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Abstract

In today’s fast-paced software engineering landscape, achieving reliable
development and maintaining DevOps workflows has become increasingly
challenging. These workflows often require manual configuration of pipelines,
containerisation, and cloud deployment, which include repetitive, error-prone,
and time-consuming tasks. This thesis investigates how Large Language
Models (LLMs) and Al agents can be used to automate these workflows
and addresses the challenge of creating an adaptive system that can interpret
natural language input and automate complex DevOps tasks.

The study explores three system versions: a script-based system, a single-
agent architecture with reasoning capabilities, and a modular multi-agent
system including specialised agent roles for reasoning, prompt engineering,
and error reflection. The systems were evaluated through a series of 12
representative DevOps tasks, where functionality, accuracy, efficiency, and
reliability have been measured under controlled conditions. The results show
that the multi-agent system achieved the highest task success rate (86.11%),
significantly reduced execution times, and achieved a lower error rate.

This work demonstrates that incorporating ReAct-style reasoning, agent-
based reasoning and modular design into DevOps automation not only
enhances performance and adaptability but also maintains transparency and
user oversight. The findings showcase the importance of human-in-the-loop
control, where the user becomes a part of the automation process, for safety
and trust in Al-driven automation. Overall, this thesis provides a foundation
for developing an AI DevOps Engineer, including insights into system design,
evaluation methodology, and the impact of prompt engineering.

Keywords

Large Language Models, AI Agents, Multi-Agent Systems, DevOps Automa-
tion, ReAct-style reasoning, Human-in-the-loop control, Prompt Engineering,
Software Development, Cloud Deployment
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Sammanfattning

I dagens snabbrorliga landskap inom programvaruutveckling har det blivit
alltmer utmanande att uppnd tillforlitlig utveckling och att uppritthélla
DevOps-arbetsfloden. Dessa arbetsfloden kréiver ofta manuell konfiguration av
pipelines, containerisering och molndistribution, vilket innefattar repetitiva,
felbenidgna och tidskrdvande uppgifter. Denna avhandling undersoker hur
stora sprakmodeller (LLMs) och Al-agenter kan anvéndas fOr att automatisera
dessa arbetsfloden och adresserar utmaningen att skapa ett adaptivt system
som kan tolka naturligt sprak och automatisera komplexa DevOps-uppgifter.

Studien utforskar tre systemversioner: ett skriptbaserat system, en ena-
gentarkitektur med resonemangsformaga samt ett modulirt multiagentsystem
med specialiserade roller for resonemang, promptteknik och felreflektion.
Systemen utvarderades genom en serie av 12 representativa DevOps-uppgifter,
dir funktionalitet, noggrannhet, effektivitet och tillforlitlighet mittes under
kontrollerade forhéllanden. Resultaten visar att multiagentsystemet uppnadde
den hogsta framgangsgraden for uppgifterna (86,11 %), signifikant minskade
exekveringstiderna och uppnidde en ligre felfrekvens.

Detta arbete visar att inforandet av ReAct-liknande resonemang, agent-
baserat resonemang och moduldr design i DevOps-automation inte bara for-
bittrar prestanda och anpassningsforméga utan ocksa bibehdller transparens
och anvindarens kontroll. Resultaten belyser vikten av méanniska-i-loopen-
styrning, dir anvindaren blir en del av automatiseringsprocessen, for att
sakerstdlla sdakerhet och fortroende for Al-drivna automationer. Sammantaget
utgdr denna avhandling en grund for utvecklingen av en Al DevOps-
ingenjor och erbjuder insikter i systemdesign, utvdrderingsmetodik och
promptteknikens inverkan.

Nyckelord

Stora sprikmodeller, Al-agenter, Multiagentsystem, DevOps-automation,
ReAct-liknande resonemang, Ménniska-i-loopen-styrning, Promptteknik, Pro-
gramvaruutveckling, Molndistribution



iv| Sammanfattning



Acknowledgments | v

Acknowledgments

To my supervisor at KTH, Amirhossein Layegh Kheirabadi, who guided
me through the entire thesis journey, provided invaluable feedback and
had an answer to every question.

To my examiner at KTH, Amir H. Payberah, who reviewed my work and
offered insightful comments that helped me to improve the thesis.

To Mirta-Maria Jangenfalk and Mohamed Nour Bouraoui at Knowit
Connectivity, who always supported and encouraged me throughout my
Master’s thesis project and created a very motivating and collaborative
environment.

To my colleagues and friends at Knowit Connectivity, who were always
ready to assist with technical questions, share ideas, and contribute to
an inspiring work atmosphere.

To the entire Knowit Connectivity team for creating a supportive and
innovative culture where everyone helps each other, making it a pleasure
to work and learn.

To friends and family who never forget and always support me during
my stay in the far north in Stockholm, Sweden.

Stockholm, July 2025
Eugen Lucchiari Hartz



vi | Acknowledgments



Contents | vii

Contents

1 Introduction 1
1.1 Background . ... .. ... ... ... ... ... 1

1.2 Problem . . .. ... ... . . ... 3

1.3 Purpose . . . .. . . . . e e 3

1.4 Goals . ... .. . . . 3

1.5 Research Methodology . . . .. .. ... ........... 4

1.6 Delimitations . . . . . . ... . ... ... ... ... 5

1.7 Structure of the Thesis . . . . . ... .. ... ... ..... 6

2 Background 7
2.1 DevOps Workflows . . . ... ... ... .. .. ....... 7
2.2 AutomationinDevOps . . .. ... ... ... ... ..... 8
2.3 Large Language Models for Code Generation . . . ... ... 9
2.3.1 Prompt Engineering . .. ... ... ... ...... 10

2.4 Al Agents for DevOps Automation . . . . . . ... ...... 10
2.4.1 Autonomous Al Agents. . . .. ... ......... 11

2.4.2 ReAct-style Reasoning (Thought — Action — Result) 12

2.4.3  Multi-Agent Architectures and Coordination . . . . . 13

25 RelatedWork . . ... ... ... ... .. ... . ... 13

2.6 Summary ... oL L e e e e e e e 14

3 Methodology and System Development 17
3.1 ResearchProcess . .. ... ... ... .. ... . ...... 17
3.2 Overviewofthe Systems . . ... ... ............ 18
3.3 System Architecture and Design . . . . . ... ... ... .. 19
3.3.1 Version 1 - Script-Based Automation Framework . . . 22

3.3.2  Version 2 — Single-Agent Al DevOps Engineer . . . . 26

3.3.3 Version 3 — Multi-Agent Al DevOps Engineer . . . . . 33

3.4 Evaluation Approach . . . .. ... ... ........... 42



viii | Contents

3.5 Societal and Ethical Considerations . . . . . . .. ... ...

4 Results and Analysis

4.1 Functional Evaluation . . . . . ... ... ... ........
4.2 Efficiency Analysis . . . . .. ... .. ... ... ..
4.3 Reliability Analysis . . . . ... ... ... .. .. L.

4.4  User Experience

4.5 Interpretationof Results . . .. ... ... .. ... .....

5 Conclusion and Future Work

5.1 Contributions .
5.2 Future Work and
5.3 Limitations . .
5.4 Final Reflections

References
A GitHub Repositories

B Test Evaluation Table

Extensions . . . . . .. ... .. ... ...

47
47
49
50
51
52

55
55
56
57
58

59

71

73



List of Figures | ix

List of Figures

3.1

32
33
34
3.5

3.6

3.7

3.8
39

4.1

4.2

4.3

Example of the User Interface (UI) of system version 3.
However, all three systems have a similar UL. . . . . . .. ..
Interaction flow in the script-based system. . . . . .. ... ..
Interaction flow in the single-agent system. . . . . . . . .. ..
The frontend displaying the AI agent’s reasoning during
execution, following the Thought — Action — Result loop. . .
UI showing human-in-the-loop control in action as the system
is waiting for user approval. Users can approve, edit, or reject
the suggested command. . . . .. ... ... ... ... ...
Edit mode allows users to adjust Al-generated commands
before execution. . . . ... ... oL
Fullscreen view of the Ul in Version 3, showing the full
Thought — Action — Result loop during task execution. The
layout improves clarity and user experience. . . . . . . .. ..
Interaction flow in the multi-agent system. . . . . . . ... ..
System execution workflow for the example task: “Cre-
ate a GitHub Actions pipeline.”: Shows how the user
input is processed and executed through coordinated agent
interaction, resulting in the creation and deployment of
.github/workflows/workflow.yml.. . . ... .. ...

Task Success Rate per System Version: Percentage of tasks
each system completed successfully without requiring manual
COITECHION. . . . . . . . . . . o i
Tasks Attempted vs. Successfully Completed: Number of
tasks each system attempted and how many were completed
successfully. . . . . . .. ... .. oo
Average Execution Time per Task: Compares the average time
taken to complete a task across the three system versions. . . .

35



x| List of Figures

4.4

B.1
B.2
B.3
B.4

Execution Recovery Rate Across System Versions: Shows
how reliably each system recovered from execution errors.
Note: v3 had only 2 recovery opportunities, making its
recovery rate less statistically representative than v2.

Test Evaluation Table - Part 1: Tasks 1-3
Test Evaluation Table - Part 2: Tasks 4-6
Test Evaluation Table - Part 3: Tasks 7-9. . . . . . ... ...
Test Evaluation Table - Part 4: Tasks 10-12



List of acronyms and abbreviations | xi

List of acronyms and abbreviations

Al
API
AWS
CI/CD

DevOps
DSR

LLM

RAG
ReAct

RQ

Ul
UX

YAML

Artificial Intelligence
Application Programming Interface
Amazon Web Services

Continuous Integration and Continuous Deployment

Development and Operations
Design Science Research

Large Language Model
Retrieval-Augmented Generation
Reasoning and Acting

Research Question

User Interface
User Experience

YAML Ain’t Markup Language



xii | List of acronyms and abbreviations



Introduction | 1

Chapter 1

Introduction

1.1 Background

Software systems nowadays are built and maintained in environments that
require speed, reliability and frequent updates. Therefore, Development
and Operations (DevOps) has become a key approach in modern software
engineering. The term combines development (Dev) and operations (Ops)
and describes a way of working that focuses on collaboration, automation
and continuous delivery across the entire software lifecycle from planning to
deployment [1].

A DevOps workflow puts this approach into action by defining the step-
by-step processes that teams follow to build, test and release software effi-
ciently [2]. A common example is a Continuous Integration and Continuous
Deployment (CI/CD) pipeline, where code changes are automatically tested
and deployed whenever they are pushed to the repository [3, 4]. Other
examples are the containerisation of an application using tools like Docker
and cloud deployment using platforms such as Amazon Web Services (AWS),
Azure or Google Cloud.

While DevOps workflows aim to increase automation, setting up and
maintaining these workflows still often involves manual, repetitive and error-
prone tasks [5]. Developers have to write detailed configuration files, manage
integration between various tools and update automation scripts to keep up
with evolving project needs. This manual effort can lead to inconsistencies,
slow down the delivery of software and increase the risk of deployment
failures [6].

Recent advancements in Artificial Intelligence (Al) and specifically in
Large Language Models (LLMs) [7] have opened new opportunities to
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improve this process. LLMs are capable of understanding natural language
and translating it into technical code, scripts or configurations [8, 9]. For
example, an LLLM can take the instruction “Create a GitHub Actions pipeline
for my app” and produce a complete YAML Ain’t Markup Language (YAML)
workflow file. This ability of LLMs to generate technical code based
on user inputs provides a huge potential to reduce manual intervention in
software deployment processes. It therefore lowers the barrier to automation
and enables developers to focus on higher-level goals rather than low-level
scripting.

However, LLLMs alone are reactive systems. They generate outputs when
prompted but do not autonomously plan, execute or react to actions based on
results [10, 11]. To create a higher level of automation, LLLMs can be integrated
into Al agents [11]. AI agents are systems that reason about tasks, make
decisions and interact with their environment. They extend the capabilities
of LLLMs by providing a structured loop of reasoning, acting and observing
results which enables more autonomous and intelligent behaviour [12, 13].

Combining LLMs and AI Agents therefore can create a possibility
to efficiently and intelligently automate DevOps workflows such as the
generation of a CI/CD pipeline, the containerisation of an application or the
deployment of an application to the cloud [14, 15].

This thesis investigates this potential by developing and evaluating three
system versions:

e A script-based automation framework that connects user input to
predefined hardcoded workflows.

* A single-agent system that uses Reasoning and Acting (ReAct)-
style reasoning (Thought — Action — Result) [16] and user-in-the-
loop control [17] to interpret user goals and plan automation steps
dynamically.

* A multi-agent system that additionally coordinates specialised agents for
reasoning, prompt engineering, and error handling [18], enabling more
modular, transparent, and reliable automation.

The study introduces core concepts such as ReAct reasoning, agent
coordination, and user-in-the-loop control, which are essential for achieving
safe, effective and transparent Al-driven automation.
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1.2 Problem

As outlined in the background, setting up and maintaining DevOps workflows
such as CI/CD pipelines, containerisation, and cloud deployment often
remains a manual process. This involves repetitive and error-prone tasks like
writing configuration files, integrating diverse tools, and continually updating
scripts to accommodate evolving project requirements [35, 6].

Those aspects lead to the following Research Question (RQ) and
Hypothesis of the thesis:

* RQ: How can LLLMs and Al agents be used to automate DevOps work-
flows through natural language while ensuring reliability, transparency
and user control in the automation process?

* Hypothesis: A system combining LLMs and Al agents with ReAct-
style reasoning and user-in-the-loop control can automate DevOps
workflows more efficiently and reliably than script based systems, single
agent systems or manual approaches.

1.3 Purpose

The main purpose of this study is to explore how to reduce manual effort
and human error in DevOps workflows by introducing Al-driven automation.
Besides this practical aspect, the study also contributes academically by
exploring to what extent LLLMs and Al agents can be applied to real-world
DevOps tasks. Additionally, the project emphasises ethical and societal
considerations by designing automation that remains transparent, controllable,
and centred around human oversight.

1.4 Goals

The main goal of this thesis is to develop a system using LLLMs and Al agents to

automate key DevOps workflows such as CI/CD pipeline creation, application

containerisation and cloud deployment based on natural language input.
Several subgoals further define the scope and contribution of the project:

* Increase efficiency and accessibility in DevOps Workflows: Auto-
mate common DevOps tasks to reduce manual effort, minimise human
errors and make automation more accessible for developers.
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* Leverage LLMs and AI Agents with ReAct-style Reasoning: Apply
LLMs and Al agents using ReAct-style reasoning and modular multi-
agent coordination to enable intelligent, adaptive and transparent
DevOps automation.

* Enhance Transparency, User Control, and Trust: Integrate human-
in-the-loop control to provide transparency in decision-making, allow
user intervention, and increase trust in Al-driven automation systems.

* Demonstrate Engineering Competence: Design, implement, and
evaluate a functioning Al-driven automation system to fulfil the

Master’s thesis requirements and demonstrate practical engineering
skills.

1.5 Research Methodology

This thesis follows a Design Science Research (DSR) methodology, which
is well-suited for projects focused on developing and evaluating technical
systems. The goal of DSR is to create innovative solutions to real-world
problems while also contributing practical knowledge to the field. The DSR
process includes six key stages: (1) Problem Identification and Motivation,
(2) Define Objectives for a Solution, (3) Design and Development, (4)
Demonstration, (5) Evaluation, and (6) Communication [19, 20, 21]. In
this case, the project focuses on building an Al-based system for automating
DevOps workflows using LL.Ms and Al agents.

The research is based on a pragmatic philosophical approach as it aims
to solve a real-world engineering challenge while generating insights that can
be applied beyond this specific project. This aligns with the dual objective of
the thesis: Delivering a working system and gaining a deeper understanding
of how LLMs and Al agents can be effectively and reliably used in DevOps
automation.

The research approach is engineering-driven and iterative. The system was
developed through three stages: Script-based, single-agent, and multi-agent
versions where each version is building on the previous one. After each stage,
the system was evaluated and refined based on observed results so that there
is an incremental improvement process.

Other research methods were also considered but not selected. A case
study [22] was rejected because the focus is on system development rather than
analysing an organisational setting. An experiment-only approach [23] is also
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insufficient, as it would not capture the evolving design and implementation
work.

The evaluation of the system uses both quantitative and qualitative
methods. Quantitative evaluation includes measurements such as execution
time and execution success rates. The qualitative evaluation focuses on
reasoning trace analysis, system reliability and the security of the automation
process. The detailed application of this methodology is presented in
Section 3.1.

1.6 Delimitations

This thesis is limited in scope to ensure a focused investigation within the
available time frame and resources. While the developed system demonstrates
the potential of using LLMs and Al agents for DevOps automation, the
following delimitations have been set for this thesis:

* Limited task coverage and validation: The system focuses on
automating selected DevOps tasks and scenarios and is evaluated
on predefined tools and scenarios such as CI/CD pipelines, Docker
containerisation and cloud deployment. It does not cover the full range
of DevOps workflows or tools used in production environments and
compatibility with other workflows or tools has not been evaluated.

* No in-depth LLLM comparison, fine-tuning or Retrieval-Augmented
Generation (RAG): The thesis relies on limited exploration of Claude
Sonnet 3.5 [24]. During development, the system relied on a single
pre-trained LLLLM accessed via Ollama [25] (first Deepseek Coder v2
[26], later Qwen 2.5 Coder [27]) and Claude Sonnet 3.5 was used for
evaluation. It does not include detailed benchmarking across different
models, apply fine-tuning techniques, or incorporate RAG methods.

* No persistent agent memory: The system does not include memory
across sessions. Each user interaction is handled independently, without
long-term learning or adaptation.

* Evaluation based on predefined scenarios: The system is evaluated
using a set of controlled, predefined use cases. There is no large-scale
user study or deployment in real-world production settings.
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* No in-depth User Experience (UX) validation: While interaction
flows are analysed qualitatively, the project does not include formal UX
testing or usability evaluation.

These boundaries have been defined to ensure having a clear defined scope
of the project.

1.7 Structure of the Thesis

The thesis is organised into five main chapters, followed by appendices
containing supporting materials.

Chapter 2 provides the necessary theoretical background on DevOps work-
flows, LLLMs, Al agents, ReAct-style reasoning, multi-agent architectures, and
related work. It builds the foundation needed to understand the context and
motivation for the system development.

Chapter 3 describes the research methodology and outlines the research
process followed throughout the project. It presents the system architecture
and design, details about the development of the three system versions (script-
based, single-agent, and multi-agent), explains the evaluation strategy, and
discusses relevant societal and ethical considerations.

Chapter 4 presents the results and analysis of the system evaluation. It
includes the functional evaluation, efficiency analysis, reliability analysis,
and insights into UX. Furthermore, it interprets the results in relation to the
research goals set out at the beginning of the thesis.

Chapter 5 summarises the main contributions of the work, discusses its
limitations, outlines possible directions for future research, and provides final
reflections on the project’s outcomes and societal implications.

Finally, the appendices contain supporting materials including the links to
the GitHub repositories of the implemented systems and the evaluation table
containing evaluation documentation of all three system versions.

This structure aims to guide the reader from theoretical foundations to
practical implementation and evaluation.
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Chapter 2

Background

This chapter provides the theoretical foundation for the thesis by presenting
key concepts and technologies relevant to the development of an Al-driven
DevOps automation system. It begins with an overview of DevOps workflows
and their components, followed by a discussion of automation tools, LLMs,
and Al agents. The chapter also introduces reasoning strategies such as ReAct-
style reasoning and multi-agent architectures, and concludes with a review
of related work. These concepts together form the basis for understanding
the motivation, design choices, and evaluation criteria used throughout the
project.

2.1 DevOps Workflows

DevOps is a set of practices that integrates software development (Dev) and
IT operations (Ops) to enable faster, more reliable, and more frequent delivery
of software [1]. Central to this approach is the automation of workflows that
support the full software lifecycle - from coding and integration to testing,
deployment, and infrastructure management.

A typical DevOps workflow includes several interconnected components.
CI/CD pipelines for example automatically build, test, and deploy code
changes whenever updates are pushed to a version control system such as
Git. These pipelines improve consistency and reduce the risk of human error
during releases. Version control ensures traceability and collaboration, while
automated testing provides immediate feedback on the quality and stability of
new code [2].

Another key component is containerisation, often implemented using
tools like Docker or Kubernetes. Containers package applications and their
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dependencies into isolated, reproducible units that can run consistently across
different environments. This isolation reduces configuration conflicts between
systems and simplifies testing and deployment. Containers also make it
easier to scale applications horizontally and integrate them into cloud-native
architectures such as micro services [28, 29].

For deploying applications at scale, many organisations rely on cloud
infrastructure, which is often managed through Infrastructure as Code (IaC)
tools such as Pulumi or Terraform. These tools enable the declarative
definition of infrastructure and simplify provisioning of cloud resources on
platforms like AWS, Azure, or Google Cloud [30, 31].

While these tools offer powerful capabilities, setting up DevOps workflows
still often requires writing complex configuration files, connecting multiple
services, and debugging deployment issues. The process can be time-
consuming, repetitive, and prone to error, especially when adapting workflows
for new projects or teams [5, 6]. These challenges highlight the need for more
intelligent and flexible automation solutions, an area in which Large Language
Models and Al agents offer significant potential [15].

2.2 Automation in DevOps

Automation is a fundamental principle in DevOps, aiming to reduce manual
effort, improve reliability, and enable rapid delivery cycles. To support this,
a wide range of tools has emerged to automate various stages of the software
development and deployment process. Among the most widely adopted are
GitHub Actions and GitLab CI/CD, which allow teams to define custom
pipelines for building, testing, and deploying applications [32, 33, 34].

These tools enable developers to write pipeline configurations - typically
in YAML format - that specify a sequence of steps triggered by events
such as code pushes, pull requests, or scheduled timers. Common tasks
include compiling source code, running unit and integration tests, building
Docker containers, and deploying to staging or production environments.
By embedding automation directly into the version control workflow, these
systems help ensure consistency and reduce the likelihood of human error [34].

Despite their benefits, these tools still require a considerable amount of
manual configuration and maintenance. Developers must be familiar with the
syntax, understand the structure of CI/CD files, and integrate various third-
party services or scripts. As project complexity grows, keeping pipeline logic
correct, efficient, and up to date can become a significant burden. This limits
accessibility, especially for smaller teams or less experienced developers and
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introduces room for misconfiguration [33].

These challenges motivate the need for more intelligent and adaptive
forms of automation. Recent advances in LLLMs and Al agents [15] present
an opportunity to simplify DevOps workflows by enabling systems that
can understand developer intent expressed in natural language, generate
appropriate automation logic, and even reason through multi-step tasks. The
following sections explore these technologies in more detail and examine how
they can be applied to DevOps automation.

2.3 Large Language Models for Code Gener-
ation

LLMs have become powerful tools for automating software development
tasks, including code generation, configuration file creation, and script writing
[8, 9]. Models such as GPT, DeepSeek Coder, Claude, and Qwen are trained
on vast amounts of data and code, enabling them to understand natural
language instructions and produce syntactically correct and contextually
relevant outputs. This capability allows developers to describe their intent in
plain language, for example, “create a GitHub Actions workflow for a Node.js
project”, and receive a functional automation script in return [35, 36, 37].

The benefits of LLMs in the context of DevOps are substantial. They
can significantly reduce manual effort, accelerate onboarding for new team
members, and make automation more accessible to those without deep
technical knowledge. By translating human-readable input into executable
code [37], LLMs have the potential to democratise access to DevOps tooling
and lower the barrier to entry for configuring complex workflows while at the
same time highly boost the development speed.

However, LLLMs are not without limitations. A major concern is the
risk of hallucination, where the model generates outputs that appear correct
but are logically flawed, insecure, or entirely fabricated. In the context of
DevOps, such issues could lead to incorrect deployments, broken workflows,
or potential security vulnerabilities. Therefore, outputs must be carefully
validated, especially when deployed in production environments [38, 39, 40].

To improve the reliability and relevance of generated outputs, prompt
engineering plays a critical role. By structuring prompts carefully and
providing relevant context, such as repository content, the quality of LLM
responses can be significantly improved. This aspect will be examined in more
detail in the next section.
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2.3.1 Prompt Engineering

Prompt engineering refers to the practice of crafting inputs to LLMs in a
way that guides them towards generating accurate, relevant, and contextually
appropriate outputs. In systems that rely on LLMs for DevOps automation,
prompt engineering is not just an auxiliary detail - it is critical to the system’s
stability, correctness, and reliability [41, 42].

A prompt is the input given to an LLM to instruct it on what task to
perform. It can be a natural language question, command, or structured
example, and directly influences the model’s output [41].

Well-designed prompts can significantly reduce the likelihood of halluci-
nated or faulty outputs by clearly defining the task, constraints, and expected
format. Their impact on an LLM’s output is therefore highly significant. In
the context of DevOps, where generated outputs may directly affect code
repositories, pipelines, or deployment environments, even small errors can
lead to system failures or security issues. Prompt engineering serves as the
first layer of control to prevent such outcomes [39].

To enhance accuracy, prompts can be augmented with dynamic context,
such as repository structure, existing configuration files, or recent execution
history. This allows the model to generate solutions that are not only
technically correct but also well-adapted to the specific project or environment.
System-level instructions and structured formatting (e.g., few-shot examples
or templates) can also improve the consistency and predictability of responses
[43, 44].

However, prompt engineering also comes with challenges. One is the
inherent ambiguity of natural language. Users may describe their goals in
vague or incomplete terms, leaving room for misinterpretation. Another aspect
is the trade-off between specificity and flexibility: overly detailed prompts may
overfit to narrow use cases, while overly general prompts can result in incorrect
or irrelevant outputs [45].

Managing these trade-offs is a central concern in the design of LLM-
driven systems. In this project, prompt engineering is treated as a key design
component and is iteratively refined to improve the system’s overall accuracy,
robustness, and user alignment.

2.4 Al Agents for DevOps Automation

While LLLMs are powerful tools for translating natural language into technical
code and scripts, they are only reactive systems which means that they
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produce outputs in response to prompts but do not independently plan or
carry out multi-step processes. To enable more autonomous and goal-directed
behaviour, LLLMs can be embedded within Al agents [16].

Al agents are systems designed to interpret user input, reason about goals,
and execute actions in a structured and sequential manner. In the context of
DevOps automation, agents play a central role in bridging the gap between
a developer’s high-level intent and the technical execution of tasks such
as cloning repositories, generating workflow files, building containers, and
deploying applications [46].

By wrapping LL.Ms inside agents, it becomes possible to build interactive
systems that do more than generate static outputs. Agents can analyse context,
make decisions based on past steps, and adapt dynamically to the outcome of
executed actions. For example, if an error occurs during an execution step, the
agent can reflect on the failure, revise its strategy, and attempt an alternative
action [13, 47].

This structured, goal-oriented design transforms the LLLM from a passive
reactive assistant into an autonomous collaborator which is capable of
managing complex DevOps workflows step by step. The following subsections
introduce key architectural patterns used in this thesis to enable such
behaviour: autonomous agents, ReAct-style reasoning, and multi-agent
coordination.

2.4.1 Autonomous Al Agents

Autonomous Al agents are systems capable of operating with a defined goal,
maintaining an internal representation of state, and interacting with their
environment to complete tasks. Unlike traditional scripts that follow a fixed
sequence of instructions, agents are designed to plan, adapt, and respond
dynamically based on context and observed outcomes [12, 48].

In the context of DevOps automation, autonomous agents can execute
sequences of commands such as cloning a repository, generating a workflow
file, or building and deploying a container while reasoning about each step
and adjusting their behaviour when necessary. This ability to track progress,
manage dependencies, and recover from failures enables a more robust and
intelligent automation process [49].

The key distinction between autonomous agents and static scripts lies in
flexibility and decision-making. A script will run as written, regardless of
environmental changes or intermediate failures. In contrast, an agent can
evaluate the success of each action, revise its plan, and choose alternative
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strategies if required [50, 51].

This autonomy forms the foundation for building an Al driven DevOps
Engineer that is more resilient, adaptable, and capable of handling complex
workflows. It also enables higher-level features such as feedback loops, context
awareness, and goal-directed reasoning which are core building blocks of the
system developed and evaluated in this thesis.

2.4.2 ReAct-style Reasoning (Thought — Action — Re-
sult)

ReAct-style reasoning is an approach to agent decision-making that breaks
down complex problem-solving into a transparent and iterative cycle of
Thought — Action — Result (or Observation). In this pattern, the agent first
reflects on the current situation (Thought), then performs a specific operation
(Action), and finally evaluates the outcome (Result or Observation). This
structure allows agents to reason step by step and adapt their strategy based
on feedback from the environment [16, 52, 53].

In the context of DevOps automation, this reasoning loop enables agents
to dynamically plan and adjust execution flows as they progress through multi-
step tasks. For instance, if an agent attempts to build a Docker container
and the operation fails, the resulting observation can be used to inform the
agent about it so that it can accordingly think of an alternative solution, for
example modifying the Dockerfile or reattempting with different parameters.
This allows the system to behave more intelligently than a static predefined
script, which would simply fail without recovery [14, 54].

One of the key benefits of the ReAct pattern is its transparency and
interpretability. By making each reasoning step explicit, it becomes easier to
understand why the agent made a certain decision. This transparency is very
important as trust, safety and security are crucial aspects to consider when it
comes to automation with Al. Developers and users can follow the logic of
the agent, which also makes it easier to debug, audit, and validate the agents
behaviour [16, 55, 56, 46].

Moreover, the ReAct loop provides a structure for user-in-the-loop control.
In this developed system during the thesis, each Thought — Action — Result
cycle is exposed to the user through the User Interface (UI), allowing manual
approval, editing, or rejection of commands before they are executed. This
added layer of control improves safety and trust in Al-driven automation and
allows users to intervene when needed, without interrupting the agent’s overall
flow [57, 58, 59].
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ReAct-style reasoning therefore offers a flexible and robust framework for
building intelligent, controllable Al agents that can safely and trustworthy
automate complex DevOps workflows.

2.4.3 Multi-Agent Architectures and Coordination

In the context of intelligent automation, multi-agent architectures enable a
separation of concerns, where specific functions such as reasoning, prompt
construction, validation, or error handling can be delegated to dedicated
agents. This modular structure improves the maintainability, scalability, and
robustness of the system. It allows for easier debugging, better error recovery,
and makes the system more modular [18, 60].

There are various models of agent coordination, such as a centralised
orchestration, where a master controller assigns tasks to specialised agents
or decentralised approaches, where agents interact more autonomously and
negotiate actions. When developing an automating system that requires
the execution of multiple steps, centralised coordination is commonly
used to maintain a coherent step-by-step process while still leveraging the
specialisation of individual agents [61, 62, 63].

The main advantage of a multi-agent approach is its resilience and
adaptability. If one agent fails or produces an unsatisfactory result, another
agent can intervene, either to propose an alternative or to refine the process.
This creates opportunities for fallback, recovery, and more reasonable
decision-making [64].

Multi-agent coordination is increasingly relevant as automation systems
grow in complexity, requiring transparent reasoning, adaptive behaviour, and
human oversight. It provides a foundation for building intelligent systems that
are not only capable of executing tasks, but also of reasoning about them and
adjusting their behaviour in real time [63, 65, 66, 59].

2.5 Related Work

DevOps automation has traditionally relied on tools such as GitHub Actions,
GitLab CI/CD, Terraform, and Docker Compose, which allow developers to
define and automate build, test, and deployment workflows. While these
tools are powerful and widely used, they depend on manual configuration and
scripting. As projects grow in complexity, maintaining and extending such
automation becomes increasingly error-prone and time-consuming [67, 5, 68].
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In parallel, the emergence of LLMs, such as GPT, Claude Sonnet,
DeepSeek Coder, and Qwen Coder, has opened up new possibilities for
code generation and developer assistance. These models can produce
working scripts, configuration files, and documentation from natural language
input, making them useful for automating parts of the software development
lifecycle. However, LL.Ms in isolation lack the ability to plan or adapt beyond
single-step responses [69, 70, 71].

To address this limitation, researchers and developers have started
integrating LLMs into agent-based systems. Early examples include
LangChain agents [72], which use reasoning chains to perform multi-step
tasks, and systems like the OpenAl Operator [73], which combine LLMs with
predefined tool usage to execute tasks. These systems mark a step toward more
autonomous software assistants but are still relatively constrained in scope,
often lacking dynamic fallback mechanisms or user-in-the-loop transparency
[74, 75].

This thesis builds upon several of these ideas by combining prompt-based
code generation, ReAct-style reasoning, user-in-the-loop control, and multi-
agent coordination into a unified DevOps automation system. It investigates
how LLLMs and Al agents can be integrated not just to generate code, but to
plan, act, and adapt within complex workflows while involving the user in key
decision points [60, 16, 76].

Unlike some related work, this project does not attempt to cover
production-grade infrastructure automation using tools like Terraform or
advanced cloud orchestration platforms. These areas involve additional
challenges related to security, cost, and risk, and are considered outside the
scope of this thesis.

2.6 Summary

This chapter has introduced the theoretical foundations relevant to the
development of an Al-driven DevOps automation system. First it outlined key
concepts in DevOps workflows, including CI/CD pipelines, containerisation,
and cloud provisioning, and highlighted the challenges associated with their
manual configuration and maintenance.

The discussion then turned to existing automation tools such as GitHub
Actions and GitLab CI/CD, acknowledging their strengths while identifying
limitations that motivate the need for more intelligent, adaptive solutions.
LLMs were introduced as a promising technology for automating code and
script generation from natural language input, along with the crucial role of
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prompt engineering in guiding their output effectively.

Building on this, the chapter explored how Al agents can extend the
capabilities of LLLMs by enabling autonomous, goal-directed behaviour. The
ReAct reasoning pattern was presented as a transparent and flexible decision-
making loop, well-suited for interactive automation systems that provide user-
in-the-loop control. Finally, the concept of multi-agent architectures was
introduced as a modular, scalable approach to coordination, recovery, and
system resilience.

These concepts form the basis of the system developed in this thesis, which
is presented in the next chapter along with the applied methodology, design
choices, and implementation process.
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Chapter 3

Methodology and System De-
velopment

This chapter describes the methodology and engineering process used to
design, implement, and evaluate the Al-driven DevOps automation system
developed in this thesis. It begins with an overview of the research strategy,
followed by a step-by-step explanation of the development process. The
chapter then presents the overall system architecture and the evolution of three
system versions: script-based, single-agent, and multi-agent. It concludes
with a description of the evaluation strategy and a reflection on the societal
and ethical implications of the system.

3.1 Research Process

The research process for this thesis follows as mentioned in Section 1.5 the
DSR methodology, which is well suited for projects focused on developing
and evaluating technical systems intended to solve real-world problems. The
DSR approach emphasises a close connection between the engineering of a
solution and the generation of applicable knowledge. In this thesis, the focus
is on building an Al-based system for DevOps automation using LI.Ms and
Al agents [21].

The process was carried out in an iterative build-test—refine loop, in which
the system was incrementally developed through a series of design cycles.
Each iteration aimed to enhance the system’s capabilities while simultaneously
evaluating its performance and identifying areas for improvement.

The research process included the following steps:

1. Problem Identification: Recognising that manual DevOps processes,
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such as CI/CD setup, containerisation, and cloud deployment, are time-
consuming, repetitive, and prone to human error.

2. Review of Existing Work: Studying the current landscape of DevOps
automation tools, LLM-based code generation systems, and agent-based
Al architectures to establish a foundation for system design.

3. System Design and Development: Creating three system versions with
increasing levels of intelligence and modularity: a script-based baseline,
a single-agent version with ReAct reasoning and human-in-the-loop
control, and a multi-agent version with additionally coordinated agents.

4. Application to Realistic Scenarios: Implementing and testing the sys-
tem on practical DevOps use cases, including GitHub Actions workflow
generation, Docker-based containerisation, Kubernetes clustering and
Cloud deployment.

5. Evaluation: Assessing each version of the system through both
quantitative metrics (e.g., execution time, task success rate) and
qualitative analysis (e.g., reasoning trace evaluation, user interaction
flow).

6. Reflection and Refinement: Using evaluation insights to improve
the system architecture, prompt engineering strategies, and agent
coordination mechanisms across iterations.

This process allowed for continuous improvement of the system while
aligning engineering outcomes with academic goals.

3.2 Overview of the Systems

To explore the potential of LLMs and Al agents for intelligent DevOps
automation, the system developed in this thesis evolved through three distinct
versions, each reflecting a different level of complexity, autonomy, and
architectural sophistication. These versions were developed iteratively using
the DSR methodology and serve as both working systems and as a basis for
evaluating the core RQ.

The first version, the Script-Based Automation Framework, was designed
to validate the feasibility of automating DevOps tasks through user input. In
this version, specific scenarios such as CI/CD pipeline generation, Docker
containerisation, Kubernetes clustering and simulated AWS deployment were
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implemented using fixed Python scripts. Although limited in flexibility,
this version established a working backend-frontend structure and provided
valuable insights into the practical requirements and challenges of automating
common DevOps workflows.

The second version, the Single-Agent Al DevOps Engineer, replaced the
hardcoded logic from version 1 with a ReAct-style LLM-driven Al agent. This
agent was capable of interpreting natural language input, planning DevOps
actions, and executing them in a dynamic Thought — Action — Result loop.
It also introduced human-in-the-loop control, allowing users to review, edit,
approve or reject each proposed action before execution. This inclusion of the
user increased system transparency and user trust, while also reducing the risk
of executing incorrect or unsafe commands. Overall, this version significantly
increased automation capabilities and flexibility, enabling the system to handle
a broader range of tasks beyond predefined scenarios.

The third and final version, the Multi-Agent Al DevOps Engineer, has
similar features as version 2 but additionally introduced a modular architecture
composed of specialised agents, including a Reasoning Agent, Prompt Agent,
and Reflector Agent, coordinated by an Agent Orchestrator. This design
allowed for better separation of concerns, targeted behaviour, and improved
error recovery, resulting in a system that is more maintainable, resilient, and
scalable.

Each version built upon the previous one, not only expanding functionality
but also deepening the system’s reasoning capabilities and enabling user-in-
the-loop control. Together, the three versions form a progression that reflects
the thesis goal: to develop an increasingly intelligent and reliable automation
framework that leverages both L.LLMs and structured Al agents for real-world
DevOps scenarios.

3.3 System Architecture and Design

The Al-driven DevOps Engineer developed in this thesis is composed of
modular components that work together to interpret user input, generate
appropriate automation logic using an LLLLM, and execute DevOps tasks across
various scenarios. The system architecture follows a client-server model [77],
with a web-based ReactJS frontend [78], a FastAPI-powered backend [79], and
an integrated LLM layer. The design emphasises modularity, transparency,
and user-in-the-loop control [57], consistent with the principles of the DSR
methodology [21].

The frontend is implemented using React]S and provides the UI for
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entering natural language instructions, providing the repository name,
reviewing Al-generated reasoning steps, approving, editing or rejecting
actions, and viewing real-time execution logs (see Figure 3.1 for an example
of the UI which looks similar for all three system versions). It uses Tailwind
Cascading Style Sheets (CSS) for styling [80], Headless UI for accessibility
and interaction components [81], and Framer Motion to provide smooth visual
UI transitions [82].
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Eugenius Multi Agent Devops Engineer

Describe what you want (e.g., 'Create a GitHub Actions pipeline')

Enter your GitHub repository name

T Total Execution Time: 30 seconds

n Awaiting user approval...

* Result: Successfully executed: git clone
https://github.com/eugenius®/github-actions-auto.git
& Thought: Since the repository has been successfully
cloned, the task is complete

Final Answer: The GitHub repository 'github-actions-auto'
has been successfully cloned using HTTPS authentication
method from https://github.com/eugenius@/github—actions—
auto.git. No further actions are required.

# A1l steps executed.

Task Completed!

r A
LJ

Execution History

10/06/2025, 13:58:26
Completed & Al DevOps Agent completed the requested

automation
T 30 seconds

10/06/2025, 13:57:31
Completed & Al DevOps Agent completed the requested
automation

Figure 3.1: Example of the UI of system version 3. However, all three systems
have a similar Ul



22| Methodology and System Development

The backend is built with FastAPI, a lightweight asynchronous Python
framework. It is responsible for handling Application Programming Interface
(API) routing, coordinating agent logic, managing task execution, and serving
the reasoning loop to the frontend. The backend acts as the central processing
unit of the system, orchestrating interactions between the frontend, the agents,
and the LLM.

The LLM layer uses Claude Sonnet 3.5 (before Qwen 2.5 Coder and
DeepSeek Coder v2, served locally via Ollama), to interpret natural language
input and generate corresponding commands, scripts, or configuration files.
The integration supports context-aware prompting and plays a critical role in
enabling dynamic and flexible automation.

The system is implemented using two primary programming languages:
Python for the backend and agent logic, and TypeScript for the frontend.
DevOps tools supported by the system include GitHub, GitLab, Docker,
Kubernetes, and AWS, with automation scenarios tailored to workflows
common to these platforms.

The overall development approach was incremental and modular. Each
component was developed and tested individually before being integrated
into the complete system, allowing for flexibility, fast iteration, and easier
refinement across system versions. This architectural design not only supports
the research goals of transparency, user control, and automation reliability, but
also ensures the system remains extensible for future use cases and tools.

3.3.1 Version1-Script-Based Automation Framework

The first version of the system was developed to validate the core concept of
DevOps automation triggered by natural language input. The primary goal was
to build a functional end-to-end framework that could map user instructions
to executable automation tasks using a fixed script-based architecture. This
version served as a proof of concept and laid the technical foundation for more
intelligent behaviour in later iterations.

The automation engine was implemented using a set of Python scripts,
each corresponding to a specific DevOps scenario. These included scripts
for generating GitHub Actions workflows, creating and building Docker
containers, and simulating cloud deployment with tools like Pulumi. Example
scripts included:

* setup_github_actions.py — Generates a CI/CD workflow in
YAML format and commits it to the project repository.
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* dockerize_app.py — Creates a Dockerfile, builds the image, and
optionally runs the container.

* setup_gitlab_ci.py—Generatesa .gitlab-ci.yml pipeline
configuration for GitLab-based CI/CD automation.

* setup_kubernetes.py — Creates Kubernetes deployment and
service configuration files and adds them to the repository.

* deploy_to_cloud.py — Generates infrastructure-as-code files
(e.g., using Pulumi) to provision cloud resources for deployment.

The system architecture followed a simple client-server model. The
frontend, built in React, provided a minimal Ul with a text input field and
a basic log display. The backend, implemented using FastAPI, exposed
Representational State Transfer (REST) API endpoints that directly mapped
predefined user inputs to the corresponding Python scripts. Each input
triggered a script execution, and the results were returned to the frontend to
inform the user.

Interaction Flow

The interaction flow was linear and predefined. The system does not
perform any reasoning, decision-making, or multi-step planning. In the
automation part of the flowchart, events placed on the left side correspond
only to GitHub Actions pipeline automation, while events on the right side
apply only to the application containerisation scenario using Docker. Events
positioned in the middle represent shared steps that are relevant for both
automation scenarios. The following flowchart describes this interaction in
detail, showing how the frontend, backend, and automation scripts collaborate
to complete a task:



24 | Methodology and System Development

Frontend (React Ul)

User Enters
Request &
Repo name

Receive + Display
Automation Status

Display
Success or
Failure

User Clicks
Execute

Send Request to
AP

Backend (FastAP|)

Receive Request

Execution———!

Call LLM for
Classification

Stream Automation

Status to Ul
in Real-Time

Determine
Automation
Type

) -
Run GitHub Run Docker

Actions Containerisation
Automation Automation

Automation (GitHub Actions & Docker Scenarios)

Clone Repo if
Needed

Setup Workflow
Directory

Generate Docker
Related Files
with LLM

Generate YAML
File with LLM

If Errors ->
Retry (Max 3)

Validate
Generated Code

If Max Retries W
Reached -> Break
and Inform User J

Push and Commit
Generated File(s)

Trigger GitHub
Actions Workflow

Build and Run
Containers

Optional: Push to
Docker Hub

Automation
Completed

LDuring

Figure 3.2: Interaction flow in the script-based system.
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Frontend (React UI)

. User Enters Request & Repo Name

The user writes a natural language prompt (e.g., “Create a GitHub
Actions workflow for my React app”’) and enters their GitHub repository
name.

. User Clicks Execute
The user initiates the process by clicking the "Execute” button, which
sends a request to the backend.

. Send Request to API
A POST request is made to the FastAPI backend containing the prompt
and repository name.

. Receive + Display Final Output
After the script execution completes, the result (logs or summary) is
returned and displayed in the UI.

Backend (FastAPI)

. Receive Request
The backend receives and parses the incoming request.

. Call LLM for Classification
Based on the user’s prompt, the LLLM maps the request to a specific
pre-written Python script.

. Run Automation Script
The backend executes the corresponding script using a subprocess.

. Send Logs/Final Output to Frontend
After execution, logs or a final message are sent back to the frontend.

Automation Script (e.g., GitHub Actions, Docker)

1. Receive Repo Info

The script accepts the repository name and performs validation if
necessary.
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2. Clone Repository
The script clones the repository locally to allow for file generation and
commits.

3. Generate Files
Based on templates or predefined logic, the script generates necessary
files (e.g., YAML workflows or Dockerfiles).

4. Commit + Push Changes
The generated files are committed and pushed to the repository.

5. Return Success Log
A success message is returned, indicating the task completion.

This version had several notable strengths. It offered high accuracy in
executing supported tasks and required no LLLM inference, making it fully
autonomous within its limited scope. However, the design had significant
limitations. All logic was hardcoded, and the system lacked any form of
Al reasoning or flexibility. It could not adapt to new input patterns, execute
workflows that were not predefined, handle user errors, or dynamically modify
execution plans. These constraints motivated the transition to a more flexible,
agent-based design in the next system version.

3.3.2 Version 2 — Single-Agent Al DevOps Engineer

The second version of the system introduced a major architectural change by
replacing hardcoded logic with a ReAct-style reasoning loop and human-in-
the-loop control powered by a reasoning [.LI.M-based Al agent. The goal of this
version was to go beyond static script-based automation and allow the system
to reason about user intent, dynamically plan actions, and involve the user in
the decision-making process. This made the system more adaptable to a wider
range of DevOps tasks and use cases.

Motivation

The primary motivation for this version was to overcome the limitations of
Version 1. While the first version could execute predefined tasks accurately,
it lacked flexibility and could not interpret variations in input or adapt to
tasks beyond those explicitly scripted. By introducing ReAct-style reasoning
(Thought — Action — Result), the system became capable of processing



Methodology and System Development |27

natural language requests, proposing executable commands, and responding
to feedback within an interactive loop.

Backend Modifications

The backend was extended to support a single Al agent based on an LLM
(Claude Sonnet 3.5, before Qwen 2.5 coder and DeepSeek Coder v2 via
Ollama). The agent follows a ReAct-style reasoning loop in which each cycle
includes:

* Thought: Thinking about what needs to be done next based on the
user’s request and the current system state, aiming to find the most
effective next step.

* Action: Suggesting a shell command or file generation task (e.g., git
clone, docker build, echo > Dockerfile).

* Result (Observation): Capturing the execution result and feeding it
back into the reasoning loop.

The system maintains simple loop memory, allowing the agent to reflect on
previous results while reasoning through subsequent steps. The loop continues
until the agent determines that the task is completed.

Frontend Enhancements

To support this reasoning loop, the frontend was updated to enable user-
in-the-loop control. For each proposed action, the Ul displays the agent’s
“Thought” and the corresponding command. Users can then choose to
approve, edit, or reject the command. Approved commands are executed and
the results are streamed back to the Ul in real time. This interaction design
promotes transparency, enhances safety, and builds trust in the Al system.

Interaction Flow

The flow for this version integrates frontend, backend, and Al reasoning
components in a continuous cycle:
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Frontend (React Ul) N

User Enters
Request &
Repo name

Receive + Display
Suggestion/ Final
Answer

A
User Clicks
Execute

User Approves,
Rejects or Edits
Suggestion

A

Send Request to
APl Display
Final Answer
Backend (FastAP|) N
=) A < A

Send User Reply

Receive Request to Al Agent

Stream Suggestion/

Call LLM Final Answer
to Ul

Al Agent (LLM + ReAct Loop)

i B

Generates
Thought + Action

IF is Final

[«<—No
Answer

Generate Result

IF Approved

Or Edited Execute Action

Figure 3.3: Interaction flow in the single-agent system.
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Description of each step

Frontend (React UI)

1.

User Enters Request & Repo Name
The user types a natural language request (e.g., "Create a GitHub
Actions pipeline”) and enters the repository name.

. User Clicks Execute

Clicking the "Execute” button sends the input to the backend API to
initiate the automation process.

Send Request to API
A POST request is made to the FastAPI backend, triggering the
automation process.

. Receive + Display System Logs/Answers

The frontend listens for streamed logs and displays each step
(Thought — Action — Result) as the Al agent reasons through the task
(see Figure 3.4).

User Approves, Rejects or Edits Suggestion
When the Al suggests an action, the Ul shows an editable command and
buttons to approve, edit or reject it (see Figure 3.6).

. Display Final Answer

Once the automation is complete, the final result or summary of what
was done is displayed to the user.

Backend (FastAPI)

1.

Receive Request
The backend receives the user request and repo name from the frontend.

Call LLM

The backend uses an LLLM (Claude Sonnet 3.5 in current version, before
Qwen 2.5 coder and DeepSeek Coder v2 via Ollama) to interpret the
request and generate the next action.

Send User Reply to AI Agent
When the user approves, edits, or rejects the suggestion, the backend
passes this decision back to the agent to continue or stop.
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4. Stream Suggestion/Final Answer to Ul
All logs from the Al loop are streamed in real-time to the frontend for
live feedback.

Al Agent (LLM + ReAct Loop)

1. Generates Thought + Action
The agent uses an LLM to reason about the next step. It outputs a
“Thought” (what needs to be done) and an “Action” (a shell command
or file creation task) (see Figure 3.4).

2. Waits for Approval
The agent pauses and sends the proposed command to the frontend for
user approval or editing (see Figure 3.5).

3. Execute Action (if approved)
Once approved, the backend executes the command and collects the
result.

4. Generate Result
The outcome of the command is sent back to the LLM loop and
displayed in the UI.

5. If Final Answer — Stop
If the agent decides the task is complete, it sends a Final Answer and
ends the loop.

6. Else — Repeat Loop
If not finished, the loop continues with a new Thought + Action.

Strengths and Limitations

This version marked a significant step forward in functionality and
flexibility. It supported a wider range of DevOps tasks, leveraged transparent
reasoning, and introduced interactive control for safer automation. However,
it also had limitations in comparison to version 3. As a single agent system, it
was limited in fallback and error handling, and its success heavily depended on
the reliability of the output of a single LLLM based Al agent. These challenges
motivated the design of a multi-agent system in the next version.



Methodology and System Development| 31

<« Thought: Create the empty file tmp7.txt using touch command
Action: touch tmp7.txt

Result: Will be filled in after execution.

[ApprovalRequired] f21b71f8-822d-44bd-9a49-add41816aa2a - touch tmp7.txt
n Awaiting user approval...

» Result: @ Successfully executed: touch tmp7.txt

Figure 3.4: The frontend displaying the Al agent’s reasoning during execution,
following the Thought — Action — Result loop.
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O Processing...

Cancel
T Execution Time: 16 seconds

< Refined Task: Clone GitHub repository using HTTPS or SSH
protocol, storing in current working directory.

< Thought: I need to clone the GitHub repository github-
actions—-auto using HTTPS protocol since it's not yet cloned

Action: git clone https://github.com/eugenius@/github—
actions—auto.git

Result: Will be filled in after execution.

[ApprovalRequired] dc84d9e7-c953-43d1-a6f4-abd720092a476 -
git clone https://github.com/eugenius@/github-actions—
auto.git

n Awaiting user approval...

@ Awaiting approval for:

git clone https://github.com/eugenius@/github-actions-
auto.git

Figure 3.5: Ul showing human-in-the-loop control in action as the system is
waiting for user approval. Users can approve, edit, or reject the suggested
command.
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@ Awaiting approval for:

git clone https://github.com/eugeniusQ/github-actions-auto.git

@ Cancel Edit

Figure 3.6: Edit mode allows users to adjust Al-generated commands before
execution.

3.3.3 Version 3 — Multi-Agent Al DevOps Engineer

The third and final version of the system introduces a multi-agent architecture,
designed to improve flexibility, error handling, and reasoning clarity
beyond what was achievable in the single-agent model. By decomposing
responsibilities into distinct agents, this version enables targeted behaviour,
such as reflecting on rejected actions and improved reasoning. The modular
structure also improves maintainability and sets the foundation for future
extensibility.

Motivation

While the single-agent system brought significant improvements in
automation and reasoning, it remained constrained by its monolithic structure.
Handling rejected actions or rethinking flawed commands on the fly became
increasingly complex to manage within a single reasoning loop. A modular
agent-based architecture was therefore introduced to facilitate specialized
roles, fallback mechanisms, and more robust decision-making.

Agent Architecture

This version introduces a coordinated system of three agents:

* Reasoning Agent: Interprets user intent, reasons through task steps,
and proposes high-level actions.
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* Prompt Agent: Constructs and optimizes prompts tailored to the
context and task at hand, helping guide the LLLM more effectively.

* Reflector Agent: Responds to rejected actions by analyzing the failure
and proposing alternatives, improving resilience and adaptability.

These agents are orchestrated by a central component, the Agent
Orchestrator, which manages the ReAct-style reasoning loop. It determines
the agent interaction sequence, maintains the system state, and ensures smooth
communication between agents. This coordination enables the system to
handle more complex workflows, recover from errors, and provide more
accurate results.

Unlike the previous version, the ReAct loop here is distributed across
multiple agents, with each agent contributing its specialized capability to each
Thought — Action — Result cycle. This explicit separation of concerns leads
to clearer reasoning paths and improved traceability.

Backend Adjustments

To support the new architecture, the backend was refactored to manage
multiple agents through the Agent Orchestrator. The orchestrator controls the
flow of reasoning, handles user approvals, and dynamically delegates tasks
to the appropriate agent. Execution remains asynchronous and event-driven,
preserving responsiveness while coordinating inter-agent communication.

Frontend Enhancements

The Ul was further improved to support the multi-agent workflow.
Enhancements include:

* A fullscreen view for improved visibility (see Figure 3.7).

e Framer Motion-based animations for smoother transitions between
reasoning steps and user inputs.

The frontend continues to display the Thought — Action — Result loop
to the user, now showing the more granular decision making enabled by the
agent architecture. Accordingly, the approval process and command editing
interaction follow the same user-in-the-loop design described in Section 3.5
and Figure 3.6, but are now driven by modular agents.
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[ZI Fullscreen Execution Status

I Total Execution Time: 19 seconds

 Refined Task: Create a new empty file named 'tmp7.txt' in the current direc
@ Thought: First I need to clone the repository since it's not yet available
Action: git clone https://github. con/eugeniusd/github-actions-auto.git

Result: Will be filled in after execution.

[App q - git clone https://github. con/eugeniuse/github-actions-auto. git

tory.

u Avaiting user approval...
* Result: M@ Successfully executed: git clone https://github.con/eugeniuse/github-actions-auto.git
: Create the empty file tmp7.txt using touch command
ouch tmp7. txt
Result: Will be filled in after execution.
pp q - touch tmp7.txt
u Awaiting user approval...
" Result: @ Successfully executed: touch tmp7.txt
@ Thought: Need to commit and push the newly created file
Action: git add . §& git commit -m 'Add tmp.txt' §& git push
Result: Will be filled in after execution.

op q - git add . & git conmit -m ‘Add tmp7.txt' && git push
u Avaiting user approval...
* Result: [main 1a4522e] Add tmp7. txt
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 tmp7.txt
 Thought: The task is now complete - we cloned the repo, created tmp7.txt, and pushed the changes
Final Answer: Successfully created empty file tmp7.txt in the repository and pushed the changes to remote. The file has been committed with hash lads22e.
¥ ALL steps executed.
@ Task Completed!

Figure 3.7: Fullscreen view of the Ul in Version 3, showing the full Thought
— Action — Result loop during task execution. The layout improves clarity
and user experience.

Interaction Flow

The overall flow remains similar to Version 2 but is enhanced through
modular agent participation which is shown in the following flowchart:
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Figure 3.8: Interaction flow in the multi-agent system.
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Description of each step:

Frontend (React UI)

I.

User Enters Request & Repo Name
The user types a natural language request (e.g., “Create a GitHub
Actions pipeline”) and enters the repository name.

User Clicks Execute
Clicking the "Execute” button sends the input to the backend API to
initiate the automation process.

Send Request to API
A POST request is made to the FastAPI backend, triggering the
automation process.

Receive + Display Suggestion/Final Answer
The frontend listens for streamed logs and displays each step
(Thought — Action — Result) as the Al agent reasons through the task.

. User Approves, Rejects or Edits Suggestion

When the Al suggests an action, the UI shows a prompt with an editable
command and buttons to approve, edit or reject it.

. Display Final Answer

Once the automation is complete, the final result or summary of what
was done is displayed to the user.

Backend (FastAPI)

. Receive Request

The backend receives the user request and repo name from the frontend
and passes it to the Agent Orchestrator.

Send Request to Agent Orchestrator
The orchestrator is responsible for coordinating all agents in the system.

Send User Reply to Reasoning Agent

When the user approves, edits, or rejects the suggestion, the backend
passes this decision back to the reasoning agent via the Agent
Orchestrator to continue or stop.
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4.

Stream Suggestion/Final Answer to Ul
All logs from the Orchestrator and AI Agents are streamed in real-time
to the frontend for live feedback.

Multi-Agent Architecture

1.

Agent Orchestrator: Receives Request, Assigns Agents
Coordinates the task by invoking each specialised agent at the right
moment.

. Prompt Engineer Agent: Refine User Input

First, the prompt agent rewrites the user input into a precise automation
goal.

. Reasoning Agent: ReAct Logic — Thought + Action

Based on the refined input, the reasoning agent begins a ReAct-style
loop, producing a Thought (reasoning) and a single Action (shell
command).

. Waits for Approval

The suggested command is paused and sent to the frontend for user
confirmation.

. If Approved or Edited — Execute Action

Once approved, the action is executed by the backend, and the output is
returned to the agent.

Generate Result
The execution result is passed to the next loop iteration to inform future
reasoning.

If Result Fails — Reflector Agent
If the command fails, the Reflector Agent analyses the error and suggests
a fix, which is looped back into the agent’s reasoning.

. If Final Answer — Stop

When the Reasoning Agent declares the task complete, the system sends
a Final Answer and ends the loop.

. Else — Repeat Loop

If not finished, the loop continues with a new Thought — Action cycle.
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Execution Workflow Description

This section describes the execution flow of the system for the task ”Create
a GitHub Actions pipeline”, as visualized in Figure 3.9. Each stage highlights
how the system components interact to interpret, execute, and respond to user
intent.
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User Input
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v
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Figure 3.9: System execution workflow for the example task: “Create a
GitHub Actions pipeline.”: Shows how the user input is processed and
executed through coordinated agent interaction, resulting in the creation and
deployment of . github/workflows/workflow.yml.
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. User Input

The user initiates the process by submitting a natural language request,
such as ”Create a GitHub Actions pipeline”, along with the repository
name. This forms the starting point of the workflow.

. Initial Processing

The Agent Orchestrator receives the request and passes it to the Prompt
Agent, which rewrites the input into a clear and precise prompt suitable
for the LLM. After prompt refinement, the orchestrator checks whether
the repository exists locally and verifies if it is synchronized with the
remote origin. This ensures that subsequent steps are based on the
correct repository state.

. Reasoning + Planning

The Reasoning Agent uses the refined input and current repo state or
previous execution result or a recovery suggestion from the Reflector
Agent to generate a reasoning step and a proposed shell command (the
“Action”). This logic follows the Thought — Action — Result pattern.
The system extracts the command from the LLM output in preparation
for execution.

. Human Oversight + Reflection

The proposed action is presented to the user for review. The user can
approve, edit, or reject it. If the action is rejected, the Reflector Agent
is invoked to suggest an alternative command to the Reasoning Agent.
This ensures safe and transparent automation by keeping the user in
control.

. Execution

Once approved, the command is executed in the appropriate working
directory. If the command fails during execution, the Reflector Agent is
again activated to suggest a recovery command to the Reasoning Agent.
This fallback mechanism allows the system to adapt dynamically to
unexpected errors.

. Result Loop

The result of the executed command is captured and passed back
into the Reasoning Agent. This completes one iteration of the
Thought — Action — Result loop. The system uses the output as context
for the next reasoning step.
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7. Loop or Stop
If the Reasoning Agent returns a Final Answer, the loop terminates.
Otherwise, the system proceeds with another Thought — Action cycle
using the updated context.

8. Outcome
Upon successful generation and execution of the command (e.g.,
creating and pushing .github/workflows/workflow.yml), the
GitHub repository is updated. This triggers the GitHub Actions pipeline
and marks the end of the automation workflow.

Strengths and Limitations

This version achieves a higher degree of modularity and accuracy, with
improved error recovery and better adaptability to user feedback. The
separation of responsibilities also makes the system easier to maintain and
extend. However, these benefits come at the cost of increased system
complexity and slower iteration cycles, due to the need for agent coordination
and communication. Additionally, the system still lacks long-term learning or
memory across sessions, and cannot yet self-improve based on experience.

3.4 Evaluation Approach

To evaluate the performance of the three developed system versions, script-
based (v1), single-agent (v2), and multi-agent (v3), a structured test protocol
was implemented. A total of 12 representative DevOps tasks were selected,
covering a range of automation scenarios such as repository handling, CI/CD
pipeline generation, containerisation, and simulated cloud deployment. Each
task was executed three times per system version, resulting in 36 test runs
per version, except for vl, which only supported 15 runs due to architectural
limitations and lack of flexibility. The exact task descriptions and expected
results are described in the following paragraph.

Evaluated Tasks

1. Clone a GitHub Repository
Input: "Clone my repo from GitHub”
Expected: Cloneshttps://github.com/<user>/test-app.git
into . /repos/test-app
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Create a File
Input: “Create the file tmp.txt”
Expected: Generates and commits a simple tmp . t xt

. Delete a File

Input: “Delete the file tmp.txt from my repo”
Expected: Removes the file, commits, and pushes the change

. Run 1sor git status

Input: ”Show me the files in the repo”
Expected: Returns the output of 1s or git status

Generate a GitHub Actions Workflow

Input: “Create a GitHub Actions pipeline for my app”

Expected: Generates a working .github/workflows/ci.yml file
with valid YAML, commits, and pushes

Containerize the App with Docker

Input: "Containerise my app with Docker”

Expected: Generates aDockerfile and optionally docker—compose. yml,
commits, and pushes

. Start an already Dockerised App

Input: “Start my already dockerised React app. Make sure the app is
accessible on http://localhost:3004”

Expected: Runs docker-compose up or docker run and
verifies the app is reachable at 1ocalhost :3004

Create a GitLab Pipeline

Input: “Create a GitLab pipeline for my app”

Expected: Generates a valid .gitlab-ci.yml file, commits, and
pushes it to the repository

. Deploy to Kubernetes (Simulated)

Input: ”Deploy my app to Kubernetes with kubectl”
Expected: Generates deployment . yaml, applies itusing kubect 1
(simulated/test only)

Recover from Repo Already Cloned

Input: ’Clone my repo from GitHub” (when it already exists)
Expected: Reflector Agent recognizes it’s already cloned and continues
in the correct directory
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11. Simulated Merge Conflict
Input: User edits a file locally that conflicts with remote changes
Expected: System should recognize git push fails or recognize
changes in the repository and resolve the conflict autonomously

12. Add Pulumi Deployment
Input: "Deploy my app to AWS with Pulumi”
Expected: Generates an initial Pulumi program (index.ts,Pulumi.yaml,
aws . ts) and prepares deployment scripts (no actual deployment)

Test Execution Setup

All tasks were executed under controlled conditions: each system was
assumed to start with no pre-cloned repositories, and user interactions were
kept constant - Al-generated suggestions were always approved without
manual modification. Moreover, the three systems were all based on the same
LLM Claude Sonnet 3.5. This allowed for a consistent comparison across
versions. Execution time was measured from task initiation to completion,
including any delay introduced by user-in-the-loop approvals for v2 and v3.
For each run, qualitative observations and quantitative metrics were recorded,
including errors (during execution or in output), recovery behaviour, and
success status.

Evaluation Dimensions

* Functional Evaluation: Measured the task success rate for each
version, defined as tasks completed correctly without requiring human
correction. This indicates the system’s accuracy and output quality.

 Efficiency Analysis: Compared the average execution time per
task across system versions. The analysis highlights differences in
performance and responsiveness between versions.

* Reliability Analysis: Focused on the system’s ability to recover from
errors. This included logging how many errors occurred and how often
the system recovered autonomously.

Considerations for Interpretation

Several contextual factors should be considered when analysing the results:
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» System Constraints: Version 1 lacks flexibility and cannot attempt
many tasks, which limits its comparability.

» Task Clarity: More concrete and specific task formulations were
especially important for the LLM-powered versions (v2 and v3).

 User-in-the-Loop Time Overhead: For v2 and v3, efficiency results
include the time needed for user approval, which could vary depending
on reaction speed.

* Development Investment: Version 3 benefited from more time spent
on refinement and prompt engineering, which may influence its superior
results.

* No User Correction: In all tests, user suggestions were accepted as-
is without adjustments; success rates could be higher with active user
input.

» Approval Consistency: All actions suggested by the systems were
approved, even if flawed, to ensure a neutral and reproducible evaluation
baseline.

Data Recording and Visualization

Results were documented in a structured evaluation sheet which can be
found in the appendix B and in the next chapter 4 visualised using a variety of
diagrams.

User Experience

While not a primary focus of this thesis, user experience was evaluated
through informal feedback from developers and test users. Feedback focused
on the system’s usability, transparency, and the clarity of the reasoning process
as presented through the UI. This provided insights into how the Thought —
Action — Result loop and the human-in-the-loop control affected user trust
and interaction comfort.

3.5 Societal and Ethical Considerations

As intelligent automation systems increasingly influence software engineering
practices, it becomes essential to consider their societal and ethical
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implications. This thesis addresses several of these concerns through both
its technical design and interaction model.

A key ethical principle guiding the system’s development is transparency
in Al decision-making. The use of a ReAct-style reasoning loop, structured as
Thought — Action — Result, ensures that each decision made by the system
is transparent and traceable. Rather than executing commands in a black-box
fashion, the system explicitly reveals its reasoning process step by step, helping
users understand why a particular action is suggested.

To reinforce user control and oversight, the system is designed with an
interactive frontend, a so called user-in-the-loop control, that allows users to
approve, edit, or reject each command before execution. This user-in-the-
loop approach ensures that automation does not replace human judgment but
instead augments it. By keeping users actively involved in the process, the
system reduces the risk of blind trust in Al-generated decisions and at the
same time increases the users trust in the system.

From a safety perspective, requiring user approval for all actions before
execution minimises the potential for accidental or harmful operations.
Whether caused by misinterpretation, ambiguous input, or model error, any
potentially dangerous command can be intercepted and revised. This design
choice enhances not only the technical robustness of the system but also its
ethical alignment with principles of accountability and responsible Al use.

In addition, by lowering the technical barriers to complex DevOps
automation, the system makes these capabilities accessible to a broader group
of developers. This enables inclusivity and effective collaboration even for
teams with developers that have varying levels of DevOps expertise.

Overall, the system provides a more transparent, controllable, and
trustworthy form of Al-driven automation, which is essential when deploying
such tools in sensitive, high-impact environments like DevOps.
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Chapter 4

Results and Analysis

This chapter presents the results obtained from systematically evaluating the
three system versions: the script-based automation framework (v1), the single-
agent Al DevOps engineer (v2), and the multi-agent AI DevOps engineer
(v3). The analysis is structured around three key dimensions: functionality,
efficiency, reliability. Visualisations accompany each subsection to support
the findings. All results are based on the structured testing protocol described
in Chapter 3.4 which can be found in the appendix B.

In addition to the main evaluation dimensions, aspects of usability were
also considered during development. Although not formally tested within
the evaluation protocol, qualitative observations and interface design choices
contributed to improving the system’s UX.

4.1 Functional Evaluation

The functional evaluation focuses on measuring the task success rate of each
system version. A task was considered successful if it was completed without
requiring manual intervention or correction. This metric reflects each system’s
ability to interpret user input, generate appropriate automation steps, and
execute them correctly.

As shown in Figure 4.1, the script-based version (v1) demonstrated a high
success rate of 93.33%, completing 14 out of the 15 tasks it was capable of
attempting. However, its limited flexibility meant it could not support the full
set of 36 defined tasks. In contrast, the single-agent system (v2) attempted all
tasks but succeeded on 25, yielding a success rate of 69.44

To further contextualise these results, Figure 4.2 compares the number of
tasks each system attempted versus how many it successfully completed. This
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distinction is especially important for vl, which could not attempt several
tasks due to architectural constraints. The increased capabilities of v2 and
v3 illustrate how LLLM-based Al agent systems expand the range of supported
automation scenarios, though success still varies with input clarity and internal
reasoning performance.

Together, these results highlight clear improvements in both correctness
and task coverage from the baseline script-based version to the Al-powered
multi-agent architecture.

100 Functional Evaluation: Task Success Rate

93.33%

Accuracy (%)

vl (14/15) v2 (25/36) w3 (31/36)

Figure 4.1: Task Success Rate per System Version: Percentage of tasks each
system completed successfully without requiring manual correction.
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Tasks Attempted vs. Completed Successfully
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Figure 4.2: Tasks Attempted vs. Successfully Completed: Number of tasks
each system attempted and how many were completed successfully.

4.2 Efficiency Analysis

Efficiency was assessed by measuring the average execution time per task for
each system version. This includes the time taken to complete tasks end-to-
end, encompassing user-in-the-loop approvals where applicable. The results,
shown in Figure 4.3, indicate significant differences in execution times across
the versions.

Version 1 (script-based) required the most time on average (75.80s per
task), reflecting its limited automation and hard-coded structure. In contrast,
both version 2 and version 3 achieved substantially lower execution times -
34.56s and 35.25s respectively - despite involving dynamic reasoning and user
approvals. This demonstrates that the introduction of Al-driven automation
not only adds flexibility but also reduces execution time.

It should be noted that for v2 and v3, user interaction (approval of
Al-suggested commands) is part of the measured time. In real-world
use, variations in user response time could influence these results further.
Additionally, the baseline assumption for all systems was a clean execution
environment with no pre-cloned repositories, ensuring consistency across
trials.
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Efficiency Evaluation: Avg. Execution Time per Task

80

75.80s

Time (seconds)

Figure 4.3: Average Execution Time per Task: Compares the average time
taken to complete a task across the three system versions.

4.3 Reliability Analysis

Reliability was evaluated by examining each system’s ability to recover from
errors during execution. This includes errors arising from invalid shell
commands, environment assumptions, or incomplete task handling. The
metric of interest was the execution recovery rate, calculated as the ratio of
successfully recovered execution errors to the total number of execution errors
encountered.

As shown in Figure 4.4, version 1 encountered no execution errors during
its limited test coverage, but this reflects its rigid nature rather than resilience.
Version 2 experienced 36 execution errors and recovered from 28 of them,
yielding a recovery rate of 77.78%. This strong performance demonstrates the
single-agent system’s ability to reason about failures and retry with alternative
commands.

Version 3 encountered fewer execution errors overall (2), recovering from
one (50.00%). Although this recovery rate is lower than v2, the small number
of total errors in v3 shows that its improved reasoning and coordination
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mechanisms and the advanced prompt reduce the likelihood of failure in the
first place.

These results highlight the trade-off between robustness and reliability
mechanisms. Version 2 shows strength in fallback handling, while version
3 demonstrates improved initial accuracy and fewer failure cases overall.

100 Reliability Evaluation: Execution Recovery Rate

80 - 77.78%

60

50.00%

Recovery Rate (%)

40

20 A

0.00%

vl (I[)!O) v2 (28/36) v3 (1/2)

Figure 4.4: Execution Recovery Rate Across System Versions: Shows how
reliably each system recovered from execution errors. Note: v3 had only 2

recovery opportunities, making its recovery rate less statistically representative
than v2.

4.4 User Experience

Although user testing was not conducted as part of the evaluation, the systems
were designed with user interaction and control in mind, particularly in
versions 2 and 3. These versions incorporated a user-in-the-loop approval
mechanism that allowed users to review, edit, or reject Al-generated shell
commands before execution. Qualitative observations during testing revealed
notable differences in perceived usability and interaction flow:
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Version 1 required no user input during execution, but its rigid, script-
based architecture offered no adaptability or transparency. There is no existing
error recovery besides the hardcoded one, limiting its practicality in real-world
usage.

Version 2 introduced a reasoning Al agent, ReAct-style reasoning and
user approval interface. While ReAct-style reasoning improved transparency
and the approval flow improved transparency and safety, the error recovery
was limited as the system is dependent on one single agent so that manual
intervention might be required by the user. However, this user-in-the-loop
mechanism significantly increased user trust in the system, as users remained
in control of each decision, enhancing security and preventing unintended
commands from being executed.

Version 3 enhanced the UX by adopting a modular agent architecture,
including a Reasoning Agent, Reflector Agent, and Prompt Agent. This made
the system feel slower due to the additional communication between agents but
also increased accuracy and error recovery. As a result, the system felt more
intuitive for the user, with seamless transitions between alternative actions
when initial suggestions were rejected.

In general, the Thought — Action — Result reasoning format helped users
follow the system’s logic and understand the rationale behind each decision.
The multi-agent coordination in v3 added an additional layer of reliability and
interpretability, supporting user trust through structured feedback loops.

4.5 Interpretation of Results

The evaluation of the three system versions - script-based (v1), single-
agent (v2), and multi-agent (v3) - demonstrates an evolution in functionality,
efficiency, reliability, and usability.

The functionality analysis shows that while version 1 achieved the highest
success rate within its limited scope, this came at the cost of flexibility, as it was
incapable of handling tasks beyond its hardcoded logic. Version 2 introduced
Al agents and Al reasoning and was therefore capable of handling any kinds
of tasks. Naturally it has a lower accuracy than a predefined script which is
used in version 1 but therefore it is not limited to certain scenarios. Similar
version 3 has the same flexibility. Its introduced modular agent architecture
including different agents improved accuracy. It has to be noted though that
more development time has been spent on version 3 than version 2. Version 3
has therefore for example a more detailed and improved prompt which has a
high impact on the accuracy.
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In the context of efficiency, the reduced execution times of versions 2
and 3 illustrate the time-saving potential of Al-driven automation. However,
the role of user-in-the-loop control must be considered. While real-world
deployments would involve varying user response times, the tests standardised
this by assuming immediate approval of suggested commands by the user. This
decision allowed the analysis to focus on inherent system performance rather
than human factors. Interestingly, version 3’s more complex architecture
did not significantly increase execution time compared to version 2. That’s
related to the increased development time that has been spent on version
3 with advanced prompt engineering which decreased the amount of errors
happening during execution. Additionally, version 3 introduced a prompt
agent which craft and refines the prompt received by the user input for the
system. Each error during execution highly increases the execution time as it
requires a recovery from the system in our test case. This advantage of version
3 evens out with the disadvantage of it having slower iterations due to agent
communication.

This leads us to the reliability analysis which showcases that version 2 had
much more errors than version 3 during execution. As version 3 only had 2
errors during execution and could recover from 1 the presented recovery rate
is not representative. Moreover, even without a reflector agent version 2 had a
high recovery rate which illustrates the impact of introducing an Al agent for
automation.

Finally, while usability was not a primary evaluation criterion and not
directly measured through the testing protocol, it was considered during
development. Improvements such as transparent reasoning steps, interactive
command editing, and a fullscreen view for better visibility in version 3
contributed to a more transparent and accessible UX. These design choices
support user trust and control, especially important in systems that involve
user-in-the-loop decision-making.

In summary, version 3 emerged as the most robust and adaptable
system, offering a compelling balance between automation, control, and error
recovery. Version 2 represents a significant step forward from the rigidness of
v1 but lacks the full coordination and fallback capabilities of v3.
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Chapter 5

Conclusion and Future Work

5.1 Contributions

This thesis presents the design, development, and evaluation of three system
versions for automating DevOps workflows: a script-based baseline (v1), a
single-agent Al DevOps engineer (v2), and a multi-agent Al DevOps engineer
(v3). The developed systems interpret natural language instructions and
translate them into executable DevOps actions, covering tasks such as CI/CD
pipeline setup, containerisation, and cloud deployment.

A key contribution is the introduction of Re Act-style reasoning, introduced
in version 2, enabling the system to dynamically interpret user requests and
generate automation steps with Thought — Action — Result loops. Version 3
further enhances this approach through modular agent coordination, involving
dedicated Reasoning, Reflector, and Prompt agents. This architecture
significantly improves flexibility, fallback handling, and transparency.

Another central contribution is the integration of user-in-the-loop control,
which allows users to approve, reject, or edit each suggested action. This
mechanism enhances safety and increases user trust in Al-driven automation
by keeping users involved in critical decision points.

The goals of this work were met, as it has been demonstrated that
automation workflows can be accelerated, accuracy can be improved, and
user trust can be enhanced through transparent reasoning and user-in-the-
loop control. Insights gained during development highlight the importance
of agent modularity for fallback mechanisms, the critical role of transparency
in building user trust in Al-generated decisions, and the necessity of user
involvement to maintain control over automation steps.

For developers working on similar automation projects, the recommen-
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dation is to start with a simple working baseline system. It is essential to
first understand what exactly needs to be automated and why before scaling
complexity. Building transparency into Al reasoning and maintaining user
control over automation steps are crucial for ensuring safe and effective Al
based systems.

In retrospect, an earlier focus on prompt engineering would have been
beneficial. The impact of well-crafted prompts on system performance was
underestimated in the initial stages, as well as the importance of selecting a
capable LLLM early in the process. Investing in a more advanced LLLLM from the
beginning, even at higher cost, would have provided a clearer understanding
of system limitations and guided more targeted improvements in prompt
engineering in an earlier stage of the development process.

5.2 Future Work and Extensions

While the developed system demonstrates the feasibility of automating
DevOps workflows using natural language and Al agents, several promising
opportunities for future work remain.

A key aspect is extending support for additional DevOps tools and
platforms beyond the ones tackled in this research such as Terraform or
Jenkins. Testing the systems capability of working with other tools will expand
the system’s applicability and resilience in diverse environments.

Another enhancement involves equipping agents with persistent memory.
This would enable the system to retain contextual knowledge across sessions,
improving reasoning continuity, adaptability, and user personalisation.
Persistent memory would allow agents to learn from past interactions, which
optimises decision-making over time [83, 84, 85, 86].

Expanding the agent architecture with specialised roles, such as validator
agents to ensure command safety, deployer agents for platform-specific
operations, and coding agents specialised in generating high-quality code,
would refine system functionality. In the future, a modular design where
each tool (e.g., GitHub, GitLab, Docker) has a dedicated reasoning agent
could further improve reasoning quality, system accuracy and task execution
efficiency [87, 88]. This could even be enhanced by using a framework that
depending on the task dynamically and autonomously creates specialised Al
Agents [89].

Finally, more comprehensive testing, including edge cases and failure sce-
narios, is essential to validate robustness and fine-tune fallback mechanisms.
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Simulating diverse environments, concurrent tasks, and abnormal conditions
will strengthen the system’s reliability and generalisability for real-world use.

These extensions will not only enhance system functionality but also
reinforce the core principles of flexibility, transparency, and user control
established in this work.

5.3 Limitations

The evaluation revealed several limitations in the current system that require
consideration. First, the script-based version (v1) demonstrated high success
rates but lacked flexibility, as it was incapable of handling tasks outside its
predefined scope. This constraint limits its real-world applicability to specific
scenarios.

In both the single-agent (v2) and multi-agent (v3) systems, the reliance
on clear, concrete user requests highlighted the importance of prompt clarity
and precision. Ambiguous or underspecified inputs led to suboptimal
performance, suggesting that natural language input alone is not always
sufficient for robust automation.

Execution efficiency measurements for v2 and v3 were influenced by
the user-in-the-loop approval mechanism. Since approval speed can vary
significantly between users and scenarios, the measured efficiency may not
fully reflect real-world performance under variable user response times.

Another observed limitation concerns error handling. While v2 and v3
featured fallback mechanisms, v2’s single-agent architecture limited recovery
capabilities, and v3’s recovery rate was impacted by increased complexity
and slower iterations. Moreover, v3’s modular architecture, while improving
accuracy and flexibility, added additional communication overhead and
introduced potential points of failure.

Additionally, all tests were conducted assuming a clean environment with
no pre-cloned repositories. This setup does not fully capture the complexities
of real-world development environments where partial states, pre-existing
files, and concurrent changes might affect outcomes.

Finally, the system was tested with automatic user approval of suggestions,
without simulating real-world user interventions or edits. This likely leads
to not representative execution times and underestimates the potential of user
corrections, especially in cases where skilled developers could adapt suggested
commands more effectively.
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5.4 Final Reflections

The development of the Al-powered DevOps automation system presented in
this thesis offers valuable insights across economic, social, environmental, and
ethical dimensions.

Economically, the system reduces the manual effort and time required to
set up and manage DevOps workflows. This not only accelerates onboarding
for new developers but also enables teams to focus more on value-generating
tasks rather than repetitive configuration work.

Socially, the system makes complex DevOps automation accessible to a
broader range of developers. By lowering the technical barrier, even those with
limited DevOps experience can leverage automation to increase productivity
and consistency, which enables inclusive collaboration within development
teams.

From an environmental perspective, automation increases efficiency
by reducing redundant processes and human errors that can result in
wasted compute resources. Streamlined workflows contribute to lower
energy consumption, especially in large-scale systems where inefficient
configurations can lead to significant resource overhead.

Ethically, the system’s design maintains human oversight as a central
principle. By incorporating a user-in-the-loop mechanism and transparent
ReAct reasoning, the system avoids the risks associated with blind automation.
Users retain control over each decision, ensuring that the system’s actions align
with human judgment and ethical considerations.

In summary, the project demonstrates that Al-driven DevOps automation
can achieve not only technical excellence but also meaningful contributions to
efficiency, accessibility, environmental sustainability, and ethical responsibil-
ity.

In conclusion, this thesis demonstrates that combining Large Language
Models with structured agent reasoning can significantly enhance the
automation of DevOps workflows. By evaluating three distinct system
versions, the project highlights the benefits of modular design, transparent
Al decision-making, and user-in-the-loop control. The system not only
achieves technical efficiency and robustness but also addresses economic,
social, environmental, and ethical considerations, contributing to a future
where Al-augmented DevOps is both powerful and responsible.
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Appendix A

GitHub Repositories

The following repositories contain the implementation of each system version
developed in this thesis:

* Version 1 — Script-Based System:
https://github.com/Eugenius0/automation—-framewo
rk

* Version 2 — Single-Agent System:
https://github.com/Eugenius0/ai-devops—engineer

* Version 3 — Multi-Agent System:
https://github.com/Eugenius0/multi-agent—-devop
s—engineer


https://github.com/Eugenius0/automation-framework
https://github.com/Eugenius0/automation-framework
https://github.com/Eugenius0/ai-devops-engineer
https://github.com/Eugenius0/multi-agent-devops-engineer
https://github.com/Eugenius0/multi-agent-devops-engineer
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Appendix B

Test Evaluation Table

Task# Task System Version Run_Functional (Y/N) Time (sec) Errors (if Any) Recovered (Y/N) Notes
1] clone Gitrub Repo vi 1N - - - Task not supported by v
1] clone Gitrub Repo v 2N - - - Task not supported by v
1] Clone GitHub Repo v an - - - Task not supported by v
1| Clone GitHub Repo vo il 7)- 5 5
1| Clone Gitrub Repo ve 2|y 6| 5 5
1| Clone Gitrub Repo v2 ERs ol B 3
1| Clone Gitrub Repo vs 1y 7| 5 B
1| Cione GitHub Repo va 2y 16 - 5 5
1| Cione GitHub Repo va ay 1= 5 5
2| Create tmp.txt File vi 1N - - - Task not supported by v
2| Create tmp.txt File v 2N - - - Task not supported by v
2| Groate tmp.txt File v an - - - Task not supported by v
2| Croate tmp.txt il vo 1y 16 - 5 5
2| Greate tmp.txt File v2 2y HE s B
2| Greate tmp.txt File v2 ER% 2 - B B
2| Groate tmp.txt File vs 1y 12 - 5 B
2| Groate tmp.txt File vs 2y 25 - B s
2| Greate tmp.txt File v3 3y 16 - 5 5
3| Delste tmp.xt Fie v 1IN - - - Task not supported by vi
3| Deete tmp.xt Fie v 2N - - - Task not supported by v
3 | Deete tmp.xt Fie v 3N - - - Task not supported by v
3| Delat tmp.xt Fle v Gl 16 - 5 5
3| Delate tmp.xt Fie v 2 v " - 5 o
3| Delete tmp.xt Fie v2 ERs 15 - B -
3| Delete tmp.xt Fie v3 1Y 1 - 5 5
3| Delete tmp.xt Fie vs 2y 15 - e B
3| Delste tmp.xt Fie v ay " - 5 5

Figure B.1: Test Evaluation Table - Part 1: Tasks 1-3

4| Run s or gitsatus v 1N - - - Tasknotsupported by v1
4| Aunis or gt status v 2N - - - Task ot supported by v1

4| Aunis or g status vt N - - - Tasknot supported by v1

4| Run s or gitstatus v il 18 No such fie or drectory Y

4| Run s or gitstatus v 2y 17 Same error again Y -

4| Run s or gitsatus v sy 17 Same emor again v -

4| Run s or gitstatus v 1y 10 - - -

4| Aunis o gitstatus v 2y o - 5

4| Aunis o gitsatus v a3y TlE - 5

5| Generate Gitrub Actions Workfiow v 1N 57 Enorin code N Eror in generated yam e

5| Generate Gitrub Actions Workflow v 2y 5 - - -

5 Gonerats GitHub Actions Workdow vt 3y a - 5 5

5/ Generats GitHub Actions Workdow v 1N 30 Enorin code N Eror in ganerated yam fla

5| Generate GitHub Actions Workflow v 2N 45 Enorin code N Erorin generated yam e

5| Generate GitHub Actions Workflow v 3N 42_Erorin executon N Generate code but cidn' ad i 1o the new created fle

5| Generats Gtub Actons Workflow v N 78 Enorin execution + code, inexpacted EOF Y Adjusted now reasoring agent prompt ke | i beforsfo v2

5/ Gonerats GtHub Actions Workdow v 2N 26 Enorin codo N Fixed the ading code to command suggestion problam

5| Generats GitHub Actions Workfow v an 28 Erorin code N

6 Containerize App with Docker vi iy - B 5

6| Containerze App with Dosker A% a7 - - -

6| Containarize App with Dosker v 3y o7 - B B

6| Gontainerze App with Dosker v 1N 20 Enorin exacuion N imilar to oo

6| Gontainerize App with Docker v 2N 24 Enorin exccution N Similarto error in task i generated the code and il but ict add code
6| Containerze App with Docker v 3N 25 Enorin exccution N Similarto rror in task i generated the code and il but ict ad code
6| Containerze App with Dosker v 1y 159 - - ocalhost,

6| Containerze App with Dosker v 2y & - - -

6| Gontainerize App with Dosker v a3y 0 - B

Figure B.2: Test Evaluation Table - Part 2: Tasks 46
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Took longer bacause system wanted to check the hitp responss to vrly accessibilty

- il |
|w } 2y | = - - |

Figure B.4: Test Evaluation Table - Part 4: Tasks 10-12
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