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Abstract

The field of machine learning currently draws massive attention due to ad-
vancements and successful applications announced in the last few years. One
of these applications is self-driving vehicles. A machine learning model can
learn to drive through behavior cloning. Behavior cloning uses an expert’s
behavioral traces as training data. However, the model’s steering predictions
influence the succeeding input to the model and thus the model’s input data
will vary depending on earlier predictions. Eventually the vehicle may de-
viate from the expert’s behavioral traces and fail due to encountering data it
has not been trained on. This is the problem of sequential predictions. DAG-
GER and its improvement SafeDAGGER are algorithms that enable training
models in the sequential prediction domain. Both algorithms iteratively col-
lect new data, aggregate new and old data and retrain models on all data to
avoid catastrophically forgetting previous knowledge. The aggregation of data
leads to problems with increasing model training times, memory requirements
and requires that previous data is maintained forever. This thesis’s purpose
is investigate whether or not SafeDAGGER can be improved with continual
learning to create a more scalable and flexible algorithm. This thesis presents
an improved algorithm called EWC-SD that uses the continual learning algo-
rithm EWC to protect a model’s previous knowledge and thereby only train on
new data. Training only on new data allows EWC-SD to have lower training
times, memory requirements and avoid storing old data forever compared to
the original SafeDAGGER. The different algorithms are evaluated in the con-
text of self-driving vehicles on three tracks in the VBS3 simulator. The results
show EWC-SDwhen trained on new data only does not reach the performance
of SafeDAGGER. Adding a rehearsal buffer containing only 23 training exam-
ples to EWC-SD allows it to outperform SafeDAGGER by reaching the same
performance in half as many iterations. The conclusion is that EWC-SD with
rehearsal solves the problems of increasing model training times, memory re-
quirements and requiring access to all previous data imposed by data aggre-
gation.

Keywords: Elastic weight consolidation, SafeDAGGER,DAGGER,Rehearsal
buffer, Self-driving vehicle, Continual learning
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Sammanfattning

Fältet förmaskininlärning drar för närvarandemassiv uppmärksamhet på grund
av framsteg och framgångsrika applikationer som meddelats under de senaste
åren. En av dessa applikationer är självkörande fordon. En maskininlärnings-
modell kan lära sig att köra ett fordon genom beteendekloning. Beteendeklo-
ning använder en experts beteendespår som träningsdata. En modells styrför-
utsägelser påverkar emellertid efterföljande indata till modellen och således
varierar modellens indata utifrån tidigare förutsägelser. Så småningom kan
fordonet avvika från expertens beteendespår och misslyckas på grund av att
modellen stöter på indata som den inte har tränats på. Det här är problemet
med sekventiella förutsägelser. DAGGER och dess förbättring SafeDAGGER
är algoritmer sommöjliggör att träna modeller i domänen sekventiella förutsä-
gelser. Båda algoritmerna samlar iterativt nya data, aggregerar nya och gamla
data och tränar om modeller på alla data för att undvika att katastrofalt glöm-
ma tidigare kunskaper. Aggregeringen av data leder till problem med ökande
träningstider, ökande minneskrav och kräver att man behåller åtkomst till all
tidigare data för alltid. Avhandlingens syfte är att undersöka om SafeDAG-
GER kan förbättras med stegvis inlärning för att skapa en mer skalbar och
flexibel algoritm. Avhandlingen presenterar en förbättrad algoritm som he-
ter EWC-SD, som använder stegvis inlärningsalgoritmen EWC för att skydda
en modells tidigare kunskaper och därigenom enbart träna på nya data. Att
endast träna på nya data gör det möjligt för EWC-SD att ha lägre tränings-
tider, ökande minneskrav och undvika att lagra gamla data för evigt jämfört
med den ursprungliga SafeDAGGER. De olika algoritmerna utvärderas i kon-
texten självkörande fordon på tre banor i VBS3-simulatorn. Resultaten visar
att EWC-SD tränad enbart på nya data inte uppnår prestanda likvärdig Sa-
feDAGGER. Ifall en lägger till en repeteringsbuffert som innehåller enbart
23 träningsexemplar till EWC-SD kan den överträffa SafeDAGGER genom
att uppnå likvärdig prestanda i hälften så många iterationer. Slutsatsen är att
EWC-SD med repeteringsbuffert löser problemen med ökande träningstider,
ökande minneskrav samt kravet att alla tidigare data ständigt är tillgängliga
som påtvingas av dataaggregering.

Nyckelord:Elastisk viktkonsolidering, SafeDAGGER,DAGGER,Repeterings-
buffert, Självkörande fordon, Stegvis inlärning
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Chapter 1

Introduction

The interest for machine learning, especially deep learning, has skyrocketed
during the last few years [1]. This is due to the last decade of increase in
compute power, increase in data generation rates [2, 3] as well as algorithmic
and tooling improvements. Another reason the interest for deep learning has
increased is that it simply works really well for many domains. Google Trans-
late’s performance increased drastically when deep learningwas applied [4, 5].
In 2015, a deep learning model fromMicrosoft surpassed human performance
in object recognition [6] in the ImageNet competition and researchers could
identify cancer metastases with an accuracy rivaling a trained pathologist [7].
Recording an expert’s actions in certain states and using the data to train mod-
els is called behavior cloning [8]. Lane keeping autonomous vehicles can be
achieved with behavior cloning by recording a human driver’s actions, i.e., the
steering wheel’s angle, together with corresponding pictures of the road, and
use the data to train a machine learning model [9].

This work is commissioned by the Swedish Defence Research Agency (FOI)
[10] as an endeavor to build and spread knowledge within the organization.
FOI is a leading research institute in defence and security. Their main activi-
ties include research, development of methods and technologies, analyses and
studies.

This chapter’s remaining parts are outlined as follows: Section 1.1 gives a
background, section 1.2 defines the problem, section 1.3 defines purpose and
research question. Section 1.4 defines the goal, section 1.5 discuss ethics and
sustainability, section 1.6 describes the research methodology. Section 1.7
presents delimitations and section 1.8 outlines the rest of this report.

1
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1.1 Background

Autonomous vehicles is a sequential prediction problem [11] where each steer-
ing prediction will affect the next prediction since the previous prediction in-
fluences the input distribution, i.e., the view of the road in front of the car. Mis-
predictions causes a model to deviate from the expert’s behavior it is trained
on and by deviating the model will eventually encounter input data it is not
trained on. This is the problem of compounding errors. Behavior cloning suf-
fers from compounding errors and data set aggregation (DAGGER) [12] is an
algorithm that can reduce these errors. DAGGER reduces the problem of com-
pounding errors by iteratively collecting additional data, appending it to the
previous data and then retraining the model from scratch on all data to avoid
forgetting previously learned knowledge. An enhanced version of DAGGER
is SafeDAGGER [13] that is more data efficient than DAGGER since it only
retrains models with data that is deemed difficult. SafeDAGGER is further
described in section 2.3.

Trained models lack flexibility, if one wants to extend a model to handle an ad-
ditional task or a skewed input distribution then one needs to retrain the model
on both old and new data. Otherwise the model will learn to model the new
data but forget how to model the old data. This is the reason DAGGER and
SafeDAGGER aggregate new and old data. The issue of new knowledge over-
writing older knowledge is called catastrophic forgetting [14] and is indicated
by amodel performing well on the new data but its performance on the old data
has severely degraded. Retraining models when one has collected a sufficient
amount of new data can be prohibitively expensive in the long run and may not
even be feasible at all since one may not have access to the old data anymore.
Given a streaming context where a model is trained in an online fashion it may
even be impossible to save all data due to the data generation rates. Continual
learning [15] is an area of research that focuses on enabling models to han-
dle shifts in input distribution and to learn new tasks incrementally, without
forgetting earlier tasks.

Elastic weight consolidation (EWC) [16] is an continual learning algorithm
that enables models to learn tasks incrementally without catastrophic forget-
ting. EWC assumes there exists an explicit loss function in order to be ap-
plicable. EWC protects parameters that are important for a task by adding a
quadratic term to the loss function. Thus parameters important for a task are
not frozen when learning new tasks but changing them incur a high cost. The
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notion of adding tasks in continual learning papers is twofold and can to refer
to (1) changes in the input while the target domain remains unchanged, and
(2) expand the target domain by adding an actual task, which may or may not
be similar to previous tasks. An example of adding a similar task can be to
add the ability to also recognize an additional car to a model that recognize
cars.

In this thesis the notion of knowledge refers to a model’s capabilities after be-
ing trained on data for some task. Thus the phrase forgetting previous knowl-
edgemeans that a model’s performance for a previous task has degraded. The
notion of task in this thesis only refers to the first definition used in continual
learning papers described earlier, i.e., a new task equals a change in the input
distribution.

1.2 Problem

In order to avoid forgetting earlier learned knowledgewhile learning new knowl-
edge, DAGGER and SafeDAGGER need to retrain models on the aggregated
data set containing both new and old data. Training only on new data cause
catastrophic forgetting [14] of previous knowledge. In each iteration of DAG-
GER and SafeDAGGER, new data is collected by deployingmodels and record-
ing input while using a human expert to provide correcting actions that are used
as labels. This data aggregation process is iterative, thereby leading to larger
and larger memory requirements and also longer training periods. In the real
world it might even be unfeasible to store all previous data, access to the data
might become restricted or the data may simply become lost due. Retraining a
model on huge data sets may also be unfeasible as it can require a lot of time.
Thus, it is of great value if models can be trained solely on newly collected data
in each iteration, without aggregating new and old data and without forgetting
previously learned knowledge. EWC’s evaluation [16] shows that it can pro-
tect against catastrophic forgetting in the permuted MNIST test, described in
section 2.5, which simulates shifting input distributions. However, as the per-
muted MNIST test has been criticized of giving unrealistically good results
[17, 18] it is unknown whether or not EWC can protect against catastrophic
forgetting in a more realistic context such as training solely on new data in
each iteration of DAGGER and SafeDAGGER.
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1.3 Purpose

This purpose of this work is to investigate whether the SafeDAGGER algo-
rithm can be made more scalable in terms of memory and training time by uti-
lizing EWC to protect knowledge learned from previous data. This approach
would enable training only on new data instead of all aggregated data. This
leads to the following research question: can the SafeDAGGER-algorithm be
enhanced with the continual learning technique EWC to avoid aggregating
new and old data in each iteration and instead allow training models only on
new data, yet maintaining the same performance as the ordinary SafeDAG-
GER?

1.4 Goal

The goal of combining EWC and SafeDAGGER to creating a more scalable
version of SafeDAGGER is to enable others to use it where it was previously
unfeasible to use.

This thesis’s contribution is EWC-SD. EWC-SD is a scalable and flexible ver-
sion of SafeDAGGER that lacks the need of saving earlier data by using EWC.
The result is a viable algorithm suitable for usage when it is unfeasible to keep
aggregating data.

1.5 Ethics and Sustainability

This section presents the ethical concerns related to continual learning as well
as the possible implications on social, environmental and economical sustain-
ability.

Few ethical concerns are related to continual learning as it is a technique to ex-
tend machine learning models. Though concerns may arise from how contin-
ual learning is applied, e.g., continual learning may enable previously unfeasi-
ble systems that are ethically questionable. Continual learning is still believed
to be appropriate to study since the work aligns with the fifth point in IEEE’s
Code of Ethics [19], one should make explicit the implications of emerging
technologies.
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More andmore jobs are being automated, especially low-skill jobs [20]. Achiev-
ing continual learning would bring humanity one step closer to general arti-
ficial intelligence, which would further increase the share of jobs being auto-
mated. Such a situation would bear resemblance to the industrial revolution,
which was characterized by social upheaval [21], but led to more prosperity in
the long run. At the same time, automation enables humans to focus on less
menial tasks and possibly reduce the need for work altogether.

The ability to continuously learn new tasks without catastrophic forgetting
would provide environmental benefits as the need for retraining models de-
creases. The benefit lies in a reduced power usage as entire models do not
have to be retrained when additional tasks appear. Even though the power sav-
ings from a single model may be insignificant, the sum of all power savings
due to continual learning can be significant and thus a step toward combat-
ing climate change, which is the 13th United Nations sustainable development
goal [22].

From the point of view of economical sustainability, continual learning can
increase companies’ profits as more jobs can be automated. While automat-
ing jobs increase monetary profits, it can also harm social sustainability if
societies around the world do not change together with technological advance-
ments.

1.6 Research Methodology

The research approach is deductive since the work originates in the theory
[23] of continual learning and imitation learning. A measurable hypothesis is
formulated and evaluated through quantitative experiments on an autonomous
vehicle’s driving performance. The research methods are experimental as dif-
ferent hyperparameters are experimented with and applied as practical prob-
lem is solved by combining EWC and SafeDAGGER. The research strategy
is experimental as externally affecting factors are minimized, a hypothesis is
tested and a lot of data is used. Data consisting of road images labeled with
steering angles is collected through experiments. The data is analyzed with
statistics. Chapter 3 gives a more in-depth explanation of the research method-
ology.

A literature study is performed to research previous approaches to continual
learning, imitation learning and the current state-of-the-art. Adjacent research
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areas are also investigated in order to construct a solid starting point for the
work. The literature study’s results are presented in Chapter 2.

1.7 Delimitations

Delimitations are made to limit the scope of the thesis. This thesis’s delimita-
tion regard the choice of continual learning algorithm. EWC is the only used
continual learning algorithm. It is plausible that other continual learning al-
gorithms may perform even better than EWC, however other algorithms are
not considered in order to make the work’s scope manageable.

1.8 Outline

The rest of this report is outlined as follows:

Chapter 2 - Background: This chapter gives the knowledge needed to under-
stand this work and also presents related work.

Chapter 3 - Methodology: This chapter presents the chosen research meth-
ods, discusses validity, reliability and reproducibility and describes how the
research methods were applied.

Chapter 4 - Results: This chapter describes the EWC-SD algorithm and the
experiments’ empirical results.

Chapter 5 - Discussion: This chapter analyzes and discusses the results.

Chapter 6 - Conclusions and Future Work: This chapter provides conclusions
and future work.



Chapter 2

Background

This chapter provides the reader with the necessary information needed to un-
derstand the contents of this thesis and also the related work. Section 2.1
presents supervised learning, section 2.2 explains deep learning, sections 2.3
describes the area of behavior cloning and section 2.4 gives an in depth de-
scription of continual learning and catastrophic forgetting. Related work is
presented at the end of the chapter in section 2.5.

2.1 Supervised Learning

Machine learning can be decomposed into the three branches supervised, un-
supervised and reinforcement learning [24]. Supervised learning utilizes pairs
of labeled data, (X, Y), called training examples. X is a data point and Y is a
label providing some ground truth. The goal of supervised learning is to learn
a function that maps X to Y, i.e, f : X → Y . The idea is that the learned
function should be able to predict the information previously given by the la-
bel when new unlabeled data is fed into the function [25]. An example is to
feed a house’s size to the function that then predicts the value of a house after
being fed many training examples of houses’ sizes, X, and labels, Y, indicating
corresponding house valuations.

Learning a mapping from input, X, to output, Y, can be done in several ways,
but the most prominent approach is to minimize a loss function [25]. A loss
function signifies how badly the function’s predictions are through a scalar
value. A low loss indicates a good mapping and a high loss indicates a bad

7
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mapping. An example of a loss function is mean squared error (MSE), see
Equation 2.1. MSE is a commonly used loss function when the output is a
continuous value. MSE calculates the mean of the squared errors, i.e., differ-
ence between predictions, Yi, and ground truth, Ŷi.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (2.1)

Gradient descent is an optimization algorithm used to find a function’s mini-
mum value and can thus be used to minimizes loss functions. It works through
repeatedly tweaking parameters by taking small steps in the opposite direction
of the gradient, thus slowly descending the loss function’s slope. A gradient
is a vector containing the partial derivative of each of the function’s parame-
ters. The derivative gives a function’s rate of change, it is positive when the
function increases, negative when the function decreases and zero when the
function is not changing. The intuition of taking a step of opposite direction to
the gradient is to go down the function’s slope toward its minimum, see Figure
2.1.

Deciding what data that is important for some task can be difficult. The input,
X, must be relevant to the output, Y, otherwise the learned function’s predic-
tions will be awful. Using something unrelated as input, e.g., ice-cream sales,
instead of house sizes in the earlier example would not work well at all. The
process of identifying, combining and creating appropriate data to learn from

Figure 2.1: Convex function. Red dot shows a point with a positive derivative.
The function’s minimum is as the bottom of the bowl. [Created by author]
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is called feature engineering [25]. Feature engineering is both difficult and
expensive as it requires experts with domain knowledge to determine what is
important for the task at hand. Other methods such as deep learning can reduce
the need of feature engineering.

2.2 Deep Learning

The first artificial neural network (ANN) [26] was inspired by the structure of
the brain, i.e., a network of interconnected neurons. The simplest ANN is the
perceptron [27], which consists of an input layer and a single layer of neurons.
An ANN is a deep neural network (DNN), hence the name deep learning,
when there exists at least one layer of neurons between the input and output
layer. These layers are called hidden layers and Figure 2.2 shows a multi-level
perceptron (MLP) with one hidden layer. A MLP approximates a function
which maps input to output [24] through feedforward computations, i.e., each
layer’s neurons results are fed to the succeeding layer. However when talking
about DNNs it implies networks with many hidden layers, e.g., ResNet-152
that has 152 layers [28].

An ANN consists of an architecture, the network’s topology, and a set of tune-
able parameters that consist of weights and biases. Tweaking these param-
eters through the backpropagation [29] training process allows the network
to learn mappings from input to output by creating an internal representation
[29]. There is less need for feature engineering since an internal representation
is learned but it comes at a cost since deep models are more computationally
expensive. Some type of data, e.g., a picture’s pixels, can be input to ANNs
without any processing and still give good results but one can reduce the train-
ing time and and improve results by pre-processing the data. An example is
face recognition where a cropped and scaled picture is given as input to an
ANN instead of a person together with its surrounding environment. In the
latter case the ANN will have to learn to differentiate the face from the sur-
roundings and also deal with faces of different sizes.

The process of an ANN making a prediction is as follows. Each neuron in
an ANN calculates a weighted sum of its inputs, adds a bias and applies an
activation function to the result. The output of the activation function is the
neuron’s output, which is fed to the neurons in the succeeding layer. Input
neurons and biases do not perform any calculations, input neurons are simply
the input data that is forwarded to the neurons in the next layer and biases are
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Figure 2.2: Multi-level perceptron with one hidden layer. Input layer consists
of one neuron, hidden layer has two neurons and the output layer has one neu-
ron. All layers, except the output layer, have one bias neuron that is denoted
with a B in the figure. [Created by author]

extra parameters giving an additional degree of freedom. The output of an
ANN’s final layer is the prediction. An example is an ANN trained to say yes
or no whether there is a dog present in an image, i.e., binary classification.
Such an ANN would have a single output neuron in its final layer that receives
its input from the previous layer, using the sigmoid activation function that
outputs values between zero and one and if the output would be higher than
some threshold it would be interpreted as a yes prediction.

2.3 Behavior Cloning

Imitation learning is the process of learning behaviors from demonstrations.
A simple form of imitation learning is behavior cloning, which is succinctly
and precisely described as "The process of reconstructing a skill from an oper-
ator’s behavioural traces by means of Machine Learning techniques" [8]. An
example of behavior cloning is to learn a model that clones a human driver’s
behavior. A human drives a car meanwhile a camera records pictures of the
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road as well as the steering wheel’s angle that is used to label the camera’s im-
ages. These angle labeled road images can then be applied in a normal super-
vised learning fashion to train a model that maps camera inputs to appropriate
steering wheel angles.

Behavioral cloning has been successful in many areas. ALVINN [30] uses a
three-layered neural network to follow a road using road images and a laser
range finder as input. The neural network’s prediction represents the most ap-
propriate steering direction in order to stay on the road. Another, more recent
work, uses a convolutional neural network (CNN) to learn a self-driving car
to stay within a lane based on steering wheel angle-labeled images alone [9].
Other successful applications of behavior cloning consist of a quadrocopter
being able to follow a forest trail [31] and piloting an aircraft [32].

The difference between supervised learning and imitation learning is that the
former assumes training and test data to be independent and identically dis-
tributed (i.i.d.) which is not true in the latter. The learned model in imitation
learning affects the distribution of succeeding input data, i.e., predictions are
independent of each other in supervised learning meanwhile predictions in
imitation learning are sequential and have an effect on succeeding predictions
[11]. As an example, if a model predicts steering left in a right turn then the
policy’s next action needs to be a sharp right to prevent the vehicle from going
off-road. However such recovery examples may be rare or non-existing in the
training data as the training data is assumed to originate from a human ex-
pert. This can lead to compounding errors where deviations from the human
expert’s behavior trace will cascade and lead to further errors [33]. Collect-
ing data that contains recovery examples mitigates these errors, e.g., by using
DAGGER [12], see algorithm 1.

DAGGER is a algorithm that is used to iteratively collect additional data,
merge new and old data and then retrain models on all data to create improved
models. Initially, one gathers data and trains a basic model π̂1. When col-
lecting additional data, the model controls the entity, e.g., a self-driving car,
but the human expert’s actions are recorded and used as labels. Based on a
parameter β, see Algorithm 1 line 4, the human expert is sometimes allowed
to control the vehicle and correct its trajectory. If β is one, the human expert
is in control all the time. π̂i is the model, π∗ is the human expert and πi is the
combination of both based on β. By recording the expert’s actions when the
model itself is controlling the vehicle, one collects data indicating what the
model should actually have done in each state. These collected data represent-
ing correcting actions can then be used to retrain the model together with all
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Algorithm 1 DAGGER
1: Initialize D ← ∅
2: Initialize π̂1 to any policy in

∏
3: for i=1...N do
4: Let πi = βiπ

∗ + (1− βi)π̂i
5: Sample T-step trajectories using πi
6: Get dataset Di = (s , π∗(s)) of visited states by πi and actions given by

expert
7: Aggregate datasets: D ← D ∪ Di

8: Train classifier π̂i+1 on D
9: return best π̂i on validation

earlier data in order to learn the model to handle states that it previously could
not handle. Retraining on both new and old data is done to avoid forgetting
previously learned knowledge. DAGGER returns all trained models as it is
not guarantee that each model improves monotonically, thus one has to check
which of the models has the best performance. The pseudocode for DAGGER
can be seen in Algorithm 1.

SafeDAgger [13] is a variant of DAGGER that uses a control model that drives
the vehicle as in DAGGER but adds a safety model. The safety model deter-
mines if the control model’s prediction are good enough. If the predictions are
good enough the control model can control the vehicle, otherwise control is
given to the human expert. Thus SafeDAGGER only collects additional data
from "difficult" states that causes the control model to fail at its task, e.g., a
sharp turn causing a trained model to drive off the road. The purpose of only
collecting data from difficult states is to reduce the involvement of a human
expert. The pseudocode for SafeDAGGER can be seen in Algorithm 2. Lines
1-4 use a reference policy π∗, i.e., a human expert, to collect initial data D and
train an initial control model π0 and an initial safety model πsafe,0. The safety
strategy at line 6 is the process of giving control to the human expert π∗ when
the control model πi cannot drive safely. Line 7 formalizes the safety strategy.
The safety strategy’s purpose is to allow more data collection without crash-
ing. Lines 8-10 aggregate data and update both models by retraining them on
the aggregated data.
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Algorithm 2 SafeDAGGER
1: Collect D0 using a reference policy π∗
2: Collect Dsafe using a reference policy π∗
3: π0 = argminπlosssupervised(π, π

∗, D0)

4: πsafe,0 = argminπsafelosssafe(πsafe, π0, π
∗, Dsafe ∪D0)

5: for i=1...M do
6: Collect D′ using safety strategy using πi−1 and πsafe,i−1
7: Subset Selection: D′ ← φ(s) ∈ D′|πsafe,i−1(πi−1, φ(s)) = 0

8: Di = Di−1 ∪ D ′

9: πi = argminπlosssupervised(π, π
∗, Di)

10: πsafe,i = argminπsafelosssafe(πsafe, πi, π
∗, Dsafe ∪Di)

11: return πM and πsafe,M

2.4 Continual learning and catastrophic for-
getting

Catastrophic forgetting, also known as catastrophic interference, is a phenomenon
witnessed in neural networks when incrementally learning multiple tasks. It
is signified by a drastic decrease in the network’s performance on previously
learned tasks after learning additional tasks [14]. The performance loss oc-
curs since a neural network uses a single set of tunable parameters to learn
mappings from input to output. A preceding task’s mapping will suffer as
the parameters are tuned for a succeeding task’s mapping. This issue is gen-
eralized by the stability-plasticity dilemma [34]. When learning new tasks,
parameters should to be stable enough to retain previous knowledge but also
plastic enough to learn new knowledge. Continual learning is about allowing
a model to learn new tasks in an incremental fashion without forgetting previ-
ously learned tasks. The research area is not standardized and goes by several
name besides continual learning, e.g., sequential learning, incremental learn-
ing, lifelong learning and continuous learning. Achieving continual learning
is key in order to enable more versatile models and lifelong machine learning
(LML), which brings mankind one step closer to artificial general intelligence.
LML has a system perspective on incremental learning [35] meanwhile con-
tinual learning has a more narrow algorithmic perspective. Artificial general
intelligence is a machine with the same or higher intelligence and problem
solving capabilities as a human.
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Subsection 2.4.1 describes areas related to continual learning and subsection
2.4.2 presents a number of desiderata for continual learning.

2.4.1 Areas related to continual learning

Continual learning is related to several other machine learning areas [36]:
transfer learning, multi-task learning and online learning. Below, each related
area is given a short description and how it relates to continual learning.

Transfer learning is a technique that allows one to create a machine learning
model for some task that lacks sufficient labeled data by training themodel on a
related task that has plenty of labeled data. The idea is that the model will learn
a good representation by training on the related task and then the model is fine-
tuned to the target, thus knowledge learned from the related task is transferred
the target task. In continual learning, there exists multiple tasks and knowl-
edge should be transferred forward and backward between tasks [36]. Forward
transfer implies performance on future tasks is improved as the knowledge
learned from earlier tasks is beneficial for future tasks. Backward transfer is
the opposite, learning an additional task improves the performance on earlier
tasks [37].

Multi-task learning interleaves data from all tasks and optimizes the network’s
parameters for all tasks during training. This technique assumes that all tasks
are known and that all data is available. Continual learning learns from each
example in an online fashion meanwhile multi-task learning learns in batches
[36]. Another difference is that in continual learning, one cannot assume to
have access to all previous data.

Online learning is when training data appear one example at a time instead
of appearing in batches. The model is trained and updated for each incoming
example. This allows the model to adapt to changes in the data distribution
but if the distribution changes too much the model will fail on the original data
distribution. Continual learning needs to be able to learn from each example,
adapt to changes in data distributions yet also maintain performance as the
distributions change, over all tasks [36].
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2.4.2 Continual learning desiderata

There exists several ways to mitigate the problems of catastrophic forgetting,
e.g., regularization, ensembles, retraining and rehearsing, but each option has
drawbacks. Regularization approaches can put too much constraints on the
optimization, leading to sets of parameters having low or no performance at
all on new tasks. Creating an ensemble with an additional model for each
task is not scalable as the memory usage will scale with the number of tasks,
each model will also have to learn its own representation that can be common
among tasks. Retraining a model with the entire old data set interleaved with
the new task’s data can be very inefficient and expensive due to long training
times. As reference, a ResNet-50 model training 90 epochs on ImageNet-1k
with a single NVIDIA M40 GPU takes 14 days [38]. Rehearsing on data of
already learned tasks is a way to maintain good performance while learning
new tasks, the issue is that it is costly since past data proportional to the number
of tasks needs to be saved. Retraining and to a lesser extent rehearsing relies
on the assumption that past data remains available.

The definition of continual learning is not entirely agreed upon and is cur-
rently defined by a non-finished set of desiderata [15]. These desiderata consist
of online learning, presence of transfer, resistance to catastrophic forgetting,
bounded system size and no direct access to previous experience, see Figure
2.3. The desiderata describe ideal properties of a continual learning algo-
rithm, however relaxations are needed as it may not be possible to achieve all
desiderata together. As of this being written, there exists no continual learn-
ing algorithm satisfying all of these desiderata. A de facto way of evaluating
continual learning is also absent. Below, each desiderata is presented.

Online learning. Learn from every data point in an online fashion. Data sets
and tasks are not fixed and tasks lack boundaries.

Presence of transfer. Bidirectional knowledge transfer, i.e., previously learned
tasks should improve performance on new tasks and learning new tasks should
improve performance on previously learned tasks.

Resistance to catastrophic forgetting. Performance on previously learned tasks
should not decrease greatly as new tasks are learned.

Bounded system size. Model capacity should be fixed, i.e., the model cannot
expand in order to learn new tasks. This constrains the model to use its capac-
ity well and also means that the model has to forget older tasks gracefully as
its capacity is exceeded.
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No direct access to previous experience. Access to previous data or rewinding
environments is not allowed for continual learning algorithms.

Figure 2.3: Set of continual learning desiderata as defined by the NIPS 2016
workshop. [Created by author]

2.5 Related Work

The DAGGER algorithm [12] deals with the issue of compounding errors in
sequential predictions by iteratively querying a human expert for more data
and retraining the model on past and new data combined. Note that a hu-
man expert is required at all times while collecting data, which is expensive.
Sequential prediction means that a model’s future input depends on its earlier
predictions, thus sequential prediction input data does not fulfill the usual i.i.d.
assumption. As the input data is not i.i.d. each prediction that is not perfect
causes the model to depart slightly from the states visited by the expert and
eventually the model may encounter states significantly different from those it
was trained on, leading to undefined performance. DAGGER solves this issue
by deploying the model, allowing the model to encounter new states based on
its predictions while the human expert is simultaneously providing correcting
actions, i.e., what the model should do when it encounters each state. The
collected states together with the corresponding correcting actions are used as
additional training data that is appended to the previous data and the model
is retrained. This process repeats until the model performs well enough. The
results shows DAGGER outperforming the compared techniques SMILe [33]
and SEARN [39] in two imitation learning tasks, Super Tux Cart and Super
Mario Bros, and handwriting recognition. Tests show that DAGGER is the
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only technique capable of creating a model that never falls drives off the road
in Super Tux Cart.
SafeDAGGER [13] is an improvement upon DAGGER that aims to reduce the
amount of correcting actions needed from the human expert, thus making the
algorithm cheaper as human experts are costly. This reduction is achieved by
introducing another predictor, i.e., another machine learning model. It is a
safety model that learns to predict whether or not the main model can perform
its task well enough, i.e., the main model’s prediction is close enough to the
ground truth. What is deemed well enough is decided by some threshold cho-
sen by the user. Thus SafeDAGGER can select a subset of all collected data
that represents difficult input. These difficult data are used together with old
data to retrain a new model as in the original DAGGER algorithm. SafeDAG-
GER is evaluated via a autonomous driving scenario in TORCS [40]. The
results shows SafeDAGGER is reducing the number of actions needed from
the human expert, fewer crashes and less damage per driven lap and also that
SafeDAGGER trains a goodmodel faster and with less data compared to DAG-
GER.

Kirkpatrick et al. presented the EWC algorithm [16] to overcome catastrophic
forgetting. EWC is a regularization technique that protects tasks’ important
parameters by reducing their plasticity, thus mainly non-important parameters
are optimized during training. EWC relies on there being multiple parameter
configurations for neural networks that give good performance [41, 42] and
thus it is possible to find a set of parameters for task B, θB, where task A’s
important parameters are fairly unchanged. EWC measures parameters’ im-
portance with Fisher information [43] matrices and adds a quadratic penalty
on the important parameters for each new task to the overall loss. Equation 2.2
shows EWC’s loss function with two tasks, A and B. LB(θ) is the usual loss
for some task B and

∑
i

λ

2
Fi(θi − θ∗A,i)2 is the added regularization term that

protects parameters that are important for some task A. The hyperparameter λ
signifies how important the old task is compared to the new task.

L(θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)2 (2.2)

F is the Fisher information matrix, θi is network’s current parameters and θ∗A,i
the set of good parameters extracted previously by training on task A. The
Fisher information matrix is calculated from a set of examples from the pre-
vious task. MNIST [44] is a data set of handwritten digits and is a common
classification task. An evaluation of shifting input distributions is the per-
muted MNIST test. Permuted MNIST is the most commonly used scenario
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(a) MNIST seven (b) Permuted MNIST seven

Figure 2.4: Visualization of the permutedMNIST test for testing shifts in input
distributions. An image of a seven (a) and the same image but the pixels are
permuted (b). Both images have the same label. [Created by author]

in continual learning to evaluate shifting input distributions and creates new
input distributions by permuting the input image’s pixels but keeping the la-
bels unchanged. EWC is evaluated with permuted MNIST, see an example in
Figure 2.4, and on multiple Atari games. The results show that a neural net-
work can retain knowledge and perform well on multiple tasks when trained
on tasks sequentially. However, the permuted MNIST test is criticized of giv-
ing unrealistically good results [17, 18], thus other tests are needed. Another
issue is that there is only a finite amount of parameters that can be deemed
important the network will eventually fail to learn anything or even start for-
getting previous knowledge as the network is saturated and tasks’ important
parameters will be tuned.

Rebuffi et al. presents incremental classifier and representation learning (iCaRL)
[45] for learning tasks incrementally while recording a small set of examples
for each class. iCaRL uses these sets to classify new data through nearest-
mean-of-exemplars and to reduce catastrophic forgetting through rehearsal.
The representation is updated by using a loss function combining classifica-
tion loss and distillation loss. The results shows that iCaRL performes better
than the compared methods and that its accuracy is not biased towards recently
learned classes as other methods are [46].

This thesis differs from the related work in the following ways. This thesis
differs from DAGGER as it uses EWC to maintain previously learned knowl-
edge while training only on the newly collected data instead of retraining on
the union of old and new data. Also, DAGGER is evaluated in Super Tux Kart
while this thesis uses the Virtual Battlespace 3 (VBS3) simulator [47]. This
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thesis’s difference to SafeDAGGER is the same as with DAGGER and also that
this thesis uses a human instead of a model to decide when the control model
is driving well enough. If the human decided the control model is failing, the
human will take over control and data is collected until the human returns the
control to the model. This thesis does not alter EWC, but evaluates EWC in
the more realistic context of autonomous driving with shifting input distribu-
tion instead of the criticized permuted MNIST test. This thesis takes the idea
of a rehearsal buffer containing data from earlier tasks to investigate whether
it can give a significant performance improvement with EWC.
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Methodology

To achieve valid and reproducible research results it is important to select and
plan an appropriate research design. Figure 3.1 summarizes the methods used
in this work’s research design and described throughout section 3.1.

Section 3.1 presents the chosen research methodology and discusses alterna-
tive methods. Section 3.2 describes how the chosen research methodology
was applied in practice.

3.1 Choice of Research Method

This section presents the chosen research methods. The research question is
restated to help the reader follow the discussion about choosing appropriate
research methods. This work’s research question is: can the SafeDAGGER-
algorithm be enhanced with the continual learning technique EWC to avoid
aggregating new and old data in each iteration and instead allow training
models only on new data, yet maintaining the same performance as the ordi-
nary SafeDAGGER?

Quantitative and qualitative research are the twomain types of research. Quan-
titative research deals with work of numerical character meanwhile qualitative
research deals with non-numerical work [23]. This work utilizes the quan-
titative research method as training and evaluating deep learning models is
inherently numerical and provides objective measures whether or not the com-
bination of SafeDAGGER and EWCworks. The qualitative approach could be
useful for evaluating driving quality of an autonomous vehicle, but that would

20
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Figure 3.1: Research design used in this work. [Created by author]

be more suitable after establishing that the SafeDAGGER and EWC combina-
tion works.

Research methods provides a theoretical framework describing how to con-
duct research [23]. Possible research methods suitable for this work’s re-
search question are experimental, analytical, applied. The experimental re-
search method examines connections between variables by altering one vari-
able while keeping others set to see how the result is affected [23]. The analyt-
ical research method tests hypotheses with already existing data and already
existing theories [23]. The applied research method is a practical method that
solves specific questions or practical problems based on existing theory in or-
der to either solve problems or develop solutions [23]. The experimental re-
search method was chosen as answering the research question required exper-
imentation with hyperparameters and the applied research method was chosen
since existing theory, SafeDAGGER and EWC, was used to develop a new
algorithm.

Research strategies provides practical guidelines for performing the research [23].
Research strategies suitable for quantitative research are experimental, ex post
facto, surveys and case study [23]. The experimental research strategy is about
minimizing factors affecting the measurements through well design experi-
ments in order to test hypotheses using huge data sets. The ex post facto re-
search strategy uses already collected data to test hypotheses by searching back
in time to find relationships between variables. Surveys are used to find re-
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lationships between variables and create information on events that are not
directly observed [23]. The case study strategy empirically study real life
events by using several sources of evidence. The experimental research strat-
egy was the only strategy that fitted this work as it was a strategy for testing
hypotheses with large data sets. The hypothesis tested in this work is whether
or not SafeDAGGER’s requirement of aggregating data can be removed by
using EWC.

Induction and deduction are research approaches that provides structured path-
ways of how to draw conclusions [23]. The inductive approach proceeds from
observations from which patterns are detected and hypotheses formulated and
tested, finally resulting in new theory. The deductive approach proceeds from
known theory to formulate a hypothesis that is verified or falsified through ob-
servations. This thesis applied a deductive approach since the work’s research
question investigates and tests if the combination of SafeDAGGER and EWC,
i.e., known theory, can result in a better algorithm. The inductive approach
would be appropriate if the work instead investigated why such an approach
would work, using qualitative methods.

Below, methods used for data collection is presented in section 3.1.1, methods
for data analysis in section 3.1.2 and quality assurance in section 3.1.3.

3.1.1 Data Collection

Data collection methods suitable for quantitative research are experiments,
questionnaires, case study and observations [23]. Experiments gather large
data sets. Questionnaires utilizes questions to gather data. Case studies uses
few participants but gathers data in-depth. Experiments are used in this work
to collect data sets of road images labeled with the corresponding angle of the
steering wheel. This data is recorded when a human expert drives a vehicle
along roads in the VBS3 simulator.

3.1.2 Data Analysis

The purpose of data analysis methods is to inspect, clean, transform andmodel
data in order to provide a reliable foundation from which conclusions could be
drawn and decisions made [23]. Common data analysis methods for quanti-
tative research are statistics and computational mathematics. Statistics calcu-
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late results for samples [23] and computational mathematics utilizes numeri-
cal methods, modelling and simulations to analyze data [23]. Statistics were
chosen as data analysis method since evaluation was based on numerical com-
parisons and it allowed the performance of the combination of SafeDAGGER
and EWC to be compared easily with ordinary SafeDAGGER.

3.1.3 Quality Assurance

Research is about producing new knowledge through the scientific method to
ensure the new knowledge is as correct as possible. To ensure the quality of
quantitative research with a deductive approach one should discuss validity,
reliability, replicability and ethics [23]. Ethics have already been discussed in
section 1.5, the other three are discussed below.

Validity refers to measuring what is actually supposed to be measured [23].
Validity was achieved by thoroughly assessing whether the evaluation criteria
could properly measure changes in performance when EWC was combined
with SafeDAGGER.

Reliability deals with the stability of the tests, i.e., ensuring the test results
are consistent and not dependent random factors [23]. Reliablity was ensured
by removing or minimizing any variance between tests. Concretely, it was
done by opting for determinism wherever possible by assigning seeds to ran-
dom number generators and by using saved scenarios in the VBS3 simulator,
which allowed all tests to have the same initial conditions. The choice of using
a human instead of a safety model in SafeDAGGER introduced some subjec-
tivity as to deciding when the human should have taken control of the vehicle.
However, as it was the same human doing all experiments, all decisions were
kept as similar as possible thus minimizing some uncertainty.

Replicability means that someone else can repeat the research based on the
information contained in this work and attain the same results [23]. This was
achieved in several steps. Descriptions were detailed and explicit to ensure
its possible to reproduce this work without needing to make any guesses or
logical leaps. Hyperparameters, seeds and model architecture were provided.
The used hardware and software were listed to enable others to use the same
hardware and software versions.
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3.2 Method Application

Providing the reader with the work’s practical methodology is important for
reproducibility purposes and also for guaranteeing correctness as the work
becomes transparent and traceable. The hardware and software used in this
work can be viewed in Appendix B.

Section 3.2.1 presents all things related to the data used in this work, section
3.2.2 explains how training was performed and section 3.2.3 describes how
the trained models were evaluated.

The application self-driving vehicles was chosen as a basis to apply the se-
lected methods and execute the work. The VBS3 simulator [47] provided
an environment for collecting data, extracting metrics and evaluating trained
models. The models were evaluated by deploying them in the VBS3 simulator
observing how well they did according to the metrics. The extracted metrics
were (1) driven distance until the vehicle left its lane and (2) if the model
managed to finish a track or not, see the example in Table 3.1. The first metric
showed how far the vehicle could travel, which was easy to compare, and the
second metric made it easy to summarize a model’s performance. If a model
failed to finish the tracks, it was deployed again to collect additional training
data. Each time a model failed, a human expert took control of the vehicle and
corrected the vehicles trajectory before returning control to the model again.
Data was recorded while the vehicle was under human control, thus giving ad-
ditional data representing difficult input needed for further SafeDAGGER it-
erations. An iteration in SafeDAGGER is the process of collecting additional
data, aggregating data and retraining a model. The purpose of each iteration
is to produce an improved model.

An initial data set was collected by manually driving a vehicle around the first
training track. The initial data set was used to train a base model that had some
driving capabilities but not good enough to finish any track. The base model
provided a common foundation for the other models to build upon. Four mod-
els were trained from the base model, (1) a naive model training only on new
data without EWC, (2) a SafeDAGGER model as a baseline, (3) a SafeDAG-
GER model using EWC called EWC-SD and (4) an EWC-SD model with a
rehearsal buffer. The naive model was used to show there existed an actual
problem and it gave a lower bound that the other models could be compared
against. The second model provided a baseline that the third and fourth model
could be compared with to show if EWC-SD and rehearsal worked well.
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All models were deployed independently in VBS3 and iteratively collected
additional data and were retrained until the models either finished all tracks or
had run for ten iterations. Note that the models collected their own data sets
during iterations and that they were not trained on the same data, except for
the inital data set. The reason for this was that each model’s collected data had
to reflect its own weaknesses that varied between the different models.

For each iteration, each model was deployed on both training tracks and also
the test track in order to evaluate its performance. Additional data was col-
lected from situations where the models failed during deployment. Situations
similar to difficult parts of the test track were recorded on the training tracks
when the models could finish the training tracks but not the test track. This
was done as the models were not allowed to train on the test track.

Table 3.1: Example table of evaluation containing the twometrics, an iteration
and three runs. Yes and no labels are color coded to facilitate interpretation

Training track 1 Training track 2 Test track

Distance
driven (m)

Training
track 1
finished

Distance
driven (m)

Training
track 2
finished

Distance
driven (m)

Test
track
finished

Iteration 1
Run 1 1925 yes 687 no 1939 yes
Run 2 1925 yes 531 no 1939 yes
Run 3 1925 yes 1448 yes 795 no

3.2.1 Data

The data was collected by driving a vehicle on roads in the VBS3 simulator
with a fixed velocity of 20km/h. The speed limit was imposed in order to en-
able the human expert to provide good labels. The weather was sunny and the
view was unobstructed. All images depicted the same type of roads, paved and
markedwith white linemarkings and lighting conditions were similar through-
out. Pictures were recorded at a rate of 5Hz with 600x800 resolution and saved
with the corresponding angle of the steering wheel. Two training tracks were
used and one test track, see Figure 3.2. Training track one was 1925 meters,
training track two was 1448 meters and the test track was 1939 meters. Data
was only collected from the training tracks as the test track was used solely for
evaluation.
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The initial data set used to train the base model consisted of 901 labeled train-
ing examples collected from the first training track. All other data was col-
lected from either one of the training tracks. The test track was only used for
evaluation and data was never collected from it. The number of data collected
for each iteration varied between 418 to 491 training examples.

The data collection had two phases in which the data collection method dif-
fered, (1) a model failed on one or both training tracks and (2) a model finished
both training tracks but not the test track. In the first phase, a failing model
was deployed on the track it failed and a human expert gave correcting ac-
tions, which were recorded, as the model performed badly. The second phase
needed an alternate way of collecting data as the models in this phase could
complete the training tracks, thus never needing correcting actions. Thus, the
second phase recorded data from environments in the training tracks that were
very similar to failing environments in the test track. The recorded data in
both phases represented difficult input as the models failed in those situations.
Figure 3.3 shows the difference between a normal state and a difficult state.
Note that the difficult state was difficult because the model encountered a state
that it had barely or not at all been trained on since it was a position where the
vehicle was drifting into the other lane, something the human expert would
never do.

Collected data was pre-processed in two steps in order to remove redundant
information and reduce training time. The collected images were cropped to
remove unnecessary sections and then downsampled to a lower resolution. As
the road was the only important section in each image, cropping away every-

(a) Training track 1 (b) Training track 2 (c) Test track

Figure 3.2: Bird’s eye view of the training set tracks (a) & (b) and the test set
track (c). Roads are the red lines and used roads are highlighted in yellow.
[Created by author]
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(a) Normal image (b) Hard image

Figure 3.3: Image from initial training set (a) and image captured through
SafeDAGGER denoting a difficult state for the model (b). [Created by author]

thing slightly above the horizon created images without redundant informa-
tion. Downsampling the pictures to a lower resolution of 66x200 pixels further
decreased the computational cost of training on the data set. Figure 3.4 shows
each step of the data pre-processing.

(a) Before cropping, 600x800 pixels (b) After cropping, 300x800 pixels

(c) After downsampling, 66x200 pixels

Figure 3.4: Before (a) and after (b) cropping is applied to a picture and then (c)
the cropped picture is downsampled to a lower resolution. [Created by author]



28 CHAPTER 3. METHODOLOGY

3.2.2 Training

MSEwas used as loss function since it is a commonly used loss function for re-
gression problems. MSE computed the squared difference between predicted
steering wheel angle and the recorded ground truth.

EWC uses task boundaries to do two things, (1) compute a Fisher information
matrix for the previous task and (2) copying the network’s parameters for the
previous task. The Fisher informationmatrix captured parameters’ importance
for a specific task and by saving the network’s parameters after training it was
possible to see how much the model’s parameters deviated from the saved
ones after training on a new task. EWC uses the deviation from a task’s saved
parameters and their importance to constrain the learning of new tasks to find
a set of parameters similar to previous tasks’ sets of saved parameters. This
work utilized each iteration of SafeDAGGER as a task boundary. In order
to calculate the Fisher information matrix it was necessary to keep a set of
training examples from the previous task. This work kept a set of 80 training
examples for each iteration in order to compute the Fisher information matrix,
these examples were however not used in training. Using 80 examples were
chosen by experimenting with different amounts. In this work, a new task
meant a shift in the input distribution. Thus each additional Fisher matrix and
set of saved parameters further constrained the training procedure to find a
set of parameters suitable for all input distributions. The intuition of EWC’s
effect was similar to a Venn diagramwhere each Fisher matrix and set of saved
parameters created a circle and the set of parameters that minimized the loss
function was the intersection, see Figure 3.5.

Each model used the base model as a foundation and then they were trained in
different ways. The naive model was trained only on new data but did not use
EWC to protect against catastrophic forgetting. The SafeDAGGERmodel was
trained on all data, both new and old. The EWC-SD model was only trained
on the newly collected data in each iteration and used EWC to protect against
catastrophic forgetting. The EWC-SD model used a rehearsal buffer and was
trained on the newly collected data and the contents of the rehearsal buffer.
The rehearsal buffer was updated between each iteration and implemented as
a reservoir sample [48] of size 23. The buffer’s size was chosen by experiment-
ing with different sizes. A reservoir sample of size s simply stored the first s
examples and then when the n:th example arrived it was stored in the sample
with probability s/n, thus each encountered example had the probability s/n of
being in the sample. When the sample was full and a new example was added
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Figure 3.5: Intuition behind EWC’s imposed constraints. Each additional task
in EWC adds a constraint to the loss function. A constraint is signified by
a circle in the picture. A set of parameters providing a low loss and good
performance for all constraints is found at the intersection of all circles, marked
in green. [Created by author]

to it, an already saved example was evicted chosen uniformly at random.

Automatic hyperparameter search was shown to be impossible since a model’s
test error did not reveal if it performed better or worse to another model with
a higher test error. Each model had to be deployed in the simulator where its
driving performance could be visually inspected and also distance driven mea-
sured. This also meant that early stopping [24] could not be used to prevent
overfitting. Chosen hyperparameter values, see Appendix A, were selected
after manually searching among different values and finding values giving de-
cent performance.

Adding dropout layers [24] to the model reduced the risk of overfitting. This
risk was further reduced by also using L2-regularization [24]. The models
were deemed to not have overfitted the training data if they could perform on
the test track and if the training MSE and validation MSE were fairly similar,
a significantly lower training MSE compared to the validation MSE would
indicate overfitting.
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3.2.3 Evaluation

Each model was deployed and run thrice per track in VBS3 to evaluate its per-
formance. Multiple runs were necessary as the results varied slightly between
runs. Three runs per track were chosen as a trade off between statistical va-
lidity and time cost. The models were, for each iteration, evaluated on driven
distance measured in meters and whether they finished the training tracks and
test track. A model was allowed to drive until it either reached the target, went
off road or veered into the opposite lane. The first two conditions were checked
via the VBS3 simulator’s API and a human checked the third condition as the
API lacked support for it.

Driven distance was chosen because it is numerical and straight forward to
compare between iterations. Distance also measures how well the vehicle
drives as the speed is constant, a vehicle moving in a zig-zag pattern will have
to travel further than a model that drives straight. By checking whether or not
the models finished the training tracks it was possible to see if they monoton-
ically improved or if they regressed in performance, e.g., a model manages to
finish the first training track during some iteration but fails on the same track
during the next iteration. Measuring MSE allowed comparisons to see if MSE
was representative of a models performance or not in this context. Presenting
the amount of data collected for each model for each iteration made it possible
to see that there were no major differences in the number of collected training
examples leading to unfair advantages.
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Results

This chapter presents the altered and improved version of the SafeDAGGER
algorithm, called EWC-SD, in section 4.1. EWC-SD is an acronym for elastic
weight consolidation safe dataset aggregation. Section 4.2 presents the empir-
ical data from experiments conducted with variants of SafeDAGGER.

4.1 EWC-SD

EWC-SD is similar to SafeDAGGER and uses the idea of a safety model from
SafeDAGGER, but in the form of a human. An initial data set is collected
to train an initial model, see line 1 & 2 in Algorithm 3. The for-loop in the
algorithm, at line 5, is the iterative phase of deploying the model to collect
additional data where it fails, line 6, and then retraining the model to make
it succeed in states where it previously failed, line 7. A Fisher information
matrix that shows parameter importance for a task is calculated from a set of
80 training examples saved from the previous iteration, see line 8. A model’s
parameters are saved after training and used in the EWC constraint during
the suceeding training iterations. Both Fisher information matrices and saved
parameters are stored in lists and the results on lines 8-9 are appended to the
corresponding lists. EWC is used when training and only data Di from the
current iteration is used for training instead of all data, see line 7. This is a
significant difference from both DAGGER and SafeDAGGER.
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Algorithm 3 EWC-SD
1: Collect D0 using a human expert
2: π0 = argminπloss(D0)

3: F = Calculate Fisher information matrix from D0

4: θ∗ = parameters of π0
5: for i=1...M do
6: Di = Collect difficult data using using πi−1 and human intervention
7: πi = argminπEWC loss(πi−1, Di, F, θ

∗)

8: F = Calculate Fisher information matrix with data saved from Di−1.
Append result to list of Fisher matrices

9: θ∗ = Append parameters of πi to list of parameters
10: return πM

These changes are motivated by the fact that EWC can allow a model to learn
shifts in input distributions yet remain performant on previous input distribu-
tions. Imperfect predictions causes a model to drift from the human expert’s
trajectory, resulting in input that the models have not been trained on. This
new input may consists of images where the vehicle is drifting out of the lane,
e.g., being very close to the road’s center line or being very close to going off
road. Such input represents a shift from the human expert’s trajectory that runs
along the center of the lane. Collecting data that is not similar to the human
expert’s usual trajectory represents an altered input distribution. Thus, apply-
ing EWC to SafeDAGGER is suitable to remove the need of saving previous
data, lowering training times and memory requirements.

4.2 Empirical Results

All models originate from the same model, called the base model. The base
model is trained on some initial data that allows it to drive for 200 to 800
meters depending on the track it is driving on.

The naive approach that trains only on new data without using EWC cannot
retain its performance, see Table 4.1. The naive approach does improve from
the base model in the first iteration, however it catastrophically forgets earlier
knowledge in the following iterations. An example of this is that the model is
trained on left turns as it is a weakness during iteration two but it causes the
model tomostly steer left in the following iteration. Thus themodel fails to stay
on the road and quickly ends the test. This can be seen in iteration two, three
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Table 4.1: Empirical results of naive model

Training track 1 Training track 2 Test track

Distance
driven (m)

Training
track 1
finished

Distance
driven (m)

Training
track 2
finished

Distance
driven (m)

Test
track
finished

Iteration 1
Run 1 1927 yes 849.8 no 1462.4 no
Run 2 1926 yes 384.3 no 1458.7 no
Run 3 1929.1 yes 834 no 1455.8 no
Iteration 2
Run 1 8.8 no 11 no 12 no
Run 2 8.7 no 11 no 11.9 no
Run 3 8.8 no 11 no 12 no
Iteration 3
Run 1 16.8 no 308.2 no 181.3 no
Run 2 14.5 no 832.7 no 181.7 no
Run 3 15.6 no 823.8 no 181.6 no
Iteration 4
Run 1 9.3 no 12.1 no 13.4 no
Run 2 9.3 no 12.1 no 13.4 no
Run 3 9.3 no 12.1 no 13.2 no

and four as the model, almost instantly, drives off the road. The naive model
is only tested for four iterations as it is clear that it does not improve.

SafeDAGGER, which is trained on all data, improves its performance in each
iteration except for the third iteration, see Table 4.2. In the third iteration, the
model fails after 204 meters on the test track which corresponds to a sharp
right turn. In the next iteration the model becomes perfect and manages to fin-
ish all tracks. These results highlight that models trained with SafeDAGGER
do not improve monotonically as iteration two performs better than iteration
three.

EWC-SD, which is trained only on new data with EWC, shows that it can resist
catastrophic forgetting and improve its performance as the number of iterations
increase, see Table 4.3. However, EWC-SD requires ten iterations before it can
complete the test track and even then it only manages to complete the test track
in two out of three runs. As comparison, SafeDAGGER only requires four iter-
ations before it completes all the test track in all runs and SafeDAGGER even
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manages to complete the test track in one run during iteration two. One thing
to note is that EWC-SD seems to catastrophically forget between iterations one
and two as its performance severely degrades, however the model regains its
performance in the following iterations.

EWC-SD with rehearsal, which injects 23 earlier examples into the training
data, has the best performance, see Table 4.4. It manages to finish the test track
in all three runs in iteration two. That is two iterations less than the baseline
SafeDAGGER and eight iterations less than EWC-SD. This shows is a signif-
icant improvement over SafeDAGGER and also that rehearsal is an extremely
useful technique with low cost as 23 examples corresponds to approximately
5% of the training data used per iteration.

Table 4.2: Empirical results of SafeDAGGER

Training track 1 Training track 2 Test track

Distance
driven (m)

Training
track 1
finished

Distance
driven (m)

Training
track 2
finished

Distance
driven (m)

Test
track
finished

Iteration 1
Run 1 1929.4 yes 1448.4 yes 502.7 no
Run 2 1929 yes 1448.1 yes 1888.1 no
Run 3 1930.2 yes 1448.1 yes 1472.9 no
Iteration 2
Run 1 1927.1 yes 1449.6 yes 1552.6 no
Run 2 1926.6 yes 1447.1 yes 1941.9 yes
Run 3 1927.8 yes 1449.6 yes 621.3 no
Iteration 3
Run 1 1927.3 yes 1448.1 yes 204.4 no
Run 2 1929.8 yes 1449.6 yes 204.5 no
Run 3 1928.4 yes 1449.2 yes 204.4 no
Iteration 4
Run 1 1928.4 yes 1446.5 yes 1941.6 yes
Run 2 1927.1 yes 1447.5 yes 1940.9 yes
Run 3 1926.8 yes 1448 yes 1939.9 yes
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By cross referencing iterations two and four in SafeDAGGER’sMSE Table 4.5
and SafeDAGGER’s performance in Table 4.2 it is possible to see that a lower
MSE does not always correspond to better performance. SafeDAGGER is bet-
ter in iteration four than iteration two but it’s MSE in iteration four is 0.00296
which is higher than the MSE of iteration two which is 0.00237. Thus a higher
MSE does not always indicate better performance in this application.

As each algorithm needs to be trained on data relevant to their individual weak-
nesses, their training data is not identical. The amount of training examples
used in each iteration is between 418 to 491. The mean number of examples
used to train each algorithm is fairly similar, the largest difference is between
EWC-SD and the rehearsal approach with a mean difference of 13.6 training
examples per iteration. Table 4.6 shows the number of training examples used
for each algorithm and iteration as well as mean number of training examples
per algorithm.

To summarize the performance of each algorithm, the test track completion per
iteration is calculated as the three run mean for each algorithm and presented
in Figure 4.1. Each algorithm is included in the Figure until the algorithm
manages to finish the test track during all three runs. SafeDAGGER reaches
100% after four iterations, the rehearsal approach reaches 100% after two it-
erations and EWC-SD only reaches 87% test track completion as it failed one
of its runs during the tenth iteration, which is the last iteration. Figure 4.1 also
reveals that EWC-SD’s performance seems to oscillate up and down between
iterations four to nine.
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Table 4.3: Empirical results of EWC-SD

Training track 1 Training track 2 Test track

Distance
driven (m)

Training
track 1
finished

Distance
driven (m)

Training
track 2
finished

Distance
driven (m)

Test
track
finished

Iteration 1
Run 1 500.6 no 1448.3 yes 619.8 no
Run 2 501 no 1446.1 yes 620.3 no
Run 3 501.7 no 1446.9 yes 1259.6 no
Iteration 2
Run 1 38 no 49.7 no 192.4 no
Run 2 37.9 no 49.5 no 106.8 no
Run 3 37.7 no 51.5 no 183.7 no
Iteration 3
Run 1 312.4 no 1449 yes 186.1 no
Run 2 310.6 no 1448.3 yes 185.8 no
Run 3 308.4 no 1448.9 yes 177 no
Iteration 4
Run 1 501.3 no 1448.8 yes 195.3 no
Run 2 501.6 no 1447.4 yes 187.8 no
Run 3 326 no 1447.9 yes 195.2 no
Iteration 5
Run 1 490.2 no 1447.3 yes 487.6 no
Run 2 487.2 no 1448.4 yes 494.4 no
Run 3 486.6 no 1446.5 yes 493.9 no
Iteration 6
Run 1 329.5 no 866.5 no 220.6 no
Run 2 328.8 no 833.4 no 219.6 no
Run 3 329.2 no 834.7 no 214.1 no
Iteration 7
Run 1 1923.8 yes 1447 yes 602.8 no
Run 2 1925 yes 1445.6 yes 602.3 no
Run 3 1924.2 yes 1445.6 yes 602.8 no
Iteration 8
Run 1 675.7 no 875.3 no 204.9 no
Run 2 322.2 no 844.4 no 196.8 no
Run 3 322.9 no 845.3 no 203.4 no
Iteration 9
Run 1 1924.4 yes 1444.8 yes 617.3 no
Run 2 1924 yes 1447.2 yes 607 no
Run 3 1925.7 yes 1445.1 yes 1372.9 no
Iteration 10
Run 1 1923.9 yes 1446.8 yes 1938 yes
Run 2 1925.9 yes 1446.7 yes 1174.2 no
Run 3 1923.6 yes 1447.9 yes 1939 yes
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Table 4.4: Empirical results of EWC-SD with a rehearsal buffer

Training track 1 Training track 2 Test track

Distance
driven (m)

Training
track 1
finished

Distance
driven (m)

Training
track 2
finished

Distance
driven (m)

Test
track
finished

Iteration 1
Run 1 1929.2 yes 834.4 no 780.9 no
Run 2 1929 yes 834.2 no 1175.2 no
Run 3 1928.9 yes 832.9 no 1176.9 no
Iteration 2
Run 1 1928.7 yes 1445.6 yes 1939.9 yes
Run 2 1926.3 yes 1445.5 yes 1939.1 yes
Run 3 1927.2 yes 1445.5 yes 1938.1 yes

Table 4.5: Mean squared error of the different algorithms during each iteration.
Three of the algorithms have two MSE values that are written as validation
error / previous task’s data validation error

Mean squared error per iteration
SafeDagger EWC-SD EWC-SD with rehearsal Naive

Iteration 1 0.00469 0.00698 / 0.00376 0.00567 / 0.0034 0.00496 / 0.00436
Iteration 2 0.00237 0.00158 / 0.02136 0.01042 / 0.00444 0.01523 / 0.04225
Iteration 3 0.00247 0.00464 / 0.00175 N/A 0.00654 / 0.0761
Iteration 4 0.00296 0.00534 / 0.0046 N/A 0.00684 / 0.11328
Iteration 5 N/A 0.0116 / 0.00596 N/A N/A
Iteration 6 N/A 0.01735 / 0.01632 N/A N/A
Iteration 7 N/A 0.00655 / 0.02994 N/A N/A
Iteration 8 N/A 0.00855 / 0.02227 N/A N/A
Iteration 9 N/A 0.00447 / 0.01569 N/A N/A
Iteration 10 N/A 0.00935 / 0.01101 N/A N/A
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Table 4.6: Number of samples collected in each iteration for the the tested
algorithms

Number of samples collected
SafeDagger EWC-SD EWC-SD with rehearsal Naive

Iteration 1 458 458 458 458
Iteration 2 455 422 451 455
Iteration 3 430 491 N/A 423
Iteration 4 N/A 460 N/A 457
Iteration 5 N/A 427 N/A N/A
Iteration 6 N/A 435 N/A N/A
Iteration 7 N/A 453 N/A N/A
Iteration 8 N/A 419 N/A N/A
Iteration 9 N/A 426 N/A N/A
Iteration 10 N/A 418 N/A N/A
Mean 447,6 440,9 454,5 448,3

Figure 4.1: Performance summary of the different approaches. Showing mean
test track completion per iteration. [Created by author]
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Discussion

The empirical results shows that the naive approach is not viable and that
SafeDAGGER or EWC-SD is needed to not forget previously learned knowl-
edge. EWC-SD does not achieve the same performance as SafeDAGGER, but
it does improve over time and givenmore iterations it might reach performance
equal to SafeDAGGER. Adding rehearsal to EWC-SD significantly improves
its performance and it even produces a very good model in fewer iterations
than the ordinary SafeDAGGER algorithm. This result is very interesting as
it might be a definitive improvement that can replace SafeDAGGER, but ad-
ditional research is needed to verify such a claim as there are multiple sources
of uncertainty that may have affected the outcome. The sources of uncertainty
include that the models are trained on different data, slightly different data
amounts and human error during data collection.

Adding a rehearsal buffer to EWC-SD using reservoir sampling provides a
significant improvement at a very low cost. The buffer size is roughly five
percent of the number of training examples used for each iteration, i.e., 23
training examples. This simple addition allowed EWC-SD to achieve excellent
performance already after two iterations, which is half of what SafeDAGGER
requires. Thus, rehearsal buffers are an simple and cheap way of greatly in-
creasing performance. Interestingly, another study at FOI [49] also noted that
rehearsing on 5% of old data together with EWC gave an significant increase in
performance. Questions regarding optimal buffer eviction policies, e.g., first
in first out or random, and buffer sizes are not answered in this work and are
suitable for examination in future work.
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As seen in Table 4.5, a lower MSE does not always indicate a better perform-
ing model. This causes a range of issues such as not being able to use early
stopping to prevent overfitting and not being able to perform automatic hyper-
parameter search. A theory is that the discrepancy is caused due to data not
being i.i.d. which affects the input distribution when a model is deployed in
the VBS3 simulator, but not when calculating the validation MSE during a
model’s training. Slight mispredictions of the steering angle compound while
driving inVBS3which cause themodels to slightly deviate from the human ex-
pert’s trajectory and eventually encounter input that they have not been trained
on. An example is a model trained on straight roads that is driving a vehi-
cle along a straight road and compounding errors causes it to drift to the left.
Eventually the model will drive along the left edge of the road, which it has
not been trained on, and thus its actions are unpredictable. If a model with
a low MSE makes a slight misprediction at the wrong time, e.g., in a sharp
curve, it may be possible that it veers off the human expert’s trajectory and
fails meanwhile another model with a higher MSE might not make the same
misprediction in the sharp curve and thus manages to drive further. In short,
the MSE inconcistency might be due to non i.i.d. data and inconvenient mis-
predictions at critical moments that cause models to encounter input that they
have not been trained on.

As each algorithm requires data tailored to its specific weaknesses the different
algorithms are trained on different data sets. This is an issue as comparing
algorithms trained on different data is not truly fair, however it is needed in
this case. To mitigate this issue data was collected in the same way for each
algorithm to ensure that no algorithm received dissimilar data. The amount of
data used is low and should be larger. Mean number of training examples, see
Figure 4.6, are close to each other and is deemed to not have a significant effect
on the results but the number of training examples should have been truncated
to make all data sets identical in size.

The evaluation metrics are decent, but they could be improved. The improve-
ment lies in that the metrics do not reveal a model’s performance in all cases.
The metrics only reveal a model’s performance up until the model’s first fail-
ure. As such, imagine a scenario where a model is able to complete the first
99% of a track but goes off track when it encounters that last 1%. The model
would be deemed to perform well. However if the scenario is reversed and the
model fails right at the start it will be deemed worthless while it can actually
complete the rest of the track by itself. This is the problem of only evaluating
up until the first failure, instead some other metric should be used. A propo-
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sition is to use the number of human interventions to keep the vehicle in its
lane instead of measuring whether or not the vehicle finished the track. The
number of interventions gives the same information as measuring whether or
not the vehicle completes a track and it also allows one to evaluate the vehicles
performance on the whole track. Counting human interventions should have
been used in this work as several of the models failed early but could drive
quite far on their own beyond the initial failing point, thus making the models
seem worse than they really were. However, this metric was not thought of
until after the evaluation was performed.

The chosen research methods have worked very well for this work and it is
hard to see benefits of using other research methods. However with the applied
methodology, the number of training examples should have been the same for
all models over all iterations. Even though the difference in number of training
examples between the algorithms is small it is still a source of unevenness
and should be eliminated. Moreover, additional evaluation runs should have
been used to provide results with higher statistical guarantees. As the results
could vary between runs it is not guaranteed that the models that managed
to finish the tracks in all three runs would finish the tracks if ten runs were
evaluated. Additional runs would identify such situations and produce more
reliable results. However, three runs were deemed to be good enough and a
decent trade off given that the increased time cost of using more runs.

As SafeDAGGER’s safety model was replaced with a human to determine
when a model required correcting actions, there is concerns for potential bias
and validity issues. The human giving correcting actions knew which model
was driving and could thus provide better correcting actions to the somemodel,
e.g., EWC-SD, in order to improve its results. However, such bias did not oc-
cur and the human supplied correcting actions were as consistent as possible
over all models in order to provide valid and authentic results. Another issue is
whether or not it is appropriate to replace SafeDAGGER’s safety model with
a human. It was deemed okay to use a human as safety model in this work as
it was easy to see when a model deviated from the desired driving pattern in
VBS3. However, this work should be reproduced with a proper safety model
to ensure its validity.

During the work many problems were encountered and worked around. Aside
from practical issues with hardware and drivers, a major issue was the problem
of a lower MSE not guaranteeing a model to perform better. This constrained
the work to use manual hyperparameter search that took a lot of time since
each model had to be evaluated by being deployed in the VBS3 simulator and
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waiting for it to drive in real-time to monitor how far the model was able to
drive. Even though this is a problem it also means that there exists potential
for improvement as it is highly unlikely that the best hyperparameters were
found.

The delimitations are appropriate. This work is a proof of concept that indi-
cates that it is possible to train models only on the most recent data when using
EWC together with SafeDAGGER. Delimiting this work to only use EWC is
appropriate since including additional continual learning algorithms quickly
makes the work significantly larger. By using only EWC, this work shows that
it is possible to improve SafeDAGGER through continual learning and shows
that it may be worth to continue this work with improved versions of EWC
such as online EWC [50] or EWC++ [51].
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Conclusions and Future Work

This thesis presents an improvement upon the SafeDAGGER algorithm that is
used to mitigate compounding errors in imitation learning. The improvement
is called EWC-SD and is a flexible alternative that uses EWC to train only on
new data instead of retraining on both new and old data combined. This allows
EWC-SD to scale with larger amount of data as previous data does not need to
be stored, lowers training time and allows extending trained model’s when old
data is not available any more. Another contribution of this work is showing
that EWC can handle shifting input distributions in the context of autonomous
vehicles, a more real task than the commonly used and criticized permuted
MNIST test.

The results show that EWC-SDworks but it takes longer than SafeDAGGER to
reach good performance. However, by adding a small rehearsal buffer contain-
ing only 23 training examples allows EWC-SD to reach excellent performance
in half as many iterations as SafeDAGGER. The conclusion is that EWC-SD
does not achieve the same performance as SafeDAGGER but EWC-SD with
rehearsal does. EWC-SD with rehearsal solves the problems associated with
aggregating data in SafeDAGGER, i.e., increasing training times, memory re-
quirements and maintaining access to all previous data.

The purpose of this thesis is to investigate whether SafeDAGGER can be made
more scalable in terms of memory and training time by utilizing EWC to train
only on new data instead of all aggregated data. The purpose is fulfilled as
the results show EWC-SD being able to learn and improve over time when
only training on new data. Memory efficiency is achieved since old data can
be discarded, thus allowing low memory systems to train models on data sets
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that are otherwise too large. When using EWC-SD a Fisher informationmatrix
must be calculated, which takes some time. Thus the aggregated data used in
SafeDAGGER must reach a certain size before EWC-SD reduces the training
time.

The goal of creating a more scalable version of SafeDAGGER that allows pre-
viously unfeasible applications has been fully fulfilled. EWC-SD provides a
more scalable version of SafeDAGGER, however it requires more training be-
fore reaching the same performance as SafeDAGGER. Adding rehearsal to
EWC-SD greatly reduces the amount of training needed and makes EWC-SD
outperform SafeDAGGER. Thus EWC-SD can be used in applications where
it is unfeasible to store and aggregate data as EWC-SD lacks the need to store
all data.

The research question asks whether or not SafeDAGGER can be enhanced
with EWC to train only on new data yet maintain the performance given by
training on all data. EWC-SD does not maintain the same performance as
SafeDAGGER, however by adding rehearsal EWC-SD performs even better
than SafeDAGGER.

Aggregating data iteratively is a problem as it increases memory requirements
andmodel training time. Applying EWC to SafeDAGGER shows that it is pos-
sible to train only on new data and that aggregating data may not be neccessary,
thus relieving the problem. However, this approach needs further research to
validate these results.

Areas of future work include solving the MSE discrepancy problem, evalu-
ating additional continual learning techniques, finding the optimal rehearsal
buffer type and size and reproducing of this work using hyperparameter search
and larger data sets.

Solving the MSE discrepancy problem will enable early stopping and auto-
matic hyperparameter search. Both techniques are key to achieving better re-
sults.

Trying improved versions of EWC such as EWC++ [51] or online EWC [50] is
interesting since they both perform better than EWC and does not require stor-
ing multiple Fisher matrices and variables, thus further lowering the memory
requirements.

This work uses a rehearsal buffer implemented as a reservoir sample. This
may not be the optimal type of buffer and other variants should be researched.
Buffer sizes are also an area where further research is needed to find the opti-
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mal trade off between increasing performance and additional memory cost of
keeping previous data.
Reproducing this work with larger data sets and with hyperparameter search
will validate the idea of applying EWC to SafeDAGGER and might also pro-
vide better results due to better hyperparameters.
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Appendix A

Model and Hyperparameter In-
formation

The model’s architecture is an altered version of Nvidia’s architecture for self
driving vehicles [52].The model consists of four convolutional layers, three
fully connected layers and a single output giving a steering angle, see Figure
A.1. The model takes RGB images of 66x200 pixels as input. Dropout is used
between the fully connected layers to prevent overfitting. The used hyperpa-
rameters can be seen in Table A.1. SafeDAGGER used 75 epochs as its train-
ing had more data and 28 epochs were used for the other approaches.

Table A.1: Hyperparameters

Optimizer = Adam
Learning rate = 0.0001
Dropout keep probability = 0.8
Epochs = 75 or 28
Batch size = 50
L2-regularization = 0.0001
EWC-lambda = 5000
Number of Fisher samples = 80
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Figure A.1: Deep learning model architecture consisting of four convolutional
layers, three fully connected layers and one output. [Created by author]



Appendix B

Hardware and Software Informa-
tion

This appendix presents all software used, including their versions, and the
hardware used during model training and testing. It is done to facilitate repro-
duction of this work. Table B.1 lists the used software and their versions. The
used seed was 20180423, the code snippet below shows the seeds that were
set.

import tensorflow as tf
import numpy as np
import os

os.environ['PYTHONHASHSEED'] = '20180423'
np.random.seed(20180423)
tf.set_random_seed(20180423)

The implementation was written in the programming language Python [53].
Tensorflow [54] was used for building and training the models. NumPy [55]
was used for representing data and manipulating it. Matplotlib [56] was used
to visualize data. Windows 10 was used as development platform and for de-
ploying the models in VBS3. The machine used for training used Ubuntu
18.04. The VBS3 [47] simulator was used to collect data and test the model.
vJoy [57] was used to create a virtual joystick that a model could use to control
the vehicle inside VBS3 and pyvjoy [58] is a set of Python bindings that al-
lows one to manipulate vJoy devices. AutoHotkey [59] is a scripting language
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Table B.1: Exhaustive information about the used software

Python 3.6.7
Tensorflow 1.12.0
NumPy 1.15.4
Matplotlib 3.0.2
Virtual Battlespace 3 17.4
Ubuntu 18.04.1 64-bit
Windows 10 Version 10.0.14393 Build 14393
CUDA 10.1
Nvidia driver 418.39
vJoy 2.1.8
pyvjoy
UJR 6.10
AutoHotkey

and URJ [60] is an AutohotKey script that was used used to map the physical
joystick to the virtual joystick.

The Windows 10 machine was equipped with a Intel Core i7-4800MQ CPU
and 32GiB of RAM. The Ubuntu 18.04 machine was equipped with a GTX
1080TI GPU, a AMD Ryzen Threadripper 1950X 16-core CPU and 64GiB
RAM. A Logitech Extreme 3D Pro joystick was used to drive a vehicle in the
VBS3 simulator to collect data.
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