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Abstract

When human’s visual system is looking at two pictures taken in some indoor
location, it is fairly easy to tell whether they were taken in exactly the
same place, even when the location has never been visited in reality. It
is possible due to being able to pay attention to the multiple factors such
as spatial properties (windows shape, room shape), common patterns (floor,
walls) or presence of specific objects (furniture, lighting). Changes in camera
pose, illumination, furniture location or digital alteration of the image (e.g.
watermarks) has little influence on this ability. Traditional approaches to
measuring the perceptual similarity of images struggled to reproduce this
skill. This thesis defines the Indoor scene verification (ISV) problem as
distinguishing whether two indoor scene images were taken in the same
indoor space or not. It explores the capabilities of state-of-the-art perceptual
similarity metrics by introducing two new datasets designed specifically for
this problem. Perceptual hashing, ORB, FaceNet and NetVLAD are evaluated
as the baseline candidates. The results show that NetVLAD provides the
best results on both datasets and therefore is chosen as the baseline for the
experiments aiming to improve it. Three of them are carried out testing the
impact of using the different training dataset, changing deep neural network
architecture and introducing new loss function. Quantitative analysis of
AUC score shows that switching from VGG16 to MobileNetV2 allows for
improvement over the baseline.

Keywords

computer vision, perceptual similarity, visual place recognition, indoor scene
localization, deep neural networks



ii | Abstract



Sammanfattning | iii

Sammanfattning

Med minskliga synférmégan dr det ganska litt att bedoma om tva bilder som
tas i samma inomhusutrymme verkligen har tagits i exakt samma plats dven
om man aldrig har varit dar. Det dr mojligt tack vare méinga faktorer, sddana
som rumsliga egenskaper (fonsterformer, rumsformer), gemensamma monster
(golv, viggar) eller nirvaro av sirskilda foremél (mobler, ljus). Andring
av kamerans placering, belysning, moblernas placering eller digitalbildens
forandring (t. ex. vattenstimpel) paverkar denna formaga minimalt. Traditionella
metoder att méta bildernas perceptuella likheter hade svarigheter att reproducera
denna firdighet . Denna uppsats definierar verifiering av inomhusbilder,
Indoor Scene Verification (ISV), som en ansats att ta reda pa om tva inomhusbilder
har tagits i samma utrymme eller inte. Studien undersoker de framsta perceptuella
identitetsfunktionerna genom att introducera tva nya datauppsittningar designade
sarskilt for detta. Perceptual hash, ORB, FaceNet och NetVLAD identifierades
som potentiella referenspunkter. Resultaten visar att NetVLAD levererar de
bista resultaten i badda datauppséttningarna, varpa de valdes som referenspunkter
till undersokningen i syfte att forbittra det. Tre experiment undersoker paverkan
av anvindning av olika datauppsittningar, dndring av struktur i neuronnétet
och inférande av en ny minskande funktion. Kvantitativ AUC-virdet analys
visar att ett byte frin VGG16 till MobileNet V2 tilldter forbittringar i jamforelse
med de primdra I6sningarna.

Nyckelord

datorseende, perceptuella likheter, visuell platsigenkénning,
inomhusbild lokalisering, djupa neuronnit
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Chapter 1

Introduction

Human’s visual system is capable of recognizing similarities, despite not
having seen the object of interest before. Moreover, it is able to rank entities
with respect to similarity. While the task is easy for humans, learning a good
perceptual similarity metric remains a challenge for computer systems. It is
not clear how similarity between two objects can be measured in a quantitative
way due to the complicated mechanics of human’s perception [1]. Perceptual
similarity metrics have been applied in image retrieval [2, 3], anti-piracy
search [4], quality assessment [5, 6] and entity resolution [7]. Researchers
in those fields use different similarity metrics depending on their use case.

1.1 Problem statement

This thesis explores the Indoor scene verification (ISV) problem. Its goal is to
find a way to accurately identify whether two photographs of the indoor scenes
were taken in the same indoor space or a different one.

Figure 1.1: Two images of the same indoor scene taken at a different camera
pose (different perspective).
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Figure 1.1 presents two images of the same room but taken from a different
angle. Even though the images are significantly different (in terms of what
colour or object a given pixel is presenting), it is easy for a human observer
to identify that both were taken in the same room. Figure 1.2 displays two
pictures of the same room taken at different daylight conditions. Again, even
though the colours and tones are completely different, it is not difficult at all to
notice that the photographer took the photographs in the same indoor location.

Figure 1.2: Two images of the same indoor scene taken at a different time of
the day (different illumination) and moved objects.

In order for a computer to make this decision, it needs a way to measure
the perceptual similarity of those images quantitatively. It has to take into
account the challenges specific to pictures of the indoor scenes. To the best
of our knowledge, there is currently no method designed with an aim to
verify the location of indoor scene images in such a way. Authors of [§]
analyze pictures of sex trafficking victims taken in hotel rooms and trying to
link them to the database of photographs of hotel rooms scraped from hotel
websites. They use existing and already available methods for measuring the
perceptual similarity of images. It is also pointed out that there is a room
for exploration and experimenting with different methods designed to analyze
indoor scene similarity. Such methods, specialized in this narrow domain,
should supposedly be better at solving this challenge. What are the capabilities
of existing methods in solving the ISV task and how can they be improved?

1.2 Background

In order to measure the perceptual similarity of an image one first needs to
extract the information about the contents of the image and be able to compare
them later in a quantitative way. The technique that enables this is detecting
local invariant features using Scale-invariant feature transform (SIFT) [9]. The
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features extracted using this method can be later matched between the two
images using a fixed threshold. The number of features matched serves as
a perceptual similarity measure. Recent research in computer vision domain
focuses on designing and training deep neural network architectures. Such
networks are trained on a dataset of examples, ranked in terms of similarity.
These models are able to learn how to convert images into lower-dimensional
representations. One can later use euclidean distances between two of them to
measure perceptual similarity [10, 11, 12, 13, 14].

Visual place recognition field builds on top of the methods described above
and given an image, it tries to match the location where it was taken. The
problem received a high interest during past years, which resulted in successful
solutions applied to the outdoor scene recognition. These solutions are based
on extracting image information with local invariant features [11] or deep
neural network [15]. Using large databases of geo-tagged images and efficient
perceptual similarity measurement, they are able to quickly retrieve matching
images and recognize an accurate location. Indoor localization is also an active
area of research. Using the above mentioned techniques for extracting image
representations, the researchers are trying to find out the exact location of the
camera within a scope of a single or several buildings [16, 17, 18].

1.3 Application and purpose

Nowadays, the Internet is a rich and valuable source of data. The number of
data providers and websites where the content is generated constantly increase.
This poses a challenge to entities that are willing to analyze such data. The
uniqueness of the data is especially challenging. There is nothing that stops a
single entity in the real world to have multiple digital counterparts. The record
linkage can be achieved by using attributes of the instances such as images.
Automated ISV could support detecting the same apartments across different
websites. Real estate technology companies such as SonarHome [19] or short-
term rental comparison engines e.g. Holidu [20] (holidu.com) may benefit
from this research. Another application is to fight sex trafficking. Authors of
[8] are matching images from sex services advertisements to pictures of hotel
rooms.

The purpose of this thesis is to empower organizations that use indoor
scene image data in applications like described above and broaden the knowledge
about image clustering by exploring this field in a more narrow domain. The
results of the thesis should guide anyone who needs to achieve accurate results
in the ISV task.
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1.4 Goals

The goal of this project is to find out what would be the best approach to solve
the ISV problem as defined in section 1.1. This has been divided into the
following three sub-goals:

1. create evaluation datasets that would enable assessment and comparison
of the model performance in the ISV task,

2. evaluate existing solutions for measuring the perceptual similarity of
images and choose the best baseline,

3. investigate and implement improvements based on existing solutions.

1.5 Research Methodology

The research process is divided into three phases. In the first phase, two
evaluation datasets are to be defined and generated. The first one will be
created using images from an academic dataset, called ScanNet [21]. The
second one will be created using real-world indoor scene images from real
estate listings collected with the support of the host company. In the second
phase, several baseline candidates will be evaluated on the prepared datasets.
The best one will be chosen and in the last phase, a number of experiments will
be carried out aiming to improve it. Each experiment consists of designing
and evaluating a different solution to the ISV task. In order to assess them
in a quantitative way, metrics typical for binary classification will be used i.e.
Receiver Operating Characteristic (ROC) curve, precision and recall curve and
AUC score. The results will also be verified qualitatively by analyzing raw
examples and using dimensionality reduction techniques.

1.6 Structure of the thesis

Chapter 2 reviews relevant background information about the methods for
extracting image representation and applications in relevant fields. Chapter 3
presents the methodology and method used to answer the research question.
Chapter 4 provides a detailed description of what has been done during the
degree project. Chapter 5 summarizes the results and presents the most
interesting insights. Chapter 6 concludes the thesis, reflects upon the work
done during this project and proposes future research direction.
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Chapter 2

Background

In this chapter, scientific background relevant to the ISV task is presented.
In section 2.1 methods for measuring the perceptual similarity of images
are discussed and evaluated one by one. Section 2.2 reviews published
applications of those methods in visual place recognition and indoor localization
domains. Section 2.3 is a summary of this chapter.

2.1 Image similarity measures

The following sub-sections discuss various methods for measuring the similarity
between two images. Each provides a brief description of how the given
technique works, it’s pros and cons, as well as typical applications.

2.1.1 Mean squared error and structural similarity

The most simple approach to measure similarity between two images is
calculating the average of the squared difference between corresponding pixel
values also called Mean squared error (MSE). This method accurately and
quickly identifies identical images, which pixel values are the same. However,
any slight change in a crop, camera pose, illumination or digital alteration of
an image results in significantly different pixel values and therefore high MSE
distance. Peak signal-to-noise ratio (PSNR) is a metric based on MSE that
is used to measure the quality of image or video compression [22]. Another
metric aiming to improve PSNR is Structural similarity index (SSIM) [23].
To compute the similarity measure, it takes into account three components:
luminance comparison, contrast comparison and structure comparison. It has
been demonstrated it is suitable for image quality assessment.
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2.1.2 Histogram methods

Another approach to measure the similarity of two images is comparing their
colour histograms. The coluors of an image are grouped into many discrete
bins and histogram is obtained by counting the number of times each colour
appears in an image. Then the similarity metric is obtained from histogram
intersection [24]. Such methods do not take into account spatial relationships
between pixels and therefore are invariant to any changes in the rotation of an
image. They are also robust to slight changes in scale, angle distortions or
occlusion. The techniques have been successfully applied for image colour-
indexing [25].

2.1.3 Local invariant features matching

It is a challenge to compare image similarity in a way that is insensitive to the
changes in image crop, camera pose or illumination. Extracting distinctive
invariant features using methods like SIFT [9] is a way to address these
problems. Thanks to the features being distinctive, it is feasible to match
them between images and compute similarity metric using a number of
features matched or bag-of-visual-words (BOV) approach [26]. It has been
demonstrated that matching extracted local invariant features could be used as
a robust perceptual similarity metric [27].

2.1.4 Perceptual hashing

Images can be quickly and accurately compared using perceptual hashing
algorithms. They are designed in a way to preserve the image features and
generate hash values that are comparable between each other using hamming
distance. The most basic one is the average hash (aHash), which reduces the
size of an image to 8x8 (64 pixels), converts it to grayscale (64 colours) and
constructs the hash by setting 64 bits to either 1 or 0 based on the colour value
being below or above the mean value. Other algorithms are based on aHash
and include perceptual hash (pHash) [28], difference hash (dHash) [29].

2.1.5 Deep Neural Networks

Recently it has been shown, that deep neural networks outperform methods
based on hand-crafted features. Authors of [10] train a deep neural network
architecture to learn a similarity metric by itself. During the training phase
the model is fed triplets of images (anchor, positive, negative). It uses a triplet



Background | 7

loss with an objective to keep a fixed euclidean distance margin between the
representation of a positive and the negative.

2.2 Related works

The research areas that are very close to the ISV task are visual place
recognition and localization. This section demonstrates literature applying
image similarity measures in different domains.

2.2.1 Outdoor place recognition

There were successful attempts to tackle visual place recognition problem
on outdoor scenes using extracted local invariant features [11]. Authors
build on top of existing solutions for image retrieval and location recognition.
They manage to improve them by selecting the local features based on their
distinctiveness.

Deep neural networks were also applied to the outdoor place recognition
problem using NetVLAD pooling layer designed for this purpose [15]. The
authors mimic vector of Locally Aggregated Descriptors (VLAD) [30] in
the convolutional neural network architecture. They also apply a triplet loss
similar to the one used in [10] or [12].

2.2.2 Indoor visual localization with camera pose
estimation

Indoor localization problem involves predicting the camera location and
sometimes also the 6 degrees of freedom camera pose based on a query
image taken by this camera. It is more challenging than the outdoor place
recognition problem due to several reasons: large textureless areas inside
buildings (white walls), repetitive patterns, dynamic changes in illumination
and frequent changes of objects position.

Authors of [16] build on top of the pre-trained NetVLAD model [15] in
order to retrieve a short-list of potential candidate images. Other researchers
decide on their own deep neural architecture based on InceptionV3 [18] or
AlexNet [17]. They treat the problem as a classification task dividing the
building space into zones and sub-zones. Other works utilize Long short-term
memory networks for this purpose [31]. The solutions designed in the above
works are proved to be working within the scope of up to 12 buildings.
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2.2.3 Indoor scene verification

The ISV problem as described in section 1.1 is similar to the indoor visual
localization task. In our case, it is not necessary to discover exact camera
location and its pose, but we want to accurately decide whether two images
were taken in the same indoor space. It is also desirable to discover similarities
at a scale larger than a couple of buildings. This problem was tackled using
pre-trained NetVLAD model to match pictures of hotel rooms and fight the
problem of sex trafficking [8].

2.3 Summary

This chapter provided an overview of how the similarity between two images
could be measured. Looking at all presented methods it is clear that there is no
single best similarity measure for images as the concept of similarity may be
different depending on the domain and application. No metric would capture
every aspect of what human’s visual system considers to be similar. This is
why solutions designed to solve one problem in a narrow domain e.g. outdoor
location recognition tend to work better than generic methods.

Indoor location recognition problem received a high interest during recent
years sparked by significant improvements in computer vision tasks and
increased interest in robotics. It builds on top of outdoor localization methods
as the problems share common challenges however, indoor scenes seem to be
more complex. The ISV problem has not achieved a high interest yet.
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Chapter 3

Research method

The purpose of this chapter is to provide an overview of the research method
used in this thesis. Section 3.1 describes the research process. Section 3.2
presents what kind of data will be required to answer the research question and
how it will be collected. Section 3.3 describes the design of the experiments
carried out in this project. Section 3.4 discusses how the reliability of and
validity of the method and data will be ensured and section 3.5 describes
planned data analysis.

3.1 Research Process

The ISV topic has not been addressed directly yet. Therefore there are no
publicly available datasets designed to tackle this problem specifically. In the
first phase of the project, the datasets will be created. Their aim is to enable the
data collection and the quantitative evaluation of the solutions to the problem.
In the second phase, the existing methods feasible for solving the ISV task will
be chosen. Each of them is going to be evaluated on the datasets created in
phase one. The most promising one will be chosen as the baseline for the last
phase of the project. The improvement attempts will be considered in the last
phase. Three experiments will be designed and carried out aiming to improve
the result of the baseline models. The goal of each experiment is to prepare
a solution to the ISV problem and apply it on the datasets created in the first
phase. The results of the experiments will be compared against the results of
the baseline in a quantitative way together with additional qualitative analysis
if necessary.
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3.2 Data Collection

The data necessary to answer the research question will be collected through
a series of experiments carried out in phases two and three of the project. All
experiments will be applied on the same datasets created in phase one.

The datasets should be created from a large number of images presenting
indoor scenes. Some of the pictures should be taken in the same location
while others in different locations. There must be a wide diversity of unique
locations. The final dataset should consist of samples generated from such
images. One sample is a pair of images with a binary label classifying whether
two images present the same indoor scene or not. For the purpose of this
project, two pictures are considered to present the same indoor scene if they
were taken in the same room and present the same part of the room sharing
common patterns or objects that enable identifying them as taken in the same
location by a human observer.

The methods applied as baselines and experiments should be able to
identify a pair of images taken in the same location or noti.e. for an input being
a pair of images a normalized distance score between 0 and 1 is expected as
output. The final distinction is then enabled by applying the certain threshold
to the scores.

Some of the datasets will be created based on the academic datasets and
it might be necessary to get access approval and preprocess the data. Other
datasets will be created manually e.g. scraped from the Internet or obtained
with support from the host organization. It is necessary to pay special attention
to copyrights in both cases. In case of academic datasets, this will be done
through sticking to rules established in agreements and licenses attached to
the datasets. In the case of scraped data, it will be achieved through careful
analysis of scraped website’s terms of service and obeying the copyright law.

3.3 Experimental design

Each experiment’s goal is to solve the ISV problem. The model tested in
each experiment is supposed to take a pair of images as input and return a
similarity measure of two images as output. Scores for all samples within each
dataset will be generated for later evaluation. The evaluation will be performed
quantitatively using ROC curve and AUC score.

The experiments will be developed and run using Python 3.7 interpreter
and common scientific libraries (NumPy, SciPy, Pandas and PyTorch). PyCharm,
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Visual Studio Code and Jupyter Notebook will be used as a development
environment. The code will be saved either as Python script files or [Python
notebook files.

Design and preparation of the experiments will require standard PC
hardware and access to the internet. Some of the experiments will require
GPU hardware suitable for deep learning tasks.

3.4 Assessing reliability and validity of the
data collected

This section aims to provide means of ensuring reliability and validity of the
chosen method and collected data.

3.4.1 Validity of method

Quantitative methodology is a typical research method used in computer
vision. As long as the evaluation datasets are created according to the
guidelines, the generated data is expected to return valid results. However, due
to the complex nature of some models, a qualitative analysis may be required
to ensure validity and better understand the pros and cons of the given solution.

3.4.2 Reliability of method

To ensure the reliability of the quantitative experiment, it needs to be ensured
it is designed in the right way. First and foremost it is forbidden to use any
samples from the evaluation dataset during the design and development of the
experiments. The experiments are also expected to be reproducible. Therefore
each experiment will be run on three different variants of the dataset and the
result of each of them will be reported.

3.4.3 Data validity

The validity of the data will be checked manually by the qualitative analysis of
samples randomly chosen from each dataset. Additionally, the results of each
experiment will be checked by analyzing the distribution of output scores.
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3.4.4 Reliability of data

To ensure the results can be relied upon, at least two evaluation datasets should
be created. If the amount of data allows for such operation, the samples should
be split among 2 disjoint datasets. This will ensure the results of baselines and
experiments are cross-checked and reproducible on multiple datasets.

3.5 Planned Data Analysis

This section provides an overview of data analysis techniques and data analysis
software used in this project.

3.5.1 Data Analysis Technique

Firstly, the data collected from the experiments will be analyzed descriptively
to check for any outliers or errors. Then for each experiments evaluation
metrics typical for binary classification will be computed i.e. AUC and
confusion matrix. The results will be also visualized using ROC plot (recall
and fall-out), as well as precision and recall plot. Qualitative analysis will
consist of analysis of the false positives and false negatives as well as reducing
dimensionality of a random sample and assessment of clustering capabilities.

3.5.2 Software Tools

The data analysis will be carried out in Jupyter Notebook environment using
Python 3.7 and common libraries used for data preparation and visualization
(NumPy, Pandas, Matplotlib, Plotly). The outcome of the analysis are image
files presenting plots comparing the experiments.
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Chapter 4

Indoor scene verification

This chapter explains what has been done during this degree project. The work
has been divided into 3 phases as described in section 3.1. In section 4.1 the
datasets created in phase one are presented. Section 4.2 describes the methods
chosen as baseline candidates and compares them. Last section 4.3 introduces
experiments attempting to improve the baseline. The phases of the project and
their contents are illustrated in figure 4.1.

Phase 1 Phase 2 Phase 3
create evaluation choose the best baseline carry out the experiments
datasets
pHash — NetVLAD —
In((jjo?r sctan ORB |—| [quantitative INNetVLAD | | | quantitative
atase > analysis > v1 analysis
e + > +
qualitatiye InNetVLAD qualitatiye
FaceNet — analysis v analysis
Real estate
listings
dataset NetVLAD — INetYLAD |

Figure 4.1: Phases of the ISV project

4.1 Evaluation datasets

In the first phase of the project, two datasets were created. Their aim is to
enable performance assessment of the baseline candidates and the models
prepared during the experiments. The first one called Indoor Scan Dataset
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(ISD) is presented in sub-section 4.1.1 and the second one named Real Estate
Listings Dataset (RELD) is described in section 4.1.2.

4.1.1 Indoor scan dataset

ScanNet [21] is an RGB-D video dataset containing 2.5 million pictures of
indoor scenes across more than 1500 scans. Thanks to the generosity of
ScanNet project members, I was able to download and use the data for this
thesis. The scans were taken in different indoor locations using a tablet device
with an RGB-D camera attached. Device owner was instructed to walk around
the room while holding the camera. In the dataset, sometimes several scans
were taken in the same room. The dataset is split by the authors into 1201
training and 312 validation scans.

As the dataset was created for 3D object classification and semantic
segmentation, it contains much more information than it was required for this
project e.g. camera pose and depth information. In the beginning, it was
necessary to extract all JPG images from each scan using a Python script
provided by the authors of the dataset. The script was designed to work with
Python 2, so it was necessary to modify it slightly to enable seamless work in
Python 3.7. For some of the scenes in the training dataset, it was not possible
to extract images due to errors or missing data. In the end, final number of
images was 1 477 427 across 929 scenes in the training dataset and 539 499
across 312 scenes in the validation dataset. All images within a single scan
are numbered according to the sequence in which they were taken.

Figure 4.2: Examples of image pairs separated by 10 frames in the scan
sequence

It can not be assumed that all images in a scan belong to a single class for
the purpose of the ISV task. Authors of images were told to "roll" the camera



Indoor scene verification| 15

around the room and capture the whole space to be able to generate a 3D
reconstruction. As a result, the images present completely different parts of
the room. For someone who sees these scenes for the first time, it is impossible
to tell whether two randomly chosen pictures were taken in the same indoor
location or not. When two pictures taken one after the other are picked, it
is clear they present the same indoor scene and therefore belong to the same
class. As the camera is moved further, the images contain different objects
and other parts of the room. The images gradually become less and less of the
same class. One can compare image pairs separated by 10 frames (figure 4.2),
20 frames (figure 4.3) and 100 frames (figure 4.4) to get a sense of how the
images become different with a growing number of frames between them.

Figure 4.3: Examples of image pairs separated by 20 frames in the scan
sequence

This phenomenon is also illustrated in figure 4.5, which presents mean
pHash similarity distance and confidence intervals with respect to the number
of frames between two images. The distance equal to 0.5 is plotted with a red
dashed line as it is an expected value of pHash for two randomly taken images.

According to the data presented in figure 4.5 image pairs separated by
only up to 10 frames have almost the same contents and are easy to identify
as presenting the same scene using pHash algorithm. The examples of such
image pairs are presented on figure 4.2. As the camera is moved further away,
the pHash algorithm becomes less and less effective. Examples of images
separated by 20 frames are shown in figure 4.3. Such image pairs are already
hard to identify as the same by pHash algorithm. Although they are still
presenting the indoor scenes that are very similar and easy to identify by a
human observer. At some point the image pairs were taken so far away from
each other, they are impossible to be identified as the same indoor scene. On
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Figure 4.4: Examples of image pairs separated by 100 frames in the scan
sequence

figure 4.4 examples of images separated by 100 frames are shown. These are
very hard examples for human’s visual system as well.

The number of frames is not a perfect measure to separate image classes.
The camera could be moved across the room at a different speed. In this thesis,
it is assumed that the camera was not moving at a significantly different pace
between the scans and within the scan sequence. This effect may be explored
further by using the camera pose data and analyzing the location and angle of
taken pictures.
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Figure 4.5: pHash similarity distance with respect to the number of frames
between two images. Sample of 10 000 image pairs across 100 scene scans
from validation dataset



Indoor scene verification | 17

An evaluation dataset for the ISV problem has to consist of image pairs
labelled using a binary variable. It should label them as either being the
same indoor scene (positive or "1") or not (negative or "0"). In order to
create such dataset out of the ScanNet dataset, an assumption has to be
made regarding the number of frames between images in a sequence, which
separates neighbouring pictures between positive and negative. In other
words: after how many frames the image does not present the same indoor
scene anymore? Rather than choosing one fixed number, I propose a method
that relies on sampling from truncated normal distribution to select a set of
images picturing the same indoor space i.e. belonging to the same class.
Firstly a frame index is sampled at random from the whole sequence of the
scan. In the next step image indices are sampled from a truncated normal
distribution centred around the frame index. The standard deviation parameter
is constant and allows to manipulate the degree of difficulty of the dataset.
In this project 3 standard deviation parameters are proposed: 10, 20 and 30.
As a result, easy, medium and hard dataset variants are obtained. Figure 4.6
illustrates how image indices belonging to one class were sampled from a scan
sequence consisting of 1800 images.
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—— hard (stdev=30) / \
0.030 \
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/// /
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Figure 4.6: Example of truncated normal distributions used to generate
positive image pairs for easy, medium and hard dataset variants

Each dataset variant will consist of 10 000 triplets. Each tripletis an anchor
image, positive image pair and negative image pair. This results in 20 000
observations labeled as O or 1. Every triplet is sampled from the dataset of all
images by taking following steps:

1. select two scenes at random without replacement,
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2. sample a single image at random from all images belonging to the first
scene,

3. sample a neighboring positive image pair by picking a random variate
from a truncated normal distribution and rounding it to the nearest
integer (the distribution is centered around image index with a standard
deviation value depending on the variant of the dataset),

4. sample a random negative pair from images belonging to the second
scene.

4.1.2 Real estate listings dataset

To test the baseline candidates and the experiments in a real-world scenario,
a dataset that would resemble a real life application of the ISV was created.
SonarHome is a company, that uses the real estate listings data from various
sources to gain insights about current trends in the real estate market. One
of the data sources is apartment listings scraped from the real estate portals.
However, very low quality of this data requires manual processing to make
it useful for advanced analysis. The company provided me with real estate
listings URLs, grouped into categories based on the analysts’ judgement to be
related to the same apartment in the real world.

Based on this data, the images of publicly available listings were collected.
They were grouped into subcategories of pictures taken in the same room. This
dataset consists of 540 images of 102 scenes across 17 different apartments.

Only one variant of this dataset was created by following the steps below:

1. for each apartment room, generate unique combinations of length 2 from
all images and label such image pairs as positive,

2. for each image in each apartment room, create a cartesian product with
all images from other apartments. Label such image pairs as negative.
Sample a number of negative image pairs equal to the number of positive
image pairs.

The dataset generated according to the above guidelines consists of 3626

image pairs and an equal number of positive and negative samples.

4.2 Baseline selection

Following insights from the literature study, four techniques for image similarity
measurement were selected to be evaluated as the baseline candidates. In
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section 4.2.1 each of them is briefly described. In section 4.2.2 the performance
of the baseline candidates is evaluated and the best one is chosen.

4.2.1 Baseline candidates

Perceptual hashing [28] was chosen as a representative of hashing approaches
to measure image similarity. For every image in each dataset, 64-bit hash
value was computed. In the next step, the hamming distance between two
hash values of each labelled image pair was computed. ImageHash library for
Python was the implementation used to test this technique.

To test the performance of methods based on matching local invariant
features, the technique called ORB [32] was selected as the next baseline
candidate. From each image, 500 descriptors were extracted. In order to
compute the distance between labelled image pairs, the descriptors were
paired between each other using brute force hamming distance matching.
The number of matched descriptors normalized by the maximum number of
descriptors served as a final similarity measure. The aforementioned tools are
implemented in OpenCV?2 library for Python, which was used in this project.

NetVLAD [15] is a neural network architecture designed to tackle visual
place recognition problem. It was trained on images of outdoor scenes using
weakly supervised ranking loss. It uses a pre-trained network convolutional
neural network without the last layer, which serves as a dense descriptor
extractor. The output of the encoder network is transformed into a compact
representation with a NetVLAD pooling layer. Such representations can be
later compared between each other using euclidean distance. Authors tested
two convolutional neural network architectures as dense descriptor extractors:
VGG16 [33] and AlexNet [34] and achieved the best results on VGG16. In
this project, I am using weights of a model based on VGG-16 and trained on
Pittsburgh dataset [35].

A deep neural network architecture named FaceNet [12] is designed for
face recognition, verification and clustering tasks. It is a successful application
of online triplet loss, which accurately verify pictures of human faces. The
similarity scores are indifferent to changes in illumination or camera pose.
The reason for including FaceNet in the list of potential baseline candidates,
is to evaluate and compare the performance of the model trained on data from
a different domain.
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4.2.2 Baseline evaluation and selection

To compare the performance of the models in the ISV task, Receiver Operating
Characteristic (ROC) curve and Precision and recall (PR) curve were used.
The distances between images were scaled to a 0-1 range for each model before
the evaluation. On figure 4.7 one ROC plot is presented for each variant of the
Indoor Scan Dataset (ISD).
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Figure 4.7: Baseline candidates - ROC curve on all variants of Indoor Scan
Dataset

All methods presented in this section perform worse in terms of AUC on
dataset variants with higher standard deviation parameter. This is according to
the expectations as such datasets consist of image pairs that are further away
from each other on average. Therefore they are harder to be correctly verified
as presenting the same indoor space.
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Figure 4.8: Baseline candidates - Precision and Recall curve on all variants of
Indoor Scan Dataset
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When comparing the AUC of the baseline candidates between each other,
NetVLAD provides the best performance on all datasets and AUC is nearly
1.0 on the easiest dataset. It is followed by FaceNet, which provides satisfying
performance, despite being trained on a completely different domain of images
i.e. human faces. The results of pHash and ORB are similar, both being
significantly worse than previously mentioned approaches based on deep
neural networks. On the easiest dataset pHash is better than ORB, but the
difference is not visible anymore on the medium and hard dataset variants.
On the hard dataset variant, ORB is even slightly better than pHash, which
exposes the limitations of the latter.
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Figure 4.9: Baseline candidates - Histogram of scores on medium difficulty
variant of Indoor Scan Dataset

To better understand the performance of all the methods, the PR curves are
displayed in figure 4.8. NetVLAD can provide a certain threshold to detect
most of the positives (more than 80% recall on all variants) while maintaining
100% precision. In comparison, pHash and ORB on the medium dataset
variant are only able to detect about 25% of the true cases while maintaining
100% precision.

Histogram of scores assigned to the labelled observations allows us to gain
even more insight into the behaviour of the models. Scores generated on the
medium difficulty dataset variant (stdev=20) for all 4 baseline candidates were
split into positive and negative samples and plotted on figure 4.9. None of the
methods provides a threshold that can separate the two labels completely.

The distances between negative pairs generated from pHash form a normal
distribution centred at 0.5, which is the expected value of the distance between
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two randomly chosen images. There are hardly any negative samples above the
value of 0.7 and therefore some of the positive samples can be separated using
this threshold. However, most of the positive sample scores are overlapping
with a distribution of negative samples.

The scores of ORB form a positively skewed distribution for both positive
and negative samples. Almost 3000 out of 10000 positive pairs were in the
first bin next to 0.0, which means hardly any features were matched between
the images.

NetVLAD’s and FaceNet’s scores for negative samples form a normal
distribution, while NetVLAD’s distribution has a relatively lower standard
deviation. Both can provide a threshold to precisely verify a large number
of samples. NetVLAD is able to provide a threshold that would label most of
the dataset correctly.

Baseline candidates’ performance was also assessed on Real Estate Listings
Dataset (RELD). The ROC curve is displayed on figure 4.10 and the PR curve
is presented in figure 4.11. Real Estate Listings Dataset (RELD) contains a
large number of samples, that are easy to identify using pHash algorithm. It is
visible in figure 4.12, which shows the distribution of scores for each method
on this dataset. These are images that only slightly different e.g. contain a
watermark or are scaled. Overall, the results on this dataset confirm the results
on ISD.
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Figure 4.12: Baseline candidates - Histograms of scores on Real Estate Dataset

4.3 EXxperiments

The baseline candidates performance analysis in the section 4.2.2 points to
NetVLAD as the most promising choice for generating comparable
representations of indoor scene images and solving the ISV task. Therefore the
results of the experiments in the last phase of the project will aim to gradually
improve this approach and will be compared to NetVLAD as the baseline. All
experiments carried out during this project use NetVLAD layer and try to gain
performance improvement in the ISV task by:

1. using the new training dataset,
2. trying different dense descriptor extractor architecture,
3. changing loss function used during training.

The training data in all experiments consists of images from ScanNet
dataset. Positive and negative image pairs are picked using a custom batch
sampler. Each experiment is run 3 times with 10, 20 and 30 set as standard
deviation parameter in the custom batch sampler. The diagram of the training
process for each model is shown in figure 4.13. No data augmentation has
been used in these experiments, which might be an interesting direction for
further research.

The first experiment, named InNetVLAD-vl, aims to use NetVLAD
deep neural network architecture and train it using images from ScanNet
dataset. It is using pre-trained VGG16 [33] network cropped at the last



24 | Indoor scene verification

ScanNet data NetVLAD .

: INNetVLAD-v1 | \ith custom VGG16 > layer —» triplet loss

i batch sampler

ScanNet data . NetVLAD .

: INNetVLAD-v2 | ith custom MobileNetvV2 —» layer —>» triplet loss

: batch sampler

: triplet loss

: ScanNet data NetVLAD ! "

: INNetVLAD-V3 | \yith custom VGG16 > layer —>» W|th p03|t|ye
: batch sampler Al et e

Figure 4.13: Setup of the experiments

convolutional layer (conv5) as feature extractor and NetVLAD layer with
randomly initialized weights. The weights are updated using online triplet
loss [12]. During training, the images are sampled before each update iteration
using the custom batch sampler. Before a batch of images is created, a pre-
defined number of scenes is randomly sampled from the training set. For
each scene, an image sequence index is selected at random. In the next step,
a pre-defined number of image indices is sampled from a truncated normal
distribution. The distribution is centred around the index selected initially.
This is the same way of sampling as described in section 4.1.1 and shown
in figure 4.6. Such images constitute one class presenting the same scene
and their unique combinations are considered positive image pairs. For each
combination, a semi-hard example is selected from all other classes in the
on-line fashion given the current network state. As a semi-hard example we
consider an embedding that is closest to the anchor, except for those that are
closer than the margin value. A positive image pair combination and semi-
hard negative image pair constitute a triplet used to compute the triplet loss.
The exact procedure for on-line triplet selection is described in [12].

The goal of the second experiment, called InNetVLAD-v2, is to test
another deep neural network architecture as a feature extractor instead of
VGG16. The choice of the architecture in this experiment is MobileNetV?2
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[36] as it contains a much lower number of trainable parameters than VGG16
and therefore should be easier and faster to train. We use weights that are pre-
trained on ImageNet classification task. Other training parameters remain the
same as in InNetVLAD-v1.

InNetVLAD-v3 is the third experiment, which tests the impact of a new
loss function on training. The distances between image embeddings are the
key to the success in verification task. It is important to not only ensure the
different image classes are enough far away from each other, but also make
the images belonging to the same class close enough to each other. In this
experiment, a loss function that adds this condition to the simple triplet loss is
used [37].
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Chapter 5

Results and Analysis

In this chapter, section 5.1 contains the results of the experiments. Section 5.2
summarizes and reflects upon the results.

5.1 Evaluation of the experiments

In this section, the evaluation of all experiments is presented. The results on
both indoor scan dataset (3 variants) and real estate dataset were generated
for each model. They are analyzed and compared to the NetVLAD network,
which serves as the baseline. The model designed in each experiment was
trained 3 times on a different variant of the training dataset. The variants are
using different standard deviation parameter to construct triplets in the custom
batch sampler described in section 4.3. The standard deviation parameters
used are 10, 20 and 30 and the experiments are named accordingly. The models
were trained using early stopping with patience equal to 15, using AUC score
on a dataset sampled from validation images. The model from the best epoch is
later chosen for final evaluation. The custom batch sampler was set to generate
100 batches during each epoch. Each batch consisted of 75 images from indoor
scan dataset (5 images sampled from 15 different scenes).

The setup of InNetVLAD-v1 model is similar to the one described in
[15]. The models are trained with plain triplet loss [12], Adam optimizer
[38] and learning rate set to 0.000001. The models were initially trained
with the higher learning rate, but it resulted in the model collapse after about
15 epochs (1500 batches). The ROC results are presented in figure 5.1. In
terms of AUC all models outperform the NetVLAD baseline on indoor scan
dataset. One should notice that in this experiment, models trained on datasets
with higher standard deviation parameter achieved better results on all three
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Figure 5.1: Results of InNetVLAD-v1 on indoor scan dataset

variants of the evaluation dataset. Therefore it is necessary to set the standard
deviation parameter high enough so that the model is fed with both easy and
hard examples. In case of the results on real estate dataset presented in figure
5.2, none of the models outperformed the baseline. Moreover, accuracy of all
3 variants was similar. This suggests that the trained models did not generalize
well to other indoor scenes.
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Figure 5.2: Results of InNetVLAD-v1 on real estate dataset

The experiment InNetVLAD-v2 differs from the previous experiment
only in terms of dense descriptor extractor used, which is MobileNetV2 instead
of VGG16. As displayed in figure 5.3, the models outperformed the baseline
in terms of AUC. However, the benefit of training with a higher standard
deviation is not applicable in this case. The variant "10" achieved better score
than variant "20" on easy and medium indoor scan dataset. Analyzing the
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results on real estate dataset on figure 5.4 the variant "10" and "30" achieved
also better AUC score than the baseline, while variant "20" achieved similar
score. This shows that the architecture choice impacts the ability of the model
to generalize to other data distributions. It suggests the previous model trained
on VGG16 might have experienced overfitting.
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Figure 5.3: Results of InNetVLAD-v2 on indoor scan dataset
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Figure 5.4: Results of InNetVLAD-v2 on real estate dataset

The variants of the third experiment, InNetVLAD-v3 were trained in the
same setup as the first experiment, except for the modified triplet loss. The
chosen loss function did not stop the models from achieving better scores
than the baseline on indoor scan dataset as seen in figure 5.5. However, the
differences between the models trained on different variants of the dataset have
vanished or changed. The best model on all 3 variants of the evaluation dataset
is "20", followed by "30" and "10", but the differences between them are less
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visible than in the case of InNetVLAD-v1. The results on real estate dataset
displayed in figure 5.6 are not suggesting, that InNetVLAD-v3 provides any
improvement over the baseline.
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Figure 5.6: Results of InNetVLAD-v3 on real estate dataset
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In order to visually compare experiments trained on the same dataset, variant
"30" was chosen for comparison on figures 5.7 and 5.8. Table 5.1 presents
ISD
and RELD. Two experiments demonstrate improvement over the baseline on
RELD: InNetVLAD-v2-10 and InNetVLAD-v2-30. They prove it is possible

AUC results of all experiments and the baseline on both datasets:
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to solve the ISV task in other domains by generalizing from indoor scan
images from ISD. It was anticipated that MobileNetV2 architecture used in
this experiment might be easier to train than VGG16, which is thanks to the
lower number of trainable parameters. These experiments demonstrate that
MobileNetV2 can be used with NetVLAD layer as a dense descriptor extractor
for indoor scene verification task.

The results also show that all models exceed the performance of the
baseline on ISD. However in the case of InNetVLAD-v1 and InNetVLAD-
v3 the results are not confirmed on RELD, therefore it is assumed the model
is overfitted to the indoor scan images and can not generalize well to other
domains.

Experiment name H ISD-10 ‘ ISD-20 ‘ ISD-30 ‘ ISD-mean | RELD

NetVLAD 0.997  0.987 0.971 0.985 0.929
InNetVLAD-v1-10 0.999 0.994 0.985 0.993 0.881
InNetVLAD-v1-20 1.000,  0.996 0.989 0.995 0.892
InNetVLAD-v1-30 1.000,  0.997 0.991 0.996 0.887
InNetVLAD-v2-10 0.999) 0.994 0.982 0.992 0.955
InNetVLAD-v2-20 0.999)  0.995 0.987 0.994 0.924
InNetVLAD-v2-30 1.000,  0.996 0.988 0.995 0.950
InNetVLAD-v3-10 0.999 0.991 0.978 0.989 0.901
InNetVLAD-v3-20 0.999  0.992 0.981 0.990 0.906
InNetVLAD-v3-30 0.999  0.991 0.979 0.990 0.898

Table 5.1: AUC results of all experiments

The modified triplet loss used in InNetVLAD-v3 enforced a distance
between positive image pairs lower than or equal to the half of minimum
distance between negative image pairs. While this setup is only better than the
baseline on ISD dataset, it provides better performance than InNetVLAD-v1
on RELD. It suggests the modified triplet loss enables learning representations
that are more useful for generalization to other domains. It would be interesting
to explore the combined effect of MobileNetV2 and modified triplet loss in
further research.

In experiments InNetVLAD-v1 and InNetVLAD-v2, the variant "30" was
better or at least as good as other variants on ISD. This shows the influence
of custom batch sampler’s standard deviation parameter. The higher value of
the parameter allowed more difficult image pairs to be "seen" by the network
during the training process. One would it expect it enables learning more
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useful representations, but this effect is not confirmed on RELD. Therefore

increasing the standard deviation parameter does not support learning robust
representations.
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Figure 5.7: Comparison of the best experiments on Indoor Scan Dataset
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Chapter 6

Conclusions and Future work

This chapter summarizes the degree project. The conclusions are presented,
the limitations of the project and the positive and negative impacts are reflected
upon.

6.1 Conclusions

The main goal of this thesis was to introduce the ISV problem and investigate
ways to solve it by creating an evaluation framework and carrying out
experiments. The problem was discussed theoretically by giving examples
and explaining assumptions. It was supported by the literature study. Two
evaluation datasets with different difficulty variants were built to ensure the
results are valid in different data distributions. On both of them, four different
existing methods for measuring the perceptual similarity of images were tested
and the baseline was chosen. Finally, the experiments were carried out
aiming to outperform the baseline. This project provides an assessment of
the performance of different perceptual similarity measures on indoor scenes
and proposes improvements.

6.2 Limitations

The main limitation of the project was very low availability of labelled data at
large scale, which is a common problem when solving problems by training
deep neural networks. ScanNet was the only dataset found that satisfied the
requirements of the project. Increasing the number of images in real estate
dataset by labelling the images from listing images proved to be too time-
consuming. Another limitation was related to the characteristics of ScanNet
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dataset used in this project. As mentioned in the section 4.1.1 the number
of pictures between two images in the sequence does not imply the same
similarity across scenes or even within the same scene. The camera might have
been moved slower or faster by the operator and therefore affect the number
of frames taken. Moreover, all images belonging to one scene were taken
during a scan sequence within a couple of minutes, so recognizing changes in
illumination throughout the day could not be learned using this dataset.

6.3 Future work

Firstly, the future work on the ISV problem should be focused on the
development of bigger datasets. Indoor scan dataset created during this project
consisted of images taken in 958 (training dataset) or 312 (validation dataset)
different scenes. A bigger dataset with more variance might be the key to
performance improvement.

Secondly, the camera pose data associated with each image in ScanNet
dataset might be used to estimate whether two pictures in the dataset contain
the same objects. If this is possible, such a distance metric might be used
instead of frame distance used in this project and lead to building a more
accurate dataset.

6.4 Reflections

This project should support anyone willing to work with indoor scene images
data by describing challenges regarding perceptual similarity and guiding
through methods for comparing the contents of such data. It should also
support researchers aiming to explore the ISV problem further.
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