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Abstract

This thesis exploresVariationalAutoencoders (VAEs) for unsupervised learn-
ing on biomedical microscopy images, focusing onMultiple Sclerosis (MS) and
lung cancer data. A wide range of VAE architectures were evaluated to iden-
tify optimal depth configurations that balance reconstruction quality and latent
space regularization.
To reduce manual tuning, an adaptable VAE was developed using a layer inter-
polation formula that calculates model depth based on image resolution. This
model was validated on unseen 80 × 80 images and compared against fixed 2-
and 4-layer variants. Results show that the interpolated 3-layer design achieves
the optimal balance between reconstruction fidelity and latent space usage,
avoiding overfitting and collapse.
The proposed adaptable framework generalizes well across resolutions, offer-
ing a scalable and robust solution for microscopy-based medical image analy-
sis.
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Sammanfattning

Detta examensarbete undersöker användningen avVariationalAutoencoders
(VAE:er) för oövervakad inlärning på biomedicinska mikroskopibilder, med
fokus på data relaterad till multipel skleros (MS) och lungcancer. Ett brett ur-
val av VAE-arkitekturer utvärderades för att identifiera optimala nätverksdjup
som balanserar rekonstruktionskvalitet och regularisering av den latenta rep-
resentationen.
För att minska behovet av manuell justering utvecklades en anpassningsbar
VAEsomanvänder en interpolationsformel för att beräknanätverksdjupet baserat
på bildupplösning. Modellen validerades på tidigare osedda 80× 80-bilder och
jämfördesmed fasta variantermed 2 och 4 lager. Resultaten visar att den inter-
polerade 3-lagersmodellen uppnår en optimal balans mellan rekonstruktions-
fidelitet och användning av latent utrymme, samtidigt som överanpassning och
kollaps undviks.
Det föreslagna anpassningsbara ramverket generaliserar väl över olika upplös-
ningar och erbjuder en skalbar och robust lösning förmikroskopibaseradmedicinsk
bildanalys.

Keywords

Mikroskopi, Maskininlärning, Bildanalys, Dataanalys, Bioinformatik, Vari-
ationsautoencoder
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1 Introduction

This chapter introduces the research area of unsupervised representation

learning for high-resolution biomedical microscopy. It motivates the need for

automated analysis of complex, high-dimensional image data and describes

howVariational Autoencoders (VAEs) can address this real-life challenge. Sec-

tion 1.1 provides backgroundonmicroscopy imaging anddeepgenerativemod-

els. Section 1.2 formulates the research problem and states the guiding re-

search questions. Section 1.3 describes the overall purpose of this thesis, while

Section 1.4 details the specific goals and objectives. Section 1.5 summarizes

the research methodology. Section 1.6 presents the delimitation of this work.

In Section 1.7 we discuss the ethical and sustainable aspects of the thesis. Fi-

nally, Section 1.7 presents the structure of the thesis.

1.1 Background

Medical imaging is a key approach of modern diagnostics, offering a non-

invasive and increasingly detailed perspective into disease detection, diag-

nosis, and monitoring. However, traditional imaging techniques such as Mag-

netic Resonance Imaging (MRI) and Computed Tomography (CT) often iden-

tify structural changes only once a disease has already progressed to an ad-

vanced stage. On theother hand, cellular-level changes frequently occurmuch

earlier in the lifecycle of the disease, offering a potential time window for ear-

lier detection. Microscopy, especially when applied to live-cell environments,

provides high-resolution access to this critical level of biological detail. Yet,

the complexity of microscopy data and its hardly recognizable features make

manual analysis impractical and standard computational pipelines insufficient.

To overcome this difficulty, automated, data-drivenmethods are therefore es-

sential to extract meaningful patterns from large microscopy datasets. In the

compression of high-resolution images into lower-dimensional latent spaces,

unsupervised learning techniques, such as VAEs, show promise, since they

preserve biologically relevant features. By learning a compact encoding of

each image, VAEs can be used for downstream tasks (e.g., anomaly detec-

tion, cell fate prediction, early disease recognition) without relying on man-

ual features. Moreover, an adaptable model that dynamically scales based on

different image resolutions would enhance cross-platform reproducibility and

reduce the need for manual reconfiguration when applying the same pipeline

to new biological datasets.
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1.2 Problem

Despite advances in imaging and initial experiments in deep learning, there is

still a gap between raw microscopic data and information that can be used in

practice. Specifically:

1. Manual or semi-automated methods often depend on engineered fea-

tures, limiting their generalizability across different resolutions or imaging

domains.

2. Noise, staining heterogeneity, and imaging artifacts can mask subtle pat-

terns related to disease that can only be detected through a robust diag-

nostic and normalization process.

3. Existing VAE architectures are typically designed for a fixed input size.

This property prevents the adaptation to images of different resolutions

without manual adjustment of network depth and hyperparameters.

Without an integrated approach that can:

• Compress high-resolution microscopy images into a lower-dimensional,

informative representation,

• Denoise and normalize variable imaging conditions,

• Adapt dynamically to datasets of unseen resolutions,

researchers lack a scalable, generalizable pipeline for large-scale, cross-platform

microscopy analysis. To overcome these bounderies, this thesis addresses the

following research questions:

1. Can we build a Variational Autoencoder (VAE) that effectively reduces

the dimensionality of microscopy data?

2. Can we make this VAE adaptable to other biological datasets?

1.3 Purpose

The primary goal of this thesis is to develop an adaptable, generalizable, and

dynamic unsupervised framework that leverages VAEs to learn compact, ro-

bust representations of microscopy images, while providing good-quality re-

constructions. By encoding each image into a latent space that preserves es-

sential morphological andmolecular features, the proposed approach aims to:

• Reconstruct the original images with well-quality, capturing the primary

features,

• Provide a model architecture that dynamically scales to different input

sizes without manual reconfiguration.

This kind of adaptability is critical for studies where the input includes diverse

biomedical images across several domains.
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1.4 Goals

To address the research questions and fulfill the stated purpose, this work as-

pires the following objectives:

1. Construct and comparemultiple VAE architectures of varying depths and

downsampling strategies to identify configurations that balance recon-

struction fidelity and latentspace regularization on high resolutionMSmi-

croscopy images.

2. Systematically assess the impact of latent dimensionality (e.g., dz = 2
vs. dz = 20) on disentanglement and reconstruction quality, selecting a

model that achieves the optimal trade-off.

3. Adapt the selected VAE for low-resolution lung cancer cell imaging by re-

ducing network complexity (fewer convolutional layers)whilemaintaining

an informative latent encoding.

4. Implement and validate a layer-interpolation formula that determines the

appropriate number of layers basedon input image size, creating an “adapt-

able VAE” capable of handling arbitrary microscopy resolutions without

manual tuning.

1.5 Research Methodology

In the first phase, six candidate VAE architectures—differing by downsam-

pling strategy (MaxPooling vs. strided convolution + BatchNormalization) and

depth (2, 3, or 4 layers)—are implemented in Python using PyTorch. All models

are trained for 4,000 epochs on memory B-cell immunofluorescence images

(two channels, 140 × 140 pixels) from MS patients and healthy controls. Re-

construction loss (mean-squared error with sum reduction) and KL divergence

are saved per epoch to calculate the total VAE loss:

L = Lrec + LKL.

Each architecture is evaluated at latent dimensions dz = 2 and dz = 20 to

assess trade-offs between compression and expressivity. The final model (a

4-layer MaxPooling VAE with dz = 2) is then tested across β values.

In the second phase, the selected VAE is retrained on 20×20-pixel lung cancer
cell images, reducing architecture depth tomatch the smaller input size. Two-

layer and three-layer variants (e.g., VAE_MP2_64, VAE_MP3_128) are compared

again fixing dz = 2. Performance, measured via reconstruction loss, latent KL,

and qualitative visual assessment, is used to select the simplest model that

preserves critical cellular features.

Finally in phase 3, a layer interpolation formula can be derived based on all pre-

vious experiments, mapping input resolution to the optimal number of convo-

lutional blocks. This formula is validated on resized lung cancer images that un-

seen to confirm that the “adaptable VAE” (using interpolated depth) achieves

comparable reconstruction fidelity to manually designed architectures, while

eliminating the need for dataset-specific re-engineering.
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1.6 Delimitation

This study used two specific fluorescence-basedmicroscopydatasets: FACS-

sorted memory B-cell imaging for Multiple Sclerosis and FRET-labeled lung

cancer cells. Other imagingmodalities (e.g., brightfield, phase contrast, histol-

ogy) are not evaluated. Only VAEs are considered; traditionalmachine learning

pipelines, alternative generative models such as Generative Adversarial Net-

works (GANs) or normalizing flows are out of scope. Although the adaptable

VAE is designed for a range of image sizes, performance on extremely high-

resolution (> 512 × 512) or multi-channel (> 2 channels) inputs has not been
assessed. All experiments use PyTorch. This work emphasizes reconstruction

fidelity and latent-space compactness; downstream tasks (e.g., classification,

clustering) are not implemented here.

1.7 Social Aspects

1.7.1 Social Relevance

Nowadays, the convergence of biomedical imaging and artificial intelligence

(AI) shows significant impacts on howwe interpret cellular-level data for health-

care applications. Traditionally, high-resolution microscopy required expert

interpretation, using manual effort, subjective variability, and scalability limi-

tations. However, with the integration of deep learning techniques, such as

Variational Autoencoders (VAEs), there is more capacity to analyze complex,

underlying cellular patterns at a scale and speed previously unattainable [17,

5].

This thesis contributes to that frontier by designing a VAE framework capa-

ble of adapting to various biomedical datasets, enabling broader applicability

across different disease domains, such as Multiple Sclerosis and lung cancer.

This model lowers the barrier to adopting AI in clinical and research settings by

reducing the dependence on manual reconfiguration. In the long term, these

tools can support earlier disease detection, assist in treatment stratification,

and potentially help make real-time decisions during clinical workflows [19].

1.7.2 Sustainability

There is a cost of the rapid acceleration of AI inmedical imaging. Training deep

neural networks, particularly on high-resolution microscopy data, consumes

significant energy. Nowadays, the environmental footprint of AI technologies

has become a significant concern, especially in the field of medical imaging

where large datasets and complex models are common [25].

It is essential to evaluate model design through the lens of computational sus-

tainability. This work proposes an adaptable VAE that adjusts its architecture

to match the resolution of the input data. This dynamic approach reduces re-

dundant computation and avoids overfitting models to low-complexity tasks.

Using an adaptable structure leads to lower training times and reduced hard-

4



ware demands, making the solution more scalable to resource-constrained

settings such as smaller labs or hospitals without access to high-performance

workstations. Furthermore, another aspect can be improving the efficiency

and quality of early disease detection. It can indirectly minimize the carbon

andmaterial costs of prolonged, late-stage treatment plans and repeated imag-

ing procedures. In this way, the proposed methodology serves computational

sustainability and supports more efficient resource usage across the medical

pipeline [15].

1.7.3 Ethics

Deploying machine learning (ML) models in the biomedical field presents sev-

eral ethical challenges. First, the opacity of deep learning systems makes clin-

ical interpretability a concern. Even though the proposed framework operates

unsupervised, the decision it informs may influence high-stakes diagnosis. If

the internal representations are misunderstood or misused, there is a risk of

unintended bias or overreliance in automated pipelines [28].

Furthermore, generalizability across datasets raises ethical concerns around

fairness. Different group domains, across age, ethnicity, or disease subtype,

may exhibit subtle imaging differences. Thus, a model trained on one popula-

tion may underperform or misrepresent patterns in another. This approach is

essentialwhen considering the translation of amodel validation ononedataset

to another, as done in this project.

Finally, when there is increasing automation in biomedical interpretation, the

issue of accountability appears. If a model assists in a diagnostic decision

incorrectly, it remains unclear whether the responsibility lies with the clini-

cian, the developer, or the institution deploying the system. This work fo-

cuses on research application and proof-of-concept architectures, but we still

have topay attention to the ethical imperative aspects. Transparency, fairness,

and cautious deployment must accompany technical innovation in AI-driven

healthcare tools [6].

1.8 Structure of the Thesis

• Chapter 1: Introduction, including background, problem statement, re-

search questions, purpose, goals, methodology, delimitations, and thesis

structure.

• Chapter 2: Background, collecting all the necessary knowledge for a deeper

understanding and literature review on generative models—specifically

VAEs—and prior applications in biomedical microscopy.

• Chapter 3: Experimental design and implementation details for VAE archi-

tectures across MS and lung cancer datasets; derivation of the adaptable

layer-interpolation formula.

• Chapter 4: Quantitative and qualitative results, including reconstruction

errors, KL losses and visual comparisons across datasets.
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• Chapter 5: Conclusions, limitations, and future directions, such as ex-

tending the adaptable VAE to additionalmodalities and integrating down-

stream predictive models.
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2 Background and Related Work

This chapter deepens the motivations and objectives outlined in chapter 1

by first grounding ourwork in the theory of unsupervised representation learn-

ing with the introduction of the general autoencoder and its probabilistic ex-

tension, the Variational Autoencoder (VAE). We then survey how these mod-

els have been adapted to key medical imaging modalities, such as X-ray, CT,

or MRI. In section 2.2, we highlight recent advances tailored to microscopy

and dermatology. By identifying both the strengths of these approaches and

the remaining challenges, we set the stage for our ownVAE-based framework.

chapter 3 will present the detailed network architecture, loss formulations and

training strategy; chapter 4 will describe the datasets and experimental de-

sign; and chapter 5 will report our empirical findings and chart directions for

future research.

2.1 Background

Integrating Machine Learning (ML) and Deep Learning (DL) techniques has

revolutionized several fields, including medical imaging and bioinformatics.

The use of DL enhances the analysis of complex datasets, improving diag-

nostic accuracy and facilitating personalized medicine. This section provides

an overview of the background and related work in the application of autoen-

coders, especially Variational Autoencoders (VAEs), in medical image analysis.

Image analysis is crucial to make important decisions and predictions, and it is

one of the key steps in recent studies.

Furthermore, this section elaborates on the application of ML in lung can-

cer andMultiple Sclerosis (ML), emphasizing the potential of combining image

analysis with ML models to improve disease diagnosis and prediction.

2.1.1 Autoencoders

Autoencoders are a class of unsupervised neural networks that learn to encode

high-dimensional data into a compact latent representation and then decode

that representation to reconstruct the original input. Their main focus is on

capturing the most important features of the data while reducing noise and

redundancy. These models can be useful in domains like medical image analy-

sis, where images often suffer from variability and artifacts, because autoen-

coders can be used for image compression, anomaly detection, dimensionality

reduction, and denoising.
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2.1.1.1 General Autoencoders

The main concept includes two main components:

• Encoder: A function fθ(.) that maps the input data x to a latent represen-

tation z:

z = fθ(x)

• Decoder: A function gφ(.) that reconstructs the input from the latent code:

x̂ = gφ(z)

During the model’s training process, the goal is to minimize the reconstruction

error. This is typically measured by a loss function such as mean squared error

(MSE) or cross-entropy loss. It can be written as:

Lrec = ‖x − x̂‖2,

Which encourages the output x̂ to be as similar as possible to the input x.

2.1.1.2 Types of Autoencoders

Over the years, several variants of autoencoders have been developed to solve

specific challenges.

One of the earliest types was introduced by Vincent et al. (2008)[29]. This

model is the Denoising Autoencoder (DAE), which is designed to reconstruct

the original input from a corrupted version, so it learns robust representations

that are resilient to noise. By training the model to denoise corrupted inputs,

DAEs capture essential structures in the data, making them effective for tasks

such as image denoising and feature extraction.

Rifai et al. (2011)[24] proposed theContractiveAutoencoders (CAEs). These

models add a regularization term to the loss function that penalizes the sensi-

tivity of the encoded representations to small changes in the input. It means

that the contractive penalty encourages the model to learn features that are

invariant to small input variations, thereby capturing the underlying structure

of the data.

In 2013, KingmaandWelling (2013)[14] developedVariational Autoencoders

(VAEs), which introduce a probabilistic framework to the autoencoder archi-

tecture. The main concept is that VAEs assume that the latent variables fol-

low a prior distribution, usually a standard normal distribution, and aim to learn

a posterior distribution that approximates this prior. The model is trained by

maximizing the evidence lower bound (ELBO), which balances the reconstruc-

tion accuracy and the divergence between the learned posterior and the prior.

This probabilistic formulation allows VAEs to generate new data samples and

has been widely applied in generative modeling tasks.

As another important variant of autoencoders, Adversarial Autoencoders

(AAEs) were introduced by Makhzani et al. (2015)[18]. These models com-

bine the autoencoder architecture with adversarial training. In this framework,
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the encoder’s output is regularized by matching the aggregated posterior of

the latent variables to a specified prior distribution using a discriminator net-

work. This approach allows AAEs to perform variational inference and gener-

ate data samples, making them suitable for applications in generative model-

ing and semi-supervised learning.

The diversity of autoencoders has a huge impact on developing the field of

unsupervised learning, because models are able to learn meaningful and ro-

bust representations from complex data.

2.1.1.3 Variational Autoencoders (VAEs)

In this degree project, VAEs are one of the key components of the architec-

ture. Using this model makes it possible to use meaningful latent representa-

tions, which is really important in the case of classification.

VAEs, introduced by Kingma andWelling in 2013[14], are generativemodels

that combine principles from variational inference and neural networks. The

main difference between the traditional autoencoders and the VAEs is that

traditional ones deterministically map inputs to latent representations; how-

ever, VAEs learn a probabilistic distribution over the latent space, enabling the

generation of new data samples.

In order to gain a deeper insight into its mathematical background, in a VAE,

the encoder maps an input x to a latent variable z, characterized by a mean µ
and a standard deviation σ. The decoder then reconstructs x fromz. Themodel

is trained to maximize the Evidence Lower Bound (ELBO), which consists of

two terms:

1. Reconstruction Loss: Measures howwell the decoder can reconstruct the

input from the latent variable.

2. Kullback-Leibler (KL) Divergence: Regulates the learned latent distribu-

tion to be close to a prior distribution, typically a standard normal distri-

bution.

ELBO is expressed as:

L = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x) ‖ p(z)) (2.1)

Here, qφ(z | x) is the approximate posterior distribution, pθ(x | z) is the likeli-

hood of the data given the latent variable, and p(z) is the prior distribution over
the latent variables.

A key toVAEs is the reparametrization trick, which enables efficient backprop-

agation during training. Instead of sampling z directly from qφ(z | x), themodel

expresses z as:

z = µ+ σ � ε (2.2)

Where

ε ∼ N (0, I)
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Is an auxiliary noise variable. This formulation allows gradients to flow through

µ and σ during optimization.

By integrating VAEs into our architecture, their strengths in capturing complex

data distributions andgenerating high-quality samples can enhance theoverall

performance and robustness of the system.

2.1.2 Medical Image Analysis

Medical image analysis plays an important role in medical research. It involves

the extraction ofmeaningful information from variousmedical imagingmodal-

ities to assist in diagnosis, treatment planning, diseasemonitoring, and disease

prediction. Themain goal is to identify regions of the anatomy affected by dis-

ease, thereby making it easier to understand lesion progression [13].

2.1.2.1 Types of Medical Imaging Modalities

Medical imaging includes several types of methods, each providing unique in-

sights into the human body [13]:

• X-ray Imaging: Utilizes ionizing radiation to capture images of dense struc-

tures like bones. It is one of the most common diagnostic tools globally,

especially for chest and bone imaging [23].

• Computed Tomography (CT): Combines multiple X-ray images to cre-

ate cross-sectional views, offering detailed information about internal or-

gans. CT imaging provides high-resolution 3D visualization, crucial for de-

tecting tumors and internal injuries [30].

• Magnetic Resonance Imaging (MRI): Employs magnetic fields and radio

waves to generate detailed images of soft tissues, such as the brain and

muscles. MRI is especially valued for its superior soft-tissue contrastwith-

out the use of ionizing radiation [8].

• Ultrasound: Uses high-frequency sound waves to visualize soft tissues

and blood flow, commonly used in obstetrics and cardiology. It is widely

adopted due to its real-time capability and safety [22].

2.1.2.2 Microscopy in Medical Image Analysis

Microscopy is necessary inmedical research, especially for examining cells and

tissues at high resolution. Advancements in technology and digitization have

made it possible to enhance tissue-based research via digital microscopy and

image analysis. Whole slide imaging scanners enable the digitization of histol-

ogy slides to be stored.
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2.1.3 Autoencoders in Medical Image Analysis

Autoencoders are a type of neural network architecture designed for unsu-

pervised learning. These models have found significant applications in mi-

croscopy image analysis. Since, they can learn compact, meaningful repre-

sentations of data, they are particularly suited for handling the complex high-

dimensional nature of datasets.

One important advantage of autoencoders is that they are suitable for fea-

ture extraction and representation learning. In microscopy, images often con-

tain intricate structures and patterns that are hard to analyze using traditional

methods. These models address this by encoding the input images into a

lower-dimensional latent space, capturing the most important features while

reducing noise and redundancy.

On the other hand, microscopy images are often sensitive to different types

of noise due to limitations in imaging techniques and environmental factors.

Autoencoders, especially denoising autoencoders, have made it easier to im-

prove image quality by reconstructing clean images from noisy inputs. This

is a key step for accurate visualization and analysis of microscopic structures.

In 2019, Niu et al. Introduced a Fully Convolutional Deep Denoising Autoen-

coder (DDAE) [21] model which effectively preserved important cellular fea-

tures, such as cell boundaries, while reducing noise, so it made downstream

analysis more accurate [20]. Similarly, recent work has shown that deep de-

noising autoencoders can enhance high-resolution microscopy images (such

as ChromSTEM) without sacrificing key biological structures [2].

Furthermore, VAEs, a probabilistic extension of traditional autoencoders,

have been utilized in microscopy for generative modeling tasks. These mod-

els learn the underlying distribution of the data and generate new, synthetic

microscopy images that are statistically similar to the original dataset. This ca-

pability is valuable for data augmentation, especially in scenarios with limited

available data.

2.2 Related Work

The integration of autoencoders into medical image analysis has significantly

increased in recent research, which has led to advancements in feature extrac-

tion, image enhancement, and generative modeling. This section reviews key

studies in these fields, highlighting architectures and findings that can con-

textualize this project.

One recent study has focused on using autoencoders for feature extraction

and denoising in microscopy images. Casti et al. (2023)[4] introduced the S3-

VAE (Supervised-Source-Separation Variational Autoencoder), which com-

bines supervised learning with variational autoencoding to create the latent

space. This architecture enhances class separability and disentangles con-

founding factors, thereby enabling more accurate discrimination of cell types

in single-cell microscopy data. Similarly, Rotem et al. (2024) developed the
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DISCOVER model, which integrates an Adversarial Autoencoder (AAE) with a

classifier. By combining perceptual losses and adversarial training, their model

achieves high-quality image reconstruction and preserves the features most

relevant to classification tasks.

Another critical requirement in the microscopy image analysis is denois-

ing. Images are often compromised by noise due to the limitations of imaging

and environmental factors. A study by Yang et al. (2019) [31] proposed a Dual

Adversarial Autoencoder for dermoscopic image analysis that addresses chal-

lenges such as data augmentation and noise reduction. This model improves

the reliability of downstreamdiagnostic tasks because it enhances image qual-

ity. Similarly, Niu et al. (2019) introduced a Fully Convolutional Deep Denois-

ing Autoencoder (DDAE) [21] specifically designed for improving the quality

of microscopy images. This model uses advanced techniques such as three-

photon fluorescence and third harmonic generation. Their work demonstrated

that the architecture could preserve critical cellular features, like cell bound-

aries, while effectively reducing noise, which is essential for accurate image

analysis.

Collectively, these studies highlight the versatility and robustness of au-

toencoders in microscopy image analysis. They play an important role in de-

noising, feature extraction, and generativemodeling, whichmakes thesemod-

els highly suitable for improving both the quality and interpretability of mi-

croscopy images. This is the reasonwhy they are used in severalmedical fields.
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3 ProblemDescription andMethodology

After discussing the background andmotivation presented in chapter 1 and

the literature survey in chapter 2, this chapter defines the precise computa-

tional problemwe address and outlines themethodological framework used to

tackle it. Specifically, we frame the challenge of learning compact yet expres-

sive representations of high-resolution microscopy images with VAEs, and

then describe the three-phase experimental strategy we follow:

• In Phase 1 (section 3.3), we identify a final VAE architecture for the Mul-

tiple Sclerosis (MS) dataset by comparing variants using different depth

and downsampling strategies.

• In Phase 2 (section 3.4), we take the best MS-trained model as a starting

point, reduce the number of layers to suit 20×20 lung cancer images, and

select a specific VAE configuration for the lung cancer dataset.

• In Phase 3 (section 3.5), we derive and implement an adaptable VAE that

dynamically computes the required number of layers based on input im-

age size, using the outcomes of Phase 1 and Phase 2 and creating a single,

dynamic framework.

By situating the problem and methodology in one chapter, we provide a

clear description of our main challenge and an explanation of how we would

like to overcome this problem. The results and analysis in chapter 4 will then

directly build on the models and procedures defined here.

3.1 Problem Description

High-resolutionmicroscopy images contain rich phenotypic information about

cellular and subcellular structures, but their size and variability pose two main

challenges:

1. Dimensionality and Noise: A single fluorescence microscopy image (e.g.

140×140 pixels, two channels) has a huge amount of pixel values, plus ex-

perimental noise and staining heterogeneity. Extracting a low-dimensional

representation that retains biologically relevant features, while discarding

noise, is nontrivial.

2. Cross-Platform Adaptability: A VAE architecture tuned for 140 × 140 MS

images does not readily transfer to a 20× 20 lung cancer dataset. Manual

reconfiguration of layer counts and feature map sizes for each new reso-

lution is time-consuming and error-prone.

15



Taking into account the above-mentioned challenges, our goal is to design

an unsupervised framework that:

• Compresses each microscopy image into a low-dimensional latent space

(dz = 2), capturing the most important features.

• Denoises and normalizes across variable imaging conditions (e.g. illumi-

nation, staining).

• Scales automatically to different input resolutions (e.g. 140× 140 vs. 20×
20) without manual tuning of network depth.

In our project, this problem consists of three major sub-problems:

Phase 1: Identify and comparemultipleVAEvariants on the 140×140MSdataset,

selecting a final configuration that balances reconstruction fidelity and la-

tent space regularization.

Phase 2: Starting from the Phase 1 final model, selectively reduce the number

of layers to adapt to 20 × 20 lung cancer images, while preserving the

internal block structure (kernel sizes, activation functions, etc.).

Phase 3: Formulate a layer-interpolation rule that, given any input image size,

computes the number of blocks required. Implement a single adaptable

VAE that uses this rule at runtime.

3.2 Methodology

This section outlines the three interconnectedphases of our experimental strat-

egy. Each phase corresponds to one of the sub-problems identified above,

and builds directly on the preceding phase’s outcome:

• section 3.3 (Phase 1): Implement six candidate VAE architectures on the

MS dataset, varying downsampling technique (Max Pooling vs. Strided

Conv+BatchNorm) and network depth (2, 3, or 4 blocks). Train all models

under identical conditions and select the final MS model (VAE_MP4 at dz =
2) based on reconstruction loss, KL divergence, and parameter count.

• section 3.4 (Phase 2): Take the Phase 1 final model as a template. For the

20 × 20 lung cancer images, systematically reduce the number of down-

sampling layers (from 4 to 3 or 2), retaining the same per-block struc-

ture (kernel size 3, padding 1, ReLU activations, final Sigmoid). Compare

variants—VAE_MP3_128, VAE_MP3_256, VAE_MP2_64, VAE_MP2_128—andchoose

a lung-specific final model (VAE_MP2_64 at dz = 2).

• section 3.5 (Phase 3): Derive a layer-interpolation formula thatmaps input

image size (e.g. N × N) to the required number of convolutional/down-

sampling blocks so that the bottleneck resolution stays in a target range

(e.g. 8×8 forMS or 3×3 for lung). Implement an adaptable VAE that, given

any N , dynamically allocates the appropriate number of blocks, reusing

the same per-block design as Phases 1–2.
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3.3 Phase 1: ImplementingVariationalAutoencoder usingMultiple Scle-

rosis Data

3.3.1 Dataset Description

The dataset comprises immunofluorescence confocal microscopy images of

memory B cells collected from two cohorts: multiple sclerosis (MS) patients

treated with Natalizumab and healthy controls. Memory B cells were isolated

fromperipheral bloodmononuclear cells (PBMCs) using fluorescence-activated

cell sorting (FACS), targeting the surface markers CD19 and CD27 [11]. The

cells were subsequently stained for a panel of proteins of interest, including

CD38, CD43, CD11c, CXCR3, TBET, BTK, IgG, and IgM. In addition, the cell

membranes were labeled using a lipophilic dye to facilitate morphological vi-

sualization [16].

For image analysis, the cells were segmented using the Cellpose algorithm

[26], and individual cells were cropped from the original fields of view into

smaller 140×140 pixel regions centered on each cell (see Figure 2 for exam-

ples).

Figure 1: Randomly selected memory B cell samples from the MS dataset.

3.3.2 Model Architecture Experiments

In this part, six VAE architectures were developed and trained on the MS mi-

croscopy dataset. While the experiments were taken, the following design

choices were held constant to allow a fair comparison:

• Input: Inputs include two-channel, 140 x 140-pixel microscopy images.

• Training parameters: Each model was trained for 4000 epochs on the

sameworkstation using the sameoptimization settings (learning rate, batch

size, etc.).

• Latent Sampling: Encoders project two linear heads (fc_mu, fc_logvar)
and use the parametrization trick to sample latent vectors.

17



• Decoder Bridge: There is a single linear layer (fc_decode) that maps latent

vectors back to the flattened spatial representation for the decoder.

• Activation Function: Every convolutional and transposed-convolutional

layer (except the final output) uses a ReLU activation function.

• Output Constraint: The final decoder layer uses a Sigmoid activation to

produce outputs in [0, 1]. This approach is required by the loss value cal-

culations.

The main focus was to observe how different architectural choices influence

the model’s ability to reconstruct input images effectively. The structures are

categorized based on two key design elements:

• Downsampling Technique: Usage of Max Pooling (MP) or strided convo-

lutions combined with Batch Normalization (BN).

• Network Depth: Implementation of 2, 3, 4 convolutional layers in both the

encoder and decoder.

The above-mentioned categorization is the cause of the following model la-

beling:

• VAE_MP2, VAE_MP3, VAE_MP4: Apply Max Pooling with 2, 3, or 4 layers.

• VAE_BN2, VAE_BN3, VAE_BN4: Utilize Batch Normalization with 2, 3, or 4

layers.

The reason for exploringBatchNormalizationwas encouragedby apaperwhere

the S3-VAEmodel was implemented by Casti et al. (2023)[4], which improved

training stability and convergence in similar contexts.

3.3.2.1 VAE_MP2 Architecture

This architecture uses two convolutional blocks, each followed by a 2× 2Max

Pooling layer to downsample the input 140 × 140 input to 70 × 70 and then to

35×35. The encoder uses 32 and 64 channels, whichmeans a flattening step to

64×35×35 featuremap. Moving forward to a projection into a two-dimensional

latent space via separate fc_mu and fc_logvar heads. The decodermirrors this

structure, using two ConvTranspose2d layers (64→ 32, then 32→ 2 channels)
and ReLU activation functions. As a last step, a Sigmoid activation produces

the output in [0, 1]. This model has two convolutional layers, and it provides the

simplest model, taking the base for the following models using Max Pooling.

3.3.2.2 VAE_MP3 Architecture

As an extension of VAE_MP2, VAE_MP3 includes a third convolutional block using
Max Pooling. This approach reduces the spatial dimension to 17 × 17 and in-

creases channels to 128 at the bottleneck. Here, the flattening step produces
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a map with the size of 128× 17× 17. Apart from that, the latent sampling and

decoding operations work similarly to the MP2 version but with three Con-

vTranspose2d upsampling stages. Using three convolutional blocks explores

the importance of richer feature representations at the cost of spatial details.

3.3.2.3 VAE_MP4 Architecture

This Max Pooling architecture presents the deepest pooling variant, adding a

fourth convolutional block using pooling that compresses inputs to an 8 × 8
feature map of 256 channels. As the number of layers was increased in the

encoding, it was increased during the decoding phase as well, adding a fourth

ConvTranspose2d layer before the final bilinear upsampling step as a guaran-

tee of reaching 140× 140 output.

3.3.2.4 VAE_BN2 Architecture

Changing one of the main components in the experiments, this model uses

two Conv2d layers, each followed by BatchNorm and ReLU, to downsample

from 140→70→35 and produce a 64×35×35 featuremap. Following the same

pattern, the decoder inverts this with two blocks, including ConvTranspose2d

and BatchNorm. The VAE_BN2 architecture examines whether BatchNorm im-

proves reconstruction quality compared to Max Pooling in VAE_MP2.

3.3.2.5 VAE_BN3 Architecture

Moving further along the BatchNorm approach, this model deepens the previ-

ous architecture by one more block. It uses three strided convolutions (140→
70→35→18) and corresponding BatchNorm layers, producing a 128× 18× 18
feature map. In case of VAE_MP3, this spatial dimension slightly differs from its

17 × 17 feature map. The reason of this discrepancy is how the strided con-

volution calculates output dimensions. In this case, each convolutional layer

with kernel size k = 3, stride s = 2, and padding p = 1, follows the output

dimension formula:

out =

⌊
in+ 2p− k

s

⌋
+ 1.

Applying this formula to an input of size 35× 35, we get:

out =

⌊
35 + 2 · 1− 3

2

⌋
+ 1 = 18.

As a result, the final decoder output from the 18 × 18 feature map requires

an additional bilinear upsampling step to get the original input resolution of

140× 140.
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3.3.2.6 VAE_BN4 Architecture

This variant of the BatchNormapproach uses a depth of four convolutional lay-

ers (140→70→35→18→9), reaching 256 channels at the deepest point. After
the latent sampling, the decoder uses four times a ConvTranspose2d supple-

mented with BatchNorm, finalizing the process with a bilinear upsampling to

reach 140×140 resolution. This model is closely alignedwith the S3-VAE archi-

tecture introduced byCasti et al. (2023)[4] in terms of number of layers, usage

of BatchNorm, and ReLU activation functions. Although the exact parameters

and configurations were not publicly released for S3-VAE, this implementa-

tion mirrors its core architectural principle. Therefore, VAE_BN4 tests whether

extensive normalization can maintain stable training and high-quality recon-

structions in very deep architectures.

3.3.3 Latent Space Dimensionality Experiments

Latent space’s dimensionality has a big effect on VAEs. It has a key role in find-

ing the trade-off between compression and reconstruction fidelity. Choos-

ing a small latent space forces the network to discard more information, while

promoting stronger compression and risking loss of meaningful features. This

trade-off betweencompression and reconstruction quality iswell-documented

byHiggins et al. [12]. On the other hand, a higher-dimensional latent space can

represent finer-grained variation but is also able to under-regularize the pos-

terior and choose redundant components. To observe this trade-off, each of

the six architectures (subsection 3.3.2) was evaluated at two different dimen-

sions:

• dz = 2 (lower-dimensionality compression)

• dz = 20 (higher-dimensionality embedding)

In addition to these, using dz = 10 was also observed as an intermediate la-

tent dimensionality. However, the results for dz = 10 closely showed those

of dz = 20, both in terms of reconstruction quality and total VAE loss. Since

the difference between the two higher-dimensional setups was minimal, we

chose to report only the outcomes for dz = 2 and dz = 20 in this thesis. Rep-

resenting the extremes of the trade-off spectrum more clearly.

3.3.3.1 Experimental Setup

Each architecture from subsection 3.3.2 was trained with two different latent

space size (dz = 2 versus dz = 20. Apart from that, all other settings (number of

epochs, batch size, learning rate, optimizer, etc.) were the same as described

in Section 2.2.
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3.3.3.2 Evaluation Metrics

To be able to compare the performance of the models, the following loss val-

ues were calculated:

• Reconstruction Loss

Lrec =
N∑
i=1

(xi − x̂i)
2

The model uses Mean Squared Error (MSE) as a reconstruction loss with

sum reduction instead of the default mean reduction. It means that the

squared errors are summed, hence tying the magnitude of the loss di-

rectly to image size and batch size.

• KL Divergence

LKL = DKL
(
q(z | x) ‖ p(z)

)
Using this value measures how closely the learned posterior follows the

prior distribution, encouraging the latent representations to be Gaussian.

• Total VAE Loss

L = Lrec + LKL

Combined loss provides a single optimization objective and balances re-

construction fidelity against latent regularization.

These evaluation metrics and their importance were published by Doersch et

al. [7]

In this project, the main goal is to get the best quality reconstructions, but

with the above-mentioned metrics, we can quantify not just reconstruction

fidelity, but compression strength and latent regularization.

3.3.4 Model Selection

After the evaluation of total VAE loss L, reconstruction loss Lrec, and KL di-

vergence LKL for all six architectures at both latent dimension setups, MP4

version was chosen with dz = 2 (see Figure 4 through Figure 18). On the

other hand, BN4 model achieved the lowest numerical loss at dz = 20, but
MP4 at dz = 2 has almost equivalent performance with fewer trainable param-

eters. This is the reason for the decision, hence making a favorable trade-off

between compactness and accuracy as stated by Burgess et al. [3]

3.3.5 β-VAE Experiments

In standardVAEs, reconstruction and regularization terms are balancedequally,

which can lead to entangled latent representations and suboptimal disentan-

glement of factors. To solve this problem, a β-VAE introduces a multiplier β
on the KL divergence term, modifying the loss to

L = Lrec + β ∗ LKL
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Traditionally, increasing β above 1 emphasizes the regularization term and en-

courages the latent distribution to adhere more strictly to the Gaussian prior,

causing more disentangled and interpretable latent factors. On the contrary,

setting β below 1 relaxes the prior constraint, consequently improving recon-

struction at the cost of the latent structure.

In this project, the goal is to have a compact, Gaussian-like latent space and

a high-quality reconstruction on the given microscopy datasets. Thus, tun-

ing the β value allows us to find the optimal trade-off point ([12]). Experi-

ments were made using a range from β = 0.1 (nearly unregularized) up to β =

10 (strong regularization) to determine which setting is best for our expecta-

tions.

3.3.5.1 Experimental Setup

• Base Model: Previously selected MP4 architecture with latent dimension

dz = 2.

• β Values: {0.1, 0.5, 0.8, 1.0, 1.5, 4.0, 10.0}.

• Training parameters: As it was used in Section 3.1.2

3.3.5.2 Evaluation Metrics

Model performance was compared using the following metrics for each dif-

ferent β value: Reconstruction Loss (Lrec): Using MSE with sum reduction. KL

Divergence (LKL): Scaled by β in the total loss. Total Loss (L = Lrec + β LKL)

Empirical Latent KL: After training, in the latent space, the KL divergence is

calculated from N (0, I) and observes this value.

• Low empirical latent KL (close to zero) value indicates that the latent dis-

tribution closely matches the prior, which means good regularization and

potential disentanglement.

• High empirical latent KL value means that the model diverges from the

prior, and it can cause latent collapse, entanglement, or overfitting.

3.4 Phase 2: Implementing Variational Autoencoder using Lung Can-

cer Data

3.4.1 Dataset Description

This dataset consists of live-cell imaging experiments of lung cancer cells ex-

posed to a growth inhibition treatment (EGFR inhibition) and tracked for 3 days

[9]. The cells are labeled with a FRET biosensor that measures the activity of

ERK/MAPK, a signaling pathway that is thought to be involved in cancer pro-

liferation. In this experiment, some cells immediately died, while others con-

tinued to proliferate, and the reasons for this remain unknown.
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Figure 2: Randomly selected memory lung cancer cells from the dataset.

3.4.2 Model Architecture Experiments

In the previous section (subsection 3.3.2), we showed that the MP4 model is

able to reconstruct good-quality images, and now the main focus is to find a

model that can achieve similar results in the case of the lung cancer data. For

this purpose, the MP4 model was used as a baseline. However, it is important

to take into consideration the size of the new dataset because now the model

has to face a much smaller input size (20× 20 pixels). In this case, the original

four-layer downsampling is not directly applicable because it causes the spa-

tial dimension to collapse too aggressively [10].

To get around the problem, the core structure of the MP4 model was used.

During the experiments, all the models kept kernel sizes, padding, activation

functions, and the general encoder-decoder design. Our approach is to sys-

tematically reduce the number of downsampling layers and vary the number

of output channels in the deepest encoder layer. The primary goal was to find

an architecture that is minimal while providing reliable reconstructions with-

out unnecessary computational overhead.

Talking about the training environment, all models were trained for 100 epochs

using the same optimizer and loss metrics as before:

• Reconstruction Loss: Lrec - MSE with sum reduction

• KL Divergence: LKL - Regularization term

• Total Loss: L = Lrec + LKL

Unlike before, the latent dimension was fixed, and the chosen size was 2 for

all experiments. Since the dataset has 20 × 20 images, the goal is to capture

just the most meaningful latent feature while avoiding the risk of overfitting

to noise [1]. Furthermore, using only two dimensions also aligns with the core

objective of this project, performing effective dimensionality reduction.

Experimenting with the lung cancer dataset, the following models were used:

• VAE_MP4: Baseline from MS experiments (section 3.3), using a four-layer

architecture

• VAE_MP3_128 and VAE_MP3_256: Models, using a three-layer architecture

and different output channels in the deepest layer (128 versus 256)
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• VAE_MP2_64 and VAE_MP2_128: Models, using a two-layer architecture and

different output channels in the deepest layer (64 versus 128)

For the following sections, you can find all the details for each model in

Appendix A.

3.4.2.1 VAE_MP4 Architecture

This is the model that was used in Section 3.1 for the MS dataset. It consists

of four downsampling layers, which reduce the 20 × 20 input down to a 1 × 1
spatial feature map. However, using a big and complex model like this on such

a small dataset causes aggressive compression, making it unsuitable in this

context. With this approach, training became unstable, reconstructions were

almost uniform, and the model failed to capture the relevant features of the

images. Consequently, this architecture was excluded from further evaluation

in the context of lung cancer.

For the next sections, similarly in subsection 3.3.2, for each experienced

model, you can find further details collected in Appendix A.

3.4.2.2 VAE_MP3_128 Architecture

This version uses a three-layer structure, reducing the 20× 20 input to a 3× 3
feature map in the encoder part supplemented with 128 output channels at

the bottleneck. Similarly, in section 3.3, the decodermirrors this structure with

three transposed convolutional layers.

3.4.2.3 VAE_MP3_256 Architecture

This model uses exactly the VAE_MP3_128 structure but doubles the number of

output channels in the deepest layer to 256. This means an increased capacity

that allows the latent space to hold more representational power and poten-

tially capture more fine-grained differences between samples. This approach

can produce slightly better reconstruction quality, but it requires more mem-

ory and longer training time.

3.4.2.4 VAE_MP2_128 Architecture

This variant uses only two layers, including Max Pooling. It means that the

model compresses the input to a 5×5 featuremap, which providesmore spatial

details than the MP3 approaches. At the deepest point, this model uses 128

channels, producing stable convergence and relatively sharp reconstructions.

3.4.2.5 VAE_MP2_64 Architecture

This is the lightest architecture that was tested, using two Max Pooling layers

and only 64 channels at the bottleneck. Even though it is the simplest model,
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its performance is comparable to deeper and wider variants in terms of re-

constructions, while offering improvements in training speed and parameter

efficiency.

3.4.3 Model Selection

After evaluating the models on the lung cancer microscopy dataset, the

VAE_MP2_64 model was selected as the final model. While the other variants

(VAE_MP2_128, VAE_MP3_128, VAE_MP3_256) achieved lower loss values, in the

case of reconstruction, the differences were hardly noticeable (see Figure 29

to Figure 35). Since VAE_MP2_64 had the lowest number of trainable param-

eters (see Table 9 to Table 12) and computational overhead, it provided the

best balance between simplicity and performance.

3.4.4 β-VAE Experiments

Similarly, as discussed in subsection 3.3.5, the difference between the tradi-

tional VAEs and β-VAEs is that the latter introduces a regularization weight on
the KL divergence loss term. This additional step allows controlled disentan-

glement and shaping of the latent space. This approach prioritizes balancing

good quality reconstruction and enforcing ameaningful latent representation.

Previously, in subsubsection 3.3.5.1 and subsubsection 3.3.5.2, β-value exper-
iments were observed on the MS dataset, showing the trade-off, especially in

terms of latent Gaussianity and empirical KL divergence.

In case of the lung cancer dataset, similar experiences were executed on

the selected VAE_MP2_64 model. This choice was made based on the archi-

tectural analysis highlighting this model’s balance between performance and

simplicity. β-VAE experiments were applied only to the selected model, since

the focus was to refine the latent regularization properties and improve the

performance of this model.

3.4.4.1 Experimental Setup

Theexperimental setup closely followed the setupused in subsubsection 3.3.5.1.

Compared to the experiments with the MS dataset (subsubsection 3.3.5.1), in

this case, the smaller input size (20 × 20) and the lower model complexity re-

sulted in much shorter training times, making it possible to extend the range

of β values. Since themodel works with smaller image sizes, we decreased the

number of epochs to 50 because after 50 epochs themodel gives back proper

results.

• Latent dimensionality: dz = 2

• Training parameters: As it was used in subsection 3.3.2

• β Values: 0.1, 0.5, 0.8, 1, 1.5, 2, 5
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The chosenβ values presented the effects of lowandhigh regularization terms.

With these experiments, the goal was to observe how KL divergence behaves

across a range of β values and how well the latent space remains Gaussian

while maintaining reconstruction capability.

Using the lung cancer data, the evaluation metrics remain the same as de-

scribed in subsubsection 3.3.5.2. These include the reconstruction loss (Lrec),

the KL divergence (LKL) and the empirical latent KL divergence (KLemp).

3.5 Phase 3: Implementing an Adaptable Variational Autoencoder

One of the main focuses in this project is the development of an adaptable

VAE. To achieve this, two separate architectures were created using different

datasets - one for high-resolution MS microscopy images (140× 140) and an-

other for significantly smaller lung cancer images (20× 20). To avoid the need

for dataset-specific architectures, the main goal is to create a VAE framework

that is able to dynamically adjust its structure based on the spatial resolution

of the input. This approach enables easier model reuse and scalability across

different microscopy imaging tasks, where input sizes often vary. During the

implementation, the dimensionality of the latent space was fixed at two to

maintain interpretability and enforce a consistent bottleneck regardless of in-

put size.

3.5.1 Architecture Design

Based on the previous experiments, the primary goal of the adaptable VAE

framework is to show that a VAEmodel can be successfully structured by hav-

ing the same architecture in each layer. In this case, with respect to the use

of Max Pooling and ReLU activations. This approach means that, by choosing

the right number of layers, the model can still achieve good-quality recon-

structions.

Building up the best model, the number of layers in themodel is the primary

variable in our experiments. The goal is to determine it based on the size of the

input data. The structure for each layer remains the same, with the following

components:

• Convolutional layers utilize (3× 3) kernels with stride of 2

• Max Pooling as a next step

• Ending with ReLU activation function

This setup makes it possible for the model to have a uniform structure regard-

less of the input size. The significant difference lies in the number of layers in

the encoder and decoder components, which are adjusted based on the input

size [27].
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3.5.2 Number of Layers Selection

The right number of convolutional layers was determined based on the in-

put image size. Previously, in section 3.3 and section 3.4, the experiments

have shown that the MS dataset (140× 140 pixel images) performed best with

four convolutional layers, while the lung cancer dataset (20× 20 pixel images)

achieved appropriate results even with only two layers. Knowing these con-

crete values, these two points can define a generalizable approach for setting

the number of layers in a VAE. Our approach uses linear interpolation for this

calculation.

3.5.2.1 Linear Interpolation

Linear interpolation is a numerical technique used to estimate values that lie

between two known data points. Given two known points (x0, y0) and (x1, y1),
the interpolated value y at a position x between x0 and x1 can be calculated

with the following formula:

y = y0 + (x− x0) ·
y1 − y0
x1 − x0

(3.1)

This approach assumes that the variables’ relationship is approximately linear

and can be used to interpolate unknown outcomes.

In this project, the x-axis corresponds to the logarithm base 2 of the total

number of pixels in the input image, while the y-axis represents the number of

convolutional layers. This calculation makes it possible to adaptively estimate

the number of required layers for images of arbitrary sizes.

Figure 3: Linear interpolation between two anchor points (x0, y0) and (x1, y1).

3.5.3 Validation

To test the generalization feature of the adaptable VAE framework, we vali-

dated it on a new resolution image dataset that was not seen during the devel-
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opment. Specifically, we used a lung cancer dataset, and with augmentation,

it was resized from the original 20× 20 images to 80× 80. This size was chosen
because it is a common standard in microscopy imaging and also provides a

good opportunity to try something in the middle between the two previously

used image sizes (140 × 140 and 20 × 20). The main purpose of this valida-

tion was to check whether the adaptable model could generalize and choose

the proper number of convolutional layers using the size of the input data. To

ensure that the calculated three-layer architecture is optimal, two additional

baseline models were trained with two and four convolutional layers on the

same 80 × 80 input data. This comparison helps assess whether three layers

truly provide the best trade-off between under- and over-compression at this

intermediate resolution.

3.5.3.1 Setup

For the validation, the following values were used:

• Dataset: Lung cancer dataset resized to 80× 80 pixels.

• Latent dimensionality: dz = 2

• Training epochs: 20 epochs.

After training, the adaptable model was evaluated using the same metrics as

in the previous experiments. Including the following:

• Reconstruction Loss: Lrec - MSE with sum reduction

• KL Divergence: LKL - Regularization term

• Total Loss: L = Lrec + LKL

These metrics are used to evaluate whether the number of layers determined

through linear interpolation can still produce stable and high-quality recon-

structions. To strengthen this evaluation, the same training setup was used on

two-layer and four-layer variants, designed manually. These controlled tests

allow us to determine if the interpolated three-layer model offers the most

efficient and effective reconstruction for the 80× 80 resolution, and whether

simpler or deeper architectures might outperform it.

Furthermore, the model’s validation helps to verify that the adaptable archi-

tecture can be effective when applied to different image sizes, even if they

are outside the original training configurations.
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4 Results

This chapter presents the outcomes of the experiments made in chapter 3.

With the use of quantitative and qualitative metrics, the focus is on under-

standing how well these models can compress microscopy images into low-

dimensional latent spaces without losing critical structural information.

One of the challenges is to minimize the number of layers required for mean-

ingful reconstructions, thus getting an efficient architecture. Therefore, the

goal is to identify how simple amodel can bewhile still producing good-quality

reconstructions, and to explore whether a single framework can be used for

different datasets without significant manual tuning.

The results are organized into three parts. First, we analyze the MS dataset

to evaluate the effect of different architectural depths and latent dimension-

alities, followed by an investigation of the β parameter. Second, we examine

how the selected model behaves on low-resolution lung cancer data and de-

termine the most efficient architecture for this setting. Finally, we test the

adaptable VAE design that automatically scales its depth based on input im-

age size, validating its generalization to unseen resolutions.

4.1 Phase 1: Results on Multiple Sclerosis Dataset

4.1.1 Comparison of Model Architectures and Latent Dimensionalities

To compare the VAE models, we trained six different architectures using two

different latent dimensionalities (dz = 2 and dz = 20) on the MS dataset. The

models were introduced in subsection 3.3.2.

4.1.1.1 Quantitative Evaluation

This part focuses on thequantitative comparisonofmodel performance across

the six tested VAE frameworks. The evaluation is based on three key loss met-

rics:

• Reconstruction Loss: Lrec - MSE with sum reduction

• KL Divergence: LKL - Regularization term

• Total Loss: L = Lrec + LKL

These metrics provide an explanation of how well each model balances accu-

rate image reconstruction with regularization of the latent space. Using this

quantitative approach, the goal is to identify which architectural design most

effectively compresses the input data while preserving the most important
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structural information.

For easier interpretability, the plotted loss curves are shown from epoch 500

onward, which helps to skip early instability and allows a more focused anal-

ysis of convergence, since the range of the y-axis is smaller. On top of that,

each figure includes the final loss values at epoch 3999, sorted in descending

order. This helps to compare models when the lines visually overlap or con-

verge closely on the plots.

KL Divergence Loss

Figure 4a and Figure 4b show the KL divergence losses for all six VAEmod-

els trained with latent dimensionalities of dz = 2 and dz = 20. This metric

presents how closely the learned latent distributions approximate the stan-

dard normal prior.

Observing a latent space of dz = 2 (Figure 4a), the lowest final KL loss value
was achieved by the MP3 model (13.19), closely followed by MP4 (13.24). MP2

performed slightly worse, achieving 14.39 in the end. On the other hand, using
Batch Normalization in variants BN2-BN4 showed higher KL values, going up

from 15.80 to 17.89, indicating looser regularization.

Evaluating the higher dimensionality, dz = 20 in Figure 4b, KL divergence in-
creasedoverall due to the expanded latent capacity. The increaseddimension-

ality yielded similar results and patterns. MP4 and MP3 models remained the

most regularized, with final 13.12 and 13.53 values, respectively. These models

were followed by MP2 and its 15.69 value at the end, while the Batch Normal-

ization models again trailed behind. Their final KL loss values were moving in

the range of 16.04 to 18.19.

(a) KL divergence loss with latent dimension 2 (b) KL divergence loss with latent dimension 20

Figure 4: KL divergence loss across training epochs for all models. Final values are included in

descending order for clarity.

Reconstruction Loss

Figure 5a and Figure 5b present the reconstruction loss across training
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epochs for all the VAE models, using latent dimensionality dz = 2 and dz = 20.
Thismetric shows how accurately themodels reproduce the inputmicroscopy

images from their compressed latent representations.

Evaluating dz = 2, MP4 achieved the lowest final reconstruction loss with

5685.84 followed closely by BN4 and its 5727.30 value. MP3 achieved 7211.48 in
the end, while MP2 and BN2 were significantly worse, with final values 8491.30
and 8276.27, respectively. BN3 took place in the middle section, converging

to 7543.46. These results suggest that increasing model depth improves re-

construction, and that using MaxPooling can mean better results than Batch

Normalization variants when comparing across similar depths.

At dz = 20, the results are similar to what was seen in the case of dz = 2.
MP4 and BN4 still have the smallest final reconstruction loss values, ending

at 5760.38 and 5605.59, respectively. This means that changing dimensionality

switched these models’ order. MP3 and BN3 are taking place in the middle

with their 7193.60 and 7431.69 values, respectively. Furthermore, MP2 and BN2

continued to lag behind (8246.85 and 8339.96).

Although the training did not show full convergence at epoch 3999, the

most significant loss reduction occurred during the earlier stages. After that,

the loss curves largely flattened out, and no visually meaningful differences

were observed in the reconstructed images beyond that point. Hence, extend-

ing training would likely not have yielded significant performance improve-

ments.

These findings support the intuition that deeper architecture designs cap-

ture more image details and structure, improving the reconstruction quality.

At the same time, it shows one of the key concepts of the thesis, that is, the

importance of balancing depth against complexity.

(a) Latent dimension = 2 (b) Latent dimension = 20

Figure 5: Reconstruction loss over training for all models. Final values at epoch 3999 are listed

in descending order to aid readability.

Total Loss

Figure 6a and Figure 6b show the total VAE loss with the previous setup.
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This combinedmetric captures both reconstruction quality and latent regular-

ization, as defined in the following way:

Ltotal = Lrecon + LKL.

At dz = 2, MP4 achieved the lowest final total loss (5699.08), slightly outper-

forming BN4 (5743.79). MP3 is the next in the line with its 7224.67 value, and
the rest of the models (BN3, BN2, MP2) go above 7500. These results confirm
earlier findings that deeper models, particularly those using MaxPooling, find a

better balance between accurate reconstructions and effective latent space

compression.

On the other hand, at dz = 20, the results show a consistent gap between

the models’ loss values but with a switch again. In this setup, BN4 achieved

the lowest total loss ( 5623.75 following by MP4 and it 5773.50 value. Changing
the number of layers makes a significant change in the loss values. MP3 and

BN3 considerably higher with their 7207.13 and 7449.88, while MP2 and BN2

continued to underperform, both remaining above 8200.

In the case of the total loss, KL term contributes less than the reconstruc-

tion loss numerically. This is the reason why total loss trends closely follow the

observations from the reconstruction loss section. This is the reason why the

loss curves had not fully converged by epoch 3999. Although the dominant

performance differences had already materialized, further training would not

likely change the ranking. Therefore, total loss remains the clearest summary

indicator of each model’s performance in balancing compression and accu-

racy.

(a) Latent dimension = 2 (b) Latent dimension = 20

Figure 6: Total VAE loss over training for all models. Final values at epoch 3999 are included

in descending order in the legend to assist visual comparison.

4.1.1.2 Qualitative Evaluation

After the quantitative evaluation in subsubsection 4.1.1.1, the second approach

was to perform a qualitative evaluation of the reconstructed images generated

by the various VAE architectures. The setup still remains, and each model was

trained for 4000 epochs. The reconstructions are evaluated visually to assess
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the preservation of the biologically relevant morphology and structural fidelity

across both data channels.

In this qualitative approach, we include both channels of the original dataset.

The representative examples were selected from both the NTZ (healthy con-

trol) and BC (patient) groups. For each model, the results are placed in a grid

structure showing the input and reconstructed outputs. The first two rows

represent the original input images for each channel, while the bottom two

rows show the corresponding reconstructions.

In case of BN2, the reconstructions of the second channel are smooth and

preserve the outer morphological ring structure well, but the finer cytoplas-

mic details in the first channel are blurred out more. This model lacks capacity

for finer granularity and using an increased latent dimensionality ( dz = 20 in-
stead of dz = 20), improves the performance slightly.

Figure 7: Reconstructions using BN2 architecture with latent dimension 2.

Figure 8: Reconstructions using BN2 architecture with latent dimension 20.

Observing theBN3model, it shows sharper reconstructions thanBN2. Chan-

nel 1 reconstructions capture more localized contrast. Also, increasing the la-

tent dimensions from dz = 2 to dz = 20 improves the representation of the

background, which means that the dimensionality increase added latent ca-

pacity benefits.
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Figure 9: Reconstructions using BN3 architecture with latent dimension 2.

Figure 10: Reconstructions using BN3 architecture with latent dimension 20.

BN4 model shows stable reconstructions across both channels. It main-

tains a consistent representation of the circular segmentation stain in Channel

2. However, we can see that Channel 1 reconstructions show signs of over-

smoothing in the dz = 2 latent space. Using dz = 20 latent space, reconstruc-
tions become slightly sharper and better capture the dense textural variance

in patient cells as a result of increased background granularity.

Figure 11: Reconstructions using BN4 architecture with latent dimension 2.
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Figure 12: Reconstructions using BN4 architecture with latent dimension 20.

Moving to our other approach, where the Batch Normalization is changed

to MaxPooling, first, we analyze the MP2 model. This architecture produced

some of the clearest ring structures in Channel 2 across all configurations.

However, Channel 1 is simplified way too much. However, using dz = 20 in-

stead of dz = 2 improves the reconstructions in terms of reconstruction sharp-

ness and the recovery of more diverse textures.

Figure 13: Reconstructions using MP2 architecture with latent dimension 2.

Figure 14: Reconstructions using MP2 architecture with latent dimension 20.
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Moving forward to the MP3 model, using only dz = 2 crisp morphological

rings andmoderately complex reconstructions of the cytoplasmic, are already

seen after training. At dz = 20, the model presents similar results, preserving

fine texture and variability across both channels.

Figure 15: Reconstructions using MP3 architecture with latent dimension 2.

Figure 16: Reconstructions using MP3 architecture with latent dimension 20.

Last but not least, the reconstructions made by MP4 model show strong

fidelity in Channel 2 across the dataset. In case of dz = 2, the reconstructions
appear blurry in Channel 1; however, at dz = 20, reconstructions are visibly

richer. It provides high interpretability and stable morphological structures.
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Figure 17: Reconstructions using MP4 architecture with latent dimension 2.

Figure 18: Reconstructions using MP4 architecture with latent dimension 20.

4.1.1.3 Model Selection

The final model was selected based on the quantitative (subsubsection 4.1.1.1)

and qualitative (subsubsection 4.1.1.2) evaluations. In the end, the chosen

modelwasMP4using dz = 2 for furtherwork. This decisionwasmadebasedon

the balance between performance, simplicity and alignment with prior meth-

ods.

In case of qualitative results, MP4 achieved better results than BN4 in terms of

structural clarity and morphological consistency. Both models have a 4-layer

deep structure, but using MaxPooling provided better robustness in capturing

details.

For further development, the latent space size was decided to dz = 2. Al-

though suing dz = 20 yielded richer reconstructions in some cases, they also

introduced complexity and potential overfitting risks without presenting a sig-

nificant gain in qualitative interpretability. For our current goal, using dz = 2 as
a latent space representation is not only sufficient but also more practical.

Furthermore, this framework follows the S3-VAE ([4])setup in terms of a num-

ber of layers, where a 4-layer encoder/decoder structurewas employed onmi-

croscopy data. By maintaining this structural consistency, we can make com-
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parisons with earlier results while improving architectural refinement.

In summary, using MP4 model with a latent dimension dz = 2, we can have a

strong trade-off between performance and usability. It ensures reproducibil-

ity, interpretable latent space, and good-quality reconstructions across both

channels.

4.1.2 Comparison of Different β Values on MP4 Architecture

Having selected the MP4 model with a 2-dimensional latent space as the fi-

nal architecture, the next approach was to try this framework with different

β parameters. This variant modifies the original VAE loss by adding a scaling

factor β to the Kullback-Leibler divergence term. This allows control over the

trade-off between latent space regularization and reconstruction fidelity.

To observe the impact of β, we trained the MP4 model for seven different

values: β = 0.1, 0.5, 0.8, 1, 1.5, 4, 10. The setup was the same as before; each

model was trained for 4000 epochs, and the results were evaluated using

three key perspectives:

• Loss curves over time

• Latent KL divergence for each dimension

• Visual quality of reconstruction

4.1.2.1 Quantitative Evaluation

Loss Evaluation

During the quantitative evaluation, we plotted the evolution of losses over

training epochs. These changes are shown in Figure 19, Figure 20, and Fig-

ure 21. To minimize early training noise, the data is shown after the first 500
epoch.

• KL Loss (LKL) shows an increase with higher β as expected because of

a stronger regularization pressure. While β = 0.1 reaches the lowest KL

loss value around 1.54 in the end, using β = 10makes an explosion in this

term with its 105.02 final value.

• Reconstruction Loss (Lrec) changes in an inverse way. Choosing lower β
values yields the best reconstruction accuracy, especially in the case of

β = 0.5 with a final 5574.81 value. But on the other hand, high β values (4
or 10) decrease the quality of the reconstruction due to over-prioritizing

the latent space.

• Total Loss (L) collecting together all the information and in our experi-

ments, it shows thatβ = 0.5 consistently achieves thebest results, achiev-
ing the best trade-off between reconstruction quality and latent struc-

ture.
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Figure 19: KL loss across epochs (≥500) for different β values.

Figure 20: Reconstruction loss across epochs (≥500).

Figure 21: Total loss (LKL + β· LKL) across epochs (≥500).

Evaluation of KL Divergence on the Latent Space

Developing VAEs, the KL divergence term plays an important role in shap-

ing the latent space. It quantifies how much the learned posterior distribution
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q(z|x) deviates from the prior p(z), typically assumed to be a standard normal

distribution. Choosing the right factor for the KL loss ensures that the latent

space remains smooth, continuous, and useful for sampling or downstream in-

terpretability.

Our approach is to calculate the KL divergence for each latent dimension,

which gives insight into howeffectively each dimension contributes to encod-

ing information. If this value is close to zero, this could indicate redundancy

or under-utilization. On the other hand, extremely large KL values can sug-

gest over-regularization, where the model sacrifices reconstruction quality to

match the prior too aggressively.

In this project, the latent dimensionality was fixed to dz = 2 and we calculated

the final KL divergence of each dimension across all tested β values. These

results are shown in Table 1.

β KL (dim 1) KL (dim 2)

0.1 0.1722 0.2081

0.5 0.1951 0.1834

0.8 0.1608 0.1587

1 0.1755 0.1820

1.5 0.1272 0.1690

4 0.1871 0.1230

10 0.1331 0.1505

Table 1: Final KL divergence values for each latent dimension (at epoch 3999).

The most symmetric result was achieved at β = 0.5, where both latent di-

mensions carry comparable levels of information, without collapsing or dom-

inating each other. At β = 085 and β = 1, the KL values remain balanced but

start to decrease, which could suggest underutilization. However, using high β
values, especially β = 4 and β = 10, KL values drop significantly, compared to

the previous values. It indicates that the prior is being enforced too strongly,

reducing the model’s expressive capacity.

Evaluating the different β value experiments, this analysis gives an overall con-

clusion that choosing the right β values, in this case β = 0.5, promotes amean-

ingful and balanced use of the latent space, which produces a good balance

between loss curves and visual reconstructions.

4.1.2.2 Qualitative Evaluation

To complement the quantitative evaluation, examining the visual representa-

tions also plays a key role. This part shows the reconstructions generated by

the MP4model across different β values. Figure 22 through Figure 28 present

original and reconstructed image pairs for all tested configurations. Using

β = 0.1(Figure 22), high visual fidelity and sharp detail preservation are shown

across both image channels. However, this often means poor latent space

regularization, as seen in the KL divergence behavior.

In contrast, going above β = 1 such as β = 4 and β = 10 (Figure 27 and Fig-

ure 28) leads to overly smoothed reconstructions where fine morphological
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structures are lost. This presents our earlier observation that high β values en-

force the prior too strongly at the cost of expressiveness.

The best balance betweenquality and regularization is achieved at β = 0.5(Fig-
ure 23), where the reconstructions maintain core structural integrity. In sub-

subsection 4.1.2.1 this setting achieved the most symmetric KL distribution

across latent dimensions. In summary, the qualitative evaluation also supports

the choice of β = 0.5 as the optimal setting for further experiments on the MS

dataset.

Figure 22: Reconstruction example for the MP4 model with β = 0.1.

Figure 23: Reconstruction example for the MP4 model with β = 0.5.

Figure 24: Reconstruction example for the MP4 model with β = 0.8.
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Figure 25: Reconstruction example for the MP4 model with β = 1.

Figure 26: Reconstruction example for the MP4 model with β = 1.5.

Figure 27: Reconstruction example for the MP4 model with β = 4.
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Figure 28: Reconstruction example for the MP4 model with β = 10.

In summary, the qualitative evaluation also supports the choice of β = 0.5
as the optimal setting for further experiments on the MS dataset.

4.2 Phase 2: Results on Lung Cancer Dataset

4.2.1 Comparison of Model Architecture

After the model development and analysis on the MS dataset, the final frame-

work was applied to the lung cancer dataset. The goal was to create a model

that works well on the new dataset and was made from the MP4 model from

subsection 3.3.4. Several differences are observable between the twodatasets.

Lung cancer dataset consists of single-channel microscopy imageswithmuch

smaller resolution (20 × 20). Furthermore, in this setup, the latent dimension-

ality was fixed at dz = 2 for all experiments to preserve interpretability and

enforce compact representations.

4.2.1.1 Quantitative Evaluation

To evaluate the performance of the implemented VAE architectures on the

lung cancer dataset, similarly to the MS dataset, the loss metrics from sub-

subsection 4.1.1.1 were observed. On each plot, the legend includes a list of

the evaluatedmodels in descending order based on their final loss value at the

last epoch. This provides a clear comparative ranking and makes it easier to

understand.

KL Divergence Loss Loss

As shown in Figure 29, all models exhibit a smooth convergence in terms of

KL divergence, reaching a stable value, typically after 40-50 epochs. Among

them, the final values are relatively close to each other, ranging from 20.77 for
MP2_64 to 22.52 for MP3_128. The seen result indicates that all models impose a

comparable level of regularization. However, MP2_64 reaches the lowest value,
which might suggest greater expressive flexibility.
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Figure 29: KL Divergence loss curves during training. The legend ranks models by final KL

value (descending).

Reconstruction Loss

Figure 30 shows the reconstruction loss, which captures how well each

model can reproduce the original input. It is shown that MP3_128 achieves

the lowest final reconstruction losswith 156.85, slightly outperforming MP2_128
(157.24) and MP3_256 (159.46). In this case, MP2_64 is at the end of the list with

its 165.95 final value. Since the first three models dispose of more layers and

more output channels, it is not surprising that they have greater representa-

tional capacity.
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Figure 30: Reconstruction loss curves during training. The legend ranks models by final re-

construction loss (descending).

Total Loss

Figure 31 aggregates the two losses, showing overall model efficiency. All

models converge efficiently by around epoch 30. MP3_128 yields the lowest

final value with 179.38. MP3_256 and MP2_128 have nearly the same values with

180.50 and 179.57, respectively. Regarding total loss, MP2_64 ends higher at

186.72, which aligns with its limited reconstruction capacity but also shows its

reduced model complexity.

Figure 31: Total loss curves during training. The legend ranks models by final total loss (de-

scending).
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Overall, it is seen that deeper and wider models, like MP3_128, slightly out-
perform in loss metrics, the differences are marginal. These trends show the

trade-off between complexity and performance and support the use of MP2_64
in scenarios where computational efficiency is a key concept.

4.2.1.2 Qualitative Evaluation

As we did in section 4.1, in addition to the quantitative analysis, qualitative

evaluation was conducted to visually inspect how well each model preserves

the structural properties of the lung cancer images. Since the input image size

is only 20× 20 and consists of a single channel, these reconstructions are ex-

pected to retain basic shape features rather than fine-grained cellular texture.

The original and reconstructed images are shown in Figure 32 to Figure 35. All

models capture the general circular morphology and the intensity gradients

typical of the dataset. However, the reconstruction quality varies by architec-

ture.

MP2_64 (Figure 32) shows consistent reconstructions with slightly blurry but

stable results. The central region’s brightness is captured well, however finer

boundaries are smoothed out. It is expected, given the model’s simplicity.

MP2_128 (Figure 33) model still uses a two-layer architecture, but it offers im-

proved sharpness over MP2_64, with clearer contours and more distinct edges.

However, its increased final channel number means higher model complexity.

MP3_128 and MP3_256 (Figure 34 and Figure 35) produce the most visually pre-

cise reconstructions. These models preserve spatial proportions and gradient

transitions more faithfully. These models are more expressive but also require

more computational capacity.

In summary, deepermodels improve visual fidelity, but even theminimal MP2_64
model is capable of retaining the essential morphological patterns.

Figure 32: Original and reconstructed images from the MP2_64 model.
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Figure 33: Original and reconstructed images from the MP2_128 model.

Figure 34: Original and reconstructed images from the MP3_128 model.

Figure 35: Original and reconstructed images from the MP3_256 model.

4.2.1.3 Model Selection

In case of the lung cancer dataset, the final model was chosen based on the

quantitative results (subsubsection 4.2.1.1) and the qualitative reconstructions
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(subsubsection 4.2.1.2). Taking into consideration the above-mentioned con-

cepts, the MP2_64 architecture was selected for further experiments.

Quantitatively, MP3_128 and MP2_128 achieved slightly lower loss values; how-

ever, the performance differences were minimal, especially in terms of total

and KL losses. In contrast, MP2_64 provided stable convergence and delivered

low final loss values with far fewer trainable parameters, making it more com-

putationally efficient.

On the other hand, qualitatively, MP2_64 showed consistent reconstructions

that preserved overall morphology and central brightness. The results were

less sharp than models with more complexity, although the reconstructions

remained interpretable and structurally sound.

Considering thebalancebetweenefficiency, stability, and interpretability, MP2_64
offers themost practical trade-off, making it suitable for further β-VAE exper-
imentation on the lung cancer dataset.

4.2.2 Comparison of Different β Values on MP2_64 Architecture

To explore the effect of varying β values on the MP2_64 model, we trained the

model for β ∈ {0.1, 0.5, 0.8, 1, 1.5, 2, 5}. The evaluation process is similar to sub-

section 4.1.2.

4.2.2.1 Quantitative Evaluation

Loss Evaluation

The evaluation of using different β values on the selected MP2_64 model

includes the observation of KL divergence, reconstruction loss, and total loss

curves across epochs. The results are shown in Figures ??, ??, and ??.

• KLDivergence Loss (LKL) increaseswith higherβ values, meaning stronger

regularization pressure. β = 0.5 and β = 0.8 both converge around 24
(more precisely, 24.21 and 23.75, respectively). However, β = 5 leads to
a complete collapse (KL ≈ 0), meaning the latent space is effectively ig-

nored. On the other hand, β = 0.1 results in a final KL loss of 11.09, indi-
catingweak enforcement of the prior. A KL loss around 20–25 typically re-
flects an appropriate tension between compression and expressiveness

in the 2D latent space. Using this, β = 0.5 and β = 0.8 offer the most

meaningful and stable regularization behavior.

• Reconstruction Loss (Lrec) shows the expected inverse trend. β = 0.1
produces the best reconstruction with its 125.91 final value, while β = 5
yields the highest reconstruction loss at 194.12. This perfectly shows the
trade-off between representation quality and latent compression.

• Total Loss (L = Lrec + β · LKL) combines the effects and shows an overall

result. In this setup, β = 0.1 achieves the lowest final loss at 137.00, sug-
gesting good quality reconstruction but at the cost of poor latent struc-

ture. The next best losses are obtained with β = 0.5 and β = 0.8 (165.81

50



and 175.95, respectively), which provide a better balance between recon-
struction and KL terms. Moving forward to higher values, such as β = 2
and β = 5 result in significantly higher values (193.57 and 194.12), indicat-
ing the poor latent representation.

Figure 36: KL Divergence Loss over epochs for MP2_64 under different β values.

Figure 37: Reconstruction Loss over epochs for MP2_64 under different β values.
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Figure 38: Total Loss (Lrec + β · LKL) over epochs for MP2_64 under different β values.

Evaluation of KL Divergence on the Latent

Table 2 shows each latent dimension’s final KL divergence values at the end

of training for different β values. The goal is to have both dimensions con-

tribute similarly and remain close to the standard normal distribution.

The table shows that in case of very low β values (0.1 and 0.5) the results are

minimal across both dimensions, indicating weak regularization. However, as

β increases, dimension 1 begins to carry significantly more information than

dimension 2. This phenomenon is noticeable at β = 0.8 and β = 1, where
KL divergence value for dimension 1 jumps to 0.1280 and 0.2342, respectively,
while dimension 2 still stays low. This suggests the usage of the latent space,

using only one significantly contributing dimension.

At higher values, such as β = 1.5, 2, and 5, the values show disproportional

growth. In case of β = 5, both dimensions exhibit high final KL values (above

2.2), indicating too aggressive forcing to match the prior distribution, leading

to poor reconstructions.

β KL (dim 1) KL (dim 2)

0.1 0.0472 0.0606

0.5 0.0417 0.0541

0.8 0.1280 0.0471

1 0.2342 0.0579

1.5 0.8299 0.1042

2 0.3152 0.2350

5 2.2649 2.2335

Table 2: Final KL divergence values per latent dimension in MP2_64 across different β values.
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Overall, the best trade-off is achieved at β = 0.8, where one dimension

is active but not dominant, and the reconstruction quality remains high. This

indicates the use of β = 0.8 in the final MP2_64 setup.

4.2.2.2 Qualitative Evaluation

The following figures help the qualitative reconstruction of the MP2_64 model

for each tested β value. The figures include five representative images from

the original dataset and their reconstructions.

Using β = 0.1 (Figure 39), themodel’s reconstructions present high fidelity and

strong contrast, retaining fine-grained texture and pixel-level variation. How-

ever, this suggests overfitting and an under-regularized latent space that pri-

oritizes reconstruction at the cost of generalization.

With β = 0.5 and β = 0.8 (Figure 40 and Figure 41), the reconstructions cap-

ture the essential structural patterns such as cell contours and intensity gra-

dients while suppressing excessive noise. These setups show a better bal-

ance between the reconstruction quality and latent abstraction, supporting

the quantitative findings.

As β goes above 1, the quality of the reconstruction is visibly deteriorating.

At β = 1.5 and above (Figure 43, Figure 44, and Figure 45), outputs become

significantly blurred and lose meaningful spatial feature details. Furthermore,

using an extra value at β = 5, the results are almost uniform reconstructions,

indicating that the latent space is too constrained and incapable of encoding

relevant information.

Figure 39: Reconstruction examples for β = 0.1.
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Figure 40: Reconstruction examples for β = 0.5.

Figure 41: Reconstruction examples for β = 0.8.

Figure 42: Reconstruction examples for β = 1.
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Figure 43: Reconstruction examples for β = 1.5.

Figure 44: Reconstruction examples for β = 2.

Figure 45: Reconstruction examples for β = 5.

subsubsection4.2.2.1 and subsubsection4.2.2.2 highlight the inherent trade-

off between reconstruction quality and latent space regularisation. Lower β
values (such as β = 0.1) yield excellent quality reconstructions but result in

nearly collapsed or underutilized latent dimensions. On the other hand, go-

ing above β = 1 enforces strong regularization at the cost of reconstruction

fidelity to the point of losing meaningful structure. Mid-range values such

as β = 0.5 and β = 0.8 offer a better trade-off. Especially, using β = 0.8,
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themodel consistently demonstrateswell-structured latent space usagewhile

capturing essential image features during reconstruction. In total, β = 0.8
strikes the best compromise. It maintains coherent, smooth reconstructions

that still capture data structure, making it themost balanced and generalizable

configuration.

4.3 Phase 3: Evaluation of the Adaptabale VAE

To evaluate the effectiveness of the adaptable VAE, the model was tested on

the resized lung cancer dataset with the size 80 × 80. This resolution was not

part of the previous training parts, nor in section 3.3, nor section 3.4, making it

a suitable target to assess generalization. The number of layers was automat-

ically calculated via linear interpolation, as mentioned in subsection 3.5.2.

4.3.1 Layer Interpolation

The adaptable VAE framework dynamically determines the number of convo-

lutional layers based on the input image size. Specifically, the number of pixels

in the input image is used in a logarithmic interpolation function bounded be-

tween two reference sizes:

• 20× 20 = 400 pixels→ 2 layers

• 140× 140 = 19600 pixels→ 4 layers

To generalize between these extremes, the number of layers L is calculated

in log-space using the following formula:

L = round (2 + 0.356 · (log2(pixels)− 8.64))

Here, 8.64 = log2(400) and 14.26 = log2(19600) define the lower and upper

bounds in the logarithmic scale. Applying this formula to an 80 × 80 = 6400
pixel image yields:

L = round (2 + 0.356 · (log2(6400)− 8.64)) = 3

This result means that the model should use 3 convolutional layers in both

the encoder and decoder. This design principle avoids the use of manual con-

figurationwhilemaintaining architectural suitability across different image sizes.

4.3.2 Quantitative Evaluation

To verify whether the interpolated 3-layer model is optimal, we also trained

two additional baseline VAEs using 2 and 4 layers on the same dataset. Their

respective training loss curves are shown in Figure 46. The key findings are as

follows:
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• 2-layer model: The KL divergence of this model configuration immedi-

ately collapses after the first epoch. The KL term remains near zero dur-

ing the training, indicating ineffective latent space encoding. Despite low

reconstruction loss, the model is essentially not using the latent space.

• 3-layer (interpolated)model: The automatically calculated framework demon-

strates balance in the training. This version avoids collapse, exhibiting a

stable KL divergence and declining reconstruction loss. Although it has

slightly higher reconstruction loss than the 4-layer model, it better main-

tains latent space usage.

• 4-layer model: This approach achieves the lowest reconstruction loss

among the three. However, the KL divergence of this model is lower than

the 3-layer variant. While the results are strong, this approach adds more

complexity that might not be necessary in all cases.

(a) 2-layer VAE (b) 3-layer (interpolated) (c) 4-layer VAE

Figure 46: Training loss curves for all architectures on the resized 80× 80 lung cancer dataset.

4.3.3 Qualitative Evaluation

From the qualitative side, reconstruction outputs help decision-making. All

three architectures are shown in Figure 47. Each image reflects the trade-off

between depth, representation capacity, and stability of the different variants.

• 2-layermodel: Produces noticeably blurred andoversimplified reconstruc-

tions. Morphological structures are largely washed out. This result shows

the consistency with its flat KL divergence curve and suggests underuse

of the latent space. The decoder lacks capacity to reconstruct complex

image features from shallow encodings.

• 3-layer model (interpolated): Despite slightly higher reconstruction loss,

the reconstructions are visuallymore stable anddetailed. Themodel shows

balance in abstraction and spatial accuracy. It captures overall cell mor-

phology while retaining essential texture.

• 4-layer model: Although the reconstructions are smooth, they often ex-

hibit distorted or lost shape boundaries. It can indicate that deeper archi-

tecture overcompresses the information.

57



(a) 2-layer VAE

(b) 3-layer (interpolated)

(c) 4-layer VAE

Figure 47: Reconstruction results for all layer configurations on resized 80 × 80 lung cancer

images.

4.3.4 Summary

Observingmore layers on the new dataset, allowed us to reveal the strength of

the interpolated 3-layer design calculated by the adaptable VAE framework. It

showed that the 2-layer variant lacks sufficient capacity to represent complex

spatial features and effectively utilize the latent space. However, the 4-layer
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version introduced unnecessary depth.

The 3-layermodel, derived from the interpolated formula, offers awell-balanced

solution. Itmaintainsmeaningful KL divergence throughout training, and deliv-

ers reconstructions that preserve both globalmorphology and internal texture.

Its stability and visual fidelity make it themost robust and generalizable option

for the given 80× 80 lung cancer dataset.

Overall, the results validate the effectiveness of the layer interpolation strat-

egy in selecting a framework that avoids both underfitting andover-compression,

adapting to input resolution without manual tuning.
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5 Conclusion and Future Work

This final chapter summarizes the main findings of this thesis and outlines

possible further investigations. In Section 5.1 we revive the research objec-

tives stated in chapter 1, summarize how the three-phase methodology of

chapter 3 led to an adaptable VAE framework, and highlight the key results

presented in chapter 4. Then, in Section 5.2, we propose concrete possible

extensions that address the remaining challenges identified throughout this

work.

5.1 Conclusion

This thesis explored the use of Variational Autoencoders for compressing and

reconstructing biomedical microscopy data. By evaluating several different

architectures on both MS and lung cancer datasets, we demonstrated that

VAEs can effectively reduce the dimensionality of high-resolution imaging

data while capturing the key structural features.

A primary contribution of this work is the development of an adaptable VAE

framework that dynamically selects its depth based on input resolution. This

design solves the problemof implementing dataset-specific architectures and

enables a singlemodel design to scale across varying spatial domains. Validat-

ing the model on unseen input sizes confirmed that this interpolation-based

approach provides stable training and qualitatively promising reconstructions,

highlighting its potential for wider applicability in biomedical image analysis.

In addition to architectural evaluations, β-VAEexperimentswere conducted to

explore how scaled regularization influences reconstruction quality and latent

space representation. While these results provided valuable insights into the

balance between expressiveness and structure, a full disentanglement analy-

sis is left for future research.

Overall, this work confirms that VAEs can offer both effective dimensional-

ity reduction and architectural flexibility. The ability to adapt across varying

image sizes without significant manual tuning makes them particularly suited

for biomedical applications, where imaging protocols and data characteristics

often differ. Through both fixed and adaptable architecture, VAEs demon-

strate their potential as scalable and interpretable tools for microscopy image

analysis. These models are able to capture relevant biological structures while

reducing the complexity of downstream tasks.
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5.2 Future Work

5.2.1 Integration with Downstream Predictive Tasks

The current study stops at reconstruction quality and latent compactness.

Further development should integrate theVAE-derived embeddings into down-

stream tasks, such as early disease detection, cell fate prediction, or anomaly

detection. By training classifiers (e.g., logistic regression) on the two-dimensional

latent vectors, one can assess how well the compressed representations sep-

arate clinically meaningful classes.

5.2.2 Validation on Additional Modalities

This thesis focused on two microscopy datasets and still remains to be shown

whether the same linear interpolation rule applies to other imaging modalities.

In further experiments, the adaptable VAE should be tested on brightfield or

phase-contrast images even with multi-channel properties. This will confirm

whether adjusting the number of layers alone suffices when channel count or

noise characteristics differ.

5.2.3 Comprehensive Disentanglement Analysis

A possible next step is to perform disentanglement study of the learned latent

representations. For this purpose, metrics such as theMutual Information Gap

(MIG) or DCI Disentanglement score can quantify how individual latent dimen-

sions correspond to interpretable biological factors. Collecting small labeled

subsets would allow us to validate which latent axes capture specific morpho-

logical or molecular variations.

5.2.4 Validation in Larger and More Diverse Cohorts

In this thesis, experiments used curated MS and lung cancer datasets, apply-

ing the adaptable VAE to larger, more heterogeneous cohorts (e.g., multiple

patient samples) is essential. This will test whether the chosen latent dimen-

sion (dz = 2) remains optimal or whether a higher dimensionality is needed

to capture increased biological diversity. Incorporating rare phenotypes or

stress-induced morphological changes could reveal limitations in the current

framework.
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A Detailed Tables from Methodology

In this appendix, we collect all of the detailed tabular summaries that were

originally embedded in Chapter chapter 3.

Layer (Type) Output Shape Parameters

Conv2d [1, 32, 140, 140] 608

ReLU [1, 32, 140, 140] 0

MaxPool2d [1, 32, 70, 70] 0

Conv2d [1, 64, 70, 70] 18,496

ReLU [1, 64, 70, 70] 0

MaxPool2d [1, 64, 35, 35] 0

Linear (µ head) [1, 2] 156,802

Linear (logσ head) [1, 2] 156,802

Linear (decoder input) [1, 78,400] 235,200

ConvTranspose2d [1, 32, 70, 70] 18,464

ReLU [1, 32, 70, 70] 0

ConvTranspose2d [1, 2, 140, 140] 578

Sigmoid [1, 2, 140, 140] 0

Total parameters 586,950

Trainable parameters 586,950

Non-trainable parameters 0

Total mult-adds (MB) 204.90

Input size (MB) 0.16

Forward/backward pass (MB) 9.72

Params size (MB) 2.35

Estimated total size (MB) 12.23

Table 3: Detailed summary of the VAE_MP2 architecture.
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Layer (Type) Output Shape Parameters

Conv2d [1, 32, 140, 140] 608

ReLU [1, 32, 140, 140] 0

MaxPool2d [1, 32, 70, 70] 0

Conv2d [1, 64, 70, 70] 18,496

ReLU [1, 64, 70, 70] 0

MaxPool2d [1, 64, 35, 35] 0

Conv2d [1, 128, 35, 35] 73,856

ReLU [1, 128, 35, 35] 0

MaxPool2d [1, 128, 17, 17] 0

Linear (µ head) [1, 2] 73,986

Linear (logσ head) [1, 2] 73,986

Linear (decoder input) [1, 36,992] 110,976

ConvTranspose2d [1, 64, 35, 35] 131,136

ReLU [1, 64, 35, 35] 0

ConvTranspose2d [1, 32, 70, 70] 32,800

ReLU [1, 32, 70, 70] 0

ConvTranspose2d [1, 2, 140, 140] 1,026

Sigmoid [1, 2, 140, 140] 0

Total parameters 516,870

Trainable parameters 516,870

Non-trainable parameters 0

Total mult-adds (MB) 534.75

Input size (MB) 0.16

Forward/backward pass (MB) 11.27

Params size (MB) 2.07

Estimated total size (MB) 13.50

Table 4: Detailed summary of the VAE_MP3 architecture.
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Layer (Type) Output Shape Parameters

Conv2d [1, 32, 140, 140] 608

ReLU [1, 32, 140, 140] 0

MaxPool2d [1, 32, 70, 70] 0

Conv2d [1, 64, 70, 70] 18,496

ReLU [1, 64, 70, 70] 0

MaxPool2d [1, 64, 35, 35] 0

Conv2d [1, 128, 35, 35] 73,856

ReLU [1, 128, 35, 35] 0

MaxPool2d [1, 128, 17, 17] 0

Conv2d [1, 256, 17, 17] 295,168

ReLU [1, 256, 17, 17] 0

MaxPool2d [1, 256, 8, 8] 0

Linear (µ head) [1, 2] 32,770

Linear (logσ head) [1, 2] 32,770

Linear (decoder input) [1, 16,384] 49,152

ConvTranspose2d [1, 128, 17, 17] 524,416

ReLU [1, 128, 17, 17] 0

ConvTranspose2d [1, 64, 35, 35] 131,136

ReLU [1, 64, 35, 35] 0

ConvTranspose2d [1, 32, 71, 71] 32,800

ReLU [1, 32, 71, 71] 0

ConvTranspose2d [1, 2, 143, 143] 1,026

ReLU [1, 2, 143, 143] 0

Upsample [1, 2, 140, 140] 0

Total parameters 1,192,198

Trainable parameters 1,192,198

Non-trainable parameters 0

Total mult-adds (MB) 776.96

Input size (MB) 0.16

Forward/backward pass (MB) 12.04

Params size (MB) 4.77

Estimated total size (MB) 16.97

Table 5: Detailed summary of the VAE_MP4 architecture.
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Layer (Type) Output Shape Parameters

Conv2d [1, 32, 70, 70] 608

BatchNorm2d [1, 32, 70, 70] 64

ReLU [1, 32, 70, 70] 0

Conv2d [1, 64, 35, 35] 18,496

BatchNorm2d [1, 64, 35, 35] 128

ReLU [1, 64, 35, 35] 0

Linear (µ head) [1, 2] 156,802

Linear (logσ head) [1, 2] 156,802

Linear (decoder input) [1, 78,400] 235,200

ConvTranspose2d [1, 32, 70, 70] 32,800

BatchNorm2d [1, 32, 70, 70] 64

ReLU [1, 32, 70, 70] 0

ConvTranspose2d [1, 2, 140, 140] 1,026

Sigmoid [1, 2, 140, 140] 0

Total parameters 601,990

Trainable parameters 601,990

Non-trainable parameters 0

Total mult-adds (MB) 207.02

Input size (MB) 0.16

Forward/backward pass (MB) 7.21

Params size (MB) 2.41

Estimated total size (MB) 9.78

Table 6: Detailed summary of the VAE_BN2 architecture.
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Layer (Type) Output Shape Parameters

Conv2d [1, 32, 70, 70] 608

BatchNorm2d [1, 32, 70, 70] 64

ReLU [1, 32, 70, 70] 0

Conv2d [1, 64, 35, 35] 18,496

BatchNorm2d [1, 64, 35, 35] 128

ReLU [1, 64, 35, 35] 0

Conv2d [1, 128, 18, 18] 73,856

BatchNorm2d [1, 128, 18, 18] 256

ReLU [1, 128, 18, 18] 0

Linear (µ head) [1, 2] 82,946

Linear (logσ head) [1, 2] 82,946

Linear (decoder input) [1, 41,472] 124,416

ConvTranspose2d [1, 64, 36, 36] 73,792

BatchNorm2d [1, 64, 36, 36] 128

ReLU [1, 64, 36, 36] 0

ConvTranspose2d [1, 32, 72, 72] 18,464

BatchNorm2d [1, 32, 72, 72] 64

ReLU [1, 32, 72, 72] 0

ConvTranspose2d [1, 2, 144, 144] 578

Sigmoid [1, 2, 144, 144] 0

Upsample [1, 2, 140, 140] 0

Total parameters 476,742

Trainable parameters 476,742

Non-trainable parameters 0

Total mult-adds (MB) 253.19

Input size (MB) 0.16

Forward/backward pass (MB) 9.07

Params size (MB) 1.91

Estimated total size (MB) 11.14

Table 7: Detailed summary of the VAE_BN3 architecture.
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Layer (Type) Output Shape Parameters

Conv2d [1, 32, 70, 70] 608

BatchNorm2d [1, 32, 70, 70] 64

ReLU [1, 32, 70, 70] 0

Conv2d [1, 64, 35, 35] 18,496

BatchNorm2d [1, 64, 35, 35] 128

ReLU [1, 64, 35, 35] 0

Conv2d [1, 128, 18, 18] 73,856

BatchNorm2d [1, 128, 18, 18] 256

ReLU [1, 128, 18, 18] 0

Conv2d [1, 256, 9, 9] 295,168

BatchNorm2d [1, 256, 9, 9] 512

ReLU [1, 256, 9, 9] 0

Linear (µ head) [1, 2] 41,474

Linear (logσ head) [1, 2] 41,474

Linear (decoder input) [1, 20,736] 62,208

ConvTranspose2d [1, 128, 18, 18] 524,416

BatchNorm2d [1, 128, 18, 18] 256

ReLU [1, 128, 18, 18] 0

ConvTranspose2d [1, 64, 36, 36] 131,136

BatchNorm2d [1, 64, 36, 36] 128

ReLU [1, 64, 36, 36] 0

ConvTranspose2d [1, 32, 72, 72] 32,800

BatchNorm2d [1, 32, 72, 72] 64

ReLU [1, 32, 72, 72] 0

ConvTranspose2d [1, 2, 144, 144] 1,026

Sigmoid [1, 2, 144, 144] 0

Upsample [1, 2, 140, 140] 0

Total parameters 1,224,070

Trainable parameters 1,224,070

Non-trainable parameters 0

Total mult-adds (MB) 604.79

Input size (MB) 0.16

Forward/backward pass (MB) 9.90

Params size (MB) 4.90

Estimated total size (MB) 14.95

Table 8: Detailed summary of the VAE_BN4 architecture.
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Layer (Type) Output Shape Parameters

Conv2d [1, 32, 20, 20] 320

ReLU [1, 32, 20, 20] 0

MaxPool2d [1, 32, 10, 10] 0

Conv2d [1, 64, 10, 10] 18,496

ReLU [1, 64, 10, 10] 0

MaxPool2d [1, 64, 5, 5] 0

Conv2d [1, 128, 5, 5] 73,856

ReLU [1, 128, 5, 5] 0

MaxPool2d [1, 128, 3, 3] 0

Linear (µ head) [1, 2] 2,306

Linear (logσ head) [1, 2] 2,306

Linear (decoder input) [1, 1152] 3,456

ConvTranspose2d [1, 64, 5, 5] 73,792

ReLU [1, 64, 5, 5] 0

ConvTranspose2d [1, 32, 10, 10] 32,800

ReLU [1, 32, 10, 10] 0

ConvTranspose2d [1, 1, 20, 20] 513

Sigmoid [1, 1, 20, 20] 0

Total parameters 207,845

Trainable parameters 207,845

Non-trainable parameters 0

Total mult-adds (MB) 9.16

Input size (MB) 0.00

Forward/backward pass (MB) 0.23

Params size (MB) 0.83

Estimated total size (MB) 1.06

Table 9: Detailed summary of the VAE_MP3_128 architecture.
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Layer (Type) Output Shape Parameters

Conv2d [1, 64, 20, 20] 640

ReLU [1, 64, 20, 20] 0

MaxPool2d [1, 64, 10, 10] 0

Conv2d [1, 128, 10, 10] 73,856

ReLU [1, 128, 10, 10] 0

MaxPool2d [1, 128, 5, 5] 0

Conv2d [1, 256, 5, 5] 295,168

ReLU [1, 256, 5, 5] 0

MaxPool2d [1, 256, 3, 3] 0

Linear (µ head) [1, 2] 4,610

Linear (logσ head) [1, 2] 4,610

Linear (decoder input) [1, 2304] 6,912

ConvTranspose2d [1, 128, 5, 5] 295,040

ReLU [1, 128, 5, 5] 0

ConvTranspose2d [1, 64, 10, 10] 131,136

ReLU [1, 64, 10, 10] 0

ConvTranspose2d [1, 1, 20, 20] 1,025

Sigmoid [1, 1, 20, 20] 0

Total parameters 812,997

Trainable parameters 812,997

Non-trainable parameters 0

Total mult-adds (MB) 35.94

Input size (MB) 0.00

Forward/backward pass (MB) 0.46

Params size (MB) 3.25

Estimated total size (MB) 3.71

Table 10: Detailed summary of the VAE_MP3_256 architecture.

Layer (Type) Output Shape Parameters

Conv2d [1, 64, 20, 20] 640

ReLU [1, 64, 20, 20] 0

MaxPool2d [1, 64, 10, 10] 0

Conv2d [1, 128, 10, 10] 73,856

ReLU [1, 128, 10, 10] 0

MaxPool2d [1, 128, 5, 5] 0

Linear (µ head) [1, 2] 6,402

Linear (logσ head) [1, 2] 6,402

Linear (decoder input) [1, 3200] 9,600

ConvTranspose2d [1, 64, 10, 10] 131,136

ReLU [1, 64, 10, 10] 0

ConvTranspose2d [1, 1, 20, 20] 1,025

Sigmoid [1, 1, 20, 20] 0

Total parameters 229,061

Trainable parameters 229,061

Non-trainable parameters 0

Total mult-adds (MB) 21.19

Input size (MB) 0.00

Forward/backward pass (MB) 0.39

Params size (MB) 0.92

Estimated total size (MB) 1.31

Table 11: Detailed summary of the VAE_MP2_128 architecture.
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Layer (Type) Output Shape Parameters

Conv2d [1, 32, 20, 20] 320

ReLU [1, 32, 20, 20] 0

MaxPool2d [1, 32, 10, 10] 0

Conv2d [1, 64, 10, 10] 18,496

ReLU [1, 64, 10, 10] 0

MaxPool2d [1, 64, 5, 5] 0

Linear (µ head) [1, 2] 3,202

Linear (logσ head) [1, 2] 3,202

Linear (decoder input) [1, 1600] 4,800

ConvTranspose2d [1, 32, 10, 10] 32,800

ReLU [1, 32, 10, 10] 0

ConvTranspose2d [1, 1, 20, 20] 513

ReLU [1, 1, 20, 20] 0

Upsample [1, 1, 20, 20] 0

Total parameters 63,333

Trainable parameters 63,333

Non-trainable parameters 0

Total mult-adds (MB) 5.47

Input size (MB) 0.00

Forward/backward pass (MB) 0.20

Params size (MB) 0.25

Estimated total size (MB) 0.45

Table 12: Detailed summary of the VAE_MP2_64 architecture.
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