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Abstract
Detecting water under vegetation is critical to tracking the status of geological
ecosystems like wetlands. Researchers use different methods to estimate water
presence, avoiding costly on-site measurements.

Optical satellite imagery allows the automatic delineation of water using
the concept of the Normalised Difference Water Index (NDWI). Still, optical
imagery is subject to visibility conditions and cannot detect water under the
vegetation, a typical situation for wetlands. Synthetic Aperture Radar (SAR)
imagery works under all visibility conditions. It can detect water under
vegetation but requires deep network algorithms to segment water presence,
and manual annotation work is required to train the deep models.

This project uses DEEPAQUA, a cross-modal knowledge distillation
method, to eliminate the manual annotation needed to extract water presence
from SAR imagery with deep neural networks. In this method, a deep student
model (e.g., UNET) is trained to segment water in SAR imagery. The
student model uses the NDWI algorithm as the non-parametric, cross-modal
teacher. The key prerequisite is that NDWI works on the optical imagery taken
from the exact location and simultaneously as the SAR. Three different deep
architectures are tested in this project: UNET, SegNet, and UNET++, and the
Otsu method is used as the baseline.

Experiments on imagery from Swedish wetlands in 2020-2022 show
that cross-modal distillation consistently achieved better segmentation per-
formances across architectures than the baseline. Additionally, the UNET
family of algorithms performed better than SegNet with a confidence of
95%. The UNET++ model achieved the highest Intersection Over Union
(IOU) performance. However, no statistical evidence emerged that UNET++
performs better than UNET, with a confidence of 95%.

In conclusion, this project shows that cross-modal knowledge distillation
works well across architectures and removes tedious and expensive manual
work hours when detecting water from SAR imagery. Further research could
evaluate performances on other datasets and student architectures.

Keywords
Computer Vision, Deep Networks, Semantic Image Segmentation, Knowledge
Distillation, UNET, UNET++, SegNet, Satellites, Synthetic Aperture Radar
(SAR), Sentinel-1, Sentinel-2, Google Earth Engine, Automatic Annotation,
Normalised Difference Water Index (NDWI).



ii | Abstract



Sammanfattning | iii

Sammanfattning
Att upptäcka vatten under vegetation är avgörande för att hålla koll på statusen
på geologiska ekosystem som våtmarker. Forskare använder olika metoder för
att uppskatta vattennärvaro vilket undviker kostsamma mätningar på plats.

Optiska satellitbilder tillåter automatisk avgränsning av vatten med hjälp
av konceptet Normalised Difference Water Index (NDWI). Optiska bilder
fortfarande beroende av siktförhållanden och kan inte upptäcka vatten under
vegetationen, en typisk situation för våtmarker. Synthetic Aperture Radar
(SAR)-bilder fungerar under alla siktförhållanden. Den kan detektera vatten
under vegetation men kräver djupa nätverksalgoritmer för att segmentera
vattennärvaro, och manuellt anteckningsarbete krävs för att träna de djupa
modellerna.

Detta projekt använder DEEPAQUA, en cross-modal kunskapsdestilla-
tionsmetod, för att eliminera det manuella annoteringsarbete som behövs för
att extrahera vattennärvaro från SAR-bilder med djupa neurala nätverk. I denna
metod tränas en djup studentmodell (t.ex. UNET) att segmentera vatten i SAR-
bilder semantiskt. Elevmodellen använder NDWI, som fungerar på de optiska
bilderna tagna från den exakta platsen och samtidigt som SAR, som den
icke-parametriska, cross-modal lärarmodellen. Tre olika djupa arkitekturer
testas i detta examensarbete: UNET, SegNet och UNET++, och Otsu-metoden
används som baslinje.

Experiment på bilder tagna på svenska våtmarker 2020-2022 visar att
cross-modal destillation konsekvent uppnådde bättre segmenteringsprestanda
över olika arkitekturer jämfört med baslinjen. Dessutom presterade UNET-
familjen av algoritmer bättre än SegNet med en konfidens på 95%. UNET++-
modellen uppnådde högsta prestanda för Intersection Over Union (IOU). Det
framkom dock inga statistiska bevis för att UNET++ presterar bättre än UNET,
med en konfidens på 95%.

Sammanfattningsvis visar detta projekt att cross-modal kunskapsdestil-
lation fungerar bra över olika arkitekturer och tar bort tidskrävande och
kostsamma manuella arbetstimmar vid detektering av vatten från SAR-bilder.
Ytterligare forskning skulle kunna utvärdera prestanda på andra datamängder
och studentarkitekturer.

Nyckelord
Computer Vision, Deep Networks, Semantic Image Segmentation, Knowledge
Distillation, UNET, UNET++, SegNet, Satellites, Synthetic Aperture Radar



iv | Sammanfattning

(SAR), Sentinel-1, Sentinel-2, Google Earth Engine, Automatic Annotation,
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Chapter 1

Introduction

In this thesis, I examine the use of deep neural network algorithms to extract
information about water presence in satellite imagery. The study’s main
objective is to compare performances of selected CNN-based architectures
when utilizing DEEPAQUA, a cross-modal knowledge distillation method
(described in [1]). The method uses satellite optical imagery to replace the
manual annotation of satellite Synthetic Aperture Radar (SAR) imagery.

1.1 Background
Tracking reliably and cost-effectively climate change impacts on the natural
world is a significant activity nowadays. The localization and measurement
of different water ecosystems in the natural environment required in the past
costly on-site presence. Today, on-site activities are replaced by semantic
segmentation deep algorithms applied to satellite imagery [1].

In this context, the Department of Geology of Stockholm University
utilizes Deep Learning algorithms to identify, locate, size, and visualize the
extension of wetlands in Sweden over the years.

Wetlands are a specific ecosystem of geological interest where “water
covers the soil or is present either at or near the surface of the earth all year
or for varying periods during the year, including during the growing season”
[2]. One peculiar characteristic of wetlands is that often, the water might be
hidden under vegetation.

The primary types of satellite imagery used to analyze wetlands include
optical and SAR systems:

• Optical satellites are passive systems since they detect the sunlight
terrestrial bodies reflect. Their imagery (e.g., Sentinel-2) is very similar
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to aerial photos and supports well water detection but is strongly affected
by visibility conditions (like clouds, fog, and night) and has difficulties
in detecting water under vegetation;

• SAR systems are active since they transmit signals and detect their
reflection on the Earth’s surface. Since the transmitted signal can pass
through clouds or vegetation, SAR imagery overcomes the limitations of
day/night, clouds, and covering vegetation and is the preferred satellite
source for wetlands analysis.

Deep neural networks have proven to be accurate in the semantic
segmentation of images. Semantic segmentation consists of associating a label
or category with every pixel in an image, and it is used to recognize a collection
of pixels that form distinct categories. In particular, Convolutional Neural
Network (CNN) based architectures like Fully Convolutional Network (FCN)
[3], Dilated Convolution (DC) [4], Atrous Convolution (AC) [5], and U-Net
[6] have been successfully used in segmentation tasks in different areas such
as medical, geoscience and autonomous vehicles to mention a few.

As shown in Figure 1.1, this approach requires time-consuming annotation
work to manually identify water instances in the SAR imagery and produce the
pixel label information needed to train the deep network.

Figure 1.1: Current approach for SAR imagery segmentation requires manual
annotation of imagery for training the algorithm

In this study, we use DEEPAQUA, a method to replace the manual
annotation work of the SAR imagery by utilizing the optical remote sensing
indicator Normalised Difference Water Index (NDWI) [7] to generate masks
as shown in Figure 1.2 automatically. While DEEPAQUA utilizes a UNET
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architecture, in this study, we assess the prediction accuracy performances
across a selection of deep architectures.

Figure 1.2: Automatic mask generation NDWI-based approach replaces the
manual annotation work

1.2 Problem
The key research question addressed by this project is: ”What performances
can be obtained by a selection of CNN-based architectures when segmenting
water in SAR imagery utilizing DEEPAQUA, the automatic annotation process
based on the optical concept of NDWI described in [1]?”

The first step of this project consists of replicating the DEEPAQUA
method with a new from-scratch implementation of UNET (the same
architecture used in DEEPAQUA). The segmentation accuracy is expected
to match the performances obtained in [1]. In the second step of this
project, we apply DEEPAQUA to other CNN-based architectures. We test
the segmentation accuracy performances and expect to align with the state-of-
the-art architectures for water detection.

1.3 Purpose
The purpose of this project is to replicate the results of the methodology
described in [1] and verify performances with additional deep architec-
tures. The output of this project is relevant for geoscience researchers engaged
in water detection. This project utilized publicly available data and established
scientific methods to contribute to preserving the natural ecosystem’s health.
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1.4 Goals
This project aims to replicate DEEPAQUA performances with a new from-
scratch UNET implementation and to verify performances over a selection of
CNN architectures. This has been divided into the following three sub-goals:

1. Verify the viability of replacing the manual annotation of SAR imagery
with DEEPAQUA;

2. Replicate the accuracy that a UNET architecture can achieve;

3. Identify which architecture performs best over a selection of CNN
architectures.

1.5 Research Methodology
The project uses the publicly available satellite optical (Sentinel-2) and SAR
(Sentinel-1) imagery of Swedish wetlands in the Google Earth Engine, and the
cross-modal knowledge distillation method described in [1].

A quantitative research method is adopted throughout the work. The
deductive approach is adopted to prove the research hypothesis.

The viability of replacing the manual annotation of SAR imagery with the
automatic NDWI-based approach is tested by training the architectures with
the cross-modal knowledge distillation method described in paragraph 2.3 and
comparing the obtained results with publicly available sources ([1]).

The performances of the different architectures are assessed on a manually
annotated SAR satellite imagery test set. Comparisons are performed
considering 95% confidence intervals.

1.6 Delimitations
This project focuses on verifying the feasibility and assessing the performances
of an automated annotation approach based on cross-modal knowledge
distillation.

3D segmentation architectures are outside the scope of this project. Other
alternative methods to replace manual annotation with automatic processing,
e.g., self-supervised learning or autoencoders, are also outside this project’s
scope.
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The Swedish wetlands in scope include Örebro (for training) and
Svartådalen (for testing), and the considered satellite data refer to the period
2020-2022.

1.7 Structure of the thesis
Chapter 2 presents the background information about the semantic segmen-
tation deep architectures in scope, the NDWI concept, and the adopted
knowledge distillation approach to replace the manual annotations of SAR
imagery. Chapter 3 illustrates the methods I used to perform the experiments.
Chapter 4 presents and discusses the experiments’ results. Finally, Chapter 5
summarises the findings, highlights limitations, and sketches possible future
work.
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Chapter 2

Background

This chapter provides background information about water detection using
satellite optical sensors (Section 2.1) and water detection using satellite
radar sensors (Section 2.2). Additionally, this chapter describes the three
architectures used in this study for semantic segmentation and the concepts of
self-supervised learning through knowledge distillation (Section 2.3). Finally,
the chapter provides an overview of the relevant related work (Section 2.4) and
concludes with a concise summary (Section 2.5).

2.1 Water Detection with Optical Sensors
Satellite optical imagery (e.g., Sentinel-2) utilizes sensors to capture the
reflected sunlight from the earth’s surface. NDWI [7] is a popular method to
identify water presence in optical imagery. The founding principles of NDWI
are:

• Water reflects green light;

• Water reflects poorly Near Infrared (NIR) frequencies;

• Elements with no water (soil and vegetation) reflect very well NIR
frequencies.

Equation 2.1 shows how the NDWI value is calculated for each pixel of
an optical satellite image, where G is the energy reflected in the Green Band,
and NIR is the energy reflected in the Near Infrared Band. Considering the
properties of water and soil described above, the values of NDWI are defined
in the range from -1 to 1, with negative values corresponding to “no water”
and positive values to ”water”.
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NDWI =
G−NIR

G+NIR
(2.1)

Figure 2.1 shows how NDWI segments water in optical imagery. Equation
2.1 can automatically generate the NDWI image, which is then transformed
into the binary NDWI water mask shown in the figure.

Figure 2.1: Water segmentation with NDWI [1]

The NDWI-based water segmentation approach can be executed in a
completely automatic way. The primary limitations include:

• The optical satellite imagery is only usable in clear daylight conditions
with no clouds and no night darkness;

• The optical satellite imagery does not detect water when it is hidden
below the vegetation (in this case, the reflectivity capabilities of the
vegetation win over the water).

Both of the above are substantial disadvantages when aiming to identify
vegetation-rich wetlands.

2.2 Water Detection in Radar Imagery
Synthetic Aperture Radar Systems (SAR) (e.g., Sentinel-1) transmit power at
frequencies below the light spectrum and capture the reflected energy from the
earth’s surface. The frequency band, different from optical, allows this satellite
imagery to work independently of local light and weather conditions. Also, it
permits identifying water surfaces covered by vegetation [1]. On the other
hand, this type of imagery is more sensitive than optical to noise and speckles



Background | 9

[1]. In the case of SAR imagery, there is, though not a straightforward concept
like NDWI, which can be used to segment water presence. The approach
researchers adopt consists of using semantic segmentation deep algorithms
to extract information about water presence. Semantic segmentation of water
in SAR imagery has to satisfy the following simple main requirements:

• Can perform 2D binary segmentation;

• Can reach good accuracy performances (possibly even with limited
training data).

Different Convolutional Neural Networks (CNN) based architectures meet
these requirements [8]. This study focused on the following deep models, all
based on an encoder-decoder architecture principle [9] :

• SegNet [9] is one of the first encoder-decoder networks, often used in
autonomous vehicle and medical imagery use cases. Described in the
following Section 2.2.1.

• UNET [6], originally developed for medical imagery use cases but
commonly used by geo-researchers for water segmentation tasks.
Described in the following Section 2.2.2.

• UNET++ [10] enhanced version of UNET designed to increase accuracy
in medical imagery use cases. Described in the following Section 2.2.3.

2.2.1 SegNet
SegNet [9] is a convolutional neural network [8] architecture designed for
semantic segmentation in computer vision. It is often used for self-driving
vehicles and analysis of medical imagery like Magnetic Resonance Imaging
(MRI) use cases. It is designed to take an image as input and produce a pixel-
wise label map as output.

Figure 2.2 shows the architecture of SegNet based on an encoder-decoder
architecture (respectively highlighted in the picture with blue-green and red-
light blue colors).

The encoding part captures high-level features by applying 13 convolu-
tional and pooling layers. The encoder network performs convolutions with
a filter bank to produce feature maps. These are then batch normalized.
Then, an element-wise rectified linear non-linearity (ReLU) is applied. Then,
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Figure 2.2: SegNet architecture [9]

max-pooling with a 2×2 window and stride 2 (non-overlapping window) is
performed, and the resulting output is sub-sampled by a factor of 2.

A specific aspect of SegNet consists in the sub-sampling stage, where Max-
pooling is used to achieve translation invariance over small spatial shifts in
the image. Sub-sampling leads to each pixel governing a larger input image
context, contributing to achieving high classification accuracy at the price of
reducing the feature map size.

The output image resolution should be the same as the input image. To
achieve this, up-sampling is performed on the decoder side. The SegNet
decoder network up-samples its input feature map using the memorized max-
pooling indices from the corresponding encoder feature map(s), as shown in
figure 2.3.

Figure 2.3: Max-pooling mechanism in SegNet decoders [9]

Key characteristics of the SegNet decoder include:

• For each of the 13 encoders, there is a corresponding decoder that up-
samples the feature map using memorized max-pooling indices;
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• Sparse feature maps of higher resolutions are produced;

• Sparse maps are fed through a trainable filter bank to produce dense
feature maps;

• The last decoder is connected to a softmax classifier, which classifies
each pixel.

The main advantages offered by SegNet in comparison with other encoder-
decoder architectures for semantic segmentation include the following:

• The reuse of pooling indices for decoding offers a relatively more
computationally efficient solution versus the solutions adopted in the
other two architectures in the scope of this project;

• The model can be trained with a limited amount of labeled data;

• The model has proven in multiple use cases to produce high-resolution
segmentation maps [9].

2.2.2 UNET
Figure 2.4 shows UNET’s architecture which consists of a sequence of CNN
modules of descending (coding path) and ascending (decoding path) feature
dimensionality.

In the coding path, the width and heights of the feature maps are shrunk
while the channel expands by a factor of 2 until it reaches 1024 (typically
the maximum recommended level for CNNs). The feature maps’ widths and
heights are expanded to the mask’s dimension in the decoding path.

The coding path aims to capture context, while the decoding path enables
precise image feature localization. The connections (”skip connections”)
between the coding and the decoding modules in each hierarchical level of
the paths provide the detail to reconstruct accurate shapes of the segmentation
boundaries.

Substantially, while SegNet brings to the decoder only the max-pooling
indexes from the encoding side, in UNET, the skip connection brings to
the decoding side the complete feature map from the encoder in the same
hierarchical position.
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Figure 2.4: Reference UNET architecture [6]

UNET was initially developed in the context of medical diagnostic tasks.
Still, given its simplicity and accuracy, it has also been successfully used in
other use cases, including satellite imagery segmentation.

2.2.3 UNET++
UNET++ is an evolution of UNET developed with a focus on medical imagery
[10]. Figure 2.5 provides a schematic overview of the UNET++ architecture
where the nodes in black color are the modules of an original UNET backbone.

A substantial change in UNET++ is the replacement of the UNET’s
skip connections between the coders and the decoders with more dense
convolutional blocks. Those blocks use information from the module in the
same and below levels. Figure 2.6 shows a schematic view of how dense
convolutional blocks work:

• In the formula shown at the top of Figure 2.6, H is the DenseNet’s com-
posite function that combines Batch Normalization, ReLU activation,
and a 3x3 convolution;

• The elements inside [] are concatenated as the H composite function
inputs;
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Figure 2.5: Reference UNET++ architecture [10]

• U is the UNETs composite function, which consists of two 3x3
convolutions with ReLU activations.

Figure 2.6: UNET++ dense block [10]

Replacing the skip connections with more complex convolutional blocks
aims to reduce the semantic gap between the encoder’s and decoder’s feature
maps so the model has an easier learning task.

An additional change compared to UNET is introduced by a mechanism
called by the authors “deep supervision.” It substantially allows the UNET++
to operate in two different modes:

• Accurate Mode: in this modality, the final output of the model is
obtained by averaging the outputs from all branches in level 0;

• Fast mode: in this modality, there is the possibility to increase the
speed of the model, reducing the number of blocks in the coder and



14 | Background

the decoder used to generate the output. Figure 2.7 indicates how the
deep supervision mechanism in Fast Mode works for different values of
the supervising parameter L.

Figure 2.7: UNET++ deep supervision functionality [10]

Finally, it has to be noted that, differently from the other two architectures,
in their paper [10], the authors propose a slightly more complex loss function
consisting of the combination of the Dice Loss and the Binary Cross Entropy.

2.3 Self-supervised Learning through Knowl-
edge Distillation

Self-supervised learning is a machine learning method [11] that allows
algorithms to learn without needing human-annotated samples. This
paragraph discusses a method to achieve self-supervised learning for SAR
imagery semantic segmentation using knowledge distillation [12].

Knowledge distillation [12] is a methodology, frequently adopted in neural
networks, of using a “teacher” model, often, but not always necessarily,
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complex, to teach to a “student” model, usually simpler, to obtain “teacher”
level performances from the “student” despite of their different complexity.

In [1], Francisco Peña and others propose DEEPAQUA. It is a method
to apply a “reversed” distillation process to perform water segmentation. In
this scenario, the teacher is an optical-based (NDWI-based, see Section 2.1)
model, and the student is a radar-based model (e.g., U-Net on SAR imagery).
This process of distilling knowledge from different domains (optical and SAR
in this case) is also known as cross-modal knowledge distillation [13].

Figure 2.8: Cross-modal knowledge distillation steps from the optical NDWI-
based teacher model to the UNET student model working on SAR [1]

The advantage of this approach is that it allows the transferring of the
simplicity of the teacher (no manual annotation work required by the optical
model) to train the student automatically. As shown in Figure 2.8, in such
a distillation process, the teacher algorithm generates predictions, which are
then used to train the student according to the following steps [1]:

Step 1 Given a pair of optical and SAR images referring to the same area and
taken at the same time, feed the optical image to the teacher model and
obtain the (NDWI-based) segmentation mask as its output;

Step 2 Feed the SAR image to the student model (e.g., UNET) and get the
predicted segmentation mask by the student;

Step 3 Optimise the student model computing the Dice Loss (see Section
2.3.1) between the obtained teacher and the student segmentation
masks;
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Step 4 Compute the gradient of the Loss to the weights of the student model;

Step 5 Update the student weights using a regularisation optimizer (e.g.,
Adam);

Step 6 Repeat steps 1-5 for all pairs of optical and SAR images in the training
set until convergence.

This project replicated the above method with a UNET (Section 2.2.2)
student model in the test region of Svartådalen and experimented with the
two additional CNN-based student architectures: SegNet (Section 2.2.1) and
UNET++ (Section 2.2.3).

2.3.1 Dice Loss
The Dice Loss [14] is commonly used for semantic segmentation tasks. It is
defined as:

LDice = 1− 2× |YT ∗ YS|+ ϵ

|YT |+ |YS|+ ϵ
(2.2)

where:

• YT is the teacher output;

• YS is the student output;

• |·| denotes the sum of all elements in a matrix;

• ∗ denotes element-wise multiplication;

• ϵ is a small constant to avoid division by zero.

The Dice loss ranges from 0 to 1, where lower values show higher
similarity. By minimizing the Dice loss, the student model learns to mimic
the teacher model’s output and thus segment SAR images without requiring
annotations [1].

2.4 Related Work
This section provides an overview of related work in the research areas of 2D
Semantic Segmentation (Section 2.4.1) and wetland detection (Section 2.4.2).
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2.4.1 2D Semantic Segmentation
Deep architectures like CNNs [8] have, since the introduction of AlexNet
[15], proven to deliver higher accuracy performances than traditional machine
learning models like random forests or support vector machines in computer
vision tasks. Compared to the traditional models, CNN networks self-learn
the relevant representative features within the images and better generalize.

Semantic image segmentation is an area of computer vision that aims to
classify each image pixel into a predefined set of classes. Various use cases
have driven interest in semantic image segmentation, including autonomous
vehicles, medical imaging, and remote sensing. The Fully Convolutional
Network (FCN) [3] has been one of the first models proposed for 2D image
segmentation. It uses convolutional layers to reduce the dimensionality of
the input images (encoder). It then makes a class prediction at a reduced
level of granularity. Finally, it uses upsampling and deconvolution layers to
resize the image to the original dimensions (decoder). However, because the
encoder module reduces the input’s resolution, the decoder module struggles
to produce fine-grained segmentation.

The SegNet architecture [9], described in Section 2.2.1 also adopts an
encoder-decoder architecture and addresses the FCN’s drawback using in the
decoder the memorized max-pooling indices from the corresponding encoder
feature map(s), while the UNET architecture [6], as described in Section 2.2.2,
addresses the same FCN’s drawback adding skip connections from earlier
layers in the encoder and summing their feature map to the feature maps in
the decoder.

Further improvements to the UNET architectures are UNET++ [10], and
UNET3+ [16]. As described in Section 2.2.3, UNET++ is a modification
of the UNET architecture that uses nested dense skip connections to reduce
the semantic gap between the feature maps of the encoder and decoder sub-
networks, simplifying the optimizer’s job. UNET3+ further improves the
dense skip connection architecture to simplify the model without penalizing
the performance.

One benefit of downsampling a feature map is broadening the receptive
field for the following filter (given a constant filter size). However, the
broader context comes at the cost of reduced spatial resolution. Dilated
convolutions provide an alternative approach to gaining a wide field of view
while preserving the full spatial dimension [5]. Some architectures replace
the last few pooling layers with dilated convolutions with successively higher
dilation rates at higher computational costs, for example, in the DeepLab
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family of models [17].

2.4.2 Wetland Detection
Wetland detection from satellite imagery is not a trivial task, as water
bodies reflect radiations in different ways depending on the weather and light
conditions, the water haziness, and vegetation.

Many researchers use satellite optical imagery, e.g., Sentinel-2, to identify
wetlands using deep learning algorithms. Various authors proposed the
utilization of different architectures such as AlexNet [15], ResNet [18], and
DenseNet [19]. However, these approaches are sensitive to weather and
daylight conditions and, even more importantly, can not detect water hidden
under vegetation, a common situation for wetlands.

To overcome this limitation, researchers have proposed to use satellite
radar imagery, e.g., Sentinel-1, which operates in the C-band and can pass
through vegetation and clouds [20]. Different algorithms have been used
with satellite SAR imagery, including random forests [21], the WetNet model
[22] an ensemble of 2D CNN, 3D CNN and Recurrent Neural Networks
(RNN) models [23], 3D UNET [24] models utilizing a Generative Adversarial
Network (GAN) [25] to generate synthetic data with similar characteristics
to the ground-truth. However, all these approaches share the limitation
of requiring manually annotated data to train the model, which is a time-
consuming and costly activity.

Self-supervised semantic segmentation from SAR images using knowl-
edge distillation from optical imagery is an approach presented in 2023 in the
paper “Deepaqua: Semantic segmentation of wetland water surfaces with sar
imagery using deep neural networks without manually annotated data” [1]. It
aims to reduce the required manual annotation work for training the model.
The approach, described in Section 2.3, utilizes a student UNET architecture.
This project replicates the methodology described in [1] and extends results
to the SegNet and UNET++ student architectures.

2.5 Summary
The detection of wetlands from satellite imagery is a complex task. The
automatic extraction of water presence from multispectral optical satellite
imagery is possible with methods like NDWI, but satellite optical imagery is
sensitive to clouds, weather, and day/night conditions; moreover, water hidden
under vegetation, very common in wetlands, cannot be seen.
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Adopting deep learning algorithms to perform water segmentation from
SAR imagery is also a common method researchers use. It works
independently of weather and light conditions and detects water hidden under
vegetation. Various deep architectures are available, but all the current
methods require extensive manual annotation work to train the models.

Self-supervised learning through knowledge distillation provides a method
to extract, without manual annotations, water presence in SAR imagery
utilizing a deep network as the student model and the NDWI algorithm
working on optical imagery as the teacher model.

This project utilizes self-supervised learning through knowledge dis-
tillation with three CNN-based student architectures, UNET, SegNet, and
UNET++, and tests their performances on the Svartådalen data set.
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Chapter 3

Methods

This chapter describes the methods used in this thesis project. Section 3.1
provides an overview of the adopted research process. Section 3.2 discusses
the research paradigm. Section 3.3 describes data collection and preparation.
Section 3.4 describes the metrics used to assess the segmentation quality,
the baseline chosen for performance evaluations, and the methods adopted to
evaluate and compare the performance of the selected algorithms.

3.1 Research Process
I addressed the research problem with the following steps:

Step 1 Creation of the Swedish wetlands dataset used for the project: training
and validation data are reused from [1] while the test set is a newly
created manually annotated set created with the methods described in
3.3;

Step 2 Implementation from scratch of UNET (Section 3.4);

Step 3 Assessment of the performances of the self-supervised learning
through knowledge distillation method of a UNET student model
working on the wetlands dataset (assessment performed with the
methods described in Section 3.4);

Step 4 Repetition of Step 2 and Step 3 for SegNet;

Step 5 Repetition of Step 2 and Step 3 for UNET++;

Step 6 Performance comparison of UNET, SegNet, and UNET++ and
conclusions (methods described in Section 3.4).
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3.2 Research Paradigm
I developed the project, adopting a selection of quantitative methods. I
replicated and extended the experiments developed in [1] to address the
research question.

The replica of [1] consists in the analysis of the performances of the UNET
student architecture (Section 2.2.2), while the additions consist in the analysis
of the performances of the two student architectures SegNet (Section 2.2.1)
and UNET++ (Section 2.2.3).

I then applied statistical analysis (Section 3.4.4) to compare the
performances of the three student architectures to a baseline (Section 3.4.3)
and between each other to validate the answers for the research questions
exposed in Section 1.4.

3.3 Data Collection
This section describes the methods adopted for creating the Swedish wetlands
dataset utilized for testing purposes in this project. Section 3.3.1 describes
how the SAR imagery has been obtained. Section 3.3.2 describes how the
SAR imagery was annotated, and Section 3.3.3 describes how the SAR images
and their annotations have been tiled to create the wetlands dataset. The
methodology replicates the process described in [1].

3.3.1 SAR Imagery
The list of Swedish wetlands sites and their GPS coordinates are available at
the site ramsar.org. Based on the amount and quality (substantially affected
by the quantity of snow in the images during winter time) of the available
imagery, the site of Svartadålen has been chosen to create the test data set.

I fetched Sentinel-1 imagery from the Google Earth Engine Platform using
JavaScript. Years in scope included the range from 2020 to 2022. Sentinel-1
data before 2020 is not considered in this project due to speckle and noise,
possibly due to an adjustment on the Sentinel-1 sensors, as noted in [1].

Each month, one image has been selected (the first available date). January,
February, March, and December are excluded to avoid images containing high
snow. Following the same approach described in [1], each image’s data in the
VH band has been considered.

All Sentinel-1 imagery in the Google Earth Engine Platform is pre-
processed using the following steps: thermal noise removal, radiometric
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calibration, and terrain correction [26]. Therefore, no filter or pre-processing
techniques have been applied to clean the original SAR images, except for
removing outlier pixel values by discarding values lower than percentile one
and higher than percentile 99. Min-max scaling was also applied to bring the
pixel values to the range [0, 1].

3.3.2 Manual Annotation
Each Sentinel-1 image, visualized in grey-scale, has been manually annotated
using the geometry import function in Google Earth Engine and then
converted with JavaScript into a black and white mask, as shown in Figure
3.1.

Figure 3.1: Steps of the manual annotation process

Darker areas in the SAR image correspond to water, and lighter areas
correspond to the soil. The area in blue in the annotated image shows the
water body whose contour was manually created by selecting the boundary
profile point by point. Review sessions with three other researchers were held
to mitigate the risk of subjective judgment in the manual annotation.

3.3.3 Image Tiling
The test dataset is created, splitting the collected SAR Sentinel-1 imagery and
the corresponding manual annotations into 64 × 64 pixels tiles. Each pixel had
a resolution of 10 meters. Python scripts originally developed for [1] were re-
used for the tiling process.

Figure 3.2 illustrates how the test dataset was created by combining
the tiles obtained from the SAR imagery and the corresponding manual
annotations.
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Figure 3.2: The test dataset combines the tiles from the SAR imagery and the
corresponding manually annotated ground truth mask [1]

3.4 Evaluation Methods
This section describes the metrics that I have chosen to quantify the quality
of the image segmentation tasks (Section 3.4.1), the method adopted to
train and test the student models (Section 3.4.2), the selected baseline for
performance assessment, and the methods chosen to perform comparisons
versus the baseline (Section 3.4.3).

3.4.1 Metrics
Results are reported using the Intersection Over Union (IOU) metric [27], a
standard for semantic segmentation tasks. IOU measures how well a predicted
object aligns with the object annotation. IOU is determined by calculating the
overlap among two bounding boxes, a predicted box, and a ground truth box.
Mathematically, IOU is defined as:

IOU =
TP

TP + FP + FN
(3.1)

Where True Positive (TP) are the pixels that are correctly labeled as water,
False Positive (FP) are the pixels that are incorrectly labeled as water, False
Negative (FN) are the pixels that are incorrectly labeled ground, and True
Negative (TN) are the pixels that are correctly labeled as ground.

The IOU metric ranges from 0 to 1. A higher IOU value indicates a better
alignment between the predicted and actual regions, reflecting a more accurate
model. Additionally, IOU is robust to class imbalance, which is typical in our
wetland segmentation tasks. For this last reason, I decided not to use other
common metrics for semantic segmentation tasks like the Pixel Accuracy (PA),
which can be misleading when there is a class imbalance [1].
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3.4.2 Student Models Training and Testing
When applying the knowledge distillation method described in Section 2.3, the
student model is trained using the Sentinel-1 (SAR) and the Sentinel-2 (multi-
spectral optical) images of the county of Örebro (8550 km2) in Sweden (this
is the same imagery used in [1]). The steps below are adopted:

• The NDWI method is used on the Sentinel-2 images to generate water
masks as described in Step 1 in Section 2.3;

• The Sentinel-1 imagery and the corresponding NDWI mask for the
entire Örebro region are split into tiles of 64 × 64 pixels (as
recommended in [1] and described in 3.3.3).

The final result consists of 45500 NDWI-SAR pairs obtained for the
Örebro region, which are utilized for training the student model.

For the correct application of the cross-modal distillation process, it is
important that the SAR and optical imagery are taken simultaneously and
that the weather and visibility conditions are good. This limits the amount
of suitable dates. I reused the Orebrö training imagery utilized in [1] taken on
2020-06-23.

The manually annotated Svartadålen set (Section 3.3.2) is then used to test
the student models’ image segmentation performance.

3.4.3 Baseline
Otsu’s method [28] is used as the baseline for performance comparisons of
the student models. This method is chosen since it is unsupervised and does
not require manually annotated data. Additionally, this is the same baseline
adopted in [1].

In summary, Otsu’s method considers every possible threshold value for
the pixels representing the soil and the water in the radar image, calculates the
variance within each of the two clusters, and selects the value for which the
weighted sum of these variances is the least [1]. This project reuses OpenCV’s
Python implementation of Otsu’s method utilized in [1].

3.4.4 Performance Comparisons
The comparison of the student model performance to the baseline (the Otsu
model) is done considering the confidence interval according to the following
steps:
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• Given the test set, the predictions for both the student model and the
baseline model are observed, and then for each test instance, the random
variable difference between the IOU performance of the model and the
baseline is calculated;

• The confidence interval for the above difference random variable at 95%
is inferred. The calculation assumes that the sample mean is normally
distributed and utilizes the t distribution;

• If the above confidence interval includes the value 0, we can not
conclude that one of the models performs better at the given confidence
level.

When comparing the performances of the three student models between
each other, since the more models we compare, the higher the risk of making
a type I (False Positive) error, the Bonferroni correction [29] is applied i.e.,
instead of using a confidence level of 1 − α for n confidence intervals, a
confidence level of 1 − α/n is used. In our case, α = 5% and n = number
of pairwise comparisons = 3 (UNET vs. SegNet, UNET++ vs. SegNet, and
UNET vs. UNET++).
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Chapter 4

Results and Discussion

This chapter presents and discusses the experiments and their results.
Section 4.1 describes the hardware and software environments used for the
project. Section 4.2 provides an overview of the code utilized in the project.
Section 4.3 describes the adopted approach to tune the hyperparameters of the
student models. Section 4.4 presents and discusses the obtained results.

4.1 Hardware and Software Environment
The machine learning experiments of this project were developed using the
Graphics Processing Unit (GPU) environment provided by the Alvis cluster.
Alvis is a national resource provided by the National Academic Infrastructure
for Supercomputing in Sweden (NAISS) dedicated to Artificial Intelligence
and Machine Learning research. Alvis provides several types of compute
nodes with multiple NVIDIA GPUs. My project used Nvidia GPUs of type
T4 and A40.

The machine learning code is developed in a Python v. 3.8.10 environment
and uses the following libraries:

• albumentations 1.3.0

• eeconvert 0.1.22

• geemap 0.20.5

• geopandas 0.12.2

• geojson 3.0.1
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• matplotlib 3.7.1

• python-dotenv 1.0.0

• pillow 9.5.0

• rasterio 1.3.6

• rtree 1.0.1

• scikit-image 0.20.0

• scikit-learn 1.2.2

• scipy 1.9.1

• tqdm 4.65.0

• torch 2.0.0

• torchmetrics 0.11.4

• torchvision 0.15.1

• wandb 0.14.2

4.2 Project Code
To develop this project, I reused and adapted part of the code developed by
F. Peña for the paper [1]. The three student model architectures are instead
developed from scratch. The code is available in GitHub at https://gith
ub.com/melqkiades/deep-wetlands-2023/tree/Ezio.

Below is a concise description of the main functionalities implemented by
the script files:

• container.def : definition of the Apptainer container file (used to define
the software environment described in Section 4.1);

• .env: list of environment-specific variables that I used;

• generate_sar.py: script to generate tiles (Section 3.3.3) from the SAR
imagery (both for training/validation and for test);

https://github.com/melqkiades/deep-wetlands-2023/tree/Ezio
https://github.com/melqkiades/deep-wetlands-2023/tree/Ezio
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• generate_ndwi.py: script to generate tiles (Section 3.3.3) from the
NDWI masks (for training/validation data set). It is also used to create
tiles from the manually annotated masks (test set);

• unet.py: script to implement the UNET student model (Section 2.2.2);

• SegNet.py: script to implement the SegNet student model (Section
2.2.1);

• archs.py: script to implement the UNET++ student model (Section
2.2.3);

• train_models.py: script to train the student models using the cross-
modal knowledge distillation method (Section 2.3);

• baseline.py: script to implement the Otsu method (Section 3.4.3);

• test_IOU_vs_OTSU.py: script to calculate the confidence intervals for
each model and the Otsu’s method on the test set (Section 3.4.4);

• bonferroni.py: script to execute the Bonferroni method on the pairwise
performance comparisons of the best performers of each student model
in the test set (Section 3.4.4);

• map_wetlands.py: script to visualize the segmentation results of each
of the student models;

• map_otsu.py: script to visualize the segmentation results of the Otsu’s
method;

• utils.py, geo_ utils, viz_utils: utility scripts for file format conversions,
completely re-used from [1];

• jaccard_similarity.py: script for IOU Calculation, completely re-used
from [1].

4.3 Models Optimization
I trained the student model architectures with the tiled SAR imagery and the
NDWI masks from the Örebro region collected on 2020-06-23 (same dataset
utilized in [1]), and I have split the resulting 66,625 tile couples into training
and validation with a ratio of 80-20.
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As described in Section 2.3, the training used the Dice Loss and the
AdamW [30] optimizer.

I optimized model hyper-parameters using grid search rounds based on
the performance of the validation set. Otsu’s method, being a non-parametric
model, did not require any grid search.

The parameters considered for the grid search rounds and their ranges of
values are listed below:

• Learning Rate (LR): [0.000005, 0,000001, 0.00005, 0.00001, 0.0005,
0.0001, 0.005, 0.001];

• Batch Size (BS): [4, 8, 16, 32, 64, 128, 256];

• Weight Decay (WD): [0.0001, 0.001, 0.01, 0.1, 0.3, 0.5].

I also doubled the size of the training data set by trying the following data
augmentation (DA) techniques:

• Additive Gaussian Noise (GN) with zero mean and standard deviation
of 1;

• Horizontal Flips (HF);

• Vertical Flips (VF);

• Random crop and resizing to the 64x64 size of the tiles (RC);

• Random rotations (RR) of the tiles in the ranges of:

– Option a: [0°- 90°] (RRa),

– Option b: [0.5°- 1.5°] (RRb),

– Option c: [1.5°- 4.5°] (RRc),

– Option d: [2°- 4°] (RRd),

– Option e: [2.5°- 5.5°] (RRe),

– Option f: [3°- 5°] (RRf),

– Option g: [4°- 6°] (RRg),

– Option h: [10°- 40°] (RRh).

Table 4.1 summarises the hyper-parameter selections that gave the best
IOU performances on the Svartadålen set for the three architectures in scope.
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Table 4.1: Best Performing Hyper-parameter Selection (additive Gaussian
Noise is included in all augmentations)

Architecture LR WD BS Augmentation

SegNet 0.000 05 0.000 1 256 RC

UNET 0.000 05 0.000 1 256 RRd

UNET++ 0.000 1 0.001 256 RRf

4.4 Summary Results
To assess the test performances of the student models, I used the manually
annotated Svartadålen set, consisting of 24 SAR images, shown in Figure 4.1,
which resulted in 2,352 annotated tiles of size 64 x 64 pixels.
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Figure 4.1: SAR Imagery constituting the Svartådalen test set
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Table 4.2: Summary IOU test results

Rounds Otsu SegNet UNET UNET++

Grid search 0.613± 0.020 0.856± 0.012 0.878 ± 0.011 0.877± 0.011

Augmentation 0.613± 0.020 0.863± 0.012 0.883± 0.011 0.884 ± 0.011

Table 4.2 summarises the IOU test performance obtained for the Otsu
method, the SegNet, the UNET, and the UNET++ student models after
the grid search rounds and the (final) addition of data augmentation. IOU
performances are described with a 95% confidence interval. Bold characters
highlight the highest observed values in each optimization step. To be noted
that:

• No change in IOU performances is observed for the Otsu model in the
different optimization steps since the method is not parametric;

• Data Augmentation improved performances of all the parametric student
models;

• The UNET IOU performances obtained in this project are in line with
the ones reported in [1];

• The best final performance obtained in this project is with the UNET++
student model.

Figure 4.2 shows a comparative qualitative view of the model predictions
obtained by the three best architectures on two representative dates, 2021-09-
10 (A) and 2021-11-09 (B), respectively, illustrating conditions with no snow
and with snow.
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Figure 4.2: Illustration of the performance of the best student models for two
different times of the year, without (A) and with (B) snow. The original SAR
images are on the left, followed by the Otsu, SegNet, UNET, and UNET++
predictions, and on the far right, the manually annotated mask

In the above Figure, the following color coding is adopted (Positive =
’water’, Negative = ’no water’):

• Green for True Positive;

• Cyan for False Positive;

• Red for False Negative;

• Black for True Negative.

Sections 4.4.1, 4.4.2, and 4.4.3 present more detailed results for the three
student models.

4.4.1 SegNet results
Figure 4.3 shows the plots of training loss, validation loss, training IOU, and
validation IOU obtained by the best SegNet model. The hyperparameters of
the best model are summarised in Table 4.1. The training and validation set
consisted of the Örebro data set of 2020-06-23. The applied data augmentation
doubled the original data size and included additive Gaussian Noise and
Random Crop and Resizing to 64 x 64.

Each graph shows the mean value of the best model over a sample of ten
experiments performed with ten different randomly selected seeds in the range
of 1 to 100. The lighter blue area in each plot shows the standard error. The
graphs clearly show that the model converges already after five epochs.
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Figure 4.3: Average training and validation loss and IOU obtained with the
SegNet model. The light blue area visualizes the standard error

Table 4.3 shows the 95% confidence intervals of the following variables
obtained on the Svartådalen test set:

• IOU obtained with the Otsu method;

• IOU obtained with the SegNet student model;

• Difference between the IOU obtained by SegNet and the IOU of Otsu
(positive values show that SegNet performed better).

The Table shows each variable’s lower bound of confidence interval (LB),
the mean value, and the upper bound (UB).

Table 4.3: IOU results SegNet vs. Otsu

IOU Otsu IOU SegNet IOU SegNet - IOU Otsu

LB Mean UB LB Mean UB LB Mean UB

0.593 0.613 0.632 0.851 0.863 0.874 0.232 0.250 0.268
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Positive values of the lower bound of the “difference variable” are
highlighted in bold characters and confirm that with 95% confidence, the
SegNet model performs better than Otsu.

4.4.2 UNET results
Figure 4.4 shows the plots of training loss, validation loss, training IOU, and
validation IOU obtained by the best UNET model. The hyperparameters of
the best model are summarised in Table 4.1. The training and validation set
consisted of the Örebro data set of 2020-06-23. The applied data augmentation
doubled the original data size and included random tile rotation in the range
[2°- 4°].

Each graph shows the mean value of the best model over a sample of ten
experiments performed with ten different randomly selected seeds in the range
of 1 to 100. The lighter blue area in each plot shows the standard error. The
graphs show that the best UNET model converges already after five epochs.

Figure 4.4: Average training and validation loss and IOU obtained with the
UNET model. The light blue area visualizes the standard error

Table 4.4 shows the 95% confidence intervals of the following variables
obtained on the Svartådalen test set:
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• IOU obtained with the Otsu method;

• IOU obtained with the UNET student model;

• Difference between the IOU obtained by UNET and the IOU of Otsu
(positive values show that UNET performed better).

The Table shows each variable’s lower bound of confidence interval (LB),
the mean value, and the upper bound (UB).

Table 4.4: IOU results UNET vs. Otsu

IOU Otsu IOU UNET IOU UNET - IOU Otsu

LB Mean UB LB Mean UB LB Mean UB

0.593 0.613 0.632 0.872 0.883 0.894 0.252 0.270 0.282

Positive values of the LB of the “difference variable” are highlighted in
bold characters and confirm that with 95% confidence, the UNET model
performs better than Otsu.

4.4.3 UNET++ results
Figure 4.5 shows the plots of training loss, validation loss, training IOU, and
validation IOU obtained by the best UNET++ model in accurate mode and
with the Dice Loss function (see Section 2.2.3). The hyperparameters of the
best model are summarised in Table 4.1.

The training and validation set consisted of the Örebro data set of 2020-06-
23. The applied data augmentation doubled the original data size and included
random tile rotation in the range [3°- 5°].

Each graph shows the mean value of the best model over a sample of ten
experiments performed with ten different randomly selected seeds in the range
of 1 to 100. The lighter blue area in each plot shows the standard error. The
graphs show that the best UNET++ model converges within 25 epochs.

Table 4.5 shows the 95% confidence intervals of the following variables
obtained on the Svartådalen test set:

• IOU obtained with the Otsu method;

• IOU obtained with the UNET++ student model;
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Figure 4.5: Average training and validation loss and IOU obtained with the
UNET++ model. The light blue area visualizes the standard error

• Difference between the IOU obtained by UNET++ and the IOU of Otsu
(positive values show that UNET++ performed better).

The table shows each variable’s lower bound of confidence interval (LB),
the mean value, and the upper bound (UB).

Table 4.5: IOU results UNET++ vs. Otsu

IOU Otsu IOU UNET++ IOU UNET++ - IOU Otsu

LB Mean UB LB Mean UB LB Mean UB

0.593 0.613 0.632 0.873 0.884 0.895 0.253 0.271 0.289

Positive values of the LB of the “difference variable” are highlighted in
bold characters and confirm that with 95% confidence, the UNET++ model
performs better than Otsu.
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4.4.4 Discussion
The experimental results of this project show that the three student models,
SegNet, UNET, and UNET++, trained using NDWI as the teacher model on the
training dataset collected in Örebro performed better in terms of IOU than the
baseline Otsu with the Svartådalen test set (Tables 4.3, 4.4 and 4.5) showing
both higher mean IOU values and smaller standard deviations (Table 4.2).

Data augmentation improved all the models’ accuracy performances (table
4.2). The combination of additive Gaussian Noise and random rotations in
small angle ranges from 2°to 5°gave the best performance among all the tested
augmentation options.

Simpler models like SegNet and UNET converged after five epochs, while
the relatively more complex UNET++ converged within 25 epochs.

The visual comparison of the model’s predictions (figure 4.2) confirms
that all the student models performed better than the baseline (which appears
to suffer from higher false positive predictions). The different student models
graphically show substantially similar performances with ’snow’ and ’no
snow’ (in the ’snow’ condition, all the models show similar higher false
negative predictions).

Table 4.6 shows the 95% confidence intervals of the following variables
obtained on the Svartådalen test set:

• Difference between the IOU obtained by UNET and the IOU of Segnet;

• Difference between the IOU obtained by UNET++ and the IOU of
Segnet;

• Difference between the IOU obtained by UNET++ and the IOU of
UNET.

The table shows each variable’s lower bound of confidence interval (LB),
the mean value, and the upper bound (UB). In this case, I have calculated the
Upper and Lower bound values using the Bonferroni correction (par. 3.4.4),
with n (the number of comparisons performed) equal to 3. Positive values of
the LB of the “difference variable” are highlighted in bold black characters
and confirm that the minuend model performs better than the subtrahend
with a 95% confidence. Negative values of the LB or the mean of the
“difference variable” are highlighted in bold red characters and show that there
is no statistical evidence that the ”minuend” model performs better than the
”subtrahend” with a 95% confidence.
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Table 4.6: IOU results SegNet vs. UNET vs. UNET++

UNET - SegNet UNET++ - SegNet UNET++ - UNET

LB Mean UB LB Mean UB LB Mean UB

0.012 0.020 0.028 0.013 0.021 0.030 -0.004 0.001 0.007

In conclusion, the analysis of the confidence intervals in table 4.6 shows
that with the Svrtådalen dataset, the UNET and UNET++ models performed
better in terms of IOU than SegNet with a confidence level of 95%. At the
same time, even if UNET++ showed the highest performance, there is no
statistical evidence that UNET++ performs better than UNET with the
same confidence in the considered experiment conditions.

The UNET architecture, thanks to the skip connections, manages to deliver
higher segmentation accuracy compared to the SegNet architecture without
requiring a substantially higher number of parameters in the model (the
two architectures utilize the same number of convolutions and max-pooling
blocks). The UNET++ model, due to the addition of the dense convolutional
blocks, is more complex and has a higher number of parameters, which results
in a slightly longer time to converge and implies that a higher amount of
data might be beneficial for training compared to the other architectures.
Additionally, while this project followed the method described in Section 2.3
and trained all the architectures with the Dice Loss (Section 2.3.1), in their
original paper [10], the UNET++ authors used a combination of Dice Loss
and Binary Cross Entropy. Therefore, further experiments adding the Binary
Cross Entropy Loss for UNET++ and utilizing an enlarged or more augmented
training dataset are recommended for future comparative studies.
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Chapter 5

Conclusions and Future work

This Chapter summarises conclusions (Section 5.1), highlights limitations
(Section 5.2), and proposes a few possible directions for future work (Section
5.3).

5.1 Conclusions
This project aimed at investigating the performances of self-supervised
learning through cross-modal knowledge distillation in the context of water
detection in SAR imagery [1].

The methodology’s primary objective is to replace the manual annotation
work of the SAR imagery with automatically generated masks through the
non-parametric teacher model NDWI [7], which works in the satellite optical
domain.

CNN-based student architectures in scope have been SegNet, UNET, and
UNET++, while the Otsu method has been used as the baseline.

All the three goals for the projects have been achieved (see Section 1.4):

• This project showed that the self-supervised learning through cross-
modal knowledge distillation is viable and performed better in terms
of IOU than the baseline for all the CNN architectures in scope trained
on the Örebro data set and tested on the Svartådalen data set.

• Segmentation accuracy performances in terms of IOU reached the value
of 0.863±0.012 for SegNet, 0.883±0.011 for UNET, and 0.884 ± 0.011
for UNET++ with a 95% confidence.
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• Statistical analysis with a 95% confidence level showed that the IOU
performances of the UNET and UNET++ models are higher than
SegNet. Still, there is insufficient evidence regarding the better
performances of UNET++ versus UNET.

It is to be noted that the performances obtained in this study with the UNET
model are in line with the results presented in [1]. Finally, the hypothesis that
the UNET++ model’s performances can improve by increasing the size of the
training data set is to be further investigated in future comparative work.

Finally, the qualitative visual comparison of the predictions confirms
a better performance of the student models versus Otsu and substantially
comparable performance for the three student models.

5.2 Limitations
This project focused on verifying the feasibility and assessing the per-
formances of an automated annotation approach based on NDWI. Other
alternative methods to replace manual annotation with automatic processing,
e.g., self-supervised learning or auto-encoders, have been outside this project’s
scope.

5.3 Future work
Other suitable future work could include:

• The comparison of UNET++ and UNET student model performances
with bigger training data sets and the addition of the Binary Cross
Entropy for UNET++.

• The addition of other CNN-based architectures, e.g., UNET3+.

• The verification of performances on other wetlands regions beyond
Sweden.
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