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Abstract

Neural architecture search is a popular method for automating architecture design.

Bayesian optimization is a widely used approach for hyper-parameter optimization

and can estimate a function with limited samples. However, Bayesian optimization

methods are not preferred for architecture search as it expects vector inputs while

graphs are high dimensional data. This thesis presents a Bayesian approach with

Gaussian priors that use graph kernels specifically targeted to work in the higher-

dimensional graph space. We implemented three different graph kernels and show

that on the NAS-Bench-101 dataset, an untrained graph convolutional network kernel

outperforms previousmethods significantly in terms of the best network found and the

number of samples required to find it. We follow the AutoML guidelines to make this

work reproducible.

Keywords

Neural architecture search, Bayesian optimization, Graph kernels,

Graph convolutional networks
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Abstract

Neural arkitektur sökning är en populär metod för att automatisera arkitektur

design. Bayesian-optimering är ett vanligt tillvägagångssätt för optimering av

hyperparameter och kan uppskatta en funktion med begränsade prover. Bayesianska

optimeringsmetoder är dock inte att föredra för arkitektonisk sökning eftersom

vektoringångar förväntas medan grafer är högdimensionella data. Denna avhandling

presenterar ett Bayesiansk tillvägagångssätt med gaussiska prior som använder

grafkärnor som är särskilt fokuserade på att arbeta i det högre dimensionella

grafutrymmet. Vi implementerade tre olika grafkärnor och visar att det på NAS-

Bench-101-data, till och med en otränad Grafkonvolutionsnätverk-kärna, överträffar

tidigare metoder när det gäller det bästa nätverket som hittats och antalet prover

som krävs för att hitta det. Vi följer AutoML-riktlinjerna för att göra detta arbete

reproducerbart.

Nyckelord

Neural-arkitektursökning, Bayesian-optimering, Graph-kernels,

Grafkonvolutionsnätverk
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Chapter 1

Introduction

The field of deep learning has experienced tremendous growth in the past decade.

Many deep learning models have achieved human-level performance or better on a

wide variety of tasks such as image classification [51, 52, 62], speech synthesis [37, 55]

and language processing [17, 54] to name a few. A deep learning model or network

consists of various mathematical operations or layers and connections between these

layers. Although there are many important factors associated with the development

of a deep learning network, two main concepts are 1) architecture engineering which

deals with the design of the network and how the various layers involved are connected,

2) hyper-parameters selection which decides the training configuration.

Typically, both processes are done manually and require prior knowledge and

experience with deep learning architectures. Since each architecture needs to be

trained to determine its performance and there are potentially infinite architectures

that can solve a particular problem, the process of obtaining the best model for a

task is a time consuming one and can be resource-intensive when multiple GPUs are

used to train different models simultaneously. Neural Architecture Search (NAS) is a

technique that automates the process of architecture design. It is used to search for a

neural network amongst a limited set of possible networks that can achieve the desired

performance in a relatively short time. Deep learning networks obtained through NAS

have already outperformed many hand-crafted models in various areas like image

classification [3, 62] and language modelling [62]. The process of NAS can be defined

1



CHAPTER 1. INTRODUCTION

as an optimization problem, as shown in equation 1.1.

A∗ = argmin
A∈A

J(θ, A;Dval) (1.1)

A∗ is the desired architecture which minimizes the cost function or objective function

J over the set of architectures A, when each architecture is trained with the hyper-

parameters θ. The cost function J represents the performance of the architectureA on

the validation datasetDval having been trained on the datasetDtrain. Examples ofDtrain

and Dval include CIFAR-10 [26], Imagenet [44] and many more. In contrast, hyper-

parameter optimization (HPO) [5, 49] that has certain similarities to NAS, differs from

it as the main objective is to find the set of optimal hyper-parameters θ∗(A) for an

architecture A over the set of all possible hyper-parameters Θ.

θ∗ = argmin
θ∈Θ

J(θ, A;Dval) (1.2)

1.1 Problem

A typical NAS algorithm draws network samples from the search space, trains the

network, and updates its parameters based on the resultant performance [12]. Most

NAS algorithms [13, 22, 57, 62] require a large number of samples to reach the

neighbourhood of the best network in the search space, while some algorithms are

time-consuming and computationally expensive [3, 62]. With limitations in hardware

and time constraints, such methods are not viable. Bayesian optimization (BayesOpt

or BO) is a highly preferred optimization method for non-convex, non-linear, black-

box functions that are expensive to evaluate. The derivatives of such functions are

not accessible. BayesOpt is known for its ability to solve such problems with as few

samples as possible. This makes it suitable for NAS. However, BayesOpt is mostly

used in the lower dimension (Euclidean spaces) and cannot be directly applied to the

space of neural nets. Therefore the question that arises is, if it is possible to develop

a BayesOpt approach that can handle high dimensional space while still satisfying the

hardware and time constraints.
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CHAPTER 1. INTRODUCTION

1.2 Objective

For the application of BayesOpt in the search space of neural networks, it is necessary

to encode the network data into a lower dimension that the model can interpret.

Graph kernels [25] are functions that operate on graphs and produce encoded vectors.

Since we want to model the performance of neural networks by sampling and training

only a small number of models, an assumption can be made that, architectures with

similar performances are in the neighbourhood of each other. This means that there

is an n-dimensional space, where the distance between architectures with similar

performance is minimal. This assumption is valid as many architectures that have

similar performance measures are usually modifications of each other. The objective

of this research can be formulated as :

1. Is it possible to implement a graph kernel that correlates networks in the search

space based on their performance?

2. If such a kernel is possible, then can it be used with BayesOpt?

3. How should the BayesOpt be designed to satisfy the constraints?

This thesis presents three different graph kernels that are capable of encoding the

graph data. While the concept of applying graph kernels is not new, we present a

novel choice for the kernel1 which we show is better than previous methods. We also

explore the various parameters such as sampling and acquisition functions associated

with BayesOpt and try to find the right combination, that requires fewer samples and

produces a good result.

1.3 Methodology

The objective of this thesis is to sample the best network from the NAS-Bench-101

dataset by observing as few samples as possible. The best network is the network

with the least test error when evaluated on the CIFAR-10 [26] dataset. The success

of a NAS algorithm primarily depends on how well it compares to the random search

[6]. Algorithms that cannot find a better architecture than the random search at the

end of the training duration are considered failures. While this metric is generally

1At the time of starting this project no approaches were present for the use of WL and GCN kernels
in BayesOpt. A recent paper [43] follows a similar approach.
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CHAPTER 1. INTRODUCTION

preferred, a qualitative approach can also be considered especially for determining the

performance of a graph kernel. Here the ability of the kernel to group similar networks

is estimated approximately. It is assumed that a goodkernel can segregate the good and

badnetworks based on their test error and therefore have a higher chance of identifying

the best network.

1.4 Limitations

The scope of this project is limited to finding the best model in the NAS-Bench-101

[60] search space in as few samples as possible while placing a constraint on the

hardware (number of GPUs) used. No attempt is made to use the model as a network

performance estimator. The performance on other datasets such as NAS-Bench-201

[11] or DARTS [32] are left for future work.

1.5 Outline

• Chapter 2 provides the necessary information to understand the various concepts

and theories discussed. It also provides a literature review of previous works

related to NAS.

• Chapter 3 describes the graph kernels implemented in detail.

• Chapter 4 discusses the implementation details of the entire process. Various

experiments carried out using acquisition on sampling functions are described

here. It also introduces the NAS-Bench-101 dataset.

• Chapter 5 presents the results obtained and provides observations related to

them.

• Chapter 6 discusses the possible impacts of this thesis and futureworks that could

be carried out.
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Chapter 2

Background

This chapter provides the necessary information to understand and interpret the

theories and results presented in this project. This covers an introduction to Bayesian

optimization, beginning with the Bayes’ theorem followed by an overview of the

optimizationprocess. Previousworks regarding research onNASand the current state-

of-the-art models are discussed at the end.

2.1 Bayesian Optimization

A typical optimization problem can be defined as

min
x∈S

f(x) (2.1)

where, the input x is a vector (x ∈ Rd) belonging to the set S. The objective function f

is a continuous function thatmaps the samples in the set S to a real value. It is required

to find the value of x thatminimizes f . When f is convex, the localminimum is also the

globalminimum. In most cases however f is non-convex, non-linear and expensive to

evaluate. This makes the task of finding the global minimum a difficult one. In many

cases it is also difficult to represent the objective function f mathematically making

it hard to compute its derivatives. Also there is a chance that the function f is not

noise-free and hence the actual evaluated result is f(x) + η. Hence it is necessary

to consider the function f as a black-box function and minimize it without taking

the actual function into consideration. The noise is usually approximated as a zero

centered normal distributionN (0, σ2
noise).
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CHAPTER 2. BACKGROUND

While there are many algorithms to solve such black-box optimization problems [28,

61], most algorithms require a large number of samples and are sometimes time-

consuming. Bayesian optimization [7, 36] is a powerful algorithm that builds a prior

function over the objective and combines it with evidence from evaluating the function

f in order to get the posterior function that tries to model the objective. This approach

is preferred over the other algorithms as the number of samples evaluated is much

smaller. Bayesian optimization has been used for optimization of non-convex function

since the 1960’s [27, 35]. It has gained much significance in the past decade due to its

application in hyper-parameter tuning of machine learning algorithms [5, 49]. In this

section, the main motivation behind Bayesian optimization and the steps involved in

the process are described.

2.1.1 Bayes’ Theorem

Bayes’ theorem [20] related to the context of optimization can be stated as -“the

posterior probability of amodel (or theory, or hypothesis -M) given evidence (or data,

or observations - E) is proportional to the likelihood of E givenM multiplied by the

prior probability ofM” [7, p. 2].

P (M|E) ∝ P (E|M)︸ ︷︷ ︸
Likelihood

P (M)︸ ︷︷ ︸
Prior

(2.2)

The equation 2.2 provides a method to validate the priors or beliefs about the

objective function, when given samples from the search space and their evaluation

via the objective function. Let {x1, x2, . . . , xt} be samples accumulated from the set

S over t time steps and let {y1, y2, . . . , yt} be their evaluations from the objective

function. Collectively the samples and their evaluationsmake up the sequential dataD,

D1:t = {x1, y1, . . . , xt, yt}, which is used to make prior assumptions about the objective
function. The termP (D1:t|f) can be interpreted as - given the priors about the objective
function, how likely is the data to be observed. Since the process is sequential, as t

increases, the posterior get updated as shown below. Note that since the posterior

is marginalized over all samples, the proportionality can be ignored. The posterior

function which tries to model the objective is often known as surrogate function (M)

or response surface.

P (f |D1:t) = P (D1:t|f)P (f) (2.3)

6



CHAPTER 2. BACKGROUND

While there are many choices for the distribution of the priors such as the Wiener

process [27] or the Tree-Parzen-Estimator [5], Gaussian process (GP) [36, 61] is

the most preferred due to its versatility and ease of computation. A multivariate

Gaussian distribution can represent most continuous functions. The theory behind

GP is presented in later sections.

2.1.2 Bayesian Optimization Approach

As shown in the previous section, Bayesian optimization is an iterative approach. In

each time step t, a new sample is selected from the search space and evaluated. This

selection process is carried out by the acquisition function, which selects the candidate

sample with the help of the surrogate function P (f |D1:t−1). Acquisition functions

direct the search process by selecting those samples which it determines to be helpful

for the minimization process. Typically there is a trade-off between exploration and

exploitation of the search space. There are many different acquisition functions such

as expected improvement [19], lower confidence bound [10], and Thompson sampling

[53], to name a few. These functions are explained in detail in Section 4.4.

Algorithm 1: Step by step Bayesian optimization

1 sample n points at random from S;
2 evaluate the points (y1, . . . yn);
3 initialize the GP with observed samples and values;
4 for t = 1, 2, . . . , do
5 get xt from the search space using the acquisition function;
6 evaluate the sample xt, yt = f(xt) + η;
7 Augment the dataset D1:t = {D1:t−1, (xt, yt)};
8 Update GP surrogate with D1:t

9 end

Take the case of a simple 1D, non-convex, non-linear function such as the 1-D Ackley

function which is defined in Equation 2.4.

yackley(x) = −20e−0.2
√
0.5x2 − e0.5 cos 2πx + e+ 20 (2.4)

In order to model this function to find the minima, we initially sample two points and

fit their values along with their evaluations to the GP model resulting in Figure 2.2. It

can be seen that with just two samples, the GP is unable tomodel the objective function

and is uncertain in its prediction in most of the areas except at the sampled points. It

7



CHAPTER 2. BACKGROUND

Figure 2.1: Noise-free Ackley function, where x ∈ R, −1 ≤ x ≤ 1

should be noted that the region of uncertainty is much smaller around a sampled point

as compared to other places due to the inherent understanding that points that are

closer have similar results. When more samples are acquired, the surrogate becomes

Figure 2.2: Bayesian optimization with GP using RBF kernel is applied for the
minimization of Ackley function. Samples are marked by “x”. The unbroken violet
line represents the surrogate function (current model of the objective function) while
the shaded regions represent uncertainty in predictions.

closer and closer to the objective function, albeit with noise. The ability of Bayesian

optimization to estimate the objective functions with very few samples (compared to

other optimization algorithms) can be seen in Figure 2.3, where the GP surrogate is

close to the objective with just a total of 6 samples. In the right side, the acquisition

function (LCB) is plotted. The acquisition function tries to direct the search towards

the minimum and selects a candidate to be sampled. Initially, it explores the space,

but once it samples a point from the neighbourhood of the minimum, it becomes

exploitative and repeatedly samples around this point in order to reach the minimum.

8



CHAPTER 2. BACKGROUND

Figure 2.3: Evolution of Bayesian optimization over time. The regions of uncertainty
decrease as more points are sampled. In the right the working of the acquisition
function is plotted. The red dot indicates the location of the candidate sample.
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CHAPTER 2. BACKGROUND

2.1.3 Gaussian Process

AGaussian process (GP) is used to describe a distribution over a set of functions. A GP

is a collection of stochastic sampleswhere every sample is represented as amultivariate

Gaussian distribution (N (µ⃗,Σ)) and the joint distribution over these samples gives

the distribution of the GP. A GP is completely defined by its mean function m(x) and

covariance k(x, x′). The objective function when modelled as a GP is written as

f(x) ∼ GP(m(x), k(x, x′)) (2.5)

Figure 2.4 depicts the GP for the example of Ackley function from the previous section.

Given two samples with their evaluations (mean) and the covariance function k (RBF),

it can be seen that the GP generates a set of possible functions that satisfy the given

criteria. Over time, when more points are sampled, the uncertainty reduces, thereby

restricting the space for the priors.

Figure 2.4: Few of the possible priors for the objective function. Each of the Gaussian
functions have the same mean and covariance.

Applying a Gaussian process as priors to Bayesian optimization is often called kriging.

The kernel function is used to generate a covariance matrix (K), which comprises of

pairwise correlation between n observed samples. When the model is noise-free, then

the diagonal values are 1. A requirement for the kernel is that K should be positive

semi-definite.

K =


k(x1, x1) · · · k(x1, xn)

...
. . .

...

k(xn, x1) · · · k(xn, xn)

 (2.6)

Since the k(x, x′) is independent of k(x, x′′), the kernel matrix can be easily updated for

10
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time t+ 1 as follows [7]:

Kt+1 =

 K kT
t+1

kt+1 k(xt+1, xt+1)

 (2.7)

where, kt+1 =
[
k(xt+1, x1) · · · k(xt+1, xt)

]
If at time t, data D1:t has been observed, it is possible to predict the evaluation of the

objective function at point xt+1. The values for µt(t + 1) and σ2
t (t + 1) can be obtained

with the help of the Sherman-Morrison-Woodbury formula [7, 40] as shown:

µt(t+ 1) = kTK−1µ1:t

σ2
t (t+ 1) = k(xt+1, xt+1)− kTK−1k

(2.8)

Covariance functions

The covariance or kernel function k(x, x′), controls the shape and smoothness of the

GP. A kernel is used to find the correlation between the different samples observed

in order to fit the Gaussian model and predict new values. Two samples which are

close together or similar can be expected to have a large correlation and vice-versa two

dissimilar points could be expected to have small correlation. There are many kernel

functions [36, 40] of which two important ones are the squared exponential or Radial

Basis Function (RBF) [36] kernel and the Matern kernel [33].

The RBF kernel is written as

k(x, x′) = exp
(
−||x− x′||2

2l2

)
(2.9)

where ||x − x′|| is the Euclidean distance between x and x′ and l is a hyper-

parameter which scales the distance thereby controlling the width of the kernel and

its smoothness. This kernel is infinitely differentiable, which means that GPs are very

smooth.

The Matern kernel is a generalization of the RBF kernel where additional parameters

are included to control the smoothness of the function. It is defined as

k(x, x′) =
1

Γ(ν)2ν−1

(√
2ν

l
||x− x′||2

)ν

Kν

(√
2ν

l
||x− x′||2

)
(2.10)
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Kν is the modified Bessel function of order ν [2] and Γ is the gamma function [1].

The parameter ν controls the smoothness of the function. Unlike the RBF kernel the

Matern kernel is only ν − 1 times differentiable.

2.2 Neural Architecture Search

Architecture engineering for deep learning is a complex and time consuming process.

While simple structures are fairy easy to design, complex models such as InceptionNet

[52], ResNet [16] or DenseNet [18] require lots of intuition and are perfected through

trial and error. Neural Architecture Search (NAS) was introduced in order to provide a

systematic approach for architecture design where rather than training each iteration

of the network design, networks are selected based on the statistical data of the network

search space. NAS algorithms primarily depend on three main sections : search space,

search strategy and performance estimation.

Search Space
A

Search Strategy Performance
Estimation

A ∈ A

J(A)

Figure 2.5: General overview of NAS algorithms [12].

2.2.1 Search Space

The search space (A) refers to the set of all possible architectures that can be applied

to a dataset. The search space is usually subjected to constraints such as the maximum

number of nodes or edges that are allowed in a network [32, 60]. Search spaces can be

classified into two main sections - direct and indirect. In direct search spaces (Figure

2.6 (a)), the networks are a sequence of layers that can have complex connections

amongst the layers. Each layer Li−1 feeds data to the next layer Li. The search space

is constrained by the number of layers and the type of operations present, such as

convolution [29] layer, pooling layer [45] and recurrent layers.
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Indirect search spaces (Figure 2.6 (b)) have a predefined structure where certain

operations are fixed. In between these fixed operations, a cell or a stack of layers are

addedwhose design is the target of NAS. Cell-based architectures became popular after

outperforming conventional structures [16, 52]. In each cell, the number of operations,

number of nodes and number of connections are constrained. Most of the current

datasets for NAS are usually cell-based [32, 60]. Since the cells are repeated, even a

small number of nodes in a cell can produce excellent networks. This makes the cell-

based approach faster and easy to search [3]. Also, since cell networks share many

parameters, they can be easily transferred to other datasets and models. Most cell

networks are trained on smaller data such as CIFAR-10 [26] and later transferred to

ImageNet [44].

(a) (b)

Figure 2.6: Search space representations. (a) A direct search space sample with
complex connections between the layers. (b) An indirect search space with repeated
stacks of ResNet cells.

2.2.2 Search Strategy

Search strategy [12] is the technique used to explore the search space and select

architectures for estimation, where typically the architecture is trained and its

validation accuracy is obtained. The parameters of the search strategy are updated

each time a network is evaluated. Based on the estimation results, the search algorithm

can decide between exploring the dataset or searching for better networks in the

neighbourhood of the previously sampled ones.

Some of the search strategies used are random search [6], evolutionary search [21,

42, 50], Bayesian approaches [4, 34] and reinforcement learning based models [62].

Random search is the easiest and most naive approach, where networks are randomly
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sampled and evaluated. While this is similar to the trial-and-error approach, it does

work surprisinglywell for datasets like theNAS-Bench-101 [60], where the distribution

of networks is highly skewed as most networks have 80% accuracy. While it may be

the fastest approach for NAS, its reliability is questionable over different datasets.

Evolutionary search methods like regularized evolution [42] sample a limited set of

networks to build a population. Then from this population, networks are mutated

randomly to generate sibling networks that retain some similarity to the original

network. In each iteration, the oldest network in the population is removed.

Bayesian optimization (BayesOpt) has been used for hyper-parameter tuning for a long

time [5, 13, 22, 49]. One of the main problems of applying BayesOpt for NAS is that

typical BayesOpt methods focus on vectors, where the distance between two vectors

can be easily computed. This is not applicable to high dimension data like networks

(graphs) where the distance computation needs to be explicitly defined. NASBOT

[22] is an approach that uses a BayesOpt with Gaussian priors. This is obtained

by designing a distance metric (OTMANN) which computes the similarities between

layers. Through this approach, NASBOT performed better than previous models such

as random and evolutionary search methods.

RL based approaches consider the search space as the action space and model the

agent, whose reward is defined by the performance of the network generated [3,

62]. These approaches usually have a sequential network such as RNN or LSTM that

generate an encoded string that contains the structure of the neural network. Another

approach [9] is to generate an architecture sequentially by considering a Markovian

approach where the actions that been sampled previously are part of the state of the

model. The reward is specified only after generating an entire network. The problem

with RL based approaches is that while they are better than random search, they are

computationally expensive and require lots of samples to build a model.

2.3 Related Work

The Bayesian approach discusses in this project is based on the foundation laid by

NASBOT [22]. Similar to the approach used by the authors of NASBOT, specialized

graph kernels are implemented. The high dimensional graph is encoded into a

meaningful vector of lower dimension, that the GP can process. An issuewithNASBOT

is the distance metric (OTMANN), which works well in direct search spaces, but needs
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to be modified for cell-based networks given it suffers from over-fitting as only the

small cells need to be compared rather than the entire network. Also, compared to

state-of-art approaches [57, 58] it requires lots of samples to perform well.

The simplest approach for architecture search is random search or random sampling

[5, 6]. While this approach has a very low chance of sampling the best architecture in

a large distribution, in a skewed dataset such as NAS-Bench-101 [60], where most of

the architectures have high accuracy, this method serves as the baseline for comparing

NAS models. Two recent models that were developed in 2020 are BANANAS [57] and

Local Search [58]. Both these methods outperform previous approaches on the NAS-

Bench-101 dataset.

Bayesian optimizationwith neural architectures forNAS (BANANAS) is a BO approach

where rather than using a conventional prior like Gaussian model, the authors use a

feed-forward ensemble neural network to predict the performance of an architecture.

Similar to a BO-GP approach, in each iteration, a sample is selected using the

acquisition function. Every selected sample is encoded via path encoding, which is

based on the presence of a certain path in the structure of the sample. The neural

network predictor is then trained with all previously evaluated samples to predict the

accuracy of unseen networks. While this approach is shown to be very effective, one

drawback is the need to train the feed-forward network. Also the encoding used is

rather simple and has a large dimension compared to other graph encoding schemes

like the Weisfeiler-Lehman graph kernel [47]. Local search is a NAS search algorithm

which is based on the method of local search optimization [38]. A network is selected

at random and all its neighbours are evaluated. The process is repeated with the

best network found. The simplicity of this method is due to the fact that it is very

similar to the random sampling approach. Local search has been shown to have similar

performance or even slightly outperform even BANANAS on NAS-Bench-101. While,

this is true of other small datasets like NAS-Bench-201 [11], the authors state that this

method fails for large datasets like DARTS [32].
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Graph Kernels

This chapter provides details on how each deep learning architecture is encoded into a

lower dimensional vector used to build the Gaussianmodel. This is done by specialized

graph kernels. The three graph kernels that were implemented are discussed here.

3.1 Overview

The structure of a neural network can be well represented by a graph G defined by its

vertices and edges such that G = (V,E). The nodes (V ) represent the mathematical

operations (layers) and the edges (E) indicate the connections between the various

layers. Typically, the nodes are given a label (σ) to identify them based on the type

of operation uniquely. As shown in Figure 3.1, each architecture An ∈ A can be

represented as a graph Gn = (Vn, En). Here each operation is given a unique label

and colour.

Figure 3.1: A deep learning model is represented as a labelled graph.
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Although informative, this graph representation cannot be directly processed by

conventional kernel functions like the RBF kernel or theMatern kernel, as they usually

expect a vector input. Therefore it is necessary to convert the graph representation

into a vector representation. This vector representation is then used to obtain

the covariance between two graphs. The process of transforming the graph into

a vector is known as graph encoding. A major concern in graph encoding is the

loss of information when moving from a high dimensional representation to a lower

dimension. Hence there is a need for specialized kernels that can encode graphs

while retaining the information about the graph structure. Three such kernels - the

Weifeiler-Lehman subtree kernel, edge kernel andGCNkernel were implemented. The

encoding process is depicted in Figure 3.2.

Figure 3.2: Graph encoding and kernel computation.

Figure 3.3 depicts the entire workflow of the BO process used in this thesis. In every

iteration, a set of sample graphs are drawn from the search space. Amongst them, one

graph is selected using the acquisition function. The graph kernels encode the selected

graph into a vector, and this vector is used to compute the covariance values using

the kernel functions. These values are then passed to the Gaussian regressor which

updates its belief using the observed samples and the process is repeated. Initially, few

samples are drawn at random in order to build the prior for the Gaussianmodel.

Figure 3.3: Workflow of the Bayesian optimization process.
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3.2 Weisfeiler-Lehman Subtree Kernel

TheWeisfeiler-Lehman (WL) subtree kernel [25, 46, 47] is a graph kernel based on the

Weisfeiler-Lehman test of isomorphism [56]. TheWL test for isomorphism provides a

method to obtain a canonical representation of a graphG such that the node labels and

their connections are preserved. The WL process is an iterative process that captures

the structure of a graph by combining the information of a node of a graph with all its

neighbourhood nodes. Consider two directed graphs G1 = (V1, E1) and G2 = (V2, E2)

as shown in Figure 3.4. IfΣ (labelmap) denotes the set of all possible labels (σ) for a set

of N graphs with a total of l nodes, let Σ0 ⊂ Σ denote the set of node labels occurring

at least once at the start of the process. Similarly, let Σi ⊂ Σ indicate the set of labels

occurring at least once at the end of iteration i including the previous iteration. In the

given example, σ ∈ Z+,Σ0 = 1, 2, 3, 4, 5.

Figure 3.4: Graphs G1and G2, where the colours and labels uniquely identify a node.

In each iteration i, for every node vjn whose current label is σij, the labels of its

neighbourhood nodes are collected and grouped as shown in Figure 3.5 (a). Once the

labels are collected, they are sorted and appended to the original label to create a new

label, called themulti-set label (σ̂ij) as seen in Figure 3.5 (b). Themulti-set label is then

compared with the current label set Σi−1 and in the event that it does not exist in Σi−1,

the multi-set label is compressed to create a unique label (σ̄ij) that follows the order

of the label set and assigned to the node in a step called “relabelling” (Figure 3.5 (c)).

This step is repeated for all nodes in all graphs over the common setΣi−1 leading to the

creation of a new set Σi = Σi−1, σ̄i1, σ̄i2, ..σ̄il where all necessary nodes are relabeled as

shown in Figure 3.5 (d). TheWL process for node 1 ofG1 for the first iteration can also
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be shown numerically as follows:

Σi−1 = Σ0 = {0 : 0, 1 : 1, 2 : 2, 3 : 3, 4 : 4, 5 : 5}

Grouping = (1− 2, 5, 2, 3)

Sorting = (1− 2, 2, 3, 5)

multi-set label - σ̂11 = (1, 2235)

Relabelling = σ̂11 ̸∈ Σ0, =⇒ σ̄11 = 6

Σ1 = {Σ0, σ̄11} = {0 : 0, 1 : 1, 2 : 2, 3 : 3, 4 : 4, 5 : 5, 1, 2235 : 6}

Once all graph nodes are processed, the next graph undergoes the same steps with the

updated label set. Figure 3.6 depicts the updated node labels at the end of the first

iteration. The process is repeated for h iterations, where h denotes the height of the

kernel.

(a) Neighbourhood nodes of 1 (b) Ordered multi-set label

(c) Label compression and relabelling (d) Updated labels

Figure 3.5: Step by stepWLprocess applied toGraph 1. Here the labels are represented
by natural numbers. Note that since the graph is directed, 5 has no neighbours and
hence remains unchanged.
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Figure 3.6: Updated node labels after relabelling process is applied to both the graphs.

It can be seen from Figure 3.5 (c) and (d) that the compressed labels inherently contain

the structure of the graph. For example, consider the label 6, which explicitly denotes

a pattern where the node with label 1 is connected to two nodes with label 2, one node

with label 3 and one node with label 5. Here the information from the second level

(node-set: 2,2,3) is passed to the first level. In the second iteration, as shown in Figure

3.7, a new multi-set label 6, 5789 → 13, is created. This label is made of encapsulated

labels 6, 7, 8 and 9 (each of the labels contain information about their neighbours -

6:1,2235, 7: 2,3, ...). It can be observed that the new label contains almost the entire

structure of the graph, as the label 13 contains information about all the four levels of

the graph. In every iteration, the information about subsequent levels is passed to the

nodes in the previous levels.

Figure 3.7: Relabelling step for Node 6 in iteration 2.

Once the relabelling is completed for h iterations for all N graphs, the kernel needs

to be defined to compute the covariance between the graphs. In order to do so, the

feature vector (ΦWL) for a graph G is defined as the count of node labels present in

each graph. TheWL subtree kernel can be summarized as a graph kernel that encodes
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a graph into a multi-set label count vector.

ΦWL(G) = {c0(G, σ01), ..c0(G, σ0l), ...ch(G, σhl)} (3.1)

where ci denotes the function that counts the occurrence of a label σ (original and

compressed) at the end of iteration i for graph G. In Table 3.1, the values in each

column represents the count of each label in Graphs G1 and G2 at the end of the first

iteration. The kernel, a function of these feature vectors is simply defined as the inner

product of the corresponding feature vectors.

kWL(G,G
′) = ⟨ΦWL(G),ΦWL(G

′)⟩ (3.2)

Labels→ 1 2 3 4 5 6 7 8 9 10 11 12
ΦWL(G1) 1 2 2 1 1 1 1 1 2 1 0 0
ΦWL(G2) 1 2 1 0 1 0 1 0 1 0 1 1

Table 3.1: Feature vectors at the end of iteration 1 for graphs G1 and G2.

The rows of Table 3.1 denotes the feature vectors obtained for graphs G1 and G2.

The kernel function is used to build the N × N kernel matrix which normalized

such that kWL(G,G
′) = 1 → indicates maximum correlation (the same graph) and

kWL(G,G
′) = 0 → indicates an absence of any relationship between the graphs.

One of the major advantages of this kernel is its label compression which intuitively

provides information about the graph structure which results in a higher accuracy in

identifying similar graphs and predicting covariance at relatively cheaper computation

as compared to other approaches such as random walk [14, 23] or deep learing

approaches that require lots of samples [15, 39]. In general, the WL process is applied

to every pair of graphs present in the dataset resulting in the formation of aN×N kernel

matrix. While a global label set could be maintained across all operations, it would be

a time-consuming process as the feature vector for each graph needs to be determined

sequentially. Also, the size of the label set Σ would increase exponentially. This can

be avoided by utilizing the fact that the covariance between two graphs is not affected

by any external factor, i.e. kWL(G,G
′) is independent of the computation kWL(G

′, G′′).

Hence for large N , the values of the kernel matrix can be computed in parallel.

If all labels are unique at the start of the process, then the setΣ0 at themost has l labels
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equaling the total number of nodes. For every iteration, a maximum of l labels can be

added to the current set, while the number of multi-set grouping operation depends

on the number of edges present (|E|) in each graph. Hence the runtime complexity of
the process in naive application for N graphs at height h is O(Nh|E|+N2hl).

3.3 Naive Edge Kernel

The naive Edge kernel, based on [25, 47], is a straight forward kernel where the feature

vector ΦE(G) of a graph G is simply the count of different edge labels present in the

graph. An edge e, connecting nodes a and b, a, b ∈ V , forms an ordered node pair (a, b).

Each unique node pair is assigned a label σi
E, where σ

i
E ∈ ΣE which denotes the set of

all edge present across N graphs. Figure 3.8 shows the edge labels for the two graphs

G1 and G2 from section 3.2.

Similar to theWL subtree kernel, the edge kernel is defined as the inner product of the

graph feature vectors and the kernel matrix is normalized between 0 and 1. Table 3.2

depicts the feature vectors of graphs G1 and G2.

kE(G,G
′) = ⟨ΦE(G),ΦE(G

′)⟩ (3.3)

Figure 3.8: Graphs G1 and G2, where each unique node pair is assigned a label σ ∈ Z.
Here the node colour is used to differentiate the various nodes and thereby node pairs.

Like the subtree kernel, it can also be computed in parallel due to themutually exclusive

nature of the kernel matrix. While typical edge kernels follow an iterative approach

like the subtree kernel undergoing various steps such as multi-set label creation and

relabelling, in this project, the focus is more on the naive version (i.e h = 0) in order
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to develop a model with minimal runtime as compared to the subtree kernel. Due

to this restriction, the runtime complexity for obtaining the kernel matrix becomes

O(N2|E|2).

Labels→ 1 2 3 4 5 6 7 8
ΦE(G1) 2 1 1 1 1 1 1 0
ΦE(G2) 2 0 1 1 0 1 0 1

Table 3.2: Feature vectors for Edge kernel

3.4 Graph Convolution Network

While kernels like WL subtree are effective in encoding graphs with complex

connections, they sometimes fail at simple graphs like a chain where the height h needs

to be large in order to capture the entire graph. Also the computation ofmulti-set labels

and relabelling bottlenecks the entire BO process.

Graph Convolution Networks [24] (GCN) are basically neural networks which can

operate on graphs. They are more expressive than ordinary graph kernels and can

obtain better results in a variety of different tasks such as node classification, node

prediction and network compression [8, 24, 59]. The main idea of GCN is collecting

both self features and neighbour features. For GCN, the graph is fed as an input in

the form of its adjacency matrix (A) of size |V | x |V | (number of nodes) and its feature
description matrix (Xf ) of size |V | x |L|, where L denotes the set of node labels. Xf is

usually a one-hot encoded matrix where the presence of a label at a node is indicated

by 1 and absence by 0. With respect to the NAS-Bench search space, |V | = 7 and |L| =
6 (including null operation).

The layer wise propagation of a GCN layer in a network with j layers is defined as

fgcn(H
(j),A) = σ

(
AH(j)W (j)

)
, (3.4)

where, H(j) is the input to the node (node feature matrix at first layer), W (j) is the

weight matrix for layer j and σ (not to be confused with the standard deviation) is

the non-linear activation function. The above equation states that in a feed-forward

system, the network accumulates the weighted feature vectors of its neighbours. To

make itmore effective the adjacencymatrix needs to include self-loops to collect its own
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features and then be normalized to prevent the exploding gradients. A diagonal matrix

D can be used to normalize the matrix A, where D is the degree matrix (a diagonal

matrix, where the values on the diagonal represent the number of nodes connected to

a particular node).

Anorm = D−1AD (3.5)

Then, the updated output of a layer j is given as

fgcn(H
(j),A) = σ

(
D̂− 1

2 ÂD̂− 1
2H(j)W (j)

)
,

Â = A+ I
(3.6)

I being the Identity matrix. The number of layers in a GCN model indicates the

distance the node features can travel. A GCN model typically has 2-3 layers of the

GCN operation in order to obtain the best performance [24]. The GCN model used

in the kernel operation is shown in Figure 3.9. Every layer has 256 node output

features. After pooling, each graph is represented an encoded vector of length 256.

The encoded vector is then passed on to a simple RBF kernel function (section 2.1.3).

In this approach, the network is not trained and is only used as a feed forward network

with random initialization. The reason that this works is because GCN’s are basically

parameterized WL subtree kernels as both focus on node-neighbour aggregation.

Figure 3.9: Structure of GCN layer used. Pooling aggregates node level outputs and
provides outputs at graph level.
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Experiments

This chapter discusses the dataset used and the details on how the idea was

implemented and various experiments carried out. It covers information about

the various sampling strategies used to obtain a subset of networks, the various

acquisition functions tested out, and some general information regarding the practical

implementation that can help in reproducibility.

4.1 NAS-Bench-101

The dataset used throughout for evaluating the model and comparing results is the

NAS-Bench-101 [60]. It consists of around 423,000 architectures based on the cell

network, as seen in Figure 2.6 (b). Each cell can consist of a maximum of seven nodes

and nine edges. Of the seven nodes, the first node is always the input and the last is the

output. The remaining five nodes can take the following operations: 1 x 1 convolution

followed by batch normalization, 3 x 3 convolution followed by batch normalization

and 3 x 3 max pool.

Every network is trained on the CIFAR-10 dataset for image classification. Each

network is trained for four different epochs 4/12/36/128 for three repeats each. This

means that it is not necessary to train the model since the results are already provided.

This helps in quick prototyping and prevents the need for expensive hardware for

training. Each architecture is represented by its adjacencymatrix (A) and a label vector

(L)which specifies the operations present in it and its performance in terms of training,

validation and testing accuracy including training time. NAS-Bench-101 is a highly
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Figure 4.1: Distribution of NAS-Bench-101 test error over all samples.

skewed dataset (Figure 4.1) wheremost of the networks have a low error. It is an open-

sourced benchmark dataset that provides a common ground for reproducibility and

comparison.

4.2 Kernels

Each graph is considered to be undirected in order to increase the information collected

by the kernels. During the architecture search, the GP was fit with validation error

scaled by a factor of 10. Since the kernel matrix values are mutually exclusive, it is

possible to run the kernel function for each pair in parallel. This is only necessary

when N >> 5000. For all values of N < 5000, vector computation provides the fastest

result.

4.3 Sampling

The Bayesian optimization process depends on choosing relevant samples from the

sample space to update the Gaussian model. While this is not an issue with datasets

where the search space is small, it becomes a computationally expensive task for

datasets such as NAS-Bench-101 that has roughly 420,000 samples given that the

kernels have runtime complexity in terms ofO(N2). This makes it necessary to sample

a small subset from the search space (Ā ⊂ A), and run the optimization process on it.

This approach is justified since the Bayesian optimization process is an iterative one

where the sampling process is repeated for each iteration; the probability that most of

the graphs are covered is high.
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A network belonging to the NAS-Bench-101 search space is defined by at most seven

vertices and nine edges consisting of five operations. Therefore, it is possible to

generate a random adjacency matrix of suitable dimensions and allocate operations

to these nodes randomly. For uniformity, every network is permitted only one input

and one output node. The first node in a network is always the input and the last node

is the output. Such a specification is then validated and if it exists in the dataset, it is

accepted into the sampling process.

It is essential that the sampling strategy used has the right balance between exploration

and exploitation. Exploring the original search space can lead to obtaining various

results and prevent getting stuck in a local optimum. It provides a better generalization

of the dataset by decreasing the distribution’s overall uncertainty as the samples are

spread apart. While on the other hand, exploitation refers tomaking intelligent choices

based on available data like observed samples or information about the distribution of

the dataset. While it is possible to prevent repetitions with the sample set Ā, this is

not recommended as it would bottleneck the entire process. Three sampling strategies

covering the exploration vs exploitation spectrum are discussed here.

4.3.1 Random Sampling

It is a purely exploration-based sampling approach where, in every iterationN graphs

are sampled from the search space such that none of the already observed samples are

among these N graphs. Let Xobs and Yobs be the observed graphs and their respective

performance metrics. The sampled set Ā can be defined as

Ā = {xi |xi ∈ A, xi ̸∈ Xobs} (4.1)

Every sample in the search space has an equal probability of being selected. One of

the main advantages of this approach is that unlike exploitation based approaches,

the probability of getting stuck in a local optima is very low. When performed for

multiple iterations, there is a high chance of sampling the global optima. However, on

the downside, in datasets like NAS-Bench-101 where the distribution is highly skewed,

having a sampling strategy that has a uniform probability distribution would, in the

worst case, take much longer to sample the global optima compared to approaches

that make use of the dataset distribution.
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4.3.2 Mutation Sampling

This strategy is based on the regularized evolution search strategy [41], an exploitation-

based approach that tries to sample networks similar to the best network found. The

main idea behind this approach is that most of the good networks differ from each

other only by a small origin. Hence if one of these networks is sampled, it would be

possible to reach the global optimum. Let xbest be the best sample observed up to the

current iteration. Each of theN samples from the search space is selected in such away

that they differ from xbest by a maximum of one node and / or one edge and repetitions

are avoided. Figure 4.2 depicts some of the mutated networks that can be obtained

from the base network represent in Figure 3.1. Note that in most cases the network is

pruned to remove dangling nodes and open connections. Since a single network can

only provide a limited set of mutations, another approach is to derive the mutations of

the top k networks. IfΨ(xbest) represent the mutation of the best observed sample, the

mutation sampling approach can be modelled as follows:

Ā = {Ψ(xbest) |Ψ(xbest) ∈ A,Ψ(xbest) ̸∈ Xobs} (4.2)

(a) (b) (c)

Figure 4.2: Examples of mutated architectures of network from Figure 3.1. (a) An edge
is removed from the rightmost node which leaves the node open. (b) The operation of
the rightmost node is modified to maxpool. (c) A new node is added to network.

4.3.3 Hybrid Sampling

This approach provides a balance between the two previous strategies. It combines

both the mutation sampling and random sampling by balancing both exploration and

exploitation with the help of the trade-off parameter or threshold ξ. During the sample
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selection process, a random number r, is generated for every sample. Depending on

the value of r, a choice is made between random or mutation sampling.

Ā =

xi r ≤ ξ

Ψ(xbest) r > ξ
(4.3)

For highly skewed datasets such as NAS-Bench-101, the value of ξ is usually low (0.25)

and favours mutation sampling.

4.4 Acquisition Functions

Once the subset Ā is sampled, the acquisition function is required to select the best

candidate(At) from Ā for evaluation. This means that the network selected by the

acquisition function will be trained, and the network along with its validation error

is used to update the Gaussian regression model. The acquisition function makes

its decision using the predicted estimation of mean and standard deviation of the

networks in Ā provided by the learned Gaussian process. Let µi, σi be the mean and

standard deviation of network xi, xi ∈ Ā predicted by the learned model (M(xi)). Let

µ,Σ be the vector representation of the predictions of the entire subset Ā.

M(Ā) = (µ,Σ)

µ = {µ1, µ2, . . . , µN}

Σ = {σ1, σ2, . . . , σN}

4.4.1 Greedy

This is a purely exploitative functionwhich selects the samplewith the lowest predicted

error. There is a possibility of the function getting stuck in a local minima. The

candidate is given by

At = argmin
A∈Ā

(µ) (4.4)

4.4.2 Expected Improvement

Expected improvement (EI) can indicate a measure of the magnitude of the

improvement. In order to get an accurate distribution of the objective function, EI

29



CHAPTER 4. EXPERIMENTS

has an effective trade-off between exploration and exploitation using the parameter ξ.

Typically ξ = 0.01. For an architecture Ai, EI(Ai) is defined as

D = µi −min (µ)− ξ

Z =


D
σi

if σi > 0

0 if σi = 0

EI(Ai) =

DΨ(Z) + σiψ(Z) if σi > 0

0 if σi = 0

(4.5)

where Ψ(Z), ψ(Z) are the cumulative distribution function (CDF) and probability

distribution function (PDF) of Z respectively. At is given by

At = argmax
A∈Ā

(EI(A)) (4.6)

4.4.3 Lower Confidence Bound

Lower confidence bound or LCB (UCB formaximization) is a function which is defined

as

LCB(Ai) = µi − ξσi

At = argmin
A∈Ā

(LCB(A))
(4.7)

where the factor ξ ≥ 0, controls exploration-exploitation trade-off. When ξ = 0, this

LCB is same as greedy function. For higher values, areas with larger uncertainty are

preferred.

4.4.4 Thompson

Thompson sampling [53] is a unique method where rather than directly using the

predictedmean and variance, a newnormal sample is createdwith the predicted values

as parameters. This ensures that each sample has some generalization.

TS(Ai) = N (µi, σi)

At = argmin
A∈Ā

(TS(A))
(4.8)
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4.5 Reproducibility

The AutoML NAS checklist [31] introduced by the AutoML organization helps in

developing NAS methods that are reproducible and whose results can be validated.

This thesis follows most of the steps mentioned in their checklist.

• Each algorithm was run for 50 times with different seeds and their mean results

were compared. All seeds were saved for verification.

• All algorithms were tested on NAS-Bench-101 with the same parameters on the

same hardware.

• Performance was compared in terms of error vs number of samples which can be

roughly approximated into GPU hours.

• Only validation error was used during architecture search.

• The algorithmwas comparedwith randomsearch. This is because randomsearch

is currently considered as the baseline strategy for NAS-Bench-101, given that

most of the architectures in the dataset are very good and there is almost an 80%

chance of getting a good network when sampled randomly.
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Results and Observations

This chapter presents the results of the various experiments conducted with their

interpretations. It also compares the Bayesian approach developed during this project

with the existing state-of-the-art methods on the NAS-Bench-101 dataset. Since the

workflow is divided into various segments as seen in Section 3.1, the results of each

segment are presented as separate sections. In all cases, the results of the Bayesian

optimization are plotted over the number of samples observed. Each process has been

repeated 50 times and for every 10 samples seen, the mean and the standard deviation

of the best samples found at that time are plotted. Note that 150 samples trained

sequentially is roughly equivalent to 47 GPU hours ( 2 days) [57].

5.1 Graph Kernels

We evaluate the kernels qualitatively by their ability to group networks and

qualitatively based on best error sampled and the number of samples taken to reach

it.

5.1.1 Qualitative analysis

Themain goal of the kernel is to identify similar networks that have similar accuracy. In

order to test the effectiveness of the kernel qualitatively, a small set of known networks

(1000) is sampled from the search space and is evaluated with the kernel. Based on

the covariance values in the kernel matrix, the networks are separated into arbitrary

groups. Since the accuracy of each network is known, it is plotted alongside the groups
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to indicate howwell architectureswith similar accuracy are grouped as shown in Figure

5.1. The grouping is similar to the k-nearest neighbour classification, where arbitrary

centres/networks are selected, and the location of each architecture is dependent on

its covariance value with respect to the chosen centres. Its prediction accuracy decides

the colour of the network. The higher the accuracy, the lighter the colour.

(a) (b)

(c)

Figure 5.1: Spiral graph of the different kernels evaluated using a constant set of
networks. The location of each network is dependent on its covariance value, w.r.t
the chosen centres. The colours represent the validation accuracy of the networks. An
ideal kernel would be able to segregate the poor performing networks from the good
ones. (a) WL subtree kernel (b) Edge kernel (c) GCN kernel

From the qualitative analysis in Figure 5.1, we can observe that compared to WL

subtree andGCN kernels, the edge kernel has denser groups. While some of these have

accuracy in the same neighbourhood, it also incorrectly groups many poor networks

with the good ones. The WL kernel performs better as the networks are spread apart

and the number of incorrect grouping is less. The GCN kernel is very similar to the
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WL, the key difference being that the worst networks are clearly visible, which means

that they are not grouped along with the good ones.

5.1.2 Quantitative analysis

Figure 5.2 shows how each kernel affects the Bayesian optimization process. It is clear

that GCN kernel is the best amongst the three as it reaches a much lower error (closer

to the global minimum) and faster. The performance of the WL kernel though not as

good as the GCNbut, it is still an improvement over the random sampling approach 5.2

(d). The edge kernel is only slightly better than random sampling. It is not surprising

given that it is a naive implementation that only counts edges and does not take the

entire network structure into account.

Figure 5.2: Evolution of the best architecture found. The dotted black line indicates
the best possible error in the NAS-Bench-101 dataset.

5.2 Sampling function

To compare the best sampling function, we evaluate them under the same

initialization. We use the GCN kernel with the LCB/UCB acquisition and sample 3000

points from the search space for every iteration. From the Figure 5.3, it is evident

that the hybrid sampling function is the best among the sampling functions. This is

because unlike the rest, it has a good trade-off between exploring and exploiting the

search space and does not get stuck in a local minima.
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Figure 5.3: Comparison of the various sampling techniques under same conditions.
Mutate2 and Hybrid2 refer to the sampling functions where the top n networks are
mutated rather than just the top one.

5.3 Comparison with SOTA

Figure 5.4: Comparison with different algorithms on the NAS-Bench-101 dataset.

Figure 5.4 shows the result of the comparison between the GCN kernel and WL kernel

against the state-of-the-art methods such as BANANAS [57], local search [58] and also

against regularized evolution [42] and random search. Both the GCN and WL kernels

use the LCB acquisition function with hybrid sampling. Results of BANANAS and

local search were obtained from their open-sourced code. From the graph, it can be

observed that the GCN kernel is able to outperform the current SOTA methods by a

large margin. It is able to reach the sample with a better error at around 70 samples
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while both local search and BANANAS are not able to reach this even after observing

150 samples. While the improvement is only around 4% in accuracy when compared

to local search, the major advantage of the GCN kernel is its effectiveness in reaching

a good network. This translates to saving a time of ∼ 20 GPU hours which is a huge

reduction in resources. Table 5.1 augments the previous statements showing that the

GCN kernel is consistently able to sample a very good network much faster than any

other methods. This is a very surprising conclusion given that the GCN model was

randomly initialized and was not trained.

Avg accuracy(%) Avg number of samples

Random sampling 93.75 86.4
Regularized evolution 93.87 91.36

Local search 94.112 84.6
BANANAS 94.104 95.26

BayesOpt Edge 93.84 91.9
BayesOpt WL 94.07 135.33
BayesOpt GCN 94.168 54.4

Table 5.1: Average accuracy of best samples at the end obtained by each model and
average number of samples needed to reach it.
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Conclusion

In this thesis, we had discussed the potential of Bayesian optimization as an effective

search strategy for Neural architecture search. We estimated the error of a set

of networks as a multivariate Gaussian distribution parameterized by the network

structure and dataset distribution through Gaussian process regression. For this

purpose, in order to fit the GP, three graph kernels were implemented that encode the

high dimensional graph data into a low dimensional vector that can be processed by

conventional covariance functions. During the thesis, different acquisition functions

and sampling functions were explored. The scope of the project was limited to finding

the bestmodel and hence the estimatedmodel would not be a good predictor for neural

network performance.

While there are plenty of search strategies, including a few based on BO,

most approaches either require lots of samples to build a decent model or are

computationally expensive. We developed a simple method which does not require

expensive hardware and could still achieve better results on the NAS-Bench-101

benchmark dataset compared to other approaches. Especially, the model with the

untrained GCN kernel was able to identify the best architectures at almost half the

time taken by other methods.

6.1 Discussion

All three kernels implemented are able to perform better than random search, a

method considered to be the benchmark to beat bymany experts [31]. This is especially
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difficult in search spaces like NAS-Bench-101 that is highly unbalanced and does

not have a uniform distribution with respect to error. Though the results might be

impressive, it raises the question - “how does it scale to other datasets?”. NAS-Bench-

101 is one of many benchmark datasets. Recently other such benchmarks like NAS-

Bench-201 [11] and NAS-Bench-301 [48] provide diverse networks where strategies

that work in one search space may fail elsewhere [58]. So it is necessary to test

on multiple search spaces and believe that most search spaces are covered. Also

BayesOpt heavily depends on acquisition function to explore the search space. In the

case of poor choice of acquisition function, the effectiveness of BayesOpt decreases

drastically.

6.2 Future Work

The next step would be to test the model on different datasets and see if it is still able

to perform as well. It would also be interesting to check whether search strategies

are transferable across search spaces. Follow up suggestions to this thesis include

incorporating hyberband [30] to improve performance estimation and reduce the time

taken for training. Another idea would be to use a GCN based auto-encoder to encode

the graph data. The feature vector from the latent space might be more informative

than a simple feed-forward network.
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