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Abstract
In recent years, there has been an increased attention to climate change and
the effects it might have on human society. One of the main causes of climate
change is increased carbon emissions due to different human activities and
global scale industrialization. Various approaches exist to mitigate the effects
of climate change. One of the largest sources of carbon emissions is the pro-
duction of consumer goods. Therefore, by influencing the choices consumers
make, we can help mitigate some of the effects of climate change due to carbon
emissions.

In this thesis, we focus on carbon emissions during the production phase
of textile products. To be able to influence consumers in their choice of textile
products, we must be able to provide them with detailed information on the
emissions of individual products. Such information will allow consumers to
compare the products and potentially influence them to choose environmen-
tally friendly products. Such a product will hopefully push the market towards
sustainable production.

Our work focuses on providing methods that can be used to create a ma-
chine learning model to predict the carbon emissions of textile products. We
collaborate with IVL Swedish Environmental Research Institute (IVL) to build
an analytical model to calculate the emissions of textile products. Further-
more, we leverage the analytical model to design and compare three machine
learning models. We focus on building models that benefit from the knowl-
edge of the analytical model while being scalable with regards to new data.
Moreover, we introduce a method to use knowledge in the form of analyti-
cal models to bootstrap a machine learning model when labelled data is not
readily available. In this way, the machine learning model can benefit from
the existing knowledge of the analytical model while being adaptable to new
labelled data.

Finally, we compare the three proposed models and discuss the advantages
and disadvantages of each model. We also mention the situations where each
model performs best.
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Sammanfattning
Intresset för klimatförändringar och dess potentiella effekter på samhället har
ökat under de senaste åren. En av de främsta orsakerna till klimatförändringar
är ökade koldioxidutsläpp till följd av en globaliserad ekonomi och mänskliga
aktiviteter som exempelvis resande. En betydande andel av koldioxidutsläppen
kommer från konsumtion av konsumentprodukter. Genom att påverka konsu-
menternas val så kan en bidra till att minska koldioxidutsläppen och i sin tur
mildra klimatförändringarna.

I denna masteruppsats analyseras koldioxidutsläpp från produktion av tex-
tiler. För att aktivt kunna påverka konsumenternas val så bör de presenteras
med detaljerad information om den specifika textilproduktens miljöpåverkan.
Denna information tillåter konsumenterna att jämföra produkter med avseende
på miljöeffekter, vilket potentiellt kan få dem att prioritera miljövänligare al-
ternativ. Förhoppningen är att denna lösning i förlängningen kommer att driva
textilmarknaden mot en mer hållbar produktion.

Syftet med denna rapport är att tillhandahålla maskininlärnings modeller
som kan användas för att förutsäga koldioxidutsläpp från textilprodukter. I rap-
porten så används en analytiskmodell för att beräkna utsläpp från textilproduk-
ter, denna modell är framtagen i samarbete IVL Swedish Environmental Rese-
arch Institute (IVL). Den analytiska modellen används sedan i utformningen
och jämförelsen av tre maskininlärningsmetoder. Dessa maskininlärningsal-
goritmer är utformade för att kunna kombinera en analytisk modell med nya
datapunkter på ett skalbart sätt. Således föreslår vi även att kunskap från en
analytisk modell kan användas för att bootstrapa en maskininlärningsmodell.
Detta är särskilt nyttigt då få annoterade datapunkter är tillgängliga. Denna
metodik medför att modellen kan utnyttja den analytiska modellens kunskap
och sedan anpassas till nya annoterade datapunkter.

Slutligen så ställs de tre maskininlärningsmodellerna mot varandra i en
diskussion om var och ens fördelar respektive nackdelar. Vi framhåller även i
vilka typer av situationer de enskilda modellernas prestationer var optimala.
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Chapter 1

Introduction

In recent years, climate change and the effects it will have on human societies
has been garnering increased attention. In their 2018 assessment report, the In-
tergovernmental Panel on Climate Change (IPCC)1 has predicted catastrophic
consequences in various sectors if greenhouse emissions are not mitigated in
the next thirty years.

Furthermore, the Climate Change AI group2 investigated the benefits of
using Machine Learning (ML) for preventing climate change and mentions
that addressing climate change issues require both mitigating and adapting to
changes [1]. Also, various ways in which theML field can help solve or reduce
issues regarding climate change are discussed. Understanding personal foot-
print and facilitating behavioural change are two of the aforementioned ways
that ML can help affect climate change. Personal behaviours and decisions are
one of the strongest driving forces in different industries and consequently, the
effects of these industries on climate change.

The textile industry has been responsible for a large share of greenhouse
gas production in recent years [2], which is mainly caused by Fast Fashion.
Fast Fashion is the term used to describe clothing designs that move quickly
from the catwalk to stores to meet new trends. The collections are often based
on designs presented at FashionWeek events. The efforts to reduce the impact
of this industry requires action from both manufacturers and consumers.

One of themainmethods of influencing consumer behaviour towards choos-
ing environmental-friendly options is raising awareness about their choices

1An intergovernmental organization dedicated to providing the world with objective, sci-
entific information relevant to understanding the scientific basis of the risk of human-induced
climate change.

2A group of volunteers from academia and industry who believe in using ML, where it is
relevant, to help tackle the climate crisis.

1



2 CHAPTER 1. INTRODUCTION

and the environmental impact of these choices. In the last few years, various
businesses have made progress in being more transparent about the effect of
their products on the environment and providing detailed reports regarding
environmental issues. For example, Zalando and H&M provide sustainability
reports annually [3, 4].

In the textile industry, few Life Cycle Assessments (LCA) on the carbon
emissions of textile products exist [5, 6, 7, 8]. These assessments provide
accurate information on the different sections in the life-cycle of a product.
The major issue with LCA’s is that they are expensive and time-consuming.
This makes it infeasible to use them for raising awareness on the consumer
side where we need the emissions of a large number of products. Therefore, a
model that can estimate the carbon emissions during the production phase of
textile products (for a large number) can help increase consumer awareness and
potentially influence them to choose environmentally-friendly products. Some
of the major issues in using ML methods for estimating the carbon emissions
of products is the lack of suitable data and a high variance in the data that does.
Also, most of the data available for building such methods is unstructured.

1.1 Motivation
The consequences of climate change have garnered increased attention in the
past few years. The Climate Change AI group state that addressing climate
change issues require both mitigating and adapting to changes [1]. These is-
sues have to be addressed both on the consumer side and the manufacturer
side. In recent years, many manufacturers in different industries have been
dedicating more resources on producing environmental-friendly products. In
the textile industry, many manufacturers have begun providing details about
the climate impact their products will have. Moreover, some manufacturers
are dedicating special product line-ups to environmental-friendly clothes.

According to section 1.2 of The Climate Change AI group report [9], rais-
ing consumer awareness about the impact of their choices on climate change
has a beneficial effect on their choice of consumer products. By providing
details about the impact of buying different textile products and enabling con-
sumers to take this factor into account when deciding on their purchase, con-
sumers can be influenced to choose environmental-friendly options.

To provide details about the carbon emissions of a textile product during
its life-cycle using ML methods, the problems regarding missing data and un-
labeled data need to be solved.
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1.2 Problem Statement
This thesis primarily focuses on finding a solution to raise consumers’ aware-
ness about their purchases in the textile industry. Determining the carbon
emissions of textile products on a large scale, depends on having sufficient
data and a suitable model to enable estimating the carbon emissions of unseen
products. Clothing retail companies have different ways of categorizing their
products. For example, a retail store might combine hoodies and sweaters in
one category while another might have separate categorization for them.

Furthermore, due to the different categorization methods and different de-
tails that are disclosed by textile manufacturers about their products, the data
required for training such a model has to be collected by manually scraping
different manufacturers and unifying the format of their data. Moreover, the
different details provided by manufacturers lead to missing features in some
datasets which will need to be accounted for.

Finally, labelled datasets regarding the emissions of textile products are not
readily available in a large scale. The available data is in the form of LCA stud-
ies which are time consuming and not scalable. The lack of labelled datasets
makes building a learned model that can generalize well difficult. With the
continuation of such a project and with more resources labelled datasets might
become available in the future. Although, until such a dataset is available, our
model should be able to benefit from the best estimations that exist.

1.3 Research Question
In this thesis, we mainly focus on the following research question:

How can we combine learned and analytical models in a way to benefit
from both the flexibility of learnedmodels and the pre-existing knowledge
embedded in the analytical model.

Analytical models have advantages like interpretability and being based
on expert human knowledge. Moreover, analytical models do not need large
amounts of data to be able to calculate outputs accurately. However, manual
interference is needed to add new types of inputs or to adapt the model to
accurate labelled data. On the other hand, learned models need a large amount
of data during their training phase to start being beneficial. However, they
can adapt to new datasets with minimal manual interference. In the case of
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estimating carbon emissions for textile products, one of the main problems
is the lack of labelled data which makes training learned models impossible.
On the other hand, the available analytical model requires inputs in a specific
format and is limited to some input types.

To investigate the main research question, we propose three models. The
first model is a regression model trained on data labelled by the analytical
model. To determine the best regression model, we perform experiments be-
tween well-known regression algorithms. The second model is an ensemble
of the analytical model and several classifiers. The classifiers provide the in-
put of the analytical model by using the product information. Finally, the third
model is a novel method for benefiting from the pre-existing knowledge of
the analytical model while maintaining the benefits of a learned model. This
model is mainly inspired by the work in [10].

We compare the models based on different aspects. This results in the
following smaller questions:

• How do each of the models react to feature ablations?

• How do each of the models react to datasets with different sizes?

• Which of the proposed models generalize better to unseen inputs?

• In general, which of the three models estimate the carbon emissions
more accurately?

1.4 Contributions
The contributions of this work include comparing the performance of the three
proposed models, alongside a proof-of-concept for a carbon emissions estima-
tor tool that will estimate the carbon emissions of producing a textile product.

1.5 Ethics and Sustainability
The work in this thesis is directly related to sustainability in the textile indus-
try. One of the main motivations of this work is providing consumers with
information about the effect of their choices on the environment. Also, in di-
rect relation with the work of the Climate Change AI group, this work is con-
cerned with using ML to mitigate the effects of climate change. Furthermore,
Fast Fashion has been subject to increasing criticism in recent years and one
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of the most important ways to reduce the effects of Fast Fashion is influencing
consumer behaviour [2].

1.6 Outline
This thesis is organized as follows. In Chapter 2, the necessary background
information needed for understanding the methods and contributions in this
work is provided. Chapter 3 explains the methodology and methods used to
build the carbon estimator. In particular, in Section 3.2 the challenges and
solutions used regarding the dataset are explained. In Chapter 4, the results and
a comparison between the proposed models are presented. Finally, in Chapter
5 a final discussion of the limitations and potential future work alongside the
conclusion is provided.



Chapter 2

Background and Related Work

In the following sections, the necessary background information regarding the
different aspects of the thesis is provided.

2.1 Assessing Carbon Emissions
The main problem we focus on is assessing the carbon emissions of the pro-
duction phase of a textile product. Various steps in the production of a textile
product contribute to the carbon emissions. These contributions are in differ-
ent forms. For example, heat and energy needed for producing such products
emit carbon in different ways. In the following section, we explain a method
for calculating the carbon emissions of the different stages of a products life-
cycle.

2.1.1 Life Cycle Assessment
LCA is a methodology for assessing the environmental impact of the different
stages of a products life-cycle. The LCA methodology has different variants
such as Cradle-to-Gate, Cradle-to-Grave, etc. The Cradle-to-Gate variation is
concerned with the stages in the life-cycle of a product up until it is ready to
be purchased. The different stages of the life-cycle of a product can be seen
in 2.1. Cradle-to-Gate is concerned with the three steps of Raw Materials,
Production and Distribution.

6
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Figure 2.1: Stages of the life-cycle of a product.

The effects of greenhouse gases are not limited to CO2. Various green-
house gases other than carbon affect the climate. Although, to make the pro-
cess of measuring these effects and studying them easier a common unit named
CO2e is defined. CO2e signifies the amount of CO2 which would have the
equivalent global warming impact. In this thesis, all emissions are measured
using the CO2e.

2.1.2 IVL Swedish Environmental Research Institute
The IVL Swedish Environmental Research Institute AB is an independent and
non-profit Swedish research institute in the environmental field and a national
knowledge resource for businesses and the state. The purpose of the institute
is to develop impartial decision-making bases and provide research with high
quality and with application to the needs of society, and to promote ecologi-
cally, economically and socially sustainable growth in businesses and society.
IVL was jointly founded in 1966 by the Swedish state and national business
interests to carry out research on industrial, air and water issues [11].

IVL provided uswith their expert knowledge and resources regarding LCA’s
and textile products. They collaborated with us to develop a carbon emissions
calculator for textile products.

2.2 Web crawling
Web crawling is the term used to describe the different steps and methods for
automatically visiting different web pages in theWorldWideWeb and extract-
ing information from them. Web crawling is performed by web crawlers (or
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web bots) that start with a list of webpageURLs to visit and recursively retrieve
and visit other URLs present on that web page.

One of the most common purposes of web crawling is extracting data and
building datasets that don’t currently exist. For example, in this thesis, we
require a large amount of data about textile products which contain the prop-
erties that will affect their carbon emissions. Based on our research, no such
datasets are publicly available. Therefore, we used a custom web crawler to
find, visit and store the data of textile products.

Designing a simple web crawler that visits a small number of URLs and
saves the data is a relatively easy task. However, to build a web crawler on a
large scale many challenges are encountered.

Most publicly available websites have a relatively high user traffic. To
maintain the quality of service, these web pages use preventive measures to
stop any fraudulent or abnormal activity. For example, if a high number of
requests are made to a web page, the IP of the sender is temporarily blocked.
From the point of view of the host web page, a web crawler is the same as a
normal user. However, due to the automated nature of a web crawler, a large
number of requests for multiple URLs can be sent simultaneously. For a small
number of requests, this is not a problem. But, by continuing this type of
behaviour, the bot might be marked as "suspicious" and the requests to the
web page will be denied. To solve this problem, web crawlers use policies
for different aspects of their behaviour. For example, a common policy to
prevent them from being marked as "suspicious" is limiting the rate of the
requests. Furthermore, as part of the Robots Exclusion Policy (REP)1, web
pages include a robots.txt file on their domain which indicates which type of
users and requests are allowed and not allowed on their web page. Web pages
with a large number of users tend to have strict rules.

2.3 Machine Learning and Deep Learning
Machine Learning (ML) is used to refer to algorithms that can improve auto-
matically with experience. There are various definitions of ML. In his book,
ML [12], Tom M. Mitchell defines ML as follows:

"A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E."
1Agroup of web standards that regulate how robots crawl theweb, access and index content
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In recent years, ML has been used in various fields and industries. For
example, detecting if an email should be considered a spam email or not. ML
consists of various methods and algorithms related to automatic learning. Two
of the main categories of ML methods are supervised and unsupervised learn-
ing. In supervised learning, the algorithm attempts to learn a mapping func-
tion from a certain input to an output. The email spam detection mentioned
before is one example of supervised learning algorithms. On the other hand,
unsupervised learning algorithms attempt to find unseen patterns that exist in
a dataset.

In recent years, a specific family of MLmethods, Deep Learning, has been
garnering increased attention. This method is based on using Artificial Neu-
ral Networks to solve problems in the ML domain. The reason for using the
keyword deep is the use of multiple layers of neural networks. Deep Learning
methods can also be used in both a supervised and unsupervised fashion.

2.3.1 Data and Learning
As mentioned previously, ML is mainly concerned with performing a task au-
tomatically with minimal human supervision. Any ML algorithm will require
data to be able to learn to perform a given task. Going back to the email spam
detection example, a supervised model will require a dataset of emails. These
emails should be labelled according to the task at hand. In this case, the label
will show if the email is spam or not. Similarly, an unsupervisedML algorithm
would also need a dataset with enough data to be able to detect meaningful pat-
terns in this dataset. The final end-to-end algorithm that uses the provided data
to learn how to perform a specific task is called an ML model.

A major part of creating any ML model is having suitable and sufficient
data for the given task. The data used in supervised and unsupervised methods
have a major difference. As suggested by the name, supervised methods are
guided towards the function they must learn. This supervision is provided in
the form of a label in the dataset. For example, each email in the dataset for
building an email spam detection should have a label indicating if it is a spam
or normal email. On the other hand, an unsupervised model does not require a
label and attempts to learn unknown patterns in the dataset. An example of an
unsupervised model is a model that receives a dataset of images with different
animals in them and puts the same animals in the same groups.

The process of using a dataset to teach an ML model how to perform a
specific task is called training the model. Training a model is an iterative
process where the model repeatedly uses the given dataset and tries to improve
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itself in the given task, until a certain condition is met. The training phase of a
model is controlled by parameters called hyperparameters. For example, The
number of times the model should use each data point for improving itself
is a hyperparameter. These parameters are set manually before starting the
training phase. Hyperparameters and how they impact the training of a model
are discussed in section 2.3.1.

The process of training and improving a model requires some sort of eval-
uation of how the model is performing. Using this evaluation, the model can
decide how it can improve itself. This evaluation is done by using different
metrics and a loss function. The choice of these metrics and the loss func-
tion usually depends on the task at hand and is discussed thoroughly in the
evaluating models subsection. Furthermore, after the training of the model is
complete, a final evaluation has to be performed to assess the model according
to the specific task it was trained on. This final evaluation is called testing the
model.

Data splitting

As can be seen in the previous sections, building an ML model consists of
different parts. The data used for the different parts of building a model is dif-
ferent. One of the most important reasons for splitting the data for the different
phases of training a model is to avoid overfitting. Overfitting is a modelling
error that occurs when a function fits a specific dataset too closely and is not
able to generalize the given task for unseen data.

To avoid this problem, we split the dataset into two parts. The first part is
the training data. This part is used in the training phase of the model and is
the data the model uses to learn the mapping between the inputs and outputs
of a function. This part of the data is called the training set. Usually, a part
of the training data is used for finding the best hyperparameters and is called
the validation set. In the training phase, the model only uses the training and
validation sets.

The second part of the dataset is called the test set. As the name sug-
gests, the test set is used for testing the model and evaluating its performance.
Therefore, the test data is never used in the training phase of the model and
is unseen to the model. By doing this, we prevent the model from overfitting
on the training set and hence, improve the model’s ability to generalize. It is
worth mentioning that the process described above is mainly used for splitting
the dataset for supervised algorithms. Although, unsupervised algorithmsmay
also need to partition the dataset depending on the problem they are attempting
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to solve.

Hyperparameters and Optimization

Hyperparameters are parameters set in a model before the training process
begins. For example, the number of times the model goes through the training
set and uses it to improve itself is called the epoch hyperparameter. Different
training algorithms have different hyperparameters.

The process of finding the best hyperparameters for a model performing a
certain task is called tuning the hyperparameters. As mentioned in the previ-
ous section, the validation set is used to tune the hyperparameters. Tuning the
hyperparameters is also an iterative process. Different hyperparameters are
used to train the model. In the end, the hyperparameters resulting in the best
performance on the validation set are used for the final model.

A common tuning method is called GridSearch. In this method, different
combinations of all the hyperparameters of the model are considered and used
to train the model. The best combination is then used to create the final model.
Training a model is equivalent to finding the parameters which minimize the
loss function. One of the ways to find these parameters is using optimizers.
Various optimizers exist for different models [13].

In this work, we test and train our models using two optimizers, Stochastic
Gradient Descent (SGD) [14] and Adam [15]. In SGD, the model calculates
the difference between the predictions and the labels of a subset of the data,
using the loss function. This difference is then used to calculate the gradient
of the error, with regards to each variable. Each variable is then changed in
the opposite direction of the gradient. The intuition behind this technique is
that the gradient of the error is showing the direction that will make the error
rise. Therefore, to reduce the error, we move in the opposite direction. In
every step, the variables are changed according to the formula in equation 2.1.
SGD is a variation of Gradient Descent. In GD, the gradient is calculated with
regard to each single data point. SGD is usually preferred in ML models with
a large number of variables because of its efficiency. The variable α is the
learning rate and is a hyperparameter. It determines the size of the steps taken
after the gradient is calculated.

for i in range(m) :

θj = θj − α(ŷi − xj
i) (2.1)

The second optimizer used in this work is the Adam optimizer. The Adam
optimizer improves upon SGD by introducing an adaptive learning rate indi-
vidually for each parameter.
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Evaluating Models

As mentioned in the previous sections, we need to evaluate the performance
of a model in both the training and testing phases. The two main aspects of
evaluating a model are a loss function and some performance metrics.

A loss function calculates the difference between the outputs predicted by
the model and the real outputs. Different functions can be used as the loss
function based on the data and the task at hand. The loss function is mainly
used in the training phase of the model so the model can understand how it is
currently performing and improve itself based on its current performance.

The performance metrics are used to evaluate the final model and also
compare models (for example, when tuning the hyperparameters.). Similar to
the loss function, various performance metrics exist and they are chosen based
on the task at hand [16]. It is worth mentioning that the performance metric for
evaluating the model can be the same as the loss function used during training.

Regression and Classification

In this section, we explain regression and classification which are two of the
main types of ML models. Regression models are concerned with approxi-
mating a mapping function from some inputs to a continuous variable. For
example, a model that takes the different attributes of a house as input, and
outputs the price of the house is a regression model. On the other hand, clas-
sification models are concerned with approximating a mapping function from
some inputs to a discrete label variable. For example, a model which takes
an email as an input and outputs a label that determines if the email is spam
or not is a classification model. Note that, classification models can output
more than two labels. For example, an image classifier might take a picture
and predict which kind of animal is present in the input picture. Regression
models and classification models have different performance metrics. Some
of these metrics are explained in section 4.1.

2.3.2 Artificial Neural Networks
Artificial Neural Networks (ANN) are a type of computing system vaguely
inspired by neural networks in the brain. The building blocks of these networks
are artificial neurons. Each neuron consists of an input, an activation function
and an output. The activation function determines the output of the neuron
based on the input.
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An important subclass of neural networks, that are responsible for a major
part of the AI boom in the recent years, are Deep Neural Networks (DNN).
DNNs have three types of layers. The input layer, the output layer and an
arbitrary number of layers in between that together are called the hidden layers.
Each layer consists of an arbitrary number of neurons. A DNN with a single
hidden layer is called a Multilayer Perceptron (MLP).

Figure 2.2: A deep neural network.

The way the different layers and neurons are connected together is called
the architecture of the neural network. Based on the architecture of the neural
network, the networks are used for different ML problems. Similar to classical
ML models, ANNs can be used in a supervised or unsupervised fashion. In
this thesis, we leverage both supervised and unsupervised ANNs.

2.4 Natural Language Processing
Natural Language Processing (NLP) is a branch of Artificial Intelligence that
deals with human-computer communication using natural languages. Any
problem regarding computers and natural languages falls under NLP which
makes it a broad subject. In this thesis, we focus on a few topics in NLP. Many
problems in NLP are solved using Deep Learning [17].
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2.4.1 Lemmatisation and Stemming
As mentioned in the previous sections, one of the most important aspects of
ML is the data used to train the models. Natural language data is usually in text
format, and text data is usually unstructured and varied. For example, words
used to refer to similar concepts, might be slightly different. For example,
Jeans and Jean refer to the same thing and it is easy for a human to understand
the similarity. However, a computer treats the two words as different words.
Two of the main approaches to solve this problem in NLP are lemmatisation
and stemming.

Lemmatisation is the process of removing inflectional parts of a word and
reducing it to its base dictionary word. The base form of the word is called
the lemma. For example, the words eat, eating and eaten have the base eat.
Lemmatisation and stemming are closely related, with the difference being
that lemmatisation algorithms consider the context in which a word is used in
to deduct its lemma.

However, stemming does not consider the context that the word is used in.
For example, the result of stemming and lemmatising the word eating will be
eat. However, a lemmatiser would output "good" as the lemma of "better".
Whereas, this relation will not be noticed by stemming.

Lemmatisation and stemming are usually performed as a pre-processing
for NLP problems and can potentially improve the performance of such mod-
els [18].

2.4.2 Text Classification
Classification is one of the most common applications of ML models. Classi-
fication is the process of determining a tag or label for a given subset of data
from a pre-defined set of labels.

The process of applying classification to text data is called text classifica-
tion. For example, the problem of determining if an email is spam or not is an
example of text classification.

In recent years, various methods and algorithms have been developed for
text classification. Due to a large number of methods for text classification and
the scope of this thesis, we will not explain different methods and instead focus
on the methods used in this project. However, in [19], the authors provide a
survey of the different methods used for text classification in the field.
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2.4.3 Word Embeddings
In this thesis, we use word embeddings for solving the problems related to text
classification. Word embeddings are a class of techniques used in NLP to map
words and sentences to vectors with scalar values. This process allows text data
to be used with already existing ML methods such as existing classification
methods [20].

The main idea of word embedding is representing text data in a multi-
dimensional space in a way that similar words and sentences are close to each
other in this space. Various techniques and methods have been developed for
acquiring the word embeddings of text data. We only explain the methods
used in this thesis. However, in [21], the authors provide an extensive survey
on the methods used for creating word embeddings.

This work leverages the FastText library developed by Facebook, to per-
form text classification [22, 23]. FastText uses a similarmethod to theWord2Vec
method [24], where a hidden layer in an ANN is trained to encode the vo-
cabulary. This layer has fewer dimensions than the vocabulary of the text
corpus. However, FastText presents improvements on the Word2Vec model
which greatly enhance the performance. These improvements are explained
at the end of this section. The Word2Vec method can be trained using two
model architectures, Continous Bag of Words (CBOW) and Continuous Skip-
Gram [25]. In the CBOW architecture, the model receives the surrounding
words of a single word and attempts to predict the word itself.

In the Continuous Skip-Gram model, the model takes a single word as
input and outputs the surrounding window of words. Training the Word2Vec
model in this way, forces the hidden layer to capture an embedding of those
words in n-dimensional space, with n being equal to the number of neurons in
the hidden layer. Therefore, we can use the trained Word2Vec model to map
words to vectors.

Word n-grams

In the mentioned algorithms, the models can use a sequence of consecutive
words instead of individual words. These word sequences are called word n-
grams. With n denoting the number of words in the sequence. For example,
consider the sentence "Blue tight Jean", the 1-grams would be "Blue", "tight"
and "Jean". The 2-grams would be "Blue tight" and "tight Jean".

Furthermore, the vector of a sentence is calculated by combining the vec-
tors of the words in the sentence. The combining can be done by taking the
average of the word vectors or by using more complex methods.
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Figure 2.3: The CBOW model architecture. (Source: [24])

These encodings can then be used to perform text classificationwithwidely
used classification methods.

FastText

As mentioned previously, FastText introduces improvements to the Word2Vec
method. The main improvement is that instead of just using whole words
and their neighbours in learning the representations, FastText also leverages
smaller parts of each word. The smaller parts of words are called character
n-grams. For example, take the word "internet" with a character n-gram of
3, it will be represented as: <"int", "nte", "ter", "ern", "rne", "net">. In this
way, FastText extracts much more information from each word. For example,
it gains information about the prefixes and suffixes of the words and it handles
rare words by having embedded the smaller parts of the word. After each word
is split into its character n-grams, the n-grams are used to train the Skip-Gram
or CBOWmodel. Also, when using the trained model to get the representation
of a string, FastText first splits all the words into their character n-grams.

FastText also provides a built-in text classifier [22, 23]. The default classi-
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Figure 2.4: The continuous Skip-Gram model architecture. (Source: [24])

fier uses a softmax layer as the output layer of a CBOWmodel. When learning
the word representations, the values of the hidden layer are important. How-
ever, for classification, we want the model to learn the relationship between
the input words and the outputs (the labels). The output of the softmax layer
will be the probabilities of each label.

The FastText model was chosen because of its relatively accurate perfor-
mance and ease of implementation. The model can be installed using pip in
python and includes a classifier out of the box.

2.5 Related Work

2.5.1 Estimating Carbon Emissions
Most of the studies on calculating emissions in textile products are detailed
LCA’s. These LCA’s measure the emissions of each stage in the production of
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textile products.
Sandin et al, assess the life cycle of six common types of garments in the

fashion industry of Sweden [26].
Various other studies provided by either third-party researchers or by man-

ufacturers focus on the LCA of a single product [27, 28, 29].
Levi’s provides studies on two specific jeans in their line-up [6].
The North Face has published assessments for two Goretex labelled prod-

ucts, a boot [30] and a jacket [31].
Most of these assessments are concerned with the whole life-cycle of the

product and can be used as ground truth data for carbon emission estimation.
However, conducting such assessments is usually time-consuming and expen-
sive. Therefore, using them as labelled data is impractical for training ML
models.

In this thesis, only the emissions during the Cradle-to-Gate stages of the
life-cycle are considered. Using the data gathered through various LCA’s and
IVL’s internal data, an analytical model was developed and provided to us to
calculate the carbon emissions of a textile product. This model is a simple
linear formula that takes attributes of a garment product as input, and outputs
the carbon emissions for that product. The model is explained in detail in
section 3.1.

To the best knowledge of the author, no other study has been done that
focuses on using ML methods to estimate the carbon-emissions of products
from the product’s specifications. However, studies have been conducted on
imputing missing data in LCA’s in general. Ping Hou et al, use a similarity-
based approach to impute missing unit process data in LCA’s [32]. The results
show that missing data can be accurately estimated when less than 5% of the
data-points are missing. The estimation performance decreases as the percent-
age of missing data increases. However, the mentioned study focuses on data
during the assessment of the product’s life cycle.

None of the studies concerning missing data in LCA’s has solely focused
on textile products.

2.5.2 Combining Analytical And Learned Models.
As stated in section 1.3, the main research question we focus on is how to
combine learned and analytical models to predict the carbon emissions during
the production phase of a textile product.

Similar studies in other fields have attempted to use the combination of an
analytical model and ML model to maintain the benefits of both.
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One of these studies [33] is mainly concerned with the interpretability of
ML models which is not directly related to our work. In [33], the authors pro-
pose an unsupervised grey-box architecture where they use a black-box model
to enlarge a labelled dataset and use the enlarged dataset to train the white-
box model. This method is not useful for our work since one of the major
challenges is the lack of true labelled data.

Another study uses the method of combining an analytical and learned
model to reduce the amount of data needed for predicting the action effect of
a robot arm when hitting an object [34]. Traditionally, analytical models are
used to predict such effects by using the current physical state as input. In [34],
the authors leverage anMLmodel to predict the physical state according to the
analytical model and then proceed to use the analytical model to predict the
action effect and also improve the performance of the models when dealing
with novel states. In this way, they reduce the amount of training data needed
or predicting the action effect. The results show that the white-box model per-
forms better than a pure ML model with the same dataset. The approach used
in [34] differs from our work mainly because of the complexity of the analyt-
ical model for a physical state. Their analytical model is concerned with an
initial state of the object and calculating the effect of different actions. Also,
the model relies on visual data to determine the initial state of an object. How-
ever, in our case, the analytical model is a much simpler linear model and again
in the case of [34] true labelled data exists.

Furthermore, in [35] the authors leverage both analytical and learnedmeth-
ods by using them in an ensemble model. They introduce three ensemble
models to combine analytical and learned models. The models are defined
as follows:

• K Nearest Neighbors (KNN): during the learning process, this algo-
rithm evaluates the accuracy that can be achieved by the selected an-
alytical model(s) of the target system and by one (or several) black-box
ML approaches (e.g., Decision Trees, Artificial Neural Networks, Sup-
port Vector Machines) in points of the features’ space that were not in-
cluded in the training sets used to build the ML-based learners (namely,
a validation set). When used to predict the performance achievable in a
configuration c, the average error achieved by the AM model(s) and by
the ML-based learner(s) across the K Nearest Neighbors configurations
belonging to the validation set is used to determine which prediction
method to choose.

• Hybrid Boosting (HyBoost): in this technique, a chain (possibly of length
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one) of ML algorithms are used to learn the residual errors of some ana-
lytical model. The intuition is that the function that characterizes the er-
ror of the analytical model may be learned more easily than the original
target function that describes the relationship between input and output
variables. With this approach, the actual performance prediction in op-
erative phases is based on the output by the analytical model, adjusted
by the error corrector function.

• Probing (PR): The idea at the basis of this algorithm is to use ML to
perform predictions exclusively on the regions of the features’ space in
which the analytical model does not achieve sufficient accuracy (rather
than across the whole space). To this end, two learners are exploited.
Initially, a classifier is used to learn in which regions of the features’
space the AM incurs a prediction error larger than some predetermined
threshold. In these regions, a second black-box regressor is trained to
learn the desired performance function.

Similar to previous studies, the methods mentioned in [35] rely on having
labelled data which is not the case in our study. Therefore, the main bene-
fits of these methods are not present in our problem space. Specifically, The
HB method relies on the learned models correcting the analytical model by
learning the error residuals, which is not possible when the labelled data is
generated with the analytical model itself. Furthermore, the Probing method
relies on knowing the feature spaces in which the analytical model does not
perform well and to cover those spaces using a learned model, which again
requires labelled data to determine these spaces.

Finally, in [10], which is the work most related to this thesis, the authors in-
troduce a new technique called bootstrapping to combine analytical and learn-
ing models. The main idea behind this method is to augment data using an
existing analytical model and use this data to bootstrap (pre-train) the ML
model. In this way, the ML model will benefit from the constraints that exist
in the analytical model. After the initial bootstrapping phase, the black-box
model is used in real-life scenarios to predict the performance of elastic com-
puting services. In this process, more labelled data becomes available to the
model. This data can be used to iteratively train the model. In this way, the
model slowly diverges from the learned function when trained on the analytical
model and goes towards the real distribution function that the data is generated
from. Furthermore, the authors provide and discuss different methods to give
weights to the training data. Intuitively, it is clear that we would like the ML
model to rely more and more on actual real-life data. Therefore, the authors
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provide various ways to determine how much weight should be given to new
data and how much to the augmented data generated by the analytical model.

In this work, we introduce a model inspired by the bootstrapping technique
and use it in an ensemble model. Furthermore, we introduce a novel method to
assign weights to the real labelled data and augmented data which is specific
to our problem space and model.

2.6 Limitations
Based on the scope of the thesis, the goal is to provide a proof-of-concept for
such a carbon emissions estimator. Based on the results, building this estima-
tor is feasible.

However, the models presented in this thesis perform on a limited list of
fabric types which were defined in collaboration with IVL. For example, the
current analytical model can not calculate the carbon emissions for shoes.

Moreover, the problem of not having access to large amounts of ground
truth data makes the process of evaluating the models difficult, since the cur-
rent emissions might be biased in favor of the analytical model.

Finally, as is mentioned in section 3.2, various parts of the dataset are
defined and transformed manually. These manual processes should be com-
pletely replaced by different models to be able to use such a tool in a produc-
tion environment. For example, an ML model that can extract the country of
production of a product directly from its web page is needed.
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Methods

In this chapter, we discuss the methodology used in this study and describe the
dataset and how it was created.

We start by discussing an analytical model developed in collaboration with
IVL. The analytical model is the backbone for labelling the datasets and is also
directly used in one of the proposed models. The process of gathering and la-
belling the dataset alongside the features of the dataset is explained in section
3.3. We then proceed to describe three models considered for predicting car-
bon emissions in section 3.3. Each model performs a data transformation on
the constructed dataset and predicts the carbon emissions. The transformed
dataset for each model is then used to train each of the models to predict the
carbon emissions.

The first model is a deep regression model, from this point on, we refer to
this model as the black-box model. The second model is an ensemble model
and is a combination of two text classifiers and the analytical model, from this
point on, we refer to this model as the white-box model. Finally, the last model
is a combination of bootstrapped regressionmodels and embedding layers. We
refer to this model as the grey-box model.

We use an empirical approach to compare the performance of the men-
tioned models. For this purpose, we need a datasets of textile products. The
process of creating this dataset is discussed in section 3.2. The dataset is then
used to validate the models and compare them. The choice of methodology
is explained by the fact that the models consist of several sub-models. This
makes it difficult to provide formal proofs. Also, all previous studies, use an
empirical approach to compare the final results.

22
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3.1 Analytical Model
The first step for calculating and predicting the carbon emissions of textile
products is obtaining an analytical model which can be used for labelling
datasets. This model was designed and implemented in collaboration with
IVL experts. They provided us with knowledge about the LCA of a textile
product and presented us with the features needed to determine the carbon
emissions of producing a textile product. This model is a simple linear for-
mula which calculates the Cradle-to-Gate carbon emissions for textile prod-
ucts. The model has six inputs. The influence of the inputs on the output is
determined by constant coefficients that are calculated by IVL experts.

Categorization Scheme

As mentioned previously, different merchants might have different categoriza-
tion schemes for their textile products. The first step to create the analytical
model is defining the possible categories so the coefficients associated with
those categories can be calculated by the experts. Therefore, we introduce
and use a custom categorization scheme to be used by IVL and the models. In
the prediction phase of our models, the category provided by the merchant and
other details about the product are used to infer a category based on our custom
scheme. The inferred category is then used to predict the carbon emissions.
The custom scheme provided by us can be seen in Table A.1. The process of
creating the analytical model is shown in Figure3.1.

Figure 3.1: Process of creating the analytical model.

After creating a custom categorization scheme, we used the data provided
by merchant B in their product pages as a base for the possible values of each
input. These inputs were used by IVL to design the final analytical model.
The analytical model can be divided into 9 separate parts. Each of these parts
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depend on a subset of the inputs. An overview of the analytical model can be
seen in Figure3.2

Figure 3.2: The analytical model.

As it can be seen in Figure 3.2, the model takes 6 inputs which are ex-
plained below:

• label: The category of the product based on the custom categorization
presented in this thesis. (text)

• weights: The weight of the product based on the category, gender and
the weight mappings presented in this thesis. (grams)

• fabric type: The type of fabric in the product. This value can be Knit-
ted, Woven or Unwoven. (text)

• country: The country the product was produced in. In case this feature
is missing from the dataset, China is used. (text)

• gender: The gender the product was intended for. (text)

• main_*: The features starting with main_ represent the material used
in the product. (percentage)

Asmentioned previously, the analyticalmodel can be divided into 9 smaller
functions which we formally define below:
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carbon_emissions(
category,

materials,

weight,

country,

fabric_type,
gender)

(3.1)

Equation 3.1 shows the function of the analytical model. The function is
equal to the sum of the following smaller functions.

cutting_sewing_impact(category, weight, gender, country) (3.2)

wet_treatment_impact(category, weight, gender, country) (3.3)

fabric_production_impact(weight, country, fabric_type) (3.4)

yarn_production_impact(weight, country,material) (3.5)

fibre_production_impact(weight, country,material) (3.6)

packaging_impact(weight) (3.7)

distribution_impact(weight, country) (3.8)

retail_impact(weight) (3.9)

transport_impact(weight) (3.10)

An overview of the function can be seen in Figure 3.3.
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Figure 3.3: Different functions of the analytical model.

3.2 Dataset
The next step of building a carbon estimator is constructing a suitable dataset
and labelling it. The dataset used in this work has been scraped from two
online markets. We will refer to the two online markets as "merchant A" and
"merchant B". The names of the online markets are hidden in this work due
to privacy concerns. A custom web crawler was developed and used to scrape
the datasets.

First, we obtained a list of URLs corresponding to products in these two
manufacturers. The list of product URLs that are used for scraping the datasets
is determined by crawling through the URLs in a manufacturers’ domain and
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using a classifier to determine if the URL is a product or not. The classifier
for this task was provided by Klarna.

After obtaining the URLs of the product webpages, they are scraped and
saved in HTML files. After saving the product pages in HTML files, the files
are parsed and the relevant data is extracted in CSV format. For scraping the
web pages, a custom MapReduce [36] based framework is used to parallelize
the scraping jobs. This framework is also provided by Klarna. Since some of
the data provided in online shops are provided dynamically, e.g., a user has to
click on a button on the product web page that fetches additional details about
the product, a web traversal framework was used to mimic this behaviour and
perform the actions needed to retrieve the data. The web traversal framework
was also provided by Klarna. The pseudocode of this procedure is shown in
algorithm 1.

Algorithm 1 Pseudocode for scraping data from merchant B
1: procedure ScrapeURLs(url_list)
2: for each url in url_list do
3: while url.has_unclicked_infobutton() do
4: click(url.next_button())
5: end while
6: url.save_html()
7: end for
8: end procedure

The gathered webpages are saved in HTML format. After that, the HTML
files are parsed and the information is extracted in CSV format. This results
in two CSV files. One for merchant A and one for merchant B. We perform
a pre-processing step where the name of the columns are unified and extra
information from the datasets are left out leaving one dataset containing the
data of both merchants.

3.2.1 Data - Features
After saving the HTML files of the product pages, the files are parsed and the
extracted information of each merchant is pre-processed and converted to one
CSV.
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Parsing HTML files

We read and parse the HTML files using BeautifulSoup [37]. The parsing
process is slightly different for each manufacturer since the webpages have
different layouts and provide different information about the product. When
parsing theHTMLfiles, theHTML elements aremapped to one of the columns
used in the CSV file for each manufacturer. The mappings for each of the
manufacturers are shown in Table 3.1. Note that the HTML elements have
been replaced with fake elements to make the real merchants untraceable.

Merchant A
HTML Element Column in Dataset

<div class="material"> Material Composition
<ol class="category"> Category of Product
<div class="name"> Name of Product

<div class="productdescription"> Text Details 1
Merchant B

HTML Element Column in Dataset
<dl class="details-list"> Material Composition
<li class="cat-list"> Category of Product
<li class="cat-list"> Name of Product

<ul class="countries-list"> Country of Production
<p class="desc"> Text Details 1

Table 3.1: The mappings of the HTML elements to columns in the CSV files.

Note that these mappings are created manually by looking at the product
pages of the two merchants. After reading an HTML file with BeautifulSoup,
we use the find and findall methods provided by the API to find the required
HTML elements.

For the list elements, we iterate through the items of the list and add all of
them to its respective CSV column. For the other elements, we take the value
of the element and insert them in the CSV file.

In the end, each of the mappings will result in one column in the CSV
file. The code snippet in Figure 3.4 shows the code for retrieving the "Text
Details 1" column. As can be seen in the code, after finding the element with
the proper class, we iteratively parse through the inner elements of it to reach
the values that are of interest to us. Defining the inner elements is currently a
manual process.

The parsing process results in two CSV files. One for merchant A and one



CHAPTER 3. METHODS 29

def extract_basic_information(soup):
try:

base_details_list = soup.findAll("div",
{"class": "productdescription"})[0]

category = base_details_list.findAll("p",
{})[0].text

details_list = base_details_list.findAll("ul",
{})[0]

details = ""
for detail in details_list:

if isinstance(detail, NavigableString):
continue

details += str(detail.text) + "$$"
return {"info_features_names": ["category",

"details"], "info_features_values":
[category, details]}

except Exception as e:
return{"info_features_names": [],

"info_features_values": []}

Figure 3.4: Code snippet for extracting the text details in an merchant A prod-
uct page.
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for merchant B. The columns for the two CSV files are shown in Table A.2.

Pre-Processing the CSV files

At first, the columns for the two CSV files are slightly different. Therefore,
we perform a pre-processing step where the useless text data is ignored and
the columns of the two CSV files are merged into a final dataset. The pre-
processing step for each column is shown below:

• Material Composition: The material compositions provided by both
merchants are in a key-value format. For example, the materials of a
product might be: Cotton: 50%, Polyester: 50%. To be able to use these
values in our models, we separate and convert the values to columns. We
do this by adding a column for each possible material and assigning the
percentage of the material to the corresponding column. The material
columns are in this format: "main_*". For example, "main_cotton".

• Category of Product: The categories provided by the merchants follow
different schemes. For this column, we map each original category to
a category in our custom categorization scheme. Also, the categories
are Hierarchical. For example, the category of a t-shirt may be: Men
> T-shirt > Polo. We split these categories and insert each of them in
one of the following columns based on their order: cat0, cat1, cat2 and
cat3. The category mappings are first done on the cat3 column and the
products that still have an undefined final category are mapped once
again using the cat2 column. The cat1 column is then concatenated to
the text column of the final dataset. Finally, the gender column is created
by making a copy of the cat1 column which contains the gender.

• Name of Product: The names of the products are trimmed and leading
and trailing white spaces are removed. The name of the product is then
concatenated to the text column of the final dataset.

• Country of Production: The names of the products are trimmed and the
leading and trailing white-spaces are removed. Also, missing countries
are replacedwith "unknown". Note that merchant A does not provide the
country of production, so all products frommerchant A have "unknown"
as their country. Merchant B provides more than one country for some
products and in these cases, we take the first country on the list as the
country.
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• Text Details 1: The text details of the products are trimmed and the
white-spaces are removed.

In addition to the steps mentioned above, all of the text data in the CSV
files are converted to lowercase letters, they are trimmed and the extra white
spaces are removed. Also, all variations of "t-shirt" is manually replaced with
"tshirt". After this, the stop words are removed and all words are stemmed to
their root word. Finally, the rows with "nan" values are dropped.

Due to the vast variety of information provided by e-commerce websites
about their products, the information might be missing some important fea-
tures for calculating the carbon emissions. For example, one of the most im-
portant features is the country of production. The country of production is
absent from the details provided by many of the textile manufacturers, includ-
ing merchant A. The statistics of the most common categorical features of our
dataset is shown in table 3.2.1

Variable Outcome Count Percentage
country unknown 8399 67.22

china 1338 10.71
bangladesh 1220 9.76
cambodia 321 2.57
turkey 298 2.38

garment_type woven 4587 36.71
uknown 4124 33.01
knitted 3784 30.28

gender women 7631 61.07
men 4864 38.93

label dress 2360 18.89
tshirt 1582 12.66
shirt 1336 10.69
sweater 1217 9.74
pants 943 7.55

Table 3.2: Statistics of the top 5 elements in each category.

The missing data and the unstructured format of the data need to be ac-
counted for when training an estimator model. More details about the method
each model uses to deal with this problem are explained in each models data
subsection.

The most important missing features that impact carbon emissions are the
weight and fabric type.
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Below we explain each feature and its type in the final dataset in detail:

• name: The name of the product as presented by the manufacturer. (text)

• text: The concatenation of the different unstructured text information of
the product that is available on the product page. (text)

• label: The category of the product based on the custom categorization
scheme presented in this thesis. This feature is added manually and
hence cannot be used directly as training data as we cannot perform
manual labelling for unseen data. (text)

• weight in grams: The weight of the product based on the category,
gender and the weight mapping presented in this thesis. This feature is
added manually and hence cannot be used directly as training data as we
cannot perform manual labelling for unseen data. (float)

• fabric type: How the fabric of the product was formed. This value
can be Knitted, Woven or Unwoven. This feature is added manually
and hence cannot be used directly as training data as we cannot perform
manual labelling for unseen data. (text)

• country: The country the product was produced in. (text)

• gender: The gender the product is intended for. (text)

• main_*: The features starting with main_ represent the material used in
the product (excluding none main parts of the product, such as Linen).
(percentage)

Note that the materials feature is represented by a column for each possible
material type in the main_*: columns. However, on the website, the material
composition is provided in text format. We parse each material and its amount
and then transpose them to have a column for each material. This results in a
sparse dataset when considering the main_*: columns.

Finally, to be able to reliably evaluate the different models, we split the
dataset into three subsets. First, a dataset where all features are available and
no feature is missing. This is effectively a subset of the merchant B data since
the products in merchant A are missing the country feature. The second and
third datasets are the data points where the category and fabric type features
could be labelled successfully. In this way, we have larger datasets for training
the category and fabric type classifiers.
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Exploratory Data Analysis

In this section, we conduct exploratory analysis on the features, focusing on
the correlation between the features.

A heatmap of the continuous data that shows the correlations between the
materials can be seen in figure 3.5. It can be seen that the materials used in
the garments have little correlation with each other.

Figure 3.5: Heatmap of the correlation of different materials.

Next, we analyse the correlation between the category of a product and its
material composition. To analyse this, we calculate the average percentage of
each material, in regards to the category. The results are shown in Figure 3.6.
Based on the heatmap, Polyester and Cotton are present in a lot of different
categories which match our expectations. A lot of the materials presented
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have a low average share in the products which points to the fact that the data
is not balanced well.

Figure 3.6: Heatmap of the average percentage for the materials based on each
category.

Another interesting aspect of the data to look into is if the different materi-
als come from specific countries. To analyse this, we calculate the conditional
probabilities of a country, given the material. The results are shown in Figure
3.7.

A large portion of the materials have an unknown country of origin and we
can ignore them. It can be seen that China and Bangladesh provide a major
share of the materials. Also, some materials in the dataset are provided by
specific countries. For example, Cashmere is mainly from India.

Similar to the previous heatmap, We calculate the conditional probabilities
of a country given the category of the garment. This can potentially tell us if
specific garment categories are usually made in specific countries. The results
are shown in Figure 3.8. We ignore the unknown country again and it can be
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Figure 3.7: Heatmap of the conditional probability of a country given the ma-
terial.

seen that many of the categories are from China. Some categories do come
from specific countries. For example, the "pajamas" category is mostly from
Bangladesh.

3.2.2 Data - Labels
A major challenge in estimating carbon emissions is the lack of labelled data.
The existing labelled datasets are in the form of LCA’s. LCA’s are expensive
and time-consuming to conduct and only a few of them exist for common gar-
ments. Therefore, the data had to be labelled manually.

To generate labelled data, we use the model provided by IVL and the data
scraped from merchant B and merchant A. To the best knowledge of the au-
thor, merchant B provides the most complete set of features required by the
analytical model. The merchant B data includes the country of production but
merchant A does not include the country.
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Figure 3.8: Heatmap of the conditional probability of a country given the label.

This data is manually transformed into the format needed by the analytical
model. The analytical model requires the following inputs to calculate the
carbon emissions of a product:

• Materials

• fabric type

• Country

• Weight

• Gender

• Category

Since e-commerce websites do not follow a unified categorization method
the categories in different manufacturers are not identical. To solve this prob-



CHAPTER 3. METHODS 37

lem we must introduce a customized categorization scheme to unify the cate-
gory of the products for different manufacturers. This categorization scheme is
presented in Table A.1. This custom categorization is defined manually based
on input from experts at IVL and a guideline for calculating weights of textile
products taken from Textile Exchange [38].

The categories provided by each manufacturer is then mapped to the new
categories. The new categories are inserted into the "label" column in the
dataset and also mapped to a weight. The weight mapping is done by using
data from shipping companies and the Textile Exchange guide that provides
an average weight for different categories of clothing products.

Furthermore, the analytical model expects the fabric type of the product
as an input to calculate the carbon emissions. The fabric type is manually
labelled in the products by checking if the details provided for the product
contain specific keywords relating to the type of garment. This data is inserted
into the fabric_type column of the dataset. The keywords used for determining
each fabric_type are shown in Table 3.3. For garments that are missing any of
these keywords, the fabric type is labelled as "unknown".

Woven Knitted Non-Woven
woven knit non-woven
weave jersey nonwoven
denim - -
twill - -
satin - -

Table 3.3: Keywords used to label the fabric types.

Using the features and the analytical model, the dataset is labelled and
the emissions are added to the dataset. The emissions data is inserted in the
emissions column. The type and description of the column is shown below:

• emissions in CO2e per kg: The Cradle-to-Gate emissions of the prod-
uct. (float)

Notes on the Final Dataset

This dataset is separated into a test and train set to be used by the models.
The test set is 20% of the whole dataset. All mentions of the data in a train-
ing context refer to the training data. Furthermore, to create more accurate
performance metrics we only use data points where all the inputs needed for
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assigning a label are available. This means that for training and evaluating
models which rely on the category label, we only use data points which don’t
have a category of unknown. The dataset containing labelled categories con-
sists of both merchant A and merchant B. Both merchants provided sufficient
information to label the categories. Similarly for training models which rely
on the fabric type, we only use data points where we could label the fabric
type. Again, the dataset with labelled fabric types consists of products from
both merchant A and merchant B where the fabric type could be labelled us-
ing the text details. Finally, for training and evaluating end-to-end models for
the carbon emissions data we only use data points where all inputs needed to
calculate the final emissions were available. This effectively means we only
use the merchant B data points for the final evaluations as they were the only
data points which included the country. In the end, we have three subsets of
the dataset. One for models relying on the category. One for models relying
on the fabric type. And finally, one for the carbon emissions themselves which
are basically data points that don’t have a value of unknown for the country,
fabric type and category fields.

3.2.3 Augmented Dataset
As mentioned previously, the grey-box model proposed in this work uses aug-
mented data to bootstrap deep regressionmodels. To create augmented datasets,
we use the analytical model and all the different combinations of the values of
each input. The number of possibilities for each input is as follows:

• Materials: There are 31 possible materials in the current analytical
model and each material can have a percentage between 0 and 100 in
each garment.

• Fabric type: There are 6 possible fabric types defined in the analytical
model and each garment can have one fabric type.

• Country: There are 20 possible countries possible for a garment and
each garment can have one country of production.

• Weight: In the current version of the model, the weights are tied to the
categories of a garment so they do not affect the number of possibilities.

• Gender: There are 2 possible genders in the current version of the
model.
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• Category: There are 35 possible categories for a garment and each gar-
ment can have 1 category.

As can be seen in the equations of the analytical model in section 3, the
analytical model can be divided into 9 smaller functions. As was mentioned
before, in the current project, the weight of a garment is tied to the category
and gender of the product. This is because the merchants do not provide the
weight of the garments. Therefore, when generating the augmented datasets,
instead of the weight input we generate all combinations of the category and
gender which can then be statically mapped to the weight.

It can be shown that the number of different combinations for the dataset
is 394,506,000. Obviously, this dataset is too large to be practically used to
bootstrap a regression model. However, as mentioned before the analytical
model can be divided into 9 smaller functions where each of the functions
depends only on a subset of these inputs. These functions and the number of
input combinations for each of the them are shown below:

• cutting_sewing_impact(category, country) : 750

• wet_treatment_impact(category, country) : 750

• fabric_production_impact(category, weight, gender, country, fabric_type) :
4, 200

• yarn_production_impact(category, weight, gender, country,material) :
1, 643, 775

• fibre_production_impact(category, weight, gender, country,material) :
1, 643, 775

• retail_impact(category, weight, gender) : 70

• distribution_impact(category, weight, gender, country) : 700

• transport_production_impact(category, weight, gender) : 70

• packaging_production_impact(category, weight, gender) : 70

It should be noted that, for the yarn_production_impact and fibre_production_impact
functions, where the material feature is used to calculate the emissions, we
assume that each category can have at most 2 materials. Therefore, when aug-
menting the datasets, we select two materials out of 31 and distribute 100 (the
total share of the materials) between them.
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Each of the regression models used in the grey-box model represents one
of these functions and consequently uses its own augmented dataset. As it was
shown, dividing the functions and the regression models in this way reduces
the number of augmented data points drastically and makes it possible to train
the regression models on the datasets for multiple epochs.

We also considered using sub-sampling to bootstrap themodel. This would
solve the issue of having a large dataset. However, the output of the functions
which rely on thematerial of the product, changemonotonically to the percent-
age. We suspected that sub-sampling the dataset would make the regression
model become biased on some percentages and not be able to generalize well
to other percentages. Therefore, sub-sampling was not performed.

3.3 Models
In this section, we describe the models and their sub-models, alongside how
the dataset is used differently for each model.

The white-box model consists of a combination of the analytical model
and two text classifiers.

The black-box model is a deep regression model that will be trained on the
manually labelled dataset.

Finally, the grey-box model is an ensemble of bootstrapped regression
models alongside embedding layers.

All models take the information provided on the product page as input,
and output the carbon emissions for that product. The models are described in
detail in the following sections.

3.3.1 White-box Model
The white-box model consists of two parts. The first part includes multiple
classifiers which will predict the inputs required by the second part. The sec-
ond part is the analytical model. The high-level architecture of the white-box
model can be seen in Figure 3.9.

The main idea behind this model is that by including the analytical model
alongside the ML classifiers, we estimate the carbon emissions more accu-
rately. Also, we will be able to tell the customers where the difference between
the carbon emissions of two products come from.

The category, fabric type and weight features are currently predicted by the
text classifiers and the remaining inputs are passed directly from the page data
to the analytical model. The analytical model then calculates and outputs the
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Figure 3.9: Architecture of the white-box model.

estimated carbon emission of the product. In this way, this model intrinsically
captures the prior knowledge provided by the analytical model while being
able to infer the category and fabric type using the text classifiers. Note that,
in cases that both classifiers predict the category and fabric type correctly, the
model predicts the emissions accurately.

Data For The white-box Model

In the white-box model, the analytical part (analytical model) expects certain
inputs to be able to calculate the carbon emissions. As seen in section 3.2.2,
three of the inputs for the analytical model are assumed to be directly extracted
from the product page, namely, country, gender and material. For the remain-
ing three features, the fabric type and category are added in the final dataset
manually as explained in section 3.2.2. The weight is also calculated by map-
ping each category to a weight for that category. This mapping function is
developed by us, and uses the average weight of each category for assigning
the weights. However, we cannot perform the mentioned manual processing
in the prediction phase. Therefore, in the prediction phase, the fabric type,
category and weight have to be predicted using the text classifiers. To achieve
this, the fabric type and category columns are used as labels during the training
phase to train the category and fabric type classifiers.

The two text classifiers are explained in the next section.

Text Classifiers

The first part of the white-box model is the text classifiers used for predicting
the inputs of the analytical model. The text classifiers take the unstructured text
information extracted from the web page as input, and predict the category and
fabric type inputs needed by the analytical model.

The final design of this part consists of two text classifiers. The detailed
view of the text classifiers can be seen in figure 3.10.
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Figure 3.10: Detailed view of the text classifiers in the white-box model.

One classifier will classify the product category based on the name and
text features. The possible labels of this classifier are the same as the custom
categorization scheme presented in this thesis. As mentioned in section 3.2.2,
a mapper is used to map each category to a weight for the product. Therefore,
this classifier outputs theweight and category features needed for the analytical
model.

The second classifier predicts the fabric type of the product, and is also
based on the name and text features. The classes for this classifier are the
same values present in the garment_type column.

The rest of the inputs needed for the analytical model (countries, gender
andmaterial distribution) are provided as structured data directly from the web
page.

The two classifiers shown in Figure 3.10 are FastText supervised classi-
fiers. FastText provides an easy to use python interface to train and use text
classifiers. As seen in the figure, the inputs used for the classifiers are the
name, category (as defined by the manufacturer) and text details of the prod-
uct. These three features are all in string format and are concatenated before
being given to the classifiers. The text data is lemmatized and stemmed be-
fore being used in the model in both the training and prediction phases of the
model.

We tune the FastText supervised classifiers based on three hyperparam-
eters. Epoch, Learning Rate and WordGrams. The epoch determines how
many times the model will see each data point during training. The learning
rate determines the rate at which the gradients are applied to the weights of
the model. Finally, the WordGrams hyperparameter determines the maximum
length of the word n-grams.

To be able to determine the best hyperparameters for the text classifiers,
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we take 20% of the train data as validation data and perform a grid search on
multiple parameters. The hyperparameters tested for both classifiers can be
seen in Table 3.4. To compare the models, the precision metric (which in this
case is equal to the recall) is used.

Epoch Learning Rate WordGrams
100 0.5 1
200 1 2
300 2 2

Table 3.4: Hyperparameters tested for text classifiers.

The FastText text classifier uses the precision and recall metrics to evaluate
models. The hyperparameters that yielded the best results for the category
classifier alongside their respective precision and recall are shown in Table
3.5.

Epochs Learning Rate WordNgrams Precision Recall
200 2 2 0.96 0.96

Table 3.5: Category classifier parameters and the test set evaluation metrics.

To show the effect of the number of samples present from each category in
the training dataset on the performance metrics, we plot the precision (equal
to recall in this case) of each label over the count of that label in Figure 3.11.

Figure 3.11: Precision of each category over the count of the category in the
training data.
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Furthermore, in Figure 3.12, we see the heat-map of the predicted and
actual labels. As can be seen, most of the products are labelled correctly. Also,
for the products that have beenmisclassified, the wrong label is still close to the
true label. For example, Jeans are mostly misclassified as pants. Furthermore,
winter jackets, autumn jackets and coats are usually misclassified as jackets.
These cases show that the model captures the information provided by the text
details of the product quite well.

Figure 3.12: Heat-map of the predictions and actual values for the product
categories.

The hyperparameters that yielded the best results for the fabric type clas-
sifier alongside their respective precision and recall are shown in Table 3.6.
Also, it is worth mentioning that the text details that yielded the best results
for the classifiers, were the name, category (provided by merchant) and the
product details. Adding the care and washing details or specific information
about the garment (e.g. recycled, waterproof) reduce the performance. Also,
first predicting the category and then predicting the fabric type using the pre-
dicted category yielded the best results.



CHAPTER 3. METHODS 45

Epochs Learning Rate WordNgrams Precision Recall
300 2 4 0.974 0.974

Table 3.6: Fabric type classifier parameters and the test set evaluation metrics.

Note that, by default, the text classifiers output the three labels with the
highest probability. However, we only take the label with the highest proba-
bility and use that as the predicted label. Also, micro-averaging is used for cal-
culating the precision and recall in a k-class setting. As mentioned in section
4.1.2, the micro-averages of the precision and recall are equal in a multi-class
setting where one label is considered for each data point.

It is worth mentioning that for this part of the white-box model, we first
considered using imputation methods to input the missing features needed for
the analytical model. However, as the inputs do not have meaningful correla-
tions between each other, imputation methods do not perform well. We tested
an imputation method based on Generative Adversarial Networks (GAN) on
our dataset and based on the results this method was not used.

Analytical Model

The second part of the white-box model is the analytical model described in
section 3.1.

As mentioned in the previous section, the fabric type and category inputs
are provided by the text classifiers and the rest of the inputs are directly ex-
tracted from the product page.

3.3.2 Black-box Model
The black-boxmodel is a deep regression model. This model takes the features
of the dataset as input, and predicts the carbon-emissions directly.

In addition to the black-box model explained in this section, we compared
various other regression algorithms and compared them using the validation
dataset. The deep regression model showed the best performance and was
chosen as the main black-box model. We experimented with the full dataset
and the unsupervised embeddings to first select the regression model. The
best regression model was then used as the black-box model for the rest of
the experiments. The results of the different regression models can be seen in
Table 3.3.2.
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Regression Model MSE MAE R2
Lasso Regression 6.47 1.61 0.71
Ridge Regression 4.88 1.39 0.78
Random Forest 3.84 0.94 0.83

XGBoost 3.28 0.80 0.85
Deep Regressor 1.94 0.54 0.89

Table 3.7: Comparison of different learned models for regression.

As it can be seen, the deep regressor has the best performance and is cho-
sen.

Data for the black-box Model

Since some of the features like the name and text are strings, they cannot be
directly used as the input of the deep regressor. Therefore, we use the 100-
dimensional word embeddings of these features.

The embeddings are produced by training the unsupervised model in Fast-
Text. The text and name features of all the products are concatenated into one
document and used as an input for the FastText unsupervised model. Fast-
Text uses the Skipgram model by default and the developers mention superior
performance when using the Skipgram model with the default parameters on
the English language. Therefore, we do not change these parameters. We re-
duce the dimensions of the embeddings to 100 since the vocabulary in our
data is limited to clothing products. After the training is complete, FastText
has learned a 100-dimensional representation of each of the words in the vo-
cabulary. To get the representations of a sentence, FastText averages over the
representations of the words in the sentence.

Finally, FastText outputs a trained model that takes a string as an input and
outputs the 100-dimensional representation of the string. Another method to
obtain the vector representation of the text features is to use the embeddings
learned by the text classifiers that were mentioned in the white-box model. In
this way, since the representations are learned with regards to the labels, they
might contain information that will improve the performance.

As mentioned in section 3.2.2, the fabric_type, label and weight columns
are added manually and therefore cannot be directly used in the training phase
of the black-boxmodel. The black-boxmodel excludes these columns and does
not use the custom categorization scheme introduced in this thesis. Since this
wouldmake themodel dependant on the extra information provided in the form
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of the categorization scheme. However, this model uses the word embeddings
of the text and name features that are also used to create the fabric_type and
category columns. Therefore, The regression model might be able to capture
the correlation between these features and the carbon emissions.

This is the main difference that the black-box and grey-box models have
with the white-box model in the way they use the dataset. In the white-box
model, the fabric_type and category columns are used as labels to train the
classifiers. On the other hand, in the black-box and grey-box models, the em-
beddings of the same text data used to train the classifiers are used to train the
models.

The architecture of the black-box model is shown in Figure 3.13.

Figure 3.13: Overview of the black-box model.

Architecture of the deep regression model

The final deep regression model is a fully-connected sequential model which
consists of an input layer with 128 neurons and three hidden layers with 512
neurons. The Output layer contains one neuron with a linear activation func-
tion. The model is trained using the stochastic gradient descent optimizer and
an MAE loss function. For the final model, a batch size of 16 and an epoch
of 400 was used. A detailed view of the black-box model is shown in Figure
3.14.

Figure 3.14: Detailed view of black-box model.
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The black-box model was implemented using Keras on top of TensorFlow.
The detailed architecture of the model can be seen in Table 3.3.2.

Layer Type Number of Neurons Activation Initializer
0 Input 128 ReLU normal
1 Fully Connected 512 ReLU normal
2 Fully Connected 512 ReLU normal
3 Fully Connected 512 ReLU normal
4 Output 1 Linear normal

Table 3.8: Architecture of deep regression model.

Furthermore, to choose the best hyperparameters a grid search was done
on the parameters shown in table3.3.2.

Optimiser Batch Size Hidden Layer Nodes Epochs
SGD 16 128 300
ADAM 32 256 400

- 512 512 -

Table 3.9: Parameters tested for the black-box model.

3.3.3 Grey-box Model
As mentioned previously, the architecture of the grey-box model is inspired
by [10] and leverages the bootstrapping technique to capture the pre-existing
knowledge of the analytical model. In [10], the authors train an ML model
on augmented datasets of different sizes and show how increasing the size of
the augmented dataset increases the amount of knowledge captured from the
analytical model. However, in our case, because of the techniques mentioned
in section 3.2.3, we can reduce the size of the augmented data. By introducing
some assumptions, we are able to produce all possible input and output pairs
in a practical size. In this way, we can in a way overfit the function of the
analytical model. By doing this, we benefit from the existing knowledge in the
form of the analytical model while having a fully trainable model that can be
usedwith other neural network layers and be trained on new datasets. Themain
novelty in this model is using the bootstrapping technique inside an ensemble
method built by analysing the existing constraints in the analytical model.
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Data for the grey-box Model

The grey-box model uses both the augmented dataset and the datasets used by
the other models.

In the bootstrapping phase, each small regression model is trained on its
respective augmented dataset for multiple epochs. In this way the regression
models fully capture the function being represented by the analytical model.

After each model is bootstrapped, they are connected as described in the
next section. After this, the end-to-end model is trained on the scraped dataset
to fine-tune the model.

Architecture of the grey-box Model

The grey-box model consists of two main parts. The first part is an ensemble
of deep regression models meant to represent and capture the analytical model
in a neural network form.

There are 9 regression models. One for each smaller function of the ana-
lytical model. The architecture of this part of the grey-box model can be seen
in Figure 3.15
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Figure 3.15: Ensemble of regression models that will replicate the analytical
model.

Each of the regression models is a multi-layer perceptron. All of the re-
gression models have the same architecture as shown in Table 3.3.3

The outputs of these 9 models are then connected together using an addi-
tion layer to represent the whole analytical model. The architecture is shown
in Figure 3.15

Furthermore, two embedding layers with a softmax activation function are
connected to the functions. The reason behind these layers is that the boot-
strapped models are trained on one hot encoded versions of the category and
fabric type features and the final end-to-end model will basically have to first
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Layer Type Number of Neurons Activation Initializer
0 Input 64 ReLU normal
1 Fully Connected 64 ReLU normal
2 Fully Connected 64 ReLU normal
4 Output 1 Linear normal

Table 3.10: Architecture of each small regression model.

classify the category and fabric type (similar to the white-box model). An em-
bedding layer with a softmax activation effectively performs the classification
part.

The rest of the features are directly connected to each bootstrapped layer as
they are assumed to be directly available from the garment page. The architec-
ture of the final model can be seen in Figure 3.16. As it can be seen, unlike the
analytical model, the weight is not being inputted to the fake analytical model
part. This is because the category and weight features are 100% correlated
in the current dataset and a learned model will not benefit from having both
features.

Figure 3.16: Full grey-box model.

Training the grey-box model.

As mentioned previously, the grey-box model has two training phases. The
first phase is only performed on the 9 regression models and the models are
trained using the augmented datasets. In this phase, each model basically over-
fits a small part of the analytical model so that, in combination, these models
can in effect replicate the analytical model.

Note that for the models which relied on the materials of a garment, we did
not perform hyperparameter optimization. Because the number of data points
were large and this would result in longer training times.
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After the bootstrapping phase is completed, the end-to-end model is cre-
ated as shown in Figure 3.16. Themodel is then trained on the datasets scraped
from merchant B.

As mentioned previously, in [10], the authors discuss different methods to
give weights to augmented datasets and real datasets. In our case, we can in-
troduce a novel method to give weights to the augmented and scraped datasets.
As our current labelled dataset is labelled with the analytical model itself, it
would not make sense for the analytical part of the grey-box model to be train-
able when training on the scraped dataset. Therefore, we can lock the weights
of this part of the model and only allow the weights of the embedding layers to
be trainable. This in effect means that the category and fabric type classifiers
are being trained with respect to the final predicted emissions. We perform
the training with both locked and unlocked weights and compare the results in
chapter 4. In this phase of the training, the model is fine-tuned on the scraped
datasets and the embedding layers will effectively learn to classify the category
and fabric type.



Chapter 4

Results and Experiments

In this chapter, we describe the metrics considered and used for evaluating the
models. Furthermore, we present the results and compare the performance of
the models.

4.1 Performance Metrics
Performance metrics are metrics used to evaluate and compare ML models.
Depending on the type of the MLmodel, different metrics are used to evaluate
the performance of the models. In the following sections, we briefly explain
and compare some of the most common performance metrics for regression
and classification.

4.1.1 Regression
The metrics used for evaluating the performance of regression models deal
with continuous variables. These performance metrics quantify the difference
between the predicted and real value of a given variable. Performance metrics
can be used in both the training and testing phase of the model.

Mean Absolute Error

Mean Absolute Error (MAE) calculates the absolute difference between the
real value and predicted value of a variable. The MAE is dependant on the
values of the variable and therefore can not be directly used to compare the
performance of two models when the data have different scales. Moreover,
the MAE is robust to outliers. The formula for MAE is seen in equation 4.1.
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MAE =
1

n

n∑
j=1

(yj − ŷj) (4.1)

Mean Squared Error

Mean Squared Error (MSE) is one of the most common performance metrics
used for regression. It is defined as the average of the squared difference be-
tween the predicted values and real values. Since the errors (distances) are
squared, this metric penalizes small errors and therefore is more sensitive to
how bad a model is. It is also sensitive to outliers in the dataset. The formula
to calculate the MSE is seen in equation 4.2.

MSE =
1

n

n∑
j=1

(yj − ŷj)
2 (4.2)

Root Mean Squared Error

RootMean Squared Error (RMSE) is defined as the square root of the averaged
square differences. Similar to the MAE, the RMSE is on the same scale as the
data. However, in the RMSE, large errors are penalized heavily as the average
is calculated on the squared differences. RMSE is the most widely used metric
for regression tasks. The formula for calculating the RMSE can be seen in
equation 4.3.

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)
2 (4.3)

Coefficient of Determination (R2 score)

The Coefficient of Determination is a performancemetric that is scale-free and
unlike the previous metrics is not dependant on the scale of the data. The R2
metric compares a model to a baseline model and shows how much better it is.
The baseline model is defined as the mean of the data. It is worth mentioning
that the R2 metric is always below 1 and can also have a negative value which
means the current model is even worse than naively taking the mean of the
data. The formula of the R2 score can be seen in equation 4.4.
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R2 = 1− MSE(model)

MSE(baseline)
(4.4)

4.1.2 Classification
The metrics used for classification are concerned with categorical values. To
better understand the metrics for classification, we first explain the confusion
matrix. In any classification problem, we have a real label and a predicted
label. The predicted and real values can have four different states with regards
to each other. These state can be shown intuitively using a confusion matrix.
A confusion matrix of the states is shown in Figure 4.1.

Figure 4.1: Confusion matrix.

Based on the confusion matrix, we proceed to explain some of the classi-
fication metrics.

Accuracy

The accuracy metric is defined as the number of correct predictions over all
of the predictions made by the model. The accuracy metric is useful for cases
where the labels in the dataset are balanced. In cases where the labels of the
data are not balanced, the accuracy metric should not be used. For example,
assume a dataset about cancer where 99% of the labels are not cancerous.
A model that naively classifies every input with the label not cancerous will
have an accuracy of 99% which is not a good representation of the model’s
performance. The formula of the accuracy metric is shown in equation 4.5.

accuracy =
TP + TN

TP + TN + FP + FN
(4.5)
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Precision

Precision is defined as how many times the model predicts the target label
correctly over the total number of times it has predicted the target value. As
the name suggests, precision is concerned with being precise about the target
value. Precision becomes more important when we want the model to be sure
about labelling a certain data point as the target label. Using the cancer exam-
ple, precision will tell us how many of the patients labelled as having cancer
actually had cancer. The formula of precision based can be seen in equation
4.6.

precision =
TP

TP + FP
(4.6)

Recall

The recall metric is defined as the number of times the model captured a target
label over the number of times that target label actually existed in the dataset.
In the cancer example, this would translate to the number of patients the model
labelled as having cancer over the actual number of patients with cancer. The
formula of recall is shown in equation 4.7.

recall =
TP

TP + FN
(4.7)

Multi-Class Recall and Precision

The explained recall and precisionmetrics and their respective formulas are for
binary classification (having two possible labels) cases. However, in our case,
both text classifiers deal with more than two labels. In multi-class scenarios,
the average of the metrics is used. Two methods exist to calculate the average
of the precision and recall metrics. Macro-averaging and micro-averaging. In
micro-averaging, we calculate the metrics from the individual true positives,
false positives and false negatives. The micro-average formulas for the preci-
sion and recall metrics in an example with k-class’s are shown in equations 4.8
and 4.9.

precisionmicro =
TP1 + · · ·+ TPk

TP1 + · · ·+ TPk + FP1 + · · ·+ FPk

(4.8)
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recallmicro =
TP1 + · · ·+ TPk

TP1 + · · ·+ TPk + FN1 + · · ·+ FNk

(4.9)

In macro-averaging, we average the performance of each class separately.
The macro-average formulas for the precision and recall metrics in an example
with k-class’s are shown in equations 4.10 and 4.11.

precisionmacro =
precision1 + · · ·+ precisionk

k
(4.10)

recallmacro =
recall1 + · · ·+ recallk

k
(4.11)

We use the micro-average metric in this thesis. Note that if we only take
the label with the highest probability as the classified label, the precision and
recall are equal in the case of the micro-average. This is because each false
negative in the recall formulawill correspond to a false positive in the precision
formula. For example, assume a 3-class setting with the 3 classes cat, dog and
chicken. Take a dog that has been misclassified as a chicken. This example
will be a false positive for the chicken class and a false negative for the dog
class. This is repeated for any misclassification. Therefore, the sum of the
false negatives is equal to the sum of the false positives.

4.1.3 Chosen Performance Metrics
As mentioned in the previous sections, we evaluate both classification and re-
gression models. The Regression models (The black-box and grey-box mod-
els) use the MAE both as the loss function during training and for the final
evaluation.

On the other hand, the white-box model consists of two text classifiers. As
mentioned previously, we use the FastText tool for building these text clas-
sifiers. FastText uses the precision and recall metrics for evaluating the text
classifiers. Also, the labels of the datasets used for the text classifiers are not
balanced. Therefore, the accuracy metric is not used. Furthermore, the com-
plete model is a regression model and similar to the black-box and grey-box
models we use the MAE to evaluate the performance. We also report the R2
score for each model.

It is worth noting that since all models are evaluated on the same data, the
MAE can directly be used to compare the models without scaling issues.
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Missing Feature MSE MAE R2
Country 1.03 0.56 0.94
Materials 3.5 0.89 0.80

- 0.07 0.02 0.99

Table 4.1: Effect of missing features in the white-box model.

4.2 Experiments
In this section, we experiment with the models based on different aspects. We
start with simple feature ablation studies where we leave out features in the
training phases and examine their effect on the performance of the models.
Then we move on to experimenting the size of the datasets and how they affect
the performance of the models.

4.2.1 Feature Ablation Experiments
In these experiments, we simply hide each of the features in the training phase.
The feature ablations do not have an effect on the classifiers in the white-box
model. The analytical model replaces a missing feature with the most common
value of that feature.

The absence of the category and fabric type features can not be meaning-
fully analysed on the models since they are inferred from the text data. There-
fore, we consider the effect of hiding the country and material features. Note
that the weight, gender and category are tied together.

Table 4.1 shows the performance of the white-boxmodel while hiding each
of the features.

As it can be seen in Table 4.1, hiding each of these features results in a
decrease in performance. This is what we expected, especially from the white-
box model since it relies on the analytical model and each input is highly in-
formative. It can be seen that the drop in performance is much higher when
the material feature is missing. This shows that the country variable does not
account for much of the variance in the datasets. This can be explained by the
fact that the functions of the analytical model which are related to the logistics,
have extreme assumptions. Also, the distribution and retail functions assume
the destination country is always Sweden.

In the experiments for the black-box and grey-box models, we examine the
effect of hiding each feature in two cases. In one case, we vectorize the text
features using the embeddings generated by an unsupervised model. In the
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Missing Feature MSE MAE R2
Country 2.87 0.87 0.84
Materials 3.47 1.00 0.80

- 1.94 0.54 0.89

Table 4.2: Effect of missing features in the black-boxmodel with unsupervised
embeddings.

Missing Feature MSE MAE R2
Country 3.44 1.20 0.80
Materials 1.86 0.68 0.91

- 0.46 0.28 0.97

Table 4.3: Effect of missing features in the black-box model with supervised
embeddings.

second case, we vectorize the text features using the embeddings generated by
a supervised model with the categories as labels. In this way, the embeddings
are created with respect to the category label allowing the black-box and grey-
box models to also make use of the information of the larger category dataset.
For both the unsupervised and supervised models we use the FastText model.

In Table 4.2, we see the performance of the black-box model when hiding
each feature while using the unsupervised text embeddings.

In Table 4.3, we see the effect of hiding the features while using the super-
vised text embeddings from the category classifier.

As can be seen, using the supervised embeddings worsens the performance
of the model when the country category is missing and improves the perfor-
mance when the materials feature is missing. This might point to the fact that
the category and material features are correlated and therefore, when we hide
the country feature the models overfit on similar features. This would also ex-
plain the improvement gain when the material features are missing as some of
the missing information caused by removing the material feature is regained
by using the supervised embeddings.

Finally, we examine the effect of hiding the features on the grey-box model
while using the unsupervised embeddings. The results are shown in Table 4.4.

In Table 4.5, we see the effect of hiding the features while using the super-
vised text embeddings.

As can be seen from the results, hiding features reduces the performance
of the grey-box model similar to the previous models. The model performs
similarly with both locked and unlocked weights. In the grey-box model, using
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Missing Feature Locked Weights Trainable Weights
MSE MAE R2 MSE MAE R2

Country 1.91 0.74 0.91 1.83 0.74 0.91
Material 1.52 0.52 0.93 1.60 0.53 0.92

- 1.56 0.46 0.93 1.71 0.52 0.92

Table 4.4: Effect of missing features in the grey-box model with unsupervised
embeddings.

Missing Feature Locked Weights Trainable Weights
MSE MAE R2 MSE MAE R2

Country 1.30 0.64 0.94 1.33 0.64 0.94
Material 2.88 0.64 0.87 2.34 0.55 0.89

- 0.83 0.36 0.96 0.76 0.36 0.96

Table 4.5: Effect of missing features in the grey-box model with supervised
embeddings.

the supervised embeddings worsens the performance of the model when the
material feature ismissing. This is truewith both locked and unlockedweights.
In contrast, the supervised embeddings improve the performance of the model
when the country feature is missing. This result is surprising as the black-box
model behaved in the opposite way. Therefore, it creates doubt that the models
are actually capturing a correlation between the category andmaterial features.
However, the difference of the performance metrics is relatively small and can
be considered as normal variance in the results in both models.

4.2.2 Data Size Experiments
In this section, we examine the effect of the size of the training data on themod-
els. In this way, we can examine the sensitivity of each model on the training
data size. Before running the experiments, we expect the black-box model to
perform much worse than the white-box and grey-box models. Because, they
contain the knowledge of the analytical model. Between the grey-box and
white-box model, we suspect the white-box model to perform better as it uses
the analytical model directly. We examine 4 subsets of the original dataset for
this experiment. In Table 4.6, we see the performance of the classifiers when
using the smaller datasets.

Both classifiers perform surprisingly well even with 20% of the original
dataset. In Table 4.7, we see the performance of the end-to-end white-box
model with the smaller datasets.
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Fraction of the whole dataset fabric type Classifier Category Classifier
100% 0.97 0.96
80% 0.96 0.95
60% 0.96 0.94
40% 0.96 0.93
20% 0.95 0.90

Table 4.6: Text Classifier performance with smaller datasets.

Fraction of the whole dataset MSE MAE R2
100% 0.07 0.02 0.99
80% 0.29 0.10 0.98
60% 0.40 0.14 0.97
40% 0.65 0.19 0.96
20% 1.09 0.29 0.90

Table 4.7: Effect of size of the dataset on the white-box model.

As expected, themodel works relativelywell considering the smaller datasets.
This is mainly because the white-box model’s performance relies mainly on
the performance of the classifiers. As t can be seen the classifiers perform well
even with small datasets. Therefore, the white-box model also performs well
even with smaller datasets.

Similar to the feature ablation experiment, we examine the black-box and
grey-box models in two cases. One case where the text vectors are generated
using the unsupervised FastText model and one where the text vectors are gen-
erated using the supervised FastText model trained on the category labels.

Similar to how the white-box model was resilient towards the data size
because of the text classifiers, we expect the black-box and grey-box models
to perform better on smaller datasets when using the embeddings from the
supervised model.

We suspect that the black-box model will be affected the most from the
smaller datasets as the grey-box model has been bootstrapped using the aug-
mented data. We see the performance of the black-box model when using
the unsupervised embeddings in Table 4.8. In Table 4.9, we see the effect of
smaller datasets when using the supervised embeddings.

As suspected, the black-box model is affected more intensively than the
white-box model and performs worse than the white-box model in all cases by
a relatively large margin. However, using the text embeddings that are gen-
erated by the category classifier creates a large improvement on the datasets
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Fraction of the whole dataset MSE MAE R2
100% 1.94 0.54 0.89
80% 2.53 0.60 0.85
60% 2.95 0.86 0.83
40% 2.67 0.73 0.85
20% 4.55 1.22 0.74

Table 4.8: Effect of size of the dataset on the black-box model when using
unsupervised embeddings.

Fraction of the whole dataset MSE MAE R2
100% 0.46 0.28 0.97
80% 1.00 0.39 0.95
60% 0.69 0.40 0.96
40% 2.61 1.03 0.84
20% 3.44 1.20 0.80

Table 4.9: Effect of size of the dataset on the black-box model when using
supervised embeddings.

with 80% and 60% of the original dataset size. This result shows that even
in the black-box model, we can benefit from garment datasets which are not
labelled based on their carbon emissions but at least can be labelled based on
the category columns. Although, when more than 50% of the original dataset
is missing most of the improvement is lost.

Finally, in Table 4.10, we can see the performance of the grey-box model
on the smaller datasets while using the unsupervised embeddings. In Table
4.11, the performance when using supervised embeddings is shown.

From Table 4.10, it can be seen that letting the bootstrapped weights be

Data Size Locked Weights Trainable Weights
MSE MAE R2 MSE MAE R2

100% 1.56 0.46 0.93 1.71 0.52 0.92
80% 0.63 0.43 0.96 0.36 0.34 0.97
60% 1.08 0.48 0.93 0.95 0.46 0.94
40% 2.57 0.94 0.85 3.20 1.02 0.81
20% 13.89 2.75 0.21 12.88 2.64 0.27

Table 4.10: Effect of size of the dataset on the grey-box model using unsuper-
vised embeddings.
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Data Size Locked Weights Trainable Weights
MSE MAE R2 MSE MAE R2

100% 0.83 0.36 0.96 0.76 0.36 0.96
80% 0.47 0.28 0.97 0.43 0.28 0.97
60% 0.43 0.5 0.97 0.44 0.37 0.97
40% 2.57 0.85 0.85 2.10 0.77 0.87
20% 7.85 2.04 0.55 7.65 1.99 0.57

Table 4.11: Effect of size of the dataset on the grey-box model using super-
vised embeddings.

trainable, slightly improves the performance of themodel. However, thismight
be because of the model slightly overfitting on the merchant B dataset and
should be analysed when new labelled datasets become available. The model
performs well when less than 50% of the dataset is missing and manages to
keep the error low. This is similar to the results from the black-box model.

From Table 4.11, we see that using the supervised embeddings improves
the performance of the model which is also consistent with the experiments
on the black-box model. The improvement is noticeable with smaller datasets.
Which again, shows the benefit of using the supervised embeddings and the
importance of the information in the categories. Furthermore, similar to the
unsupervised embeddings case, the performance of the model slightly im-
proves when the bootstrapped weights are trainable. However, the same cau-
tions that were mentioned above should be considered.

4.3 Comparison
In the following sections, we present the final result for each of the models
when using the final test data. We also discuss the results of the experiments
and compare them.

4.3.1 Feature Ablation
First, we examine the effect of the missing features on each of the models.
As expected, all models suffer from a drop in performance when a feature is
missing. As mentioned previously, when no feature is missing, the white-box
model has the best performance followed by the black-box model and the grey-
box model. However, the performance difference between the black-box and
grey-box models is small.
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Material Feature

When the material feature is hidden, the performance of the white-box model
worsens drastically as can be seen in table 4.1. However, the black-box model
does not see a drastic drop in performance like the white-box model and man-
ages to outperform the white-box model when using supervised embeddings.
This shows that the black-box model is more resilient to missing features and
also that the model has managed to capture some of the information provided
by the material feature by leveraging the other features. The grey-box model
proves to be even more resilient to the missing features and outperforms both
the black-box and white-box models.

Country Feature

When the material feature is missing, the performance of the white-box model
suffers from a drastic drop. However, in this case, the black-box model also
suffers from a drastic drop in performance and performs worse than the white-
box model. The grey-box model also sees a drop in performance. However,
relative to the case where the material feature was missing, the drop in per-
formance is not as drastic as the other two models and the grey-box model
performs similar to the white-box model.

4.3.2 Data Size
In this section, we compare the performance of the models with regards to data
size.

The white-box model manages to perform well even when we reduce the
size of the training sets. This is because the text classifiers that provide the
input of the analytical model, manage to achieve high precision and recall even
with 20% of the original dataset.

The performance of the black-box model worsens rapidly when using the
unsupervised embeddings and performs worse than the white-box model in
every case. However, when using the supervised embeddings, the performance
does not drop as rapidly as long as less than 50% of the dataset is missing. This
again shows the benefit of using the supervised embeddings.

The grey-box model performs better than the black-box model with both
supervised and unsupervised embeddings. However, this model suffers from
a sudden drop of performance when the dataset is 20% of the original dataset
and performs even worse than the black-box model in this case. We suspect
this to be due to the fact that the model overfits the small dataset. Especially
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when considering that it has a larger degree of freedom compared to the black-
box model when the bootstrapped weights are trainable. In the case where the
bootstrapped weights are locked, we suspect that the amount of data is not
enough for the model to find the relation between the output of the softmax
layers (which are effectively classifiers) and the carbon emissions in the output.
In general, the white-box model is the model most resilient to reducing the size
of the dataset.

4.3.3 Generalization
As mentioned previously, the main challenges in this problem space are the
lack of labelled data and a lack of merchants that provide all the required in-
puts for determining the carbon emissions of a product. Therefore, testing the
generalization of the models through experimentation was not possible. Con-
sequently, we mainly discuss how we expect the models to generalize to new
datasets and provide some predictions about the generalization of the models.

In the previous experiments, it is obvious that the grey-boxmodel performs
better than the black-box model, and the white-box model outperforms both
the grey-box and black-box models. However, if such a project is continued
and the model is used more data will become available. The newly available
data will have two cases. In one case, the data is similar to the data we scraped
from merchant B, and has all the required features needed to label it by us-
ing the analytical model. In another case, the dataset is truly labelled by the
manufacturer (or any other source) and it contains true labelled data.

In the first case, all three models can be improved using the new datasets.
However, in the second case, the white-box model will need to be manually
changed and its weights will need to be updated by human interference. There-
fore, benefiting from labelled datasets would require manual work. But, the
black-box and grey-box models can be automatically trained on such datasets.
And between these two models, the grey-box model shows superior perfor-
mance. This superior performance is because some of the knowledge in the
analytical model has been successfully captured by the grey-box model in the
bootstrapping phase. Moreover, as mentioned in section 3.3.3, the grey-box
model can be easily trained on both types of new datasets, without becoming
biased on the datasets labelled by the analytical model. Whenever the datasets
are labelled by the analytical model, the bootstrapped weights can be locked
and only the softmax layers are trained. And when labelled data is available,
the weights are set to be trainable so the model can adapt the previous knowl-
edge gained from the analytical model to the new knowledge present in the
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new datasets.



Chapter 5

Conclusions and Discussion

Asmentioned in this work, variousways exist to combine analytical and learned
models to gain the benefits of both. However, in previous research, labelled
datasets were available. The labelled datasets created the opportunity to use
analytical models as base models and either improve them with learned mod-
els or, use learned models to compensate for situations where the analytical
model fails to produce good results. In our work, we did not have access to
labelled data and the labels produced by the analytical model was the closest
we could get to true labels. However, for such a project to be used practically,
we should make a scalable model that will be able to adapt to potential new
data while relying on the best estimates possible along the way.

As was seen, we design and compare three different models for this pur-
pose. The most naive approach is to label available data using the analytical
model and use that to train an ML model. However, we would need to gather
large amounts of data that contain all the required features and label them to
train the ML models sufficiently.

In the second experimented model, we overcome this problem by using an
ensemble of the analytical model with learned models. In this way, we can
benefit from the knowledge of the analytical model and take advantage of the
flexibility of learned models that are used for classifying the inputs needed
by the analytical model. Furthermore, the different classifiers in the white-
box model can be trained separately with datasets readily available. They can
also be replaced with better classifiers if they become available. However, the
white-box model falls short in the case of potential labelled data. The white-
box model relies on the analytical part to calculate the emissions which can
not be trained (in an automated way) based on new labelled data. We would
want to adapt the model to new labelled data points in cases that the analytical

67
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model calculates a different carbon emission.
The grey-box model attempts to solve this problem by first training an ML

model on augmented data created using the analytical model to replicate the
analytical model. This results in a model that can adapt to cases where labelled
data become available still benefiting from the knowledge of the analytical
model. Also, this model can easily be connected to other neural networks and
trained at the same time.

Finally, We conclude that although the white-box model performs better
than the grey-box model in the short term and in cases that all features are
present, this model is not scalable. Therefore, the grey-box model provides a
suitable trade-off between the scalability of a learned model and the robust-
ness of an analytical model. However, to fully leverage the robustness of the
analytical model, the grey-box model should be bootstrapped on a more com-
plete version of the augmented dataset. Also, the black-box model might out-
perform the grey-box model in case labelled datasets with a complete set of
features become available. This will need further experimentation.

5.1 Future Work
As mentioned in the thesis, one of the most challenging problems with devel-
oping such a model has been the lack of ground truth data and sufficient data
for other sections, for example, weight classifications. One of the potential
solutions for solving this issue in the white-box model is providing all of the
inputs required by the analytical model using other classification or regres-
sion models. For example, currently, the fabric types are directly mapped to
a coefficient that is used for converting the weight of a garment to electricity
usage. These static mappers can be replaced by predictive models which can
also handle new inputs. Additionally, training each smaller prediction model
separately would result in not needing a complete dataset which represents the
relations between all features. For example, training a classifier which will
predict the weight of a garment will not require a dataset that includes the
carbon emissions which makes it easier to find a training dataset for a weight
classifier.

Also, in order for this model to be used by consumers, a proper user in-
terface should be developed which allows the consumer to interact with this
model. Such an interface might query the user for extra information to help
with predicting the carbon emissions of a product.

Furthermore, as also mentioned in section 2.6, a model that can classify
which section of a web page contains the different inputs required by the model
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has to be created. Although, in the case of the regression model, the architec-
ture can be changed so the features include the different HTML elements of a
product page and directly predict the carbon emissions from the webpage. In
this case, a classifier that can classify if a web page is a product page or not
will suffice.

Moreover, the grey-box model does not take the weight feature as input,
since all the categories are statically mapped to a specific weight and the two
features would be 100% correlated and themodel would not benefit from using
both features. However, the grey-box model will benefit from being trained on
a range of possible weights for a category. This will result in large augmented
datasets that will make the bootstrapping phase lengthy and possibly imprac-
tical. Although, this issue might be solved in another way if datasets with the
weight of the products are obtained.

Finally, with the right amount of data and the appropriate models, such a
carbon emissions estimator can be extended to calculate the carbon emissions
consumer products other than textile products.

5.2 Conclusions
Based on the work of this thesis, we conclude that using the analytical model
during the prediction phase of the carbon estimation model improves the per-
formance of the carbon estimator for textile products drastically. Also, to pro-
vide a scalable alternative, we present the grey-boxmodel inspired by the boot-
strapping technique.

Finally, We have provided a proof-of-concept that can hopefully provide
the basis of a carbon emissions estimator for textile products and can be lever-
aged to potentially affect consumer behaviour towards choosing sustainable
products. However, the limitations, especially the lack of true labelled data,
need to be overcome for such a product to be used by consumers.
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Appendix A

Appendix

tshirt shorts scarf boots skirt jogger pants
Jeans hoody gloves shoes sweater jumpsuit hat
dress coat slipper bra pajamas loungewear sneakers
jacket autumnjacket boot swimmingsuit tanks sleepwear legging
shirt winterjacket sandal suit windbreaker playsuit bathrobe

Table A.1: Custom product categorization scheme.

Merchant B Columns Merchant A Columns
description name
Composition category

Care instructions details
name cat0
cat0 cat1
cat1 details
cat2 -
cat3 -
cat4 -

country of production -

Table A.2: The columns of the CSV files before merging them.
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