
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2019

Video classification with memory
and computation-efficient
convolutional neural network

BENJAMIN NAOTO CHICHE

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Video classification with

memory and

computation-e�cient

convolutional neural network

BENJAMIN NAOTO CHICHE

Master in Computer Science
Date: July 1, 2019
Supervisor: Amir H. Payberah
Examiner: Henrik Boström
School of Electrical Engineering and Computer Science
Host company: Microsoft France
Swedish title: Videoklassificering med minnes-och
beräkningse�ektivt convolutional neural network

iii

Abstract

Video understanding involves problems such as video classification, which
consists in labeling videos based on their contents and frames. In many real
world applications such as robotics, self-driving car, augmented reality, and
Internet of Things (IoT), video understanding tasks need to be carried out in a
real-time manner on a device with limited memory resources and computation
capabilities, while meeting latency requirement.

In this context, whereas neural networks that are memory and computation-
e�cient - i.e., that present a reasonable trade-o� between accuracy and e�-
ciency with respect to memory size and computational speed - have been de-
veloped for image recognition tasks, studies about video classification have
not made the most of these networks. To fill this gap, this project answers the
following research question: how to build video classification pipelines that
are based on memory and computation-e�cient convolutional neural network
(CNN) and how do the latter perform?

In order to answer this question, the project builds and evaluates video clas-
sification pipelines that are new artefacts. This research involves triangulation
(i.e., is qualitative and quantitative at the same time) and the empirical research
method is used for the evaluation. The artefacts are based on one of exist-
ing memory and computation-e�cient CNNs and its evaluation is based on
a public video classification dataset and multiclass classification performance
metrics. The case study research strategy is adopted: we try to generalize
obtained results as far as possible to other memory and computation-e�cient
CNNs and video classification datasets. The abductive research approach is
used in order to verify or falsify hypotheses. As results, the artefacts are built
and show satisfactory performance metrics compared to baseline pipelines that
are also developed in this thesis and metric values that are reported in other
papers that used the same dataset. To conclude, video-classification pipelines
based on memory and computation-e�cient CNN can be built by designing
and developing artefacts that combine approaches inspired from existing pa-
pers and new approaches and these artefacts present satisfactory performance.
In particular, we observe that the drop in accuracy induced by memory and
computation-e�cient CNN when dealing with video frames is, to some extent,
compensated by capturing temporal information via consideration of sequence
of these frames.

iv

Sammanfattning

Videoförståelse innebär problem som videoklassificering, som består av att
annotera videor baserat på deras innehåll och ramar. I många verkliga appli-
kationer, som robotteknik, självkörande bilar, förstärkt verklighet (AR) och
sakernas internet (IoT) måste videoförståelsuppgifter utföras i realtid på en
enhet med begränsade minnesresurser och beräkningsförmåga, samtidigt som
det uppfyller krav på låg fördröjning.

I det här sammanhanget, medan neurala nätverk som är minnes- och beräk-
ningse�ektiva, dvs den aktuella presentationen har en rimlig avvägning mellan
noggrannhet och e�ektivitet (med avseende på minnesstorlek och beräkningar)
utvecklats för bildigenkänningsuppgifter, har studier om videoklassificering
inte fullt utnyttjat dessa tekniker. För att fylla denna lucka i vetenskapen svarar
det här projektet på följande forskningsfråga: hur bygger man videoklassifice-
ringspipelines som bygger på minne och beräkningse�ektiva faltningsnätverk
(CNN) och hur utförs det sistnämnda?

För att svara på denna fråga bygger projektet och utvärderar videoklassifi-
ceringspipelines som är nya artefakter. Den empiriska forskningsmetoden an-
vänds i denna forskning som involverar triangulering (dvs kvalitativt och kvan-
titativt samtidigt). Artefakterna är baserade på ett befintligt minnes- och beräk-
ningse�ektivt CNN och dess utvärdering baseras på en öppet tillgängligt data-
set för videoklassificering. Fallstudieforskningsstrategin antas: Vi försöker att
generalisera erhållna resultat så långt som möjligt till andra minnes- och be-
räkningse�ektiva CNNs och videoklassificeringsdataset. Som resultat byggs
artefakterna och visar tillfredsställande prestandamätningar jämfört med bas-
linjeresultat som också utvecklas i denna avhandling och värden som rappor-
teras i andra forskningspapper baserat på samma dataset. Sammanfattningsvis
kan video-klassificeringsledningar baserade på ett minne och beräkningse�ek-
tivt CNN byggas genom att utforma och utveckla artefakter som kombinerar
metoder inspirerade av befintliga papper och nya tillvägagångssätt och dessa
artefakter presenterar tillfredsställande prestanda. I synnerhet observerar vi att
nedgången i noggrannhet som induceras av ett minne och beräkningse�ektivt
CNN vid hantering av videoramar kompenseras till viss del genom att ta upp
tidsmässig information genom beaktande av sekvensen av dessa ramar.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 2
1.3 Purpose . 3
1.4 Goal . 5
1.5 Methodology . 5
1.6 Delimitations . 6
1.7 Benefits, Ethics and Sustainability 7
1.8 Outline . 8

2 Background 9
2.1 Artificial Neural Networks and Deep Neural Networks 9

2.1.1 Feedforward neural network 10
2.1.2 Convolutional neural network 10
2.1.3 Recurrent neural network 12
2.1.4 Training DNNs . 16
2.1.5 Techniques used in training 17
2.1.6 Quantization of NNs 19

2.2 CNN architectures . 22
2.2.1 Inception-v3 . 22
2.2.2 MobileNets . 25
2.2.3 Deep transfer learning 30

2.3 Related work . 33
2.3.1 Video classification 33
2.3.2 CNN architectures 35
2.3.3 Deep transfer learning 35
2.3.4 Quantization of NNs 36

v

vi CONTENTS

3 Methodology 38
3.1 Research method . 38
3.2 Datasets . 41
3.3 Evaluation . 44

3.3.1 Evaluation metrics 44
3.3.2 Measurement of the evaluation metrics 46
3.3.3 Comparison . 47

3.4 Video classification pipelines implementation 47
3.5 Quality assurance . 49

4 Results 50
4.1 Video classification pipelines building 50

4.1.1 Overview . 50
4.1.2 Model training . 55

4.2 Data Analysis . 55
4.3 Classification results . 56
4.4 Result analysis and discussion 63

5 Conclusion and future work 66

Bibliography 70

A Classification results 76

B Deployment of the video classification pipeline 84

Chapter 1

Introduction

This chapter describes the specific problem that this thesis project addresses,
the context of the problem, the goals of this project, and outlines the structure
of the thesis.

1.1 Background

Research in image understanding - involving problems such as image clas-
sification and object detection - has known accelerated improvement. More
and more complicated and deeper neural networks (NNs) intended for do-
ing image recognition with the highest possible accuracy - widely based on
Convolutional Neural Networks (CNNs) that can e�ectively extract features
from images [1] - emerged. AlexNet [2], VGG [3], ResNet [4], and Google-
LeNet/Inception [5, 6], are examples of such networks, and proved their power
based on large and diverse image datasets, such as Pascal VOC data sets [7] or
ImageNet [8, 9].

However, that trend of NN models that became more and more compli-
cated and deeper decreased their e�ciency regarding size and speed. In many
real world applications such as robotics, self-driving car, augmented reality,
and Internet of Things (IoT), the recognition tasks need to be carried out in
a real-time manner on a device with limited memory resources and compu-
tation capabilities, while meeting latency requirement. Therefore, more re-
cently, on the one hand, more memory and computation-e�cient (i.e., e�-
cient with respect to memory size and computational speed) deep learning
(DL) models have been developed for image recognition. MobileNetV1 [10],
MobileNetV2 [11], SqueezeNet [12] and Shu�eNet [13, 14] are examples of
such networks. They allowed to do a less but enough accurate and much faster

1

2 CHAPTER 1. INTRODUCTION

image recognition tasks and they are lighter than the previously mentioned
complicated deep neural networks (DNNs) in terms of memory. They present
a reasonable trade-o� between accuracy and e�ciency. Note that memory
size of a model and its computational speed are strongly related in DL; for
example, a DL model that has less parameters has obviously smaller memory
size and involves linear combinations that have less terms so that are faster.
On the other hand, DL model compression and acceleration techniques, based
on quantization [15, 16, 17, 18], parameter pruning and sharing, low-rank
factorization, transferred/compact convolutional filters and knowledge distil-
lation [19, 20, 21], have been studied. Newer engineering tools that benefit
from these studies have been developed, such as TensorFlow Lite [22].

Besides, video understanding involves problems such as video classifica-
tion, which consists in labeling videos based on their contents and frames.
Action recognition is an example of video classification, which consists in la-
beling action videos. To a lesser degree than image classification, studies have
been carried out in order to deal with video classification problem. Most of
them used image features extracted from video frames based on CNNs and/or
optical flow, which is a local spatio-temporal feature that is useful to extract
motion information from succession of video frames. Image features give spa-
tial (appearance) information and their aggregation over time gives temporal
(motion) information. Optical flow directly captures motion information. [23,
24] proposed two-stream architectures that extracted spatial information from
single frame of a video based on CNNs, dealt with motion information by
computing optical flow and by using CNNs in order to extract features from
optical flow images, and then aggregated results of these two approaches. [25]
used CNNs to extract spatial features from individual video frames then com-
bined them in order to capture temporal information, by using approaches such
as Long-Short-Term-Memory (LSTM). The study also used optical flow to
have another source of motion information. [26] labelled videos and extracted
Inception-v3 [27] features from their frames in order to create a large and di-
verse video dataset and trained classifiers on it, by trying or not to integrate
information over time.

1.2 Problem

The studies about video classification have not made the most of the aforemen-
tioned progress in image understanding regarding memory and computation-
e�cient DNNs. Building of video classification pipelines based on them de-
serves more attention, given the existence of numerous possible applications

CHAPTER 1. INTRODUCTION 3

involving the analysis of video data at the level of devices with limited mem-
ory resources and computation capabilities. This is one of the points that mo-
tivate this thesis. The aforementioned studies leveraged feature extractions
that are di�cult to do in practice on these devices. The computation of op-
tical flow is costly in terms of execution time and memory [28, 29] thus be-
came a bottleneck in [23]. Moreover, CNNs that are used in the two-stream
architectures [23, 24] that extracted features from frames and optical flow im-
ages are deep and complicated CNNs that are not designed to be memory and
computation-e�cient (CNN-M-2048 [30] in [23]; VGG-M-2048 and VGG-
16 [30, 3] in [24]). [25] extracted features from images by using AlexNet [2]
and GoogleNet [5] and [26] extracted features from images by using Inception-
v3 [27]. All of these networks are deep, complicated and not meant to be e�-
cient in terms of memory and computation. For our best knowledge, no studies
about video classification have used memory and computation-e�cient CNNs
such as MobileNets or benefited from DL compression and acceleration tech-
niques when dealing with image feature extraction. This is the second point
that motivates this thesis. Moreover, regarding video classification based on
memory and computation-e�cient CNN, whereas the latter is less accurate
when considering individual video frames, this might be compensated by cap-
turing temporal information via consideration of sequence of these frames.
This is the third point that motivates this thesis.

1.3 Purpose

As mentioned in the previous section, the studies about video classification
have not made the most of memory and computation-e�cient CNNs. This
thesis aims to address this problem by building video classification pipelines
that are based on memory and computation-e�cient CNN. This raises the fol-
lowing question: how to actually build these video classification pipelines?
To answer this question, as a case study, video classification pipelines that are
based on quantized MobileNetV2 are built. Specificities of this network are
detailed in chapter 2. The reason for its use is that, in a nutshell:

• MobileNetV2 is one of the NNs that are designed for image recogni-
tion tasks that presents the most e�ective trade-o� between accuracy
and model e�ciency in terms of model size (memory size) and compu-
tational speed;

• Quantization is one of the most e�ective techniques that aims to reduce
DL model size and computational speed

4 CHAPTER 1. INTRODUCTION

and they can be combined in order to obtain a highly memory and computation-
e�cient and accurate enough DL image recognition model. Quantized Mo-
bileNetV2 is chosen in this thesis as a representative of memory and computation-
e�cient CNNs that also include MobileNetV1, MobileNetV2, quantized Mo-
bileNetV1 and other networks. Indeed, exactly same approaches as the ap-
proaches that are developed in this thesis can be recycled when building video
classification pipelines that are based on one of these memory and computation-
e�cient CNNs. Therefore, the thesis first aims to design and build the pipelines
that are indeed new artefacts. They are inspired from existing papers, but are
di�erent from the approaches they proposed. They should capture spatial in-
formation brought by video frames and temporal information by considering
sequences of video frames.

Moreover, it is important to know how well the artefacts can perform.
Subsequently, this allows to be sure they correctly perform and to validate
them. This raises the following question: how well do the video classification
pipelines based on memory and computation-e�cient CNN perform? In order
to answer this question, the built video classification pipelines’ performance
is empirically measured and compared with other baseline pipelines that are
based on a deeper and more accurate image recognition CNN (Inception-v3)
and that are also built in this thesis following the same design as the pipelines
that are based on quantized MobileNetV2. Here also, the use of quantized Mo-
bileNetV2 and Inception-v3 involves a case study with a view to generalizing
as far as possible obtained results.

Overall, by concatenating the two questions, this thesis answers the fol-
lowing research question: how to build video classification pipelines that are
based on memory and computation-e�cient CNN and how do the latter per-
form?

Along with answering this question, the thesis tries to first verify or falsify
the following hypothesis, based on the abductive research approach: the video
classification pipelines that are based on quantized MobileNetV2 perform not
as good as the baseline pipelines but they present similar performance. If this
is the case, it may indicate that the drop in accuracy induced by the use of
memory and computation-e�cient CNN when dealing with video frames can
be compensated by capturing temporal information via consideration of se-
quence of these frames. To support the latter, also single-frame models that
completely ignore temporal information are built on top of both quantized Mo-
bileNetV2 and Inception-v3 and evaluated. Moreover, performance metrics
is measured based on an appropriate video classification dataset that is col-
lected. This dataset should serve as a representative of video classification

CHAPTER 1. INTRODUCTION 5

datasets, with a view to again generalizing our results to other video classifi-
cation datasets.

The purpose of this thesis is not to achieve a state-of-the-art result based
on the dataset. Instead, based on these metrics and the abductive research
approach, the second hypothesis that can be verified or falsified is that, re-
garding the dataset, the video classification pipelines based on quantized Mo-
bileNetV2 perform not as good as the state-of-the-art results presented in other
papers [23, 24, 25] based on very deep and complicated DNNs and/or optical
flow, but enough good to be considered acceptable.

1.4 Goal

As long-term goal, the completion of this work is a significant starting point
for video classification pipelines that are based on a bit less accurate but mem-
ory and computation-e�cient CNNs that can di�er or not from quantized
MobileNetV2. As stated above, quantized MobileNetV2 is chosen as repre-
sentative of memory and computation-e�cient CNNs that also include Mo-
bileNetV1, quantized MobileNetV1, MobileNetV2 and other networks. Mea-
sures of performance metrics, along with comparison with the reference (base-
line) pipelines, allows to have an idea about how well video classification based
on these networks can perform and validate them. In the same perspective, the
hypothesis about the drop in accuracy induced by memory and computation-
e�cient CNN at video frame level that can be compensated by capturing tem-
poral information via consideration of sequence of these frames is an inter-
esting point to discuss. This thesis can show potential utility of memory and
computation-e�cient CNN when dealing with video classification, which is
interesting for one who wants to do video classification on a platform that
is limited in terms of memory and computation capabilities. The existence
of numerous possible applications involving the analysis of video data at the
level of devices with limited memory resources and computation capabilities
strengthens the importance of this work.

1.5 Methodology

Research method for this degree project is determined following the portal pre-
sented in [31]. First of all, the positivism philosophical assumption is made,
i.e., the reality is objectively given and independent of the observer and in-
struments. We conduct a qualitative and quantitative research, which involves

6 CHAPTER 1. INTRODUCTION

triangulation. Indeed, to answer the question, video classification pipelines
which are indeed new artefacts are designed and numerically evaluated. This
is a qualitative research because this involves development of new artefacts;
this is also a quantitative research because this involves measurement of nu-
merical metrics. To answer the question, video classification pipelines that are
based on quantized MobileNetV2 that is chosen as a representative of memory
and computation-e�cient CNNs are designed, implemented and empirically
evaluated based on the empirical research method. Indeed, exactly same ap-
proach can be recycled when building video classification pipelines that are
based on other memory and computation-e�cient CNNs, which allows gen-
eralization of the conclusions from this thesis. Therefore here, we adopt the
case study research strategy. Performance metrics that are related to multiclass
classification task are used for the evaluation. To have a reference (baseline)
for comparison, similar video classification pipelines, but this time based on
Inception-v3 are also developed and evaluated. The abductive research ap-
proach is used in order to verify or falsify the hypotheses. Conclusions are
drawn from experimental results and observations based on a dataset. The ex-
periment and case study data collection is done to obtain the dataset. The com-
putational mathematics method is used with a view to analyzing this dataset.
Again, the pipelines in this study is based on quantized MobileNetV2 and the
dataset, but we try to generalize as far as possible the results to other memory
and computation-e�cient CNNs and other video classification datasets.

1.6 Delimitations

Some aspects of the research question will not be considered. Regarding the
first part of it, there are many possibilities when building video classification
pipelines based on a CNN, even without dealing with optical flow. [26] pro-
poses three frame-level features-based models and three video-level features-
based models (those video-level features are obtained from frame-level fea-
tures). [25] proposes several feature pooling architectures and a LSTM archi-
tecture that can use optical flow. [32] proposes four fusion methods. This thesis
does not deal with all of them, because of time constraint. Instead, it designs
video classification pipelines that are indeed new artefacts that are di�erent
from but highly inspired from the LSTM-based approaches that are presented
in [26, 25].

Regarding the second part of the research question, "performance" is an
ambiguous term, because for a classification pipeline this can concern several
di�erent aspects such as memory complexity, time complexity end energy con-

CHAPTER 1. INTRODUCTION 7

sumption. In this study only the performance metrics related to the multiclass
classification tasks are measured. Indeed, it is obvious that the pipelines based
on memory and computation-e�cient CNN improve performance in terms of
memory size, energy consumption and computational speed.

Quantized MobileNetV2 is chosen in the case study research strategy as a
representative of memory and computation-e�cient CNNs that also include
MobileNetV1, quantized MobileNetV1, MobileNetV2 and other networks.
We will only build video classification pipelines based on quantized MobileNetV2
and the reference pipelines but conclusions are generalised as far as possi-
ble to other memory and computation-e�cient CNNs. The same statement
stands for datasets: conclusions drawn from observations that are based on
the selected and used dataset are generalized as far as possible to other video
classification datasets.

Finally, as already mentioned, the purpose of this thesis is not to achieve
a state-of-the-art result based on the dataset. Instead, a hypothesis that can
be verified or falsified is that, regarding the dataset, the video classification
pipelines perform not as good as the state-of-the-art results presented in other
papers based on very deep and complicated DNNs and/or optical flow, but
enough good to be considered acceptable.

1.7 Benefits, Ethics and Sustainability

As previously mentioned, this work can serve as a significant starting point
for video classification pipelines that are based on memory and computation-
e�cient CNNs. Validation or non-validation of the hypothesis about the drop
in accuracy induced by memory and computation-e�cient CNN at video frame
level that can be compensated by capturing temporal information via consider-
ation of sequence of these frames is an interesting point from this perspective.
This thesis can show utility of memory and computation-e�cient CNN when
dealing with video classification, which is interesting for one who wants to
do video classification on a platform that is limited in terms of memory and
computation capabilities.

However, the deployment of such video classification can violate one’s
privacy, by allowing him to be monitored without his consent. From this point
of view, the video classification and its mechanism can be abusively used or
modified for malicious intention. This project has been proposed by the host
company in order to only satisfy academic requirement. It is based on a public
for research and benchmark dataset, that is collected in an ethical way.

Besides, the use of memory and computation-e�cient CNN when dealing

8 CHAPTER 1. INTRODUCTION

with video classification can significantly reduce power consumption, as these
CNNs require less memory and faster computations. The quantization tech-
nique allows to do computations on reduced number of bits. In this sense, the
artefacts that are designed and developed in this thesis are sustainable.

1.8 Outline

Chapter 2 presents extended background. Chapter 3 details the research method
that is used in this project. Chapter 4 describes and discusses obtained results.
Chapter 5 concludes this thesis work and provides insight for future work.

Chapter 2

Background

This chapter provides theoretical background of di�erent concepts that need
to be understood by readers of this thesis.

2.1 Artificial Neural Networks and Deep Neu-

ral Networks

Artificial neural networks (ANN) are computing systems that are inspired by
the biological neural networks of brains. It is based on a set of connected units
or neurons. Each connection, similarly to the synapses in a biological brain,
transmits a signal from one neuron to another. A neuron that receives a signal
processes it and then sends signal to other neurons connected to it. In ANN
implementations, the signal is a real number, and the output of each neuron is
computed by applying non-linear function of the weighted sum of its inputs.
Indeed, neurons and connections between neurons (edges) have a weight that
adjusts as learning proceeds. The weight increases or decreases the strength of
the signal at a connection. Neurons may have a threshold such that the signal
is only sent if the weighted sum crosses that threshold. Generally, neurons are
aggregated into layers. Di�erent layers perform di�erent transformations on
their inputs. Signals travel from the first layer (the input layer), to the last layer
(the output layer), possibly after traversing the layers multiple times. A DNN
is an ANN with multiple layers between the input and output layers.

In the supervised machine learning context - given data points and their
associated outputs -, the goal of DL for a DNN is to learn the weights of its
edges, based on training.

The first six subsections in the following are highly inspired from [33].

9

10 CHAPTER 2. BACKGROUND

2.1.1 Feedforward neural network

A Feedforward neural network (FNN) is an artificial neural network in which
connections do not form a cycle. The latter is composed of:

• One input layer

• One or more hidden layers

• One final output layer

Every layer except the output layer includes a bias neuron and is fully con-
nected to the next layer. The model is associated with a directed acyclic graph
describing how the functions are composed together. The length of the chain
gives the depth of the model. Figure 2.1 illustrates a FNN. Neurons may have
a threshold such that the signal is only sent if the weighted sum crosses that
threshold, as stated above. However, in most cases, they are replaced by acti-
vation functions. Let x be the weighted sum which is an input for a neuron, its
output is y = activation(x). Examples activation functions are:

• sigmoid(x) = 1
1+e(�x) .

• tanh(x) = e(x�)�e(�x)

e(x)+e(�x) .

• ReLU(x) = max(x, 0).

• LeakyReLU↵(x) = max(↵x, x), with ↵ being a parameter.

Each activation function has its advantages and drawbacks.
Training of FNN is based on the backpropagation algorithm combined with

an optimisation algorithm (2.1.4).

2.1.2 Convolutional neural network

Convolutional neural network (CNN) is a type of deep neural networks, that
is mostly used in visual image analysis. They were inspired by biological pro-
cesses in the sense that the connectivity between neurons is similar to the way
the animal visual cortex works. Individual neurons respond to stimuli only in
a restricted region of the visual field, called the receptive field. The receptive
fields of di�erent neurons partially overlap so that they cover the entire visual
field.

Indeed, tackling image understanding based on FNN faces di�culty in rec-
ognizing objects, due to phenomena such as:

CHAPTER 2. BACKGROUND 11

Figure 2.1: An illustration of a FNN [33]

• Rotation

• Lighting: objects may look di�erent depending on the level of external
lighting.

• Deformation: objects can be deformed in a variety of non-a�ne ways.

• Scale variation: visual classes often exhibit variation in their size.

• Viewpoint invariance.

A CNN can tackle these challenges, taking advantage of shape information.
It is composed of a stack of convolutional modules. Each module consists of
a convolutional layer followed by a pooling layer:

• Each neuron in a convolutional layer applies filters on its receptive field:
calculates a weighted sum of the input pixels in the receptive fields,
adds a bias, and feeds the result through its activation function to the
next layer. Figure 2.2 illustrates this filtering operation. The amount of
movement between applications of the filter to the input image is called
stride, and it is generally symmetrical in height and width dimensions.
The addition of pixels to the edge of the image is called padding. The
output of this layer are feature maps (activation map). As input images
are also composed of multiple sub layers - one per color channel -, a
convolutional layer simultaneously applies multiple filters to its inputs.

• The pooling layer downsamples the image data extracted by the convo-
lutional layers to reduce the dimensionality of the feature map in order
to decrease processing time.

12 CHAPTER 2. BACKGROUND

Figure 2.2: An illustration of the filtering operation [33]

Figure 2.3: An illustration of the CNN architecture [33]

The last module is followed by the flattening operation and one or more
dense layers that perform classification. Flattening converts the output of the
convolutional part of the CNN into a 1D feature vector. The final dense layer
contains a single node for each target class in the model, with a softmax acti-
vation function. Figure 2.3 illustrates the architecture of the CNN. Its training
is also based on the backpropagation algorithm (2.1.4).

2.1.3 Recurrent neural network

The idea behind Recurrent neural networks (RNN) is to deal with sequential
data: inputs (and outputs) are not independent of each other. Neurons in an
RNN have connections pointing backward, and RNNs have memory, which
captures information about past computations. Figure 2.4 illustrates a RNN
neuron. Each recurrent neuron has three sets of weights: u, w, and v.

• u: the weights for the inputs x(t).

CHAPTER 2. BACKGROUND 13

Figure 2.4: An illustration of a RNN neuron [33]

Figure 2.5: An illustration of the RNN unfolding [33]

• w: the weights for the hidden state of the previous time step h
(t�1).

• v: the weights for the hidden state of the current time step h
(t).

To train an RNN, one should unroll it through time and then do the back-
propagation (2.1.4). This is called backpropagation through time. Figure 2.5
illustrates the network unrolling or unfolding.

By stacking multiple layers of cells, a deep RNN is obtained.

LSTM

RNNs presents problems:

• when the gap between the relevant information and the place that it’s
needed grows, RNNs become unable to learn to connect the information.

• RNNs may su�er from the vanishing/exploding gradient problem (see 2.1.5
for its definition).

14 CHAPTER 2. BACKGROUND

Long short-term memory (LSTM) [34] has been introduced in order to
solve these problems. In LSTM, the network can learn what to store and what
to throw away. Figure 2.6 illustrates the structure of a LSTM cell. Without
looking inside the box, the LSTM cell looks exactly like a basic cell. Whereas
the repeating module in a standard RNN contains a single layer, the repeating
module in an LSTM contains four interacting layers. In LSTM state is split in
two vectors:

• h
(t) (h stands for hidden): the short-term state

• c
(t) (c stands for cell): the long-term state. The LSTM can remove/add

information to the cell state, regulated by three gates: forget gate, input
gate and output gate.

The following steps summarize the LSTM Walk:

• A sigmoid layer, called The forget gate layer, decides what information
we are going to throw away from the cell state. It looks at h(t�1) and x

(t),
and outputs a number between 0 and 1 for each number in the cell state
c
(t�1) . 1 represents completely keep this, and 0 represents completely

get rid of this. We have: f (t)
= �(uf

T
x

(t)
+ wfh

(t�1)
)

• A sigmoid layer, called the input gate layer, decides which values we
will update. A tanh layer creates a vector of new candidate values that
could be added to the state. We have: i(t) = �(ui

T
x

(t)
+ wih

(t�1)
) and

c̃
(t)

= tanh(uT
c̃ x

(t)
+ wih

(t�1)
). These the two layers overall decide what

new information we are going to store in the cell state.

• The old cell state c
(t�1) is updated into the new cell state c

(t). We mul-
tiply the old state by f

(t), forgetting the things we decided to forget ear-
lier. Then we add it i(t)

N
c
(t). This is the new candidate. values,

scaled by how much we decided to update each state value. We have
that c(t) = f

(t)
c
(t�1) + i

(t)
c

(t)

• The final step is the decision about the output. First, a sigmoid layer
decides what parts of the cell state we are going to output. Then, the
cell state is put through tanh and multiplied by the output of the sigmoid
gate (outputgate), so that it only outputs the parts it decided to. We have
that o(t) = �(uo

T
x
(t) + woh

(t�1)) and ŷ
(t) = h

(t) = o
(t)

N
tanh(c(t)).

CHAPTER 2. BACKGROUND 15

Figure 2.6: An illustration of a LSTM cell [33]

Figure 2.7: An illustration of the GRU cell [36]

GRU

A variation on the LSTM is the Gated Recurrent Unit (GRU), introduced
by [35]. It combines the forget and input gates into a single update gate. It
also merges the cell state and hidden state, and makes some other changes.
The resulting model is simpler than standard LSTM models, and has been
growing increasingly popular. Figure 2.7 illustrates this cell. We have that:

• zt = �(Wz · [ht�1, xt])

• rt = �(Wr · [ht�1, xt])

• tanh(W · [rt · ht�1, xt])

• ht = (1� zt) ⇤ ht�1 + zt ⇤ h̃t

16 CHAPTER 2. BACKGROUND

2.1.4 Training DNNs

In the context of multiclass classification, with y being the ground truth label
and ŷ being the predicted label, the cost function (or the loss function) is the
cross-entropy between them:

J(w) = � 1

m

X

i

X

j

y
(i)
j log(ŷ(i)j)

This quantity quantifies the di�erence (error) between two probability dis-
tributions. It is also mathematically equivalent to the negative log-likelihood
in probability theory.

The goal of DL is to find w that minimizes J(w). To do so, the basic
method to use is the gradient decent. Starting from a random point w0, one
repeats the following steps, until the stopping criterion is satisfied :

• Determine a descent direction �J(w)
�w .

• Choose a step size ⌘.

• Update the parameters: w
(next)
i = wi � ⌘

�J(w)
�wi

(simultaneously for all
parameters).

In DL, the computation of �J(w)
�w is based on the backpropagation training

algorithm. For each training instance x
(i) the algorithm does the following

steps:

• Forward pass: make a prediction (compute ŷ(i) = f(x(i))).

• Measure the error (compute the cost function cost(ŷ(i), y(i))). In a clas-
sification problem, the cost function is usually the cross-entropy.

• Backward pass: go through each layer in reverse to measure the error
contribution from each connection.

• Tweak the connection weights to reduce the error (update the set of
weights W and the set of bias b) by calculating gradients. This last step
is the gradient descent step on all the connection weights in the network,
using the error gradients measured earlier.

CHAPTER 2. BACKGROUND 17

2.1.5 Techniques used in training

There are several techniques that can be used during the training in order to
make the convergence faster, overcome overfitting and avoid vanishing/exploding
gradient. Overfitting happens when norm of weights become too large, which
equivalently shows that the model is getting too complex. Vanishing/exploding
gradient happens when norm of gradient respectively becomes too small/large
when doing backpropagation at lower layers (those that are closer to the in-
puts).

Early stopping

Early stopping is a technique used to avoid overfitting. It is based on the dataset
splitting into training, validation and test sets. As the training steps go by, its
prediction error on the training/validation set naturally goes down. After a
while the validation error stops decreasing and starts to go back up. This shows
that the model has started to overfit the training data. In the early stopping, we
stop training when the validation error reaches a minimum.

Batch normalization

Batch normalization [37] is a technique to address the problem that the distri-
bution of each layer’s inputs changes during training, as the parameters of the
previous layers change. It makes the learning of layers in the network more in-
dependent of each other. The technique consists of adding an operation in the
model just before the activation function of each layer. It’s zero-centering and
normalizing the inputs, then scaling and shifting the result. It first estimates
the inputs’ mean and standard deviation of the current mini-batch, then uses
these estimated values in order to produce scaled and shifted version of the
inputs [37]. It is used in order to overcome the vanishing gradient problem:
indeed, the gradient traditionally tells how to update each parameter, under
the assumption that the other layers do not change, whereas in practice, we
update all of the layers simultaneously, and unexpected results can happen.
The technique prevents the latter.

Dropout

Dropout [38] is a regularization technique used to avoid overfitting. At each
training step, each neuron drops out temporarily with a probability p:

• The hyperparameter p is called the dropout rate.

18 CHAPTER 2. BACKGROUND

Figure 2.8: An illustration of momentum [33]

• A neuron will be entirely ignored during this training step.

• It may be active during the next step.

• Exclude the output neurons.

After training, neurons don’t get dropped anymore .

Adam optimisation

Adam optimisation is an optimisation algorithm that combines the ideas of
Momentum optimization and RMSProp. Like Momentum optimization,it keeps
track of an exponentially decaying average of past gradients. Like RMSProp,
it keeps track of an exponentially decaying average of past squared gradients.

Momentum is a concept from physics: an object in motion will have a
tendency to keep moving. It measures the resistance to change in motion. The
higher momentum an object has, the harder it is to stop it. This is the very
simple idea behind momentum optimization(Figure 2.8):

• we can see the change in the parameters w as motion: w(next)
i = wi �

⌘
�J(w)
�wi

.

• we can thus use the concept of momentum to give the update process a
tendency to keep moving in the same direction.

• it can help to escape from local minimums.

Momentum optimization cares about what previous gradients were.At each
iteration, it adds the local gradient to the momentum vector m: mi = �mi +
⌘
�J(w)
�wi

with � being called momentum and being between 0 and 1. One then
updates the weights by subtracting this momentum vector: w(next)

i = wi �mi

CHAPTER 2. BACKGROUND 19

Besides, to further have a better optimization algorithm, one can keeps
track of a learning rate for each parameter, and adapts the learning rate over
time. To do so, parameters with large partial derivative of the cost have a
rapid decrease in their learning rate and parameters with small partial deriva-
tives have a small decrease in their learning rate. However, if the learning rate
gets scaled down so much that the algorithm ends up stopping entirely before
reaching the global optimum.So one can only accumulate the gradients from
the most recent iterations (not from the beginning of training). This is the idea
behind RMSProp.

By combining these two ideas, Adam Optimization does the following:

• m
(next) = �1m+ (1� �1)�wJ(w)

• s
(next) = �2s+ (1� �2)�wJ(w)

N
�wJ(w)

• m
(next) = m

1��T
1

• s
(next) = s

1��T
2

• w
(next) = w � ⌘m↵

p
s+ ✏

N
and ↵ represents the element-wise multiplication and division. Steps

1, 2, and 5 are similar to both Momentum optimization and RMSProp. In
steps 3 and 4, since m and s are initialized at 0, they will be biased toward 0
at the beginning of training, so these two steps will help boost m and s at the
beginning of training.

2.1.6 Quantization of NNs

Quantization of DNNs is the reduction of precision representations of weights
and/or activations for both storage and computation [22]. Whereas real val-
ues are usually represented by 32-bit floats in most deep learning frameworks,
thanks to quantization, DNNs can work with smaller data types with less pre-
cision, such as 8-bit integers [15]. Advantages of this are:

• Arithmetic with lower bit-depth is faster. In general, operations with
32-bit floats are slower than 8-bit integers.

• Going from 32-bits to 8-bits, almost represents a 4⇥ reduction in terms
of memory.

20 CHAPTER 2. BACKGROUND

Figure 2.9: Weights in a layer from AlexNet. The right sub-graph shows one
quantization using 4-bits (16 discrete values) [39]

• Lower bit-widths allow data to be stocked into the same caches or reg-
isters. This reduces number of accesses from RAM, which are costly in
terms of time and power.

• Float arithmetic is hard and is not always supported on some devices,
whereas integer arithmetic is readily supported.

Quantization is based on the fact that the weights and activations related
to a layer generally belong to a small interval, which can be estimated in ad-
vance. This allows to concentrate fewer bits within a smaller interval. To
illustrate this, Figure 2.9 shows the distribution of the weights in a layer from
AlexNet [2], with a histogram of actual weights on the left [39]. One can quan-
tize the interval to only represent some of these values accurately, and round
the remaining values.

There are several levels of quantization:

• Post-training quantization: quantizes weights and activations post train-
ing, following a quantization scheme.

• Quantization-aware training: simulates quantization e�ects in the for-
ward pass of training as it will happen in the inference engine, by imple-
menting the rounding behavior of the quantization scheme. Backprop-
agation still happens as usual.

The following describes the 8-bit fixed point quantization scheme and quantization-
aware training presented in [15] and implemented in TensorFlow Lite [22].

CHAPTER 2. BACKGROUND 21

The latter study provided a quantization scheme that quantizes both weights
and activations as 8-bit integers, and bias vectors as 32-bit integers. The lat-
ter established, by relying on two quantization parameters, the a�ne mapping
between the bit representation of integer values q (quantized values) and their
interpretation as mathematical real numbers r in order to allow e�cient im-
plementation of all arithmetic using only integer arithmetic operations on the
quantized values. This scheme make use of a single set of the two quantization
parameters for all values within each activations array and within each weights
array. Di�erent arrays use separate quantization parameters. This quantization
scheme follows the a�ne equation:

r =
rmax � rmin

((2B � 1))� 0
⇥ (q � z) = S ⇥ (q � z)

with r being the real value (generally float32), q being its quantized rep-
resentation as a B-bit integer (for example uint8 or uint32), S (float32)
and z (uint) being the factors by which we scale and shift. z is the quantized
‘zero-point’ which will always map back exactly to 0.f (see the following).
This quantization scheme satisfies the following:

• It is a�ne, therefore the result of fixed-point calculations can map back
to real numbers.

• It always represents 0.f accurately. If we quantize and dequantize any
real value, only 256 (or generally, 2B) of them will return the exact the
same number, while all others will be subject to precision loss. If we
ensure that 0.f is one of these 256 values, it turns out that DNNs can
be quantized more accurately according to [15] that claims that this is
because 0 has a special significance in DNNs, such as padding. Besides,
having 0 map to another value that is higher or lower than zero will cause
a bias in the quantization scheme.

Because the weights of a pre-trained network are constant, they can be
converted and stored in quantized form in advance, with their exact ranges
known.

The input to a layer - or equivalently the output of a preceding layer - are
also quantized with their own di�erent parameters. While we ideally want to
know the exact range of values to accurately quantize them, results of unknown
inputs can still be expected to be in similar interval. We can find the average
output interval on a large number of training examples and use this as a proxy
to the output quantization parameters.

22 CHAPTER 2. BACKGROUND

Regarding the function that computes the output of the layer, the results of
integer computations can overflow. Therefore results have to be stored in larger
integers (for example int32) and then requantized to the 8-bit output. Some
of the layers’ logic are changed: for example, the ReLU activation function
compares values against Quantized(0) instead of 0.f. As TensorFlow Lite [22]
uses gemmlowp (a type of Low-precision matrix multiplication) for matrix
multiplication, which stores results of uint8 matrix multiplications in int32,
the biases are quantized in higher precision, as int32. In going from 32-bit
to 8-bit, the expected quantization range is specified after the next activation
layer. This will implicitly compute activations and also help the use the full
quantization range in this layer.

To allow fore quantization-aware training, TensorFlow Lite introduced the
“fake quantization” nodes. First, with the fake quantization nodes, the round-
ing e�ect of quantization is simulated in the forward pass of the training as it
would occur in actual inference. All quantities are still stored as float during
training, and backpropagation still works as usual. Second, fake quantization
nodes record the ranges of activations during training. These nodes are placed
in the training graph to exactly match wherever activations would change quan-
tization ranges (input and output in Figure 2.10). As the network trains, they
collect a moving average of the ranges of float values seen at that node. This
is quantization-aware training.

All this information is then taken by TensorFlow Lite’s TOCO (TensorFlow
Optimizing Converter) tool, which, along with other optimizations, converts
a neural network to the quantized form and specifies how to use them in infer-
ence by TensorFlow Lite’s kernels.

2.2 CNN architectures

This section describes the families of NNs the two networks that are used in
this project belong to. It also explains how they are used, based on deep trans-
fer learning.

2.2.1 Inception-v3

GoogLeNet [5] was the winner of the ImageNet Large Scale Visual Recog-
nition Competition in 2014 [40]. It is also called Inception-v1, and there are
v2, v3 and v4 later on. In GoogLeNet, 1⇥ 1 convolution is used as a dimen-
sion reduction module to reduce the computation bottleneck, so that depth and
width can be increased. This technique was introduced in [41], and is used

CHAPTER 2. BACKGROUND 23

Figure 2.10: Training with simulated quantization. Left: original graph.
Right: modified graph for quantization-aware training [15].

with the ReLU activation function. This dimension reduction is illustrated in
Figures 2.11 and 2.12. Main building blocks of GoogLeNet is the Inception
module that is based on is this dimension reduction (Figure 2.14). Global aver-
age pooling (see 2.2.3) is used nearly at the end of network by averaging each
feature map from 7⇥ 7 to 1⇥ 1, as in Figure 2.22. The overall architecture is
shown in Figure 2.15. There are 22 layers in total. The intermediate softmax
branches are auxiliary classifiers that are only used at training time in order to
overcome gradient vanishing problem, along with regularization [5].

Inception-v3 is the improvement of Inception-v2 which is in turn the im-
provement of GoogLeNet. Both of them were presented in the same paper [27].

Inception-v2 further reduced computational cost. 5 ⇥ 5 convolutions are
factorized into two 3 ⇥ 3 convolutions. Convolutions of filter size n ⇥ n are
factorized to a combination of 1 ⇥ n and n ⇥ 1. Then, to remove the repre-
sentational bottleneck, filter banks in the module are expanded (the module is
made wider instead of deeper).

To improve Inception-v2 without drastically changing the modules, Inception-
v3 incorporated all of the above features for Inception-v2, and in addition used
the following approaches:

• The use of RMSProp Optimizer.

• Factorization of 7x7 convolutions.

24 CHAPTER 2. BACKGROUND

Figure 2.11: Without 1⇥ 1 convolution

Figure 2.12: With 1⇥ 1 convolution

Figure 2.13: 5 ⇥ 5 convolution with the use of 1 ⇥ 1 convolution. Without
the Use of 1 ⇥ 1 Convolution, number of operations = (14 ⇥ 14 ⇥ 48) ⇥
(5 ⇥ 5 ⇥ 480) = 112.9M . With the use of 1 ⇥ 1 convolution: number of
operations = Number of operations for 1⇥1 + Number of operations for 5⇥5 =
(14⇥14⇥16)⇥(1⇥1⇥480)+(14⇥14⇥48)⇥(5⇥5⇥16) = 1.5M+3.8M =
5.3M << 112.9M [42].

Figure 2.14: Original Inception module with the dimension reduction based
on 1⇥ 1 convolution [5]

CHAPTER 2. BACKGROUND 25

Figure 2.15: The architecture of GoogLeNet [5]

Figure 2.16: Inception module type 1 [27]

• The use of batch normalization in the auxiliary Classifiers.

• The use of label smoothing (a regularizing component that is added to
the loss function in order to prevent the network from becoming too
confident about a class, which prevents overfitting).

These approaches resulted in three di�erent types of inception modules.
These modules are represented in Figures 2.16, 2.17 and 2.18 and the overall
architecture of Inception-v3 is presented in Table 2.1.

2.2.2 MobileNets

MobileNets regroup image understanding deep learning models that make ef-
fective trade-o� between accuracy and e�ciency in terms of memory and com-
putation. Two versions of them were successively proposed [10, 11].

26 CHAPTER 2. BACKGROUND

Figure 2.17: Inception module type 2 [27]

Figure 2.18: Inception module type 3 [27]

CHAPTER 2. BACKGROUND 27

type patch size/stride input size

conv 3⇥ 3/2 299⇥ 299⇥ 3
conv 3⇥ 3/1 149⇥ 149⇥ 32

conv padded 3⇥ 3/1 147⇥ 147⇥ 32
pool 3⇥ 3/2 147⇥ 147⇥ 64
conv 3⇥ 3/1 73⇥ 73⇥ 64
conv 3⇥ 3/2 71⇥ 71⇥ 80
conv 3⇥ 3/1 35⇥ 35⇥ 192

3⇥ Inception as in Figure 2.16 35⇥ 35⇥ 288
5⇥ Inception as in Figure 2.17 17⇥ 17⇥ 768
2⇥ Inception as in Figure 2.18 8⇥ 8⇥ 1280

pool 8⇥ 8 8⇥ 8⇥ 2048
linear logits 1⇥ 1⇥ 2048

softmax classifier 1⇥ 1⇥ 1000

Table 2.1: The outline of the Inception-v3 architecture [27]. The output size
of each module is the input size of the next one.

MobileNetV1

Essential building block of MobileNetV1 is the depthwise separable convo-
lution, which is the factorization of a standard convolution into a depthwise
convolution and a pointwise convolution [10]. This reduces computation and
number of parameters. It does approximately the traditional convolution op-
eration, but much faster. Let say a standard convolutional layer’s input is a
DF ⇥DF ⇥M feature map F and its output is a DF ⇥DF ⇥N feature map G
with DF being the spatial width and height of a square input feature map, M
being the number of input channels, DG being the spatial width and height of
a square output feature map and N being the number of output channel. Here
it is assumed that F and G have the same spatial dimensions as the input and
both of them are square [10]. The standard convolution involves parameters
of convolution kernel K of size Dk ⇥Dk ⇥N ⇥M with DK being the spatial
dimension of the kernel (assuming it is square). If stride one and padding are
assumed:

Gk,l,n =
X

i,j,m

Ki,j,m,nFk+i�1,l+j�1,m

and the standard convolution’s computational cost is:

28 CHAPTER 2. BACKGROUND

Dk.Dk.M.N.DF .DF

.
Depthwise convolution applies a single filter per each input channel and

pointwise convolution is a 1 ⇥ 1 convolution. Depthwise convolution with
one filter per input channel is written as:

Ĝk,l,n =
X

i,j

K̂i,j,mFk+i�1,l+j�1,m

with K̂ being the depthwise convolutional kernel of size DK ⇥DK ⇥M

where the mth filter in K̂ is applied to the mth channel in F to produce the
mth channel of the filtered output feature map Ĝ. This depthwise convolution
has a computational cost of:

DK .DK .M.DF .DF

Depthwise separable convolution, which was introduced in [43] and com-
bines depthwise and pointwise convolutions, has, by summing the costs of
depthwise and pointwise convolutions, the following computational cost:

DK .DK .M.DF .DF +M.N.DF .DF

The ratio of the two above equations gives:

DK .DK .M.DF .DF +M.N.DF .DF

DK .DK .M.DF .DF
=

1

N
+

1

D
2
k

which shows how much the computational cost is reduced.
MobileNetV1 [10] uses 3 ⇥ 3 depthwise separable convolution which re-

quires between 8 to 9 times less computations than standard convolution. The
full architecture of MobileNets consists of a regular 3 ⇥ 3 convolution as the
very first layer, followed by 13 times the building block in 2.19. There are no
pooling layers between these depthwise separable blocks. Instead, some of the
depthwise layers have a stride of 2 in order to reduce the spatial dimensions of
the data. When that happens, the corresponding pointwise layer also doubles
the number of output channels. If the input image is 224 ⇥ 224 ⇥ 3 then the
output of the network is a 7⇥7⇥1024 feature map. The convolution layers are
followed by batch normalization. In a classifier based on MobileNets, there is
typically a global average pooling layer (see 2.2.3) at the very end, followed
by a fully-connected classification layer or an equivalent 1 ⇥ 1 convolution,
and a softmax.

CHAPTER 2. BACKGROUND 29

Figure 2.19: Left: Standard convolutional layer with batch normalization and
ReLU. Right: Depthwise Separable convolutions with Depthwise and Point-
wise layers followed by batch normalization and ReLU. The latter is the build-
ing block of MobileNets [10].

As stated at the beginning, MobileNets are a family of NN architectures.
Two main hyperparameters define these architectures:

• the depth multiplier↵, also known as the “width multiplier”. This changes
how many channels are in each layer. Using a depth multiplier of 0.5 will
halve the number of channels used in each layer, which cuts down the
number of computations by a factor of 4 and the number of learnable
parameters by a factor 3. It is therefore much faster than the full model
but also less accurate.

• the resolution multiplier ⇢: we apply this to the input image and the in-
ternal representation of every layer is subsequently reduced by the same
multiplier. In practice we implicitly set this hyperparameter by setting
the input resolution.

MobileNetV2

MobileNetV2 is an improvement of MobileNetV1. It still uses depthwise sep-
arable convolutions. However, it also introduces two new features: linear bot-
tlenecks layers and shortcut connections between the bottlenecks. The basic
structure of its building block is shown in Figure 2.20. There are 3 convolu-
tional layers in this building block. The last two are a depthwise convolution
that filters the inputs, and operates a 1 ⇥ 1 pointwise convolution. However,
this time this pointwise convolution makes the number of channels smaller,
unlike in MobileNetV1 where the pointwise convolution either kept the num-
ber of channels the same or doubled them. This layer is also called a bottleneck
layer. The first layer is also a 1 ⇥ 1 convolution. Its purpose is to expand the

30 CHAPTER 2. BACKGROUND

number of channels in the data before it goes into the depthwise convolution.
Therefore this expansion layer has more output channels than input channels:
it does the opposite of the bottleneck layer. How much the data gets expanded
is given by the hyperparameter expansion factor. Its default value is 6. The
input and the output of the block are therefore low-dimensional tensors, while
the filtering step that happens inside block is done on a high-dimensional ten-
sor.

The second new feature in MobileNetV2’s building block is the residual
connection. This works as in ResNet [4] and exists to help with the flow of
gradients through the network. Formally, let say we have a neural network
block, whose input is x and we want to learn the true distribution H(x). The
residual between them is: R(x) = H(x)�x. We thus have H(x) = R(x)+x.
In a residual neural network bloc, there is an identity connection coming from
x, and the layers learn the residual R(x) in order to learn H(x).

The activation function used by MobileNetV2 is ReLU6:

y = ReLU6(x) = min(max(0, x), 6)

This is like the traditional ReLU, but it prevents activations from becom-
ing too big. The reason for this is that ReLU6 is more robust than regular
ReLU when using low-precision computation [10]. Moreover, the shape of
this function is similar to a sigmoid.

Each layer has batch normalization and the ReLU6 activation. However,
the bottleneck layer does not have an activation function. In fact, this layer pro-
duces low-dimensional data, and using a non-linearity after this layer destroys
useful information according to [11].

The MobileNetV2 architecture is formed of 17 of these building blocks
(Figure 2.20) in a row. This is followed by a regular 1 ⇥ 1 convolution, a
global average pooling layer (see 2.2.3), and a classification layer. The very
first block is slightly di�erent, it uses a regular 3 ⇥ 3 convolution with 32
channels instead of the expansion layer.

2.2.3 Deep transfer learning

Transfer learning [44] allows to build accurate models in a time-saving man-
ner [45]. With transfer learning, instead of starting the training from scratch,
the latter starts from patterns that have been learned when solving a di�erent
problem in order to leverage previous learning. In computer vision, transfer
learning usually consists of using DL models that are pre-trained on a large
and diverse benchmark dataset to solve a problem similar to the one that we

CHAPTER 2. BACKGROUND 31

Figure 2.20: The building block of MobileNetV2, which is a bottleneck resid-
ual block. Batch normalization is used after every layer [11].

want to solve. The latter is based on the fact that DL models used for im-
age understanding can learn hierarchical feature representations. This means
that features learnt by the first layer are general and can be reused in di�erent
problems, while features learnt by the last layer are specific and depend on
the dataset and task. According to [46]: "if first-layer features are general and
last-layer features are specific, then there must be a transition from general to
specific somewhere in the network". As a result, the base CNN - especially
its lower layers (those that are closer to the inputs) - learn general features,
whereas the classifier part, and some of the higher layers of the base CNN, are
related to specific features.

When a pre-trained model is used in the context of deep transfer learning,
the original classifier is generally removed, then a new classifier that fits the
problem is added. Figure 2.21 illustrates this transfer learning. Finally, the
model is fine-tuned according to one of three strategies:

• Train the entire model.

• Train some layers and leave the others frozen.

• Freeze the base CNN. The main idea is to keep the base CNN in its
original form and then use its outputs to feed the classifier. The pre-
trained model is used as a fixed feature extractor. This is particularly
useful when computational power for training is limited, the dataset is
small, or pre-trained model solves a problem very similar to the one to
solve.

32 CHAPTER 2. BACKGROUND

Figure 2.21: Illustration of transfer learning in CNN [47]

Di�erent approaches can be followed to build the classifier that is placed
on top of the feature extractor. Some of them are:

• The use of fully-connected layers. For image classification problems,
the standard approach is to use a stack of fully-connected layers followed
by a softmax activation layer.

• The use of global average pooling. Proposed by [41], in this approach,
Instead of adding fully connected layers on top of the feature maps, we
take the average of each feature map, and the resulting vector is directly
fed into the softmax layer. One advantage of global average pooling
over the fully connected layers is that it is more native to the convolu-
tion structure by enforcing correspondences between feature maps and
categories (concepts). Thus the feature maps can be easily interpreted
as categories confidence maps. Another advantage is that there is no
parameter to optimize in the global average pooling thus overfitting is
avoided at this layer. Furthermore, global average pooling sums out the
spatial information, thus it is more robust to spatial translations of the
input. We can see global average pooling as a structural regularizer that
explicitly enforces feature maps to be confidence maps of concepts (cat-
egories).

• The use of linear Support Vector Machines. According to [48], training
a linear SVM classifier on top of the extracted features improves classi-
fication performance.

Figure 2.22 illustrates the first two approaches.

CHAPTER 2. BACKGROUND 33

Figure 2.22: Fully connected layers and global average pooling in transfer
learning [49]

2.3 Related work

This sections summarize works that are related to this thesis.

2.3.1 Video classification

[23] proposed a two-stream architecture involving a spatial (appearance) stream
CNN and temporal stream CNN. The temporal stream took as input stack of
horizontal and vertical components of optical flow frames [28] to deal with
motion (temporal) information. Optical flow is a local spatio-temporal feature
that is useful to extract motion information. Let say that a motion field en-
codes real world 3D motion, optical flow field is the projection of the motion
field onto the 2D image. Therefore, it has two components (vertical and hori-
zontal). The optical flow field consists of a velocity vector for each pixel that
shows says how quickly is the pixel moving across the image and in which di-
rection it is moving. An optical flow field is related to two subsequent frames.
To obtain it, one should, given two subsequent frames, estimate the apparent
motion field between them. This is not simple task, and several methods have
been proposed for this [28, 50, 51, 29]. Figure 2.23 illustrates optical flow.

[23] computed optical flow by using the method of [28], which formu-
lated the energy based on constancy assumptions for intensity and its gradi-
ent, as well as smoothness of the displacement field. While in [23], the two
networks separately capture spatial and temporal information at a fine tem-
poral scale, [24] represents an improvement of this work by investigating on
approaches to fuse the two networks over space and time. [23] used CNN-M-
2048 [30] on top of single video frames and optical flow images; [24] used
VGG-M-2048 and VGG-16 [30, 3] in the two streams.

34 CHAPTER 2. BACKGROUND

Figure 2.23: Optical flow. (a),(b): a pair of consecutive video frames with
the area around a moving hand outlined with a cyan rectangle. (c): a close-up
of dense optical flow in the outlined area; (d): horizontal component dx of
the displacement vector field (higher intensity corresponds to positive values,
lower intensity to negative values). (e): vertical component dy . Note how
(d) and (e) highlight the moving hand and bow. The input to a CNN contains
multiple flows [23].

Figure 2.24: Approaches for fusing information over temporal dimension
through the network. Red, green and blue boxes indicate convolutional,
normalization and pooling layers respectively. In the Slow Fusion model,
the depicted columns share parameters. White/grey rectangles are video
frames [32].

[32] used CNNs in order to tackle the video classification problems over
the Sports-1M and UCF101 dataset. The study investigated several approaches
to fusing information extracted by CNN from video frames across temporal
domain. These approaches are: single-frame, Early Fusion, Late Fusion and
Slow Fusion, and they are illustrated in 2.24.

[25] used AlexNet[2] and GoogLeNet (Inception-v1) [5] to extract fea-
tures from individual video frames then proposed to use either some feature
pooling methods or LSTM-based methods to combine image information across
a video. The study also used optical flow by computing it as in [50] and per-
formed late fusion similar to the two-stream method of [23].

[26] extracted Inception-v3 [27] features from each video frames and pro-
posed to do video classification by using either a Deep Bag of Frame (DBoF)

CHAPTER 2. BACKGROUND 35

Pooling based approach or, similar to [25], a LSTM based approach. The study
also used another approach that consisted of first computing for each video its
video-level features starting from frame-level features of its frames and then
using the video-level features to do some machine learning (ML) approaches
(Logistic Regression, Hinge Loss and Mixture of Expert).

2.3.2 CNN architectures

[10] introduced the class of e�cient models MobileNets, as described in 2.2.2.
The study measured performance metrics of these networks with the vary-
ing two hyper parameters based on some datasets for some tasks, for example
ImageNet for classification or the Stanford Dogs dataset [52] for fine grained
recognition. The study even used Faster-RCNN [53] and SSD [54] frameworks
with MobileNets to perform object detection.

[11] proposed MobileNetV2, as described in 2.2.2. The study also mea-
sured performance metrics on some datasets for some tasks as for MobileNetV1.
The study also described the novel framework of object detection, SSDLite.
The study finally demonstrated how to build mobile semantic segmentation
models through the novel Mobile DeepLabv3 framework.

[5] proposed the GoogLeNet (Inception-v1) architecture. The study set
the new state of the art for classification and detection in the ImageNet Large-
Scale Visual Recognition Challenge 2014 (ILSVRC14).

[27] proposed the Inception-v2 and Inception-v3 architectures, and bench-
marked them on the ILSVRC 2012 classification challenge validation set which
allowed to demonstrate substantial gains over the state of the art. The study
also reported metrics on the o�cial test set.

2.3.3 Deep transfer learning

[46] experimentally quantified the generality versus specificity of neurons in
each layer of a deep convolutional neural network in the context of computer
vision. The study found that transferability is negatively a�ected by two dis-
tinct issues:

• the specialization of higher layer neurons to their original task at the
expense of performance on the target task, which the authors expected

• optimization di�culties related to splitting networks between co-adapted
neurons, which was not expected by the authors.

36 CHAPTER 2. BACKGROUND

In an example network trained on ImageNet, the study demonstrated that
either of these two issues may dominate, depending on whether features are
transferred from the bottom, middle, or top of the network. The study also doc-
umented that the transferability of features decreases as the distance between
the base task and target task increases, but that transferring features even from
distant tasks can be better than using random features. A final surprising result
obtained by the paper was that initializing a network with transferred features
from almost any number of layers can produce a boost to generalization that
lingers even after fine-tuning to the target dataset. Given an conclusion that
LeNet, AlexNet, VGG, Inception, ResNet are good chooses in network-based
deep transfer learning.

[55] reused front-layers trained by CNN on the ImageNet dataset to com-
pute intermediate image representation for images in other datasets, CNN are
trained to learning image representations that can be e�ciently transferred to
other visual recognition tasks with limited amount of training data.

[56] investigated the transferability of generic representation of an input
image at a certain layer of the network trained on a large labeled dataset and
the feed-forward units activation, with regard to several factors. It includes pa-
rameters for training the network such as its architecture and parameters of fea-
ture extraction. The study also showed that di�erent visual recognition tasks
can be categorically ordered based on their distance from the source task. The
study finally indicated a clear correlation between the performance of tasks
and their distance from the source task conditioned on proposed factors.

2.3.4 Quantization of NNs

[17] leveraged low-precision fixed-point arithmetic to accelerate the training
speed of CNNs. [18] used 8-bit fixedpoint arithmetic to speed up inference on
x86 CPUs. Inspired from these works, [15] proposed a quantization scheme
that is used in TensorFlow Lite [22] that focuses on improving the inference
speed vs accuracy trade-o� on mobile CPUs.

[16] builds on [15] and presented an overview of techniques for quantizing
convolutional neural networks for inference with integer weights and activa-
tions. The study found that:

• Per-channel quantization of weights and per-layer quantization of acti-
vations to 8-bits of precision post-training produces classification accu-
racies within 2% of floating point networks for a wide variety of CNN
architectures.

CHAPTER 2. BACKGROUND 37

• Model sizes can be reduced by a factor of 4 by quantizing weights to
8bits, even when 8-bit arithmetic is not supported. This can be achieved
with simple, post training quantization of weights.

The study benchmarked latencies of quantized networks on CPUs and DSPs
and observed a speedup of 2⇥-3⇥ for quantized implementations compared
to floating point on CPUs. Additionally, it observed speedups of up to 10⇥ on
specialized processors with fixed point SIMD capabilities. The study finally
found out that:

• quantization-aware training can provide further improvements,reducing
the gap to floating point to 1% at 8-bit precision.

• quantization-aware training also allows for reducing the precision of
weights to four bits with accuracy losses ranging from 2% to 10%, with
higher accuracy drop for smaller networks.

The study introduced tools in TensorFlow and TensorFlowLite for quantiz-
ing convolutional networks and reviewed best practices for quantization-aware
training to obtain high accuracy with quantized weights and activations. The
study finally concluded that it is preferable that per-channel quantization of
weights and per-layer quantization of activations be the preferred quantization
scheme for hardware acceleration and kernel optimization and proposed that
future processors and hardware accelerators for optimized inference support
precisions of 4,8 and 16 bits.

Chapter 3

Methodology

The purpose of this chapter is to provide an overview of the research method
that is used in this project. Research method for this degree project is deter-
mined following the portal presented in [31].

3.1 Research method

First of all, the positivism philosophical assumption is made, i.e., the reality
is objectively given and independent of the observer and instruments. In or-
der to answer the research question, we conduct a qualitative and quantitative
research, which involves triangulation. Indeed, to answer the question, video
classification pipelines which are indeed new artefacts, are designed and nu-
merically evaluated. They are inspired from existing papers about video clas-
sification, but present some di�erences compared to approaches that are used
in them. These di�erences and the reasons for them are detailed in 4.1. This is
a qualitative research because this involves development of new artefacts; this
is also a quantitative research because this involves measurement of numerical
metrics.

To answer the question, video classification pipelines that are based on
quantized MobileNetV2 that is chosen as a representative of memory and
computation-e�cient CNNs are designed, implemented and evaluated. In-
deed, exactly same approach can be recycled when building video classifi-
cation pipelines that are based on other memory and computation-e�cient
CNNs, which allows generalization in the conclusions from this thesis. There-
fore here, we adopt the case study research strategy. The reasons for the use
of quantized MobileNetV2 are that, in a nutshell:

• MobileNetV2 is one of the NNs that are designed for image recognition

38

CHAPTER 3. METHODOLOGY 39

Figure 3.1: Accuracy and latency trade-o�s for some popular image classifi-
cation CNNs [22].

tasks that presents the most e�ective trade-o� between accuracy and
model e�ciency in terms of model size and computation speed;

• Quantization is one of the most e�ective techniques that aims to reduce
DL model size and computation speed

and they can be combined in order to obtain a highly memory and computation-
e�cient and accurate enough DL image recognition model. Figure 3.1 and Ta-
ble 3.1 show this: quantized MobileNetV2 is one of the networks presenting
very quick inference time and small model size while being accurate enough.

The pipelines are empirically evaluated based on the empirical research
method: appropriate performance metrics are measured by using an appro-
priate dataset that is collected via experiment and case study data collection
method. The multiclass classification metrics explained in 3.3.1 are used.
While "performance" is an ambiguous term, because for a classification pipeline
this can possibly concern several di�erent aspects such as memory complexity,
time complexity end energy consumption, in this study only the performance
metrics related to the multiclass classification task are measured. Indeed, it is
obvious that the pipelines based on memory and computation-e�cient CNN

40 CHAPTER 3. METHODOLOGY

Model name Model size Top-1 accuracy Top-5 accuracy TF Lite inference time

Inception_V3 95.3Mb 77.9% 93.8% 1433 ms
Mobilenet_V2_1.0_224_quant 3.4Mb 70.8% 89.9% 80.3 ms

Table 3.1: Performance benchmarks of the pre-trained models optimized to
work with TensorFlow Lite. The model files include both TF Lite FlatBu�er
and Tensorflow frozen Graph. Performance numbers were benchmarked on
Pixel-2 using single thread large core. Accuracy numbers were computed us-
ing the TFLite accuracy tool based on ILSVRC 2012 (ImageNet Large Scale
Visual Recognition Challenge) image classification task [22, 8].

improve performance in terms of memory size, energy consumption and com-
putational speed. The dataset should serve as a representative of video clas-
sification datasets in order to generalize as far as possible obtained results for
these datasets and here again, we adopt a case study research strategy. The
computational mathematics method is used in order to analyse this dataset.
The data analysis, inter alia, proves the validity of the used metrics.

To have a reference (baseline) for comparison, similar video classification
pipelines but this time based on Inception-v3 are also developed and evaluated
based on the same performance metrics and dataset. Indeed, [26] created
a novel, large and diverse video dataset based on Inception-v3 features and
tested classifiers based on it, and this study is considered as baseline. The
comparison between the performance metrics obtained for video classification
pipelines based on quantized MobileNetV2 and:

• the metrics obtained from the reference video classification pipelines

• the metrics that are reported in existing papers that used the same dataset

allows to know how well the video classification pipelines based on mem-
ory and computation-e�cient CNN perform and to validate them. Here too,
this is a case study and conclusions obtained for quantized MobileNetV2-
based approaches and the dataset are generalized as far as possible to other
memory and computation-e�cient CNNs and video classification datasets.

Moreover, also single-frame models (similarly to the approach mentioned
in 2.3.1) are built on top of both quantized MobileNetV2 and Inception-v3
and evaluated. These models completely ignore temporal information, thus
can be used for comparison to verify or falsify the hypothesis that the drop
in accuracy induced by the use of computation and memory-e�cient CNN

CHAPTER 3. METHODOLOGY 41

at video frames level can be compensated by capturing temporal information
via consideration of sequence of these frames. Indeed, based on the metrics
(observations) that are measured and collected and the abductive research ap-
proach, the first hypothesis that can be verified or falsified is that, the video
classification pipelines based on quantized MobileNetV2 perform not as good
as the baseline pipelines but they present similar performance and their gap
in performance is smaller than the gap in performance between Inception-v3-
based and quantized MobileNetV2-based single frame models. If this is the
case, it may indicate that there is the aforementioned compensation e�ect.

The second hypothesis that can be verified or falsified from the collected
observations based on the abductive research approach is that, based on the
dataset, the video classification pipelines perform not as good as the state-
of-the-art results presented in other papers [23, 24, 25] based on very deep
and complicated DNNs and/or optical flow, but enough good to be considered
acceptable.

There are some methodological limitations. The approaches presented in
this thesis do not deal with optical flow, because of its practical limitation
mentioned in 1.2. Also, the static frame-level features provide an excellent
baseline and constructing compact and e�cient motion features is beyond the
scope of this thesis that aims to only deal with video frames. Finally, for the
same reason, even if some video data can contain sound data, this project does
not deal with audio features.

The following sections describe the method application, i.e., how the re-
search method is applied. This includes choice of datasets, softwares and im-
plementations.

3.2 Datasets

The project is based on the UCF101 [57] action recognition dataset that is
available online. This is a dataset of 101 action classes from videos uploaded
by users on Youtube. They are unconstrained, realistic because contain camera
motion, various lighting conditions, partial occlusion and low quality frames,
and contain row video data. It contains 13320 clips and 27 hours of video data,
each clip belonging to one of the 101 classes. A class also belongs to one of
the following types (or categories): Human-Object Interaction, Body-Motion
Only, Human-Human Interaction, Playing Musical Instruments, Sports [57].
Figure 3.2 visualizes a frame of a clip for each of the classes and indicates
which category its class belongs to. Clips of a class are separated into 25
groups, each group containing 4-7 clips that share some common features, for

42 CHAPTER 3. METHODOLOGY

example the background.
Authors of [24] made RGB frames extracted from the UCF101 dataset

available on their Github page [58]. This dataset, called the UCF101 RGB
frames dataset in all of the following parts, is collected via experiment data col-
lection method and used in this project. This is naturally useful when dealing
with frames. This dataset provides input for the video classification pipelines.

Indeed, as it will be detailed in 4.1.1, the artefacts (video classification
pipelines) designed in this thesis involve video classification models put on
top of freezed CNNs (quantized MobileNetV2 and Inception-v3) that extract
features from video frames. Here we exploit transfer learning 2.2.3. There-
fore, in order to train only these classification models, frame-level features ex-
tracted from every video frames can be stored as .npy (NumPy array) files [59].
By applying di�erent feature extractions based on di�erent CNNs on every
frames of the UCF101 RGB frames dataset, we obtain datasets that we call
UCF101 frame-level features datasets (they are in plural form because for each
of the feature extractors - one based on quantized MobileNetV2 and another
one based on Inception-v3 - a frame-level features dataset is collected). These
datasets, collected via the experiment data collection method, are input for the
classifiers that are put on top of the feature extractors.

The authors of [24] also provided on their Github page [58] the three splits
into training and test dataset of the UCF101 dataset that they used for the study
described in their paper. The split specified by "ucf101_splits/trainlist01.txt"
(train set) and "ucf101_splits/testlist01.txt" (test set) in this repository, referred
as “split 1” in [24] and involving 9537 train clips (72% of the total data) and
3783 test clips (28% of the total data), is used in this project. A part in the train
set is isolated in order to make it a validation set. Finally, 62% of the total data
is used for training, 10% of the total data is used for validation and 28% of the
total data is used for testing. The UCF101 RGB frames and UCF101 frame-
level features datasets can naturally follow this split.

The UCF101 RGB frames and UCF101 frame-level features datasets are
hosted in the cloud computing platform Microsoft Azure [60], leveraging Azure
Blob Storage.

Computational mathematics method is used in order to analyse data, in
order to determine necessary data pre-processing and prove relevance of the
used metrics.

CHAPTER 3. METHODOLOGY 43

Figure 3.2: 101 classes of the UCF101 dataset. The color of frame bor-
ders species to which action type they belong: Human-Object Interaction,
Body-Motion Only, Human-Human Interaction, Playing Musical Instruments,
Sports [57].

44 CHAPTER 3. METHODOLOGY

3.3 Evaluation

This section describes how classification pipelines are evaluated. This allows
to know how well the classification pipelines can perform and to validate them.

3.3.1 Evaluation metrics

This section describes the performance metrics that are used in this project
in order to assess the classification task done by the pipelines.

Confusion matrix

In a classification problem, there exists a true output y and a model-generated
predicted output ŷ for each data point. The confusion matrix is K⇥K, where
K is the number of classes. It shows the number of correct and incorrect
predictions made by the classification model compared to the actual outcomes
in the data.

In the context of binary classification problem in which there are 2 possible
classes (positive and negative classes), the results for each instance point can
be assigned to one of four categories:

• True Positive (TP): the label y is positive and prediction ŷ is also positive

• True Negative (TN) : the label y is negative and prediction ŷ is also
negative.

• False Positive (FP) : the label y is negative but prediction ŷ is positive
(type I error).

• False Negative (FN) : the label y is positive but prediction ŷ is negative
(type II error).

and the confusion matrix have the following form:
✓
TP FN

FP TN

◆

In multiclass problems, a given row of the matrix corresponds to specific
value for the "truth". Moreover, one can normalize the confusion matrix by
dividing each value by the sum of values in the row the value belongs to. In
this way, each value is between 0 and 1. This is interesting in case of class
imbalance to have a more visual interpretation of which class is being mis-
classified.

The following metrics are computed from confusion matrix without nor-
malization.

CHAPTER 3. METHODOLOGY 45

Accuracy

The accuracy measures how close the prediction is to the true value. We have:

Accuracy =
TP + TN

TP + TN + FP + FN

in case of binary classification problem.
The generalization to multiclass problems is the ratio between number of

correctly predicted labels and total number of predictions.
A classifier usually gives a set of predicted labels in a decreasing order of

probability and the label with the highest probability is the predicted label (for
example a softmax classifier). The ratio between number of cases in which
correct labels are in the top k predicted labels and total number of predictions
is the top-k accuracy.

However, one should be aware that accuracy is not always a good metric, in
case a dataset is highly unbalanced. One can illustrate this based on an exam-
ple. Assume a highly unbalanced dataset where 95% of the data points are not
fraud and 5% of the data points are fraud. A naive classifier that predicts not
fraud, regardless of input, will be 95% accurate. For this reason, considering
other metrics such as precision, recall and f1-score is also relevant.

Precision

For binary classification,

Precision =
TP

TP + FP

The generalization to multiclass problems is to consider columns of the
confusion matrix. Given that a given row of the matrix corresponds to specific
value for the "truth", we have:

Precisioni =
MiiP
j Mji

and this is specific for a class i. Precision is the fraction of events where
we correctly declared i out of all instances where the algorithm declared i.

Recall

For binary classification,

Recall =
TP

TP + FN

46 CHAPTER 3. METHODOLOGY

Here again, the generalization to multiclass problems is to consider columns
of the confusion matrix. Given that a given row of the matrix corresponds to
specific value for the "truth", we have:

Recalli =
MiiP
j Mij

and this is specific for a class i. Conversely to Precision, recall is the frac-
tion of events where we correctly declared i out of all of the cases where the
true of state of the world is i.

f1-score

We have that:

f1-scorei = 2
Precisioni ⇥Recalli

Precisioni +Recalli

i.e., this metric is the harmonic mean of precision and recall.

3.3.2 Measurement of the evaluation metrics

Indeed, as it will be detailed in 4.1.1, the video classification pipelines involve
a feature extractor and a classifier on top of it. The artefacts designed in this
thesis involve quantized MobileNetV2 as feature extractor. The accuracy and
top-5 accuracy over the test set allow to evaluate the performance of classifi-
cation task for a combination of a feature extractor and a classifier (after its
training) on top of it. Four combinations of a feature extractor and a classifier,
as specified in 4.1.1, are subject to this evaluation:

• Quantized MobileNetV2 feature extractor and GRU classifier

• Quantized MobileNetV2 feature extractor and LSTM classifier

• Inception-v3 feature extractor and GRU classifier

• Inception-v3 feature extractor and LSTM classifier

and these metrics are also computed for the single-frame models based
on both Quantized MobileNetV2 and Inception-v3 feature extractors. The
pipelines that use Inception-v3 as feature extractor are baselines for compar-
isons.

The measurement of the metrics is done based on Python. Based on ob-
tained values of these metrics, for some of these combinations, confusion

CHAPTER 3. METHODOLOGY 47

matrices based on the test set are plotted and classification reports based on
the test set, which shows precision, recall and f1-score for every classes, are
produced by using the Scikit-Learn’s [61] classification_report()
function.

3.3.3 Comparison

Metrics are compared between them. The quantized MobileNetV2-based ap-
proaches and the reference Inception-v3-based approaches are compared. As
aforementioned, the hypothesis that can be verified or falsified based on the ab-
ductive research approach is that, the video classification pipelines based on
quantized MobileNetV2 not as good as the baseline pipelines in terms of the
used metrics, but they present similar performance, and this case may indicate
that the drop in accuracy induced by quantized MobileNetV2 can be compen-
sated by capturing temporal information via consideration of sequence of these
frames. To support the latter, also a single-frame model is built and evaluated
for each of the two feature extraction methods.

The second hypothesis that can be verified or falsified based on the abduc-
tive research approach is that, based on the dataset, the video classification
pipelines perform not as good as the state-of-the-art results presented in other
papers [23, 24, 25] based on very deep and complicated DNNs and/or optical
flow, but enough good to be considered acceptable.

3.4 Video classification pipelines implemen-

tation

Indeed, as it will be detailed in 4.1.1, the artefacts (video classification pipelines)
designed in this thesis involve video classification models put on top of freezed
CNNs (quantized MobileNetV2 and Inception-v3) that extract features from
video frames.

The designed video classification pipelines are implemented based on Python
API of Tensorflow Lite [22] and Keras [62]. TensorFlow Lite allows to use
quantized MobileNetV2 whereas Keras allows to use Inception-v3. PIL (Python
Imaging Library) [63] and Numpy [59] are used in order to pre-process video
clips. Keras is used in order to build and train the the classifiers and the single-
frame models on top of feature extractor.

In more details, for the video classification pipelines based on quantized
MobileNetV2, the frame-level feature extraction is implemented by using Ten-

48 CHAPTER 3. METHODOLOGY

sorFlow Lite. A subnetwork of quantized MobileNetV2 (with ↵ = 1.0), pre-
trained in a quantization-aware manner on ImageNet, is used. To do so, the
quantized TensorFlow GraphDef of MobileNetV2 with the corresponding two
hyperparameters is downloaded from the web page of TensorFlow Lite [22].
The name of the file to download is "Mobilenet_V2_1.0_224_quant". It is
"quantized" because it is a float model with FakeQuant ops inserted at the
boundaries of fused layers to record min-max range information. This gener-
ates a quantized inference workload that reproduces the quantization behavior
that was used during its training on ImageNet. A subgraph of this GraphDef is
converted into a TensorFlow Lite FlatBu�er for quantized inference. Its input
layer is the layer specified the name "input" and its output is the layer specified
by the name "MobilenetV2/embedding". As this output is a four dimensional
numpy ndarray, and it is not a flat feature vector, it then undergoes the global
average pooling, implemented based on the numpy function mean() [59].
The arithmetic means along the second and third axis are computed. This pro-
duces a two dimensional numpy ndarray (with its first component being a
single-dimensional entry) of data type float32. The latter then undergoes a
normalization via division by 255. The final ndarray obtained in this way,
is the feature vector.

For the reference video classification pipelines, a subnetwork of the "float-
ing point" Inception-v3 is used. As it involves floating point inference and not
quantized inference, as stated above it requires that input RBG image data be
a numpy ndarray of data type float32, containing float values between
-1 and 1 and the output does not need further normalization. A subnetwork of
the Keras implementation of Inception-v3 is used. The output already comes
from the global average pooling operation so no further processing is done.

To facilitate training of the models in the classification part on top of fea-
ture extraction, these steps are applied to every video frames in the UCF101
RGB frames dataset, and produced features are saved as the UCF101 frame-
level features datasets, as mentioned in 3.2. This is locally done for the quan-
tized MobileNetV2 feature extraction, based on TensorFlow Lite. More specif-
ically, the TensorFlow devel Docker image tensorflow/tensorflow:nightly-devel
is used in order to cross compile and build TensorFlow Lite within a Docker
container using this image [22], and the feature extraction is done within this
container on a local machine. For Inception-v3 feature extraction, this is done
in cloud (Microsoft Azure) by using a Virtual Machine that has a GPU (Stan-
dard_NC6 VM) because if done locally the process takes too much time.

The classifiers are trained leveraging Azure Machine Learning Service [64]
and Azure Machine Learning SDK for Python, based on the training sets of

CHAPTER 3. METHODOLOGY 49

the UCF101 frame-level features datasets. First, an Azure Machine Learning
Workspace is created. Then, an AmlCompute cluster of STANDARD_NC6
GPU VMs is created and attached to the Workspace. Next, we construct an
azureml.train.dnn.TensorFlow estimator object, use the GPU cluster as com-
pute target, and pass the mount-point of the the Azure Blob Storage to be used
for training and the training code as parameters. The estimator is submitted
to the Azure ML experiment to kick o� the training. All of the instanced re-
sources on Microsoft Azure are located in the same resource group and the
same area (North Europe) in order to avoid data transfer cost and overhead.
The host company provided the Visual Studio Enterprise subscription. The
trained models are saved and downloaded. This is useful to further plot con-
fusion matrices, compute other metrics over the test set (see 3.3.2) and recon-
struct the pipelines. Python is used for this.

3.5 Quality assurance

As the project involves some sources of randomness (weight initialization,
possible stochastic gradient descent. . .), to ensure replicability of this work,
random number generators are seeded. The split into training and test sets is
detailed and explicitly showed so that the same split can be used. In this chapter
and the following chapter, engineering-related contents and all DL-related pa-
rameters and hyperparameters are specified and detailed in order to ensure this
replicability. Regarding the use of Azure Machine Learning service, the snap-
shot is also stored and downloaded as part of the experiment in the workspace.
In this way, all versions of used libraries are kept. Also, regarding the feature
extraction part, all versions of used libraries and docker-related versioning are
kept. All of the measurements use reliable and valid deterministic functions.

Chapter 4

Results

This chapter provides, analyses and discusses results that are obtained.

4.1 Video classification pipelines building

In order to answer the research question, the project first aims to build the arte-
facts: video classification pipelines that are based on quantized MobileNetV2.
Also other reference (baseline) pipelines that are based on Inception-v3 are
built for comparison purpose. They attribute one of the 101 classes to a clip
in the dataset. We have a multiclass classification problem. This section de-
scribes how these video classification pipelines are designed and built.

4.1.1 Overview

Figure 4.1 summarizes main components of the video classification pipelines.
They involves the following steps:

• input

• frame-level feature extraction

• classification.

The pipelines are composed of a feature extractor and a classifier on top of
it, similarly to the approaches used in [25, 26]. Four combinations of a feature
extractor and a classifier on top of it are built and used in this project:

• Quantized MobileNetV2 feature extractor and GRU classifier.

• Quantized MobileNetV2 feature extractor and LSTM classifier.

50

CHAPTER 4. RESULTS 51

Figure 4.1: Overview of the video classification pipelines

• Inception-v3 feature extractor and GRU classifier.

• Inception-v3 feature extractor and LSTM classifier.

They are inspired from existing papers about video classification:

• [25] used AlexNet[2] and GoogLeNet (Inception-v1) [5] to extract fea-
tures from individual video frames then proposed to use either some
feature pooling methods or LSTM-based methods to combine image in-
formation across a video. The study also used optical flow by computing
it as in [50] and performed late fusion similar to the two-stream method
of [23].

• [26] extracted Inception-v3 [27] features from each video frames and
proposed to do video classification by using either a Deep Bag of Frame
(DBoF) Pooling based approach or, similarly to [25], a LSTM based
approach.

However, the pipelines designed in this thesis present some di�erences
from them:

• we intentionally not deal with optical flow, because the latter presents
practical limitation that are mentioned in 1.2 and we believe the static

52 CHAPTER 4. RESULTS

frame-level features provide an excellent baseline. Constructing com-
pact and e�cient motion features is beyond the scope of this thesis that
aims to only deal with video frames;

• given an input clip, the pipeline does not deal with all of its frames,
but instead samples some of them and those sampled frames undergo
following processing steps. This way, computational complexity is re-
duced;

• the pipelines directly benefit from transfer learning (see 2.2.3) by using
bottom layers of CNNs that are pre-trained on ImageNet and frozen.
This avoids from-scratch training of feature extractors, therefore make
training faster and prevents overfitting;

• finally, for our best knowledge, no study about video classification used
GRU. Given the fact that GRU presents less parameters than - thus lighter
in terms of memory size and faster in terms of computations than -
LSTM, we think that GRU deserves to be used in order to do video clas-
sification, especially in the context mentioned in Chapter 1 where there
are numerous possible applications involving the analysis of video data
at the level of devices with limited memory resources and computation
capabilities.

We recall that the purpose of this thesis is not to achieve a state-of-the-art
result based on the UCF101 dataset.

The following describes each component/step of the designed video clas-
sification pipelines.

Input

Input is a set of video frames that are sampled from a video clip which is then
classified. M = 25 video frames that are uniformly distributed over the clip
duration are extracted from the clip. Because a CNN generally only accepts in-
put images having a certain size and having RGB pixel values within a certain
interval, sampled video frames are resized and undergo a pixel-normalization
scheme in accordance with the later processing steps. For the video classifica-
tion pipelines based on quantized MobileNetV2, the feature extractor requires
that input RBG image data be a numpy ndarray of data type uint8 (i.e.,
containing integer values from 0 to 255) and shape (224, 224, 3). For the ref-
erence pipelines, the Inception-v3 feature extractor requires that input RBG
image data be a numpy ndarray of data type float32, containing float

CHAPTER 4. RESULTS 53

values between -1 and 1 and shape (299, 299, 3). PIL (Python Imaging Li-
brary) [63] and Numpy [59] are used in order to satisfy these requirements.
Bilinear interpolation is used when resizing the image.

Frame-level feature extraction

Each of the sampled frames in the input is passed to the same CNN that is
pre-trained on ImageNet, so that the latter extracts features from them, based
on transfer learning (see 2.2.3). These features bring spatial information by in-
dividually considering video frames. The memory and computation-e�cient
CNN is derived from quantized MobileNetV2, that is pre-trained in a quantization-
aware manner on ImageNet [9]. The latter has the same architecture as Mo-
bileNetV2 with ↵ = 1 (see 2.2.2), except that:

• at each layer a fake quantization node is added, in order to allow quantization-
aware training as described in 2.1.6 .

• the final classification layer is deleted thus the output comes from the
global average pooling layer.

The CNN used in the reference video classification pipelines is derived
from Inception-v3 that is pre-trained on ImageNet, as [26] extracted Inception-
v3 features from video frames to make a dataset of videos for classification
and this study is considered as baseline. An architecture similar to the one of
Table 2.1 is used, except that the last two layers are deleted and the pooling
layer - which is in reality a global average pooling layer - gives the output.

Quantized MobileNetV2 requires an input RGB image size of 224 ⇥ 224
whereas Inception-v3 requires an input RGB image size of 299⇥ 299. There-
fore video frames are resized beforehand in accordance with this. Also, RGB
pixel values are normalized in accordance with what their implementations
expect (see 3.4).

Classification

The frame-level features are aggregated in order to capture temporal informa-
tion and produce class prediction. In this project, for each of the two feature
extraction methods, two classification methods based on RNNs are tested: the
first one is based on LSTM, and the another one is based on GRU. The choice
of using LSTM comes from the fact that in [26] the best performing approach
was based on LSTM according to the metrics they used. LSTM, by operating
on frame-level CNN features, can learn how to integrate information over time

54 CHAPTER 4. RESULTS

thus is capable of learning from temporally ordered sequences by explicitly
considering sequences of CNN features. Since videos contain dynamic con-
tent, the variations between frames may encode additional information which
could be useful in making more accurate predictions. GRU is based on the
same idea, but it presents less parameters than LSTM thus is less prone to
overfitting and is more suitable to deploy on a device with limited computa-
tion and memory capabilities. For our best knowledge, no studies about video
classification used GRU to tackle video classification.

The two methods consist of putting either a LSTM or GRU layer as the
first layer on top of the feature extraction, and then putting additional layers to
do the classification. For both approaches:

• The second layer is a batch normalization layer.

• The third layer is a hidden dense layer with 512 neurons. At this level,
the activation is linear.

• The fourth layer is again a batch normalization layer.

• The fifth layer is the LeakyReLu activation function, with ↵ = 0.3.

• The last layer is a dense layers with 101 neurons that does softmax clas-
sification.

Between the last and the fifth layers, dropout with probability = 0.5 is ap-
plied at training time. Batch normalizations are added before the activation
function of the previous layer, in accordance with the original paper that in-
troduced the method [37].

Regarding the first layer, for both approaches, the dimensionality of input
is D and the length of input sequences is M = 25. D = 1280 when quantized
MobileNetV2 is used as feature extractor; D = 2048 when Inception-v3 is
used as feature extractor. The dimensionality of the output space is also D. At
training time, 0.5% of the units are dropped out for the linear transformation
of the inputs. Only the last output in the output sequence is returned.

All other parameters for all layers are the default parameters that are used
in Keras. These architectures were empirically found to achieve enough good
accuracy while involving relatively small number of parameters and inference
time.

Besides, in order to help checking the hypothesis that the drop in accuracy
induced by the use of quantized MobileNetV2 when dealing with individual

CHAPTER 4. RESULTS 55

frames can be compensated by capturing temporal information via considera-
tion of sequence of these frames, also a single-frame model is tested for each of
the two feature extraction methods. Indeed, single-frame model only captures
spatial frame-level information. If the gaps between performance of classifi-
cations based on the two feature extraction methods are lower for the RNN-
based classification approaches than the single-frame models, this can support
the validation of this hypothesis. The single-frame model is a FNN that takes
as input a frame-level feature from a clip. It has the following architecture:

• The first layer is a hidden dense layer with 512 neurons. At this level,
the activation is linear.

• The second layer is a batch normalization layer.

• The third layer is the LeakyReLu activation function, with ↵ = 0.3.

• The last layer is a dense layers with 101 neurons that does softmax clas-
sification.

Here too, between the last layer and the third layer, dropout with probability
= 0.5 is applied at training time. The other parameters are default parameters
that are used in Keras.

4.1.2 Model training

LSTM-based/GRU-based/single-frame models in the classification part are
trained, based on the training sets of the UCF101 frame-level features datasets.
For all models, categorical cross-entropy is chosen as loss function. Adam
optimizer with learning rate = 0.00001 and decay=0.000001 is used. Right
numbers of epochs are determined based on early stopping (see 2.1.5), by us-
ing the validation set. The trained models are saved and downloaded. This is
useful to further compute metrics over the test set and plot confusion matrices.

4.2 Data Analysis

This section provides some results of the computational mathematics method-
based analysis of the UCF101 dataset. This analysis can be naturally extended
for the UCF101 RGB frames and UCF101 frame-level features datasets. Ta-
ble 4.1 summarizes characteristics and statistics of the dataset, such as mini-
mum/maximum clip length, frame rate and resolution. Figure 4.2 shows num-
ber of clips per class and the distribution of clip durations.

56 CHAPTER 4. RESULTS

One can deduce from Table 4.1 that the minimum number of frames per
clip is b25 ⇥ 1.06c = 26. Therefore the choice of M = 25 in the previous
chapter is judicious. Regarding resolution, as the (quantized) MobileNetV2
architecture used in this project requires an input resolution of 224⇥224, there
is downsampling for the memory and computation-e�cient feature extraction.
The Inception-v3 feature extraction requires an input resolution of 299⇥ 299,
so it involves horizontal downsampling and vertical upsampling (via bilinear
interpolation, as specified in 3.4).

Regarding Figure 4.2, in our project, only the number of clips per class is
relevant, as same number of frames is sampled from a clip to give it a class.
The distribution of numbers of clips per class gives hints about relevance of
performance metrics. From simple computations, one can infer that the max-
imum and minimum numbers of clips per class are respectively 160 and 95
and roughly speaking, number of clips per class is evenly distributed over the
classes according to Table 4.1, which means all of the metrics that are used in
this project can be considered as relevant.

Actions 101
Clips 13320
Groups per Action 25
Clips per Group 4-7
Mean Clip Length 7.21 sec
Total Duration 1600 mins
Min Clip Length 1.06 sec
Max Clip Length 71.04 sec
Frame Rate 25 fps
Resolution 320 X 240
Audio Yes (51 actions)

Table 4.1: summary of the UCF101 dataset [57].

4.3 Classification results

This section describes the observations, i.e, the performance metrics related to
the classification task that are measured from the video classification pipelines.

Table 4.3 shows accuracy and top-5 accuracy metrics that are obtained for
the four combination of feature extractor and classifier specified in 3.3.2. Ac-
cording to it, GRU performs better than LSTM. GRU has less parameters than

CHAPTER 4. RESULTS 57

Figure 4.2: Number of clips per class. The distribution of durations is illus-
trated by the colors [57].

58 CHAPTER 4. RESULTS

Feature extractor Classifier Accuracy top-5 accuracy

Inception-v3 LSTM 0.7875 0.9422
Inception-v3 GRU 0.7961 0.9469

Quantized MobileNetV2 LSTM 0.7430 0.9117
Quantized MobileNetV2 GRU 0.7594 0.9297

Inception-v3 Single Frame 0.6969 0.8812
Quantized MobileNetV2 Single Frame 0.6425 0.8473

Table 4.2: Classification results

LSTM thus is less prone to overfitting. Therefore in the context of deploy-
ment of video classification pipeline on a computationally limited platform,
GRU should be preferred to LSTM and this result is in accordance with this.

For the above reason, the combinations of GRU and the two feature ex-
traction methods are used in order to plot confusion matrices and compute
additional performance metrics (precision, recall and f1-score) over the test
set:

• Normalized confusion matrices for the combinations of GRU and each
of the two feature extraction methods are plotted (Figure 4.3 and Fig-
ure 4.4). Numbers of correct and incorrect predictions are also shown
in the confusion matrices without normalization in Appendix A. Fig-
ure 4.5 and Figure 4.6 are parts of these normalized confusion matri-
ces restricted to the 3 classes: ’ApplyEyeMakeup’, ApplyLipstick’ and
’Archery’.

• We also partly show in the following their classification reports, report-
ing precision, recall and f1-score for each of the 101 classes and their
average values over the 101 classes (page 63). Their entire contents are
available in Appendix A.

CHAPTER 4. RESULTS 59

Feature extractor Classifier Precision Recall f1-score

Inception-v3 Single-frame 0.67 0.67 0.66
Quantized MobileNetV2 Single-frame 0.62 0.61 0.61

Inception-v3 GRU 0.77 0.77 0.76
Quantized MobileNetV2 GRU 0.74 0.73 0.72

Table 4.3: Average precision, recall and f1-score over the 101 classes

Figure 4.3: Normalized confusion matrix (quantized MobileNetV2 feature ex-
traction and GRU classifier). Color depth indicates proportions of predictions.

60 CHAPTER 4. RESULTS

Figure 4.4: Normalized confusion matrix (Inception-v3 feature extraction and
GRU classifier). Color depth indicates proportions of predictions.

CHAPTER 4. RESULTS 61

Figure 4.5: Normalized confusion matrix (quantized MobileNetV2 feature ex-
traction and GRU classifier) for the 3 classes: ’ApplyEyeMakeup’, ’ApplyLip-
stick’ and ’Archery’, along with proportions of correct and incorrect predic-
tions. Color depth indicates proportions of predictions.

62 CHAPTER 4. RESULTS

Figure 4.6: Normalized confusion matrix (Inception-v3 feature extraction and
GRU classifier) for the 3 classes: ’ApplyEyeMakeup’, ’ApplyLipstick’ and
’Archery’, along with proportions of correct and incorrect predictions. Color
depth indicates proportions of predictions.

CHAPTER 4. RESULTS 63

Partial classification report (quantized MobileNetV2 feature extraction
and GRU classifier)

precision recall f1-score support

ApplyEyeMakeup 0.67 0.64 0.65 44
ApplyLipstick 0.62 0.78 0.69 32

Archery 0.62 0.61 0.62 41
BabyCrawling 0.79 0.97 0.87 35

.

.

.

.

.

.
avg / total 0.74 0.73 0.72 3783

Partial classification report (Inception-v3 feature extraction and GRU clas-
sifier)

precision recall f1-score support

ApplyEyeMakeup 0.86 0.73 0.79 44
ApplyLipstick 0.69 0.62 0.66 32

Archery 0.83 0.93 0.87 41
BabyCrawling 0.92 1.00 0.96 35

.

.

.

.

.

.
avg / total 0.77 0.77 0.76 3783

4.4 Result analysis and discussion

Regarding the UCF101 dataset,

• The LSTM-based approach combined with the use of optical flow in
[25] achieved a maximum 3-fold accuracy of 88.6%.

• [23] achieved the 3-fold accuracy of 87.0% with its optical flow-based
two stream approach.

• [24] achieved a maximum 3-fold accuracy of 92.5% with its optical
flow-based two stream approach combined with its fusion method.

64 CHAPTER 4. RESULTS

and accuracy values obtained in this project seem to demonstrate globally
lower performance (even if we only use one of the 3 splits that were used in
these studies). However, the above studies used optical flow, which can be con-
sidered as so far the best descriptor giving motion information. They also used
some data augmentation strategies. Moreover, [25] used video classification
models that were pre-trained on the larger Sports-1M dataset [32], and deeper
and more complicated NN with five layers of LSTM, which should have re-
sulted in massive number of parameters. Last but not least, all of these studies
fine-tuned the feature extraction parts based on the augmented UCF101 dataset
whereas in this thesis the feature extractors were pre-trained on ImageNet and
were not fine-tuned. What is worth mentioning is that our approaches based on
quantized MobileNetV2 features gave satisfactory performance metrics that do
not di�er so much from our reference approaches that are based on Inception-
v3 features (Table 4.3 and the classification report in 4.3):

• For the GRU-based approaches, switching from Inception-v3 features
to quantized MobileNetV2 features caused 3.67% of decrease in the
accuracy and 1.72% of decrease in the top-5 accuracy. For LSTM-
based approaches, switching from Inception-v3 features to quantized
MobileNetV2 features caused 4.45% of decrease in the accuracy and
3.05% of decrease in the top-5 accuracy. For single-frame models, switch-
ing from Inception-v3 features to quantized MobileNetV2 features caused
5.44% of decrease in the accuracy and 3.39% of decrease in the top-5
accuracy. Regarding the image classification based on ImageNet, the
di�erence in accuracy and top 5 accuracy between the Inception-v3 and
quantized MobileNetV2 are respectively about 8% and 4% according to
Table 3.1.

• For the three other metrics - precision, recall and f1-score - and the GRU-
based approaches, according to the classification reports in 4.3 and Ta-
ble 4.3, their average values decrease of 3% for precision and 4% for
the other metrics when switching from quantized MobileNetV2 feature
extractor to Inception-v3 feature extractor. For single-frame models,
their average values decrease of 6% for recall and 5% for the other met-
rics when switching from quantized MobileNetV2 feature extractor to
Inception-v3 feature extractor.

The gaps between the metrics obtained via the two feature extraction meth-
ods (quantized MobileNetV2 and Inception-v3) are lower for RNN-based ap-
proaches than single-frame models. This shows to some extent that the drop

CHAPTER 4. RESULTS 65

in accuracy induced by the use of quantized MobileNetV2 when dealing with
individual frames can be compensated by capturing temporal information via
consideration of sequence of these frames. However, this compensation is not
enough so that video classifications based on the two feature extractors per-
form same. Inception-v3 features-based approach still globally present better
performance. On the one hand, this should stem from intrinsic gap in accuracy
between these networks. On the other hand, for the UCF101 dataset, spatial
information already discriminate well di�erent classes, because the dataset
contains high quality data: short, well-segmented videos of concepts that can
typically be identified in a single frame. This is evidenced by the already high
performance of single-frame models (Table 4.3). The same remark has been
stated in [25].

Besides, more fine-grained analysis of the classification reports (in Ap-
pendix A) gives interesting results. Among the evaluated 303 metrics (pre-
cision, recall and f1-score for all of the 101 classes), 157 metrics are higher
when Inception-v3 is used as feature extractor whereas 109 metrics are higher
when quantized MobileNetV2 is used as feature extractor, and 37 metrics are
equal. Among the 101 classes, there are 54 classes for which at least one of
the three metrics is higher when quantized MobileNetV2 is used as feature
extractor. Among them, there are 23 classes for which all of the three met-
rics is either equal or higher when quantized MobileNetV2 is used as feature
extractor than when Inception-v3 is used as feature extractor. Again among
them, there are 15 classes for which all of the three metrics is higher when
quantized MobileNetV2 is used as feature extractor than when Inception-v3
is used as feature extractor and 7 classes for which all of the three metrics are
equal for both feature extractors. These facts show that regarding the three
metrics, the quantized MobileNetV2 feature-based approach can perform bet-
ter than the Inception-v3 feature-based approach for some classes. Figure 4.5
and Figure 4.6 illustrate the latter: the Inception-v3 feature-based approach
recognizes better the actions ’ApplyEyeMakeup’ and ’Archery’ - which was
expected-, whereas the quantized MobileNetV2-based approach recognizes
better the action ’ApplyLipstick’.

Chapter 5

Conclusion and future work

To answer the research question, we try to generalize as far as possible our
case study. To answer the first part of the research question, video classifica-
tion pipelines based on memory and computation-e�cient CNN - quantized
MobileNetV2 being used in our case study- can be built by adopting the ap-
proach that is developed in this thesis: by adopting an approach similar to
the ones in [25, 26], sampling video frames from video, extracting features
from them based on transfer learning and aggregating them while capturing
temporal information by using either GRU or LSTM that are trained. In our
case study, quantized MobileNetV2 is chosen as a representative of memory
and computation-e�cient CNNs, but similar approaches can be recycled when
building video classification pipelines that are based on other memory and
computation-e�cient CNNs, such as MobileNetV1, MobileNetV2, quantized
MobileNetV1 and others.

To answer the second part of the research question, our approaches based
on quantized MobileNetV2 globally achieve satisfactory performance accord-
ing the metrics that are used (accuracy, top-5 accuracy, precision, recall and f1-
score), which validate the artefacts. Based on the UCF101 dataset, that is used
as a representative video classification datasets, our pipelines based on quan-
tized MobileNetV2 achieved satisfactory performance metrics that do not dif-
fer so much from our reference pipelines that are based on Inception-v3. The
gaps between metrics obtained via quantized MobileNetV2 and Inception-v3
feature extraction methods are lower for RNN-based approaches than single-
frame models, which may, to some extent, validate the hypothesis that the drop
in accuracy induced by the use of quantized MobileNetV2 when dealing with
individual frames can be compensated by capturing temporal information via
consideration of sequence of these frames. Regarding these results, video clas-

66

CHAPTER 5. CONCLUSION AND FUTURE WORK 67

sification pipelines that are based on other memory and computation-e�cient
networks than quantized MobileNetV2 but that follow the same architecture
and transfer learning approach should record similar performance metrics and
trends and bring similar conclusions. However, the aforementioned compen-
sation is not enough so that the video classifications based on a memory and
computation-e�cient CNN and larger and more accurate CNN perform same.
On the one hand, this should stem from intrinsic gap in accuracy between these
networks. On the other hand, for the UCF101 dataset, spatial information al-
ready discriminate well di�erent classes, because the dataset contains high
quality data: short, well-segmented videos of concepts that can typically be
identified in a single frame. This is evidenced by the already high performance
of single-frame models. The same remark has been stated in [25]. There-
fore video classification based on an accurate image recognition CNN should
record better performance when using the UCF101 dataset. To some extent,
the case study should generalise to other video classification datasets, show
similar trends and bring similar conclusions. Especially, the aforementioned
gap should be reduced when images in these datasets that bring spatial infor-
mation present less diversity. The use of memory and computation-e�cient
CNNs may be very e�ective in this case.

As pointed out in the last part of the previous chapter, there are non-negligible
numbers of classes for which average precision, recall or f1-score are better
when quantized MobileNetV2 is used as feature extractor than when Inception-
v3 is used as feature extractor. This fact pointed out in this case study should
be also observable when a memory and computation-e�cient CNN other than
quantized MobileNetV2 is used as feature extractor. As future work, a deeper
investigation on the possible reasons for this phenomenon should be interest-
ing.

The use of the artefacts that are developed in this thesis should obviously be
relevant when dealing with multi-class classification of videos. Therefore the
conclusions can carry over other applications of video classification than ac-
tion recognition, for example dynamic scene recognition. Besides, computa-
tion and memory-e�cient CNN can be used for some tasks that deal with video
data but that are di�erent from video classification, for example video (tem-
poral) segmentation. This is the process of partitioning a video sequence into
disjoint sets of consecutive frames that are homogeneous according to some
defined criteria. Features extracted from computation and memory-e�cient
CNN can be used in order to tackle this task, and this can be useful for one
who wants to perform it on a computationally limited platform.

By answering the research question, this thesis shows, via performance

68 CHAPTER 5. CONCLUSION AND FUTURE WORK

metrics measured over the UCF101 dataset, the potential utility of memory
and computation-e�cient CNN when dealing with video classification, which
is interesting for one who wants to do video classification on a platform that
is limited in terms of memory and computation capabilities. This work can
serve as a significant starting point for video classification pipelines that are
based on memory and computation-e�cient CNNs.

In this thesis work, pre-trained feature extractor is not fine-tuned. In the
future, one should try to fine-tune it in order to further increase performance
of video classification. Quantized feature extractor should be fine-tuned in a
quantization-aware manner. Besides, this thesis work does not use data aug-
mentation strategies. Some of them can be used in order to further obtain
better results.

The combination of quantized MobileNetV2 and a RNN - preferably GRU
- forms the video classification pipeline based on computation and memory-
e�cient CNN in this thesis. However, this RNN classifier can be further com-
pressed, based on approaches such as knowledge distillation [20]. This is suit-
able for more e�ective deployment of video classification pipeline on devices
with limited memory and computational power, because both GRU and LSTM
still involves large number of parameters (even if GRU has less parameters than
LSTM). Currently, GRU and LSTM are not supported by TensorFlow Lite for
quantization. In the future, when they will be, the video classification pipeline
should be updated by doing quantization-aware training of its classifier, in or-
der to further compress it.

Also, the video classification pipeline can be improved by doing a knowl-
edge transfer from another video classification model that is trained on larger
and more diverse dataset. If one wants to leverage quantized MobileNetV2
features, Youtube-8m [26] may not be a good candidate as it is a dataset of
Inception-v3 features. Recently, IBM released a large-scale human-annotated
collection of one million short videos corresponding to dynamic events un-
folding within three seconds, the Moments in Time Dataset [65]. This dataset
may be a good starting point for this knowledge transfer. Indeed, one of the
major reasons for the delay in research improvement between image under-
standing and video understanding is that video understanding lacks enough
diverse and large datasets that can be equivalent to for example ImageNet in
image understanding. In correlated way, unlike in image understanding, there
is lack of popular networks and benchmarking studies in video understanding.
This kind of datasets should be more developed and additional benchmarking
studies should be done. The Moments in Time Dataset seems to be a good
starting point for this.

CHAPTER 5. CONCLUSION AND FUTURE WORK 69

Finally, in this thesis, unlike in [26], video representation-based approaches
using quantized MobileNetV2 features were not tested. They can be interest-
ing approaches to try in the future. However, in the context of multiclass clas-
sification problem, they may not be memory and computation-e�cient enough
to be deployed on a platform with limited memory and computational capabil-
ities, as they first require defining rigorous framework of multiclass classifica-
tion (for example, one versus one or one versus all) that is less flexible than a
softmax classifier.

Bibliography

[1] Yann LeCun, Y Bengio, and Geo�rey Hinton. “Deep Learning”. In:
Nature 521 (May 2015), pp. 436–44. ���: 10.1038/nature14539.

[2] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances
in Neural Information Processing Systems 25. Ed. by F. Pereira et al.
Curran Associates, Inc., 2012, pp. 1097–1105. ���: http://papers.nips.
cc / paper / 4824 - imagenet - classification - with - deep - convolutional -
neural-networks.pdf.

[3] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. In: CoRR abs/1409.1556
(2014). arXiv: 1409.1556. ���: http://arxiv.org/abs/1409.1556.

[4] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
CoRR abs/1512.03385 (2015). arXiv: 1512.03385. ���: http:// arxiv.
org/abs/1512.03385.

[5] Christian Szegedy et al. “Going Deeper with Convolutions”. In: CoRR
abs/1409.4842 (2014). arXiv: 1409.4842. ���: http:// arxiv.org/ abs/
1409.4842.

[6] Christian Szegedy, Sergey Io�e, and Vincent Vanhoucke. “Inception-
v4, Inception-ResNet and the Impact of Residual Connections on Learn-
ing”. In: CoRR abs/1602.07261 (2016). arXiv: 1602.07261. ���: http:
//arxiv.org/abs/1602.07261.

[7] Mark Everingham et al. “The Pascal Visual Object Classes (VOC) Chal-
lenge”. In: International Journal of Computer Vision 88.2 (June 2010),
pp. 303–338. ����: 1573-1405. ���: 10.1007/s11263-009-0275-4. ���:
https://doi.org/10.1007/s11263-009-0275-4.

[8] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition
Challenge”. In: International Journal of Computer Vision (IJCV) 115.3
(2015), pp. 211–252. ���: 10.1007/s11263-015-0816-y.

70

https://doi.org/10.1038/nature14539
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-015-0816-y

BIBLIOGRAPHY 71

[9] J. Deng et al. “ImageNet: A large-scale hierarchical image database”.
In: 2009 IEEE Conference on Computer Vision and Pattern Recogni-
tion. June 2009, pp. 248–255. ���: 10.1109/CVPR.2009.5206848.

[10] Andrew G. Howard et al. “MobileNets: E�cient Convolutional Neural
Networks for Mobile Vision Applications”. In: CoRR abs/1704.04861
(2017). arXiv: 1704.04861. ���: http://arxiv.org/abs/1704.04861.

[11] Mark Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bot-
tlenecks”. In: CoRR abs/1801.04381 (2018). arXiv: 1801.04381. ���:
http://arxiv.org/abs/1801.04381.

[12] Ningning Ma et al. “Shu�eNet V2: Practical Guidelines for E�cient
CNN Architecture Design”. In: CoRR abs/1807.11164 (2018). arXiv:
1807.11164. ���: http://arxiv.org/abs/1807.11164.

[13] Forrest N. Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <1MB model size”. In: CoRR abs/1602.07360
(2016). arXiv: 1602.07360. ���: http://arxiv.org/abs/1602.07360.

[14] Xiangyu Zhang et al. “Shu�eNet: An Extremely E�cient Convolu-
tional Neural Network for Mobile Devices”. In: CoRR abs/1707.01083
(2017). arXiv: 1707.01083. ���: http://arxiv.org/abs/1707.01083.

[15] Benoit Jacob et al. “Quantization and Training of Neural Networks for
E�cient Integer-Arithmetic-Only Inference”. In: CoRR abs/1712.05877
(2017). arXiv: 1712.05877. ���: http://arxiv.org/abs/1712.05877.

[16] Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks
for e�cient inference: A whitepaper”. In: CoRR abs/1806.08342 (2018).
arXiv: 1806.08342. ���: http://arxiv.org/abs/1806.08342.

[17] Suyog Gupta et al. “Deep Learning with Limited Numerical Precision”.
In: CoRR abs/1502.02551 (2015). arXiv: 1502.02551. ���: http://arxiv.
org/abs/1502.02551.

[18] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. “Improving the
speed of neural networks on CPUs”. In: Deep Learning and Unsuper-
vised Feature Learning Workshop, NIPS 2011. 2011.

[19] Yu Cheng et al. “A Survey of Model Compression and Acceleration
for Deep Neural Networks”. In: CoRR abs/1710.09282 (2017). arXiv:
1710.09282. ���: http://arxiv.org/abs/1710.09282.

[20] Geo�rey Hinton, Oriol Vinyals, and Je�rey Dean. “Distilling the Knowl-
edge in a Neural Network”. In: NIPS Deep Learning and Representation
Learning Workshop. 2015. ���: http://arxiv.org/abs/1503.02531.

https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1807.11164
http://arxiv.org/abs/1807.11164
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1712.05877
http://arxiv.org/abs/1712.05877
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1503.02531

72 BIBLIOGRAPHY

[21] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. “Model
Compression”. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’06. Philadel-
phia, PA, USA: ACM, 2006, pp. 535–541. ����: 1-59593-339-5. ���:
10.1145/1150402.1150464. ���: http://doi.acm.org/10.1145/1150402.
1150464.

[22] Google. TensorFlow Lite. ���: https://www.tensorflow.org/lite.

[23] Karen Simonyan and Andrew Zisserman. “Two-Stream Convolutional
Networks for Action Recognition in Videos”. In: CoRR abs/1406.2199
(2014). arXiv: 1406.2199. ���: http://arxiv.org/abs/1406.2199.

[24] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. “Convolu-
tional Two-Stream Network Fusion for Video Action Recognition”. In:
CoRR abs/1604.06573 (2016). arXiv: 1604.06573. ���: http:// arxiv.
org/abs/1604.06573.

[25] Joe Yue-Hei Ng et al. “Beyond Short Snippets: Deep Networks for Video
Classification”. In: CoRR abs/1503.08909 (2015). arXiv: 1503.08909.
���: http://arxiv.org/abs/1503.08909.

[26] Sami Abu-El-Haija et al. “YouTube-8M: A Large-Scale Video Classi-
fication Benchmark”. In: CoRR abs/1609.08675 (2016). arXiv: 1609.
08675. ���: http://arxiv.org/abs/1609.08675.

[27] Christian Szegedy et al. “Rethinking the Inception Architecture for Com-
puter Vision”. In: CoRR abs/1512.00567 (2015). arXiv: 1512.00567.
���: http://arxiv.org/abs/1512.00567.

[28] T. Brox et al. “High accuracy optical flow estimation based on a theory
for warping”. In: European Conference on Computer Vision (ECCV).
Vol. 3024. Lecture Notes in Computer Science. Springer, May 2004,
pp. 25–36. ���: http:// lmb.informatik.uni- freiburg.de/Publications/
2004/Bro04a.

[29] Norazlin Ibrahim et al. “Implementation of Di�erential Optical Flow
Algorithms in Natural Rigid Video Motion”. In: Lecture Notes in Engi-
neering and Computer Science 2174 (Mar. 2009).

[30] Ken Chatfield et al. “Return of the Devil in the Details: Delving Deep
into Convolutional Nets”. In: CoRR abs/1405.3531 (2014). arXiv: 1405.
3531. ���: http://arxiv.org/abs/1405.3531.

[31] Anne Håkansson. “Portal of Research Methods and Methodologies for
Research Projects and Degree Projects”. In: 2013.

https://doi.org/10.1145/1150402.1150464
http://doi.acm.org/10.1145/1150402.1150464
http://doi.acm.org/10.1145/1150402.1150464
https://www.tensorflow.org/lite
http://arxiv.org/abs/1406.2199
http://arxiv.org/abs/1406.2199
http://arxiv.org/abs/1604.06573
http://arxiv.org/abs/1604.06573
http://arxiv.org/abs/1604.06573
http://arxiv.org/abs/1503.08909
http://arxiv.org/abs/1503.08909
http://arxiv.org/abs/1609.08675
http://arxiv.org/abs/1609.08675
http://arxiv.org/abs/1609.08675
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://lmb.informatik.uni-freiburg.de/Publications/2004/Bro04a
http://lmb.informatik.uni-freiburg.de/Publications/2004/Bro04a
http://arxiv.org/abs/1405.3531
http://arxiv.org/abs/1405.3531
http://arxiv.org/abs/1405.3531

BIBLIOGRAPHY 73

[32] A. Karpathy et al. “Large-Scale Video Classification with Convolu-
tional Neural Networks”. In: 2014 IEEE Conference on Computer Vi-
sion and Pattern Recognition. June 2014, pp. 1725–1732. ���: 10.1109/
CVPR.2014.223.

[33] Amir Payberah. Large Scale Machine Learning and Deep Learning.
KTH Royal Institute of Technology. Nov. 1, 2018. ���: https://id2223kth.
github.io/ (visited on 11/01/2018).

[34] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”.
In: Neural computation 9 (Dec. 1997), pp. 1735–80. ���: 10.1162/neco.
1997.9.8.1735.

[35] Junyoung Chung et al. “Gated Feedback Recurrent Neural Networks”.
In: CoRR abs/1502.02367 (2015). arXiv: 1502.02367. ���: http://arxiv.
org/abs/1502.02367.

[36] Christopher Olah. Understanding LSTM Networks. 2015. ���: https :
/ / colah .github . io / posts / 2015- 08- Understanding- LSTMs/ ?fbclid=
IwAR04RSqY6CSlqMq1yMAUG630njDpAJqznxIHLOsIsDTipE5VG7bTJPaS6As
(visited on 05/06/2019).

[37] Sergey Io�e and Christian Szegedy. “Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift”. In:
CoRR abs/1502.03167 (2015). arXiv: 1502.03167. ���: http:// arxiv.
org/abs/1502.03167.

[38] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: Journal of Machine Learning Research 15
(2014), pp. 1929–1958. ���: http://jmlr.org/papers/v15/srivastava14a.
html.

[39] Song Han, Huizi Mao, and William Dally. “Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained Quantization
and Hu�man Coding”. In: Oct. 2016.

[40] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition
Challenge”. In: CoRR abs/1409.0575 (2014). arXiv: 1409.0575. ���:
http://arxiv.org/abs/1409.0575.

[41] Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”. In:
(Dec. 2013).

https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/CVPR.2014.223
https://id2223kth.github.io/
https://id2223kth.github.io/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1502.02367
http://arxiv.org/abs/1502.02367
http://arxiv.org/abs/1502.02367
https://colah.github.io/posts/2015-08-Understanding-LSTMs/?fbclid=IwAR04RSqY6CSlqMq1yMAUG630njDpAJqznxIHLOsIsDTipE5VG7bTJPaS6As
https://colah.github.io/posts/2015-08-Understanding-LSTMs/?fbclid=IwAR04RSqY6CSlqMq1yMAUG630njDpAJqznxIHLOsIsDTipE5VG7bTJPaS6As
https://colah.github.io/posts/2015-08-Understanding-LSTMs/?fbclid=IwAR04RSqY6CSlqMq1yMAUG630njDpAJqznxIHLOsIsDTipE5VG7bTJPaS6As
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575

74 BIBLIOGRAPHY

[42] Sik-Ho Tsang. Review: GoogLeNet (Inception v1)— Winner of ILSVRC
2014 (Image Classification). 2018. ���: https://medium.com/coinmonks/
paper- review- of - googlenet - inception - v1 - winner- of - ilsvlc - 2014 -
image-classification-c2b3565a64e7 (visited on 05/06/2019).

[43] Laurent Sifre and Stéphane Mallat. “Rigid-Motion Scattering for Tex-
ture Classification”. In: CoRR abs/1403.1687 (2014). arXiv: 1403.1687.
���: http://arxiv.org/abs/1403.1687.

[44] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: IEEE
Transactions on Knowledge and Data Engineering 22.10 (Oct. 2010),
pp. 1345–1359. ����: 1041-4347. ���: 10.1109/TKDE.2009.191.

[45] Waseem Rawat and Zenghui Wang. “Deep Convolutional Neural Net-
works for Image Classification: A Comprehensive Review”. In: Neural
Computation 29 (June 2017), pp. 1–98. ���: 10.1162/NECO_a_00990.

[46] Jason Yosinski et al. “How transferable are features in deep neural net-
works?” In: CoRR abs/1411.1792 (2014). arXiv: 1411.1792. ���: http:
//arxiv.org/abs/1411.1792.

[47] Chuanqi Tan et al. “A Survey on Deep Transfer Learning”. In: CoRR
abs/1808.01974 (2018). arXiv: 1808.01974. ���: http://arxiv.org/abs/
1808.01974.

[48] Yichuan Tang. “Deep Learning using Support Vector Machines”. In:
CoRR abs/1306.0239 (2013). arXiv: 1306.0239. ���: http://arxiv.org/
abs/1306.0239.

[49] Pedro Marcelino. Transfer learning from pre-trained models. 2018. ���:
https:// towardsdatascience.com/transfer- learning- from-pre- trained-
models-f2393f124751 (visited on 05/06/2019).

[50] C. Zach, T. Pock, and H. Bischof. “A duality based approach for realtime
tv-l1 optical flow”. In: In Ann. Symp. German Association Patt. Recogn.
2007, pp. 214–223.

[51] Thomas Brox and Jitendra Malik. “Large Displacement Optical Flow:
Descriptor Matching in Variational Motion Estimation”. In: IEEE trans-
actions on pattern analysis and machine intelligence 33 (Mar. 2011),
pp. 500–13. ���: 10.1109/TPAMI.2010.143.

[52] Aditya Khosla et al. “Novel Dataset for Fine-Grained Image Catego-
rization : Stanford Dogs”. In: 2012.

https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-classification-c2b3565a64e7
https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-classification-c2b3565a64e7
https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-classification-c2b3565a64e7
http://arxiv.org/abs/1403.1687
http://arxiv.org/abs/1403.1687
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1162/NECO_a_00990
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1808.01974
http://arxiv.org/abs/1808.01974
http://arxiv.org/abs/1808.01974
http://arxiv.org/abs/1306.0239
http://arxiv.org/abs/1306.0239
http://arxiv.org/abs/1306.0239
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
https://doi.org/10.1109/TPAMI.2010.143

BIBLIOGRAPHY 75

[53] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks”. In: CoRR abs/1506.01497 (2015).
arXiv: 1506.01497. ���: http://arxiv.org/abs/1506.01497.

[54] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: CoRR abs/1512.02325
(2015). arXiv: 1512.02325. ���: http://arxiv.org/abs/1512.02325.

[55] M. Oquab et al. “Learning and Transferring Mid-level Image Represen-
tations Using Convolutional Neural Networks”. In: 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition. June 2014, pp. 1717–
1724. ���: 10.1109/CVPR.2014.222.

[56] Hossein Azizpour et al. “From Generic to Specific Deep Representa-
tions for Visual Recognition”. In: CoRR abs/1406.5774 (2014). arXiv:
1406.5774. ���: http://arxiv.org/abs/1406.5774.

[57] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101:
A Dataset of 101 Human Actions Classes From Videos in The Wild”.
In: CoRR abs/1212.0402 (2012). arXiv: 1212.0402. ���: http://arxiv.
org/abs/1212.0402.

[58] Christoph Feichtenhofer. Convolutional Two-Stream Network Fusion for
Video Action Recognition. Sept. 27, 2016. ���: https : / / github .com/
feichtenhofer/twostreamfusion (visited on 04/10/2019).

[59] NumPy developers. NumPy. Scipy.org. 2019. ���: https://www.numpy.
org/ (visited on 04/10/2019).

[60] Marshall Copeland et al. Microsoft Azure: Planning, Deploying, and
Managing Your Data Center in the Cloud. 1st. Berkely, CA, USA: Apress,
2015. ����: 1484210441, 9781484210444.

[61] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Jour-
nal of Machine Learning Research 12 (2011), pp. 2825–2830.

[62] François Chollet et al. Keras. https://keras.io. 2015.
[63] Fredrik Lundh, Alex Clark and contributors. Pillow.
[64] Microsoft. Transfer learning from pre-trained models. 2019. ���: https:

/ / azure .microsoft . com / en - us / services / machine - learning - service/
(visited on 04/04/2019).

[65] Mathew Monfort et al. “Moments in Time Dataset: one million videos
for event understanding”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (2019), pp. 1–8. ����: 0162-8828. ���: 10 .
1109/TPAMI.2019.2901464.

http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://doi.org/10.1109/CVPR.2014.222
http://arxiv.org/abs/1406.5774
http://arxiv.org/abs/1406.5774
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1212.0402
https://github.com/feichtenhofer/twostreamfusion
https://github.com/feichtenhofer/twostreamfusion
https://www.numpy.org/
https://www.numpy.org/
https://keras.io
https://azure.microsoft.com/en-us/services/machine-learning-service/
https://azure.microsoft.com/en-us/services/machine-learning-service/
https://doi.org/10.1109/TPAMI.2019.2901464
https://doi.org/10.1109/TPAMI.2019.2901464

Appendix A

Classification results

This part shows entire contents of classification reports, reporting precision,
recall and f1-score for each of the 101 classes and their average values over
the 101 classes for both of the GRU-based approaches respectively based on
quantized MobileNetV2 and Inception-v3 feature extraction. We also subse-
quently shows confusion matrices without normalization for both of the GRU-
based approaches, along with numbers of correct and incorrect predictions
(Figues A.1 and A.2).

Classification report quantized MobileNetV2 feature extraction GRU
precision recall f1-score support

ApplyEyeMakeup 0.67 0.64 0.65 44
ApplyLipstick 0.62 0.78 0.69 32

Archery 0.62 0.61 0.62 41
BabyCrawling 0.79 0.97 0.87 35

BalanceBeam 0.76 0.61 0.68 31
BandMarching 0.84 0.95 0.89 43

BaseballPitch 0.95 0.86 0.90 43
Basketball 0.47 0.91 0.62 35

BasketballDunk 0.97 1.00 0.99 37
BenchPress 0.85 0.96 0.90 48

Biking 0.97 0.97 0.97 38
Billiards 1.00 1.00 1.00 40

BlowDryHair 0.76 0.68 0.72 38
BlowingCandles 0.66 0.94 0.78 33

BodyWeightSquats 0.19 0.13 0.16 30
Bowling 0.87 0.93 0.90 43

BoxingPunchingBag 0.92 0.45 0.60 49
BoxingSpeedBag 0.53 0.81 0.64 37

76

APPENDIX A. CLASSIFICATION RESULTS 77

BreastStroke 0.53 0.96 0.68 28
BrushingTeeth 0.31 0.31 0.31 36

CleanAndJerk 0.61 0.70 0.65 33
CliffDiving 0.88 0.97 0.93 39

CricketBowling 0.36 0.39 0.37 36
CricketShot 0.41 0.27 0.32 49

CuttingInKitchen 0.91 0.94 0.93 33
Diving 0.96 1.00 0.98 45

Drumming 0.81 0.87 0.84 45
Fencing 0.71 0.85 0.77 34

FieldHockeyPenalty 0.62 0.45 0.52 40
FloorGymnastics 0.89 0.67 0.76 36

FrisbeeCatch 0.60 0.81 0.69 37
FrontCrawl 0.87 0.35 0.50 37

GolfSwing 0.52 0.87 0.65 39
Haircut 0.45 0.67 0.54 33

HammerThrow 0.83 0.64 0.73 45
Hammering 0.85 0.33 0.48 33

HandStandPushups 0.68 0.68 0.68 28
HandstandWalking 0.08 0.06 0.07 34

HeadMassage 0.47 0.78 0.59 41
HighJump 0.90 0.49 0.63 37

HorseRace 0.89 0.97 0.93 35
HorseRiding 0.96 1.00 0.98 49

HulaHoop 0.62 0.59 0.61 34
IceDancing 0.85 0.98 0.91 46

JavelinThrow 0.77 0.65 0.70 31
JugglingBalls 0.51 0.50 0.51 40

JumpRope 0.11 0.08 0.09 38
JumpingJack 0.79 0.62 0.70 37

Kayaking 0.83 0.69 0.76 36
Knitting 1.00 0.82 0.90 34
LongJump 0.75 0.54 0.63 39

Lunges 0.40 0.46 0.43 37
MilitaryParade 0.88 0.91 0.90 33

Mixing 1.00 0.62 0.77 45
MoppingFloor 0.65 0.71 0.68 34

Nunchucks 0.33 0.20 0.25 35
ParallelBars 0.85 0.92 0.88 37
PizzaTossing 0.48 0.42 0.45 33
PlayingCello 1.00 0.77 0.87 44

PlayingDaf 0.89 0.80 0.85 41
PlayingDhol 0.70 0.88 0.78 49

PlayingFlute 1.00 0.85 0.92 48
PlayingGuitar 1.00 1.00 1.00 43

PlayingPiano 0.80 1.00 0.89 28
PlayingSitar 1.00 0.98 0.99 44

78 APPENDIX A. CLASSIFICATION RESULTS

PlayingTabla 0.91 1.00 0.95 31
PlayingViolin 0.92 0.86 0.89 28

PoleVault 0.93 1.00 0.96 40
PommelHorse 0.86 0.51 0.64 35

PullUps 0.44 0.25 0.32 28
Punch 0.81 0.87 0.84 39

PushUps 0.68 0.57 0.62 30
Rafting 0.89 0.89 0.89 28

RockClimbingIndoor 0.93 1.00 0.96 41
RopeClimbing 0.72 0.68 0.70 34

Rowing 0.80 0.92 0.86 36
SalsaSpin 0.48 0.58 0.53 43

ShavingBeard 0.53 0.44 0.48 43
Shotput 0.61 0.59 0.60 46

SkateBoarding 0.68 0.66 0.67 32
Skiing 0.81 0.75 0.78 40
Skijet 1.00 1.00 1.00 28

SkyDiving 0.97 0.97 0.97 31
SoccerJuggling 0.43 0.41 0.42 39

SoccerPenalty 0.81 0.83 0.82 41
StillRings 0.97 0.94 0.95 32

SumoWrestling 0.94 1.00 0.97 34
Surfing 0.94 1.00 0.97 33

Swing 0.70 0.88 0.78 42
TableTennisShot 0.93 0.97 0.95 39

TaiChi 0.74 0.61 0.67 28
TennisSwing 0.46 0.24 0.32 49
ThrowDiscus 0.38 0.76 0.50 38

TrampolineJumping 0.79 0.94 0.86 32
Typing 1.00 0.91 0.95 43

UnevenBars 0.70 0.93 0.80 28
VolleyballSpiking 0.78 0.89 0.83 35

WalkingWithDog 0.70 0.78 0.74 36
WallPushups 0.46 0.31 0.37 35

WritingOnBoard 1.00 0.96 0.98 45
YoYo 0.80 0.56 0.66 36

avg / total 0.74 0.73 0.72 3783

APPENDIX A. CLASSIFICATION RESULTS 79

Classification report Inception-v3 feature extraction GRU
precision recall f1-score support

ApplyEyeMakeup 0.86 0.73 0.79 44
ApplyLipstick 0.69 0.62 0.66 32

Archery 0.83 0.93 0.87 41
BabyCrawling 0.92 1.00 0.96 35

BalanceBeam 0.51 0.61 0.56 31
BandMarching 0.72 0.98 0.83 43

BaseballPitch 0.74 0.81 0.78 43
Basketball 0.54 0.74 0.63 35

BasketballDunk 0.84 1.00 0.91 37
BenchPress 0.82 0.83 0.82 48

Biking 0.92 0.95 0.94 38
Billiards 1.00 1.00 1.00 40

BlowDryHair 0.84 0.71 0.77 38
BlowingCandles 0.89 1.00 0.94 33

BodyWeightSquats 0.47 0.23 0.31 30
Bowling 0.87 0.93 0.90 43

BoxingPunchingBag 0.74 0.80 0.76 49
BoxingSpeedBag 0.67 0.81 0.73 37

BreastStroke 0.56 0.71 0.63 28
BrushingTeeth 0.75 0.50 0.60 36

CleanAndJerk 0.75 0.73 0.74 33
CliffDiving 0.90 0.90 0.90 39

CricketBowling 0.35 0.31 0.33 36
CricketShot 0.48 0.45 0.46 49

CuttingInKitchen 0.73 1.00 0.85 33
Diving 0.94 0.98 0.96 45

Drumming 0.95 0.91 0.93 45
Fencing 0.94 0.88 0.91 34

FieldHockeyPenalty 0.74 0.80 0.77 40
FloorGymnastics 0.61 0.78 0.68 36

FrisbeeCatch 0.80 0.76 0.78 37
FrontCrawl 0.70 0.51 0.59 37

GolfSwing 0.64 0.59 0.61 39
Haircut 0.54 0.82 0.65 33

HammerThrow 0.55 0.69 0.61 45
Hammering 0.76 0.67 0.71 33

HandStandPushups 0.72 0.64 0.68 28
HandstandWalking 0.33 0.21 0.25 34

HeadMassage 0.87 0.83 0.85 41
HighJump 0.71 0.46 0.56 37

HorseRace 0.84 0.91 0.88 35
HorseRiding 0.94 1.00 0.97 49

HulaHoop 0.90 0.82 0.86 34

80 APPENDIX A. CLASSIFICATION RESULTS

IceDancing 1.00 0.98 0.99 46
JavelinThrow 0.58 0.45 0.51 31

JugglingBalls 0.74 0.88 0.80 40
JumpRope 0.17 0.05 0.08 38

JumpingJack 0.67 0.54 0.60 37
Kayaking 0.88 0.83 0.86 36
Knitting 1.00 0.82 0.90 34
LongJump 0.46 0.59 0.52 39

Lunges 0.71 0.41 0.52 37
MilitaryParade 0.90 0.82 0.86 33

Mixing 1.00 0.78 0.88 45
MoppingFloor 0.67 0.82 0.74 34

Nunchucks 0.35 0.31 0.33 35
ParallelBars 0.62 0.97 0.76 37
PizzaTossing 0.59 0.61 0.60 33
PlayingCello 1.00 0.68 0.81 44

PlayingDaf 0.89 1.00 0.94 41
PlayingDhol 1.00 1.00 1.00 49

PlayingFlute 0.95 0.85 0.90 48
PlayingGuitar 1.00 1.00 1.00 43

PlayingPiano 0.96 0.86 0.91 28
PlayingSitar 1.00 1.00 1.00 44
PlayingTabla 0.90 0.84 0.87 31

PlayingViolin 0.70 1.00 0.82 28
PoleVault 0.69 0.95 0.80 40

PommelHorse 0.93 0.74 0.83 35
PullUps 0.90 0.64 0.75 28

Punch 1.00 0.87 0.93 39
PushUps 0.79 0.73 0.76 30
Rafting 0.89 0.89 0.89 28

RockClimbingIndoor 0.98 0.98 0.98 41
RopeClimbing 0.65 0.71 0.68 34

Rowing 0.88 0.78 0.82 36
SalsaSpin 0.66 0.72 0.69 43

ShavingBeard 0.56 0.88 0.68 43
Shotput 0.70 0.50 0.58 46

SkateBoarding 0.67 0.75 0.71 32
Skiing 0.81 0.75 0.78 40
Skijet 0.97 1.00 0.98 28

SkyDiving 0.97 0.97 0.97 31
SoccerJuggling 0.48 0.59 0.53 39

SoccerPenalty 0.94 0.83 0.88 41
StillRings 0.88 0.72 0.79 32

SumoWrestling 0.83 0.88 0.86 34
Surfing 0.87 1.00 0.93 33

Swing 0.81 0.81 0.81 42
TableTennisShot 1.00 1.00 1.00 39

APPENDIX A. CLASSIFICATION RESULTS 81

TaiChi 0.78 0.75 0.76 28
TennisSwing 0.68 0.43 0.53 49
ThrowDiscus 0.54 0.71 0.61 38

TrampolineJumping 0.69 0.97 0.81 32
Typing 1.00 0.81 0.90 43

UnevenBars 1.00 0.86 0.92 28
VolleyballSpiking 0.59 0.69 0.63 35

WalkingWithDog 0.72 0.86 0.78 36
WallPushups 0.56 0.43 0.48 35

WritingOnBoard 0.95 0.91 0.93 45
YoYo 0.74 0.64 0.69 36

avg / total 0.77 0.77 0.76 3783

82 APPENDIX A. CLASSIFICATION RESULTS

Figure A.1: Confusion matrix, without normalization (quantized Mo-
bileNetV2 feature extraction and GRU classifier), along with numbers of cor-
rect and incorrect predictions. Color depth indicates number of predictions.

APPENDIX A. CLASSIFICATION RESULTS 83

Figure A.2: Confusion matrix, without normalization, (Inception-v3 feature
extraction and GRU classifier), along with numbers of correct and incorrect
predictions. Color depth indicates number of predictions.

Appendix B

Deployment of the video classi-

fication pipeline

The video classification pipeline based on quantized MobileNetV2 feature ex-
traction and GRU classifier is actually deployed on an example of a device with
limited computational capabilities and memories: a Raspberry Pi. Knowing
the right number of epochs to train the GRU classifier, the latter is re-trained
on the whole dataset and saved in Microsoft Azure then downloaded.

The TensorFlow devel docker image tensorflow/tensorflow:nightly-devel
is used in order to cross compile and build TensorFlow Lite [22]. The video
classification pipeline is developed within a docker container using this image
within a local machine. The trained GRU classification model is put together
with the quantized MobileNetV2 feature extractor. Finally, files in the con-
tainer are zipped. Besides, on the Raspberry Pi, a docker container is created
and uses the same docker image. The zip file is loaded into this container in
order to deploy the video classification pipeline on the Raspberry Pi.

84

www.kth.se

	Introduction
	Background
	Problem
	Purpose
	Goal
	Methodology
	Delimitations
	Benefits, Ethics and Sustainability
	Outline

	Background
	Artificial Neural Networks and Deep Neural Networks
	Feedforward neural network
	Convolutional neural network
	Recurrent neural network
	Training DNNs
	Techniques used in training
	Quantization of NNs

	CNN architectures
	Inception-v3
	MobileNets
	Deep transfer learning

	Related work
	Video classification
	CNN architectures
	Deep transfer learning
	Quantization of NNs

	Methodology
	Research method
	Datasets
	Evaluation
	Evaluation metrics
	Measurement of the evaluation metrics
	Comparison

	Video classification pipelines implementation
	Quality assurance

	Results
	Video classification pipelines building
	Overview
	Model training

	Data Analysis
	Classification results
	Result analysis and discussion

	Conclusion and future work
	Bibliography
	Classification results
	Deployment of the video classification pipeline

