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Abstract
A scenario in which modern machine learning models are trained is to make
use of past data to be able to make predictions about the future. When working
with multiple structured and time-labeled datasets, it has become a more
common practice to make use of a join operator called the Point-in-Time join,
or PIT join, to construct these datasets. The PIT join matches entries from
the left dataset with entries of the right dataset where the matched entry is
the row whose recorded event time is the closest to the left row’s timestamp,
out of all the right entries whose event time occurred before or at the same
time of the left event time. This feature has long only been a part of time
series data processing tools but has recently received a new wave of attention
due to the rise of the popularity of feature stores. To be able to perform
such an operation when dealing with a large amount of data, data engineers
commonly turn to large-scale data processing tools, such as Apache Spark.
However, Spark does not have a native implementation when performing these
joins and there has not been a clear consensus by the community on how this
should be achieved. This, along with previous implementations of the PIT
join, raises the question: ”How to perform fast and resource efficient Point-
in-Time joins in Apache Spark?”. To answer this question, three different
algorithms have been developed and compared for performing a PIT join in
Spark in terms of resource consumption and execution time. These algorithms
were benchmarked using generated datasets using varying physical partitions
and sorting structures. Furthermore, the scalability of the algorithms was
tested by running the algorithms on Apache Spark clusters of varying sizes.
The results received from the benchmarks showed that the best measurements
were achieved by performing the join using Early Stop Sort-Merge Join, a
modified version of the regular Sort-Merge Join native to Spark. The best
performing datasets were the datasets that were sorted by timestamp and
primary key, ascending or descending, using a suitable number of physical
partitions. Using this new information gathered by this project, data engineers
have been provided with general guidelines to optimize their data processing
pipelines to be able to perform more resource-efficient and faster PIT joins.

Keywords
Apache Spark, Point-in-Time, ASOF, Join, Optimizations, Time travel
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Sammanfattning
Ett vanligt scenario för maskininlärning är att träna modeller på tidigare
observerad data för att för att ge förutsägelser om framtiden. När man jobbar
med ett flertal strukturerade och tidsmärkta dataset har det blivit vanligare
att använda sig av en join-operator som kallas Point-in-Time join, eller PIT
join, för att konstruera dessa datauppsättningar. En PIT join matchar rader
från det vänstra datasetet med rader i det högra datasetet där den matchade
raden är den raden vars registrerade händelsetid är närmaste den vänstra raden
händelsetid, av alla rader i det högra datasetet vars händelsetid inträffade före
eller samtidigt som den vänstra händelsetiden. Denna funktionalitet har länge
bara varit en del av datahanteringsverktyg för tidsbaserad data, men har nyligen
fått en ökat popularitet på grund av det ökande intresset för feature stores.
För att kunna utföra en sådan operation vid hantering av stora mängder data
vänder sig data engineers vanligvis till storskaliga databehandlingsverktyg,
såsom Apache Spark. Spark har dock ingen inbyggd implementation för denna
join-operation, och det finns inte ett tydligt konsensus från Spark-rörelsen om
hur det ska uppnås. Detta, tillsammans med de tidigare implementationerna
av PIT joins, väcker frågan: ”Vad är det mest effektiva sättet att utföra en PIT
join i Apache Spark?”. För att svara på denna fråga har tre olika algoritmer
utvecklats och jämförts med hänsyn till resursförbrukning och exekveringstid.
För att jämföra algoritmerna, exekverades de på genererade datauppsättningar
med olika fysiska partitioner och sorteringstrukturer. Dessutom testades
skalbarheten av algoritmerna genom att köra de på Spark-kluster av varierande
storlek. Resultaten visade att de bästa mätvärdena uppnåddes genom att
utföra operationen med algoritmen early stop sort-merge join, en modifierad
version av den vanliga sort-merge join som är inbyggd i Spark, med en
datauppsättning som är sorterad på tidsstämpel och primärnyckel, antingen
stigande eller fallande. Fysisk partitionering av data kunde även ge bättre
resultat, men det optimala antal fysiska partitioner kan variera beroende på
datan i sig. Med hjälp av denna nya information som samlats in av detta
projekt har data engineers försetts med allmänna riktlinjer för att optimera
sina databehandlings-pipelines för att kunna utföra mer resurseffektiva och
snabbare PIT joins.

Nyckelord
Apache Spark, Point-in-Time, ASOF, Join, Optimeringar, Tidsresning
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Chapter 1

Introduction

When constructing machine learning models, data scientists need, in many
cases, to look at past examples of data to build a model for the future. A
feature is a measurable attribute of the event you are trying to predict. The
process of constructing meaningful features from raw data has long been a
crucial part of machine learning and is important for creating well-performing
models. Furthermore, as the number of features and data grows, the feature
engineering process can become computationally expensive.

Feature stores are a new emerging technology that is used to combat
these issues by providing an interface between raw data and machine learning
models. A feature store can track the transformation of raw data into feature
values, store, manage, and monitor the features themselves, and serve the
features to be used within machine learning models.

When training a model on past data, we must be able to have a complete
view of the state of the data at some specific time, that is, the value of the
features at that point in the past. However, it is important that future feature
values are not leaked into the training data and that the results precisely capture
what is known about the system at the point in time when the prediction
event occurred. If our data did not capture a correct view of the feature
values at that time, we would train our model on scenarios that never actually
happened, which could result in many flawed predictions. For building such
a training dataset, a particular functionality called Point-in-Time (PIT) join
is used [1]. These joins are an inexact temporal operator that merges rows
from one collection of data with a row from another collection of data whose
timestamp is before the left timestamp, but also closest to it. Because of how
this join works, it is also referred to as an ASOF join, since we are observing
the most recent values as of some particular timestamp. The implementation
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of this join operator can be seen in the Pandas data analysis library [2] and the
relational time series database Kdb+ [3].

1.1 Problem Statement
Apache Spark [4], which is a common framework used for large-scale data
processing, currently does not have a native implementation to execute these
PIT joins for structured data. It is possible to obtain correct results by
using standard join operators through Spark SQL queries. However, these
approaches can become less efficient when dealing with a large amount
of data and multiple groups of joins, as it might explode the data into
intermediary tables with an exponentially increasing number of rows and
become computationally inefficient.

1.2 Research Question
The goal of the project is to propose, design, and evaluate different methods
of executing PIT joins in the Spark ecosystem. These solutions should be
compared to each other in terms of execution time, memory usage, and
significant metrics. Hence, the research question to be answered is: How to
perform fast and resource efficient Point-in-Time joins in Apache Spark?

1.3 Purpose and Goals
The purpose of this project is to provide a more efficient way to create training
datasets for machine learning models to learn about past events. By optimizing
this process and making it easier to use, data engineers working in Apache
Spark are able to produce relevant datasets that will be used by data scientists
in a faster and more efficient way. The data scientists will be able to receive
the datasets faster and train their models, thus further improving the process.

These main goals of this project can be divided into the following tasks:

1. Implement an extension to Spark that exposes functionality that aims to
execute PIT joins using different algorithms and methods.

2. Provide a comparison of the implementations and their benefits and
drawbacks in comparison to each other.
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1.4 Ethics and Sustainability
The findings of this research could be utilized to optimize existing data
processing pipelines in terms of computational efficiency. Optimizing the
operations used within the systems could prove beneficial for reducing the
energy consumption of these systems, because of the reduced CPU time used
for computations.

1.5 Research Methodology
This project will be carried out using an empirical approach [5]. First,
algorithms will be proposed to execute PIT joins, which will be based on
previous implementations and possible findings in the literature study. The
theoretical performance of these algorithms in Apache Spark will be analyzed
using a cost modeling similar to the model presented in [6]. Time and space
complexity will be mostly focused on, while also taking note of the potential
disk I/O operations and network transmissions, as these aspects will have a
large effect on real-life performance. Furthermore, because some operations
in Apache Spark performance are affected by how the input data is structured
[7], possible ways to optimize the data itself will be investigated.

The implementations will be tested on different datasets of varying sizes
and data distributions running on Spark clusters of different size. Because
it is important to simulate real scenarios to account for the transmission cost
between nodes, a real cluster of multiple nodes will be used.

Important metrics for the empirical evaluation will consider execution
time, memory consumption, disk I/O, and transmission load, as all of these
metrics affect the performance of the algorithm.

1.6 Delimitations
This project is not executed with the intention of adding functionality to the
core Apache Spark library distribution. All modifications that will be made
in this project will be accessible through an extension that contains predefined
functions to allow the execution of the different algorithms. Although the
implementations are not directly integrated with the Spark source code, low-
level functionality can still be obtained with the use of APIs provided by the
Spark distribution. More on how this is achieved will be described in future
sections.
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1.7 Outline
Chapter 2 provides relevant background information about Apache Spark and
its internal workings, PIT joins and its relevance, as well as a review of relevant
related work. Chapter 3 goes more in-depth on the methodology and method
used to execute the project. Chapter 4 describes how the algorithms are
implemented and the findings of the theoretical complexity analysis and what
it says about the theoretical performance of the algorithms. In Chapter 5, the
results obtained by executing the benchmarks on the implementations will be
presented and analyzed. Finally, in Chapter 6, conclusions about the project
results and the quality of the project will be discussed and possible future work
within this area will be suggested.
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Chapter 2

Background

This chapter provides background information on the internal workings of
Apache Spark, relevant information on PIT joins, and previous relevant work
within this topic area.

2.1 Joins
When working with strictly structured data in database systems, which are
abstracted as tables, a common way to combine multiple sets of data is the SQL
(Structured Query Language) join operator. In simple terms, this operation is
executed using some algorithm, which combines the rows of two tables based
on some join conditions; if more than two tables are to be joined, then this
process is repeated. The join condition specifies which data from the left
(first) table and the right (second) table should be used for match selection.
These joining conditions can specify some logical operators. The joins using
logical comparison of columns are commonly divided into equi-joins (matches
of equal values) and non-equi-joins (matches with some other comparison
operator, for example > and, <).

Joins can have different types depending on how the selection process
should be made and what the results should consist of. The most commonly
used join types are cross-, natural-, inner-, outer-, and self-join. These are
briefly described in Table 2.1 [8].

2.1.1 Join Algorithms
Currently, there are three main general algorithms used for processing joins:
Sort-Merge join, Nested Loop, and Hash Join.
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Table 2.1: Common join types

Type Description
Cross join Combines all rows of left table with right table.
Natural join Merges rows with same value of shared columns.
Inner join Join that match rows based on comparison of common

columns.
Left outer join Return the inner join as well as the left rows without a

match.
Right outer join Return the inner join as well as the right rows without a

match.
Full outer join Return the inner join as well as both the left rows and

right rows without a match.
Self join Join which is executed on a table joined with itself.

In the Sort-Merge Join algorithm, the two tables that are to be joined
are first sorted separately based on the columns that are used for the joining
conditions. After the sorting has been completed, the resulting data can be
obtained by a single scan through both sorted tables. The major downside of
this algorithm is that it requires sorting, which, depending on the algorithm
used, can become slow with increasing data size.

The Nested Loop Join works by using one table as the outer input table
and the other as the inner input table. The outer loop iterates through the outer
input table, whereas the inner loop iterates through the inner input table and
searches for matches. This algorithm can be fast in pre-indexed and small
datasets, but may perform badly if the data are not indexed and large.

The Hash Join algorithm does not require sorting of any of the tables and
is executed by creating a hash table of matches from the left and right tables.
The rows of the tables are hashed into a hash bucket based on the join key of
the join condition. Only the values that are hashed into the same bucket are
then compared and added to the results. Because this algorithm requires that
the matching rows be hashed into the same bucket, it only works for equi-join
conditions [9].

2.1.2 Point-in-Time Joins
The PIT join, also called the backward ASOF join, is not a common operator
in database and data processing systems, mostly prevalent in time series
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Figure 2.1: Visual demonstration of a Point-in-Time join of three tables

databases, such as QuasarDB1 and Kdb+2; but the functionality is also
included in other data processing tools such as JuliaDB.jl3 and Pandas4.
Essentially, it works by matching rows from the left and right tables based
on timestamps, with an inexact time being allowed. If a timestamp in a row in
the left table is not equal to any timestamp in the right table, it gets matched
with the row with the most recent timestamp, which is less than or equal to the
left timestamp.

The way this works is visualized in Figure 2.1, where each line represents
the rows added to the table at certain points in time. Consider that the left table
is Table A, which is joined with Tables C and B. Then consider the rows in
Table A (the round shape colored blue) and try to find the rows in the other
tables whose timestamp is the most recent row at that time; the matching rows
from tables C and B are marked in green. The orange shapes are before the
left timestamp but not the most recent, and the red shapes are after the left
timestamp; therefore, they should not be prevalent in the joined result.

2.1.3 Importance in Feature Stores
With the increasing popularity of feature stores, a technology used to
manage commonly used machine learning features, the demand for PIT joins
has increased. In machine learning, features are a measurable piece of
information; typically, in structured data collections, they are commonly
represented as columns. A feature store makes it easier to reuse and organize

1QuasarDB SAS, 6. Select Available: https://doc.quasardb.net/master/
queries/select.html. [Accessed: 2022-02-18]

2Kx Systems, Inc., asof Available: https://code.kx.com/q/ref/asof/.
[Accessed: 2022-02-18]

3Julia Computing, Inc., API · JuliaDB.jl Available: https://juliadb.juliadat
a.org/stable/api. [Accessed: 2022-02-21]

4The Pandas Development Team, pandas.merge_asof — pandas 1.4.1 documentation
Available: https://pandas.pydata.org/docs/reference/api/panda
s.merge_asof.html. [Accessed: 2022-02-21]

https://doc.quasardb.net/master/queries/select.html
https://doc.quasardb.net/master/queries/select.html
https://code.kx.com/q/ref/asof/
https://juliadb.juliadata.org/stable/api
https://juliadb.juliadata.org/stable/api
https://pandas.pydata.org/docs/reference/api/pandas.merge_asof.html
https://pandas.pydata.org/docs/reference/api/pandas.merge_asof.html
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features, saving data engineers the time to redevelop and specify new features
[10]. Some of the most notable open-source feature stores to this day are
Hopsworks1 and Feast2.

A common use case for machine learning models is to make predictions
about the future. In order to obtain models that can achieve this goal, they
must be trained on events that occurred in the past. For this purpose, it might
be necessary to create training datasets that describe the state of feature values
of an entity at a particular point in time in which an event occurred. For entities
with many different features, the features may be spread across different data
collections. Since it is important that the training data consist of all significant
features of some entity, it is sometimes required to execute a PIT join to
generate accurate training data that reflect reality, since these data collections
could be updated at different frequencies.

2.2 Apache Spark
Apache Spark3 is an open-source unified computing engine built to process
large amounts of data in parallel among a cluster of computers. Spark provides
libraries that make it possible to utilize it for programming languages such as
Python, Scala, Java, and R, and provides functionality for analytical purposes
and machine learning. Due to the unified design and broad range of relevant
functionality for data engineers and data scientists, it has become especially
popular for the pre-processing of stages of machine learning pipelines. It
is within these pre-processing stages of machine learning that data used for
training and testing is constructed [11].

2.2.1 Big Data
As the systems people use in their lives become more complex and advanced,
there is a continuous challenge in the industry to ensure that the currently
available hardware is able to handle the workload these systems require. In
addition to this increase of complexity, a continuous increase in the amount of
data collected from systems and people interacting for analytical and machine

1Logical Clocks AB, Hopsworks Feature Store with end-to-end ML pipeline. Available:
https://www.hopsworks.ai/. [Accessed: 2022-03-07]

2Feast Authors, Feast: Feature Store for Machine Learning Available: https://feas
t.dev/. [Accessed: 2022-04-25]

3The Apache Software Foundation, Apache Spark™ - Unified Engine for large-scale data
analytics Available: https://spark.apache.org/. [Accessed: 2022-01-25]

https://www.hopsworks.ai/
https://feast.dev/
https://feast.dev/
https://spark.apache.org/
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learning purposes has also been observed. In the past, this has been made
possible by increasing the number of instructions per second that processors
can handle. However, due to the hard limits of heat dissipation, this task
became more difficult and hardware engineers required a new way to increase
the speed of computers. This resulted in an increase in the use of parallelism
in computers.

Instead of making each processor faster, more processors, or cores, were
added to make it possible to execute computations in parallel with each other,
making the processing speed faster. Furthermore, data collection technologies
have not slowed down, and the cost of data storage is becoming cheaper each
year [12]. As a result, organizations are collecting more and more data for
monitoring and analytical purposes. Due to these trends, organizations require
large amounts of parallel computations on large amounts of data, also known
as data-intensive computing. To solve the challenges associated with data-
intensive computing, new programming models and tools that specialize in
this area were developed, Apache Spark being one of these solutions [11].

2.2.2 Architecture
Within a Spark Application, there are two types of processes that work
together, the driver process and a set of executor processes. The responsibility
of the driver is to maintain information about the Spark Application, respond
to the user’s input, analyze, distribute, and schedule tasks across the executors.
One can think of the driver process as the entry point and the coordinator of
the Spark Application. The executor’s task is, as the name suggests, to execute
the task assigned to it by the driver process and report its state to the driver
process [11].

To manage the cluster of machines that composes a Spark Application, a
cluster manager is used. Apache Spark includes a standalone cluster manager,
but cluster managers such as Apache Mesos, Hadoop YARN, and Kubernetes
can also be used for this purpose [13]. A high-level view of this architecture
can be observed in the illustration in Figure 2.2.

2.2.3 Data Sources
Spark has support for six different “core” data sources, including CSV, JSON,
Parquet, ORC, JDBC/ODBC connections, and plain-text files, while also
having support for hundreds of external sources, managed by the community.
When Spark reads the data, the developer may include a configuration on how
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Figure 2.2: The architecture of a Spark Application

the data should be interpreted [11].

2.2.4 Data Structures
The core data structure concepts used in Spark are Datasets, DataFrames, SQL
Tables, and Resilient Distributed Dataset (RDD). All these concepts represent
collections of distributed data whose elements can be operated in parallel.

When working with structured data, the DataFrame API (Application
Programming Interface) is the most widely used data collection abstraction.
A DataFrame works conceptually similar to a SQL Table or spread-sheet;
it consists of a table with rows and columns. In addition, it has metadata
for columns that state the type of data with which it is populated, which is
called a schema. Due to the tabular representation of a DataFrame, it can be
constructed from a wide variety of data sources.

For working with strictly typed structured data, which require type-
dependent operations, the Dataset API can be used. This API works similarly
to the DataFrame API, since the DataFrame API is a Dataset organized into
columns. A Dataset can be constructed from Java Virtual Machine (JVM)
objects. Because a schema is used when operating on a DataFrame, Spark
manipulates the Row object directly without the need for casting. However,
when working with a typed Dataset, Spark converts the binary structure
to a typed structure abstraction, which slows down the execution time of
operations.
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SQL tables work essentially like DataFrames, as they are structured
collections of data on which queries are run. The biggest difference between
DataFrames and tables is that DataFrames are defined in the context of the
programming language, while tables are defined within the context of a
database. For operations on tables in the database, the Spark client session
has a connection to the database and exposes the entry point in which SQL
queries can be provided and executed. Views can be created on top of tables
and define a set of transformations that are convenient to reuse or organize
query logic [11].

Lastly, the lowest-level data structure in Spark is the RDD, these are
immutable, partitioned collections of data records. These records may contain
any data structure, although some operations are limited to key-value RDD
only. This API provides the developer with a lot of freedom, but the
optimizations that are available in the Structured API are absent. Because of
this, the RDD API is used mainly when manipulations that are not available
at the higher level APIs are not available. Although these APIs differ from
the way the developer interacts with them and the amount of integrated logic
and optimizations, all Spark managed data compile to RDDs during low-level
execution [14, 11].

2.3 Spark SQL
Spark SQL is Spark’s module for working with structured data and is an
important feature of the Spark ecosystem. It is a feature that lets developers
query data from tables and views. This feature is very well unified with the
DataFrame and Dataset API, which means that the data can be queried by
using SQL statements. Furthermore, the same execution engine is used when
using Spark SQL to query data from DataFrame or Datasets as when using
their APIs directly.

Unlike the RDD API, Spark SQL includes information about the structure
of the data, and planning is carried out to optimize the strategy to achieve the
final result [15, 11].

2.3.1 Apache Hive
Apache Hive is a data warehouse solution which serves as a standard for
querying large amounts of data in Apache Hadoop. It allows the use
of SQL expressions for data stored in the distributed file storage HDFS
(Hadoop Distributed File System) using the Hive Query Language (HiveQL).
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Furthermore, Hive provides metadata structures on top of HDFS, allowing the
use of partitioning and bucketing of the data. Partitions are used to divide a
large table based on common values, creating smaller subsets of the data; this
improves performance by only querying the partition of data which contains
the query value. To create these partitions, Hive creates directories in HDFS
that represent each partition of the data. Buckets work similarly to partitions
in that they divide the data into smaller parts, but with some major differences.
Instead of organizing data in different directories, buckets are organized into
a user-specified number of files that represent clusters of the data [16].

Apache Tez

Historically, Hive has used the Hadoop MapReduce execution engine to
perform Hive queries. However, in recent years, the default has changed to
Apache Tez1. For the execution of the queries, the Apache Tez execution
engine manages resources using YARN and distributes work, in a similar
manner as Spark. A Tez application consists of one Application Master
(AM) and multiple containers. The AM is a per-application controller that
works similarly to the Spark master, it distributes work, handles requests,
and aggregates results. Containers are launched using AM and are a unit of
resource allocation that is used to run the execution on [17].

The Hive Metastore

Spark SQL has the ability to connect to a Hive metastore, the part of Hive that
contains metadata about tables, as well as reading and writing data to Hive
tables. Spark can utilize tables stored in Hive for high interoperability and use
partitioning for performance benefits. Although the interoperability with Hive,
tables bucketed using Hive’s bucketing technique cannot be utilized in Spark;
as Spark’s technique for the bucketing of tables differ from Hive [18, 19, 11].

2.3.2 Job, Stages, and Tasks
For each action in Spark SQL, there should be one Spark job. The job in
turn can be divided into multiple stages, which themselves can be divided
into tasks. A Spark Application is able to run jobs in parallel, depending on
the resource requirements and size of the cluster of the jobs. When running
with default settings, Spark schedules jobs using the FIFO (First In, First Out)

1The Apache Software Foundation, Tez Available: https://tez.apache.org/.
[Accessed: 2022-04-05]

https://tez.apache.org/
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Figure 2.3: Spark’s planning process

method, but if the job first in the queue does not require the entire cluster’s
resources, subsequent jobs may be able to start early.

Stages represents a collection of identical operations working on different
subsets of data (tasks), depending on the shuffle partitioning. The stages can
be represented by a Directed Acyclic Graph (DAG), where each stage can be
of type shuffle map or result. A shuffle map stage produces input for another
stage, while a result stage produces the output that is sent to the driver. Stages
can be processed in parallel or sequentially, depending on the interdependence
of the operations performed.

Tasks are the smallest unit of execution for a Spark job, representing a set of
transformations that will be applied to some blocks of data. Similarly to stages,
tasks can be represented as a DAG, and each task outputs a new RDD, which
is the result of the previous RDD with the transformations applied. Tasks are
executed within executors, and the number of tasks that exist in a stage depends
on the number of shuffle partitions of the data [20, 11].

2.3.3 Planning and Strategies
Planning a series of transformations involves two steps, the logical plan,
which describes what operations are performed, and the physical plan, which
describes how these operations are performed. A high-level view of how
the planning process works internally in Apache Spark can be observed in
Figure 2.3. The steps presented in the illustration will be described in detail.

The planning starts with the computation of some relation which the
developer has declared either by using a SQL query or by using the DataFrame
API. If a SQL query has been used, then the Spark SQL parser processes it
and returns an Abstract Syntax Tree (AST). Since the computed relation may
include attribute references, it is required that these references are validated
and resolved against the catalog object. The catalog object contains the
metadata of the tables and columns so that the attributes used in the relation
can be resolved and type information can be added. If the attributes cannot be
resolved, for example, referring to a column that does not exist, the analyzer
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will throw an error.
In the optimization phase, rule-based optimizations are applied to the

resolved logical plan. A rule-based optimization is a transformation that
modifies the logical plan into an improved logical plan, without modifying
the end result of the plan. Some optimizations that can be applied are
constant folding, predicate pushdown, projection pruning, null propagation,
and expression simplification.

The strategy planning phase has the responsibility of transforming the
logical plan into one or more physical plans using a strategy. For example,
if the logical plan includes a step consisting of a join operation, the strategy
would transform the logical join into the join algorithm(s) that suits the
constraints of the join. After the physical plans are generated, it selects the
best plan using a cost model.

Finally, using the selected physical plan, the Java bytecode is generated
in a phase called code generation. Code generation is a feature that enables
faster execution time since the interpreted expressions are pre-evaluated in the
resulting bytecode and do not require additional interpretation. Additionally,
starting from Spark 3.0, whole-stage code generation is also available. Whole-
stage code generation further improves code generation by collapsing multiple
trees of dependent physical operators into a single function [21, 22, 23].

2.3.4 Transformations
The transformations performed in Spark SQL are evaluated lazily; this means
that the computations are executed exactly when a result is required by the user.
The trigger to these computations is called an action; to name a few actions,
there is count, which counts the number of rows within a DataFrame, show,
which prints a specified amount of rows to the console, and any operation that
writes data to storage [24].

Furthermore, instead of executing each transformation as it is written,
Spark stacks all statements to build up the initial logical transformation plan,
which consists of a high-level abstraction of the operations to be performed.

2.3.5 Shuffle
To make executors work on the same collection of data in parallel, it is
necessary to partition the data into chunks that are assigned to executors, in
an operation called shuffling. Effectively, this is a physical partitioning of
the data. The use of this operation is common when dealing with key-based
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transformations or operations that are executed on subsets of the data, for
example, joining with equal keys.

When a shuffle is executed, the data is written to disk and transferred across
the network, making it a costly operation to perform and can substantially
increase the execution time of Spark jobs. However, this operation can be
avoided if the data operated upon is bucketed, then the different partitions of
the data can be divided among the executors by utilizing the structure of the
buckets [11].

2.3.6 Joins
Spark SQL currently has support for seven join operations, as presented in
[25]:

• Inner join - Select rows with matching values from both relations.

• Left (outer) join - Select the values of the left relation and the matched
values of the right relation.

• Right (outer) join - Select the values from the right relation and the
matched values from the left relation.

• Full join - Select all values from both relations, appending NULL to the
values that do not have match.

• Cross join - Return the Cartesian product of the two relations.

• Semi join - Return values from the left side of the relation that has a
match with the right relation.

• Anti join - Return values from the left relation that do not match with
the right relation.

Depending on the type of join and the structure of the data, different join
strategies are used. These are:

• Broadcast Hash Join

• Broadcast Nested Loop

• Cartesian Product

• Shuffled Hash Join
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• Sort-Merge Join

By the usage of join hints, the developer may suggest a strategy to
prioritize, supported ones are BROADCAST, MERGE, SHUFFLE_HASH,
and SHUFFLE_REPLICATE_NL. However, providing a join hint does not
guarantee that the strategy will be chosen, as the hinted strategy may not
support the join type [26].

With these strategies in mind, as can be observed in [27], Spark internally
considers the following prioritization when planning:

• If equi-join

– If join-hint provided
1. BROADCAST - Pick Broadcast Hash Join if the join type is

supported.
2. MERGE - Pick Sort-Merge Join if keys are sortable.
3. SHUFFLE_HASH - Pick Shuffle Hash Join if the join type is

supported.
4. SHUFFLE_REPLICATE_NL - Pick Cartesian product if an

inner-like join.
– If not join hint provided

1. Pick Broadcast Hash Join if one side is small enough to
broadcast and the stated join type is supported.

2. Pick shuffle Hash Join if one side is small enough to create a
local hash map.

3. Pick Sort-Merge Join if the join keys are sortable.
4. Pick Cartesian Product if the join type is inner-like.
5. Pick Broadcast Nested Loop.

• If non-equi-join

– If join-hint provided
1. BROADCAST - Pick Broadcast Nested Loop.
2. SHUFFLE_REPLICATE_NL - Pick Cartesian product if the

join type is inner-like.
– If not join hint provided

1. Pick Broadcast Nested Loop if one side is small enough to
broadcast.

2. Pick Cartesian product if the join type is inner-like.
3. Pick Broadcast Nested Loop.
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2.3.7 Windowing
Aggregation of data in Spark SQL is commonly achieved using window
functions. A window function calculates window frames, which are defined
using a reference to the current row of data. In practice, this means that a
single row can exist in any number of frames, depending on the specifications
for the window. A common use case for these operations is rolling averages,
where the window slides across the data when aggregating the results. A
window specification can specify different partitions, or groups, of the data
by using the partitionBy statement. In addition, ordering of data within
a window frame using the statement orderBy. When defining the number
of rows each window frame should contain, one can use the rowsBetween
statement, where the input is the number of rows before and after the current
row should be included.

When a window specification is defined, an aggregation function can be
specified to aggregate the rows within a window frame to an output. Some
of the aggregation function that are supported by Spark are: max and min,
obtain the max value of some column in the frame, sum, sum the values of a
column, and avg, the average of the values of a column. In addition to these
aggregation functions, there are also ranking and analytical functions such as:
rank, the rank of the rows within a window partition based on the ordering,
row_number, the number of rows within a window partition.

2.4 Related Work
In this section, different implementations of the PIT join operator are
presented; both that are developed on top of Spark and for other libraries.

2.4.1 Existing Spark Point-in-Time Implementations
There have been previous implementations for exposing functionality in Spark
to make PIT-joins possible; the most significant ones being Databrick’s time
series utility library tempo1, and Two Sigma’s Flint2.

The tempo library implements a PIT-join by taking the union of the left
and right DataFrames, prefixing the table’s column names with a specified

1Databricks Inc., tempo - Time Series Utilities for Data Teams Using Databricks
Available: https://github.com/databrickslabs/tempo. [Accessed: 2022-
01-31]

2Two Sigma LCC, Flint: A Time Series Library for Apache Spark Available: https:
//github.com/twosigma/flint. [Accessed: 2022-02-18]

https://github.com/databrickslabs/tempo
https://github.com/twosigma/flint
https://github.com/twosigma/flint
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string. To determine which table a row is from, another column is added as
the table identifier rec_ind. A table-agnostic timestamp combined_ts is
constructed for each row, which, together with the table identifier rec_ind,
is used to sort the data. If a row in the left table has the same timestamp as
any row in the right table, the left row is ordered below the right row. The
final table is calculated by using a Spark window and for each row from the
left table, spanning the window frames from the beginning of the table up to
the current row, and then merging that row with the last non-null values of the
right columns, within that window partition. Last, in this case, lowest ordered.
The main parts of this implementation, written in pseudocode, can be observed
in Algorithm 1 [28].

While tempo utilizes higher-order Spark SQL functionality to make the
transformations possible, Flint applies the logic on the RDD level. This is
done using a custom RDD implementation OrderedRDD, which is a RDD
whose data are known to be ordered; this is useful when working with join
operators, since the data do not need to be re-sorted. Partitions within an
OrderedRDD are defined as splits of independent ranges of key-value pairs,
defined as open-closed ranges. In the case of joining operations, both RDDs
partitions are ordered in ascending order, and the partition ranges from the left
are applied to the right RDD, with an included tolerance (for example, 1 day),
creating overlapping partitions for the right RDD. For each of the entries in a
partition of the left RDD, searching for a match in the right RDD’s partition
is executed using a peekable iterator, which searches for the entry in the right
RDD that has the highest key, which also is less than or equal to the right key.

By utilizing a peekable iterator, the algorithm looks at the next entry’s
key and compares it to the right key; if the right key is greater, the last value
seen is the correct match, since the sorting is in ascending order. Because the
partitions applied to the right RDD are the left partitions with the addition of
a tolerance interval, this algorithm cannot work without a manually specified
tolerance input. A benefit of this approach is that it is highly parallelizable,
as the partitions can be worked on independently within Spark. However, the
downside of this process is that the generation of splits within each RDD is
done by sampling the data, which could be expensive. Furthermore, if the
specified tolerance is very large, the number of iterations and comparisons
may increase drastically, depending on the data [29].
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2.4.2 Non-Spark Point-in-Time Implementations
Apart from the existing implementations made on top of Spark, the source
code for the data processing tools Pandas and JuliaDB.jl can provide a more
general view on how PIT joins may be implemented.

The implementation used by Pandas can be obtained by analyzing the
function asof_join_backward, which is used to determine which right
row each of the left rows maps to. Pandas then uses these index mappings
to create a new Pandas DataFrame. The algorithm for obtaining the index
mapping, assuming that no tolerance is allowed (maximum difference between
the left and right timestamps) and that exact values are allowed, is presented
in Algorithm 2 [30].

The algorithm used by JuliaDB.jl is similar to that used in Pandas, with the
only difference that it only allows for outer-left joins, meaning that if a left row
does not match with any of the rows of the right table, the left row will still be
added to the results, with all column values of the right table set to null [31].
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Algorithm 1: PIT join implementation Tempo
Data: Left and right DataFrame, left and right. Column prefixes,

leftPrefix and rightPrefix
1 begin
2 leftIndexed← left.withColumn(rec_ind, 1)
3 rightIndexed← right.withColumn(rec_ind, −1)
4
5 prefixedLeft← leftIndexed.prefixColumns(leftPrefix)
6 prefixedRight←

rightIndexed.prefixColumns(rightPrefix)
7
8 combined← prefixedLeft.union(prefixedRight)
9 combinedWithTS ← combined

10 .withColumn(ts, left.ts or right.ts)
11
12 windowSpec← Window
13 .orderBy(combinedWithTS.ts, rec_ind)
14 .rowsBetween(−Int.MaxV alue, currentRow)
15
16 rightColumns← prefixedRight.observationColumns +

prefixedRight.tsColumn
17
18 result← rightColumns.foldLeft(combined){
19 (dataFrame, column)→
20 dataFrame.withColumn(column,
21 last(column, ignoreNull ← true)
22 .over(windowSpec)
23 )
24 .filter(leftTS is not null)
25 }
26 return result
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Algorithm 2: Backward ASOF join Pandas
Data: Ordered arrays of left and right values, leftV alues and

rightV alues.
Result: Indexed mapping.

1 begin
2 leftIndexer[0..leftV alues.length]
3 rightIndexer[0..rightV alues.length]
4 rightPos← 0
5 for leftPos← 0 to leftV alues.length do
6 if rightPos < 0 then
7 rightPos← 0

/* Try to find the last right value that
is smaller or equal to left value */

8 while rightPos < rightV alues.size and
rightV alues[rightPos] <= leftV alue[leftPos] do

9 rightPos← rightPos+ 1

10 rightPos← rightPos− 1
/* Store the mappings in the indexers */

11 leftIndexer[leftPos]← leftPos
12 rightIndexer[leftPos]← rightPos

13 return leftIndexer, rightIndexer
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Chapter 3

Method

This chapter aims to present the research methodology and evaluation
methodology of the different implementations and optimizations made on the
PIT joining process. To be able to answer the research question “How to
perform fast and resource efficient Point-in-Time joins in Apache Spark?”,
it is important to specify the empirical and research methods used. The
comparison of these processes must provide reliable data that can be used to
draw conclusions.

3.1 Research Process
The research process is divided into seven steps that can be observed in
Figure 3.1. The first step of the process is the selection of algorithms
that will be evaluated; this step will be partially based on previous known
implementations of PIT algorithms, as presented in Section 2.4, as well as the
implementation of join algorithms already present in Spark, as presented in
Section 2.3.6. These algorithms will be analyzed using a cost analysis model
that can identify their weaknesses and potential bottlenecks. From the cost
analysis, optimizations to the algorithm can be identified; if the optimizations
affect the cost analysis in any way, a new cost analysis is made with these
optimizations taken into account. When the main possible optimizations are
identified, the algorithms will be implemented in Spark. All algorithms will
be deployed in a Spark cluster and, using and not using the optimizations, will
be run on the generated test data. The metrics collected from the experiments
will then proceed to be processed and analyzed to be able to draw conclusions
about the different implementations and optimizations.
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Figure 3.1: Research process

3.2 Cost Analysis Model
The cost analysis model will be heavily based on the cost model for the join
operator as presented by Lian and Zhang in [6]. This cost model takes into
account the internal workings of Spark and the structure of the cluster on
which Spark is deployed. In addition to space and time complexity, this model
accounts for network transmission cost, disk operation, data size, number
of cluster nodes, shuffle buffer size, and the average size of a row of data.
However, since this cost model focuses primarily on built-in join algorithms, it
will have to be extended to account for the processes that will be implemented
in this project.

3.3 Experimental design
The experiments will be conducted by running the algorithm using data of
varying properties on a cluster of varying sizes. Further details of the data and
the execution of the experiments will be provided in this section.
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Table 3.1: Example of a row in the dataset

ID Timestamp Value / Label
1 10 ”Some value”

3.3.1 Datasets
The datasets used in the experiments will aim to simulate possible datasets in
which a PIT join may be used. In particular, the data are designed to replicate
timed feature values along with a prediction target that will be joined, to form
input data for a machine learning model. In Table 3.1 an example of a row from
these datasets can be observed. The timestamp value is a non-negative integer,
which represents the elapsed time from some starting point; for simplicity
sake, the starting point is always zero and represents seconds. In the left table,
each entry will consist of a unique ID, along with a label (the prediction target
for that ID at the given timestamp). Each unique ID in the left table will be
assigned to an arbitrary number of rows in the right table, representing the
feature update events for that entity.

Significant variables

The significant variables identified are as follows:

• Maximum timestamp value

• Number of unique IDs, for example, number of users

• Distribution of timestamps for entries in the left table

• Number of entries in the right table that correspond to an entry in left
table

• Distribution of timestamps for entries in the right table

Generation of data

When generating the datasets, the maximum timestamp will be a configurable
variable that determines the interval of the recording of events, for example, six
months, one year, or two years. For the chosen maximum timestamp, multiple
datasets with different numbers of unique IDs will be generated, essentially
determining the size of the left dataset. The target event time for each of the
rows in the left dataset will be chosen uniformly at random.
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The number of events per ID generated is determined by using a normal
distribution. Event timestamps will use two different sampling methods:
normal distribution, to simulate special events, and uniform distribution,
to simulate random updates over time. For the normal distribution, the
configuration values are chosen uniformly at random, with the mean chosen
between zero and the maximum timestamp, and the standard deviation
between five and 15 days.

The number of unique IDs that will be generated are 10,000, 100,000,
1,000,000, and 10,000,000, which will be generated with a timestamp interval
of one year, i.e., the maximum timestamp is 60 · 60 · 24 · 365. Furthermore,
two different configurations for the normal distribution used to decide the
number of feature updates are used, one where the mean is 20 and a standard
deviation of two and one with the mean of 80 and a standard deviation of eight.
Furthermore, there is one configuration with a uniform distribution of feature
event timestamps and one with a normal distribution. To avoid generating
many different permutations of the configurations, each configuration is
chosen uniformly at random for each user id.

The library to be used for generation is numpy.random1 using a set seed
for the pseudo random number generator.

Data variations

Since data organization can affect the performance of data-intensive tasks,
different variations of the generated datasets will be used. In addition to the
direct output of the data generation program, the data will also be stored using
three different sorting orders: ascending according to the ID and timestamp,
descending according to the ID and timestamp, and randomized. To also
test the performance on pre-bucketed data, which reduces the performance
impact of the shuffle operation, as described in Section 2.3.5, the dataset
sorted in ascending order will be bucketed into different number of buckets
and bucketed based on the ID of each row. The number of buckets that will
be tested is 20, 40, 80, and 160 buckets. Since both tables contain the same
number of IDs, the resulting buckets of the left and right tables should contain
the same IDs. Furthermore, for all experiments, the shuffle partition will be
set to 200 partitions, when not utilizing bucketing, the default used in Spark.

1Numpy Developers, Random sampling (numpy.random) — NumPy v1.22 Manual
Available: https://numpy.org/doc/1.22/reference/random/index.
html. [Accessed: 2022-02-28]

https://numpy.org/doc/1.22/reference/random/index.html
https://numpy.org/doc/1.22/reference/random/index.html
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Data format and storage

The datasets will be formatted using the Apache Parquet columnar storage
format1 and will be stored using the Amazon S3 service2. These formatting
and storage options were chosen because they are some of the most common
storage options used when working with Spark [32]. Since bucketed tables
require a Hive metastore to be able to store and load the metadata concerning
bucketing partitions, which cannot be stored in S3. Because of this, HopsFS3

will be used as a metastore.

3.3.2 Hardware
As mentioned above, it is important that the hardware consists of a cluster
of nodes, as this is the most common way for Spark deployment [13]. The
experiments will run in clusters of one, two, and three nodes, each hosting two
to three executors each. This will provide relevant benchmarks that can be
analyzed to determine how the implementation scales depending on the cluster
size. The machines used are provided using Amazon EC2 instances, utilizing
the m5.xlarge instance type. These instances utilize two physical processor
cores, each with a maximum clock speed of 2.5 gigahertz and two threads
(four vCPUs in total), 16 gigabytes of memory, up to 10 gigabits per second of
network bandwidth, and up to 4,750 megabits per second of disk bandwidth4.

Each of the worker instances will occupy two to three executors each;
where each executor will utilize two gigabytes of memory and one virtual
core. The driver process for the Spark Application will also need to reside
in a worker node and will also require gigabytes of memory and one virtual
core and will reside in one of the worker nodes.

1The Apache Software Foundation, Apache Parquet Available: https://parquet.
apache.org/. [Accessed: 2022-02-24]

2Amazon Web Services, Inc., Cloud Object Storage – Amazon S3 Available: https:
//aws.amazon.com/s3/. [Accessed: 2022-02-24]

3Logical Clocks AB, HopsFS Available: https://www.logicalclocks.com/
products/hopsfs. [Accessed: 2022-03-07]

4Amazon Web Services, Inc., Amazon EC2 M5 Instances - general purpose compute
workloads Available: https://aws.amazon.com/ec2/instance-types/m5/.
[Accessed: 2022-03-07]

https://parquet.apache.org/
https://parquet.apache.org/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.logicalclocks.com/products/hopsfs
https://www.logicalclocks.com/products/hopsfs
https://aws.amazon.com/ec2/instance-types/m5/
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3.3.3 Software
To make the configuration of the Spark cluster more straightforward and enable
the use of HopsFS, the Hopsworks.ai1 managed platform will be used. By
using Hopsworks, the cluster can be scaled using different numbers of executor
nodes between experiments and run a Jupyter server, which will be used to
initiate the Spark jobs.

Data collection will be achieved using the library SparkMeasure2. This
library adds functionality to be able to easily receive aggregated metrics for
Spark stages and tasks that can then be used for analytical purposes. Some
of the metrics that will be most notable for the purpose of this project are
execution time, result size (bytes sent from executor to driver), reads and writes
in memory, and disk writes and reads [33]. The complete list of the specific
metrics that will be collected and examined, together with their purpose, can
be seen in Table 3.2.

Table 3.2: Metrics to be examined

Name Description Purpose
Elapsed time The total duration of time

that is takes to retrieve
the results

Examine how the algo-
rithms scale based on
time

Peak execution
memory

Accumulative peak
memory used by internal
data structures when
handling tasks

Examine the total mem-
ory utilization

Shuffle bytes writ-
ten

Bytes written to disk as a
part of data shuffle

Examine the quantity of
shuffles and disk opera-
tions

Memory data spill The unserialized form of
spilled data as it exists in
memory

Examine the quanitity of
spilled data

Disk data spill The serialized form of
spilled data as it exists in
disk

Examine the quantity of
spilled data

1Logical Clocks AB, Hopsworks.ai Available: https://docs.hopsworks.ai/
hopsworks-cloud/latest/. [Accessed: 2022-03-07]

2Canali, Luca, sparkMeasure Available: https://github.com/LucaCanali/
sparkMeasure. [Accessed: 2022-02-23]

https://docs.hopsworks.ai/hopsworks-cloud/latest/
https://docs.hopsworks.ai/hopsworks-cloud/latest/
https://github.com/LucaCanali/sparkMeasure
https://github.com/LucaCanali/sparkMeasure
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3.3.4 Hive Setup
To better show the effect of using this functionality in Spark, a comparison
with the widely popular Apache Hive data warehouse solution will be
included. Similarly to Apache Spark, Apache Hive allows the querying of
large amounts of column-based data using SQL-like syntax, as presented in
Section 2.3.1. For the execution of Hive queries, the Tez execution engine
will be used. For these experiments, Tez will use three physical nodes and
AM will be configured to use one vCPU and 2048 megabytes of memory,
while the containers will use one vCPU and 2048 megabytes of memory each.

3.4 Reliability and Validity of the Data
In this section, the method used for data collection and analysis will be
evaluated in terms of validity and reliability. It is important that the data
recovered using the presented method is reliable and that the analysis is
executed in a meaningful and accurate way.

3.4.1 Data Validity
To determine whether the work, which is derived from the executors, is the
expected work, it is important to examine Spark physical plan, discussed in
Section 2.3.3. Using the Spark SQL EXPLAIN statement, it is possible to
obtain the physical plan of a series of transformations that Spark will apply
to the input data. It is important that the physical plan is examined before
retrieving any experiment results, so that the output metrics can be related to
a series of physical operations performed by Spark.

3.4.2 Reliability of Data
SparkMeasure reliably extracts data from the Spark Listener API, which
transports data from the executors to the driver; these listeners are used
internally for the Spark Web UI and the history server, both provided by the
standard Spark distribution. Using this library, a reliable view of how work is
derived within executors can be achieved [34].

Since Spark transformations are evaluated lazily, it may be difficult to
entirely isolate the work of the algorithm into a single Spark job. To try
to reduce the impact of this, the datasets will persist in memory using the
DataFrame persist() operation. Since it is not possible for the scope of
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this project to account for all possible deviations in possible datasets that these
algorithms can use, the results cannot be applied to every use case.

3.4.3 Evaluation Method
The method used to evaluate the results will be mainly comparative. Meaning
that the results from each of the algorithms will be compared to each other
based on the individual experiment metrics as well as scalability as the data
size and the number of nodes grow. For analytical purposes, the mean of the
experiments will be used for evaluation while recognizing potential deviations
observed for different iterations of the same experiments. The reliability of
the data will be analyzed by investigating how the result deviated between
iterations of the experiments, aiming to be as small as possible.
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Chapter 4

Implementation

This chapter will present details on the implementation of the algorithms used
to obtain PIT datasets, as well as a cost analysis of the processes.

4.1 Algorithm Selection
On the basis of previous work, three different implementations of the PIT
join operation were decided. All three of these algorithms differ in terms
of the implementation complexity and the amount of customization required
for SparkSQL. The first one is called the Exploding PIT join, which is the
most naive approach of these three, whose implementation requires simple
operations available in SparkSQL. The second one is called the Union PIT
Join, whose implementation is highly based on the implementation of the join
operator in the Tempo library, as presented in Section 2.4.1. The last, called
Early Stop Sort-Merge, is an implementation that exposes a new low-level join
operator to Spark, highly inspired by the implementation in the Pandas library,
as presented in Section 2.4.2.

4.1.1 Exploding Point-in-Time Join
The Exploding PIT join can be seen to be the easiest one to implement in
SparkSQL, as it consists of only four steps. The following steps assume that the
datasets contain event timestamps and that the rows also require to be matched
by ID:

1. Inner join of left and right dataset on the condition that left.ts >= right.ts,
other equality conditions may also be used in addition with this, for
example equality of IDs.
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Listing 4.1: HiveQL query for a Point-in-Time join

1 SELECT id, target_ts, label, value, feature_ts FROM (
2 SELECT id, target_ts, label, value, feature_ts,

ROW_NUMBER() OVER (PARTITION BY id, target_ts
ORDER BY feature_ts) rn FROM (

3 SELECT {left}.id as id, {left}.ts as target_ts,
{left}.label as label, {right}.value as value,
{right}.ts as feature_ts

4 FROM {left} {left} INNER JOIN {right} {right}
5 ON {left}.id = {right}.id AND {left}.ts >=

{right}.ts
6 ) combined
7 ) windowed
8 WHERE rn = 1

2. Create window specification, partitioning the data using left.ts
and ordering the data in descending order based on the right table’s
timestamp. If equality condition is used in previous step, those columns
should also be used for partitioning.

3. Rank each of the rows in the combined dataset based on their row
number within each window frame.

4. Filter the rows whose row number is not equal to 1.

Essentially what this algorithm does, it generates all possible PIT
candidates by performing the first inner join, and then only picking the
candidate where the right timestamp is as close as possible to the right
timestamp. The name exploding is used since the generation of all possible
candidates results in an exponentially increasing intermediate table of the
candidates as the size of the left or right table increases. The Scala
implementation of this algorithm with Spark can be observed in Appendix A.1.

Hive Query

For this implementation, an additional version was created using HiveQL, as
presented in Listing 4.1. This query will be used to benchmark the difference
in performance when comparing the Hive execution with the Spark execution.
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4.1.2 Union Point-in-Time Join
As mentioned above, the Union PIT join essentially works as the join
implemented in Tempo, with minor modifications. The steps included in this
algorithm are the following:

1. Prefix the columns of the right table, optionally prefix the left columns.

2. Add a index column to both tables, set it to 1 for the left and 0 for the
right.

3. Take the union of both tables.

4. Add add global timestamp column, with the value being left.ts or
right.ts, depending which is defined for each row.

5. Create a window specification that defines the following configuration:

• Order by the global timestamp column and the table index column,
in ascending order, lower timestamp should be at the top and rows
from the right table should be above the ones from the left table.

• For each window frame, it should select the current row and all
the preceding rows.

• Optionally define partitioning columns, for example, ID.

6. For each column belonging to the right table in the combined table,
apply the windowing specification and take the last non-null value of
the column.

7. Filter away the rows where the left values are null, these are the results
by applying the windowing function on rows from the right table.

An illustration of how the selection process is executed within a window
frame can be observed in Figure 4.1. The Scala implementation of this
algorithm with Spark can be observed in Appendix A.2.

4.1.3 Early Stop Sort-Merge Join
Early Stop Sort-Merge is a modified low-level joining mechanism designed
specifically for Spark. The logic behind this mechanism is inspired by the
implementation of the merge_asof in Pandas, as presented in Section 2.4.2.
The abstract functionality and workings of this join mechanism are as follows:
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Figure 4.1: Point-in-Time merge using window frames

1. Determine the left and right columns should be used for the PIT
predicate, left.ts and right.ts.

• Also determine one or more equality conditions, these will be used
for partitioning of the data.

• Other non-equality conditions are not allowed.

2. Partition (shuffle) the left and right dataset according to the columns
used for the equality condition.

3. Sort both tables in descending order, based on the columns left.ts
and right.ts.

4. Using the underlying RDDs of each pair of table partitions from the left
and right table:

(a) Select the next RDD of the left and right iterator.
(b) Until the end of either the left or right iterators are reached, to the

following:
• If left.ts < right.ts or the right partitioning column

has a greater value than the left one, select the next right RDD.
• If the left partitioning column is greater than the right

partitioning column, select the next left RDD.
• Otherwise, join the two RDDs and select the next left RDD.

Considering that this algorithm directly affects how the particular join
is performed on the RDD level, it is not sufficient to implement it using
the Spark SQL API. Because of this, the implementation has been made
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Listing 4.2: Logical plan for the Point-in-Time join

1 case class PITJoin(
2 left: LogicalPlan,
3 right: LogicalPlan,
4 pitCondition: Expression,
5 condition: Option[Expression]
6 ) extends BinaryNode

using custom built logical and physical plans, extending on the existing
implementation of the Sort-Merge Join, as well as a custom join strategy
for selecting the physical plan. This is made possible by utilizing the
ExperimentalMethods instance of the SparkSession object. This
makes it possible to inject custom strategies and optimizations of logical plans
that can be applied to the planning process at runtime [35]. The optimizer
injects the logical plan by substituting a join utilizing a registered UDF (User
Defined Function), registered under the name PIT; the logical plan can be
observed in Listing 4.2. Using a registered UDF, the functionality is available
using both the DataFrame API and the SQL interpreter.

4.1.4 Source code
The source code for these implementations are publicly available on Github1.
The Github repository also contains instructions for how to utilize the
implementations for other Spark projects.

4.2 Execution Plans
The execution plans for all algorithms can be observed in Appendix B. What
can be observed is that the Exploding PIT join could take on different plans,
due to the selection of the joining technique. In particular, when any of
the tables is small enough to fit within the broadcasting limit, the Broadcast
Hash Join technique can be used, which does not utilize the shuffle operation.
However, when none of the tables are small enough to be broadcasted, both
datasets are required to be shuffled, possibly impacting the performance.

1Pettersson, Axel, Spark PIT: Utility library for Point-in-Time joins in Apache Spark
Available: https://github.com/Ackuq/spark-pit. [Accessed: 2022-05-12]

https://github.com/Ackuq/spark-pit
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Table 4.1: Significant variables for cost analysis

Symbol Definition
O Time complexity
S Space complexity
P Network cost
D Disk I/O cost
L Left table
R Right table

Rcolumns Amount of columns in right table
N Number of nodes

Buffershuffle Buffer size of shuffle operator
K Row selectivity

Considering the Union PIT join, its execution plan is heavily affected by
the number of columns that are used in the right table, since each column
requires its own windowing operation. Furthermore, when the unionized
dataset is large, each of these windowing operations may require a shuffle
before execution. This could affect the performance of this algorithm as more
columns are added.

The Early Stop Sort-Merge Join has an execution plan similar to that of
the Spark native Sort-Merge Join. Before performing the joining algorithm,
both datasets are sorted and possibly shuffled, depending on if the datasets are
pre-shuffled or not.

4.3 Cost Analysis
As aforementioned, the cost analysis is based on previous work by Lian
and Zhang in [6] and its purpose is to better understand the working of
the algorirthms and their theoritical performance. For this analysis, eight
significant variables have been identified, which can be observed in Table 4.1.
The time and space complexity are represented by O and S respectively, and
in addition to these complexities, the cost of network and disk I/O will also be
considered in the analysis, represented by P and D respectively. The reason
for not only settling on time and space complexity is because that network
and disk I/O are time consuming operations which may affect the overall
performance of a Spark job. Furthermore, N represents the number of nodes
running executors and K represents the row selectivity of a join operation,
which is the fraction of rows in each table that match the joining condition.



Implementation | 37

4.3.1 Common Operators
Some operations performed by the proposed processes are shared, such as the
shuffle operation; these operations will be considered in this section.

Shuffle Operator

As described in [6], there are two phases when executing a shuffle operation,
the map phase and the reduce phase. In the map phase, the mapper nodes
receive different partitions of the data (if any) and generate a number of
buckets, that is, physical partitions of the data that will be mapped to different
executors. In the reduce phase, the output of the mapper nodes is reduced
and sent to the subsequent task. Derived from [6], the time complexity can be
observed in Equation (4.1), the space complexity in Equation (4.2), the cost of
the network in Equation (4.3), and the cost of the disk I/O in Equation (4.4).

Oshuffle(T ) = |T | × log(|T |) (4.1)

Sshuffle(T ) = Buffersize (4.2)

Pshuffle(T ) = |T | (4.3)

Dshuffle(T ) = max(|T | − Buffersize)×N, 0) + |T | (4.4)

Hash Join

The Hash Join operator is used for the implementation of the Broadcast Hash
Join and the Shuffled Hash Join operator. It works by hashing the join keys of
the left and right tables and adding them to an in-memory hash table. Rows
whose primary key hash to the hash table entry are then compared and finally
merged to create the resulting rows. As derived from [6], the time and space
complexity can be observed in Equations (4.5) and (4.6), respectively.

OHashJoin(L,R) =
|L|+ |R|

N
(4.5)

SHashJoin(L,R) =
|L|+ |R|

N
(4.6)

Broadcast Hash Join

This variation of the Hash Join algorithm is used when at least one of the tables
are small enough to be broadcasted to the worker nodes. The broadcasted table
is shared by all worker nodes while the larger table is shuffled. As derived
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from [6], the time and space complexity can be observed in Equations (4.7)
and (4.8), and the network and disk I/O cost can be observed in Equations (4.9)
and (4.10).

OBHJoin(L,R) = OHashJoin(L,R) (4.7)

SBHJoin(L,R) = SHashJoin(L,R) + |L| (4.8)

PBHJoin(L,R) = N ×K × |L| (4.9)

DBHJoin(L,R) = Dshuffle(R) (4.10)

Shuffle Hash Join

The Shuffle Hash Join includes shuffling of both the left and right tables
and performs a regular Hash Join within each shuffle partition. As derived
from [6], the time and space complexity can be observed in Equations (4.11)
and (4.12), and the cost of network and disk I/O can be observed in
Equations (4.13) and (4.14).

OSHJoin(L,R) = Oshuffle(L) +Oshuffle(R) +OHashJoin(L,R) (4.11)

SSHJoin(L,R) = Sshuffle(L) + Sshuffle(R) + SHashJoin(L,R) (4.12)

PSHJoin(L,R) = K × |L| ×N +K × |R| ×N (4.13)

DSHJoin(L,R) = Dshuffle(L) +Dshuffle(R) (4.14)

Sort-Merge Join

The Sort-Merge Join consists of three steps, shuffle of the data based on the join
key, sorting of the data within the shuffle partitions, and lastly, traversing of
the data within each partition to find matching rows. As derived from [6], the
time and space complexity can be observed in Equations (4.15) and (4.16), and
the network and disk I/O cast can be observed in Equations (4.17) and (4.18).

OSMJoin(L,R) = Oshuffle(L) +Oshuffle(R) +
|L|+ |R|

N
(4.15)

SSMJoin(L,R) = Sshuffle(L) + Sshuffle(R) (4.16)

PSMJoin(L,R) = Pshuffle(L) + Pshuffle(R) (4.17)
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DSMJoin(L,R) = Dshuffle(L) +Dshuffle(R) (4.18)

Sorting

By default, Spark uses Timsort [36] for sorting in Spark SQL, where, in the
case of shuffled data, sorting is performed on each shuffle partition. Hence, the
average time complexity for this process can be observed in Equation (4.19).

Oshuffle(T ) =
|T | × log(|T |)

N
(4.19)

4.3.2 Exploding Point-in-Time Join Operator
As mentioned in Section 4.1.1, the steps required to execute this process are
joining, sorting, and aggregating. The result of the joining operation, J , has
an exponentially increasing size, since the joining criteria match all rows in
the right table where the timestamp of the left table is greater and the joining
keys match. The equation for the size of J can be observed in Equation (4.20).

|J | = |L| × |R| ×K (4.20)

The aggregation step is applied to each window partition in the joined
table, where the number of window partitions equals the number of unique
join keys in the left table. Hence, it will have a time complexity of L

N
.

Taking into account the best-case scenario, when the left table is small
enough to be broadcasted, no shuffle operations are required. The resulting
space and time complexity can be observed in Equations (4.21) and (4.22), as
well as the network and disk I/O cost observed in Equations (4.23) and (4.24).

OExplodingBest(L,R) = OBHJoin(L,R) +Osort(J) +
L

N
(4.21)

SExplodingBest(L,R) = SBHJoin(L,R) (4.22)

PExplodingBest(L,R) = PBHJoin(L,R) (4.23)

DExplodingBest(L,R) = DBHJoin(L,R) (4.24)

In the worst case, when neither dataset is small enough to be broadcasted,
both tables require shuffling as well as the resulting table. Considering that
the operator used is the Sort-Merge Join operator, the resulting space and
time complexity can be observed in Equations (4.25) and (4.26), as well as
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the network and disk I/O cost observed in Equations (4.27) and (4.28).

OExplodingWorst(L,R) =OSMJoin(L,R) +Oshuffle(J)

+Osort(J) +
L

N

(4.25)

SExplodingWorst(L,R) = SSMJoin(L,R) + Sshuffle(J) (4.26)

PExplodingWorst(L,R) = PSMJoin(L,R) + Pshuffle(J) (4.27)

DExplodingWorst(L,R) = DSMJoin(L,R) +Dshuffle(J) (4.28)

4.3.3 Union Point-in-Time Join
When executing the Union Point-in-Time join, it performs a union step and
then a number of repeated windowing operations to populate the right column
values of each row from the left table. Each of these window specifications
requires a shuffle of partitions and sorting of the data, as defined by the
window specification. Due to these repeated windowing operations, the
number of columns in the right table can affect the performance of this
process. The union process itself requires scanning both tables to create the
resulting table. The resulting space and time complexity can be observed in
Equations (4.29) and (4.30), as well as the network and disk I/O cost observed
in Equations (4.31) and (4.32).

OUnionJoin(L,R) =
|L ∪R|

N
+ (Oshuffle(L ∪R)

+Osort(L ∪R))×Rcolumns

(4.29)

SUnionJoin(L,R) = Sshuffle(L ∪R)×Rcolumns (4.30)

PUnionJoin(L,R) = Pshuffle(L ∪R)×Rcolumns (4.31)

DUnionJoin(L,R) = Dshuffle(L ∪R)×Rcolumns (4.32)

4.3.4 Early Stop Sort-Merge Point-in-Time Join
The Early Stop Sort-Merge process is executed by first performing a shuffle
of both the left and right tables, sorting the data, and then performing a scan
of both tables to find matches. Therefore, the cost and complexity are the
same as for the native Spark Sort-Merge Join operator and can be observed in
Equations (4.33), (4.34), (4.35) and (4.36).
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OESSMJoin(L,R) = OSMJoin(L,R) (4.33)

SESMJoin(L,R) = SSMJoin(L,R) (4.34)

PESSMJoin(L,R) = PSMJoin(L,R) (4.35)

DESSMJoin(L,R) = DSMJoin(L,R) (4.36)
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Chapter 5

Results and Analysis

In this chapter, the results of the experiments will be presented and briefly
discussed. The main metrics examined from the test results are the total time
elapsed to execute the algorithm, the peak execution memory, the shuffle bytes
written, the disk and the memory data spill.

5.1 Major Results
In this section, the main results achieved by the execution of the experiments
will be presented, and different subsections will discuss how the algorithms
perform when scaling attributes, such as the size of the dataset, the number of
buckets, and the number of executors.

5.1.1 Dataset Size
This subsection will focus on how the different algorithms perform when
changing the size of the dataset used to perform the PIT join using the
implemented algorithms. The results presented are from running the
algorithm on a cluster containing two executors and will serve as a baseline to
compare how the algorithms perform when using bucketing.

Elapsed Time

When the dataset grew, all algorithms followed a near-linear growth over time,
but with different slopes. In Figure 5.1, the growth of the time elapsed as
the datasets grow can be observed. The Union algorithm performs worst
in all cases, and the Early Stop Sort-Merge algorithm performs best in all
cases except for the randomly sorted tables, where the Exploding algorithm
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(a) Elapsed time - Ascending order (b) Elapsed time - Descending order

(c) Elapsed time - Random order

Figure 5.1: Elapsed time using two executors

performs best. Whether the dataset was sorted in ascending or descending
order did not significantly affect the elapsed time between the experiments;
however, randomly sorted data negatively affected all algorithms. The slope
and intercept values, together with the respective p-value and standard error,
using the linear least-squares regression model found in Equation (5.1), can be
observed in Table 5.1. In the table, the Early Stop Sort-Merge is abbreviated
with ESSM. From these values, it can be observed that the Early Stop Sort-
Merge can achieve a speedup of around 2.0 to 2.5 times, compared to the Union
algorithm for any dataset, and can achieve a speedup of around 1.45 times
compared to the Exploding algorithm for sorted datasets. For the randomly
ordered dataset, the Early Stop Sort-Merge Join received a slowdown of about
0.71 times compared to the Exploding algorithm.

Ŷ = βX + α (5.1)
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Table 5.1: Elapsed time as dataset grows

Dataset Algorithm Slope Intercept p-value SE
sort-asc Exploding 1.757× 10−2 1.587× 103 6.286× 10−5 1.393× 10−4

sort-asc Union 2.674× 10−2 1.791× 103 5.741× 10−7 2.026× 10−5

sort-asc ESSM 1.218× 10−2 1.143× 103 2.451× 10−6 1.906× 10−5

sort-desc Exploding 1.725× 10−2 7.025× 102 7.246× 10−6 4.643× 10−5

sort-desc Union 2.730× 10−2 1.313× 103 2.005× 10−6 3.866× 10−5

sort-desc ESSM 1.174× 10−2 9.301× 102 3.506× 10−6 2.198× 10−5

sort-rand Exploding 3.124× 10−2 −5.071× 102 4.235× 10−5 2.033× 10−4

sort-rand Union 6.363× 10−2 −3.411× 103 1.560× 10−4 7.948× 10−4

sort-rand ESSM 4.397× 10−2 −3.591× 103 3.299× 10−4 7.988× 10−4

Memory Consumption

The results achieved by collecting data on memory consumption can be
observed in Figure 5.2, showing how the maximum memory usage changes,
and in Figure 5.3, showing how many shuffle data bytes are written. Taking
into account the maximum memory consumption for relatively small datasets,
where the left dataset has fewer than one million unique IDs, the Exploding
algorithm uses less memory. This is possibly due to the change in the joining
technique chosen by the Spark strategy. Spark will use a Broadcast Hash
Join when one dataset is small enough to be broadcasted. For the larger
datasets, the memory consumption grew significantly, resulting in a usage of
about 81.6 gigabytes for the datasets of the largest datasets; about 1.85 times
more than that of the Early Stop Sort-Merge, which peaked at about 44.1
gigabytes of memory usage. Furthermore, for the number of shuffle bytes
written, the Exploding algorithm and the Early Stop Sort-Merge used about
the same amount as any of the datasets grew, both using less than that of the
Union algorithm. Furthermore, the randomized ordered dataset resulted in
an increase in shuffle bytes written for all algorithms, whereas the ascending
and descending order datasets achieved about the same. Exact data from
the experiments using the ascending order sorted datasets can be observed
in Table 5.2.

5.1.2 Bucketing
The bucketing was performed on the dataset with the data sorted in ascending
order (sort-asc); using 20, 40, 80, and 160 buckets to bucket the data.
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Figure 5.2: Peak memory consumption using two executors

Figure 5.3: Shuffle bytes written using two executors
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Table 5.2: Memory consumption two executors - ascending order

Dataset size Algorithm Peak memory con-
sumption (GB)

Shuffle Bytes
Written (MB)

10,000 Exploding 6.26 2.31× 10−3

10,000 Union 6.26 5.39× 10−3

10,000 ESSM 12.52 3.74× 10−3

100,000 Exploding 6.35 2.31× 10−2

100,000 Union 6.45 5.38× 10−2

100,000 ESSM 12.71 3.37× 10−2

1,000,000 Exploding 21.14 3.72× 10−1

1,000,000 Union 7.81 5.35× 10−1

1,000,000 ESSM 14.09 3.72× 10−1

10,000,000 Exploding 81.64 3.72
10,000,000 Union 50.00 5.34
10,000,000 ESSM 44.14 3.72

Elapsed Time

The results of the joining operations on the bucketed data of the two largest
datasets (10 million and one million unique IDs) can be observed in Figure 5.4;
reference lines mark the time elapsed for the respective unbucketed dataset. No
matter how many buckets, the Union performed slightly worse and became
increasingly slower as the number of buckets grew and never achieved the
unbucketed performance. This is possibly due to the Union operation not
performing a shuffle before performing the operation, but later performing a
shuffle operation on the unionized data. However, for the other algorithms,
the performance when using the smaller datasets got worse as the number of
buckets grew, but improved for the larger datasets, exceeding the performance
of the unbucketed data. Numerous factors can affect this; for example, if
the bucket partitions are too large, memory could be spilled and costly disk
operations could be introduced.

Memory Consumption

The peak execution memory when performing the algorithm on the data of
the two largest datasets can be observed in Figure 5.5. Although the Union
algorithm has the same peak execution memory, both the Exploding and Early
Stop Sort-Merge algorithms increased in execution memory as the number of
buckets grew; this could be a result of the increase in parallelism as the number
of buckets increased. Furthermore, both the Exploding algorithm and the Early
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(a) 1,000,000 unique IDs (b) 10,000,000 unique IDs

Figure 5.4: Elapsed time as number of buckets grow

(a) 1,000,000 unique IDs (b) 10,000,000 unique IDs

Figure 5.5: Memory consumption as number of buckets increase

Stop Sort-Merge had no shuffle bytes written or read during the execution, but
the Union algorithm had the same number as for the unbucketed dataset.

Spilled Data

Data spillage did not occur until the largest dataset (10 million unique IDs)
was used. Data spilling occurred for both the Exploding and Early Stop Sort-
Merge algorithms, as shown in Figure 5.6. Spark distinguishes two metrics for
data spillage, disk spill, and memory spill; disk spill is the size of the data that
gets spilled and written to disk (serialized data), while memory spill is the size
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(a) Disk bytes spill (b) Memory bytes spill

Figure 5.6: Spilled data as number of buckets increase

of the data as it exists in memory (deserialized data). However, as the number
of buckets increased, the amount of data spilled decreased. The Exploding
algorithm disk spill peaked around 5.91 gigabytes when using 40 buckets,
and the memory spill peaked around 40.97 gigabytes also when using 40
buckets. Furthermore, the amount of spilled disk data reached a low of 0.546
gigabytes when using 160 buckets, although the memory spill increased in
this configuration to 40.31 gigabytes, compared to the 25.31 gigabytes spilled
when using 80 buckets. For the Early Stop Sort-Merge algorithm, the disk and
memory spill peaked at 3.48 and 22.81 gigabytes, respectively, when using 80
buckets. When the number of buckets increased to 160, no data was spilled
using the Early Stop Sort-Merge algorithm.

5.1.3 Increasing Executors
When the number of executors increases, only the elapsed time is affected. The
quantity of data to process is the same amount, so the memory consumption
of the algorithms remained the same.

Elapsed time

When increasing the number of executors in the cluster, the time elapsed
to perform the Spark jobs decreased substantially, for all algorithms, as
can be observed in Figure 5.7, where the results are shown for the largest
datasets. Applying the speedup formula seen in Equation (5.2), where n is
the number of executors, the algorithm that achieved the highest speedup
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(a) Elapsed time, ascending order (b) Elapsed time, descending order

(c) Elapsed time, random order

Figure 5.7: Elapsed time as number of executors increase

was the Union algorithm; achieving a speedup of about 2.90 when using
eight executors, for all large datasets. Both the Exploding and the Early
Stop Sort-Merge algorithms achieved similar speedup and deviated similarly
between experiments. With the Exploding algorithm achieving a speedup
between 1.89 and 2.36 when utilizing eight executors, and the Early Stop Sort-
Merge achieving between 1.71 and 2.56 speedup. The results of the speedup
calculations can be found in Table 5.3.

S(n) =
elapsedT ime(2)

elapsedT ime(n)
(5.2)

5.1.4 Comparison with Apache Hive
The results gathered by executing the Exploding algorithm using the Fez
execution engine can be observed in Figure 5.8. The query execution of the
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Table 5.3: Speedup - 10,000,000 unique IDs

Algorithm Dataset Speedup (4 executors) Speedup (8 executors)
Exploding sort-asc 1.33 2.37
Exploding sort-desc 1.36 1.89
Exploding sort-rand 1.56 2.26

Union sort-asc 1.91 2.89
Union sort-desc 1.93 2.90
Union sort-rand 1.92 2.92
ESSM sort-asc 1.30 2.29
ESSM sort-desc 1.30 1.71
ESSM sort-rand 1.59 2.56

Figure 5.8: Elapsed time comparison, Spark implementations vs. Hive query

Hive query took a lot longer than any of the Spark implementations when
running on a cluster of three nodes, with Fez reaching about 482 seconds for
execution of the largest dataset, compared to 123 seconds achieved by the Early
Stop Sort-Merge algorithm running on Spark.
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5.1.5 Raw Data
The raw observed data retrieved by running the experiments is available on
Github1. The repository also contains Python scripts that were used for the
generation of the graphs seen in this report.

5.2 Validity of Results
Since these results only capture the performance of algorithms for specific
types of datasets, they cannot be applied to every possible permutation or
configuration of the dataset. However, these results provide information on
the general performance of the algorithms.

The desired distribution of the results from the experiments would be to
have a standard deviation equal to zero, meaning that all the runs result in
the exact same observations. Of course, there were deviations in the observed
values. As expected, the standard deviation became relatively small compared
to the mean value observed as the size of the dataset grew. These deviations
could be the result of background tasks or garbage collection. In general, the
elapsed time metric received a higher relative standard deviation compared to
the other metrics.

In general, the elapsed time standard deviation for the larger datasets
remained around 1% of the observed mean; with the datasets using bucketing
and more executors being affected more and could deviate with approximately
4% of the observed mean.

5.3 Summary
For the largest dataset (10 million unique IDs), early stop sorting was the best
algorithm to efficiently use assigned resources. When choosing the Early Stop
Sort-Merge algorithm, the observations show a decrease of 46% of the peak
execution memory compared to the Exploding algorithm and a decrease of
approximately 12% compared to the Union algorithm. Furthermore, there
was a decrease in the elapsed time of approximately 32% compared to
the Exploding algorithm for sorted data and 56% compared to the Union
algorithm. An exception to this was when the data were sorted in a random
order, in this case the Exploding algorithm was proving to be more resilient,

1Pettersson, Axel, Spark PIT Data Analysis Available: https://github.com/Ack
uq/spark-pit-data-analysis. [Accessed: 2022-05-12]

https://github.com/Ackuq/spark-pit-data-analysis
https://github.com/Ackuq/spark-pit-data-analysis
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where the result showed a speedup of approximately 40% when choosing
the Exploding algorithm over the Early Stop Sort-Merge; the peak execution
memory remained the same for the random ordered dataset.

For the smaller datasets, specifically those with fewer than one million
unique IDs, the Early Stop Sort-Merge did not outperform the others by any
significant amount. In terms of elapsed time, it performed roughly as well
as the Exploding algorithm. In terms of execution memory, the Early Stop
Sort-Merge achieved the highest of the three, with an increase of about 100%
compared to both algorithms, showing a probable greater amount of overhead.

Furthermore, while the Exploding and Early Stop Sort-Merge showed an
improvement when introducing the bucketed datasets, the Union algorithm
only performed worse as the number of buckets increased. For the Exploding
and Early Stop Sort-Merge, increasing the number of buckets decreased the
performance on the smaller datasets, while increasing the performance of the
largest dataset. Furthermore, increasing the number of buckets also increased
the peak execution memory of the Exploding and Early Stop Sort-Merge
algorithm, possibly due to an increase in the parallelism. A decrease in data
disk spillage could also be observed in these algorithms as the number of
buckets increased.
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Chapter 6

Conclusions and Future Work

This chapter presents conclusions and reflections based on the results achieved
from this project. As the research question in this work states, the goal is to
find out an efficient way to execute a PIT join in terms of time and resources.
To answer this question, the results presented in the previous chapter will be
reflected upon to present recommendations on how data engineers should go
about integrating such a join functionality into their data pipeline.

6.1 Conclusions
By analyzing the results presented in the previous chapters, the following
conclusions can be inferred:

• Early Stop Sort-Merge algorithm preferred in terms of memory
consumption and elapsed time for very large datasets

• For smaller datasets, the Early Stop Sort-Merge and Exploding
algorithms performed equally well in terms of elapsed time, but
Exploding performs better in terms of memory consumption due to less
overhead

• Number of buckets can increase or decrease the elapsed time, as well
as introduce the possibility of disk spillage and increased memory
consumption

• Exploding and Early Stop Sort-Merge scales equally well as the number
of executors increases
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• The Union algorithm receives a large decrease in elapsed time when
initially increasing executors, but after a threshold, the decrease slows
down

• Having the data stored sorted decreases elapsed time significantly

• Specific sort order of the data is not that significant

Of course, there is no silver bullet that can answer this question in general
terms; however, based on these conclusions, the most beneficial algorithm
for the observed use cases is the Early Stop Sort-Merge if control over the
sorting of the data is possible. However, due to the memory overhead, it could
perform worse if the amount of memory available to the executors is small
and the datasets used are small. Furthermore, both the number of buckets
and the scaling of the number of executors are recommended to be able to
handle very large amounts of data. However, as the results show, one has to be
careful when determining the number of buckets used if such an optimization
is chosen; if too few buckets are used, there is a risk of data spillage and a
lower degree of parallelism, whereas too many may be inefficient for lower
volumes of data. Unfortunately, there is no universal formula to determine the
most optimized number of buckets to use, so the best way to achieve this is by
empirical comparisons of datasets.

Considering the elapsed time by executing a PIT join in Apache Hive using
Tez as an execution engine compared to Spark, one can see that the decrease
in the elapsed time is very significant. Nevertheless, there could be other
considerations for choosing executing the queries with Tez over Spark, for
example if the data is way too large to be able to fit into memory.

Limitations
Due to the time constraints of this project, the number of experiments had
to be limited. Possible interesting scenarios that were not tested were cases
where the left dataset contains more entries than the right dataset. Introducing
datasets that use controlled distributions of data instead of replicating a more
general use case could gather information on how the algorithms perform
under specific circumstances.
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6.2 Future Work
This section aims to present considerations for future work within the area that
this project covered.

6.2.1 Partitioning of Datasets Without Primary Key
The algorithms developed throughout this project focused mainly on datasets
where each row contains a primary key and an event timestamp. Specifically,
in each of the algorithms, the primary key was used for the partitioning of
the data. For datasets where there is no primary key, the datasets would
be contained in a single partition, significantly reducing the parallelism of
the algorithms. To remedy an increase in the degree of parallelism when
processing these datasets, an additional technique is required to partition
them. A potential solution to this is seen in the Two Sigma Flint project,
as described in Section 2.4.1. In Flint, both the left and right datasets are
partitioned using date ranges, which are then merged when performing then
join, with the partitioning interval of the right table having an padding of the
desired tolerance (maximum time gap for valid pair of rows), for example,
one day. However, since this solution requires the use of tolerance, it might
not be applicable for all use cases. Furthermore, the Flint solution uses
data sampling to detect partition intervals; introducing stored data about the
timestamp distribution of the data could also reduce the amount of sampling
performed when calculating these partition intervals, improving performance.

A possible solution to be able to perform partitioning without the need
of a primary key or tolerance could be to partition the left and right datasets
based on a sample of closed-open intervals extracted from the right dataset.
Here, each interval is created between two event times that is known to exist
in the right dataset. For example, if the right dataset has rows with event times
one, three, five and sevent, possible intervals would be [1, 3), [3, 5), [5, 7),
and [7,∞). Considering that a left row must be matched with a row whose
timestamp is less than or equal to its own timestamp, a left row partitioned
using the intervals extracted from the right dataset, has a match that must
exist within that partition, if a match exists. However, this solution would
still require sampling of the right dataset and potentially could be ineffective
for skewed datasets.
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6.2.2 Formula for Estimating Number of Bucket
As the results of this project have shown, bucketing of data can greatly improve
the execution time of the algorithms. However, there is no universal formula
to estimate the number of buckets used. There are many factors to take into
account when estimating this, for example, the size of the datasets, the number
of executors in the Spark applications, and the skewness of the data. This
project has shown that the number of buckets can either worsen or improve
the performance of algorithms as the number of buckets increases, depending
on the size of the data. A more thorough investigation of how to estimate the
optimized number of buckets for a dataset, considering the aforementioned
attributes, could allow data engineers to swiftly speed up their data pipelines.
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Appendix A

Scala code

A.1 Exploding Point-in-Time Scala imple-
mentation

The implementation for the exploding PIT join, as described in Section 4.1.1,
can be observed in Listing A.1. This implementation assumes the use of
DataFrames.

A.2 Union Point-in-Time Scala implementa-
tion

The implementation for the union PIT join, as described in Section 4.1.2
can be observed, in Listing A.2. This implementation assumes the use of
DataFrames.
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Listing A.1: Scala implementation exploding Point-in-Time

1 def join(
2 left: DataFrame,
3 right: DataFrame,
4 leftTSColumn: Column,
5 rightTSColumn: Column,
6 partitionCols: Seq[(Column, Column)] = Seq()
7 ): DataFrame = {
8 // Create the equality conditions of the partitioning

column
9 val partitionConditions =

10 partitionCols.map(col => col._1 === col._2)
11 // Combine the partitioning conditions with the PIT

condition
12 val joinConditions =
13 partitionConditions :+ (leftTSColumn >= rightTSColumn)
14 // Reduce the sequence of conditions to a single one
15 val joinCondition =
16 joinConditions.reduce((current, previous) =>

current.and(previous))
17 // Join on conditions that left.ts >= right.ts and

belongs to same partition
18 val combined = left.join(
19 right,
20 joinCondition
21 )
22 // Partition each window using the partitioning columns

of the left DataFrame
23 val windowPartitionCols = partitionCols.map(_._1) :+

leftTSColumn
24
25 // Create the Window specification
26 val windowSpec =
27 Window
28 .partitionBy(windowPartitionCols: _*)
29 .orderBy(rightTSColumn.desc)
30
31 combined
32 // Take only the row with the highest timestamps

within each window frame
33 .withColumn(”rn”, row_number().over(windowSpec))
34 .where(col(”rn”) === 1)
35 .drop(”rn”)
36 }
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Listing A.2: Scala implementation union Point-in-Time join

1 def join(left: DataFrame, right: DataFrame, leftTSColumn:
String = ”ts”, rightTSColumn: String = ”ts”,
leftPrefix: Option[String] = None, rightPrefix:
String, partitionCols: Seq[String] = Seq()

2 ): DataFrame = {
3 // Rename the columns in left and right dataframes
4 val leftPrefixed = leftPrefix match {
5 case Some(lp) => prefixDF(left, lp, partitionCols)
6 case None => left
7 }
8 val rightPrefixed = prefixDF(right, rightPrefix,

partitionCols)
9 // Timestamp columns

10 val leftTS = leftPrefix match {
11 case Some(p) => p ++ leftTSColumn
12 case None => leftTSColumn
13 }
14 val rightTS = rightPrefix ++ rightTSColumn
15 val leftPrefixedAllColumns = addColumns(
16 leftPrefixed.withColumn(DF_INDEX_COLUMN, lit(1)),
17 rightPrefixed.columns.filter(!partitionCols.contains(_)))
18 val rightPrefixedAllColumns = addColumns(
19 rightPrefixed.withColumn(DF_INDEX_COLUMN, lit(0)),
20 leftPrefixed.columns.filter(!partitionCols.contains(_))
21 )
22 val combined = leftPrefixedAllColumns
23 .unionByName(rightPrefixedAllColumns)
24 val combinedTS =

combined.withColumn(COMBINED_TS_COLUMN,
coalesce(combined(leftTS), combined(rightTS)))

25
26 val windowSpec = Window
27 .orderBy(COMBINED_TS_COLUMN, DF_INDEX_COLUMN)
28 .partitionBy(partitionCols.map(col): _*)
29 .rowsBetween(Window.unboundedPreceding,

Window.currentRow)
30
31 asOfDF = rightPrefixed.columns
32 .foldLeft(combinedTS)((df, col) =>
33 df.withColumn(col, last(df(col), ignoreNulls =

true).over(windowSpec))
34 // Invalid candidates are those where the left

values does not existing
35 ).filter(col(leftTS).isNotNull)
36 .drop(DF_INDEX_COLUMN).drop(COMBINED_TS_COLUMN)
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Appendix B

Execution Plans

B.1 Exploding Point-in-Time Join Execution
Plan

Since the Point-in-Time execution can be done using different joining
techniques, the execution plan may differ. Specifically, execution may or may
not include a shuffle operation, which greatly affects execution complexity.
In the best case, where one dataset is small enough to be broadcasted, the
execution plan takes the form seen in Figure B.1. However, if both datasets
are very large, they need to be shuffled, resulting in the execution plan, which
can be observed in Figure B.2.

B.1.1 Hive Exploding Point-in-Time Execution plan
The execution plan for the HiveQL version of the exploding algorithm can be
observed in Listing B.1. As with the Spark implementation, the specific join
operator for the initial inner join can vary and affect performance.

B.2 Union Point-in-Time Join Execution Plan
When executed, the union PIT operation makes use of repeated windowing
operations to populate the columns from the right table in the resulting table.
If the unionized dataset is large, this results in a shuffle operation performed for
each window operation. The whole execution plan in this case can be observed
in Figure B.3
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B.3 Early Stop Sort-Merge Execution Plan
The early stop sort-merge PIT join execution plan is very similar to the sort-
merge join execution plan. A sorting operation is performed on each of the
datasets and then is merged using the implemented algorithm. If the datasets
are large, a shuffle operation will also be executed before sorting them. The
entire execution plan can be observed in Figure B.4.
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Figure B.1: Best possible execution plan for exploding Point-in-Time join
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Figure B.2: Worst possible execution plan for exploding Point-in-Time join
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Figure B.3: Execution plan for union Point-in-Time join
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Figure B.4: Execution plan for Early Stop Sort Merge Point-in-Time join
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Listing B.1: HiveQL execution plan for a Point-in-Time join
1 Plan optimized by CBO.
2
3 Vertex dependency in root stage
4 Reducer 2 <- Map 1 (SIMPLE_EDGE), Map 4 (SIMPLE_EDGE)
5 Reducer 3 <- Reducer 2 (SIMPLE_EDGE)
6
7 Stage-0
8 Fetch Operator
9 limit: -1

10 Stage-1
11 Reducer 3
12 File Output Operator [FS_17]
13 Select Operator [SEL_13] (rows=1481587 width=292)
14 Output: [”_col0”, ”_col1”, ”_col2”, ”_col3”, ”_col4”]
15 Filter Operator [FIL_20] (rows=1481587 width=292)
16 predicate: (ROW_NUMBER_window_0 = 1)
17 PTF Operator [PTF_12] (rows=2963174 width=292)
18 Function definitions: [{}, {”name:”:

”windowingtablefunction”, ”order by:”: ”_col4 ASC
NULLS FIRST”, ”partition by:”: ”_col0, _col1”}]

19 Select Operator [SEL_11] (rows=2963174 width=292)
20 Output: [”_col0”, ”_col1”, ”_col2”, ”_col4”, ”_col5”]
21 <-Reducer 2 [SIMPLE_EDGE]
22 SHUFFLE [RS_10]
23 PartitionCols: _col0, _col1
24 Filter Operator [FIL_9] (rows=2963174 width=292)
25 predicate: (_col1 >= _col4)
26 Merge Join Operator [MERGEJOIN_33] (rows=8889524

width=292)
27 Conds: RS_6._col0 = RS_7._col0(Inner), Output:

[”_col0”, ”_col1”, ”_col2”, ”_col4”, ” _col5”]
28 <-Map 1 [SIMPLE_EDGE]
29 SHUFFLE [RS_6]
30 PartitionCols: _col0
31 Select Operator [SEL_2] (rows=425950 width=292)
32 Output: [”_col0”, ”_col1”, ”_col2”]
33 Filter Operator [FIL_21] (rows=425950

width=292)
34 predicate: id is not null
35 TableScan [TS_0] (rows=425950 width=292)
36 axel_experiments@sorted_asc_10000000_1_year_left,

sorted_asc_10000000_1_year_left, Tbl:
COMPLETE, Col: NONE, Output: [”id”,
”ts”, ”label”]

37 <-Map 4 [SIMPLE_EDGE]
38 SHUFFLE [RS_7]
39 PartitionCols: _col0
40 Select Operator [SEL_5] (rows=8081386 width=292)
41 Output: [”_col0”, ”_col1”, ”_col2”]
42 Filter Operator [FIL_22] (rows=8081386

width=292)
43 predicate: id is not null
44 TableScan [TS_3] (rows=8081386 width=292)
45 axel_experiments@sorted_asc_10000000_1_year_right,

sorted_asc_10000000_1_year_right, Tbl:
COMPLETE, Col: NONE, Output: [”id”,
”ts”, ”value”]
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Ett vanligt scenario för maskininlärning är att träna modeller på tidigare observerad data för
att för att ge förutsägelser om framtiden. När man jobbar med ett flertal strukturerade och
tidsmärkta dataset har det blivit vanligare att använda sig av en join-operator som kallas
Point-in-Time join, eller PIT join, för att konstruera dessa datauppsättningar. En PIT join
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är den raden vars registrerade händelsetid är närmaste den vänstra raden händelsetid, av alla
rader i det högra datasetet vars händelsetid inträffade före eller samtidigt som den vänstra
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