
Master Thesis
Optimizing Bike Sharing System Flows using Graph

Mining, Convolutional and Recurrent Neural
Networks

Davor Ljubenkov (910418-3018)

davorl@kth.se

Academic Examiner: Šarūnas Girdzijauskas

Academic Supervisor: Amir Hossein Payberah

External Supervisors: Carlo Ratti, Fábio Duarte, Paolo Santi

Degree program: TIVNM - DASC

Subject department: EECS

Course code: II226X

EIT Digital Master School

July 8, 2019

i



ii



Abstract

A Bicycle-sharing system (BSS) is a popular service scheme deployed in cities of different
sizes around the world. Although docked bike systems are its most popular model used,
it still experiences a number of weaknesses that could be optimized by investigating bike
sharing network properties and evolution of obtained patterns.

Efficiently keeping bicycle-sharing system as balanced as possible is the main problem
and thus, predicting or minimizing the manual transportation of bikes across the city is
the prime objective in order to save logistic costs for operating companies.

The purpose of this thesis is two-fold; Firstly, it is to visualize bike flow using data ex-
ploration methods and statistical analysis to better understand mobility characteristics
with respect to distance, duration, time of the day, spatial distribution, weather circum-
stances, and other attributes. Secondly, by obtaining flow visualizations, it is possible
to focus on specific directed sub-graphs containing only those pairs of stations whose
mutual flow difference is the most asymmetric. By doing so, we are able to use graph
mining and machine learning techniques on these unbalanced stations.

Identification of spatial structures and their structural change can be captured using
Convolutional neural network (CNN) that takes adjacency matrix snapshots of unbal-
anced sub-graphs. A generated structure from the previous method is then used in the
Long short-term memory artificial recurrent neural network (RNN LSTM) in order to
find and predict its dynamic patterns.

As a result, we are predicting bike flows for each node in the possible future sub-graph
configuration, which in turn informs bicycle-sharing system owners in advance to plan
accordingly. This combination of methods notifies them which prospective areas they
should focus on more and how many bike relocation phases are to be expected. Methods
are evaluated using Cross validation (CV), Root mean square error (RMSE) and Mean
average error (MAE) metrics. Benefits are identified both for urban city planning and
for bike sharing companies by saving time and minimizing their cost.

Keywords: Data Science, Data Visualization, Bike-Sharing Systems, Graph Mining,
Time Series Prediction, Machine Learning, Deep Learning, Recurrent Neural networks,
Convolutional Neural Networks, Shareable Cities, Urban Informatics

iii



Referat

L̊anecykel avser ett system för uthyrning eller utl̊aning av cyklar. Systemet används
främst i större städer och bekostas huvudsakligen genom tecknande av ett abonnemang.

Effektivt h̊alla cykel andelssystem som balanseras som möjligt huvud problemand därmed
förutsäga eller minimera manuell transport av cyklar över staden isthe främsta mål för
att spara logistikkostnaderna för drift companies.

Syftet med denna avhandling är tv̊afaldigt.

För det första är det att visualisera cykelflödet med hjälp av datautforskningsmetoder
och statistisk analys för att bättre först̊a rörlighetskarakteristika med avseende p̊a avst̊and,
varaktighet, tid p̊a dagen, rumsfördelning, väderförh̊allanden och andra attribut.

För det andra är det vid möjliga flödesvisualiseringar möjligt att fokusera p̊a specifika
riktade grafer som endast inneh̊aller de par eller stationer vars ömsesidiga flödesskillnad
är den mest asymmetriska.

Genom att göra det kan vi anvnda grafmining och maskininlärningsteknik p̊a dessa obal-
anserade stationer, och använda konjunktionsnurala nätverk (CNN) som tar adjacency
matrix snapshots eller obalanserade subgrafer.

En genererad struktur fr̊an den tidigare metoden används i det l̊anga kortvariga minnet
artificiella återkommande neurala nätverket (RNN LSTM) för att hitta och förutsäga
dess dynamiska mönster.

Som ett resultat förutsäger vi cykelflden för varje nod i den eventuella framtida under-
konfigurationen, vilket i sin tur informerar cykeldelningsägare om att planera i enlighet
med detta.

Denna kombination av metoder meddelar dem vilka framtida omr̊aden som bör inriktas
p̊a mer och hur många cykelflyttningsfaser som kan förväntas.

Metoder utvärderas med hjälp av cross validation (CV), Root mean square error (RMSE)
och Mean average error (MAE) metrics.

Fördelar identifieras b̊ade för stadsplanering och för cykeldelningsföretag genom att
spara tid och minimera kostnaderna.

iv



Acknowledgments

I would like to express a great appreciation to my thesis supervisor Amir H. Payberah
for his patient and unconditional support I received throughout the thesis.

A special thanks to Massachusetts Institute of Technology: Senseable City Lab (MIT
SCL) for providing me with a unique internship opportunity and giving many valuable
remarks on my project, mostly by my external supervisors Carlo Ratti, Fábio Duarte,
and Paolo Santi, but also all the amazing coworkers I was privileged to work alongside
with.

Among those researchers, a big gratitude goes to MIT visiting professor and researcher
Fábio Kon who helped me gain insight into the statistical analysis and data exploration
part of the project.

My biggest support throughout the intense period of thesis writing was my family in
Germany and Croatia: my parents, siblings and grandmother, who all unreservedly be-
lieved in me when deadlines seemed tough and inspiration was nowhere to be found.

Lastly, I would like to thank my extended family at European Institute of Technology
(EIT), both fellow students and employees, as the last two years were the most amazing
journey filled with entrepreneurial experiences and new friendships, which will continue
to flourish even after acquiring our diplomas.

v



Contents

1 Introduction 6

1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.1 Knowledge Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Related Work 15

2.1 Spatiotemporal Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Operations Research and Optimization of Docks . . . . . . . . . . . . . . 15
2.3 Collaborative Visual Analytics . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Community Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Comparing Cycling Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Mobility Prediction using Random Forest . . . . . . . . . . . . . . . . . . 17
2.7 Mobility Prediction using Recurrent Neural Networks . . . . . . . . . . . 18
2.8 Predicting Station Level Demand using Recurrent Neural Networks . . . 18

3 Theoretical Background 19

3.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Data Exploration & Statistical Analysis 23

4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Mobility Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Predicting Dynamic Patterns with RNN 33

5.1 Bike Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Weather Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Bike and Weather Data Aggregation . . . . . . . . . . . . . . . . . . . . 34
5.4 ARIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Simple RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6 Deep RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7 RNN LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



5.8 RNN Validation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Identifying Spatial Structures with CNN 48

6.1 CNN Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Graph Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5 Adding Candidate Novelty Links . . . . . . . . . . . . . . . . . . . . . . 65

7 Discussion 68

7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1.1 Prediction Results for January 2019 . . . . . . . . . . . . . . . . . 68
7.1.2 Prediction Results for February 2019 . . . . . . . . . . . . . . . . 71
7.1.3 Prediction Results for March 2019 . . . . . . . . . . . . . . . . . . 73
7.1.4 Prediction Results for April 2019 . . . . . . . . . . . . . . . . . . 74
7.1.5 Overall prediction results . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



Abbreviations & Definitions

ACF = Auto-Correlation Function
ADAM = ADAptive Moment estimation
API = Application Programming Interface
ARIMA = Auto-Regressive Integrated Moving Average
BN = Batch Normalization
BPTT = Back-Propagation Through Time
BSS = Bike Sharing Scheme (Service)
CHS = Cycle Hire Scheme
CNN = Convolutional Neural Network
CNTK = Microsoft Cognitive Toolkit
CV = Cross Validation
D.C. = District of Columbia
DDGF = Data-Driven Graph Filter
DTW = Dynamic Time Warping
EDA = Exploratory Data Analysis
ELU = Exponential Linear Unit
FNN = Feedforward Neural Network
GPA = Generalized Procrustes Analysis
GCNN = Graph Convolutional Neural Network
GIS = Geographic Information System
GRASS = Geographic Resources Analysis Support System
GRU = Gated Recurrent Units
GUI = Graphical User Interface
HCA = Hierarchical Cluster Analysis
HITS = Hyperlink-Induced Topic Search
IP = Integer Programming
LCHS = London Cycle Hire Scheme
LDA = Latent Dirichlet Allocation
LSTM = Long Short-Term Memory
MAE = Mean Average Error
MAPE = Mean Absolute Percentage Error
MIT = Massachusetts Institute of Technology
ML = Machine Learning
MSE = Mean Absolute Error
NN = Neural Network
NP = Non-deterministic Polynomial
OD = Origin-Destination
OLS = Ordinary Least-Squares Regression
PCA = Principal Component Analysis
PIP = PIP Installs Packages
PLoS = Public Library of Science
RBM = Restricted Boltzmann Machine

1



ReLU = Rectified Linear Unit
RSS = Residual Sum of Squares
RF = Random Forest
RMSE = Root Mean Squared Error
RMSLE = Root Mean Squared Logarithmic Error
RNN = Recurrent Neural Network (not to be confused with Recursive Neural Networks)
RSS = Residual Sum of Squares
SCL = Senseable City Lab(oratory)
TF = TensorFlow
TfL = Transport for London
T-SNE = T-distributed Stochastic Neighbor Embedding
UDF = User Dissatisfaction Function
VGP = Vanishing Gradient Problem

2



List of Figures

1 Descriptive statistics for Boston BlueBikes data . . . . . . . . . . . . . . 25
2 Evolution of trips from April 2013 to January 2019 . . . . . . . . . . . . 26
3 Morning trip check-outs clustered by neighbourhoods for July 2018 . . . 29
4 Morning trip check-outs heatmap for July 2018 . . . . . . . . . . . . . . 29
5 Mobility flows as a directed graph for July 2018 . . . . . . . . . . . . . . 30
6 Most unbalanced links between stations for each month in 2018 . . . . . 32
7 Correlation (R2 = 0.7) between Low Temperature and Bike Usage . . . . 35
8 Correlation (R2 = 0.02) between High Humidity and Bike Usage . . . . . 35
9 Rolling mean and standard deviation in ARIMA modelling . . . . . . . . 37
10 ARIMA model stationarity . . . . . . . . . . . . . . . . . . . . . . . . . 38
11 Autocorrelation functions for 30 lags . . . . . . . . . . . . . . . . . . . . 39
12 Autocorrelation functions for 820 lags . . . . . . . . . . . . . . . . . . . . 39
13 ARIMA predicted Bike Flow (2,0,0) coloured in red . . . . . . . . . . . . 40
14 Predicted Bike Flow with simple RNN . . . . . . . . . . . . . . . . . . . 41
15 Simple RNN Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . 42
16 Deep RNN test datapredicted bike usage . . . . . . . . . . . . . . . . . . 43
17 Deep RNN holdout data predicted bike usage (red) with 69% accuracy . 43
18 Deep RNN loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
19 RNN LSTM predicted bike usage . . . . . . . . . . . . . . . . . . . . . . 45
20 LSTM cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
21 Aggregated unbalanced edges for year 2017 . . . . . . . . . . . . . . . . . 50
22 Aggregated unbalanced edges for year 2018 . . . . . . . . . . . . . . . . . 50
23 Appearances of all unbalanced stations during both 2017 and 2018 . . . . 51
24 Adjacency matrix for March 2018 with isolated stations for that year . . 54
25 Adjacency matrix for March 2018 combined with stations from both years 54
26 20x20 matrix configuration depending on spatial position of stations . . . 55
27 Hub (left) and Authority (middle) scores for 2018 . . . . . . . . . . . . . 56
28 Aggregated heat map with directed graph of mobility flows showing most

used areas for July 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
29 clusters of t-SNE (left) and PCA (right) for 2018 data . . . . . . . . . . . 58
30 Training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
31 Test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
32 Validation (yellow) and test (red) accuracy . . . . . . . . . . . . . . . . 63
33 Validation (magenta) and test (green) loss . . . . . . . . . . . . . . . . . 64
34 Weighted training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
35 First 10 days of January 2019 unbalanced links: (10,11), (11,7), (11,9) . . 68
36 CNN prediction for the whole month of January 2019: (10,11), (11,8),

(11,9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
37 Pacific to Stata flow (left) and Stata to Pacific flow (right) . . . . . . . . 70
38 First 1/3 flows of February (left) and predicted rest of February (right) . 71
39 (13,7) Mass to Central (top) and (7,13) vice-versa (down) . . . . . . . . . 72
40 First 1/3 flows of March (left) and predicted rest of March (right) . . . . 73

3



41 First 1/3 flows of April (left) and predicted rest of April (right) . . . . . 74
42 Correlation between bike usage and snow (left), bike usage and rain (right) 77

4



List of Tables

1 Correlation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2 Augmented Dickey Fuller test . . . . . . . . . . . . . . . . . . . . . . . . 37
3 ARIMA (2,0,0) evaluation metrics . . . . . . . . . . . . . . . . . . . . . . 40
4 ARIMA (20,0,0) evaluation metrics . . . . . . . . . . . . . . . . . . . . . 41
5 Simple RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6 Deep RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7 RNN LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8 Comparative analysis of explored prediction methods . . . . . . . . . . . 47
9 2017 most unbalanced station pairs . . . . . . . . . . . . . . . . . . . . . 49
10 2018 most unbalanced station pairs . . . . . . . . . . . . . . . . . . . . . 49
11 Encoding the stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12 Encoded most unbalanced station pairs in 2017 and 2018 . . . . . . . . . 53
13 Configuration of Deep CNN . . . . . . . . . . . . . . . . . . . . . . . . . 60
14 Evaluation of novelty link methods . . . . . . . . . . . . . . . . . . . . . 67
15 Evaluation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
16 Evaluation of the trivial approach . . . . . . . . . . . . . . . . . . . . . . 76

5



1 Introduction

A Bicycle-sharing system (BSS) is a popular service scheme deployed in cities of different
sizes around the world. It is a service in which bicycles are made available for shared
use to individuals on a short term basis, for free or for a price. The user borrows and
returns the bike by placing it in a “dock” and if the service doesn’t use docks, then it is
referred to as “dockless”. Using these bike-sharing systems, people can rent a bike from
one location and return it to a different or same place on need basis. They can rent
a bike through membership (mostly regular users) or on demand basis (mostly casual
users). This process is controlled by a network of automated stations across the city [1].

First BSS had its inception in 1965, when Amsterdam city councilman Luud Schim-
melpennink proposed it as a way to reduce automobile traffic in the city center. After
the city council rejected the proposal, Schimmelpennink’s supporters distributed fifty
donated white painted bikes for free usage around the town. The police, however, im-
pounded the bikes, claiming that unlocked bikes incited theft [2].

In 1991, a second generation BSS was conceived in Denmark, offering a few hundred
coin-operated bikes. In 1996, a third generation, now based on magnetic cards and
several technological advances was initiated in England and continued to evolve within
following years. But it was only when Lyon in 2005, and later Paris in 2007, made their
wise deployments of several thousand shared bikes that these systems started to become
known worldwide. A few years after that, similar programs spread throughout other
continents and now, there are estimates that more than 18 million bikes are actively
used in a variety of BSS worldwide.

An exponential growth has been observed in developed and developing countries, in
large and small, dense and sprawling cities. One of the main arguments for the im-
plementation of BSS is that they provide an effective alternative for the first-mile and
last-mile problem, mainly when integrated with public transport [3, 4]. Data from the
United States of America (USA) Department of Transportation’s 2017 National House-
hold Travel Survey (NHTS)1 indicates that 35% of all car trips in the United States
were shorter than 2 miles (3.218688 kilometers), and almost 50% or half of all car trips
were less than 3 miles (4.828032 kilometers); a distance that could usually be covered
with a reasonable amount of cycling. Thus, there are plenty of motivations and oppor-
tunities for the expansion of such systems both to new cities and within the cities that
already have an existing basic BSS implementation. BSS have been assembled around
the world in ad hoc manners - with little or no scientific, evidence-based planning. The
complex dynamics of such systems and their interaction with the city life rhythm and
other means of transportation is not yet fully understood. There are multiple business
models, and public or private forms of funding BSS. Within the past few years, several
BSS companies have gone bankrupt and most cities worldwide are still reluctant in con-

1https://nhts.ornl.gov/vehicle-trips

6



sidering bike sharing as an integral part of their mobility portfolio. However, with more
data obtained, dynamics of such systems are slowly being investigated by scientists using
research methods that inspect mobility flows, optimization algorithms and predictions.

The real expansion did not take place until the 21st century when first municipal plans
and larger scale business ventures, that offered service as we know of today, had been
created. In general, cycling as a means of transportation in modern cities has grown
significantly in the past ten years. The appearance of large scale bike-sharing systems
and an improved cycling infrastructure are two of the factors that enabled this growth.
An increase in non-motorized modes of transportation makes our cities more humane,
decreases pollution, traffic, and improves the quality of life. In many cities around the
world, urban planners and policymakers are viewing cycling as a sustainable way of
improving urban mobility. Nevertheless, most cities still rely on 20th century tools and
methods for planning and policy-making. Recent technological advances enabled the
collection and analysis of large amounts of data about urban mobility, which can serve
as a solid basis for evidence based decision making.

The use of bicycles for short trips (defined as trips with distance below 5 kilometers)
in medium to large cities for commuting, occasional, and leisure trips presents multiple
proven benefits at the global, local, and personal level. In global terms, substituting
motor vehicles with bicycles reduces carbon emission and energy consumption as well
as negative environmental impact [5, 6]. With respect to local benefits to the city, an
increase in the number of cycling trips in substitution of motorized trips helps mitigating
traffic congestion, decreasing air and noise pollution, and the amount of required park-
ing space [7]. In addition, it also brings several personal benefits for both mental and
physical health [8]. Research shows that commuting to work on a bike also presents an
advantage in relation to other active modes of transportation such as walking, since its
higher cardio-respiratory intensity is associated with health benefits [9]. However, both
pedestrians and cyclists are more exposed to accidents and injuries compared to a car
or transit passengers [10]. In the case of cycling, the risk is aggravated when dedicated
bike lanes are not available.

1.1 Problem

There are several problems that arise with such sharing systems.

Firstly, there is a fleet management problem. In order to keep BSS as balanced as pos-
sible, bikes are manually transported across the city at peak times. In priority areas,
docking stations are continually replenished with bikes or the bikes being continuously
removed from docking stations [11]. This is an expensive endeavour that BSS own-
ers have to enforce in order for the system to run smoothly. These mathematical cost
functions are hard to calculate and are currently being optimized by scientists in the op-
erations research area. Their model focuses on the exact number of docks, in which each

7



station is individually examined and later physically changed by adding or removing
the docks based on the optimization simulation performed [12]. However, this method
does not take the full-fledged prediction into account. More specifically, every day in the
week is observed as a fixed property and is indistinguishable from the same day during
any other week, month or year regardless of any external factors such as the weather,
holidays, special events, seasonal differences etc. Also, optimization approach has a
high computational cost because the problem is viewed as solvable in Non-deterministic
Polynomial time (NP-hard), making it difficult to perform as fast as it is needed to be
[13].

Secondly, in previous years the amount of data which was made available for researchers
to work with was not sufficient enough, and in most cases the data time span covered
was not exceeding more than a couple of months worth. In the best case scenarios, data
analyzed had a time span of one year. Of course, this varies on the specific BSS where-
abouts, but even the older BSS investigated were not explored to their full potential
due to a small amount of data actually being publicly available. Another reason why
researchers did not yet take an advantage of older systems could be that the infrastruc-
ture changed drastically and thus, first year (or two) worth of data is not representative
anymore of the BSS as a whole.

Moreover, even though most of the visualization methods have already been covered in
existing papers, there had been a lack of comparative studies with small to medium sized
BSS that would try and investigate things such as: the underlying distribution laws of
graph structures, prediction performances, visualization patterns or conclusions drawn
about the mobility flow scenarios.

1.1.1 Knowledge Gap

Currently, there are not many state-of-the-art methods that use graph mining and ma-
chine learning in the area of BSS optimization of bike relocation strategies.

The ones that have been published in the last 2 years implemented Recurrent neural
network (RNN) to predict station level demand [14] of New York’s Citi Bike dataset and
used Root mean square error (RMSE) as a validation metric [15]. However, the global
overview of the network is not considered, and the method have never been used for
small to medium-sized bike sharing networks but exclusively on the New York’s dataset
that had been already optimized using a specially tailored operations research algorithm
devised at Cornell University [12].

Only one paper [16] that addressed Convolutional neural network (CNN) used Graph
convolutional neural network with data-driven graph filter (GCNN-DDGF) model for
station level hourly demand prediction in a large-scale bike-sharing network. Although
this paper proposes quite an efficient method, it does not consider to use the method

8



as a component in a comprehensive framework for dynamic bike rebalancing. Also, the
model is not applicable to a directed graphs and it cannot learn a sparse graph filter.

Boston area BSS is a medium-sized BSS with a different amount of data and topology
compared to larger ones. This specific size-wise property may incur a particular dy-
namics distinct from those investigated by the other papers, which mostly focus on New
York dataset. Such papers might favor other methods than those that have performed
well in related research for small and medium-sized BSS. Also, we would like to have
computationally low-demanding method that takes little time to output the results and
can efficiently use more data than any other paper as no other previous study analyzed
more than two year worth of data.

Only Ai Yi et al.(2018) [17] addressed using Convolutional Long short-term memory
(Conv-LSTM) but their work was focusing only on dockless bikes, weather is not taken
into consideration and rebalancing was never discussed.

In conclusion, knowledge gap to be explored in this thesis includes a combination of
improvements based on the research papers written during the last three years in the
domain of bike sharing and rebalancing optimization:

• focus on the middle-sized docked BSS that have not been explored in detail before

• using secondary datasets such as the weather information

• combine mobility flows for both spatial and temporal patterns

• use a method that does not only predict, but also suggests how the bike rebalancing
strategy should be utilized

• make a scalable rebalancing strategy so that it can be viewed not only from the
entire system’s point of view, but also from the municipality or neighbourhood
level

• computational complexity is low and the utilized method does not require hours
to calculate final result

• prediction accuracy is still high enough and comparable to other approaches

• research results provide a possible application for the Boston BSS, having a vali-
dated approximation of how many bike truck will be needed and which areas will
most likely require a rebalancing process

1.1.2 Research Question

The improvements and additions on top of the shortcomings of proposed state-of-the-art
models described previously will provide answers to the research question proposed by

9



this thesis:

How weather information influences usage of middle-sized Boston BSS and can we get a
reasonable prediction of bike usage using neural networks compared to relevant bench-
marks?

The research question will be answered and evaluated in Chapter 7.

1.2 Purpose

The academic purpose of this work is to (1) explore specific properties of BSS through
a statistical exploration analysis, and (2) to assess the relative strengths of different
implementations of predictive models and their potential combination.

Analogously, the commercial purpose is to (1) obtain a model with powerful predictive
capabilities, and to (2) reduce costs of bike relocation strategy by using an efficient label
prediction, and (3) obtain a high-quality correctness score.

1.3 Goals

The goals of the work, in chronological order, is to:

• prepare and clean the Boston Blue Bike dataset

• find a suitable secondary dataset containing weather information, and use data
wrangling methods to combine it with the primary data source

• use data exploration, statistical analysis and visualization to investigate bike shar-
ing networks in order to get a better domain knowledge of BSS and problems that
need to be addressed

• compare different Recurrent neural network prediction methods on the complete
bike sharing dataset to find the best one to be used for data flow prediction where
data flow is defined as the aggregated number of bike check-outs for each day

• define most unbalanced or asymmetric pairs of stations in the network for each
month and create a subgraph containing this nodes stored as an origin-destination
(OD) matrix

• use convolutional neural network to predict the label of the next subgraph that is
most likely to emerge based on the preliminary data for the upcoming month

• utilize the chosen recurrent neural network on the output of the previous step to
define the predicted flow and approximate the best strategy for the bike relocation
in that specific configuration

• present the results by using appropriate validation metrics and conclude the thesis
with some proposition and references for future work

10



1.4 Hypotheses

Prior to data exploration and uncovering relationships between BSS variables, it is nec-
essary to gain some domain knowledge and use structured thinking about the problem.
This form of problem inspection helps forming better features and eliminate possible
biases. Some of the hypotheses that could influence bike demand:

Hypothesis 1:
Due to the hourly trend, a higher demand for bikes must exist during the rush hours. For
example, late night period should have significantly lower demand compared to lunch
hour.

Hypothesis 2:
On a daily trend scale, weekdays would need to have a much richer network compared
to weekends or holidays.

Hypothesis 3:
Weather and season should highly influence bike demand numbers: rainy days, windy
periods, higher humidity, and lower temperatures will probably have a positive correla-
tion with bike demand. At least, this should be true in America and Europe. Things
could be differently correlated in places with different climate like some Asian countries
where correlation with humidity and temperature could be negative.

Hypothesis 4:
Some additional bike sharing influences could be city pollution levels or traffic congestion
distribution.

Main Hypothesis:
However, main hypothesis to be examined in this thesis is the claim that we could use
currently acquired bike sharing system data to predict future bike flows, especially for
those stations that are considered to be problematic in a sense of their high relocation
frequency and usage in general. Of course, this prediction is needed to perform within a
certain degree of accuracy. Expected accuracy for the predicted dynamic flows should be
around 90% and predicted spatial patterns around 70% when compared to the ground
truth. Matching spatial patterns by using a trained 2-D CNN should perform reasonably
well for highly similar items, but some fine-tuning could be needed as CNN might be
the possible bottleneck when inspecting months with low bike flow usage numbers such
as a winter period.

1.5 Contributions

Although a number of knowledge gaps, goals and hypotheses are mentioned, in this
subsection only most important novelties are stated to be further discussed in the last

11



chapter of this thesis.

Firstly, this includes an investigation of the secondary dataset containing weather infor-
mation. Boston middle-sized BSS is a specific one because snow and rain seem to have
no influence on the frequency of bike sharing usage. This is quite important as it im-
plies that methods such as random forest are not as useful as they are for the bigger BSS.

Secondly, we want to propose a simple prediction method that does not underperform
any of the investigated benchmarks. Even though no outperforming instances are ob-
served, a comparison of the results is made and bottlenecks are identified.

1.6 Ethical Considerations

Due to the increasing pervasiveness of machine learning, it is crucial that there is a dis-
cussion about the safety, transparency and bias of machine learning systems. However,
in the BSS the focus is mainly on rebalancing and even though information such as
bike ID, gender and user type are available, it is not used to identify individuals. The
bike sharing companies, however, may be storing user’s personal information from the
moment they register for the service, but the data is never publicly disclosed. From the
company’s perspective, in case they are using a more attribute-wise detailed data, they
should be ensuring that a machine learning model does not leak its training data to an
adversary that might be able to intercept a large number of queries, and in turn, see the
statistics of the output distribution and cross-reference it to recover the original data.
In addition to data driven ethical considerations, it is possible to infer from the data
in case a bike had been stolen and in that case, a company should have regulations to
investigate how and when to act if such events occur.

1.7 Sustainability

As argued in the introduction, using bike sharing services reduces carbon footprint and
promotes healthy lifestyle. Optimization of environment friendly transportation will
effectively attract new customers and users. Ultimately, the goal of this thesis is to work
towards the overarching scope of creating a more sustainable and smarter cities, and
many of related positive effects in the area of bike sharing networks is in accordance
with “The 2030 Agenda for Sustainable Development Goals (SDG)”, adopted by United
Nations (UN)2.

2https://sustainabledevelopment.un.org/

12



1.8 Limitations

The very first limitation is noticeable in the usage of exclusively docked BSS data.
Originally, it was planned to have a slightly broader study were dockless bikes would
be investigated as well, but that did not come to fruition as American and European
companies that own such systems are not comfortable with sharing their data. It is
important to mention that even in the case of a successful collaboration with such com-
panies, the process of obtaining data involves a complicated legal procedure, and takes a
couple of months in total which was not feasible regarding the time restrictions imposed
upon the completion of this thesis in a timely manner.
Dockless data policies differ in China, but such approach was not taken into consider-
ation due to a high volume of papers already written and specifically based upon this
areas. Also, dockless systems or fourth generation bike systems, are much more popu-
lar in China compared to the rest of the world. There are over 30 private companies
operating there, while dockless bikes are still in an experimental phase in both of the
Americas and Europe.

Regarding the second limitation, it is not possible to produce the model with a perfect
prediction accuracy or retrieve the highest precision of label assignment. This means
that there will always be an error present depending on the volume of our data, imple-
mentation details of the specific model used, computation complexity and a variety of
other variables, some of which are stochastic in their nature and therefore, out of our
control. Still, establishing a performance baseline, defining model setups, and knowing
our lower and upper bound is supposed to help us define our limitations empirically and
mitigate any unwanted performances.

1.9 Thesis Outline

The following thesis report is organized as follows:

This first chapter introduced a short overview of BSS in general and its current develop-
ment in the realm of flow predictions and rebalancing strategies using graph mining and
machine learning. Knowledge gap had been defined and research question was stated,
which will be answered in the following chapters.

The second chapter reviews some recent related work in the area of BSS by highlighting
both strengths and shortcomings, as well as how the presented work is connected to the
work contained in this very thesis.

Third chapter shortly summarizes the background and theory behind the machine learn-
ing methods used. A description of their architecture and list of the most important
properties will be provided.

Fourth chapter starts of by presenting a case study of Boston area BSS and using data

13



exploration and visualization techniques to summarize the most important properties
and spatio-temporal changes to the network. Moreover, most unbalanced pairs of links
between stations will be defined as a means to approximate an important metric to be
used in the machine learning chapters to simplify the network only to those stations that
are good candidates for rebalancing strategy.

Fifth chapter makes an overview of all the candidate methods for predicting dynamic
patterns. A chosen method will be used for the stations identified in the next chapter.

Sixth chapter describes how to identify spatial structures and uses the unbalanced net-
works defined in Chapter 3. This is done by creating adjacency matrices of the past
network configurations. Afterwards, adjacency matrices are labeled and used as an in-
put for training the convolutional neural network which decides how might the newly
observed spatial structure be labeled.

Seventh chapter discusses about how to apply the previously introduced methods in case
of Boston BSS and describing the preliminary results. Here, our research question will
be answered.

The last chapter closes the thesis with a conclusion and recommendations for future
work based on the methodology presented throughout prior chapters.

14



2 Related Work

In this chapter, the most relevant recent work in the research area of BSS will be pre-
sented. Strengths, shortcomings and connections to this thesis will be briefly described.
Each subsection contains those papers that fall under one specific BSS domain: spatial
patterns, temporal patterns, dock optimization, visual analytics, comparative studies,
mobility prediction.

2.1 Spatiotemporal Patterns

In the paper written by Grant McKenzie(2018) [18], docked and dockless BSS had been
compared. Because of a sudden explosive growth in dockless bikesharing services, limited
time was provided for municipal governments to set regulations and assess their impact
on docked bikesharing programs. This was a motivation behind the paper to present an
exploratory understanding of the differences in activity patterns between those two ser-
vices. Results can be used to better inform urban planners, transportation engineers, and
the general public. However, paper focuses exclusively on Washington, D.C. and most
of the analysis is just exploratory, while results of the paper are preliminary due to lack
of data. Comparisons were made between “Lime” (dockless) and “Capital” Bikeshare
(docked). Lime is a private company and Capital Bikeshare is owned by the munici-
pal government of D.C. (also Virginia and Maryland). Data analyzed included only a
month of March in 2018 (238,936 individual trips). Temporal aspects were observed by
calculating: mean duration, median duration, bike trip aggregation to the nearest hour
of a week and independently normalized, with pattern subtraction. For spatial aspects,
Voronoi tessellation was used to partition town map into polygons, by subtracting and
intersecting these polygons with land use data from D.C.s Office of Planning. Regrading
the network analysis, K-means algorithm was used for clustering the dockless locations
with a number of clusters, and the conclusion made was that the existing docks are well
situated. On top of that, Dijkstras algorithm for routing analysis was also implemented.
In conclusion, suggestions mentioned that other modes of transportation should be taken
into account, as well as behavioral motivation of users for selecting certain services.

2.2 Operations Research and Optimization of Docks

Daniel Freund et al.(2019) [12] uses a case study of “Motivate” (owned by Lyft, which
also manages a vast number of US BSS such as Blue Bikes, Citi Bike, etc.) and collabo-
rates with Cornell University in order to optimize the number of docks in New York. This
is done from the point of view of operations research and uses optimization models. This
is done with stochastic modeling, defining UDFs (User Dissatisfaction Functions) being
a convey function, Poisson processes, M/M/1 queues, integer programming models, dis-
crete gradient descent algorithm, and Kolmogorov’s backward equation. Optimization

15



formulation is written like this:

minimize~b

∑

i

ci(bi, Ki) (2.1)

s.t.
∑

i

bi ≤ B,

∀i 0 ≤ bi ≤ Ki.

where the number of docks at Station i is denoted by Ki, number of bikes by bi, the
UDF by ci(bi, Ki), and the total number of bikes available by B. When the docks are
being moved, Ki becomes the decision variable in addition to bi in which case K̄i is the
number of docks at each station and we can write the constraint like:

∑

i

|Ki − K̄i| ≤ 2k (2.2)

In conclusion, this technique is very successful and already implemented in New York.
However, the author himself admits that this method does not differentiate the temporal
aspect which can affect bike stations when predicting the future bike tidal flows and does
not take any secondary datasets into account.

2.3 Collaborative Visual Analytics

Beecham et al.(2014) [11] discuss automatic label classification of commuting behavior
and inferring workplace of individuals in London cycle hire scheme (LCHS). Methods
that are described include: weighted mean-centres, K-means clustering, kernel density
estimation and community detection. They identify a fleet management problem and
closed peak-time ,,loops” but do not attempt to solve it. Contributions are present
in deriving customers' workplace areas and labelling commuting journeys based on a
spatial analysis of travel behaviours. Data observed includes trips between 2011 and
2012, which makes a total of 5’048’000 journeys. Some new attributes have been created:
e.g. distance from users home to the closest docking station, Recency frequency (RF)
segmentation. Regarding the observation of spatio-temporal analysis, they used lines on
a map (visual saliency) and fluctuations for each day of the week. Workplace centres
for each cyclist have been derived by calculating: frequency of weighted centroids for
docking station locations, using K-means clustering, hierarchical cluster analysis (HCA),
and density estimation method [19].

2.4 Community Structures

Munoz-Mendez et al.(2018) [20] address a time-varying networks of bike stations and
communities in London, where different motifs (loop, chain, star) and temporal evolu-
tion dynamics with extended time windows could potentially provide deeper insights into

16



inherent relationships of spatially heterogeneous nodes (stations) or sub-networks (com-
munities). They also suggest that instead of pure unsupervised learning, extended layers
of urban systems should be used with an amenities to draw meaningful conclusions.

2.5 Comparing Cycling Patterns

Sarkar et al.(2015) [21] identified the problem of balancing between system usage and
demand, which leads to a lack of available bicycles or free parking spaces at stations at
various times of the day. Data used in this study had time span of 4.5 months, included
10 different cities, with a total of 996 stations and 108 samples. Focus of this paper was
solely on the fullness of stations and not on mobility flows. Unsupervised learning was
used to show the intrinsic similarities between the cities by utilizing predictability of
stations occupancy and comparing cross-city error for each. What they found was that
heterogeneity is observed only in bigger systems. Random forest and neural network
were used to compare the accuracy of forecasting how many bicycles will be at a given
station and at a given time.
Their paper also discusses how studies of shared bicycle systems have recently appeared
in the data mining literature, and how Froehlich et al.(2009) [22] were the first to apply
clustering techniques and forecasting models to identify patterns of behaviour in sta-
tions in Barcelona’s ,,Bicing” system, explaining results according to stations location
and time of day. A recurring conclusion across analyses is that spatiotemporal system
usage patterns are tied to, and reflect, city-specific characteristics. By focusing on single
city systems, these works seem to indicate that each city has a unique pattern, and that
forecasting algorithms applied to each one may not be generalisable across the world.

O’Brien et al.(2014) [23] and Austwick et al.(2013) [24] characterize systems at the city
level, comparing them in terms of system size (both by station count and geographic
area), daily usage, and compactness; they build a hierarchy of cities that share similar
characteristics and apply community detection algorithms to analyze similarities within
systems.
In the paper examined, pairwise ground distances are computed between all locations
recorded for a single station using the Haversine formula described by Robusto (1957)
[25]. Aggregate occupancy time series are calculated with Pearson correlation used
for comparison week-day and weekend. Hierarchical clustering with an agglomerative
strategy (bottom-up approach) was used to identify which individual stations share
similar behavioural traits across different cities. Selected metric to measure the similarity
between station vectors was used and distance metric based on the dynamic time warping
(DTW) algorithm. Finally, they mention a technique for finding the optimal alignment
of two temporal sequences as a finishing step.

2.6 Mobility Prediction using Random Forest

Yang et al.(2016) [26] motivate their work by explaining that the primary issue for both
users and operators is the uneven distribution of bicycles due to the demand and supply

17



changing trends. This requires better bike re-balancing strategies which depend highly
on bicycle flow modeling and prediction. Contribution of their work is two-fold: spatio-
temporal bicycle mobility model based on historical data, and traffic prediction model
mechanism per each station with sub-hour granularity. Relative error of an obtained
prediction is used for an evaluation. The paper focuses on the city Hangzhou in China
with around 2800 stations and 103 million records in a time span of one year. Methods
used include: spatio-temporal modeling, estimating the number and time of check-ins at
different stations, and using random forest theory to predict check outs given the time,
weather, as well as real-time bike availability.

2.7 Mobility Prediction using Recurrent Neural Networks

Paper by Pan et al.(2019) [27] tackles bike sharing demand and supply by implementing a
real-time predicting method, community detection, and a 2-layer LSTM RNN model for
Citi Bike system in New York and Jersey City. In addition to the bike data, meteorology
data is used as a secondary dataset. Training set includes year 2017, while test set
consists of first three months in 2018. In total, 800 stations are identified. Regarding
the evaluation, RMSE had been used. Motivation for the usage of deep LSTM is because
it can handle a large amount of data in a reasonably small amount of time. One of the
suggestions is to use these predictions in order to distribute the number bikes specifically
to each station.

2.8 Predicting Station Level Demand using Recurrent Neural Networks

Again, in Chen et al.(2017) [14], bike shortage problem due to uneven bikes distribution
is in the focus and efficient online balancing strategy is proposed as a solution. Unlike
other papers where most of the research is about predicting global rental demand or
rental demand at a cluster level, this paper considers station level demand prediction
which could be more beneficial. Proposed architecture makes predictions for all stations
at once. New York Citi Bike dataset is used with 8’081’216 individual trips. Regarding
the methods, RNN is used on a station level for both rental and return, loss function
uses Backpropagation through time (BPTT) and Vanishing gradient problem. Further-
more, data exploration is performed, correlation made between weather and number of
rentals, and a baseline approaches are defined. Baseline approaches include: Ordinary
least-squares regression (OLS), Random forest (RF) with 50 estimators, and Feedfor-
ward neural network (FNN) with 4 layers of Rectified linear unit (ReLU) activation
function. Evaluation was made using RMSE and MAE.

18



3 Theoretical Background

In this section, an overview of the theory behind machine learning methods for identify-
ing spatial structures and predicting dynamic patterns of bike sharing networks will be
presented. Of course, the generalization is assumed for these architectures to be applied
in any other domain or problem solving procedure other than the one presented in this
thesis. A description of their architecture and a list of most important properties will be
provided using references available online3. Lastly, a combination of disclosed methods
will be outlined as a proposed pipeline for solving the specific research problem intro-
duced in Chapter 1.

The following technologies, libraries and programming environments will be used to
build the methods described in the consequent chapters.

Jupyter 4 is a web-based interactive computational environment for creating Jupyter
notebook documents.
TensorFlow 5 (TF) is a Machine Learning framework for Python.
Keras6 is a High-level neural networks API, written in Python and capable of running
on top of TensorFlow, CNTK, or Theano.
Scikit-learn7 is a Machine learning library for the Python programming language.
Seaborn8 is a Python data visualization library based on matplotlib.

3.1 Artificial Neural Networks

Artificial neural networks (ANN) are biologically inspired computer programs designed
to simulate the way in which the human brain gathers its knowledge by detecting pat-
terns and relationships in data and learns, trains through experience. An ANN is formed
from hundreds of single units, artificial neurons or processing elements, connected with
coefficients (weights), which constitute the neural structure and are organized in layers.
ANN consist of three layers: input, hidden, and output. The power of neural computa-
tions comes from connecting neurons in a network. Each neuron has weighted inputs,
transfer function and one output. The behavior of a neural network is determined by
the transfer functions of its neurons, by the learning rule, and by the architecture itself
[28]. The simplest ANN architecture is perceptron, but adding more layers is capable
of solving more complex classification and regression tasks. One important parameter
is activation function, which defines the output of that node given an input or set of
inputs. There is a variety of activation functions to choose from:

3https://towardsdatascience.com/
4https://jupyter.org/
5https://www.tensorflow.org/
6https://keras.io/
7https://scikit-learn.org
8https://seaborn.pydata.org/

19



Sigmoid function (sigmoid) is mathematical function with a characteristic shaped sig-
moid curve. Often, sigmoid function refers to the special case of the logistic function
which generate a set of probability outputs between [0, 1] when fed with a set of inputs.
The sigmoid activation function is widely used in binary classification.

Sigmoid(x) =
1

1 + e(−x)
=

e(x)

1 + e(x)
(3.1)

Hyperbolic tangent function (tanh) is an alternative function to the logistic sigmoid.
Although function shape is similar, here output values can range between [-1, 1]. Thus,
strongly negative inputs to the tanh will map to negative outputs.

tanh(x) =
ex − e−x

ex + e−x
(3.2)

Softmax (softmax) activation function is used for multi-class classification. Softmax
function calculates the probabilities distribution of the event over “n” different events.
In general, this function will calculate the probabilities of each target class over all
possible target classes. Later the calculated probabilities will be helpful for determining
the target class for the given inputs.

Softmax(~x) =
exi

∑J

j=1 e
xj

where i = 1, . . . , J (3.3)

Rectified linear units (ReLu) is an activation function, which is being used for hidden
layers by the most recent artificial neural networks for the hidden layers. A rectified
linear unit has output “0 ”if the input is less than “0”, and raw output otherwise. That
is, if the input is greater than 0, the output is equal to the input.

ReLU(x) = max(0, x) (3.4)

Leaky Rectified linear units (LeakyRelu) activation function works the same way as the
ReLU activation function does, except that instead of replacing negative values of the
inputs with “0”, the latter get multiplied by a small alpha value in an attempt to avoid
the outputs being the same value for any input.

LeakyReLU(x) =

{

x, if x ≤ 1

αx, otherwise
(3.5)

3.2 Recurrent Neural Networks

Recurrent neural network (RNN) is an ANN that has a neural connection pointing
backward, so that it remembers its input due to internal memory. This makes RNN
a perfect candidate for machine learning problems that involve sequential data. When
RNN makes a decision, it takes into consideration the current input and also what it has
learned from the inputs it received previously. A typical RNN has a short-term memory

20



which consists of two inputs, the present and the recent past. It also uses Backpropa-
gation Through Time (BPTT) in order to assign weights to the model, while training.
However, it also suffers from exploding gradients when the gradient descent algorithm
assigns a high importance to the weights it is not supposed to, and from vanishing gra-
dients when the gradient values are so small that model stops learning. However, using
Long short-term memory (LSTM) alleviates such problems.

3.3 Convolutional Neural Networks

Convolutional neural network (ConvNet or CNN) is a class of AAN that can process
data which can be stored as a matrix, such as an image. It usually consists of three lay-
ers: a convolutional layer, pooling layer, and fully connected layer. So, this means that
instead of using the normal activation functions defined for regular ANN, convolution
and pooling functions are used as activation functions in CNN.

Convolution operates on two signals or two images. We have an input image, and a
kernel, acting as a filter on the input image, producing an output image. Mathematically,
a convolution of two functions f and g is defined as a dot product of the input function
and a kernel function.

(f ⊛ g)(i) =
m
∑

j=1

g(j) · f(i− j +
m

2
) (3.6)

Pooling is a sample-based discretization process. The objective is to down-sample an
input representation, reducing its dimensionality and allowing for assumptions to be
made about features contained in the binned sub-regions.
There are 2 main types of pooling commonly known as max and min pooling. As
the name suggests, max pooling is based on picking up the maximum value from the
selected region and min pooling is based on picking up the minimum value from the
selected region. Thus, CNN is a deep neural network which consists of hidden layers
having convolution and pooling functions.

As an additional detail, before running the CNN, we can explore prepared image data
using t-SNE and PCA algorithms.

T-Distributed Stochastic Neighbor Embedding is a non-linear technique for dimension-
ality reduction that is particularly well suited for the visualization of high-dimensional
datasets. This algorithm attempts to find patterns in the data by identifying observed
clusters based on similarity of data points with multiple features. However, after this
process, the input features are no longer identifiable, and one cannot make any inference
based only on the output of t-SNE. Hence, it is mainly a data exploration and visual-
ization technique[29].

21



Principal Component Analysis or PCA is a linear feature extraction technique. It com-
bines input features in a specific way that it is possible drop the least important feature
while still retaining the most valuable parts of all of the features. As an added benefit,
each of the new features or components created after PCA are all independent of one
another[30].

3.4 Overview

Short overview of the method’s pipeline used in this thesis is described here:

Firstly, raw data is obtained, prepared and cleaned, with secondary dataset (weather
information) aggregated to it and made suitable for performing time-series analysis. Our
benchmark is found in an Autoregressive moving average (ARIMA) method that uses
basic data properties, such as mean and average, to set up the most rudimentary per-
formance score defined as a lower bound to which we can compare every new method
introduced. Simple recurrent neural network and deep recurrent neural network were
investigated, but ultimately Long short-term memory (LSTM) is found to be the one
producing the best prediction scores.

Then, based upon the data exploration discovery, most unbalanced links between sta-
tion pairs are defined and transformed into adjacency matrices, also called ,,snapshots”.
Each adjacency matrix represents top ,,n” unbalanced links in a monthly manner.

Once again, we use data exploration for a first few days of the month for which we seek to
predict an overall adjacency matrix of the most unbalanced links. First few days which
correspond to the 1/3 of overall monthly flows are transformed into an adjaceny matrix
that we use as an input for Convolutional neural network (CNN). Here, an assump-
tion is made that first 1/3 of the monthly flows tend to converge to a specific monthly
shape that CNN will guess based on all the previous monthly snapshots it is trying to
learn from. As an output, CNN gives as a guess label that best describes the month
(or rather its unbalanced spatial configuration) as a whole. Additionally, multivariate
LSTM method can be used to introduce some novelty links to the labels predicted in
order to score a higher prediction accuracy.

Finally, from the predicted adjacency matrix snapshot, it is clear which station pairs we
have. For those stations, LSTM RNN will be utilized to predict two-way flows between
station pairs and calculate the difference. The difference gained is an indication of an
unbalance, and we can use the ground truth to rate the accuracy of prediction. The
predicted differences are very valuable to bike sharing companies as they can plan how
many additional bike truck to dispatch and where, during their bike relocation process.

22



4 Data Exploration & Statistical Analysis

Section 4.1 gives an overview of the input bike data, and Section 4.2 presents explo-
ration and statistical analysis performed on that data. This section was investigated
and analyzed in collaboration with Massachusetts Institute of Technology (MIT) visit-
ing professor and researcher Fábio Kon9 at Senseable City Lab (SCL). Section 4.3 focuses
on visualizing bike mobility flows and formally defining the most unbalanced pairwise
edges between the two stations.

4.1 Data Description

To illustrate the methodology of this case study, 7 years worth of data from the Boston
BlueBikes10 BSS was used. Bike sharing data was collected from the BlueBikes web-
site, the largest Boston bike-sharing provider. Boston11 is a relatively bike friendly city,
having received a silver medal award12 from the League of American Bicyclists in 2017.
From 2007 to 2014, the bycicle lane mileage in Boston went from 0.03 miles (0.048 kilo-
meters) to 92 miles (148.06 kilometers), with a decrease in bicycle accidents around 14%
per year[31]. Boston’s original bike-sharing system, Hubway, was launched in 2011 and
it has been growing since then. In 2018, its name changed to BlueBikes and it now
has over 1800 bicycles and 308 dock stations across Boston, Brookline, Cambridge, and
Somerville. In the proposed analysis, nearly 8 million bike trips have investigated since
the inception of the bike sharing program.

Below is a list of bike sharing data attributed with information about how they were
represented:

• “tripduration”: integer number with the unit measure in seconds, all trips longer
than 24 hours (or 86400 seconds) were not taken into account because those trips
are treated as faulty and not representative of the bike sharing system flow

• “starttime”: exact time of the bike check-out with YYYY-MM-DD HH:MM:SS
format representing the start of bike trip

• “stoptime”: exact time of the bike check-in with YYYY-MM-DD HH:MM:SS for-
mat representing the end of bike trip

• “start station id”: integer number representing the unique bike station identifica-
tion code where the check-out of the bike occurred

• “start station name”: string representing start bike station name

9https://www.ime.usp.br/ kon/
10https://www.bluebikes.com/system-data
11https://www.boston.gov/
12https://bikeleague.org/

23



• “start station latitude”: float number representing geographic latitude of the start
station

• “start station longitude”: float number representing geographic longitude of the
start station

• “end station id”: integer number representing the unique bike station identification
code where the check-in of the bike occurred

• “end station name”: string representing end bike station name

• “end station latitude”: float number representing geographic latitude of the end
station

• “end station longitude”: float number representing geographic longitude of the end
station

• “bikeid”: integer number representing a unique identification code for each bike
vehicle

• “usertype”: string, can be either “Subscriber” or “Customer” where the former is
subscribed to use bikes for a longer period (monthly or annual) of time while the
latter only pays for a one-time (single or a day pass) usage

• “birth year”: integer number representing a year of birth of the particular user, in
case they provided one

• “gender”: Binary integer value, “0” for female and “1” for male, self reported by
member

4.2 Case Study

Initially obtained descriptive statistics for Boston Blue Bikes data helps us understand
usage patterns extracted from the data between 2011 and 2018. In Figure 1 - produced
age, trip distance, duration, and speed histograms can be observed. Trip duration follows
a log-normal distribution with a median of 10 minutes and with 75% of the trips taking
under 16 minutes. On the other hand, the speed follows a Student’s t-distribution, with
men riding slightly faster than woman.

24



Figure 1: Descriptive statistics for Boston BlueBikes data

In Figure 2 we can see the evolution of the total number of trips per day for the entire
bike sharing system. One can see both strong seasonal effects caused by the typical
harsh winters in Boston, and the overall tendency for an increase in usage over the six
years which is confirmed by the 12-month rolling average plotted. The men and women
ratio shows not only that men use bike sharing more frequently but that the differ-
ence increases during the winter time. Finally, the figure also shows a slight increase in
the proportion of female users in the past year. The cities of Boston, Cambridge, and
Somerville have been improving the quality and extension of their cycling infrastructure.
As women feel more comfortable and secure in the cycling tracks, the gap in usage for
men decreases [32, 33]. However, it is still too soon to speculate if these will be a trend
in the long run for the Boston area as well.

25



Figure 2: Evolution of trips from April 2013 to January 2019

For the analysis involving distances and speed, the road distance between two bicycle
dock stations is estimated by using the GraphHopper13 Application Programming In-
terface (API) over OpenStreetMap14; in particular, the bike mode route planner is used,
which provides bike friendly routes. The bike routes suggested by the API are around
30% longer than the Euclidean distance, on average. Another option is to calculate dis-
tance based on the start and end point of longitude and latitude using haversine formula
[34, 25]. The formula is given below:

a = sin2(
∆ϕ

2
+ cosϕ1 ∗ cosϕ2 ∗ sin2(

δλ

2
)) (4.1)

c = 2 ∗ a tan 2(
√
a,
√

(1− a)) (4.2)

d = R ∗ c (4.3)

where φ is latitude, λ is longitude, and R is Earth’s radius.

Using the calculated speed, it is possible to detect the evidence of rider reckless be-
haviour. The most common reason for cycling accidents and fatalities is to get hit by
a car [35]. Although car drivers are usually at fault for such accidents, according to
the United States Department of Transportation, from 2010 to 2015, the most common

13https://www.graphhopper.com/
14https://www.openstreetmap.org/

26



bicyclist action prior to fatal accidents was the cyclists failure to yield right-of-way (in
34.9% of cases) [35]. A city government, then, may wish to develop an educational cam-
paign to decrease the number of cyclists that ride bike dangerously fast. By analyzing
the dataset and selecting the trips whose average speed was over 20 km/h, this analy-
sis can be easily done. Given that the average speed of all trips is 13 km/h and that
only 4.2% of the trips are above 20 km/h, we can consider that these fast trips have a
large probability of being associated with cyclists riding dangerously fast. Profile of this
speeders is as follows:

• 89% are men, while only 11% are women

• 50% of the speeders are between 21 and 32 years old, and although speeders are
present in all ages under 52, the age range in which people have more tendency to
drive dangerously fast is between 25 and 30

• the length of speedy trips is 20% longer than average and their duration is half
that of an average of all trips

• a subscriber (usually, a resident) is 4.6 times more likely to be a speeder than just
a customer (usually, a tourist)

27



4.3 Mobility Flows

Understanding where the major flows of cyclists are located within a city is the first
step in providing urban planners with the knowledge required to draw a good mobility
plan for urban cycling. Most previous work on BSS data analysis focuses on analyzing
usage patterns of individual dock stations, without investigating the movements from
one place to another, such as the origin-destination pairs of bike trips which can provide
interesting insights on the punctual dynamics of the system [23, 36, 21, 37].

Because stations are normally distributed unevenly across the city, investigating each
individual station does not provide an overall picture of city mobility dynamics for the
urban planner. In one of the studies, Zhou (2015) [38] used a clustering algorithm to
group together flows connecting dock stations in Chicago, identifying 378 relevant flows
in the city for the year 2014. That was an interesting approach but showing so many
flows to the user without any structure does not support policy making adequately. In
addition, the computational complexity of the clustering algorithm might hinder the
method’s interactivity and fast usability.

For each trip, the location and time of origin - destination were used. Workdays present
similar patterns among themselves but they differ greatly from weekends, so these classes
can be treated separately. Within a single day, three different time periods are investi-
gated: morning peak (from 7:00 to 10:00), lunch time (from 11:00 to 14:00) and afternoon
peak (from 17:00 to 20:00) as their patterns differ significantly. Also, the average number
of trips per hour in the dataset reduces significantly during the winter months.

An example of a morning peak distribution of bike check-outs by different neighbour-
hoods can be observed in Figure 3 and it is clearly visible that there is an excess of
events happening in Boston Upper Back Bay, Boston North End, and Cambridge Har-
vard University area when observing aggregated mornings in the month of July 2018.
This particular visualization was implemented using a Geographic Resources Analysis
Support System for Geographic Information System (GRASS GIS)15 open source soft-
ware to define census tracts, and Leaflet JavaScript library16 to allocate an amount of
bike flows to a particular community in a presentable fashion. Census tracts are small,
relatively permanent statistical subdivisions of a county or county within the United
States, and they define the geographic borders between the communities.

Using heatmaps with different time granularities, as seen in Figure 4, these mobility flow
changes can be observed even more clearly and in greater detail. Heatmaps were imple-
mented using Folium library17 on top of the Python ecosystem and Leaflet. Granularity
can be changed to months, days, minutes, or even seconds.

15https://grass.osgeo.org/
16https://leafletjs.com/
17https://pypi.org/project/folium/

28



Figure 3: Morning trip check-outs clustered by neighbourhoods for July 2018

Figure 4: Morning trip check-outs heatmap for July 2018

An important visualization method is the one where mobility flows are represented as a
directed graph, which is depicted in Figure 5. With the help of this method it is possi-
ble to define most pairwise asymmetric links between the nodes, which are of extreme
importance in this thesis. Firstly, they contain the mobility flows most responsible for

29



the unbalanced network which in turn, causes more frequent need for bike relocation.
Secondly, these nodes will be used as a subgraph input for the Convolutional neural
network (CNN) in Chapter 6 to gain an insight into future patterns that are most likely
to be expected.

Figure 5: Mobility flows as a directed graph for July 2018

Algorithm 1 was used to find the most unbalanced links in the network whose absolute
pairwise flow difference is larger than a critical number K, which is a positive integer.
Two “for” loops are going through the origin-destination matrix of stations where flows
are stored as an integer number. Every combination of station pairs is examined and for
each one, coordinates are stored and flows are taken into account as the number of trips.
In the “if” statement, we check if the difference between the station pairs is larger than
K and if it is, we are drawing the bi-directional arrow to mark the unbalanced link.

30



for start id (odmatrix.row) do

for end id (odmatrix.column) do

start lat = stations.loc[start id,‘lat’];
start lat2 = stations.loc[end id,‘lat’];
start long = stations.loc[start id,‘lon’];
start long2 = stations.loc[end id,‘lon’];
end lat = stations.loc[end id,‘lat’];
end lat2 = stations.loc[start id,‘lat’];
end long = stations.loc[end id,‘lon’];
end long2 = stations.loc[start id,‘lon’];
num trips = odmatrix.loc[start id, end id];
num trips2 = odmatrix.loc[end id, start id];
if (abs(num trips - num trips2) > K) then

draw arrow(start lat2, start long2, end lat2, end long2, num trips2);
draw arrow2(start lat, start long, end lat, end long, num trips);

end

end

end
Algorithm 1: Most unbalanced links

This intuition that pairwise asymmetric links could be beneficial was confirmed by com-
paring the animated heatmap visualization of flow density (check-ins and check-outs)
progression through different days and months, to the appearance of the most unbal-
anced pairs corresponding to the same time frame.
Moreover, using the most unbalanced pairs as an indication of bike shortage or abun-
dance, it is possible to uncover some hidden problematic areas that are not so easily
visible with the heatmap visualization. Also, having unbalanced pairs we clearly know
where we should add or take bikes from when applying the relocation policy. This is
something that would not be possible by just observing clusters during peak hours.
Moreover, having subgraph of unbalanced pairs defined as an adjacency matrix data
structure is an advantage when using it as an input for Convolutional neural network
(CNN) in Chapter 6. In Figure 6 a representation of some 2018 unbalanced edges is
plotted on the map for each month separately. It can already be seen that, although
spatial configuration of these unbalanced subgraphs changes, some clear pattern rules
can be concluded. For example, most of the unbalanced edges are concentrated in the
Cambridge city center, but during warmer months subgraphs tend to expand to the very
edges of the BSS network.

31



Figure 6: Most unbalanced links between stations for each month in 2018

32



5 Predicting Dynamic Patterns with RNN

In this chapter, a comparison between different predictive methods for time-series data
will be examined. Primary dataset used is the aggregated number of bike check-outs for
each day, and the secondary dataset contains weather details. Number of of bike check-
outs, for reason of convenience, will be hereinafter referred to as “bike usage”. Best
prediction method will be used on individual stations identified as the most unbalanced
and obtained separately as an output of CNN in Chapter 6. The process of choosing the
best prediction method will depend on the validation metrics retrieved and particular
setting of parameters defined within the prediction model itself.

5.1 Bike Data Preparation

Primary dataset contains the BlueBike data in the time span between January of 2016
and March of 2018. In total, this accounts for 27 months of data worth, or 821 days.
As mentioned in Chapter 3, all trips longer than 24 hours (or 86400 seconds) were not
taken into account because those trips are treated as faulty and not representative of
the bike sharing system flow. For the sake of simplification, only the number of bike
check-outs (bike usage) is used and we will ignore most of other attributes for certain
neural network demonstrations in this chapter. In addition, daily granularity is used
which means that bike usage had been aggregated for each day independently based
on the “starttime” being the exact time of bike check-out. This is denoted as variable
“freq”, while we can also use “freqscaled” which had been normalized by dividing each
bike usage value of each day with the highest bike usage observed (that exact value
is 7405). This will create a range of values between zero and one, as for some neural
networks it is sometimes easier to digest and process these normalized inputs. Moreover,
one data entry was missing completely for March 13th in 2018, because a heavy blizzard
happened on that day, and a zero value for bike usage was added manually to the dataset.

Speaking of normalizing inputs, when preparing data for artificial neural networks, a
one-hot encoding should be enforced before fitting a machine learning model. This is
because many machine learning algorithms cannot operate on label data directly and
they require all input and output variables to be numeric. One-hot encoding can help
by removing integer encoded variables and adding a new binary variable for each unique
integer value. This method is applied for attributes such as: year, month, season, week-
end, user type. Even though hot-encoding is explored, these additional attributes were
not used in the final method as, ultimately, accuracy was not affected for predicting
bike flows using a large amount of historic data. But, it could be argued that one-hot
encoding and multiple attributes are crucial when dealing with smaller data and time
spans.

33



5.2 Weather Data Preparation

Secondary dataset is a weather dataset previously acquired via “Kaggle”18 website, but
originally scraped from “Weather Underground”19 platform. The dataset obtained did
not have entries after the month of March in 2018, and that is why we took the same
end period for the bike data. However, some of the original attributes were dropped
out for the purpose of using it as an adequate input for recurrent neural network. For
example, having an average temperature alongside high and low temperature seemed
redundant, especially as it is so trivial to obtain average form the two latter mentioned
extremes. Also, removing “Event” attribute is justified as we already have our informa-
tion on snowfall and rainfall which is far more precise than just a boolean indicator of
their presence. The produced weather dataset consists of: temperature (high and low),
dew point (high and low), humidity (high and low), visibility (high and low), wind (high
and average), high wind gust, snowfall, and precipitation.

Upon closer examination, it is important to notice that for the entry of, for example,
1.15 inch of snowfall it should be read as 1.15 foot which is 13.8 inch in total or around
35 cm. This conversion matches with the report for March 13th in 2018, when record
snowfall height was measured in Boston20. All the snowfall measurements were changed
accordingly.
Not only that, but certain days were missing from the dataset. As detailed inspection
was performed for the year 2018, two days in March (21st and 22nd Of March 2018) were
completely missing from the dataset and those rows needed to be somehow filled in or
recreated.

5.3 Bike and Weather Data Aggregation

Now, having this weather dataset prepared, we would need to examine which of this
attributes are the ones that correlate with the bike usage frequency the most. Simply
by performing linear regression between ”freqscaled” representing the bike usage and
each one of the attributes, it is possible to empirically decide which attributes are more
suitable to be kept as we don’t want to burden machine learning algorithms with unnec-
essary attributes, thus slowing their accuracy and performance. Also, some of the more
extreme dates with bike usage having an anomaly value were replaced with the mean
of that month. This is because an extreme weather occurred (such as heavy snowfall)
that is defined as a rare and impossible to predict event. Replacement with the monthly
mean will result in a better performance of neural networks.

For each pair between bike usage and one of the thirteen attributes, an isolated scatter
plot will be produced showing all the points representing a relation between the two

18https://www.kaggle.com/
19https://www.wunderground.com/
20https://www.boston.com/news/weather/2018/03/13/massachusetts-snow-accumulation-totals-

march-13-2018

34



variables. In order to plot correctly, each of the attributes must be scaled by dividing
their value with the maximum attribute value in existence. Then, a simple regression
model will be applied and regression line can be observed on the plot. To evaluate which
combination of bike usage and different attributes is the one with highest correlation
(positive or negative), a coefficient of determination is defined and denoted as R squared.
The value of R squared is typically taken as the percent of variation in one variable
explained by the other variable, or the percent of variation shared between the two
variables [39]. As a rule of thumb that correlation coefficient value between 0.7 and 1.0
are representing the strong linear relationship, and that means that only temperature
attributes (high and low) can be used as relevant factors. In Figure 7 we can see
that low temperature is positively correlated with the usage of bikes, while in Figure
8 we can see no correlation with high humidity. Table 1 contains all the correlation
coefficients between different attributes and bike usage. The conclusion of using linear
regression regarding the thesis project is that our final data aggregation should only
combine temperature data with bike flows in order to minimize attributes used, while
still retaining a satisfying significance on prediction possibilities.

Figure 7: Correlation (R2 = 0.7) between Low Temperature and Bike Usage

Figure 8: Correlation (R2 = 0.02) between High Humidity and Bike Usage

35



Table 1: Correlation coefficient

Attribute R2

Low Temperature 0.7278257733186797
High Temperature 0.6914113376022786
Low Dew Point 0.6208915092809677
High Dew Point 0.5772408684832167
Low Humidity 0.0014386835458154446
High Humidity 0.018873022035322595
Low Visibility 0.043489802661249355
High Visibility 0.000004993336488734
Average Wind 0.07990729177445965
High Wind 0.07481014953823728
Wind Gust 0.07667909130885997
Snowfall 0.05167595979579198
Precipitation 0.014230885353750944

5.4 ARIMA

In a nutshell, bike usage or bike flow data represents a time series, which is a sequence
of scalars that depend on time t. The objective of prediction is to guess future values
by observing the past ones. Auto-regressive integrated moving average (ARIMA) is a
generalization of an Autoregressive moving average (ARMA), and it is composed of two
distinct models which explain the behaviour of a series from two different perspectives:
Autoregressive (AR) model and the Moving average (MA) model. According to a num-
ber of sources [40, 41, 42] regarding univariate time series methods, when proposing new
prediction methods, comparisons should be made against a naive and standard method
such is an ARIMA model. This is to say that the model to be considered as a novel
one should outperform the ARIMA model by comparing their performance metrics. An
input for the ARIMA model will be bike usage time series in the form of the normalized
number of bike check-outs (“freqscaled”).

First step in implementing ARIMA is to test stationarity with an augmented Dickey-
Fuller (ADF) test [43, 44] where we need to prove our reject our null-hypothesis:

• H0 ... data is non-stationary

• H1 ... data is stationary

A non-stationary time series show seasonal effects, trends, and other structures that de-
pend on the time. Dickey-Fuller test in the case of data usage data produced a p-value
of 0.371320 (Table 2). Because we got a p-value that is larger than 0.05, we proved the
proposed null-hypothesis, which means our data has an unit root [45] and that the data

36



can be used in ARIMA model once we verify rolling statistics.

Table 2: Augmented Dickey Fuller test

Test Statistic p-value Lags Observations

-1.818492 0.371320 20 800

Rolling statistics indicates that summary statistics like the mean and variance do change
over time, providing a drift in the concepts a model may try to capture [46]. In Figure
9 and Figure 10 we can observe and confirm these assumptions.

Figure 9: Rolling mean and standard deviation in ARIMA modelling

37



Figure 10: ARIMA model stationarity

As a last step before building an ARIMA model, we are going to observe auto-correlation
function and partial auto-correlation function, which can be seen in 11.
Auto-correlation function (ACF) explains how well the present values of the series are
related to its past values. We can see that for 30 lags there is a strong correlation above
the value of 0.7. Lags are defined as observations with previous time steps and, the
higher the lags, the further into the past we are trying to find correlation. Included
in the 12 is the auto-correlation plot in case of an extreme case of choosing maximum
number of lags (820). According to the literaure [47] this is exactly what we would
expect: an ACF for the MA process to show a strong correlation with recent values up
to the lag of “k”, then a sharp decline to low or no correlation.
Partial auto-correlation function (Partial-ACF) represents the correlation of residuals,
hence being a summary of the relationship between an observation in a time series
with observations at prior time steps with the relationships of intervening observations
removed21. Again, as described in theory [48], we would expect the plot to show a strong
relationship to the first lag and then suddenly trailing off of correlation afterwards.

21https://machinelearningmastery.com/

38



Figure 11: Autocorrelation functions for 30 lags

Figure 12: Autocorrelation functions for 820 lags

Finally, ARIMA model can be built based upon all the previous calculated necessities.
Figure 13 shows the predicted bike usage in color red ( with blue representing the actual
bike flow), and also produces a number of error metrics. This metrics and performance
results will be used as a benchmark for all the recurrent neural network predictions to
be explored in this chapter.

39



Figure 13: ARIMA predicted Bike Flow (2,0,0) coloured in red

The parameters of the ARIMA model (p,d,q) are defined as follows [49]:

• p: The number of lag observations included in the model, also called the lag order.

• d: The number of times that the raw observations are differenced, also called the
degree of differencing.

• q: The size of the moving average window, also called the order of moving average.

In Table 3 and Table 4, evaluation metrics are summarized for ARIMA methods with
two different settings for the number of lags: (2,p,q) and (20,p,q).

Table 3: ARIMA (2,0,0) evaluation metrics

Metric Score

Elapsed time 60 miliseconds
RSS scaled 10.5776
MAE scaled 0.0856
MAE 632.1342
MSE scaled 0.0128
MSE 702543.2804
RMSE scaled 0.1135
RMSE 838.1785
Accuracy 0.8133

40



Table 4: ARIMA (20,0,0) evaluation metrics

Metric Score

Elapsed time 161.28 seconds
RSS scaled 7.6769
MAE scaled 0.07269
MAE 536.7394
MSE scaled 0.00935
MSE 510006.1863
RMSE scaled 0.09669
RMSE 714.1471
Accuracy 0.8415

5.5 Simple RNN

Recurrent neural networks, also known as feedback neural networks, expand on the major
shortcomings of traditional ANN. RNN are networks with loops, allowing information
to persist and predict the future by observing the past. In a sense, RNN operates as a
multiple feedforward neural network [50]. One big drawback of a simple RNN is that
it has a vanishing gradient problem [51]. An input for the implemented simple RNN
in this thesis consisted of three features: bike usage (“freq”) and temperature (“High
Temp (F)”, “Low Temp (F)”). A desired output that we tried to predict was bike usage
(“freq”). One hot encoding was implemented, but it was not necessary because the
considered features were already strictly numerical. In Figure 14 we can see the simple
RNN prediction of bike usage in color blue and the ground truth in color orange, for
the test data. In Figure 15 training and validation loss functions are shown. Table 5
comprises of different simple RNN settings and results that are achieved when running
them. Training dataset included first 500 entries, while the test set consisted of the last
321 entries.

Figure 14: Predicted Bike Flow with simple RNN

41



Figure 15: Simple RNN Loss Functions

Table 5: Simple RNN

Parameters & Scores Iteration 1 Iteration 2 Iteration 3 Iteration 4

Test Set 321 321 321 321
Epochs 100 1’000 1’000 2’500
Learning Rate 0.001 0.001 0.001 0.001
Hidden Nodes 10 10 25 30
Elapsed time 0.4717 sec 5.0156 sec 5.5900 sec 14.2091 sec
MAE 1743.3761 1320.1722 1156.3751 783.8121
MSE 4269675.239 2612542.4243 1982988.6854 942435.7041
RMSE 2066.3192 1616.33611 1408.1863 970.7912
Accuracy 57.0039 67.4412 71.4808 80.6692

5.6 Deep RNN

In general, deep neural networks have multiple levels of hidden layers. This type of RNN
benefits from the depth that these hidden layer levels create, and therefore outperforming
the conventional, shallow RNN [52]. However, deep neural networks are often much
harder to train than shallow neural networks [53]. All of this is true for deep recurrent
neural networks as well. Also, concept of depth in RNN is not as clear as it is in
feedforward neural networks [54]. Here, a performance of deep RNN was evaluated in
the same manner as it was done for the simple RNN, analyzing the bike sharing dataset.
Again, an input for the implemented deep RNN in this thesis consisted of three features:
bike usage (“freq”) and temperature (“High Temp (F)”, “Low Temp (F)”), while a
desired output to be predicted was bike usage (“freq”). In Figure 16, prediction with
deep RNN can be seen, Figure 17 shows the prediction of the predefined hold-out data

42



which is a form of cross validation method to ensure that predictions score is really
consistent throughout the data, and Figure 18 represents the two loss functions and
their values as the looping through epochs is running continuously. Finally, in Table
6, all the evaluation metrics and deep RNN settings are enlisted such as: activation
functions, number of hidden nodes in each layer, number of epochs etc.

Figure 16: Deep RNN test datapredicted bike usage

Figure 17: Deep RNN holdout data predicted bike usage (red) with 69% accuracy

43



Figure 18: Deep RNN loss functions

Table 6: Deep RNN

Parameters & Scores Iteration 1 Iteration 2 Iteration 3 Iteration 4

Test Set 321 321 321 321
Epochs 100 300 400 500
Learning Rate 0.001 0.001 0.001 0.001
Activation Functions relu, relu tanh, relu tanh, relu relu, tanh, relu
Hidden Nodes 4+2 8+8 16+8 24+12+8
Dense Layer relu relu tanh tanh
Optimizer adam adam adam adam
Elapsed Time 36.6 sec 160.87 sec 147.9 sec 249.7 sec
MAE 1558.2236 696.4746 694.7208 728.3816
MSE 3812000.29 626651.29 754513.30 854055.85
RMSE 1952.434 791.613 868.627 924.151
Accuracy 63.9155 83.8714 83.9120 83.1325

5.7 RNN LSTM

RNN Long short-term memory is a specific type of recurrent neural network capable of
learning long-term dependencies. Not only does LSTM deal better with the vanishing
gradient problem, but it is also well suited for making predictions based on a larger
time series data [55]. In Figure 19, a prediction of scaled bike usage with LSTM can be
observed, while in Table 7 performance metrics and LSTM settings are recorded. As an
input, LSTM is considering only bike usage (“freq”) feature.

44



Figure 19: RNN LSTM predicted bike usage

Table 7: RNN LSTM

Parameters & Scores Iteration 1 Iteration 2 Iteration 3 Iteration 4

Test Set 321 321 321 321
Epochs 300 300 250 300
Learning Rate 0.001 0.001 0.001 0.001
Activation functions tanh, relu relu, tanh relu, tanh relu, tanh
Hidden Nodes 16, 12 18, 12 20, 15 24, 18
Elapsed time 38.7 sec 60.6 sec 52.1 sec 67.6 sec
MAE 102.5375 92.4984 55.3264 96.7591
MSE 463712.94 405562.1 417788.88 421036.9
RMSE 680.9647 636.8375 646.3658 648.8735
Accuracy 0.88235 0.88368 0.88098 0.88201

As LSTM will be the method used for predicting dynamic patterns in this thesis due to
its excellent performance, a cross validation of its results must be checked in order to
make sure that LSTM prediction has reasonable values throughout the test dataset.

5.8 RNN Validation Metrics

Instead of a widely used K-fold cross validation metric, we would want to implement a
series of test sets, each consisting of an equal number of observations. The reason behind
this decision is because time series have a specific structure and K-fold method is not
applicable. The corresponding training set consists only of observations that occurred
prior to the observation that forms the test set [56]. This is supposed to ensure that no
future observations are used in constructing the forecast. Also, two different approaches
are used together in order to get a fixed training set with moving test set across different
training set spans. This is just to ensure that accuracies obtained previously are valid.

45



As shown in the Figure 20, graphs in the first row have a training set of size 500, and
a sliding test set of size 107. From left to right scores obtained by using parameters
seen in Iteration 2 of Table 7 are: 91.4%, 87.6% and 82%, respectively. Second row
has a training set of size 607 and a sliding test of the same size as the sliding test
set mentioned before. Score for the test sets of the two graphs in the second row are:
90.7% and 81%, respectively. Now, it is easy to notice that as the sliding test window
is moving further into the future, the prediction accuracy continues to drop down. But
as long as we are trying to predict bike usage approximately 4 months into the future,
the LSTM guarantees to produce at least 90% prediction score. Moreover, in Table 8 all
of the methods are compared among themselves in a very concise way, using different
evaluation metrics to clearly show how they all performed in predicting bike usage, given
the training set of size 500, and a test set of size 321.

Figure 20: LSTM cross validation

Other evaluation metrics used in this chapter include Mean Absolute Error (MAE) and
Root mean squared error (RMSE) which are two of the most common metrics used to
measure accuracy for continuous variables. Mean absolute error measures the average
magnitude of the errors in a set of predictions, without considering their direction,
it is the average over the test sample of the absolute differences between prediction
and actual observation where all individual differences have equal weight. Root mean
squared error is a quadratic scoring rule that also measures the average magnitude of
the error. It is the square root of the average of squared differences between prediction
and actual observation. Both MAE and RMSE are negatively-oriented scores, which
means lower values are better. Taking the square root of the average squared errors
has some interesting implications for RMSE. Since the errors are squared before they
are averaged, the RMSE gives a relatively high weight to large errors. This means the
RMSE should be more useful when large errors are particularly undesirable [57].

46



MAE =
1

n

n
∑

j=1

|yj − ŷj| (5.1)

RMSE =

√

√

√

√

1

n

n
∑

j=1

(yj − ŷj)
2 (5.2)

CVk =
1

k

k
∑

j=1

(yj − ŷj
(−j))

2 ∀ j = 1, · · · , k (5.3)

Accuracy = 1−

1
n

n
∑

j=1

|yj − ŷj|

1
n

n
∑

j=1

(yj)

= 1− MAE

µ(yj)
(5.4)

Using previously defined error metrics MAE and RMSE, we are now able to compare all
of the available methods used for predicting dynamic patterns, as shown in the Table
8. Accuracy metric is defined as a MAE divided by the mean of the ground truth data
values for the period observed. To get a percentage value we can subtract the calculate
value from 1, and multiply by a hundred. Average accuracy is a mean value between all
the different accuracies obtained within different iterations of the same method. Best
accuracy is a value of accuracy for an iteration with a highest accuracy score. To con-
clude, the best ratio between runtime, accuracy and low error metrics is observed in
LSTM RNN method, which was chosen as a one to be used for this project. And the
RNN LSTM architecture setup to be utilizes is the one with the best accuracy score.

Table 8: Comparative analysis of explored prediction methods

Metric ARIMA Simple RNN Deep RNN LSTM RNN

Average Time 80.67 sec 6.3216 sec 148.7675 sec 54.75 sec
Average MAE 584.4368 1250.933875 919.45015 86.78035
Average RMSE 776.1628 1515.408203 1134.20625 653.260375
Average Accuracy 82.74% 69.148775% 78.70785% 88.2255%
Best Accuracy 84.15% 80.6692% 83.9120% 88.368%

47



6 Identifying Spatial Structures with CNN

In this section, pairwise most asymmetric edges between nodes representing most unbal-
anced flows between stations, which had been previously retrieved in the Chapter 4, are
transformed into adjacency matrices and prepared as an input for convolutional neural
network. Before running the CNN model, training set of matrices needs to be labeled
because the goal of this method is to make sure that CNN correctly classifies test ma-
trices to a correct label. In case of a false classification, we still want to maintain those
errors to be spatially close to the expected stations, thus making mistakes as minimal
as possible.

CNN is a neural network, a regularized version of multilayered perceptrons, and mostly
applied in image recognition and classification areas.CNN architectures are usually built
with the following layers: convolution layer, rectified linear units (ReLU) layer, pooling
layer, fully connected layer and loss layer [58]. Because bike flows and, in particular,
unbalanced stations tend to form a specific graph configuration which changes over time,
in Chapter 4 that notion was used to visualize the changing shapes. This phenomenon
was the main motivation to try and figure out how could these observed spatial config-
urations be recognized and classified into the predefined set of pattern labels with the
help of CNN.

6.1 CNN Data Preparation

The first step is to take so called data “snapshots” of the directed subgraph that is
formed by the most unbalanced stations and their links, already defined in Chapter 4.
These snapshots have a certain time granularity, so we can observe different unbalanced
graphs for each year, month, week, or day. Suppose that the granularity is monthly,
which means that during one year worth of time, we will have 12 unbalanced graphs. In
the case discussed here, we will take years 2017 and 2018 into consideration amounting
to a total of 24 distinct unbalanced graphs when considering monthly granularity. So,
this snapshots

Using the data exploration findings and Algorithm 1 from Chapter 4, we can observe
in Table 9 and Table 10 monthly snapshots of the top three most unbalanced pairs of
stations for each month in years 2017 and 2018. “Gap” columns represent the exact
unbalanced flow value between the two station, which is calculated as a flow difference
between the pair observed.“Station” columns inform us which station pair in question
is sharing the unbalanced flow.

48



Table 9: 2017 most unbalanced station pairs

Time Gap1 Stations1 Gap2 Stations2 Gap3 Stations3

Jan 2017 64 Ames,Vassar 46 Broadway,Post 41 Central,Mass
Feb 2017 72 Vassar,Stata 60 Vassar,Ames 45 Vassar,Mass
Mar 2017 68 Vassar,Stata 54 Vassar,Ames 53 Stata,Cambridge
Apr 2017 121 Vassar,Stata 75 Stata,Pacific 68 Vassar,Ames
May 2017 187 Stata,Vassar 108 Stata,Pacific 98 Nashua,South
Jun 2017 174 Vassar,Stata 118 Stata,Pacific 88 Nashua,Rowes
Jul 2017 162 Vassar,Stata 113 Davis,Teele 110 Mass,Boylston
Aug 2017 115 Davis,Teele 103 South,Nashua 97 Stata,Vassar
Sep 2017 140 Pacific,Stata 137 Mass,Beacon 114 Nashua,South
Oct 2017 147 Stata,Vassar 131 Stata,Sidney 102 South,Nashua
Nov 2017 114 Davis,Teele 88 Beacon,Mass 68 Mass,Central
Dec 2017 81 Mass,Pacific 53 Stata,Mass 49 Central,Stata

Table 10: 2018 most unbalanced station pairs

Time Gap1 Stations1 Gap2 Stations2 Gap3 Stations3

Jan 2018 51 Nashua,Stata 49 Stata,Vassar 46 Mass,Pacific
Feb 2018 77 Central,Mass 62 Nashua,Stata 56 Mass,Pacific
Mar 2018 80 Nashua,Stata 71 Central,Stata 69 Central,Mass
Apr 2018 96 Mass,Central 94 Mass,Beacon 72 Rowes,Cross
May 2018 148 Stata,Vassar 99 Rowes,Cross 96 Stata,Pacific
Jun 2018 161 Stata,Vassar 115 Rowes,Cross 115 Stata,Pacific
Jul 2018 172 Stata,Pacific 145 Stata,Vassar 132 Rowes,Cross
Aug 2018 198 Stata,Vassar 195 Stata,Pacific 140 Central,Mass
Sep 2018 164 Stata,Central 109 Central,Pacific 97 Stata,Mass
Oct 2018 151 Central,Stata 129 Mass,Vassar 123 Central,Mass
Nov 2018 177 Stata,Vassar 130 Mas,Vassar 103 Mass,Central
Dec 2018 125 Stata,Vassar 108 Mass,Central 106 Stata,Pacific

Now, it is necessary to convert obtained station names into some form of identification
numbers. If we aggregate both years together and find the exact number of total distinct
stations, it becomes clear that there are a total of 20 such identification numbers we
would need to allocate to each one of the station. Before the best identification number
placement strategy can be discussed, in the Image 21 we can observe most unbalanced
stations and network edges for year 2017 and in Image 22 we can see the same for year
2018.

49



Figure 21: Aggregated unbalanced edges for year 2017

Figure 22: Aggregated unbalanced edges for year 2018

Allocation of identification numbers is done in the manner that mimics the way these

50



stations are spatially placed within the area of Somerville, Cambridge and Boston. For
example, stations Teele and Davis in Somerville are given ID numbers 1 and 2 because
they are located in the far north-west part of the map as seen in Image 23. As we get
closer to the Cambridge city center, other stations are given their unique ID numbers.
Last couple of numbers are assigned to the stations in Boston area. Now, Table 9 and
Table 10 are translated into Table 12, where each station is represented by its distinct
ID number (shown in Table 11). Transforming strings into identification integers is an
approach that had been done in order to utilize the next step, where each obtained
snapshot will be represented in a form of a square, symmetric and hollow matrix.

Stations were assigned their identification numbers using a simple heuristic method.
This method used some prior domain knowledge and is not an automated assignment
process. Assignment started in the most north-west station and continued to the south-
east while trying to group stations from the same neighbourhoods together, which makes
some assignments to spiral in space. This could, of course, cause some slight problems
in case we have a larger number of stations as it would be really hard to identify the
most optimal way to assign the numbers. Moreover, this way of representing station
is sensitive to permutation operations as it could lead to a greater number of errors in
those cases where stations from completely different areas are mixed with each other.

Figure 23: Appearances of all unbalanced stations during both 2017 and 2018

51



Table 11: Encoding the stations

Station name Identification Number

Teele 1
Davis 2
Inman 3
Columbia 4
359 Broadway 5
Post Office at Central 6
Central 7
Sidney Research 8
Vassar 9
Pacific 10
Stata 11
Ames 12
Mass 13
Beacon 14
Boylston 15
Charles 16
Nashua 17
Cross 18
Rowes 19
South Station 20

52



Table 12: Encoded most unbalanced station pairs in 2017 and 2018

Time Top1 Top2 Top3

Jan 2017 (9,12) (5,6) (7,13)
Feb 2017 (9,11) (9,12) (9,13)
Mar 2017 (9,11) (9,12) (11,4)
Apr 2017 (9,11) (11,10) (9,12)
May 2017 (11,9) (11,10) (11,12)
Jun 2017 (9,11) (11,10) (11,12)
Jul 2017 (9,11) (1,2) (13,15)
Aug 2017 (2,1) (20,17) (11,9)
Sep 2017 (10,11) (13,14) (17,20)
Oct 2017 (11,9) (11,8) (20,17)
Nov 2017 (2,1) (14,13) (13,7)
Dec 2017 (13,10) (11,13) (7,11)

Jan 2018 (17,11) (11,9) (13,10)
Feb 2018 (7,13) (17,11) (13,10)
Mar 2018 (17,11) (7,11) (7,13)
Apr 2018 (13,7) (13,14) (18,19)
May 2018 (11,9) (18,19) (11,10)
Jun 2018 (11,9) (18,19) (11,10)
Jul 2018 (11,10) (11,9) (18,19)
Aug 2018 (11,9) (11,10) (7,13)
Sep 2018 (11,7) (7,10) (11,13)
Oct 2018 (7,11) (13,9) (7,13)
Nov 2018 (11,9) (13,9) (13,7)
Dec 2018 (11,9) (13,7) (11,10)

In order to be able to use CNN, it is necessary to transform these unbalanced graphs
into 24 adjacency matrices consisting of zeroes and ones, where each value “1” indicates
that there is a directed edge from the station represented as matrix row with index “i”
to the station denoted as a matrix column with index “j”, for that specific (i,j) tuple.
Of course, because we are dealing with the bidirectional unbalanced graphs, adjacency
matrices will be symmetric and also hollow meaning that we can observe only zero values
on the main diagonal, thus avoiding nodes with self-loops. Now, these sparse matrices
can be simply imagined as pixelated images where “1” indicates a pixel existence, and
it is something that can be send as an input to CNN. However, there is a crucial step in
transforming graphs into matrices and, as explained before, that step is to be aware of
the fact that relative coordinates between stations should match the allocation of row
and column indexes inside the matrix. In other words, created matrices slightly mimic
the spatial representation of unbalanced stations in the real world.

53



Figure 24: Adjacency matrix for March 2018 with isolated stations for that year

Figure 25: Adjacency matrix for March 2018 combined with stations from both years

For example, in Image 24 there is a matrix representing a particular month (March of
2018 in this case) with the most unbalanced flows being between stations (0,2), (0,4)
and (2,6). Stations 0,1,2,3,4 and 5 are located in the center of Cambridge, station 6
is located in Boston Bay area, 7 and 8 are found in central Boston. This means that,
depending on the pattern of pixels in the matrix, there are different flows connecting
distinct neighbourhoods. Since CNN is a model that learns to recognize these patterns
and tries to find them in pixelated images that have not been observed before, that is
the main reason why the method had been chosen for this purpose.

When we want to observe a two year period of unbalanced snapshots instead of one year
period, of course that means that we will probably have some new unbalanced stations
appearing in the unbalanced pairs. Thus, our matrices will grow in order to accommo-
date this new stations. In Image 25 we can see the same stations as in Image 24 but with
an expanded matrix which means that encoding of the stations with their identification

54



numbers will be slightly different, but the spatial configuration pattern will never lose its
relative shape. The specific way that 20x20 matrix has its space configured and defined
based on the location of station spatially across the area can be seen in Figure 26. Three
cities are found sharing the matrix: Somerville, Cambridge, and Boston. Cambridge has
certain concentration of observed unbalanced stations around Inman Square area, Cen-
tral Square area, shore area of Cambridgeport, and Campus area of MIT. Boston has a
Port Bay area just across the Harvard bridge, North Boston consisting of West End and
central Boston area, South Boston between Waterfront and Financial district.

Figure 26: 20x20 matrix configuration depending on spatial position of stations

55



6.2 Graph Embeddings

In this subsection, a short description of some additional graph analysis we are able
to perform on a bike usage dataset will be described. An example of a an aggregated
visualization can be seen in Figure 28.

Firstly, we can perform Hyperlink-Induced Topic Search (HITS) algorithm which is a
link analysis algorithm that rates hubs and authorities of a given network. For instance,
if we take year 2018 as an example, in Figure 27 we can see the obtained hub scores
on the left and authority scores in the middle. In this particular case, node number 4
(Vassar bike station) is the best hub, meaning the node that has the most bike check-ins
coming from a variety of different stations. Likewise, node number 3 (Stata bike station)
is the best authority, or the node that has the most bike check-outs directed towards
many other stations.

Figure 27: Hub (left) and Authority (middle) scores for 2018

Additionally, a method called spectral clustering can be utilized. In general, clustering
is an unsupervised learning method and algorithm that operates uses a similarity mea-
sure to cluster data points together. In spectral clustering, the data points are treated
as nodes of a graph, and clustering is treated as a graph partitioning problem. Spec-
tral clustering consists of three steps: creating a similarity graph, computing the first
k eigenvectors of its Laplacian matrix to define a feature vector for each object, and
running a k-means algorithm on these features to separate objects into k classes.

In our implementation, we will consider year 2018 as an example. For spectral cluster-
ing method, we will use size of cluster 2, precomputed affinity, and a number of times
the k-means algorithm will be run with different centroid seeds set to 100. The re-
sult show that first five stations (Central, Pacific, Stata, Vassar, Mass) are part of one
cluster and last four stations (Beacon, Nashua, Cross, Rowes) are part of another cluster.

In a second implementation, we can change to assign labels using an approach called
discretization, which is less sensitive to random initialization. This is used instead of

56



k-means algorithm. The results with this approach show that All the stations are part
of the first cluster, expect for Cross and Rowes which are part of the second cluster. A
visualization of this specific case can be observed in Figure 28.

Another possibility could be to increase the number of clusters by one. Using discretiza-
tion method, we are able to get the following results:

cluster 1: Central, Vassar, Nashua
cluster 2: Pacific, Stata, Mass, Beacon
cluster 3: Rowes, Cross

Figure 28: Aggregated heat map with directed graph of mobility flows showing most
used areas for July 2018

Using spectral clustering approach could be possibly used as a means to assign identifi-
cation umber to different bike stations, apart for just being a visualization method.

Also, before running the CNN, we can explore prepared image data using t-SNE and
PCA algorithms.

57



As described in theoretical background chapter, T-Distributed Stochastic Neighbor Em-
bedding is a non-linear technique for dimensionality reduction. It attempts to find
patterns in the data by identifying observed clusters based on similarity of data points
with multiple features. This method is mainly used a data exploration and visualization
technique.

Principal Component Analysis or PCA is a linear feature extraction technique. It com-
bines input features in a specific way that it is possible drop the least important feature
while still retaining the most valuable parts of all of the features.

An example of such visualization techniques for CNN training data for the year 2018
can be observed in Figure 29. Input data is training set consisting of each month in the
year 2018. There are less labels than there are months because some of the months have
the same label. Also, training data is repeated five times rendering the size of the entire
dataset to be 60 instead of just 12.

Figure 29: clusters of t-SNE (left) and PCA (right) for 2018 data

6.3 Motivation

Here, a rationalization for using this particular method with CNN will be explained.
Primarily, unbalanced bike flows between stations are a real problem, which is especially
becoming more prominent as BSS grows bigger within the certain area over time [59].
However, it is not easy to predict exactly which unbalanced pairs are to be expected
to emerge, but they can be approximated using the current state of BSS, which will be
used as a test data for CNN. There are also some trends that can be noticed, like having
one smaller graph in the winter and two subgraphs in the summer: a giant component
in Cambridge and a smaller component either in Boston or Somerville. Weighted diam-
eter of the giant component is smaller compared to the components outside Cambridge.

58



Moreover, not only are the unbalanced pairs of nodes also a good approximation of the
most used bike station in general (as described in the Chapter 4) but looking at unbal-
anced pairs can detect some less used bike stations that suddenly during a short period
of time get congested with bike traffic and build their unbalanced ratio with some other
station to a critical point. Also, CNN is needed as a step before RNN simply because it is
not feasible to try and predict the most unbalanced pairs with RNN method alone. It is
not because it wouldn’t be possible but because graphs, although seemingly simple, can
require a vast computing power in order to predict bike flow dynamics for every single
pair of nodes [60]. Having a number “n” of nodes, the total number of possible edges
is “E” as observed in the edge formula below. Assuming 10 seconds which, on average
and with the most simplest method, RNN takes to predict time series, it would take
10*e seconds. Number of stations being 194 in 2018 means that it would take total of
187’210 seconds (52 hours). After that, we would still need to calculate flow differences
and order them in descending order. As we would like to make a short-term prediction
for the upcoming couple of days or weeks, any method where we would use exclusively
RNN is absolutely not appropriate from the computational complexity point of view.

E =
n ∗ (n− 1)

2
(6.1)

6.4 Convolutional Neural Network

Prepared training data, which is being provided to CNN as an input (see Figure 30),
consists of 24 pixelated images with size 20x20. Each image represents the top 3 most
unbalanced pairs of stations for one particular month. Yellow pixels, as seen in Figure
25, is an indication of an edge between the station “i” and “j”, where “i” and “j” are
identification numbers of those two stations. Not only is it an indication of an edge but
an unbalanced link between them. Training data will be used for CNN to observe and
learn from all past configurations and try to guess which of the pre-existing shapes would
match the best each of the test data sets we will additionally provide. It is important
to notice that a small number of months in the training set have duplicates because
some months have had the same top 3 unbalanced station pairs. This duplicates are a
valuable indication for CNN that this particular configuration may have a greater im-
portance and is more likely to be repeat again in the future. Each one of the training
images is manually labelled with a certain label number which corresponds to its unique
spatial configuration. Of course, duplicates will be assigned an identical label as their
spatial configuration is the same.

The structure of CNN used for this project can be observed in Table 13. This specific
configuration was modified and inspired by CNN used for performing on National Insti-
tute of Standards and Technology database (MNIST) dataset, which uses handwritten
digits for training various image processing systems.

59



Table 13: Configuration of Deep CNN

Type Structure

Input 24 x 20 x 20
Conv filter 12 x 5 x 5, stride 2 x 2, ReLu
Pool Max, 2 x 2
Dropout p = 0.12
Conv filter 24 x 5 x 5, stride 2 x 2, ReLu
Pool Max, 2 x 2
Conv filter 48 x 5 x 5, stride 2 x 2, ReLu
Pool Max, 2 x 2
FC 120, ReLu
Dropout p = 0.5
FC 84, ReLu
softmax 21

Convolutional layers consist of a specified amount of convolutional filters applied to the
image. These layers perform mathematical operations and an output feature map is
given as a result. Typically, ReLU activation function is used for the output as it con-
verges faster.

Pooling layers reduce the dimensionality of the feature map which decreases processing
time. A commonly used pooling algorithm is max pooling, which extracts 2x2-pixel tiles,
keeps their maximum value, and discards all other values.

Dense or fully connected layers perform classification on the features after convolutional
and pooling layers have been used. In a dense layer, every node in the layer is connected
to every node in the previous layer.

Dropout rate refers to ignoring neurons during the training phase. During that phase,
a certain set of neurons, chosen at random, is either dropped out of the network with
probability 1-p or kept with probability p. Because a fully connected layer occupies most
of the parameters, neurons develop co-dependency between each other during training
process, which leads to over-fitting of training data. In short, dropout helps us prevent
the over-fitting. This is especially useful for the project described in this thesis as we are
using a repeating training set and dropout rate will be used to balance the over-fitting
created by such an approach.

Softmax is implemented through a neural network layer just before the output layer. The
Softmax layer must have the same number of nodes as the output layer. This means
that the number of layers must correspond to the number of labels we have defined. In
this case, that is exactly 21 layers or 21 different layers. Also, to clarify why instead
of 24, which is the number of non-repeating training images, we have 21 label. This is

60



because some of the images in our training set are repeating multiple times and hence,
they are assigned the same label. In conclusion, that is why the number of labels is
smaller than the number of images in the non-repeating training set, and is the reason
behind the number of Softmax layers.

Figure 30: Training data

Regarding the test set, as we want to evaluate how CNN performs, a combination of
various spatial configurations will be used. Just as a base case, every label from the
training set will be used in the test set as well. This is because we want those labels to
be predicted with a 100% accuracy as they are identical to one of the shapes that we
already know. In addition, new shapes which have never been observed before will be
put into the test dataset to see how CNN can handle those. As seen in Figure 31, first
four rows consist of permuted training images which are already known. Last two rows
have a combination of images with only two pairs of stations that resemble an existing

61



pattern, two pairs of stations that are found in a new, never before seen relationship,
and image with more than 3 pairs of stations that both have some older edges, but also
new ones.

Figure 31: Test data

Before running CNN, we should define a ground truth labels for our new shapes inside
the test set. That is required in order to evaluate the precision of CNN label prediction.
Some of the new shapes resemble not one, but multiple training images. This is why,
once we evaluate how CNN performed, any false prediction will be inspected closely
to determine whether there are somewhat precise even though our ground truth label
was not matched. Also, our training dataset for monthly granularity is not sufficiently
big enough for producing high enough accuracy, but that can be fixed by expanding it
simply by duplicating existing 24 training images 5 times resulting in 120 images total.
It is not advised to duplicate more than that as there could be a danger of overfitting
[61]. CNN used for this purpose had 3 convolutional layers, 2 drop-out layers and 2 fully
connected layers. Each convolutional layers had 12, 24 and 48 hidden layers within.
Optimizer used was adam with the learning rate 0.001, activation function utilized was
rectified linear unit, and the number of epoch was set to 100. Again, the configuration
can be closely observed in Table 13.

As a final result, the precision is 93.5483 % by predicting a correct label for 29 out of 31
images. But, counting only images with completely novel shapes, precision achieved is
0.714 % or, 5 out of 7. It is important to highlight that falsely predicted labels occurred
for those shapes which had completely new edges and some extreme edge combinations.

62



Also, they were rendered false only because they did not match completely to the ground
truth, and the ground truth was manually chosen, hence being also prone to error. In a
sense, falsely predicted labels were still good, especially because spatial restriction was
adhered to, meaning that CNN never picked a label that had some random edges in a
far away place but tried to match the dispersion of pixels as close as possible. This is
exactly possible because of the adjacency matrix design and why it was crucial for the
prediction part. For example, if the novel shape has a matrix representing all the possi-
ble connections in Cambridge exclusively, the predicted matrix (although not matching
the ground truth) will have its three connections only in Cambridge area as well because
CNN learns that other faraway connections (Somerville or Boston) are more rarely ob-
served in combination with Cambridge links.

In case we only used only 24 training images instead of 120, this would render out preci-
sion to 61.29 % (19 out of 31). And counting only novel shapes, all of them would be false.

In Figure 32, accuracy through epochs can be observed. Yellow line represents validation
accuracy reaching 100% and red line represents test accuracy reaching, already before
mentioned, 93.5483 %. On the other hand, in Figure 33, loss function is depicted. Ma-
genta function shows how validation loss progresses, and green function shows test loss.

Figure 32: Validation (yellow) and test (red) accuracy

63



Figure 33: Validation (magenta) and test (green) loss

An addition to improving CNN in a segment of deciding which station configuration or
specific station links might have greater importance before deciding to label the test im-
age is to add weights to each pixel in the image representing bike usage for that month.
In that case, our training set of matrices gets each pixel coloured based on the intensity
of asymmetrical balance between certain stations. For example, higher asymmetrical
weight would correspond to a higher intensity color and thus, be considered as more im-
portant than maybe similar image configuration with lower weight values. This method
was not fully utilized here because in order for it to show any benefits, we would need
a much larger training set consisting of many years worth of data. However, this could
be an interesting approach if such a method would be attempted on a much larger BSS,
or scaled down to a neighbourhood level. In Figure 34, such weighted approach can
be seen depicted for the previously used training set. Lighter yellow and green colours
represent higher unbalanced difference, while darker green and blue colours mean that
the unbalanced difference has an increasing lower value.

64



Figure 34: Weighted training set

6.5 Adding Candidate Novelty Links

In order to strengthen the achieved CNN prediction, we will carefully consider adding
a possible surprise link to the predicted configuration, which has a highest probability
of emerging as a future most unbalanced link in addition to the ones already contained
within the predicted label. Only those links that have been fairly recently emerging
close, but not quite to the top 3 most unbalanced spots, can be considered as candidates
for this analysis. Additionally, one of the top 3 unbalanced candidates can be considered
as well in case we observe that CNN completely skipped it during label prediction. This
happens because of the small training dataset but using this method mitigates such
problem.

A model chosen for predicting such a candidate is called convolutional multivariate
LSTM model. Although this model is capable of vector output, we will only consider

65



the first predicted item because multi-step prediction becomes very inaccurate further
into the future the model tries to extrapolate. For example, if we have seen that a
specific unbalanced station pair had been showing up as the 4th most unbalanced link,
there could be a probability that such a link would emerge into the top 3 list in some
close future moment. Therefore, we will inspect all of the past monthly unbalanced
differences this link ever achieved and extract it as an array of integers. For instance,
this could be a tuple consisting of station 10 and station 11, and in that case its array
for year 2017 and 2018 is following:

[13, 5, 32, 75, 108, 118, 53, 87, 140, 77, 45, 15, 32, 31, 27, 11, 96, 115, 172, 195, 31, 33,
4, 106]

Now, we can utilize multivariate convolutional LSTM model to predict what could be
the next possible array item, based on all the previous ones observed.

The model predicts that the next item should be 137, while the ground truth for January
2019 is 108. That renders an acuracy of around 78.8%. When run again, predictions were
pretty consistent: 122.62, 114.55, 119.35, 119.64. On average we are getting prediction
of value 122.64 which leaves us with a satisfactory accuracy score of 88.05%. Although
this model does not guarantee high accuracy, it is still a good indicator if some of the
less unbalanced links are having a growing trend to become the next top 3 candidate
and exact value is not needed.

The motivation behind choosing this particular method is because it has a low runtime
of just 2.64 seconds on average, has a rather high accuracy, and is able to predict an
arbitrary number of future step, although for the purpose of this thesis only one addi-
tional future step will be predicted in order to keep accuracy score as high as possible.
This is because having monthly granularity cannot handle extreme changes in between
the steps and still give a satisfying output.

Although CNN LSTM method has a slightly better result, its average runtime is almost
doubled (5.9 seconds) compared to convolutional LSTM method. It is, then, justified to
consider using convolutional LSTM as the aim of the methodology is to be as compu-
tationally lightweight as possible, and the difference in runtime might be significant in
case we have to handle larger arrays.

Convolutional LSTM has a unique architecture utilized for handling arrays through 1-D
convolutional layer, pooling layer, dense layer,and LSTM layer. In particular for this
case, 64 convolutional filters are used, 50 LSTM hidden nodes, ReLU activation func-
tions, and 500 epochs.

In Table 14, a short overview of all the forecasting methods considered for the novelty
link discovery can be found. It is quite clear that only a combination of an architecture
that consists of convolution layers and LSTM layers is relevant enough.

66



Table 14: Evaluation of novelty link methods

Method Run 1 Run 2 Run 3 Run 4 Run 5 Average %

Stacked LSTM 125.27 168.86 137.92 176.39 92.98 140.28 77
Conv LSTM 137.06 122.62 114.55 119.35 119.64 122.64 88
Vanilla LSTM 129.18 135.40 117.44 120.79 125.24 125.61 86
Bidirectional LSTM 123.12 130.67 141.87 179.11 145.43 144.04 75
CNN LSTM 121.40 121.43 139.16 113.51 109.82 121.06 89

To summarize this section, LSTM can be used to model univariate or multivariate (with
or without multi-step) time series forecasting problems. A Vanilla LSTM is an LSTM
model that has a single hidden layer of LSTM units, and an output layer used to make
a prediction. A Stacked LSTM has multiple hidden LSTM layers stacked one on top of
another. A Bidirectional LSTM can learn the input sequence both forward and back-
wards and concatenate both interpretations. It is implemented by by wrapping the first
hidden layer in a wrapper (bidirectional) layer. A CNN LSTM is a hybrid CNN model
with an LSTM back-end where the CNN is used to interpret subsequences of input that
together are provided as a sequence to an LSTM model to interpret. A Conv LSTM
is a model where convolutional reading of input is built directly into each LSTM unit.
Difference between CNN LSTM and Conv LSTM is that Conv LSTM is an LSTM whose
gates perform convolutions, and CNN LSTM refers to an architecture where LSTM is
stacked on top of CNN.

67



7 Discussion

7.1 Results

In this section, all of the previously introduced prediction methods from Chapters 4
through 6 will be applied for the Boston use case in order to predict spatial structures
and dynamic patterns. For this purpose, months of January, February, March and April
of the year 2019 will be used as a validation test set to discuss the overall performance
of this thesis project.

7.1.1 Prediction Results for January 2019

First, January (69’872 trips in total) will be taken and split into two sets. Smaller
(training) set will consist of the time period when 1/3 of bike trips were cycled, gener-
ally approximated by the first ten days of January and for those first 10 days, a top 3
most unbalanced pairs of stations will be produced and transformed into adjacency ma-
trices (see Figure 35). In case we encounter a new station never observed before within
the list of top 3 most unbalanced pairs obtained, that pair is ignored (or a known station
in the pair is represented as a loop pixel in the adjacency matrix). Of course, in an ideal
case, new stations should be added and matrices expanded as those stations could start
appearing in a top 3 list for future months and years. This is also true in case top 3 lists
would be expanded to top n lists, where n represents the number of tuples examined.
Such thing is feasible but would require manual expansion and filling in matrices. Here,
an analysis for only top 3 most unbalanced pairs of stations will be presented.

Figure 35: First 10 days of January 2019 unbalanced links: (10,11), (11,7), (11,9)

CNN will try and classify the matrix representing the first week of January to the one
of the existing labels from the previous 2 years contained in our training set of matrices.
This predicted label will be used as a mobility flow model for the whole month of January

68



as we assume that identified unbalanced flows for the first third of the month usually
tend to converge to the predicted labels for the rest of a month. Predicted configuration
can be observed in Figure 36.

Figure 36: CNN prediction for the whole month of January 2019: (10,11), (11,8), (11,9)

Next, for station pairs that are found in the predicted matrix, RNN method is utilized
as we want to find the predicted flow dynamic for each one of the station pair. To
get the most unbalanced scores, we subtract the predicted flows from the unbalanced
pairs, one tuple at a time. When using RNN to predict flows between station Pacific
(10) and station Stata (11), we considered bike flow data ranged from January 2016 to
April 2019, and accordingly, the training data consisted of 0.8945% of the total data to
match that the test data fits with the whole year of 2019, which is 120 days for first 4
months. RNN settings used included: 400 epochs, 12 ReLU activation functions in the
first hidden layer and 8 tanh activation functions in the second hidden layer. Prediction
results achieved for the last 21 days (three weeks) of January were 78.38%. Cumulative
sum of the bike usage during those two weeks was 241.05843 predicted, and the ground
truth is 251. This is for the bike traveling from Pacific station (10) to Stata station (11).

Now, the same thing needs to be done in the reverse flow direction, from station Stata
(11) to station Pacific (10). For this flow, we are getting a prediction with 77.43% ac-
curacy that the cumulative sum of bike usage between January 10 and January 31 will
be 156.40091, while the ground truth is 162. The RNN prediction pair output can be
observed in Figure 42.

69



Figure 37: Pacific to Stata flow (left) and Stata to Pacific flow (right)

Finally, we can now observe what we predicted and see that the difference of flows be-
tween station 10 and 11, being 156.40091 subtracted from 241.05843, is 84.65752 bikes
(rounded to 85), thus making the station Pacific more sparse with bikes. The difference
for the ground truth was calculated by observing the real captured data from January
10 to January 31. The observed value for this difference is 68, and the precision score
for predicting this asymmetry is 80%.

Same procedure is repeated for other station pairs.
Going from station Vassar (9) to Stata (11) station the predicted value is 219.41492,
while 186 is an actual value. This renders the accuracy to be 84.77%. From station 11
to station 9, we get predicted value of 145.681, while 127 is as an actual value. Hence,
accuracy is 87.17%. The predicted difference between the flows is 73.73392 (rounded to
74) and compared to the real value of 61, the overall accuracy is 82.43%.

Regarding the station pair Stata (11) and Sidney (8) that CNN gave as a result instead
of Stata (11) and Central (7), the difference is unnecessary to be predicted or calculated
as it is almost zero, hence we got a false result for this link prediction. In this specific
case, getting a zero value is informing as that CNN predicted a link that is not active
during this time of the year.

Still, we can possibly add a novelty link or retrieve a link overlooked by CNN. That can
be done by observing which unbalanced pair is appearing in the top 4 most unbalanced
links and in this case we can clearly see that the CNN overlooked an unbalanced flow
between Stata (11) and Central (7).

Going from station 11 to station 7 the predicted value is 134.01521, while 136 is an
actual value. This renders the accuracy to be 98.54%. From station 7 to station 11,
we get predicted value of 82.25274, while 69 is as an actual value. Hence, accuracy is
83.88%. The predicted difference between the flows is 51.76247 and compared to the
real value of 67, the overall accuracy is 77.25%.

70



7.1.2 Prediction Results for February 2019

Figure 38: First 1/3 flows of February (left) and predicted rest of February (right)

Predicted unbalanced pairs of stations for February are (11,9),(10,11) and (13,7). These
pairs can be observed in Figure 38. Using RNN on these pairs we get the following flow
differences:

Predicted flow of a tuple (13,7) is 148.43597 and its real flow is 146, amounting to an
accuracy of 98.35%.
Predicted flow of a tuple (7,13) is 90.60720 and its real flow is 76, meaning that the
obtained accuracy is 83.87%.
These flows can be observed in Figure 39.
Predicted flow difference is 57.82868, while the ground truth is 78. The overall difference
accuracy is 74%.

71



Figure 39: (13,7) Mass to Central (top) and (7,13) vice-versa (down)

Directed link (11,9) has a predicted flow 163.80017 and real flow 183, accounting for an
accuracy of 89.5%.
Directed link (9,11) has a predicted flow 226.40657 and real flow is 222, amounting to
an 98% accuracy.
Predicted difference between the flow of two directed links is 62.6064, while the ground
truth is 39. The overall difference accuracy is 62%. The low accuracy score we got is
the consequence of falsely predicting this station pair when using CNN.

Directed link (10,11) has a predicted flow 223.32707 and real flow is 268. Obtained
accuracy is 83%.
Directed link (11,10) has a predicted flow 186.0166 and real flow is 216. Obtained accu-
racy is 86%.
Predicted difference between the flow of two directed links is 37.31047, while the ground
truth is 49. The overall difference accuracy is 76%. However, it is important to mention
that this CNN predicted pair is not found in the top 3 most unbalanced ground truth
stations for the rest of February.

Also, using a novelty link method does not help us to uncover the never before observed
station named “Deerfield”. This is because the station starts creating the unbalanced
link with “Stata” only in the 2/3 of the month and that is we are unable to detect it early.

72



7.1.3 Prediction Results for March 2019

Figure 40: First 1/3 flows of March (left) and predicted rest of March (right)

Predicted unbalanced station pairs for March include tuples: (11,9),(10,11) and (13,7).
Visualization of tuples can be observed in Figure 40. Just to demonstrate, this CNN
prediction visualization technique used weighted colouring, but it does not make any
difference in this thesis due to a small number of training sets. We will be using RNN
prediction method on these particular pairs retrieved, in order to get flow differences.

Directed link (13,7) has a predicted flow 124.50949 and real flow 125, accounting for an
accuracy of 99.6%.
Directed link (7,13) has a predicted flow 78.81064 and real flow 73, amounting to an
accuracy of 92.6%.
Predicted difference between the flow of two directed links is 45.69885, while the ground
truth is 64. The overall flow difference accuracy is 71.4%. This most unbalanced pair
flow calculated above exists as a ground truth in the top 3 most unbalanced stations for
the rest of the March.

Ground truth top 3 most unbalanced tuples for the rest of the March are (13,7),(7,11),
and (17,11).

Unfortunately, using a multivariate RNN method for adding novelty links does not seem
to work for March, either. This might be because March and February are considered as
transitional months in New England area between winter and spring. That also indicated
that many new links will appear in the second part of the month which our methods are
not able to predict.

73



7.1.4 Prediction Results for April 2019

Figure 41: First 1/3 flows of April (left) and predicted rest of April (right)

Predicted unbalanced station pairs for April include tuples: (9,11),(9,10) and (9,13). Vi-
sualization of tuples can be observed in Figure 41. Here, as well, just for demonstration
purposes, CNN prediction visualization technique with weighted colouring was used. We
will be using RNN prediction method on these particular pairs retrieved, in order to get
flow differences.

Directed link (11,9) has a predicted flow 131.11469 and real flow 137, accounting for an
accuracy of 95.7%.
Directed link (9,11) has a predicted flow 239.93716 and real flow 261, amounting for an
accuracy of 91.9%.
Predicted difference between the flow of two directed links is 108.82247, while the ground
truth is 124. The overall difference accuracy is 87%. This unbalanced pair calculated
above exists as a ground truth in the top 3 most unbalanced stations for the rest of April.

Directed link (9,13) has a predicted flow 179.53601 and a real flow 194, accounting for
an accuracy of 92.5%.
Directed link (13,9) has a predicted flow 233.67902 and a real flow 260, amounting for
an accuracy of 89.8%.
Predicted difference between the flow of two directed links is 54.14301, while the ground
truth is 66. The overall difference accuracy is 82%. This unbalanced pair calculated
above exists as a ground truth in the top 3 most unbalanced stations for the rest of
April.

Directed links (9,10) and (10,9) are not in the top 3 ground truth most unbalanced
stations for the rest of April, even though our CNN model suggests that it could be. if
we try to utilize the same RNN prediction method, we will retrieve an extremely small
bike flow between Vassar and Pacific, close to zero value, which makes it quite obvious

74



that this particular tuple is not our unbalanced candidate.

Ground truth for the rest of the April is (9,11), (7,13), and (9,13) as top 3 most unbal-
anced tuples.

Moreover, we can utilize a multivariate RNN method for adding a novelty link for the
predicted configuration. If we observe the 4th most unbalanced link for the first 1/3 of
all monthly flows, we can successfully notice that the tuple in question is (7,13). The
method is, naturally, hinting towards a stable, relatively high, trend of that specific
pair. This means that we can add the link to our flow prediction analysis. Specifically,
observed array of unbalanced flows for tuple (7,13) in 2017 and 2018 is following:

[41, 28, 1, 39, 28, 23, 28, 50, 70, 55, 68, 36, 30, 77, 69, 96, 59, 64, 68, 140, 88, 123, 103,
108 ].

Next predicted array item with multivariate RNN is 70.61995. Although the trend is not
growing, the predicted value is still higher than a directed link (10,9) acquired through
CNN method, whose predicted unbalanced value difference was 54. Therefore, we can
confidently take (7,13) and add it to our analysis.

Directed link (7,13) has a predicted flow 91.315445 and a real flow 115, accounting for
an accuracy of 79.4%.
Directed link (13,7) has a predicted flow 157.36572 and a real flow 183, amounting for
an accuracy of 86%.
Predicted difference between the flow of two directed links is 66.050275, while the ground
truth is 68. The overall difference accuracy is 97%.

7.1.5 Overall prediction results

In the Table 15, evaluated results for all four moths in 2019 can be viewed. Average
RNN accuracy is calculated as a mean value between RNN top link scores. Accuracy
scores are expressed in percentages, where CNN is calculated as number of true predic-
tions out of total 3, and RNN is calculated as a quotient between predicted unbalanced
difference and observed unbalanced difference.

75



Table 15: Evaluation of results

Method Jan 2019 Feb 2019 Mar 2019 Apr 2019 May 2019

CNN Top 3 Score 66.7% 33.3% 33.3% 66.7% 0%
Multivariate CNN Score 100% 33.3% 33.3% 100% 66.6%
RNN Top 1 Link Score 77.2% 74% 71.4% 87% 64%
RNN Top 2 Link Score 80% n/a n/a 82% n/a
RNN Top 3 Link Score 82.4% n/a n/a 97% 87%
Average RNN Accuracy 78.8% 74% 71.4% 88.6% 75.5%

However, we want to compare this results to the case where CNN is never deployed
and we are using only first 1/3 of bike flows to see if our CNN over-performs the basic
convergence in any way. This will be defined as a trivial case. In Table 16, this basic
approach is evaluated. Note that 33.3% means getting 1 out of 3 links correct, 66.6%
getting 2 out of 3, and 100% getting all top 3 most unbalanced links correct.

Table 16: Evaluation of the trivial approach

Method Jan 2019 Feb 2019 Mar 2019 Apr 2019 May 2019

Trivial Top 3 Score 100% 33.3% 33.3% 33.3% 0%

Now, when comparing evaluation of CNN results to the trivial ones, it can be observed
that there is a difference in months of January and April. In January, trivial approach
over-performs pure CNN, while in April it under-performs. Although, at first glance, it
might seems that the trivial approach is better, when using multivariate CNN RNN on
top of CNN - we are able to get same result as trivial one for January. And in April,
information lost with the trivial approach can not be compensated to beat the results
got with CNN approach. So even though it is just one case, CNN does perform better
in the long run, and intuition definitely tells us that with much more training and test
data, we would be able to see many more examples of benefits. Not only that, but this
thesis discussed only top 3 most unbalanced edges, and in case we were to use top 15
unbalanced edges, the results would be more detailed and diverse. But, because of the
time restriction and difficulty to produce all the necessary matrices, this project focused
solely on top 3 most unbalanced links.

76



Figure 42: Correlation between bike usage and snow (left), bike usage and rain (right)

Another important insight comes from observing secondary weather dataset containing
weather information. It came as a surprise to see that there is absolutely no correla-
tion between bike usage and the intensity of snowfall or rainfall, as seen in Figure 42.
This is quite counter intuitive as other bike sharing systems are quite dependant upon
precipitation intensity. This finding can be maybe explained by a combination of BSS
geographical positioning (state of Massachusetts) and the size of a bike sharing system
itself (middle-sized). Additionally, this means that random forest prediction methods
used for larger bicycle-sharing systems would not be as useful for the Boston BSS due
to this unique weather property. More detailed investigation should be utilized on this
matter, and finding another BSS with a similar property would be beneficial as well.

7.2 Conclusion

Applying a methodology described in this thesis, it is possible to use computationally
lightweight combination of machine learning methods to grasp short-term approxima-
tion and prediction of spatial structures in the form of subgraphs, together with a more
robust prediction of dynamic patterns and flows through the identified most unbalanced
links. As a result, this method gives an opportunity for bike sharing companies to make
a month long prediction on how many trucks for bike relocation will they need and in
which streets or areas will they be most essential. The bottleneck of the project is its
CNN segment due to inability to predict something that had never been observed before.
Still, this thesis offers an approach that has not yet been considered. In addition, short-
comings of CNN are slightly alleviated using a subtle method of predicting monotonic
properties, or trends of past values observed, which enables adding possible novel links
in case their presence is making a detectable impact observed as a numeric quantity of
their unbalanced flow.

As demonstrated in the discussion, we are able to predict most of the top unbalanced
station tuples, and quantify the expected unbalanced flow between them with high ac-
curacy. Of course, during more unstable months such as February and March, when a

77



heavy snow season is expected in Boston, predicting spatial configuration can perform
with lower accuracy than usual. This is, however, something that can not be miti-
gated in case of small tor medium BSS. In order for this project to be fully evaluated,
the methodology presented in this thesis should be implemented within real life Boston
Blue Bike relocation strategy, and achieved results compared to the same period in the
past.

Moreover, the proposed methodology can be easily scaled up or scaled down, depending
on the spatial granularity we would like to focus on (neighbourhood, town or munici-
pality). Of course, whenever we are expanding or shrinking our spatio-temporal view-
point, new set of stations will be inspected and thus, completely new matrices should
be prepared accordingly. This is also a shortcoming, because as the number of relevant
stations is growing, matrices expand as well. Not only that, but even in case when
only one station should be added, the whole matrix must be re-arranged to mimic the
station configuration in the real world. Luckily, any changes in the number of docks
does not affect the model and that is why docks were not considered. This trade-off was
necessary in order to ensure low memory and short model runtime requirements because
short-term prediction should benefit with fast results, satisfactory prediction accuracy
and model adaptability to be utilized for any BSS.

7.3 Future Work

There are many areas in the domain of BSS optimization and prediction that could be
upgraded or further explored, including methods presented in this thesis. Building upon
a proposed CNN architecture could be one of suggestions. Because the work presented
here heavily relies on graph theory, one of the advanced GCNN models could be uti-
lized. Moreover, when one has to deal with data defined on non-Euclidean domains,
the definition of basic operations (such as convolution) becomes rather elusive. In that
aspect, Geometric Deep Learning (GDL) area deals with the extension of ML techniques
to graph and manifold structured data22.

Another possibility could be to compare docked and dockless bike systems, and explore
how the ML approaches in flow prediction coincide or differ one from another. Still,
methods used would need to be adjusted to the fact that data available for both docked
and dockless BSS is still very sparse, with an exception of bigger systems in China. Tak-
ing a whole another perspective, data scarcity could be mitigated and substituted with
relevant secondary datasets. This additional datasets could introduce other modes of
transportation (walking or vehicle based), or even socio-economical landscape and real
estate market prices, which could vary depending on their proximity to mobility hubs.

One sharing system research area that had never been explored in depth before, and

22http://geometricdeeplearning.com/

78



just started flourishing a year ago is electric vehicle sharing systems study domain. This
is an even greater challenge because, in addition to all the problems tackled in regular
sharing systems, we also have to add electric power requirement variable and think
about optimizing power distribution for such vehicles. Many new sharing transportation
options are making advantage of this power source beside just bikes: scooters, mopeds,
and even skateboards which are planned to be added in China. Having a variety of new
ride sharing systems and many new companies growing their businesses across countries,
research required in exploring this networks through the lens of ML and AI will be in
demand now more than ever.

79



References

[1] P. DeMaio, “Bike-sharing: History, Impacts, Models of Provision, and Future,”
Public Transportation, 12 (4): 41-56, October 1, 2009.

[2] L. L. M. H. Schimmelpennink, “The Birth of Bike Share.” October 1, 2012.

[3] D. Yanocha, “The bikesharing Planning Guide,” Institute for Transportation and
Development Policy (ITDP), 2018.

[4] Z. Hong, A. Mittal, and H. S. Mahmassani, “Effect of Bicycle-Sharing on Pub-
lic Transport Accessibility: Application to Chicago Divvy Bicycle-sharing Sys-
tem,” Transportation Research Board 95th Annual Meeting Transportation Research
Board, 2016.

[5] T. L. Susan Shaheen, “Reducing greenhouse emissions and fuel consumption: Sus-
tainable approaches for surface transportation,” IATSS Res. 31,6-20, 2007.

[6] Y. Zhang and Z. Mi, “Environmental benefits of bike sharing: A big data-based
analysis,” Applied Energy, vol. 220, issue C, 296-301, 2018.

[7] K. Sælensminde, “Cost-benefit analyses of walking and cycling track networks tak-
ing into account insecurity, health effects and external costs of motorized traffic,”
Transportation Research Part A Policy and Practice 38(8):593-606, October 2004.

[8] O. Pekka, S. Titze, A. Bauman, B. D. Geus, P. Krenn, B. Reger-Nash, and
T. Kohlberger, “Health benefits of cycling: a systematic review.” Scand J Med
Sci Sports., August 2011.

[9] R. J. Shephard, “Is active commuting the answer to population health?” Sports
Med., 2008.

[10] M. Peden, R. Scurfield, D. Sleet, D. Mohan, A. Hyder, E. Jarawan, and C. Mathers,
“World report on road traffic injury prevention,” World Health Organization report,
Geneva, 2004.

[11] R. Beecham, J. Wood, and A. Bowerman, “Studying commuting behaviours us-
ing collaborative visual analytics,” Computers, Environment and Urban Systems
Volume 47, Pages 5-15, September 2014.

[12] D. Freund, S. G. Henderson, E. O’Mahony, and D. B. Shmoys, “Analytics and
Bikes: Riding Tandem with Motivate to Improve Mobility,” Interfaces, 2019.

[13] D. Chemla, F. Meunier, and R. W. Calvo, “Bike sharing systems: Solving the static
rebalancing problem,” Discrete Optimization, 2013.

[14] P.-C. Chen, H.-Y. Hsieh, X. K. Sigalingging, Y.-R. Chen, and J.-S. Leu, “Prediction
of station level demand in a bike sharing system using recurrent neural networks,”
IEEE 85th Vehicular Technology Conference, 2017.

80



[15] R. C. Zheng, “Predicting bike sharing demand using recurrent neural networks,”
Procedia Computer Science 147:562-566, 2019.

[16] L. Lin, Z. He, and S. Peeta, “Predicting station-level hourly demand in a large-scale
bike-sharing network: A graph convolutional neural network approach,” Transporta-
tion Research Part C: Emerging Technologies Volume 97, December 2018.

[17] A. Yi, Z. Li, M. Gan, Y. Zhang, D. Yu, W. Chen, and Y. Ju, “A deep learning
approach on short-term spatiotemporal distribution forecasting of dockless bike-
sharing system,” Neural Computing and Applications, April 2018.

[18] G. McKenzie, “Docked vs. Dockless Bike-sharing: Contrasting Spatiotemporal Pat-
terns,” 10th International Conference on Geographic Information Science, 2018.

[19] D. O’Sullivan and D. Unwin, Geographic Information Analysis, 2002.

[20] F. Munoz-Mendez, K. Han, K. Klemmer, and S. Jarvis, “Community structures, in-
teractions and dynamics in london’s bicycle sharing network,” Proceeding UbiComp,
2018.

[21] A. Sarkar, N. Lathia, and C. Mascolo, “Comparing Cities Cycling Patterns Using
Online Shared Bicycle Maps,” Transportation, Volume 42, Issue 4, pp 541559, April
2015.

[22] J. Froehlich, J. Neumann, and N. Oliver, “Sensing and Predicting the Pulse of the
City through Shared Bicycling,” Proceedings of the 21st international jont confer-
ence on Artifical intelligence, 2009.

[23] O. OBrien, J. Cheshire, and M. Batty, “Mining bicycle sharing data for generating
insights into sustainable transport systems,” Journal of Transport Geography 34,
2014.

[24] M. Z. Austwick, O. OBrien, E. Strano, and M. Viana, “The structure of spatial
networks and communities in bicycle sharing systems,” PLoS ONE, 2013.

[25] C. C. Robusto, “The cosine-haversine formula,” The American Mathematical
Monthly, 1957.

[26] Z. Yang, J. Hu, Y. Shu, P. Cheng, J. Chen, and T. Moscibroda, “Mobility modeling
and prediction in bike-sharing systems,” PLoS ONE, MobiSys ’16 Proceedings of
the 14th Annual International Conference on Mobile Systems, Applications, and
Services.

[27] Y. Pan, R. C. Zheng, J. Zhang, and X. Yao, “Predicting bike sharing demand using
recurrent neural networks,” Procedia Computer Science 147:562-566, January 2019.

[28] S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of artificial neural net-
work (ann) modeling and its application in pharmaceutical research,” Journal of
Pharmaceutical and Biomedical Analysis, 2000.

81



[29] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Ma-
chine Learning Research, 2008.

[30] A. Tharwat, “Principal component analysis - a tutorial,” IJAPR, 2016.

[31] F. E. Pedroso, F. Angriman, A. L. Bellows, and K. Taylor, “Bicycle use and cyclist
safety following boston’s bicycle infrastructure expansion, 2009-2012.” American
Journal of Public Health, 2016.

[32] A. C. Lusk, P. G. Furth, P. Morency, L. F. Miranda-Moreno, W. C. Willett, and
J. T. Dennerlein, “Risk of injury for bicycling on cycle tracks versus in the street,”
BMJ Publishing Group Ltd, 2011.

[33] J. Garrard, S. Handy, and J. Dill, “Women and cycling,” MIT Press, 2012.

[34] K. von Lindenberg, “Comparative analysis of gps data,” The Berkeley Electronic
Press, 2013.

[35] H. Coleman and K. Mizenko, “Pedestrian and bicyclist data analysis,” NHTSAs
Office of Behavioral Safety Research, March 2018.

[36] A. F. Imani, N. Eluru, A. M. El-Geneidy, M. Rabbat, and U. Haq, “How land-
use and urban form impact bicycle flows: evidence from the bicycle-sharing system
(bixi) in montreal,” Journal of Transport Geography, December 2014.

[37] X. Wang, G. Lindsey, J. E. Schoner, and A. Harrison, “Modeling bike share station
activity: Effects of nearby businesses and jobs on trips to and from stations,”
Journal of Urban Planning and Development, March 2016.

[38] X. Zhou, “Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing
Massive Bike Sharing Data in Chicago,” PLoS ONE, October 7, 2015.

[39] B. Ratner, “The Correlation Coefficient,” Journal of Targeting, Measurement and
Analysis for Marketing, May 18, 2009.

[40] G. P. Zhang, “Time series forecasting using a hybrid arima and neural network
model,” Elsevier Neurocomputing, 2001.

[41] U. Pritzsche, “Benchmarking of classical and machine-learning algorithms (with
special emphasis on bagging and boosting approaches) for time series forecasting,”
Ludwig Maximilian University of Munich, 2015.

[42] A. A. Adebiyi, A. Adewumi, and C. Ayo, “Comparison of arima and artificial neural
networks models for stock price prediction,” Journal of Applied Mathematics, March
2014.

[43] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for autoregressive
time series with a unit root,” Journal of the American Statistical Association, 2011.

82



[44] R. Mushtaq, “Augmented dickey fuller test,” Social Science Research Network
SSRN, 2011.

[45] F. X. Diebold and L. Kilian, “Unit root tests are useful for selecting forecasting
models,” Journal of Business and Economic Statistics, 2000.

[46] E. Zivot and J. Wang, “Rolling analysis of time series,” Springer, New York, NY,
2006.

[47] R. Adhikari and R. K. Agrawal, “An introductory study on time series modeling
and forecasting,” LAP Lambert Academic Publishing, Germany, 2013.

[48] P. J. Brockwell and R. A. Davis, “Time series: Theory and methods,” Springer,
New York, NY, 1991.

[49] E. P. George and G. M. J. , “Time series analysis: forecasting and control,” Wiley,
1970.

[50] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, , and S. Valaee, “Recent advances
in recurrent neural networks,” CoRR abs/1801.01078, 2018.

[51] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” Proceedings of the 30th International Conference on Machine
Learning, Atlanta, Georgia, USA, 2013.

[52] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct deep recurrent
neural networks,” ICLR, 2014.

[53] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds global
minima of deep neural networks,” Proceedings of the 36 th International Conference
on Machine Learning, Long Beach, California, PMLR 97, 2019.

[54] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to Construct Deep Re-
current Neural Networks,” International Conference on Learning Representations,
2014.

[55] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computa-
tion, 1997.

[56] C. Bergmeir and J. M. Benitez, “On the use of cross-validation for time series
predictor evaluation,” Information Sciences, 2012.

[57] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (mae)
over the root mean square error (rmse) in assessing average model performance,”
Inter-Research, 2005.

[58] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

83



[59] Y. Guo, J. Zhou, Y. Wu, and Z. Li, “Identifying the factors affecting bike-sharing
usage and degree of satisfaction in ningbo, china,” PLoS ONE 12(9): e0185100,
2017.

[60] R. Uehara and Y. Uno, “Efficient algorithms for the longest path problem,” Algo-
rithms and Computation, 15th International Symposium, ISAAC 2004, Hong Kong,
China, 2004.

[61] W. Zhao, “Research on the deep learning of the small sample data based on transfer
learning,” AIP Conference Proceedings, 2017.

84


	Introduction
	Problem
	Knowledge Gap
	Research Question

	Purpose
	Goals
	Hypotheses
	Contributions
	Ethical Considerations
	Sustainability
	Limitations
	Thesis Outline

	Related Work
	Spatiotemporal Patterns
	Operations Research and Optimization of Docks
	Collaborative Visual Analytics
	Community Structures
	Comparing Cycling Patterns
	Mobility Prediction using Random Forest
	Mobility Prediction using Recurrent Neural Networks
	Predicting Station Level Demand using Recurrent Neural Networksâ•š

	Theoretical Background
	Artificial Neural Networks
	Recurrent Neural Networks
	Convolutional Neural Networks
	Overview

	Data Exploration & Statistical Analysis
	Data Description
	Case Study
	Mobility Flows

	Predicting Dynamic Patterns with RNN
	Bike Data Preparation
	Weather Data Preparation
	Bike and Weather Data Aggregation
	ARIMA
	Simple RNN
	Deep RNN
	RNN LSTM
	RNN Validation Metrics

	Identifying Spatial Structures with CNN
	CNN Data Preparation
	Graph Embeddings
	Motivation
	Convolutional Neural Network
	Adding Candidate Novelty Links

	Discussion
	Results
	Prediction Results for January 2019
	Prediction Results for February 2019
	Prediction Results for March 2019
	Prediction Results for April 2019
	Overall prediction results

	Conclusion
	Future Work


