate data in an efficient way.
The user provides an associative, commutative function that contains the
logic for combining the values. The function may be evaluated multiple
times on each value in order to create partial aggregations that reduce
the data shuffled. The idea comes from combiners in MapReduce, which
perform an aggregation locally between the map and reduce stages. As
an example, finding the maximum value of a PCollection of integers
can be done through a Combine, as the max function is associative and
commutative.

3. Flatten: This operation computes the union of multiple PCollection.

4. Partition: Splits a PCollection into multiple PCollection.

Submitting a Beam pipeline to Cloud Dataflow triggers a series of steps:

1. The compiled pipeline code is uploaded and saved to a temporary folder.

2. The Cloud Dataflow service constructs the Dataflow graph and applies
optimizations (this is called the Graph Construction Stage). An exam-
ple optimization is ParDo fusion, which is similar to how FlumeJava
combined multiple MapReduce stages together. A similar optimization
happens on Combine operations.

3. Dataflow runs inside containers on the workers. The input data is split
into bundles and assigned to the workers which start processing it.

4. The Cloud Dataflow service monitors pipeline execution. If autoscaling
is enabled, the current throughput is used to increase or decrease the
number of workers.

30 CHAPTER 3. PLATFORMS

The Cloud Dataflow runner may create temporary files during execution for
a variety of reasons. For example, this can happen to persist data, free memory
from workers for other processing steps, or because the data does not fit in
memory and spills to disk. Much like network communication, these steps
require serialization and contribute to slow down the whole pipeline.

CHAPTER 3. PLATFORMS 31

Figure 3.2: The job summary for an example join job.

Figure 3.3: Collected metrics for an example join job.

32 CHAPTER 3. PLATFORMS

3.2 Platform Comparison
This section contains a overview of the functionality of other popular data-
intensive platforms. A summary is presented in Table 3.1. The year refers
to the first public release under that name: several projects were previously
worked on under different names or the name changed when the project was
donated to the Apache Software Foundation. The measure of popularity in this
case is given by the number of stars on GitHub for open-source platforms. The
following list provides a small description for each framework:

1. Apache Hadoop: See Section 2.1 for a description of MapReduce and
Hadoop.

2. Apache Storm: Storm is a realtime framework for streaming data. Its
programming model defines a topology (a DAG) organized in spouts,
which identify a data source, and bolts, which process the data coming
from the sources. It is fault-tolerant, scalable and guarantees at-least-once
processing.

3. Apache Spark: Spark is arguably the most popular data-intensive plat-
form. Its programming model is based on Resilient Distributed Datasets
(RDD), which are similar to FlumeJava’s PCollection. It was originally
created as a batch processing framework but has since expanded to have
structured data processing (Spark SQL), streaming (Spark Streaming),
machine learning support (MLlib) and graph analysis (GraphX). On the
performance side, Spark greatly improved on Hadoop MapReduce by
e.g., keeping data in memory instead of writing it to disk after each inter-
mediate step. In order to still achieve fault tolerance, operations on RDDs
are logged in a dependancy DAG called lineage graph. Spark Streaming,
despite the name, is not actually a streaming engine but splits data in
micro-batches. The difference is subtle: stream processing handles data
as soon as it is available, whereas a micro-batch framework introduces
delays in order to wait for that micro-batch to be “complete”, increasing
latency. The original creators of Spark founded the company Databricks,
which offers an enterprise analytics platform powered by Spark. A Spark
runner is available for Beam.

4. Apache Flink: Apache Flink is a framework for stateful computations
over data streams. These data streams can be bounded or unbounded:
in other words batch processing is viewed as a special case of stream-
ing in which the stream is eventually finished. Flink also implements

CHAPTER 3. PLATFORMS 33

Table 3.1: Comparison of data-intensive platforms.

Name Year Programming
Model

Processing
Model Open-Source Relative

Popularity

Apache
Hadoop 2006 MapReduce Batch Yes 9108

Apache
Storm 2011 Spout & Bolt

Topology Streaming Yes 5695

Apache
Spark 2012 RDD Batch &

Micro-batch Yes 22068

Apache
Flink 2014 Dataflow Batch &

Streaming Yes 8873

Cloud
Dataflow 2015 Dataflow Batch &

Streaming No n/a

the dataflow model, and it is no surprise that it is the most supported
runner alongside Cloud Dataflow. The original creators of Flink created
Data Artisans (now Ververica), which similarly offers commercialized
analytics platform on top of Flink.

Spotify’s event delivery infrastructure make large of use Cloud Dataflow,
as is detailed in the next section.

3.3 Event Delivery Infrastructure
The event delivery infrastructure at Spotify (visualized in Figure 3.4) is respon-
sible for receiving, preprocessing and providing the data to other consumers
inside of Spotify, e.g. teams responsible for producing song recommendations
or that calculate royalties [29]. Each event is received through Google Pub/Sub,
a message broker similar to Apache Kafka. Most of Spotify’s event delivery
infrastructure uses Cloud Dataflow in batch mode (instead of streaming). There
are a number of historical, performance and business reasons for this. Spotify
at one time had the biggest Hadoop cluster in Europe, with approximately 2500
nodes. It was retired in 2018, but much of its legacy still remains and influences
the current infrastructure.

The preprocessing part of the event delivery infrastructure consists of
several ETL workflows that operate on events by reading and writing hourly-
partitioned files in Avro format on Google Cloud Storage. The workflows
are written using the Apache Beam SDK or using Scio [30], a Scala SDK

34 CHAPTER 3. PLATFORMS

Figure 3.4: Diagram of Spotify’s event delivery infrastructure.

for Apache Beam also developed at Spotify. The preprocessing has two main
goals:

1. Data deduplication: as events travel from the client back to the infras-
tructure, non-optimal network conditions or other faults can affect the
quality of data received. Hence, some events may be duplicated as clients
attempt multiple retries at sending the data. Moreover, the messaging
broker Pub/Sub may introduce duplicates as it guarantees at-least-once
delivery (as opposed to exactly once).

2. Data encryption: all data containing sensitive user information that is per-
sisted at Spotify is encrypted. Downstream consumers of the encrypted
data inside Spotify need to first decrypt the data before accessing it. In
order to access data, each team undergoes approval from the Legal and
Data Protection offices.

Both of these use cases involve joining with large datasets: the dedupli-
cation pipeline joins with a windowed index of previously seen events in that
time window. The larger is the deduplication window, the larger the cost of
performing the join. The encryption pipeline is responsible for encrypting all
sensitive data that is stored. It does so by joining with a large table of user
encryption keys (each user has a unique key). The same join operation needs
to be repeated in order to decrypt the data and process it. The use case of
encryption and decryption is the focus of this work and the solution presented
in the next chapter.

Chapter 4

Solution

The solution presented in this work is called SMB (SMB). The technique
combines several ideas from how joins are implemented in relational databases
and it is also available as an experimental feature in Apache Hive, a data
warehouse that allows SQL-like queries running on Hadoop. The main idea of
sort-merge buckets consists of preprocessing the data in a such a way that later
joins can reap the benefits. Before describing the solution in detail, Section 4.1
describes motivates the methodology used in this work. Section 4.2 briefly
describes challenges in the context of the thesis project, and the rationale
for using SMB. Afterwards, Section 4.3 describes the initial solution and
Section 4.4 describes how to extend SMB to overcome its limitations and tackle
skewness.

4.1 Methodology
Evaluating data-intensive platforms is a hard task. Most of the works presented
in Section 2.4 use an empirical approach in order to evaluate their solutions.
This choice of methodology is explained by the complexity of these platforms:
the amount of components or factors (network, failures, slow provisioning,
. . .) that can contribute to the evaluation of a solution in a parallel-processing
scenario make it hard to create a formal model. Instead, most works adopt
an empirical methodology in which metrics are compared between the ex-
perimental solution and a baseline. This chapter describes why an empirical
methodology is chosen for this work, in addition to presenting several engi-
neering details for Cloud Dataflow, the data-intensive platform used for this
work. These engineering details are important in order to properly understand
the context of the empirical evaluation.

35

36 CHAPTER 4. SOLUTION

Whereas a theoretical model of a complex system like data-intensive plat-
forms provides essential results in terms of asymptotic complexity, correctness,
and more, it often abstracts several important components (e.g., network, hard-
ware, . . .) that are key to the evaluation of a platform or a particular solution.
Moreover, two algorithms with the same asymptotic notation might have very
different constants and performance in a real world scenario. The empirical
methodology, which tests hypotheses through experiments, has the advantage
that no formal analysis is required and results take into account the whole plat-
form, but makes reproducibility difficult for several reasons. When evaluating
performance of a solution against previous research, it is often not possible
to reproduce exactly the same conditions. This applies not only to cluster
configuration, but also input data and possibly library versions. For example, it
is important to demonstrate that the benefits of a particular solution are actually
because of that solution and not because of performance improvements due to
a library upgrade. In other research fields such as computer vision or machine
learning, there exist datasets which are often used as benchmark in order to
evaluate the proposed model or solution. Due to the wide scope of MapReduce
& derived systems, no benchmarks are available. In most works where an
empirical evaluation is used, it is hence required to setup a baseline and a
experimental scenario to test the solution while all other factors are kept fixed.

An empirical solution is compared against its baseline through a variety of
metrics. The most commonly used are as follows:

1. Job duration: measures the total elapsed time of a job from start to
finish.

2. CPU time: measures the total processing time. For example if two
workers with one CPU each worked on a job for half an hour, the total
CPU time is one hour.

3. Network IO: the total amount of bytes exchanged via the network for
the job.

4.2 Challenges
The engineering context as described in Chapter 3 presents several challenges
in designing & evaluating possible solutions.

1. Runner-independent: Apache Beam’s runner abstraction makes it so
that the proposed solution solution can not be tied to a specific implemen-
tation. For example, this means that there is no notion of ordering for

CHAPTER 4. SOLUTION 37

records in a PCollection and it is not possible to retrigger straggling
tasks from a scheduler. On the other hand however, the runner abstrac-
tion means that the solution will work on all of Beam’s runners, which
possibly makes it broadly applicable for a large variety of data-intensive
platforms and both batch and streaming processing. Due to this challenge,
solutions and related work that modified platform implementations are
not directly applicable, and a proactive approach is instead required.

2. Compatibility: The designed solution should be backwards-compatible.
For example, for solutions that use preprocessing steps, the data should
not be modified in such a way that regular join operations are no longer
possible. Similarly, the data should still be usable for non-join operations
even after the preprocessing step. This challenge is motivated by practical
considerations: backwards-compatibility makes it easier to adopt the
solution, especially at large scale. Scale here refers both to the massive
amount of data, but also the amount of beneficiaries of the solution. In
Spotify’s example, a broadly compatible and easy to apply solution is
benefitted by the many consumers of event data, which need to decrypt it
every time before use. Consequently, it is also important for the solution
to be simple and require minimum user input in order to maximize
transparency.

3. Skewness & Scalability: the solution should handle both skewed and
non-skewed data, and be scalable. This is also motivated by a series
of practical considerations: malicious users could generate millions of
events, duplicate events can be a problem due to non-optimal network
conditions or because of Pub/Sub’s at-least-once guarantee, and the
hourly partitions can vary wildly in size & skew throughout the day. In
practice, some hourly partitions having more than 10 times the events of
other partitions (e.g., when comparing afternoon and night hours).

4. Minimum overhead: This challenge is twofold. First, it refers to the
repeated keyword of the described join scenario. When the join is not
repeated, the solution should present as small as possible an overhead
over a single join operation. Secondly and connected to the previous
point, the overhead should be minimum when data is not skewed.

As a speculative execution approach (as defined in [28]) is not possible due
to the runner abstraction, a proactive, two-phase approach is used. The SMB
solution hence has two phases: the first bucketing phase partitions the data
into sorted buckets. The second phase joins two datasets that are bucketed and

38 CHAPTER 4. SOLUTION

sorted. Intuitively, this solution works like existing work on skewness in which
the first phase collects statistics on the data, and then uses a custom partitioning
strategy to prevent stragglers. In presenting the solution, the research questions
will be addressed in order: first, SMBwill be introduced to address the repeated
join problem. Then, the solution is extended to handle skew and additional
concerns.

4.3 SMB Join
In order to optimize the repeated join scenario, a merge join can be used as
opposed to a hash join approach. Recall that, if the data is already sorted,
a merge join has better performance than the hash join as no build phase is
needed. However, there are some challenges in producing sorted data. Firstly,
PCollections are by definition unordered bag of items. Even if they were,
achieving a global ordering on the data is not possible: expressing iterative
algorithms like sorting is not supported by the programming model.

When computing a join in parallel processing systems like Cloud Dataflow,
shuffling dominates processing times. Data is shuffled in order to parallelize
the work: however, this requires that data that would join ends up in the same
worker in order to compute correct results. Another way of looking at the
problem would be determining the join set for each record. In the database
world, an index can be used for this purpose: it allows quick lookup operations
to achieve fast data retrieval. Partitioning data can be thought of as a very
rudimentary index with no state. Looking up the index consists of computing
the hash of the join key, which returns the “location” (the worker) that holds
records with the same key. Every time a join (and hence, a shuffle) is performed,
the data is repartitioned to the correct worker.

In order to still use a merge join, we can relax the global ordering require-
ment by requiring a local order instead: the data can be partitioned in such a
way that each partition, or bucket, is locally sorted. Essentially, SMB consists
of a merge join over bucketed data, which has been preprocessed in a such a
way that the “index” becomes implicit in the structure of the data. Hence, it
is possible to compute the join of two datasets preprocessed in the same way
by simply performing a merge join operation over each pair of corresponding
buckets.

The SMB join procedure consists of two phases. The first phase is bucketing,
visualized in Listing 3. The bucketing PTransform is a composite transform
which uses three other PTransforms invoked through method chaining. The
bucketing phase is composed of two subphases:

CHAPTER 4. SOLUTION 39

Listing 3: Bucketing phase for SMB.
1 def BucketingPhase(input, B):

Data: input is a PCollection〈V〉, with V denoting the type of the
records inside the PCollection. B is the number of buckets.

Result: PCollection〈Bucket〈V〉〉
2 return input

3 .apply(ParDo.of(ExtractBucketKeyFn(B)))

/* Returns a PCollection〈K, V〉, where the key
K is the bucket key determined through
Equation (4.1) over B buckets. */

4 .apply(GroupByKey.create())

/* Returns a PCollection〈K, Iterable〈V〉〉 */
5 .apply(ParDo.of(SortBucketFns()))

/* Locally sorts the records in an
iterable by their join key, creating a
Bucket〈V 〉 and returning a
PCollection〈Bucket〈V〉〉. */

1. Partitioning (lines 3, 4): the data is first partitioned over a number of
buckets B, through a hashing function h on each record. Whereas x.key
refers to the join key for record x, the bucket key or bucket id b(x) is
determined as

b(x) = h(x.key) mod B. (4.1)

Note that partitioning happens as an explicit operation in Dataflow, and
is not an implementation detail of the runner. It works by extracting the
bucketing key of each record and then through a GroupByKey, which
groups records by their bucketing key into an iterable. In this implemen-
tation, the hash function h is MurmurHash3 [31], which is the default
hash used in Hadoop. This hash function is used because of its excellent
performance and good distribution. The GroupByKey operation in this
step is the only shuffle operation in whole pipeline.

2. Sorting (line 5): Recall that a PCollection does not have a notion of
ordering for its contents. However, the output from the previous step is a
PCollection of buckets. In this scenario, the records inside each bucket
are being sorted by their join key, and each bucket in the PCollection
is located on one worker only: hence, it is possible to perform a local
sort of each bucket in parallel. The sorting is achieved through a merge

40 CHAPTER 4. SOLUTION

sort, falling back to an external merge sort if data does not fit in memory.

At the end of the bucketing phase, each bucket is written to an Avro file
with its bucket id, the total number of buckets, the hash function used, and the
join key as metadata. Users can inspect the metadata to know whether the data
has been bucketed and and for which field it is sorted, and hence whether it
can be used for a SMB join. Alternatives approaches to storing the metadata
are possible, such as storing it in a separate location from the data or in a
different file with the data. In practice, this preprocessing step consists only
of modifying the layout of data by sorting it, which makes it compatible with
existing pipelines for users that are not aware of the underlying structure of the
data. Reordering the data has the additional advantage that data compression
can achieve a much better compression ratio, as data with the same join key
ends up being stored in an uninterrupted block. This is significant when several
fields of data correlate with the join key: for example when the join key is the
user id, it is reasonable to expect that fields like country, IP address, device,
and more do not change in an hourly window for each user.

The preprocessed data can be joined with another compatible dataset. Com-
patibility between two datasets is achieved when the following conditions
match:

1. Number of buckets: The two datasets must be partitioned over the same
number of buckets. This ensures that bucketing key for two records that
have the same join key is the same.

2. Hash function: Using the same hash function for both datasets ensures
that the same join key hashes to the same bucketing key.

3. Join key: Both datasets must be partitioned & sorted on the key that is
used as join key. If the data is sorted by a different key, it can not be used
for a merge join and re-bucketing is necessary.

Note that bucketing both inputs is not additional requirement when compared
to normal join operations: when performing these, both datasets are shuffled
to the corresponding worker. Similarly, both datasets need to go through the
bucketing phase.

The second phase of SMB is joining, visualized in Listing 4. This operation
is executed as the first PTransform of a different pipeline. The start of a
pipeline in Apache Beam is represented as PBegin, which can be thought
of as a special, empty PCollection. The joining phase also consists of two
subphases:

CHAPTER 4. SOLUTION 41

Listing 4: Joining phase for SMB.
1 def JoiningPhase(rPath, sPath):

Data: rPath and sPath represent the location where the bucketed
data for the datasets R and S is stored.

Result: PCollection〈VR, VS〉, with VR representing the records of
R and respectively for S.

2 return PBegin

3 .apply(ParDo.of(ResolveBucketingFn(rPath, sPath)))

/* Returns a PCollection〈Bucket〈VR〉, Bucket〈VS〉〉,
with each tuple representing a matching
pair of buckets. Two buckets match if
they have the same bucket id. The
records inside each bucket are not read
yet. */

4 .apply(ParDo.of(MergeJoinFn()))

/* Performs a merge join as detailed in
Algorithm 2 over each pair of buckets,
returning a PCollection〈VR, VS〉. */

1. Bucketing Resolution (line 3): this step ensures that the input datasets
are compatible and generates the corresponding pair of buckets. In the
implementation used in this work, it is executed on a single worker as the
number of buckets is very small and it is a very fast operation. It works
by expanding the file patterns for R and S to match each bucket, from
which the metadata is extracted. The two lists of metadata are iterated to
determine compatibility and the pairs of matching buckets.

2. Merge join (line 4): each pair of buckets is joined using a merge join
operation as described in Section 2.2.

When two datasets are compatible, the result of the sort merge bucket join
is correct. This is due to the fact that records that have the same join key will
hash to the same value, which is assigned to the same bucket. In other words,
no tuples that have the same join key will be in different buckets. The steps in
order to compute a SMB join are summarized in Figure 4.1. The two datasets
R and S are first bucketed by partitioning and sorting on their join key, then
each corresponding bucket is joined through a merge join operation. The letters
represent values of the join key. The total amount of output records from this
join is 14: 7 from the first bucket (6 + 1 pairs for keys a and d), 3 from the

42 CHAPTER 4. SOLUTION

Bucketing

R S
e

b

b
f

a

a

c

d
a

a, a, a, d

b, b, e

c, f

Bucketed R Bucketed S

Merge join

Merge join

Merge join

Joining

Partition
& Sort

Partition
& Sort

a

a

b
c

e

f

c

d
f

a, a, d

b, e

c, c, f, f

Bucketing

Figure 4.1: High level overview of SMB join.

second bucket (2 + 1 for keys b and e) and 4 from the third bucket (2 + 2 for
keys c and f).

Figure 4.2 show what the bucketing looks like in Cloud Dataflow. The
operations correspond to:

1. Read data stored in Avro format.

2. Create (key, value) pairs as in line 3 of Algorithm 3.

3. GroupByKey (line 4).

4. Sort iterables (line 5).

5. Second part of the sorting operation in line 5, implemented as an addi-
tional PTransform. Wraps the pairs 〈K, Iterable〈V〉〉 to a Bucket〈V〉
with the corresponding metadata.

6. Write out the data in Avro format, one file for each bucket.

Figure 4.3 show what the bucketing looks like in Cloud Dataflow. The
operations correspond to:

1. Match list of files on the left and right side.

2. Read metadata from each file.

3. CoGroupByKey with a null key in order to group the metadata on one
worker, responsible for bucketing resolution.

CHAPTER 4. SOLUTION 43

4. Create pairs of buckets to merge join.

5. Reshuffle the pairs of buckets to all the workers.

6. Read and merge join all the buckets, creating groups of records from the
two datasets for each key.

7. Compute an inner join, i.e. emit only groups that have records with that
key for both tables.

The SMB join as such can be used to optimize the repeated join scenario.
The encryption pipeline can produce bucketed data as part of the bucketing
phase, enabling downstream consumers to decrypt it through the joining phase.
The bottleneck of shuffling is performed only through the GroupByKey in the
bucketing phase, which is performed only once for any number of joins. As part
of using Apache Beam, the solution is compatible with all the supported runners
and more: SMB join, as presented here, simply consists of reordering data and
a joining step that can be implemented in any map-like operation. A similar
approach can be used in MapReduce-like platforms and all its evolutions.

While SMB join is effective in optimizing repeated joins (see Chapter 5 for
evaluation), there are a few limitations. First of all, datasets that are bucketed
need to be compatible. In addition, this type of join introduces added complexity
in the form of choosing the number of buckets. Intuitively, if B = 1, all the
data will be grouped on a single worker, which is unfeasible for datasets that do
not fit in memory. As the number of buckets increases, the data is redistributed
in multiple buckets. Due to the log-linear term in sorting, a higher overall
number of buckets means a lower overall sorting time as can be seen in the
following example:

Example 3 Consider bucketing a dataset with n records over B buckets. Each
bucket receives an equal n/B share of records and fits in memory. The total
cost for sorting B buckets is

B ·O
(n

B
log

n

B

)
= O

(
n log

n

B

)
.

As the number of buckets increases and gets closer to n, bucketing becomes
less advantageous as the algorithm regresses to a repartition join. In the same
setting as Example 3 an extreme case of B = n would result in no sorting at
all as each bucket contains one record which is already “sorted”.

Good values for number of buckets hence lie in the middle. A practical
approach to determining the number of buckets would be picking a number such

44 CHAPTER 4. SOLUTION

that buckets fit in memory of each worker: this avoids overloading a worker due
to the GroupByKey operation and it avoids having to fallback to slower external
sort operations while at the same time maintaining the benefits of sorting.
However, determining “fit in memory” criteria presents some problems:

1. Input size: It is necessary to know the size of input data. This can be
estimated or can be computed as another Dataflow job.

2. Runner abstraction: In order to determine if a bucket fits in the memory
of workers, runner-specific information such as number of workers and
memory of each worker is needed. This can not be determined at runtime
as per the runner abstraction, hence the programmer must be aware of
these values. This represents a failure with regards to the first challenge
in Section 4.2.

3. Data distribution: An approach that simply divides the total dataset size
over the available memory assumes that buckets contain an equal share
of records. However, such a distribution is unlikely due to skewness: as
a result, some buckets will spill to persistent storage.

While the SMB join presents some advantages, it also raises some issues.
Most importantly, the last point mentioned above leads the work to the second
research question: addressing skewness.

CHAPTER 4. SOLUTION 45

Figure 4.2: Bucketing pipeline in Cloud Dataflow.

46 CHAPTER 4. SOLUTION

Figure 4.3: Joining pipeline in Cloud Dataflow.

CHAPTER 4. SOLUTION 47

4.4 Skew-Adjusted SMB Join
As elaborated on in the previous sections, skewness is a major problem in
MapReduce-like processing systems and also arises in SMB joins. In partic-
ular when the data is skewed, the bucketing operation is affected due to the
GroupByKey and sorting operations. In addition to skewness, an additional
issue lies in the notion of dataset compatibility, which is limits flexibility when
preprocessing data and joining.

In order to address these problems this section presents adjustments in order
make the solution robust to robust and overcome the shortcomings described.

The first adjustment deals with bucket size and dataset compatibility. Recall
that two bucketed datasets can be joined, i.e. are compatible, if they have the
same number of buckets and were bucketed using the same hash function on
the join key. However, any two datasets can be joined, independently of the
number of buckets, by replicating buckets. Consider two datasets R and S,
which have been bucketed over BR and BS buckets respectively. As the two
datasets have different number of buckets, there is no correspondence between
keys of the two different datasets as the partitioning function had a different
modulus (the second operator). A naive approach of joining the data would be
computing the merge join between all pairs of buckets: the results are correct as
all pairs of buckets are joined and hence all matching records would be joined.
This results in each bucket being replicated a number of times that is equal to
the number of buckets on the other side, computing a total of BRBS merge
joins. However, it is not necessary to compute the merge join for all pairs of
buckets. Using the distributive property of the modulo operation, for integers
x, a, b we have that

(x mod ab) mod a = (x mod a) mod a+ (a · (x/a mod b)) mod a

= x mod a+ 0

= x mod a.

(4.2)

Recall that given a bucket b, for all records x in that bucket, we know that

h(x.key) mod B = b

as all data in a bucket has the same bucket key. By picking integers c, k ∈ N
such that B = ck, taking modulo c on both sides of the previous equation, and

48 CHAPTER 4. SOLUTION

using Equation (4.2) we have that

h(x.key) mod B = b

(h(x.key) mod B) mod c = b mod c

(h(x.key) mod ck) mod c = b mod c

h(x.key) mod c = b mod c.

In other words, we can treat the data as having been bucketed in c buckets,
each of which is composed of k of the original B buckets, without actually
having to re-bucket the data. For example, the first c-bucket contains records
such that

h(x.key) mod c = 0

and is composed as the subset of the B-buckets whose bucket key modulo c is
0.

When at the bucket resolution step at joining time, this property can be
used to greatly reduce the number of merge joins computed by picking c such
that BR = ckR and BS = ckS and emitting pairs whose bucket keys modulo c
are the same. In other words, c is a common factor of BR and BS . The total
number of merge joins computed is

BRBS

c
.

By picking c = 1, this ends up computing the join over all pairs of buckets,
whereas we can pick c as the greatest common factor (GCF) of BR and BS in
order to minimize the number of joins computed: the number of joins computed
becomes the minimum common multiple (MCM) of BR and BS . Figure 4.4
shows an example. Note that if the two datasets have the same number of
buckets, then c = BR = BS and there is no replicated data. Conversely, if one
dataset only has one bucket, we are computing an equivalent to the map-side
join.

With this adjustment, the number of buckets requirement can be removed
from the definition of dataset compatibility. In other words, this means that it
is possible to calculate B as part of the pipeline. As mentioned in the previous
section, an ideal property for buckets is fitting in memory as this enables fast
in-memory sorting. Instead of setting the number of buckets, we can hence
define a target bucket size for each bucket and the amount of buckets required
can be computed as the size of the input data divided by the target bucket
size. There is, however, a caveat: the amount of replicated data for a given
join depends on c, the greatest common factor between the number of buckets

CHAPTER 4. SOLUTION 49

R

S

0

1

1

0

2

2

3

3

4

5
GCF(BR, BS) = 2

Figure 4.4: Visualization of joining between datasets with different number of
buckets.

of two datasets. The lower is c, the higher is the cost of replication. It is
hence important to pick numbers of buckets such that c is maximized in order
to reduce the amount of replicated. As c = GCF(BR, BS) ≤ min(BR, BS),
the replication overhead can be minimized by making sure that the greatest
common factor is the minimum between BR and BS , which implies that one is
a factor of the other. The possible number of buckets can hence be picked as
powers of an integer: powers of two are used as that allows finer granularity
over other integers. In general, this exponential growth approach is common
in computer science and can be seen in several other applications e.g., data
structure size (to achieve constant amortized time operations), exponential
backoff, and more.

In summary, the bucket size adjustment modifies the algorithm as follows:

• The number of buckets parameter has been replaced with a bucket size
parameter, which is used to automatically determine the power of two
number of buckets that fits the data. The size of input data is computed

50 CHAPTER 4. SOLUTION

as the sum of the serialized size of each record, from which the number
of buckets is computed. This happens before the ExtractBucketKeyFn
operation, which receives the newly computed B as input.

• The ResolveBucketingFn PTransform at joining time is slightly mod-
ified to compute the joins of all buckets whose bucket key modulo c is
equal, where c is the minimum between the number of buckets for the
two datasets.

The notion of bucket size makes it easier to define skewness. When creating
buckets, a bucket is skewed if its contents would exceed the allowed bucket
size. The second adjustment, bucket sharding, splits a bucket into multiple
files called shards, each of which is locally sorted. The idea behind sharding
is the same idea behind partitioning in a hash join: as the data exceeds the
target bucket size (i.e., it is too large to fit in memory for a hash join), it is
repartitioned. However, there are few limitations of this approach:

1. Recursive partitioning: Recursive partitioning as in a normal hash join
is not possible, as the PTransforms in the Dataflow graph must be fixed
at graph construction time.

2. Data skew: recursive partitioning does not alleviate data skew. When
repartitioning using a different hash function, skewed “hot keys” would
have the same hash regardless of the hash function.

For these reasons, records are repartitioned in shards using a round-robin
strategy: this allows a bucket to be equally distributed among its component
shards. The number of shards for a bucket is hence computed by dividing
the total size of records in that bucket over the bucket size. In order to join
two buckets, a merge join between all pairs of underlying shards is computed
instead. Similarly as the previous step, as each shard is read multiple times,
this results in data replication. Note that unlike in the previous scenario, it is
not possible to limit the number of joins between shards due to the partitioning
strategy used. By collecting other types of data statistics, such as histograms,
range partitioning could be used for the shards in order to optimize the shard
distribution. However, computing these distributions may be costly and an
evaluation of this approach is left as future work.

This adjustment requires modifying both the bucketing and joining phases
as follows:

• Bucketing: After computing the number of buckets per the bucket size
adjustment, we compute the total size of records for each bucket. Conse-
quently, we obtain a number of shards for each bucket. In order to not

CHAPTER 4. SOLUTION 51

incur in skewness due to the GroupByKey operation, we modify the key
K to be a tupled key of (bucketKey, shardId) of which the shard id is
assigned in round-robin fashion by each worker. Each composite key
corresponds to a shard for a particular bucket, which are constructed to
fit in memory of each worker. This allows the GroupByKey and sorting
to not suffer from skewness. As before, each shard is written out as a
single file with all its metadata, including the bucket key for its “parent”
bucket and its shard id. As a result, a bucket now might span multiple
files.

• Joining: The phase is not modified, however the ResolveBucketingFn
might end up creating more join operations as a result of sharding. Once
again, the file patterns for R and S are expanded to match each shard
for the two datasets from which the metadata is extracted. Each shard
contains its bucket key and is joined with all other shards with a matching
bucket key (modulo c if the number of buckets is different).

Listing 5 contains updated pseudocode for the bucketing phase, with the Cloud
Dataflow counterpart in Figure 4.5. Some boilerplate code has been removed
for brevity: in particular the number of buckets B and shard map M , which
contains the number of shards for each bucket, are distributed as a SideInput
to all workers. The joining pseudocode is unchanged apart from the described
changes inside the ResolveBucketingFn function.

52 CHAPTER 4. SOLUTION

Listing 5: Bucketing phase for skew-adjusted SMB.
1 def BucketingPhase(input, S):

Data: input is a PCollection〈V〉, with V denoting the type of the
records inside the PCollection. S is the target bucket size.

Result: PCollection〈Shard〈V〉〉
2 B ← input

3 .apply(ParDo.of(ComputeSizeFn()))

4 .apply(Sum.globally())

5 .apply(ParDo.of(ComputeNumBucketsFn(S)))

6 M ← input

7 .apply(ParDo.of(ComputeSizeWithBucketKeyFn(B)))

8 .apply(Sum.perKey())

9 .apply(ParDo.of(ComputeNumShardsFn(S)))

10 return input

11 .apply(ParDo.of(ExtractShardedBucketKeyFn(B,M)))

/* Returns a PCollection〈K, V〉, where the key
K is a composite key consisting of a
bucket key determined through
Equation (4.1) over B buckets and a
shard id assigned in round-robin by
each worker. The map M contains the
number of shards for each possible
bucket key. */

12 .apply(GroupByKey.create())

/* Returns a PCollection〈K, Iterable〈V〉〉 */
13 .apply(ParDo.of(SortBucketFns()))

/* Locally sorts the records in an
iterable by their join key, creating a
Shard〈V 〉 and returning a
PCollection〈Shard〈V〉〉. */

CHAPTER 4. SOLUTION 53

Figure 4.5: Bucketing pipeline for skew-adjusted SMB in Cloud Dataflow.

54 CHAPTER 4. SOLUTION

4.5 Analysis
In analyzing the number of shuffled records of the solutions, consider that Cloud
Dataflow does not have utilize data locality, unlike Hadoop. Data locality refers
to the concept of moving the computation closer to the data, i.e. executing
tasks on workers that have data locally, without a network operation. For this
reason, reading and writing in Cloud Dataflow consists of a shuffle.

The asymptotic notation for number of shuffled records for SMB is:

1. Bucketing: O(|N |), where |N | is the input size. All data is read once
O(|N |), shuffled once O(|N |), and rewritten as buckets once O(|N |).

2. Joining: O(|R|+ |S|), where |R| and |S| are the input sizes of the two
relations. The data is only read once O(|R|+ |S|), with no shuffle.

The asymptotic number of records shuffled lines up with Hadoop’s repartition
shuffle, but it suffers from the same problem: skewness and stragglers may
delay the pipeline indefinitely.

The asymptotic notation for number of shuffled records for skew-adjusted
SMB is:

1. Bucketing: O(|N |), where |N | is the input size. All data is read once
O(|N |), shuffled once O(|N |), and rewritten as buckets once O(|N |).

2. Joining: O(|R||S|), where |R| and |S| are the input sizes of the two
relations. The data may be read multiple times to handle different number
of buckets and sharded buckets. Consider the worst case scenario in
which the two datasets contain records with exactly the same key. All
records would end up in one bucket and all its shards would be need to
joined pairwise with all the shards from the other bucket. This is the
same worst-case asymptotic runtime as hash- or merge- join on a single
worker.

However, as explained in Section 2.3, the amount of shuffled data is not the
whole story. When stragglers are present, the running time is dominated by
the processing speed of the slowest straggler. Table 4.1 compares the amount
of shuffled data and running time of the join operations introduced, compared
with Hadoop’s standard joins, in terms of shuffled data and running time in
the best case (no skewness) and worst case (all the data is skewed). For map
join, the smaller table R fits in memory: stragglers have no effect as data is
not grouped at all. Hence, even if the data were to be completely skewed

CHAPTER 4. SOLUTION 55

with a O(|R||S|) result set, the computation happens across the W workers.
Sort merge bucket join mirrors the repartition join: they are the same save
for separating the bucketing and joining phases. The worst case running time
for skewed datasets is O(|R||S|) as both datasets would need to be joined a
single worker. For sort merge bucket join, this means that all data ends up in
the same bucket. For skew-adjusted sort merge bucket join, the best case does
not include any replication, whether to ensure compatibility or due to sharding.
Such a scenario is the same as a sort merge bucket join. When data is highly
skewed however, data is replicated up to O(|R||S|) times in order to construct
shards that are not skewed, ensuring there are no stragglers. As no stragglers
are present, each worker can contribute equally to compute theO(|R||S|) result
set like in the map-side join.

Table 4.1: Comparison of network IO and running time between the joins
introduced and the joins in Hadoop.

Join Type Best Case Worst Case

Network IO Running Time Network IO Running Time

Hadoop
Map-side Join O(|R|W) O

(
|R||S|
W

)
O(|R|W) O

(
|R||S|
W

)
Hadoop

Repartition Join O(|R|+ |S|) O(|R|+ |S|) O(|R|+ |S|) O(|R||S|)

Sort Merge Bucket Join O(|R|+ |S|) O(|R|+ |S|) O(|R|+ |S|) O(|R||S|)
Skew-Adjusted

Sort Merge Bucket Join O(|R|+ |S|) O(|R|+ |S|) O(|R||S|) O
(
|R||S|
W

)

Chapter 5

Results

This section describes evaluation of the SMB solution against standard join
techniques. The experiments are run on Cloud Dataflow, using clusters of
n1-standard-4 workers. Each worker has 4 CPUs and 15 GB of available
memory. The pipelines are written using the Apache Beam Java SDK, version
2.12.0.

In evaluating the pipelines, three different metrics will be considered: wall
clock, CPU hours, and amount of shuffled data. Whereas wall clock provides an
intuitive idea of the time spent for a pipeline, it is dependant on the number of
workers. Hence, CPU hours are also provided to provide an objective metric of
the “cost” of a pipeline. Note they represent the amount of CPU hours allocated
to that job, hence the actual number of “active” CPU hours might be less
(for example when the CPU is waiting for IO). The last metric consists of the
amount of shuffled data in GB as estimated by Cloud Dataflow. Furthermore,
recall that Cloud Dataflow does not have data locality: reading/writing of the
data is included in the amount of data shuffled. As an additional note, all jobs
ran in this section are executed with active autoscaling, but the starting and
maximum number of workers is fixed for each experiment. Hence, autoscaling
was activated in order to make it easier for Cloud Dataflow to downscale as the
pipeline is winding down.

This section evaluates the solution empirically in two scenarios. The first
consists of the decryption use case at Spotify. The second uses generated data
with increasing degrees of skew.

56

CHAPTER 5. RESULTS 57

5.1 Decryption Pipeline
In order to evaluate SMB, we consider the case of decryption of a partition
of real events. One of the largest event types processed at Spotify relates to
user behavior experiments: it is generated when users interact with Spotify
applications. This type of event is selected because it is one of the largest at
Spotify. In addition, this event can suffer from skewness when test users are
used improperly: a skewed partition can be created if a significant amount
of data is generated for a single test user (e.g., when load testing). As an
example pipeline that uses this data, analysts could read the events and evaluate
engagement with an experiment by user agent, which is an encrypted, sensitive
field in the event. In the evaluation scenario we hence use two datasets, which
are:

• Keys: 1149667449 (1.15 · 109) records for a total serialized size of
194.87 GB. This dataset corresponds to a subset of all user keys, with
each record containing user encryption keys for a specific user.

• Event: 6708279884 (6.7 · 109) events for a total serialized size of 2.86
TB. Corresponds to an hourly partition of encrypted events. All events
have a matching user in Keys.

The join key for the two datasets is the user_id field. Pipelines in this section
are executed with 128workers, for a total of 512CPUs and 1880GB of memory,
with autoscaling enabled. The evaluation scenario consists of a join between
Keys and Event and decryption of a single field, the user agent. The results
are listed in Table 5.1.

The first line details the result of the standard join in Dataflow, i.e. a repar-
tition join, between the two datasets. The amount of shuffled data corresponds
to just reading the data and performing a CoGroupByKey operation.

The SMB join, represented in the second block in Table 5.1, is divided
between the bucketing and joining phase. In order to pick the number of
buckets, we perform some conservative estimations. Starting from the size of
the serialized Events, we need to consider that the deserialized records have a
JVM-specific overhead, conservatively estimated at 1.4× overhead. In addition,
the sorting PTransform does not operate in-place, copying the results to a
new Iterable, another 2× overhead. Landing at total size of 8000 GB for the
deserialized data in memory, we decide to create 8096 buckets of approximately
one GB each, knowing that each worker CPU has approximately three GB of
heap memory after the JVM. For bucketing, the shuffled data includes reading,

58 CHAPTER 5. RESULTS

Baseline Wall Clock CPU Hours Shuffled Data GB

Events on Keys 0:45:53 349.42 6576

SMB Join Wall Clock CPU Hours Shuffled Data GB

Bucketing Keys 0:15:00 23.644 845
Bucketing Events 0:53:57 423.159 11810

Events onSMB Keys 0:19:16 72.767 2974

Skew-Adj. SMB Join Wall Clock CPU Hours Shuffled Data GB

Bucketing Keys 0:24:49 35.023 847
Bucketing Events 1:11:00 573.293 11810

Events onSMB
SkewAdj Keys 0:22:44 121.639 5734

Table 5.1: Comparison of joins on the decryption pipeline.

the GroupByKey to create buckets, and writing the buckets. The join operation
reads each pair of buckets, joins them, and decrypts the user agent field. As
expected, the sort merge bucket join is faster at joining time than a regular
join as no shuffling happens (apart from reading the data). However, the data
has to be preprocessed in the bucketing phase, which is more expensive than
joining for all metrics. However, bucketing happens only once for any number
of joins. We can compute the number of joins n after which SMB has better
performance for a particular metric than regular joins as

Bucketing+ SMBJoin · n ≤ Join · n,

which can be solved for n as

n ≥
⌈

Bucketing

Join− SMBJoin

⌉
. (5.1)

By solving Equation (5.1) for CPU hours (including bucketing time for
Event and Keys), we obtain n = 2. This means that already after the second
sort merge bucket join, the cost of bucketing has already been amortized and
the more joins are performed, the fewer CPU hours are used relatively to the
baseline. The same applies for the amount of shuffled data, which becomes
less after n = 4 joins. A visualization of the total CPU time after n joins for
the three different strategies is available in Figure 5.1.

As a side-effect of bucketing, the Avro format can better leverage data
compression: the bucketed events have a size of 1088 GB after compression,

CHAPTER 5. RESULTS 59

compared to the original non-bucketed data with 1506 GB after compression.
The opposite is true for keys: as the data was originally stored in fewer files
and each user_id in Keys is unique, rearranging it into the buckets slightly
increased the size after compression, from 120.1 to 122.5 GB.

The third block describes results for skew-adjusted SMB join. Instead of
picking the number of buckets, we simply set a bucket size of 300MB in order
for each worker to have ample memory to sort it. The bucket size will be
used by the pipeline to automatically determine the number of buckets (and
shards) to use. The Keys are bucketed in 1024 buckets, each with one shard,
whereas Events are bucketed in 16384 buckets, one of which has 2 shards
for a total of 16385 files. As the data fits evenly in the buckets (except for
one), this dataset has very low skew. At joining time, each shard from Keys
is replicated 16 times due to the different number of buckets. One shard is
replicated one additional time in order to handle the slightly skewed bucket.
Solving Equation (5.1) for CPU hours, we obtain n = 3. Respectively for
amount of shuffled data, n = 16. As the dataset has very low skew, skew-
adjusted SMB performs worse than regular sort merge bucket join due to the
price of handling skew (even if it is not present).

As an additional form of comparison, we can compare skew-adjusted SMB
in terms of its overhead against regular SMB (visualized in Figure 5.2). For
CPU hours, the overhead starts with approximately 40% and grows to 67%

as the number of joins increases asymptotically. In terms of shuffled data,
the overhead starts with 19% and increases to 93% as the number increases
asymptotically. In order to more thoroughly evalaute skew-adjusted SMB, the
next section repeats the analysis for generated datasets with different degrees
of skew.

60 CHAPTER 5. RESULTS

1 2 3 4 5 6 7 8 9
Number of joins

500

1000

1500

2000

2500

3000

To
ta

l C
PU

 H
ou

rs

Baseline
SMB
Skew-Adj. SMB

Figure 5.1: Total CPU hours after n joins for regular join, SMB join, and
skew-adjusted SMB join.

0 20 40 60 80 100
Number of joins

1.0

1.2

1.4

1.6

1.8

2.0

Ov
er

he
ad

CPU overhead
Data overhead

Figure 5.2: Overhead of skew-adjusted SMB against regular SMB for CPU
and shuffled data over number of joins.

CHAPTER 5. RESULTS 61

5.2 Generated Data
The power law family of distributions is commonly used to model frequencies.
In this project, we generate data whose keys follow a Zipf’s law. This law states
that the frequency of a key is inversely proportional to its rank, i.e. the i-th key
has frequency that is

1

is

times the most frequent key, for some shape parameter s. The higher is s,
the more skewed are the frequencies. To simulate the decryption pipeline,
we generate two types of datasets, respectively Keys and Events. The first
dataset, Keys, consists of 109 (one billion) records containing two fields:
an unique integer join key called id (4 bytes) and a random 36 byte string
simulating the decryption key for that user. The Events dataset consists of
6 · 109 (six billion) records also containing two fields: the id of a user and an
event payload consisting of 96 bytes. In an event partition, the unique keys for
a single hour is in the order of tens of millions, hence the number of unique
id in Event has been approximated with 50 · 106 unique keys. This means
that not all keys in Keys have a correspondence with the Event dataset. In
order to test the effect of skewness, we generate the Event dataset 15 times,
for linearly spaced values of s ∈ [0.0, 1.4]. Figure 5.3 plots the frequency of
the first million most frequent keys for a subset of the values s. When s = 0

all keys have an equal frequency of 120. For s = 0.2, the first five keys have
frequencies [3327, 2896, 2670, 2521, 2411]. As s increases, the first key has
a frequency of 86482 for s = 0.4, 1999427 (approximately two millions) for
s = 0.6, 35534777 (approximately 36 millions) for s = 0.8 up to 1933322357
(approximately two billions, roughly one third of the dataset) for s = 1.4.

We evaluate the sort merge bucket join and skew-adjusted sort merge bucket
join against a regular join in Cloud Dataflow, which is equivalent to an Hadoop’s
repartition join. Pipelines in this section are executed with 32 workers, for a
total of 128 CPUs and 480 GB of memory, with autoscaling enabled. The total
serialized size for the Events datasets is approximately 640 GB, while the
total serialized size for the Keys dataset is approximately 50 GB.

5.2.1 Baseline
The baseline consists of a simple pipeline which reads both datasets and com-
putes a join between them, summarized in Table 5.2. The join performance
appears to be approximately constant until s > 0.7. As the data becomes

62 CHAPTER 5. RESULTS

100 101 102 103 104 105 106

Rank in key frequency table

101

102

103

104

105

106

107

108

109

Ke
y

fre
qu

en
cy

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

Figure 5.3: Frequency distribution for the first million most frequent keys in
generated Event for different values of s.

more and more skewed, we observe a steep increase in the time spent for the
job. By inspecting the Dataflow graph, as seen in Figure 5.4, we can confirm
our suspicions that a straggler is present. Out of the 109 unique join keys, a
worker is stuck in the GroupByKey (GBK, highlighted in blue) grouping all the
data for the last skewed key, slowing down pipeline progress. The remainder
999999999 keys have already been processed. As expected from Section 4.5,
the amount of shuffled data remains approximately constant.

CHAPTER 5. RESULTS 63

Table 5.2: Join between Keys and Events for different values of s.

Events on Keys
Repartition Join
for diff. values of s

Wall Clock CPU Hours Shuffled Data GB
(Read + GBK)

0.0 0 : 27 : 12 52.343 1485.22

0.1 0 : 27 : 27 53.175 1484.15

0.2 0 : 28 : 30 55.356 1483.98

0.3 0 : 27 : 33 52.790 1483.48

0.4 0 : 27 : 24 52.739 1482.78

0.5 0 : 27 : 56 53.845 1481.83

0.6 0 : 27 : 26 53.006 1480.49

0.7 0 : 28 : 12 54.059 1478.47

0.8 0 : 32 : 16 63.061 1475.36

0.9 0 : 44 : 19 90.093 1465.99

1.0 1 : 18 : 00 161.499 1459.73

1.1 2 : 09 : 00 267.030 1442.35

1.2 3 : 44 : 00 469.501 1436.95

1.3 4 : 47 : 00 602.886 1435.39

1.4 5 : 58 : 00 750.614 1429.68

Figure 5.4: An example of a straggling join.

64 CHAPTER 5. RESULTS

5.2.2 SMB Join
Wall clock, CPU hours, and size of shuffled data for the bucketing phase for
Keys and Events are available in Table 5.3 and in Table 5.4 respectively for
the joining phase. The pipelines for s = 0.9 and s = 1.0 fail in the bucketing
step due to lack of progress when sorting. Due to the degree of skew, the
workers responsible for sorting the skewed buckets were straggling and were
not outputting any records for over 30 minutes, causing a failure in Cloud
Dataflow. Figure 5.5 plots the total CPU hours of a single regular join (in
Table 5.2) and a single SMB join. The collected metrics can be compared to
the baseline using Equation (5.1). We obtain that SMB is more advantageous
than regular joins in terms of CPU hours starting with the second SMB join
(n = 2), for all values of s. Note that in this scenario we do not include the
bucketing step for Keys, as that happens only once for all 15 values of s. It can
also happen in parallel as bucketing of the Events, in addition to requiring
less than one tenth of the time. Repeating the same analysis for the amount of
shuffled data, we obtain that SMB join shuffles fewer data after the fourth join
(n = 4) for all s.

In summary, this means that sort merge bucket join has better performance
than regular join after performing two joins and shuffles fewer data after four
joins. However, this join is not robust to higher degrees of skewness as some
tested scenarios fail.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Value of s (skew parameter of Zipf's law)

100

200

300

400

500

600

700

CP
U

Ho
ur

s

Baseline
SMB

Figure 5.5: Comparison of CPU hours of SMB (bucketing and joining) against
one regular join for different values of s (one single join operation).

CHAPTER 5. RESULTS 65

Table 5.3: Bucketing phase of sort merge bucket join for Keys and Events.

Bucketing Keys Wall Clock CPU Hours Shuffled Data GB
(Read + GBK + Write)

n/a 0 : 16 : 13 7.271 205.33

Bucketing Events
for diff. values of s

Wall Clock CPU Hours Shuffled Data GB
(Read + GBK + Write)

0.0 0 : 40 : 04 77.496 2595.42

0.1 0 : 39 : 25 76.100 2593.58

0.2 0 : 38 : 42 74.846 2593.50

0.3 0 : 38 : 56 74.683 2592.87

0.4 0 : 38 : 53 75.697 2591.87

0.5 0 : 39 : 03 76.454 2590.48

0.6 0 : 38 : 21 74.901 2588.48

0.7 0 : 38 : 08 73.871 2585.38

0.8 0 : 48 : 50 96.901 2580.68

0.9 failed failed failed
1.0 failed failed failed

Table 5.4: Joining phase of sort merge bucket join for Keys and Events.

Events on Keys
SMB Join

for diff. values of s
Wall Clock CPU Hours Shuffled Data GB

(Read)

0.0 0 : 08 : 41 12.368 620.31

0.1 0 : 09 : 07 12.482 619.84

0.2 0 : 08 : 50 12.148 619.75

0.3 0 : 08 : 34 11.692 619.52

0.4 0 : 08 : 08 10.944 619.18

0.5 0 : 08 : 12 11.204 618.71

0.6 0 : 08 : 00 11.531 618.05

0.7 0 : 08 : 05 11.056 617.01

0.8 0 : 08 : 28 11.711 615.46

0.9 n/a n/a n/a
1.0 n/a n/a n/a

66 CHAPTER 5. RESULTS

5.2.3 Skew-Adjusted SMB Join
Wall clock, CPU hours, and size of shuffled data for the skew-adjusted SMB
join for Keys and Events are available in Table 5.5 for bucketing (note the
additional column, representing the total number of shards written out) and
in Table 5.6 for joining, with the last column representing the value of n in
Equation (5.1) for CPU hours and shuffled data respectively.

When compared with regular joins for s < 0.8, skew-adjusted SMB has
better performance in terms of CPU hours after three joins and shuffles less
data after five. As skewness quickly increases, skew-adjusted SMB uses fewer
CPU hours than a single regular join for s ≥ 1.0, as can be seen in Figure 5.6.
This advantage in processing time has a tradeoff in amounts of data shuffled:
as data becomes more skewed, skew-adjusted SMB replicates more and more
shards. For the highest degree of skew tested, it still shuffles fewer data after
10 joins.

When compared with regular sort merge bucket join, for s < 0.8, the
bucketing operation has a overhead of approximately 25%. For s = 0.8, the
bucketing takes the same amount of CPU hours. For s > 0.8, unlike SMB join,
skew-adjusted SMB handles all degrees of skewness tested. Skew-adjusted
SMB join also relaxes the notion of compatibility to allow joining with datasets
with different numbers of buckets.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Value of s (skew parameter of Zipf's law)

100

200

300

400

500

600

700

CP
U

Ho
ur

s

Baseline
SMB
Skew-Adj. SMB

Figure 5.6: Like Figure 5.5, but with skew-adjusted SMB in green (one single
join operation).

CHAPTER 5. RESULTS 67

Table 5.5: Bucketing phase of skew-adjusted SMB join for Keys and Events.

Bucketing Keys Wall Clock CPU Hours Shuffled Data GB
(Read + GBK + Write)

Shards

n/a 0 : 23 : 59 11.275 206.83 512

Bucketing Events
for diff. values of s

Wall Clock CPU Hours Shuffled Data GB
(Read + GBK + Write)

Shards

0.0 0 : 48 : 22 97.423 2606.94 4096

0.1 0 : 47 : 07 95.113 2605.09 4096

0.2 0 : 44 : 05 88.211 2605.04 4096

0.3 0 : 46 : 27 93.051 2604.38 4097

0.4 0 : 43 : 03 86.183 2603.39 4105

0.5 0 : 42 : 28 85.178 2602.03 4200

0.6 0 : 45 : 21 90.889 2600.34 4484

0.7 0 : 42 : 37 85.222 2597.00 4774

0.8 0 : 48 : 17 97.524 2591.98 4927

0.9 0 : 47 : 02 93.961 2581.75 5227

1.0 0 : 46 : 00 92.573 2572.81 5691

1.1 0 : 48 : 37 95.683 2563.15 6359

1.2 0 : 49 : 11 96.485 2539.17 6896

1.3 0 : 48 : 16 93.908 2538.45 7293

1.4 0 : 46 : 47 89.342 2540.40 7528

Table 5.6: Joining phase of skew-adjusted SMB join for Keys and Events.

Events on Keys
Skew-Adj. SMB Join

for diff. values of s
Wall Clock CPU Hours Shuffled Data GB

(Replicated Read)
n

(CPU – IO)

0.0 0 : 12 : 14 18.194 899.75 3 - 5
0.1 0 : 12 : 04 18.299 899.28 3 - 5
0.2 0 : 12 : 11 18.354 899.19 3 - 5
0.3 0 : 12 : 24 18.062 899.04 3 - 5
0.4 0 : 12 : 21 18.741 899.32 3 - 5
0.5 0 : 12 : 30 18.282 906.26 3 - 5
0.6 0 : 13 : 05 19.209 927.74 3 - 5
0.7 0 : 12 : 48 19.409 949.31 3 - 5
0.8 0 : 13 : 27 20.293 959.69 3 - 6
0.9 0 : 13 : 34 20.866 981.48 2 - 6
1.0 0 : 13 : 49 21.654 1014.86 1 - 6
1.1 0 : 18 : 28 22.171 1064.82 1 - 7
1.2 0 : 17 : 36 22.527 1098.79 1 - 8
1.3 0 : 17 : 26 22.777 1128.53 1 - 9
1.4 0 : 17 : 48 22.522 1152.54 1 - 10

68 CHAPTER 5. RESULTS

An additional comparison can be seen in Figure 5.7. This graph plots the
value of n, the number of joins after which skew-adjusted SMB is better than
regular joins in terms of CPU or shuffled data, for all values of s. As mentioned
previously, after s ≥ 1.0, skew-adjusted SMB is better than a single regular
join in terms of CPU hours. This performance is achieved by replicating data:
in other words, there is a tradeoff between CPU hours and amount of data
shuffled. As skewness increases, the n for shuffled data increases accordingly
as more data is being replicated.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Value of s (skew parameter of Zipf's law)

1

2

3

4

5

6

7

8

9

10

Br
ea

ke
ve

n
n

CPU
Shuffled Data

Figure 5.7: Value of breakeven n for skew-adjusted SMB compared against the
baseline, for different values of s.

Chapter 6

Conclusions

This work uses sort merge buckets to optimize repeated joins at massive scale.
Repeated joins may arise e.g., in data decryption. The sort merge buckets
solution has been extended to skew-adjusted sort merge buckets, which is
robust to different input sizes, varying degrees of skew, and is more flexible
than regular SMB join.

Both SMB and skew-adjusted SMB join consist of a preprocessing step
which reorganizes data and joining step which exploits the structure of the data.
The preprocessing step is backwards-compatible: a user that is not aware of
the structure can still perform a regular join operation. When evaluated on the
decryption pipeline at Spotify, sort merge buckets achieves lower compute costs
after the second join and a smaller amount of shuffled data after the fourth.

The skew-adjusted SMB join introduces some overhead in order to auto-
matically determine optimal sharding strategies and mitigate the effects of
skew. It does so by replicating shards in order to have a broader versatility
in joining with datasets bucketed with a different number of buckets and in
order to tackle skewed buckets. When data is not skewed, skew-adjusted SMB
has an overhead when compared to regular sort merge buckets: however, it is
still more compute-efficient than regular joins after the third join operation.
As an additional advantage, skew-adjusted SMB is robust to fluctuating data
size in addition to skew and has a lower barrier of entry: the programmer does
not need to estimate properties of the data or understand how the number of
buckets ties into the inner workings of the procedure.

Results from previous chapter show howwe can combine the two techniques
to optimize different join scenarios based on different degrees of skew:

• Low Skew (0 ≤ s < 0.8): If joining more than two times, sort merge
buckets join has better performance than a regular join.

69

70 CHAPTER 6. CONCLUSIONS

• Medium Skew (0.8 ≤ s < 1.0): If joining more than three times, skew-
adjusted SMB has better performance than a regular join.

• High Skew (s ≥ 1.0): Regardless of the number of joins, skew-adjusted
SMB has a better performance.

The experiments have been conducted on Cloud Dataflow through Apache
Beam, the reference implementation of the Dataflow model. However, no
runner-specific detail are used, making this solution broadly applicable to all
of Beam’s runners. As the solution simply consists of pre-partitioning and
reordering data, it is expected that it is applicable to many other MapReduce-
inspired platforms.

As a consequence of the promising results for Spotify’s decryption use case
as evidenced in Section 5.1, a patch introducing sort merge bucket join has
been proposed to Apache Beam1, with the help of more experienced developers
at Spotify. Currently, this patch only contains the initial sort merge bucket
solution.

The code used to run the experiments is available publicly at https://
github.com/Illedran/beam-smbjoin, including the code for gener-
ating different types of skewed data in Beam. The sort merge bucket imple-
mentation is written in Apache Beam, while the pipelines are written as thin
Scala wrapper over the implemented PTransforms using Scio.

6.1 Limitations
SMB presents some limitations. First of all, this type of optimization as de-
scribed in this work is limited to joins with equality condition. This is a
consequence of using a hash function for partitioning: “theta” joins, which
use different conditions for joining records, are not supported, as records that
would join might end up in different buckets.

When it comes to the join type, all types (inner, left/right, outer) are sup-
ported if the number of buckets is the same. If the number of buckets is different,
or buckets are skewed, non-inner joins will produce more records due to data
duplication, with incorrect results.

While the target bucket size is a more understandable parameter compared
to the number of buckets, picking “good” values might still prove to be tricky.
As a reminder, the target bucket size should be small enough that each bucket fits
in memory. However, picking a too small bucket size might increase the time

1https://issues.apache.org/jira/browse/BEAM-6766

https://github.com/Illedran/beam-smbjoin
https://github.com/Illedran/beam-smbjoin
https://issues.apache.org/jira/browse/BEAM-6766

CHAPTER 6. CONCLUSIONS 71

spent when resolving the bucketing metadata and create additional overhead in
opening and reading a large number of files as opposed to reading a smaller
number of files which are larger. If possible, the target bucket size should be
picked with awareness of the block size of the underlying distributed filesystem
in order to minimize internal fragmentation.

6.2 Future Work
The work presents several different areas of possible improvement.

In this work, the bucketing metadata is stored in each file. A unified meta-
data store or format can broadly increase compatibility between different data
formats and encourage widespread adoption. For example, the metadata could
be stored in a single file together with the data, e.g., a JSON file. The file can
store the metadata for each file in its directory, simplifying matching and the
bucketing resolution step. As a result, the bucketing resolution step could sim-
ply become reading the two metadata files without inspecting each single file.
Alternatively, the bucketing metadata can be stored separately in a metadata
store. For example, this could enable even easier access to the optimization as
compatibility information is handled by the metadata store.

As the data in each bucket is sorted, future work could explore the feasibility
of creating buckets incrementally. For example, this could be used to create
daily aggregates from hourly partitions. Moreover, incremental buckets could
be even more suitable for use cases such as streaming. The advantages of data
being sorted can be extended to many different operations which could also
exploit this structure such as look up operations or data deduplication.

As described in Section 4.4, records in a bucket are partitioned to its shards
using round-robin, which results in shards being replicated depending on the
degree of skewness. Different types of partitioning, such as range partitioning,
could be used to reduce the degree of data replication by e.g., replicating only
the shards that are responsible for a particular key. However, the advantages of
more advanced partitioning strategies must be weighted against their cost: for
example computing histograms required for range partitioning might further
increase the overhead required to handle skewness. In general, the problem can
be formulated as a trade-off between the computational and shuffling cost, with
more advanced partitioning strategies requiring larger computational costs in
preprocessing.

Bibliography

[1] Spotify AB. Spotify – Company Info. Dec. 31, 2018. url: https :
/ / newsroom . spotify . com / company - info/ (visited on
02/26/2019).

[2] Tyler Akidau et al. “The dataflow model: a practical approach to bal-
ancing correctness, latency, and cost in massive-scale, unbounded, out-
of-order data processing”. In: Proceedings of the VLDB Endowment
8.12 (Aug. 1, 2015), pp. 1792–1803. issn: 21508097. doi: 10.14778/
2824032.2824076. url: http://dl.acm.org/citation.
cfm?doid=2824032.2824076 (visited on 04/09/2019).

[3] Foto N. Afrati and Jeffrey D. Ullman. “Optimizing joins in a map-
reduce environment”. en. In: Proceedings of the 13th International
Conference on Extending Database Technology - EDBT ’10. Lausanne,
Switzerland: ACM Press, 2010, p. 99. isbn: 978-1-60558-945-9. doi:
10.1145/1739041.1739056. url: http://portal.acm.
org/citation.cfm?doid=1739041.1739056 (visited on
02/06/2019).

[4] YongChul Kwon et al. “A study of skew in mapreduce applications”. In:
Open Cirrus Summit 11 (2011).

[5] Bram Leenders. Scalable User Privacy. Spotify Labs. Sept. 18, 2018.
url:https://labs.spotify.com/2018/09/18/scalable-
user-privacy/ (visited on 06/13/2019).

[6] Why Energy Is A Big And Rapidly Growing Problem For Data Centers.
url:https://www.forbes.com/sites/forbestechcouncil/
2017/12/15/why- energy- is- a- big- and- rapidly-
growing-problem-for-data-centers/#433379815a30.

[7] International Data Corporation. The Digitization of the World - From
Edge to Core. url: https://www.seagate.com/gb/en/our-
story/data-age-2025/ (visited on 05/24/2019).

72

https://newsroom.spotify.com/company-info/
https://newsroom.spotify.com/company-info/
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.14778/2824032.2824076
http://dl.acm.org/citation.cfm?doid=2824032.2824076
http://dl.acm.org/citation.cfm?doid=2824032.2824076
https://doi.org/10.1145/1739041.1739056
http://portal.acm.org/citation.cfm?doid=1739041.1739056
http://portal.acm.org/citation.cfm?doid=1739041.1739056
https://labs.spotify.com/2018/09/18/scalable-user-privacy/
https://labs.spotify.com/2018/09/18/scalable-user-privacy/
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#433379815a30
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#433379815a30
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#433379815a30
https://www.seagate.com/gb/en/our-story/data-age-2025/
https://www.seagate.com/gb/en/our-story/data-age-2025/

BIBLIOGRAPHY 73

[8] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Pro-
cessing on Large Clusters”. In:OSDI’04: Sixth Symposium on Operating
System Design and Implementation. San Francisco, CA, 2004, pp. 137–
150.

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google
File System”. In: Proceedings of the 19th ACM Symposium on Operating
Systems Principles. Bolton Landing, NY, 2003, pp. 20–43.

[10] Konstantin Shvachko et al. “The Hadoop Distributed File System”. In:
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST). 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST). Incline Village, NV, USA: IEEE, May 2010,
pp. 1–10. isbn: 978-1-4244-7152-2. doi: 10.1109/MSST.2010.
5496972. url: http://ieeexplore.ieee.org/document/
5496972/ (visited on 05/24/2019).

[11] Craig Chambers et al. “FlumeJava: easy, efficient data-parallel pipelines”.
In: Proceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation - PLDI ’10. the 2010 ACM SIG-
PLAN conference. Toronto, Ontario, Canada: ACM Press, 2010, p. 363.
isbn: 978-1-4503-0019-3. doi: 10 . 1145 / 1806596 . 1806638.
url: http://portal.acm.org/citation.cfm?doid=
1806596.1806638 (visited on 04/09/2019).

[12] Apache Beam. url: https://beam.apache.org/ (visited on
02/26/2019).

[13] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing”. In: Proceedings of the
9th USENIX Conference on Networked Systems Design and Implemen-
tation. NSDI’12. San Jose, CA: USENIX Association, 2012, pp. 2–2.
url: http://dl.acm.org/citation.cfm?id=2228298.
2228301.

[14] Tyler Akidau et al. “MillWheel: fault-tolerant stream processing at in-
ternet scale”. In: Proceedings of the VLDB Endowment 6.11 (Aug. 27,
2013), pp. 1033–1044. issn: 21508097. doi: 10.14778/2536222.
2536229. url: http : / / dl . acm . org / citation . cfm ?
doid=2536222.2536229 (visited on 04/09/2019).

https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
http://ieeexplore.ieee.org/document/5496972/
http://ieeexplore.ieee.org/document/5496972/
https://doi.org/10.1145/1806596.1806638
http://portal.acm.org/citation.cfm?doid=1806596.1806638
http://portal.acm.org/citation.cfm?doid=1806596.1806638
https://beam.apache.org/
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.14778/2536222.2536229
https://doi.org/10.14778/2536222.2536229
http://dl.acm.org/citation.cfm?doid=2536222.2536229
http://dl.acm.org/citation.cfm?doid=2536222.2536229

74 BIBLIOGRAPHY

[15] Matei Zaharia et al. “Discretized Streams: An Efficient and Fault-tolerant
Model for Stream Processing on Large Clusters”. In: Proceedings of
the 4th USENIX Conference on Hot Topics in Cloud Computing. Hot-
Cloud’12. Boston, MA: USENIX Association, 2012, pp. 10–10. url:
http : / / dl . acm . org / citation . cfm ? id = 2342763 .
2342773.

[16] G. Graefe. “Sort-merge-join: an idea whose time has(h) passed?” In:
Proceedings of 1994 IEEE 10th International Conference on Data En-
gineering. 1994 IEEE 10th International Conference on Data Engi-
neering. Houston, TX, USA: IEEE, 1994, pp. 406–417. isbn: 978-0-
8186-5402-2. doi: 10.1109/ICDE.1994.283062. url: http:
//ieeexplore.ieee.org/document/283062/ (visited on
02/06/2019).

[17] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database Sys-
tems Concepts. 5th ed. New York, NY, USA: McGraw-Hill, Inc., 2006.
isbn: 9780072958867.

[18] Surajit Chaudhuri. “An Overview of Query Optimization in Relational
Systems”. In: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems. PODS ’98.
Seattle, Washington, USA: ACM, 1998, pp. 34–43. isbn: 0-89791-996-
3. doi: 10.1145/275487.275492. url: http://doi.acm.
org/10.1145/275487.275492.

[19] Alok Aggarwal and Jeffrey Vitter S. “The input/output complexity of
sorting and related problems”. In: Communications of the ACM 31.9
(Aug. 1, 1988), pp. 1116–1127. issn: 00010782. doi: 10 . 1145 /
48529.48535. url: http://portal.acm.org/citation.
cfm?doid=48529.48535 (visited on 05/26/2019).

[20] G. Graefe, A. Linville, and L.D. Shapiro. “Sort vs. hash revisited”. In:
IEEE Transactions on Knowledge and Data Engineering 6.6 (Dec. 1994),
pp. 934–944. issn: 10414347. doi: 10.1109/69.334883. url:
http://ieeexplore.ieee.org/document/334883/ (vis-
ited on 04/08/2019).

[21] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. “Mas-
sively parallel sort-merge joins in main memory multi-core database
systems”. In: Proceedings of the VLDB Endowment 5.10 (June 1, 2012),
pp. 1064–1075. issn: 21508097. doi:10.14778/2336664.2336678.

http://dl.acm.org/citation.cfm?id=2342763.2342773
http://dl.acm.org/citation.cfm?id=2342763.2342773
https://doi.org/10.1109/ICDE.1994.283062
http://ieeexplore.ieee.org/document/283062/
http://ieeexplore.ieee.org/document/283062/
https://doi.org/10.1145/275487.275492
http://doi.acm.org/10.1145/275487.275492
http://doi.acm.org/10.1145/275487.275492
https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/48529.48535
http://portal.acm.org/citation.cfm?doid=48529.48535
http://portal.acm.org/citation.cfm?doid=48529.48535
https://doi.org/10.1109/69.334883
http://ieeexplore.ieee.org/document/334883/
https://doi.org/10.14778/2336664.2336678

BIBLIOGRAPHY 75

url: http://dl.acm.org/citation.cfm?doid=2336664.
2336678 (visited on 02/06/2019).

[22] Changkyu Kim et al. “Sort vs. Hash revisited: fast join implementation
on modern multi-core CPUs”. In: Proceedings of the VLDB Endowment
2.2 (Aug. 1, 2009), pp. 1378–1389. issn: 21508097. doi: 10.14778/
1687553.1687564. url: http://dl.acm.org/citation.
cfm?doid=1687553.1687564 (visited on 02/06/2019).

[23] Spyros Blanas et al. “A Comparison of Join Algorithms for Log Process-
ing in MaPreduce”. In: Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of Data. SIGMOD ’10. Indianapolis,
Indiana, USA: ACM, 2010, pp. 975–986. isbn: 978-1-4503-0032-2. doi:
10.1145/1807167.1807273. url: http://doi.acm.org/
10.1145/1807167.1807273.

[24] Jimmy Lin et al. “The curse of zipf and limits to parallelization: A look at
the stragglers problem in mapreduce”. In: 7th Workshop on Large-Scale
Distributed Systems for Information Retrieval. Vol. 1. ACM Boston, MA,
USA. 2009, pp. 57–62.

[25] Benjamin Gufler et al. “Handling Data Skew in MapReduce.” In: Closer
11 (2011), pp. 574–583.

[26] YongChul Kwon et al. “SkewTune: mitigating skew in mapreduce ap-
plications”. en. In: Proceedings of the 2012 international conference
on Management of Data - SIGMOD ’12. Scottsdale, Arizona, USA:
ACM Press, 2012, p. 25. isbn: 978-1-4503-1247-9. doi: 10.1145/
2213836.2213840. url: http://dl.acm.org/citation.
cfm?doid=2213836.2213840.

[27] M. Al Hajj Hassan, M. Bamha, and F. Loulergue. “Handling Data-skew
Effects in Join Operations Using MapReduce”. In: Procedia Computer
Science 29 (2014), pp. 145–158. issn: 18770509. doi: 10.1016/j.
procs.2014.05.014. url:https://linkinghub.elsevier.
com/retrieve/pii/S1877050914001914 (visited on 05/27/2019).

[28] Ganesh Ananthanarayanan et al. “Effective Straggler Mitigation: Attack
of the Clones”. In: Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). Lombard, IL:
USENIX, 2013, pp. 185–198. isbn: 978-1-931971-00-3. url: https:
//www.usenix.org/conference/nsdi13/technical-
sessions/presentation/ananthanarayanan.

http://dl.acm.org/citation.cfm?doid=2336664.2336678
http://dl.acm.org/citation.cfm?doid=2336664.2336678
https://doi.org/10.14778/1687553.1687564
https://doi.org/10.14778/1687553.1687564
http://dl.acm.org/citation.cfm?doid=1687553.1687564
http://dl.acm.org/citation.cfm?doid=1687553.1687564
https://doi.org/10.1145/1807167.1807273
http://doi.acm.org/10.1145/1807167.1807273
http://doi.acm.org/10.1145/1807167.1807273
https://doi.org/10.1145/2213836.2213840
https://doi.org/10.1145/2213836.2213840
http://dl.acm.org/citation.cfm?doid=2213836.2213840
http://dl.acm.org/citation.cfm?doid=2213836.2213840
https://doi.org/10.1016/j.procs.2014.05.014
https://doi.org/10.1016/j.procs.2014.05.014
https://linkinghub.elsevier.com/retrieve/pii/S1877050914001914
https://linkinghub.elsevier.com/retrieve/pii/S1877050914001914
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/ananthanarayanan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/ananthanarayanan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/ananthanarayanan

76 BIBLIOGRAPHY

[29] Igor Maravić. Spotify’s Event Delivery – The Road to the Cloud (Part I).
Spotify Labs. Feb. 25, 2016. url: https://labs.spotify.com/
2016/02/25/spotifys-event-delivery-the-road-to-
the-cloud-part-i/ (visited on 06/13/2019).

[30] Scio. url: https://github.com/spotify/scio/ (visited on
02/26/2019).

[31] Austin Appleby. MurmurHash. Mar. 1, 2011. url: https://sites.
google.com/site/murmurhash/ (visited on 06/20/2019).

https://labs.spotify.com/2016/02/25/spotifys-event-delivery-the-road-to-the-cloud-part-i/
https://labs.spotify.com/2016/02/25/spotifys-event-delivery-the-road-to-the-cloud-part-i/
https://labs.spotify.com/2016/02/25/spotifys-event-delivery-the-road-to-the-cloud-part-i/
https://github.com/spotify/scio/
https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/

www.kth.se

	Introduction
	Research Question
	Goals
	Method
	Results
	Benefits, Ethics and Sustainability
	Outline

	Background
	Dataflow Programming
	Joins Overview
	Join Algorithms
	Distributed Joins

	Skewness
	Related Work

	Platforms
	Cloud Dataflow & Apache Beam
	Platform Comparison
	Event Delivery Infrastructure

	Solution
	Methodology
	Challenges
	SMB Join
	Skew-Adjusted SMB Join
	Analysis

	Results
	Decryption Pipeline
	Generated Data
	Baseline
	SMB Join
	Skew-Adjusted SMB Join

	Conclusions
	Limitations
	Future Work

	Bibliography

