
DEGREE PROJECT IN TECHNOLOGY,
SECOND CYCLE, 30 CREDITS
STOCKHOLM, SWEDEN 2021

Transformer-based
Multistage
Architectures for Code
Search

KTH Thesis Report

Angel L. González

KTH ROYAL INSTITUTE OF TECHNOLOGY
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Authors
Angel L González <algon@kth.se>
Information and Communication Technology
KTH Royal Institute of Technology

Place for Project
Stockholm, Sweden
RISE Research Institutes of Sweden

Examiner
Amir H. Payberah, KTH Royal Institute of Technology

Supervisors

Francisco J. Peña, KTH Royal Institute of Technology
Sepideh Pashami and Ahmad Al-Shishtawy, RISE Research Institutes of Sweden

i

Abstract

Code Search is one of the most common tasks for developers. The open-source software movement and the
rise of social media have made this process easier thanks to the vast public software repositories available
to everyone and the Q&A sites where individuals can resolve their doubts. However, in the case of poorly
documented code that is difficult to search in a repository, or in the case of private enterprise frameworks
that are not publicly available, so there is not a community on Q&A sites to answer questions, searching
for code snippets to solve doubts or learn how to use an API becomes very complicated. In order to solve
this problem, this thesis studies the use of natural language in code retrieval. In particular, it studies
transformer-based models, such as Bidirectional Encoder Representations from Transformers (BERT),
which are currently state of the art in natural language processing but present high latency in information
retrieval tasks. That is why this project proposes a multi-stage architecture that seeks to maintain the
performance of standard BERT-based models while reducing the high latency usually associated with
the use of this type of framework. Experiments show that this architecture outperforms previous non-
BERT-based models by +0.17 on the Top 1 (or Recall@1) metric and reduces latency with inference
times 5% of those of standard BERT models.

Keywords

Code Search, Natural Language Processing, BERT, Information Retrieval

ii

Abstract

Kodsökning är en av de vanligaste uppgifterna för utvecklare. Rörelsen för öppen källkod och de sociala
medierna har gjort denna process enklare tack vare de stora offentliga programvaruupplagorna som är
tillgängliga för alla och de Q&A-webbplatser där enskilda personer kan lösa sina tvivel. När det gäller
dåligt dokumenterad kod som är svår att söka i ett arkiv, eller när det gäller ramverk för privata företag
som inte är offentligt tillgängliga, så att det inte finns någon gemenskap på Q&AA-webbplatser för att
besvara frågor, blir det dock mycket komplicerat att söka efter kodstycken för att lösa tvivel eller lära
sig hur man använder ett API. För att lösa detta problem studeras i denna avhandling användningen av
naturligt språk för att hitta kod. I synnerhet studeras transformatorbaserade modeller, såsom BERT,
som för närvarande är den senaste tekniken inom behandling av naturliga språk men som har hög
latenstid vid informationssökning. Därför föreslås i detta projekt en arkitektur i flera steg som syftar
till att bibehålla prestandan hos standard BERT-baserade modeller samtidigt som den höga latenstiden
som vanligtvis är förknippad med användningen av denna typ av ramverk minskas. Experiment visar att
denna arkitektur överträffar tidigare icke-BERT-baserade modeller med +0,17 på Top 1 (eller Recall@1)
och minskar latensen, med en inferenstid som är 5% av den för standard BERT-modeller.

Nyckelord

Kodsökning, behandling av naturligt språk, BERT, informationssökning

iii

Acknowledgements

This project has been carried out in collaboration with the Software and Computer Systems
(SCS) department of the KTH Royal Institute of Technology and the RISE Research Institutes of
Sweden.

I would like to express my gratitude to my examiner, Amir H. Payberah, for his guidance, patience and
lessons, and to my supervisor, Francisco J. Peña, for his support, help and advice that helped me to
become a better researcher.

I would also like to thank my RISE supervisors Sepideh Pashami and Ahmad Al-Shishtawy, for their
help, advice and support throughout the project.

I express my sincere thanks to the EIT community, especially to my colleagues in Madrid and Stockholm,
by far the best of this master.

I also want to thank my family and friends, that gave me all the support I needed to carry out this
adventure.

iv

Acronyms

DL Deep Learning
ML Machine Learning
NLP Natural Language Processing
DCS Deep Code Search
NCS Neural Code Search
BERT Bidirectional Encoder Representations from Transformers
API Application Programming Interface

v

Contents

1 Introduction 2
1.1 Background . 2
1.2 Problem . 2
1.3 Research Question and Contributions . 3
1.4 Outline . 3

2 Theoretical Background 4
2.1 Machine Learning and Deep Learning . 4

2.1.1 Siamese Neural Networks . 5
2.1.2 Embeddings . 5
2.1.3 Attention mechanism and Transformers . 6
2.1.4 BERT and Sentence-BERT . 8

2.2 Code Search . 9
2.3 Related work . 10

3 Research Methodology 11
3.1 Models . 11

3.1.1 UNIF . 11
3.1.2 UNIF SNN . 12
3.1.3 Sentence-BERT and monoBERT . 13
3.1.4 Multistage architecture . 13

3.2 Dataset . 14
3.3 Training . 15

3.3.1 Triplet network framework . 15
3.3.2 MonoBERT training . 16

3.4 Tests . 17
3.4.1 Metrics . 17
3.4.2 Rephrasing test . 17
3.4.3 Search examples . 18

4 Experiments and Results 19
4.1 Experiments . 19
4.2 Code Search examples . 21

5 Conclusions and Future Work 29

vi

CONTENTS

5.1 Conclusions . 29
5.1.1 Future Work . 29

References 31

vii

List of Figures

1.2.1 Example of a question on StackOverflow and GitHub . 3

2.1.1 Neural network example . 5
2.1.2 Siamese neural network for signature forgeries detection. 6
2.1.3 Self-attention mechanism . 7
2.1.4 Transformer encoder architecture . 8
2.1.5 BERT vs Sentence-BERT . 9

3.1.1 UNIF model . 12
3.1.2 UNIF SNN model . 13
3.1.3 Two stages architecture. 14
3.3.1 Triplet networks architecture. 15
3.3.2 MonoBERT architecture. 16

List of Tables

3.2.1 Deep Code Search dataset summary. 14
3.3.1 MonoBERT dataset format . 16
3.4.1 Top-N example . 17

4.1.1 Main results . 20
4.1.2 Rephrasing results . 21
4.1.3 Rephrased examples . 21
4.2.1 Search example 1 . 22
4.2.2 Search example 2 . 23
4.2.3 Search example 3 . 24
4.2.4 Search example 4 . 25
4.2.5 Search example 5 . 26
4.2.6 Search example 6 . 27
4.2.7 Search example 7 . 28

1

Chapter 1

Introduction

1.1 Background

A developer’s workday is much more than coding. There are numerous studies [25, 28, 30] on the wide
variety of tasks that developers perform, such as reading and writing documentation, reviewing code,
and debugging. Among all of them, code search, either to understand what a program does, to find out
why it has behaved in a particular way or to learn how to use a framework, among other reasons [32], is
one of the most frequent. Back in 1997, it was already one of the most common tasks in a developer’s
day-to-day life [33]. At this time, searching for code was done with basic tools such as the command
line utility grep, or the editor’s or company’s search engines and the only way to resolve more complex
questions was to consult with colleagues.

Fortunately, software development has evolved a lot since then, providing programmers with tools that
make many tasks like this one easier and faster. Firstly, the rise of software engineering social media
has led to the emergence of Q&A sites where developers solve their doubts and share their knowledge,
being Stack Overflow [20] the most popular of them. Secondly, the open source software movement has
given rise to huge repositories of code available to consult for examples of Application Programming
Interface (API) usage, frameworks and algorithm implementations among other reasons.

1.2 Problem

Consider the following query “How do I create a file and write to it?”. As shown in Figure 1.2.1, the first
answer for this question in Stack Overflow contains a small and specific snippet that solves the problem,
but the same search on GitHub leads to an file that contains some of the words from the question but
does not solve the problem. Therefore, a user could solve a programming question on a Q&A site if he
or she can formulate it in a similar way to the title of an existing question. However, in order to do so in
a code repository, he or she will have to use words present in the code or in its comments. The problem
here is to be able to find the corresponding answer when the question does not match the keywords in
the code fragment.

Code search is a problem that has been approached as a text retrieval task, where an input query is used

2

CHAPTER 1. INTRODUCTION

Figure 1.2.1: Example of a question on StackOverflow, the code of its accepted answer, and the result of
searching for that sentence on Github. The latter references code unrelated to the answer but containing
some of the words in the query.

to retrieve the most relevant documents from an existing corpus. In this type of task, Natural Language
Processing models such as BERT have become popular for their accuracy. However, in cases of large
document corpora, which is common, these models have long runtimes that make them unfeasible for
production use.

1.3 Research Question and Contributions

The research question of this project will be: How can we use BERT-based approaches to find code
snippets given a query with a reasonable low latency?

The main objective of this project is to provide new tools to help improve the state of the art of code
search. Therefore, the main contributions of this project are:

• We propose a new model for code search that outperforms the state of the art with low latency.

• We evaluate our results with state of the art techniques.

1.4 Outline

This thesis is structured as follows. In Chapter 2, the theoretical background necessary to understand the
techniques and technologies involved in the project is presented, as well as the related work. In chapter
3, all the assets involved in the development of the project (datasets, models, training frameworks and
tests) are presented. In Chapter 4, the results of the tests applied to the models presented in the previous
chapter are shown. In Chapter 5, conclusions and proposals for future steps are presented.

3

Chapter 2

Theoretical Background

In this section we define the concepts required to understand and follow the rest of the project. We start
with Machine Learning and Deep Learning, two of the most popular trends in the world of artificial
intelligence today, which form the technological basis of this project. We continue to define Siamese
neural networks, attention mechanisms and Transformers, tools that we have used to build the models
of this project. We end this chapter by talking about code search and mentioning related work in the
field.

2.1 Machine Learning and Deep Learning

Machine Learning (ML) is a field at the intersection of computer science and mathematics that aims
to solve problems by using historical data from the past to identify its patterns. For example, a simple
regression algorithm can learn the relation between house features (such as size, number of bedrooms
and construction year) to be able to figure out (to predict) its price by analysing existing data from
other houses. These techniques can solve tasks that are difficult to define as a computer program but
that a human could solve intuitively. For example, it is easy for humans to identify a car in a picture
by, for example, looking for wheels on it, but it is complex to define a wheel in terms of pixels.

However, when the variability of the features of the data is so high that it changes for every single
element of the dataset and requires nearly human-level understanding for solving the task, ML is not
enough. In the example of car recognition, each example of our historical data would contain pictures
with cars with different angle, color, illumination, visibility, shape or background.

Deep Learning (DL) [12] solves this problem by the concatenation of small functions that maps an input
(pixels of a picture) with and output (presence or not of a car). The goal of a DL model is to define a
function f(x, θ) = y where x are the inputs (pixels of a picture), y is the output (presence 1 or absence 0
of a car) and θ are training parameters. During the training phase, the DL will use the existing data to
learn the θ that makes f to better map the defined inputs with the outputs. This function is composed
by simpler functions (called neurons) that are stacked in layers. The bigger the number of layers, the
more complex patterns the model will be able to learn. Each of the layers receives the data from the
previous layer multiplied the training parameters θn for that layer. An activation function is applied to

4

CHAPTER 2. THEORETICAL BACKGROUND

the resulting value, that can be sigmoid, ReLU and tanh among others.

Figure 2.1.1: In our example with the car, the numeric value of the pixels is feed to the first layer of
neurons. This values are multiplied by training parameters and feeded to the second layer neurons, that
also will apply an activation function. This process continues until the last layer, that will return 1 if the
image contains a car or 0 if it does not. The goal of training this neural network is to find the training
parameters that will keep this behaviour with new and unknown images.

2.1.1 Siamese Neural Networks

The first time we heard about Siamese Neural Networks was back in 1993, when Bromley et al. [2]
proposed this architecture to detect signature forgeries. The idea of this project was to feed two identical
neural networks with the information of two signatures (obtained from a digitalizer tablet) and to try
to discover if the second signature was a forgery attempt. This two submodels shared the training
parameters so the training process had to be modified for constraining the weights to be identical in
both neural networks. The cosine of the angle of the numeric vector obtained for each of these models
represented the similarity between both signatures and the likelihood that one of the signatures was a
forgery of the other.

This architecture has been used successfully in many areas, being Image Analysis the one with more
applications [5], and in most of the cases the idea is always the same, obtain the similarity of two different
elements such as fingerprints in images [1], questions [7] and cars in videos [18].

2.1.2 Embeddings

In the previous section we studied a model that uses a siamese neural network to generate a numeric
vector used to be compared in order to get the similarity degree between two elements, in this case,
signatures. These are feature vectors that allow a discrete object to be transformed into a distributed
representation, so that information about the original entity is retained. For example, in image
processing, the intermediate layers of a convolutional network can be used as a representation of an
image [12]. The most popular case of embeddings and the one that is relevant to this work is that of words
and phrases. Some popular embedding techniques, such as CBOW and Skip-gram [26], use DL models to

5

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1.2: Siamese neural network for signature forgeries detection.

transform words into numeric vectors containing their semantic meaning. The possibility of transforming
words into numbers makes it possible to compare them and operate with them mathematically (as in
the classic example of [27] where they subtract the vector Man from the vector King and add the vector
Woman, resulting in the word Queen).

2.1.3 Attention mechanism and Transformers

Natural Language Processing (NLP) is one of the most popular fields where DL is being successfully
applied. Traditionally, sequence-to-sequence models based on Recurrent Neural Networks and Long
Short-Term Memory models were used in text translation tasks. In this area, attention techniques
appeared, mechanisms aimed to make the models to focus on specific parts of the input data. In image
recognition [8], models can pay attention to specific parts of the picture to recognize figures and make
predictions. In text translation tasks, a neural network can know which words are relevant (context) for
each word of the input sentence, and it will be used to predict the associated word in the target language.
The improvement compared to sequence-to-sequence models is that there is no loss of information in
long sentences.

Dot-Product Attention is a simple attention technique that enriches word embeddings with information
about their context. Given a sentence (s = v1, v2, · · · vn), for each of the word embeddings (vi)
is multiplied by the embeddings of rest the words and normalize the result. The obtained scores
(pi1, pi2, · · · pin) are multiplied by the original embeddings (s = v1, v2, · · · vn) and the sum of the returned
vectors will be the enriched embedding (yi). This new embedding will contain information about the
word and surrounding words. The following is the formula for applying the attention mechanism to the
word vi of the sentence s = v1, v2, · · · vn:

yi = sum(softmax(
∑n

j=1 vi ∗ vj) ∗ s)

The word mouse, for example, can refer to a small animal or a computer peripheral. However, when

6

CHAPTER 2. THEORETICAL BACKGROUND

processed by an Dot-Product Attention module in the sentence Click with the mouse on the trash can
icon, its embedding will lose its animal meaning, and reinforce its meaning on computer science.

Self-attention is an evolution of this approach. The basic idea is to add weights to the Dot-Product
technique, allowing a neural network to learn more complex attention patterns and obtain better
performance. In the previous example, each word embedding in the first step of the algorithm (vi)
is multiplied by a weight matrix called query, all the words embeddings are multiplied by key weight
matrices before the dot-product and before being multiplied by the scores the word embeddings are
multiplied by value weight matrices. As shown in Figure 2.1.3, with just three matrices, converted to
linear layers, and very simple operations, the attention module obtained is very easy to implement and
train using neural networks.

Figure 2.1.3: Self-attention mechanism

But in some cases, some words require paying attention to several words in the sentence. For example,
in the sentence ”I give food to my dog”, the verb ”give”, should pay attention to ”I”, to ”food” and to
”dog”. Then, to scale the number of words to which attention is paid, it is possible to add in parallel more
matrices (or linear layers) to ”query”, ”key” and ”value”. As result, we multiply the number of ”scores”
before the final dot-product operation, and, instead of one final vector for each word, we will have
multiple, one per matrix put in parallel. These final vectors are concatenated and fed to a dense layer.
The result is a new embedding vector, that contains information about its context. This architecture is
called multi-headed attention, where each of these new matrices is considered a ”head”.

The last evolution of this mechanism is an architecture presented in the paper ”Attention Is All You
Need” [34] that was a revolution in this area. The authors proposed an architecture called Transformers
that consists of stacking encoders composed of a multi-headed attention module and dense layers. After
both of these components, their output and inputs are combined in a ”add and norm” layer, that will
improve training, avoid gradient vanishing and prevent drastic changes in weights.

The Transformer architecture, unlike recurrent approaches, feeds the entire sentence in parallel and
ignores the position of each word. In some cases, the order of the words could be important. For
example, the meaning of the sentence ”It’s raining today, that’s why I’m not sad” changes completely

7

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1.4: Transformer encoder architecture. During the training, the gradient signal (in red) splits:
one of the branches goes through the Feed Forward and Attention modules, but the other avoids them.
This technique prevents the gradient vanishing when multiple encoders are stacked.

if we modify the position of the word not as in ”It’s not raining today, that’s why I’m sad”. That is
why the authors of the project proposed a positional encoding: a fixed matrix that contains a notion of
the position of each word is added to the input embedding at the beginning of the entire module. This
positional encoding matrix is calculated with the following rules:

P (pos, 2i) = sin(pos

10002i/dmodel
)

P (pos, 2i+ 1) = cos(pos

10002i/dmodel
)

Where pos refers to the position in the sentence, i refers to the embedding position and dmodel refers to
size of the embedding. The authors stated that the sinusoidal wavelengths generated for each encoding
dimension allow the transformer to learn from the relative positions, as well as to apply this behavior to
longer sentences than those found during training.

Transformers outperformed many state-of-the-art NLP models in several tasks[34], being the base of
some popular architectures like BERT[9] and GPT-3[3].

2.1.4 BERT and Sentence-BERT

BERT [9] is the state-of-the-art model for NLP developed by Google. The authors emphasize the
importance of bidirectional approaches in language models and, for this purpose, BERT is based on
Transformers and trained with for solving Masked Language Modeling tasks. This task consist of masking
some of the words in the input and try to predict it in the output, using the left and the right context.
In addition to this task, BERT is trained to predict when a sentence B follows another sentence A. This
Next Sentence Prediction task makes BERT solve Question Answering and Natural Language Inference
tasks. With this pretraining, BERT is able to generate robust embeddings, where each of the words

8

CHAPTER 2. THEORETICAL BACKGROUND

contains information of its context. The key to the success of such pretrained models is that with simple
modifications they can be fine tuned to solve tasks for which they were not trained.

The success of BERT and its good results applied in various fields of NLP is sometimes overshadowed
when used in text extraction tasks, especially when applied to large corpora. The main problem lies in
the fact that BERT’s base architecture (mono) requires embedding each document in the corpus for each
query performed, generating performance problems[17]. Over the last few years many variants of BERT
have emerged that have tried to improve its performance, but Sentence-BERT [29] is one of those that
addresses its latency problems. This branch of the BERT family generates a single embedding vector
for an entire sentence, by applying a max or mean pooling to the embedding of all the words in the
sentence. Unlike BERT, which is set up to receive two sentences for tasks such as sentence similarity,
Sentence-BERT uses a Siamese neural network architecture to receive, in each BERT module, one
sentence individually. This difference in architecture results in a significant improvement in performance
at the inference stage.

Lets say we have a group of sentences, and for each new sentence, we want to get the most similar one
in our collection. With BERT, we create embeddings that contains both sentences to compare (the new
one and each element of our collection). Therefore, we need to compute an embedding for each of the
elements of our dataset everytime a new sentence is provided. However, with Sentence-BERT, we can
have stored the embeddings of all our sentences of our collection and, at inference time, we only need to
embed the new sentence and calculate its similarity with the embeddings of our collection.

(a) BERT (b) Sentence BERT

Figure 2.1.5: In sentence pair tasks, BERT generates its embeddings with each pair of sentences. With
Sentence-BERT, each embedding is computed individually so only the embedding of the new phrase and
the cosine similarity has to be executed at inference time.

Although the improvement in inference time (efficiency) is remarkable when using statement-based
architectures with respect to single models (mono), there is a significant loss in output quality levels
(effectiveness) [17].

2.2 Code Search

Searching for code to solve bugs, implement an algorithm, refactor code, understand how an API
works and solve technical doubts, is a common practice in the day to day life of software developers.

9

CHAPTER 2. THEORETICAL BACKGROUND

These queries can be made on Q&A sites such as StackOverflow, one of the most popular computer
programming questions sites. When a developer has a query, she/he has to create a new question on
this site, or search among the existing questions one that resembles the user’s one. The search engine
will return questions that contains words that are also in the in the user’s query, but it is not capable
to find the patterns that relate the question with the snippet of code that solves it.

Code Search is a subarea of text retrieval applied in Software engineering that aims to find this relation
by transforming both code and description in representation (numeric vector) that can be compared.
More information about the state-of-the-art approaches in this area can found in Section 2.3.

2.3 Related work

Code search has been a much studied topic in the last decade, due to the popularity of opensource, code
reuse and software engineering QA sites. Initially, most of the approaches were based on information
retrieval techniques. For example CodeHow [21] attempted to match a user’s query to an API by
comparing it to its description and name, creating vectors based on term frequency and inverse document
frequency.

With the rise in popularity of ML and DL in recent years, new projects using this technology have
emerged, surpassing previous techniques and leading the way for future research. These new proposals
diverge in different aspects, such as architecture, training technique or tokenization, but they tend to
have one thing in common: the core idea is to generate a numeric vector (embedding) for code snippets
and for its description or query and try to make these two vectors as close as possible. This ”closeness”
is commonly measured with cosine similarity.

With LSTM architectures reaping success in the field of artificial intelligence in different sectors, one
of the first code search models based on DL had this recurrent neural networks as a fundamental part.
Deep Code Search [13] generates embeddings of code snippets feeding the tokens, the API sequences and
the method names to bi-directional LSTM layers, and combining them in a maxpooling layer.

Despite the good results of this project, it has the disadvantage of being a slightly complex architecture
and depends on the availability of the method name and API sequence for each code snippet. UNIF [4]
is a proposal that claims that smaller and simpler approaches should be tested first, before trying more
complex architectures. This model uses only the code and description tokens, adding an attention layer
to the former and an averaging layer to the latter. This model outperformed previous proposals without
using the method name, allowing it to be used in cases where this is not available, such as in datasets
taken from QA sites.

Many other projects start from this baseline, varying the way in which the embedding is generated.
For example CoNCRA [22] generate the code token embeddings using convolutional layers, and CQIL
[16] apply them to both tokens and method name. But the embedding is not the only differentiating
factor in the different code search approaches. CoaCor [36] uses a Reinforcement Learning component
to generate additional descriptions for a given code snippet, and during inference stage, each query is
compared with both code and the additional description embeddings, combining both similarities in a
single value.

10

Chapter 3

Research Methodology

In this chapter we define the assets involved in the experiments performed, including the dataset, models,
training techniques, metrics and tests.

3.1 Models

In this section we describe the models involved in this project, starting with UNIF, a simple but effective
model that we will use as baseline, UNIF SNN, an enhanced version of this previous model, Sentence-
BERT and monoBERT, our BERT based proposed models, and we finish defining the training process,
the metrics and the tests performed.

3.1.1 UNIF

When Deep Learning Met Code Search [4] is a very popular project due to its simplicity and its good
results. The authors studied the state of the art of code search techniques to find a new approach with
better results than existing ones. Previous projects Deep Code Search (DCS) [13] and Neural Code
Search (NCS) [31], which were part of the state of the art of code search, were evaluated in this study.
DCS is a model that uses DL to embed code method names, tokens and API sequences to a vector
space and compared it to the embedding of its description. NCS embeds both code and description
tokens in the same space using a combination of information retrieval techniques without any supervised
technique.

The model proposed after this was UNIF, a supervised extension of NCS that used two embeddings
matrices and an Attention mechanism [34]. Both code and description are embedded with their own
matrix and cosine similarity of the vectors of both embeddings is calculated (see Figure 3.1.1). During the
training process, the embedding and attention parameters are tuned to maximize the similarity between
a piece of code and its description. The advantages of this proposed model is that it outperforms
previous state-of-the-art approaches by using a simpler model than other DL models like DCS. The
authors suggested that simpler models should be tested before starting adding complex mechanisms like
Recurrent Neural Networks in code search projects.

11

CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.1.1: UNIF model

The UNIF model behaves as follows: first, each tokenized code snippet is transformed into a real-valued
vector using an embedding layer. For example, a code snippet ”for(int i=0; i<10; i++) print(i)” would
be tokenized, creating a one hot vector (e.g. [37, 24, ... 29]), in which each number corresponds to the
id of one of the words in the original code. The embedding layer will assign a dense vector for each id
(e.g. 37 could be transformed to the vector [0.73, 0.87, ... 0.23]), generating an N ×M matrix where
N is the length of the tokenized code snippet and M is the embedding dimension or the length of the
embedding vector of each word. The generation of these embeddings is random at first, depending on
parameters that will be adjusted during training. The description of the code snippet will go through the
same process but with an embedding layer and parameters independent from those of the code.

In the second step, the matrix N × M of the description is transformed into a 1-dimensional vector
through an average operation. In the case of the code snippet, before this operation, the embedding is
passed through a Self-attention layer to enrich it with information about its context.

At this point, the model would have generated vector of size M for both code snippet and description.
Finally, the cosine similarity between both vectors is calculated, obtaining as a result the similarity
between the snippet code and the description provided.

Section 3.3 shows how the training of this model is performed, in which the parameters of the embedding
and attention layers will be tuned so that the cosine similarity between a code and its description
is as high as possible, as well as to reduce the similarity between a snippet and a randomly chosen
description.

3.1.2 UNIF SNN

Inspired on this last model, we propose a new architecture, where both description and code tokens are
embedded in the same vector space, this means using the same parameters for generating the embedding
vectors of the code and the description. The motivation behind this idea is that using the same vector
space could allow the model to learn the semantics of words that are used in code snippets and in
descriptions or queries. To study the usefulness of this architecture, we propose a modification of the
UNIF model, described in the previous section, in which both code and description are fed to Siamese
neural networks, consisting of an embedding layer and an attention layer (see Figure 3.1.2). In this
way, we will be able to evaluate whether Siamese networks are an improvement for the code search
models.

12

CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.1.2: Unlike the original UNIF model, in UNIF SNN both the description and the code share
the embedding and attention layer. For example, the word ”for” would have the same id and therefore
the same embedding vector when it is included in a description and in a code snippet. This could allow
the model to understand, for each word, its meaning within a description and within a code snippet.

3.1.3 Sentence-BERT and monoBERT

Sentence-Bert [29] is a modification of BERT models that uses Siamese neural networks to improve
performance on semantic similarity tasks. As described in Section 2.1.4, the key is the way in which
sentence pairs are fed to the model: each sentence is embedded individually using a BERT instance and
a mean pooling layer. This architecture is flexible with the type of BERT model. For this project, we
will try the general purpose models BERT and roBERTa.

RoBERTa [19] is an optimization of the original BERT model that outperforms it and other BERT
variants in various semantic similarity tasks. The authors claim that BERT is undertrained, and their
changes in hyperparameters, training with a larger dataset, longer sequences, and removal of the ”next
sentence prediction” task improve BERT’s performance on all tests.

Opposed to Sentence-BERT approach we find the standard BERT architecture, monoBERT: using a
single BERT entity to embed both sentences and fine-tune the model appending a final feedforward
layer to classify results. The sentences are fed to the model with the following format:

[CLS] <SENTENCE 1> [SEP] <SENTENCE 2> [SEP] [PAD]

CLS is a token that BERT expects to receive at the beginning of each pair of sentences and its embedding
can be considered as a representation of the entire sentence. SEP is a token placed at the end of each
sentence used to separate them.

3.1.4 Multistage architecture

MonoBERT is not the best approach for information retrieval tasks such as code search because its huge
latency compared to Sentence-BERT. In the case of the first one, every time a new query arrives, it is
necessary to feed the model with this sentence and with all the documents (in our case, code snippets)
in our corpus, but with the second one, the model is only fed with the new query, making it much faster.
However, in this project monoBERT is going to be tested and compared with the rest of models and, in
the case that monoBERT outperforms sentence-based approaches, it is necessary to find an architecture
that reduces the number of candidate code snippets before feeding them to the model.

We propose a two-stage architecture (see Figure 3.1.3): first, a sentence-based model (UNIF, UNIF-
SNN or Sentence-BERT) will obtain a number N of candidates, taking advantage of the efficiency of
this architecture to search for candidates in large code repositories. As already explained, the embedded

13

CHAPTER 3. RESEARCH METHODOLOGY

code snippets can be stored in a database and, at the time of inference, it is only necessary to embed
the new query and calculate the cosine similarity between it and the stored vectors. During the second
stage, the monoBERT model will sort the N candidates to obtain the final ranking.

Figure 3.1.3: Two stages architecture.

We will not dwell too much on the selection of an optimal N, as long as the final results of this proposal
are not much worse than the results of monoBERT when run outside this two-stage architecture.

3.2 Dataset

For this project, we looked for a dataset large enough to fine-tune the BERT models. We decided to use
a dataset in which the code has been parsed and cleaned of programming characters (e.g., {, }, [and
]) in order to test standard BERT models and compare them with simpler models such as UNIF. The
chosen dataset comes from the DCS [13] project, a code search research that aims to match a large-scale
corpus of java code methods with their descriptions. Due to the characteristics of the project, the corpus
contains also the name of code method and the API sequence, that are going to be discarded in this
work. The description of the dataset already tokenized is described in Table 3.2.1.

Table 3.2.1: Deep Code Search dataset summary.

Description-code tuples 18.223.872
Words in code corpus 187.708.864
Words in description corpus 180.242.654
Different words in vocabulary 13.645
Number of words longest sentence 155

This dataset has a different vocabulary for the code and the description. This means that a specific word
(e.g. array) will have a different id associated in the code dataset (e.g., 132) than in the description
set (e.g., 39). This is only acceptable for UNIF because both code and description have independent
embeddings and they do not need to share the vocabulary. However, for SNN, as we use the same
embedding for both models, we need each word to have the same id in the description and the code

14

CHAPTER 3. RESEARCH METHODOLOGY

set, that is why we retokenized this dataset for the SNN model. For the BERT models, we decoded the
sentences (from token id to word string) and applied the associated BERT tokenizer.

3.3 Training

In this section we present the Triplet network framework, that is the methology followed to train UNIF,
UNIF Siamese and Sentence-BERT, and also we describe how the monoBERT model was trained.

3.3.1 Triplet network framework

UNIF, UNIF Siamese and the Sentence-BERT models will be trained using triplet networks [14], an
architecture that is popular in sentence similarity tasks. The idea is to feed a network with a sentence
(anchor), feed the second with a similar sentence (positive) and feed the third with a randomly picked
sentence or one with an opposite meaning (negative). Then, the similarities between the anchor and
the positive sample (positive similarity) and between the anchor and the negative sample (negative
similarity) are calculated. This model is trained using the following triplet loss function L:

L = α− Sp + Sn

Where α is a value between 0 and 1 that defines a margin or difference between a positive and a negative
value, Sp is the positive similarity and Sn is the negative similarity. During the training phase, the
parameters of all the models will be tuned to maximize Sp and minimize Sn.

Figure 3.3.1: Triplet networks architecture.

For this project, the anchor of the triplet network will be a query or description, the positive sample will
be the code snippet that matches this description, and the negative sample will be a randomly picked
code snippet. The cosine similarity between the description and the code snippet will be used as the
positive similarity and the one between the description and the negative sample will be the negative
similarity.

Both the Positive and Negative models (see Figure 3.3.1) learn how to embed the code. To do so, they
share all their parameters, making them siamese. The anchor model embeds the description, and only

15

CHAPTER 3. RESEARCH METHODOLOGY

in cases where the code and the description share an embedding model will they be siamese as well.
For example, UNIF has independent embeddings for the code and the description, but in the case of its
Siamese version (Section 3.1.2), as in Sentence-BERT, the description, the code and the negative code
will be Siamese.

3.3.2 MonoBERT training

The monoBERT models requires a different training framework. A classification layer with a sigmoid
function and one neuron as output will be added to the BERT module. Specifically, the output
corresponding to the CLS token of the BERT model, which serves as a summary of the embedding
of the entire model, will be the input to this classification layer (see Figure 3.3.2).

Figure 3.3.2: MonoBERT architecture. In this example, the description ”this is a description” and the
snippet ”this is a code snippet” are fed to the BERT layer. Then, the embedding of the CLS token is
used to generate the output (1 in case of matching, 0 in other case).

The dataset will be processed to match the input format of BERT and the output format of the
classification layer. To do this, for each pair of code and description, a label with value 1 (the description
matches the code) will be assigned, and a random code fragment will be searched for and associated
with that description, with a label 0 (the description does not match the code). In this way the dataset
will be duplicated, so that for each record (code-description pair) there will be a positive and a negative
example (Table 3.3.1 shows the format of this dataset).

Table 3.3.1: For each Description-Code pair, a positive label (1) is assigned, and another entry is added
to the dataset, with the same description, a randomly picked code snippet and a negative label (0).

Description Code snippet Label
Desc1 Code1 1
Desc1 Code random 0
Desc2 Code2 1
Desc2 Code random 0
Desc3 Code3 1
Desc3 Code random 0

16

CHAPTER 3. RESEARCH METHODOLOGY

3.4 Tests

After training each of the models described in section 3.1, they will be tested. In the next section
we describe the metrics used to evaluate each model, as well as two additional tests to evaluate the
robustness and usefulness of the obtained solution.

3.4.1 Metrics

There are many ways to compare the accuracy of code search systems. The most popular one is Top-N
(or Recall@K), a metric used in recommendation algorithms that measures how often the true label is
inside the Top N values of a prediction (Table 3.4.1 shows a toy example of this metric). This is an
appropriated metric for code search because users often check the first results of a query in a search
engine instead of just the first one.

Table 3.4.1: In this example, only the predicted values of rows 1, 2 and 5 are correct (60% accuracy).
But, if we check the presence of the True value inside each top 3 predictions, also the row 4 would be
correct (80% accuracy)

Id True value Predicted Value Top 3 predicted values
1 A A A, B, D
2 B B B, C, D
3 C D D, A, B
4 A B B, A, C
5 B B B, C, D

For each query of the testset, the ranking of the code snippets of the testset is created and the position
of the code fragment that corresponds to it is searched. To obtain the TopN metric, the proportion of
queries whose code snippet was in position N or higher will be calculated. This process will be performed
for each of the single-phase (not multistage) models.

In the case of the multi-stage model, the same test will be performed for monoBERT, but in this case,
the snippets used for ranking will be a shorter list of candidates coming from the top of the ranking of
a previous model (e.g., Sentence-BERT or UNIF). By testing high-accuracy, high-latency models such
as monoBERT both individually and within a multi-stage architecture, we will be able to evaluate the
extent to which accuracy is lost compared to the improvement in latency.

3.4.2 Rephrasing test

Once a model has been evaluated with the test set, we ask ourselves whether it is sufficient to test its
robustness. As Gan el al. said [11], tests and training sets often have a common origin and follow the
same distribution, which could call into question the generalizability of a NLP model. In their project,
Gan et al. [11] modified (while maintaining their meaning) the test set questions of a Question Answering
model and observed that the models worsened their results.

We propose to apply the same principle to Code Search. Given a query or description (D) and one of
our models (M) that is able to find the code fragment (C) that matches that description, do I get the
same element if I rephrase the query (D2), keeping the semantic meaning?

17

CHAPTER 3. RESEARCH METHODOLOGY

if M(D) = C, is M(D2) = C if D ≈ D2?

We will propose a parallel dataset with descriptions selected from the test set (A). We will reformulate
those descriptions into a second dataset (B) and run the models with both sets using the Top-N metrics.
The variation between the results of the two sets will give us an idea of the extent to which the
performance of the models is strongly dependent on the words used. This test will allow us to determine
to what extent the models are able to relate the meaning of the query to the code, regardless of the
words used.

3.4.3 Search examples

The use of metrics such as TopN makes it easy to compare different models, as well as to evaluate how
much better or worse different design decisions, such as multistage architecture, are. However, these
metrics do not always give an idea of the usefulness of these types of solutions for users. That is why
at the end of the tests, with the best model obtained we will proceed to feed it with test queries, not
obtained from the testset, and evaluate the relationship of the output snippets with the input query and
the relevance of these results for a user.

18

Chapter 4

Experiments and Results

In this chapter we are going to describe the experiments conducted with each model and discuss their
results.

4.1 Experiments

Each of the models were developed using the ML frameworks Tensorflow [23] and Keras [6] and packaged
and deployed using Docker [24] in a server with 4 Nvidia GeForce RTX 2070 gpus. For the loading and
configuration of BERT-based models we used the Hugging Face Transformers framework [35]. All the
models were trained with learning rates between 4e-5 and 1e-6. We realized that bigger learning rates,
like 1e-4, have negative impact in BERT models. We also evaluated different triplet margin values
between 0.6 and 0.2 and saved the best results.

The training set contained 600K code-description pairs from the original Deep Code Search dataset
(defined in Section 3.2) because the size of the original dataset (over 18 million pairs) made full training
for all models unfeasible for the duration of this project. BERT-based models are resource-intensive. The
amount of memory required during its training increases with the maximum length of sentences used.
We, therefore, decided to truncate the descriptions and code fragments to 90 words, which is the length
of the longest description in our dataset. This way no information will be lost from the descriptions
during training.

The tests consist of iterate over a test set, generate the embedding for each description, calculate the
similarity with K code snippets embeddings and extract the ranking of the correct snippet. Since it is
unfeasible to test the non-sentence-models (mono-BERT and mono-roBERTa) with the entire test set,
tests are performed with groups of K=500 description-code pairs from the test set. The results are
shown in Table 4.1.1.

This experiments reveal that the simplest model, UNIF [4], gets better results with a Siamese architecture
than with separate embeddings for the code and the description. Our experiments also reveal that this
model, that uses an attention layer as embedding vector, get better results than the sentence-based
models, that relies on the mean pooling of BERT output.

19

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.1.1: Results of all the models executed with 500 descriptions and 500 code snippets from the
test set.

DCS
Metric Top1 Top3 Top5 Top15 Time
UNIF 0.47 0.66 0.74 0.87 36s
UNIF (SNN) 0.57 0.73 0.80 0.88 1m 7s
mono-BERT 0.63 0.83 0.86 0.93 17m 30s
mono-roBERTa 0.61 0.79 0.87 0.92 16m 5s
Sentence-BERT 0.49 0.71 0.77 0.87 2m 2s
Sentence-roBERTa 0.46 0.66 0.74 0.85 42s
UNIF+monoBERT 0.64 0.79 0.83 0.87 1m 9s
SNN+monoBERT 0.64 0.81 0.84 0.88 1m 10s
S-BERT+monoBERT 0.64 0.81 0.83 0.87 1m 14s
S-roBERTa+monoBERT 0.62 0.79 0.82 0.85 1m 13s

One possible reason for this behavior is the format of the input data. BERT is designed to generate
embeddings from natural language sentence and the input to our model consists of tokens extracted
from a code snippets instead of a traditional English sentence.

Our experiments confirm also that the mono architectures outperform sentence-based approaches in code
search tasks as they do in other text retrieval tasks [17]. However, the high inference time in this models
still making them unfeasible in production environments. For this reason we combine sentence-based
models with monomodels to reduce latency and minimize the impact on the quality of the output. As
shown in Table 4.1.1, the Top1 metric for monoBERT is very similar to that of Sentence-roBERTa +
monoBERT, but the execution time is considerably shorter in the latter. In all these cases, the first
stage selects the top 15 candidates with the most similarity to this query. The choice of the number
of candidates was arbitrary but is supported by the fact that the Top15 of all the first stage models is
always higher than the Top1 and Top3 second stage models. The goal of this architecture is to have Top1
and Top3 scores close to those of the models used in the second stage, so when choosing the number
of candidates K, we need a number in which the TopK score of the models used in the first stage is
not lower than the Top1 and Top3 of the second stage models, otherwise, the first model would filter
out the truth ground more times than the second model does, reducing the final performance of the
architecture.

In order to validate the robustness of our models, we modified 41 descriptions from the test set and
calculated the TopN metrics of these sentences and their original versions. As shown in Table 4.1.2,
monoBERT outperforms UNIF and SNN, and all the multistage models outperform the single-stage
models. The good results obtained in monoBERT are maintained, or even improved, in the multi-stage
models that use it as the final ranker

In Table 4.1.3 we present some rephrasing examples for the model S-roBERTa+monoBERT, the one
that had better results in this tests. The ranks column shows the number of code snippets that had
better rank than the ground truth. For example, if rank is 0, it means that for that query the model
returned the correct snippet at first position. If rank is 4, it means that four code snippets got better
rank that the correct code, that got the fifth in the ranking.

20

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.1.2: TopN metrics with 41 selected queries and their rephrased versions, with 500 code snippets

Selected Rephrased
Metric Top1 Top3 Top5 Top1 Top3 Top5
UNIF 0.53 0.85 0.90 0.29 0.53 0.63
UNIF SNN 0.70 0.82 0.90 0.43 0.63 0.70
monoBERT 0.70 0.97 0.97 0.51 0.68 0.78
Sentence-roBERTa 0.58 0.75 0.85 0.39 0.56 0.68
UNIF+monoBERT 0.78 0.92 0.95 0.53 0.70 0.73
SNN+monoBERT 0.78 0.95 0.95 0.53 0.73 0.75
S-roBERTa+monoBERT 0.75 0.95 0.95 0.53 0.73 0.75

For example, the examples 83 and 329 got better new rank (moves from second to first position) with
the rephrased query, that contains the semantic meaning of the original sentence but with less words.
The example 5 got a worse ranking even when both original and rephrased sentences are very similar.
In the example 153, the ranking has worsened significantly with the new sentence, which is an example
of a poorly detailed query. The word ”java” probably made this search more difficult, as it may not be a
common word in the training set method description. Example 15 is an example that this model has yet
to learn about context, as it has not been able to identify ”http request” with ”post method call”.

Table 4.1.3: Example of the ranking of descriptions and its paraphrased version with the S-
roBERTa+monoBERT model.

Id Original
rank

New rank Original Rephrased

83 0 0 return the canonical path of this
file

how to get canonical path of the
given file

329 1 0 generate a random int as a token how to get a random integer
73 1 0 turn array of bytes

into string representing each byte
as unsigned hex number

how to transform list bytes into
string hexadecimal representation

5 0 17 pause processing at the socket how to stop socket processing
153 2 223 get an xml representation of this

object
from java object to xml

144 0 1 set the maximum allowed number
of threads

how to define max threads

15 0 16 do a form post method call how to perform a http post
request

4.2 Code Search examples

In this section we are going to present some examples of queries feed to Sentence-roBERTa+monoBERT
and the code snippet retrieved. For these tests, the model searched for the three code snippets with
the highest similarity to the query provided among 10,000 candidates in the test set. It should be
noted that the following queries have been made without knowing all the code snippets included in
the repository, which can sometimes result in the required functionality not being found in the possible
candidates.

In the first example (Table 4.2.1) the model retrieves two code fragments that solve the functionality

21

CHAPTER 4. EXPERIMENTS AND RESULTS

sought in the query, and even the second candidate fits better with the input query than with its own
description. The third candidate, although it does not fit the requested functionality, is an example of
how this model can be used to search for classes in private code repositories. In this case it is returning
the Sort class from an Android library called libgdx 1.

Input query how to sort arraylist
Snippet rank Original description Code retrieved

First
sort the given array with a
default annotation aware
order comparator

public static void sort(Object[] array) {
if (array.length > 1) {

Arrays.sort(array, INSTANCE);
}

}

Second sort thumbs according to
their width

public void sort() {
Collections.sort(this);

}

Third return a sort instance for
convenience

static public Sort instance() {
if (instance == null) instance = new Sort();
return instance;

}

Table 4.2.1: Search example 1

In the second example (Table 4.2.2) the two first code snippets retrieved are related with what the user
would expect but does not really fit what the user would require for that input query. However, the
third snippet matches the desired functionality.

In the third example (Table 4.2.3) only the second candidate does what the user would look for with
the input query.

The fourth example (Table 4.2.4) none of the retrieved codes matches the query, but they are a good
example of how this model could be used to find a remove functionality inside a framework from a private
repository.

In the fifth example (Table 4.2.5), although it is the worst of the examples presented here since two of
the snippets retrieved have little or nothing to do with the query, it contains a function to calculate the
average of a list, including the sum of the elements of the list, which is the expected functionality.

For sixth example (Table 4.2.6), the model returns three ways to open a file, ignoring the required CSV
format.

In the last example (Table 4.2.7) we use the query from the problem definition section (Section 1.2) and
the model retrieves two code snippets that solves the problem.

In conclusion, these examples give a different perspective to the metrics provided in the tests presented
1https://github.com/libgdx/libgdx/blob/master/gdx/src/com/badlogic/gdx/utils/Sort.java

22

CHAPTER 4. EXPERIMENTS AND RESULTS

Input query how to connect to a database
Snippet rank Original description Code retrieved

First
construct an instance of
explain result given a
prepared statement object

public PostgresExplainResult(PreparedStatement stmt
) throws SQLException {

if (stmt == null) {
throw (new NullPointerException("

PreparedStatement-argument-cannot-be-null")
);

}
Connection database = stmt.getConnection();
if (database == null) {

throw (new NullPointerException("Failed-to-
retrieve-Connection"

+ "-from-PreparedStatement"));
}
stmt.execute();
retrieveExplainString(stmt);
stmt.close();

}

Second get the primary column
for a table

public static String getPrimaryKeyColumn(Connection
conn, String table) throws SQLException {

logger.debug("getPrimaryKeyColumn(conn={},-table
={})---start", conn, table);

DatabaseMetaData metadata = conn.getMetaData();
ResultSet rs = metadata.getPrimaryKeys(null, null

, table);
rs.next();
String pkColumn = rs.getString(4);
return pkColumn;

}

Third static method for initial
connecting to db

public static void init(String databaseName) throws
SQLException {

db = DriverManager.getConnection("jdbc:sqlite:" +
databaseName + ".db");

}

Table 4.2.2: Search example 2

above, showing that, although the code snippets retrieved do not always perfectly match what the user
is looking for, they are usually related and contain code that can be useful to the user.

23

CHAPTER 4. EXPERIMENTS AND RESULTS

Input query how to upload file to server
Snippet rank Original description Code retrieved

First
download a given file from
a target url to a given
destination file

public static boolean DownloadFromUrl(String
targetUrl, File file) {

try {
URL url = new URL(targetUrl);
URLConnection ucon = url.openConnection();
InputStream is = ucon.getInputStream();
BufferedInputStream bis = new BufferedInputStream

(is);
ByteArrayBuffer baf = new ByteArrayBuffer(50);
int current = 0;
while ((current = bis.read()) != -1) {

baf.append((byte) current);
}
FileOutputStream fos = new FileOutputStream(file)

;
fos.write(baf.toByteArray());
fos.close();

} catch (IOException e) {
Log.d(LOG_TAG, "Failed-to-download-file:-" + e);
return false;

}
return true;

}

Second
binary streams the
specified file to the http
response in 1KB chunks

public static void sendTempFile(File file,
HttpServletResponse response) throws
IOException {

String mimeType = "image/png";
String filename = file.getName();
ServletUtilities.sendTempFile(file, response,

mimeType);
}

Third
lookup a resource based
on the request UNK and
send it using send file

protected boolean handle(final String uri, final
Request req, final Response res) throws
Exception {

boolean found = false;
final File[] fileFolders = docRoots.getArray();
File resource = null;
for (int i = 0; i < fileFolders.length; i++) {

final File webDir = fileFolders[i];
resource = new File(webDir, uri);
final boolean exists = resource.exists();
final boolean isDirectory = resource.isDirectory

();
if (exists && isDirectory) {

final File f = new File(resource, "/index.html"
);

if (f.exists()) {
resource = f;}

}
}
pickupContentType(res, resource);
sendFile(res, resource);
return true;

}

Table 4.2.3: Search example 3
24

CHAPTER 4. EXPERIMENTS AND RESULTS

Input query how to remove object from memory
Snippet rank Original description Code retrieved

First
remove the
specified object from this
hash set

@ Override public boolean remove(Object object) {
return backingMap.remove(object) != null;

}

Second
purge stale mappings
from this map before read
operations

protected void purgeBeforeRead() {
purge();

}

Third artificially match a data
node used by remove

final boolean tryMatchData() {
Object x = item;
if (x != null && x != this && casItem(x, null)) {

LockSupport.unpark(waiter);
return true;

}
return false;

}

Table 4.2.4: Search example 4

25

CHAPTER 4. EXPERIMENTS AND RESULTS

Input query how to sum numbers in a list
Snippet rank Original description Code retrieved

First
calculate
the average length across
all x value strings

private void calcXValAverageLength() {
if (mXVals.size() <= 0) {

mXValAverageLength = 1;
return;

}
float sum = 1 f;
for (int i = 0; i < mXVals.size(); i++) {

sum += mXVals.get(i).length();
}
mXValAverageLength = sum / (float) mXVals.size();

}

Second construct a disjunction

public DisjunctionSumScorer(Weight weight, List <
Scorer > subScorers, int minimumNrMatchers)
throws IOException {

super(weight, subScorers.toArray(new Scorer[
subScorers.size()]), subScorers.size());

if (minimumNrMatchers <= 0) {
throw new IllegalArgumentException("Minimum-nr-

of-matchers-must-be-positive");
}
if (numScorers <= 1) {

throw new IllegalArgumentException("There-must-
be-at-least-2-subScorers");

}
this.minimumNrMatchers = minimumNrMatchers;

}

Third display a representation of
this estimator

public String toString() {
String result = "Discrete-Estimator.-Counts-=-";
if (m_SumOfCounts > 1) {

for (int i = 0; i < m_Counts.length; i++) {
result += "-" + Utils.doubleToString(m_Counts[

i], 2);
}
result += "-(Total-=-" + Utils.doubleToString(

m_SumOfCounts, 2) + ")-";
} else {

for (int i = 0; i < m_Counts.length; i++) {
result += "-" + m_Counts[i];

}
result += "-(Total-=-" + m_SumOfCounts + ")-";

}
return result;

}

Table 4.2.5: Search example 5

26

CHAPTER 4. EXPERIMENTS AND RESULTS

Input query how to read a csv file
Snippet rank Original description Code retrieved

First
open a file for
UNK decompressing it if
necessary

public static BufferedReader
openFileForBufferedUtf8Reading(final File file)
{

return new BufferedReader(new InputStreamReader(
openFileForReading(file), Charset.forName("
UTF-8")));

}

Second load file

private String loadFile(File file) {
StringBuffer sb = new StringBuffer();
char[] buffer = new char[1024];
BufferedReader br = null;
try {

br = new BufferedReader(new FileReader(file));
int readChar = br.read(buffer);
while (readChar != -1) {

sb.append(buffer, 0, readChar);
readChar = br.read(buffer);

}
} catch (Exception e) {

Logger.getInstance().logError("Error-loading-
source-file", e);

} finally {
if (br != null) {

try {
br.close();

} catch (IOException e) {
Logger.getInstance().logError("Closing-

stream", e);
}

}
}
return sb.toString();

}

Third open a file with a specified
name for input

public static void readFile(String fileName) {
if (fileName == null) readStandardInput();
else {

BufferedReader newin;
try {

newin = new BufferedReader(new FileReader(
fileName));

} catch (Exception e) {
throw new IllegalArgumentException("Can\'t-

open-file-");
}
if (!readingStandardInput) {

try {
in .close();

} catch (Exception e) {}
} in = newin;
readingStandardInput = false;
inputErrorCount = 0;
inputFileName = fileName;

}
}

Table 4.2.6: Search example 6
27

CHAPTER 4. EXPERIMENTS AND RESULTS

Input query create a file and write to it
Snippet rank Original description Code retrieved

First dump the array list of
times to the file

public static void printStatsToFile(Statistics s,
String filename) {

try {
File file = new File(filename);
if (!file.exists()) {

file.createNewFile();
}
FileWriter fw = new FileWriter(file.

getAbsoluteFile(), true);
BufferedWriter bw = new BufferedWriter(fw);
bw.write(s.toString());
bw.close();

} catch (IOException e) {
e.printStackTrace();

}
}

Second save the string buffer into
a file

private static void saveFile(StringBuffer
stringBuffer, String filename) {

String path = (new File("")).getPath();
File file = new File(path + "/" + filename);
FileWriter output = null;
try {

output = new FileWriter(file);
output.write(stringBuffer.toString());

} catch (IOException e) {
e.printStackTrace();

} finally {
try {

output.close();
} catch (IOException e) {}

}
}

Third

write the tags from this
exif interface object into a
jpeg UNK removing prior
exif tags

public void writeExif(byte[] jpeg, String
exifOutFileName) throws FileNotFoundException,
IOException {

if (jpeg == null || exifOutFileName == null) {
throw new IllegalArgumentException(

NULL_ARGUMENT_STRING);
}
OutputStream s = null;
try {

s = getExifWriterStream(exifOutFileName);
s.write(jpeg, 0, jpeg.length);
s.flush();

} catch (IOException e) {
closeSilently(s);
throw e;

}
s.close();

}

Table 4.2.7: Search example 7

28

Chapter 5

Conclusions and Future Work

In this chapter we present the conclusions of this project and the proposed future work.

5.1 Conclusions

In this project we have presented the challenge of code search. We have reviewed some of the state-of-
the-art techniques in NLP, including Attention mechanisms, Transformers and BERT models. We have
also shown some of the most popular techniques and approaches in code search.

The proposed experiments have demonstrated the effectiveness of BERT models for code search, as well
as multistage architectures are presented as a solution to the high latency of monoBERT models with
minimal impact on output quality. The results of our experiments have shown that even more naive and
unspecialized models, such as in our case UNIF and SNN, can be useful in the first stage of the multistage
architecture to filter K candidates, provided that it shows a good result with the TopK metric.

In this project we studied also the robustness of the models, testing them with sentences from outside
their test set. Although all models show a drop in performance with the new sentences, which could
be mitigated by training them with more data, it is certain that monoBERT maintains its performance
with the multistage architecture.

Finally, the search examples shown in Section 4.2 reveal that in most cases the code snippets retrieved
are related to the input query and partially solve the question posed.

5.1.1 Future Work

This project tests the superiority of generic BERT models in code search compared to simpler models, as
well as an architecture that mitigates their inference times. For this purpose, the dataset used contains
cleaned code snippets, with subword splitting and removal of non-alphanumeric characters, allowing
comparison between general purpose models.

One way to improve the results would be to keep the code intact and use models specialized in source code,
such as codeBERT[10] or cuBERT[15]. In addition, since it has been proven that simple models can be
used for initial candidate filtering, an architecture could be tested in which a UNIF-SNN model selects

29

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

candidates using the cleaned code, so that the specialized monoBERT (e.g: codeBERT or cuBERT)
model performs the re-ranking with the original version of the snippet.

One interesting approach would be to combine general purpose BERT based models and models
specialized in source code models in a Sentence-based architecture. Our Sentence-BERT approach
uses the same BERT model to embed the code and description (using a Siamese architecture). An
architecture using BERT for description and codeBERT or cuBERT for code snippet could leverage the
strengths of the former in NLP and the latter in source code processing.

Another direct way to improve the absolute results of this project is to try longer sentence lengths. To
make the proposed experiments feasible in terms of training time and available resources, the input to
the models was truncated to 90 words. Although we do not expect major changes in the difference
between models (monoBERT will continue to outperform the other models), we do believe that all will
see their TopN metrics greatly improved.

30

Bibliography

[1] Baldi, Pierre and Chauvin, Yves. “Neural networks for fingerprint recognition”. In: neural
computation 5.3 (1993), pp. 402–418.

[2] Bromley, Jane, Guyon, Isabelle, LeCun, Yann, Säckinger, Eduard, and Shah, Roopak. “Signature
Verification Using a ”Siamese” Time Delay Neural Network”. In: Proceedings of the 6th
International Conference on Neural Information Processing Systems. NIPS’93. Denver, Colorado:
Morgan Kaufmann Publishers Inc., 1993, pp. 737–744.

[3] Brown, Tom B, Mann, Benjamin, Ryder, Nick, Subbiah, Melanie, Kaplan, Jared, Dhariwal,
Prafulla, Neelakantan, Arvind, Shyam, Pranav, Sastry, Girish, Askell, Amanda, et al. “Language
models are few-shot learners”. In: arXiv preprint arXiv:2005.14165 (2020).

[4] Cambronero, Jose, Li, Hongyu, Kim, Seohyun, Sen, Koushik, and Chandra, Satish. “When deep
learning met code search”. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering.
2019, pp. 964–974.

[5] Chicco, Davide. “Siamese neural networks: An overview”. In: Artificial Neural Networks (2021),
pp. 73–94.

[6] Chollet, François et al. Keras. https://keras.io. 2015.

[7] Das, Arpita, Yenala, Harish, Chinnakotla, Manoj, and Shrivastava, Manish. “Together we stand:
Siamese networks for similar question retrieval”. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 2016, pp. 378–387.

[8] Denil, Misha, Bazzani, Loris, Larochelle, Hugo, and Freitas, Nando de. “Learning where to attend
with deep architectures for image tracking”. In: Neural computation 24.8 (2012), pp. 2151–2184.

[9] Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova, Kristina. “Bert: Pre-training of
deep bidirectional transformers for language understanding”. In: arXiv preprint arXiv:1810.04805
(2018).

[10] Feng, Zhangyin, Guo, Daya, Tang, Duyu, Duan, Nan, Feng, Xiaocheng, Gong, Ming, Shou, Linjun,
Qin, Bing, Liu, Ting, Jiang, Daxin, et al. “Codebert: A pre-trained model for programming and
natural languages”. In: arXiv preprint arXiv:2002.08155 (2020).

[11] Gan, Wee Chung and Ng, Hwee Tou. “Improving the robustness of question answering systems
to question paraphrasing”. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. 2019, pp. 6065–6075.

31

https://keras.io

BIBLIOGRAPHY

[12] Goodfellow, Ian, Bengio, Yoshua, Courville, Aaron, and Bengio, Yoshua. Deep learning. Vol. 1. 2.
MIT press Cambridge, 2016.

[13] Gu, Xiaodong, Zhang, Hongyu, and Kim, Sunghun. “Deep code search”. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE. 2018, pp. 933–944.

[14] Hoffer, Elad and Ailon, Nir. “Deep metric learning using triplet network”. In: International
workshop on similarity-based pattern recognition. Springer. 2015, pp. 84–92.

[15] Kanade, Aditya, Maniatis, Petros, Balakrishnan, Gogul, and Shi, Kensen. “Learning and
Evaluating Contextual Embedding of Source Code”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 5110–5121.

[16] Li, Wei, Qin, Haozhe, Yan, Shuhan, Shen, Beijun, and Chen, Yuting. “Learning Code-Query
Interaction for Enhancing Code Searches”. In: 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE. 2020, pp. 115–126.

[17] Lin, Jimmy, Nogueira, Rodrigo, and Yates, Andrew. “Pretrained transformers for text ranking:
Bert and beyond”. In: arXiv preprint arXiv:2010.06467 (2020).

[18] Liu, Xinchen, Liu, Wu, Mei, Tao, and Ma, Huadong. “Provid: Progressive and multimodal vehicle
reidentification for large-scale urban surveillance”. In: IEEE Transactions on Multimedia 20.3
(2017), pp. 645–658.

[19] Liu, Yinhan, Ott, Myle, Goyal, Naman, Du, Jingfei, Joshi, Mandar, Chen, Danqi, Levy, Omer,
Lewis, Mike, Zettlemoyer, Luke, and Stoyanov, Veselin. “Roberta: A robustly optimized bert
pretraining approach”. In: arXiv preprint arXiv:1907.11692 (2019).

[20] LLC, MultiMedia. Stack Overflow. url: https://stackoverflow.com (visited on 06/04/2021).

[21] Lv, Fei, Zhang, Hongyu, Lou, Jian-guang, Wang, Shaowei, Zhang, Dongmei, and Zhao, Jianjun.
“Codehow: Effective code search based on api understanding and extended boolean model (e)”.
In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE. 2015, pp. 260–270.

[22] Martins, Marcelo de Rezende and Gerosa, Marco A. “CoNCRA: A Convolutional Neural Network
Code Retrieval Approach”. In: arXiv preprint arXiv:2009.01959 (2020).

[23] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg
S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Jia, Yangqing, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. Software available from tensorflow.org. 2015. url:
https://www.tensorflow.org/.

[24] Merkel, Dirk. “Docker: lightweight linux containers for consistent development and deployment”.
In: Linux journal 2014.239 (2014), p. 2.

32

https://stackoverflow.com
https://www.tensorflow.org/

BIBLIOGRAPHY

[25] Meyer, Andre N, Barton, Laura E, Murphy, Gail C, Zimmermann, Thomas, and Fritz,
Thomas. “The work life of developers: Activities, switches and perceived productivity”. In: IEEE
Transactions on Software Engineering 43.12 (2017), pp. 1178–1193.

[26] Mikolov, Tomas, Chen, Kai, Corrado, Greg, and Dean, Jeffrey. “Efficient estimation of word
representations in vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

[27] Mikolov, Tomáš, Yih, Wen-tau, and Zweig, Geoffrey. “Linguistic regularities in continuous space
word representations”. In: Proceedings of the 2013 conference of the north american chapter of the
association for computational linguistics: Human language technologies. 2013, pp. 746–751.

[28] Minelli, Roberto, Mocci, Andrea, Lanza, Michele, and Baracchi, Lorenzo. “Visualizing developer
interactions”. In: 2014 Second IEEE Working Conference on Software Visualization. IEEE. 2014,
pp. 147–156.

[29] Reimers, Nils and Gurevych, Iryna. “Sentence-bert: Sentence embeddings using siamese bert-
networks”. In: arXiv preprint arXiv:1908.10084 (2019).

[30] Rodriguez, Ariel et al. “Empirical study on the relationship between developer’s working habits and
efficiency”. In: 2018 IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR). IEEE. 2018, pp. 74–77.

[31] Sachdev, Saksham, Li, Hongyu, Luan, Sifei, Kim, Seohyun, Sen, Koushik, and Chandra, Satish.
“Retrieval on source code: a neural code search”. In: Proceedings of the 2nd ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages. 2018, pp. 31–41.

[32] Sadowski, Caitlin, Stolee, Kathryn T, and Elbaum, Sebastian. “How developers search for code: a
case study”. In: Proceedings of the 2015 10th joint meeting on foundations of software engineering.
2015, pp. 191–201.

[33] Singer, Janice, Lethbridge, Timothy, Vinson, Norman, and Anquetil, Nicolas. “An Examination of
Software Engineering Work Practices”. In: Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research. CASCON ’97. Toronto, Ontario, Canada: IBM Press,
1997, p. 21.

[34] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, Gomez, Aidan
N, Kaiser, Lukasz, and Polosukhin, Illia. “Attention is all you need”. In: arXiv preprint
arXiv:1706.03762 (2017).

[35] Wolf, Thomas, Debut, Lysandre, Sanh, Victor, Chaumond, Julien, Delangue, Clement, Moi,
Anthony, Cistac, Pierric, Rault, Tim, Louf, Rémi, Funtowicz, Morgan, Davison, Joe, Shleifer, Sam,
Platen, Patrick von, Ma, Clara, Jernite, Yacine, Plu, Julien, Xu, Canwen, Scao, Teven Le, Gugger,
Sylvain, Drame, Mariama, Lhoest, Quentin, and Rush, Alexander M. “Transformers: State-of-the-
Art Natural Language Processing”. In: Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations. Online: Association for Computational
Linguistics, Oct. 2020, pp. 38–45. url: https://www.aclweb.org/anthology/2020.emnlp-

demos.6.

[36] Yao, Ziyu, Peddamail, Jayavardhan Reddy, and Sun, Huan. “Coacor: Code annotation for code
retrieval with reinforcement learning”. In: The World Wide Web Conference. 2019, pp. 2203–2214.

33

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

	Introduction
	Background
	Problem
	Research Question and Contributions
	Outline

	Theoretical Background
	Machine Learning and Deep Learning
	Siamese Neural Networks
	Embeddings
	Attention mechanism and Transformers
	BERT and Sentence-BERT

	Code Search
	Related work

	Research Methodology
	Models
	UNIF
	UNIF SNN
	Sentence-BERT and monoBERT
	Multistage architecture

	Dataset
	Training
	Triplet network framework
	MonoBERT training

	Tests
	Metrics
	Rephrasing test
	Search examples

	Experiments and Results
	Experiments
	Code Search examples

	Conclusions and Future Work
	Conclusions
	Future Work

	References

