
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

,  STOCKHOLM SWEDEN 2020

Improving Generalization in 
Reinforcement Learning using 
Skill-based Rewards

An application to Candy Crush Friends Saga

FRANCESCO VITO LORENZO

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE





Improving Generalization in
Reinforcement Learning
using Skill-based Rewards
An application to Candy Crush Friends Saga

FRANCESCO VITO LORENZO

Master in Computer Science
Date: June 16, 2020
Supervisor: Tianze Wang
Industrial Supervisor: Sahar Asadi
Examiner: Amir H. Payberah
School of Electrical Engineering and Computer Science
Host company: King Digital Entertainment
Swedish title: Förbättring av generalisering i förstärkningsinlärning
med färdighetsbaserade belöningar





iii

Abstract
Reinforcement Learning is a promising approach to develop intelligent agents
that can help game developers in testing new content. However, applying it
to a game with stochastic transitions like Candy Crush Friends Saga (CCFS)
presents some challenges. Previous works have proved that an agent trained
only to reach the objective of a level is not able to generalize on new levels.
Inspired by theway humans approach the game, we develop a two-step solution
to tackle the lack of generalization. First, we let multiple agents learn different
skills that can be re-used in high-level tasks, training them with rewards that
are not directly related to the objective of a level. Then, we design two hybrid
architectures, calledHigh-Speed Hierarchy (HSH) and Average Bagging (AB),
which allow us to combine the skills together and choose the action to take in
the environment by considering multiple factors at the same time. Our results
on CCFS highlight that learning skills with the proposed reward functions is
effective, and leads to a higher proficiency than the baselines applying state
of the art. Moreover, we show that AB exhibits a win rate on unseen levels
that is twice as high as that of an agent trained only on reaching the objective
of a level, and even surpasses human performance on one level. Overall, our
solution is a step in the right direction to develop an automated agent that can
be used in production, and we believe that with some extensions it can yield
even better results.
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Sammanfattning
Förstärkningsinlärning är en lovande metod när det kommer till att utveckla
intelligenta agenter som kan stödja spelutvecklare i att testa nytt spelmateri-
al. Att använda intelligenta agenter på ett spel med stokastiska övergånger så
som Candy Crush Friends Saga (CCFS) uppvisar en del utmaningar. Tidigare
arbeten has visat att en agent som endast är tränad att klara av en spelnivås spe-
cifika objektiv inte lyckas generalisera till andra spelnivåer. Vi låter ett flertal
agenter lära sig olika färdigheter som sedan kan återanvändas i överordnade
uppgifter, sedan träna agenterna med belöning som inte är direkt relaterade
till objektivet för den specifika nivån. Sedan designar vi två hybridarkitektu-
rer, som vi kallar High-Speed Hierarchy (HSH) och Average Bagging (AB),
som tillåter oss att kombinera de olika färdigheterna tillsammans och sedan
välja den handling agenten tar i miljön genom att ta hänsyn till flera faktorer åt
samma gång. Våra resultat på CCFS utmärker sig i den mening att agenter lär
sig färdigheter med den föreslagna belöningsfunktionen effektivt, vilket leder
till en högre skicklighet i jämförelse med referensagenter som använder sig
av state-of-the-art metoder. Därutöver visar vi att AB påvisar en vinstfrekvens
på osedda spelnivåer som är dubbelt så hög mot en agent tränad på att endast
klara av en spelnivås specifika objektiv. AB överträffar till och med mänsklig
prestation på en spelnivå. Våran lösning är ett steg i rätt riktning gällande ut-
veckling av en automatiserad agent som kan användas i produktion, och vi tror
att med viss utbyggnad är det möjligt att nå ännu högre resultat.
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Chapter 1

Introduction

This chapter provides the reader with an overview of the whole thesis. Firstly,
Section 1.1 introduces the company where the research has been carried out,
its products, and the motivation for this project. Section 1.2 provides a brief
history of the technical area on which this work builds upon. Then, Section
1.3 formulates the problem in details, followed by the research questions in
Section 1.4. Section 1.6 explains the scope of the research and the constraints
that limit it. Section 1.5 lists the contributions of the thesis. Finally, Section
1.7 provides an outline for the rest of the document.

1.1 Motivation
King Digital Entertainment, abbreviated to King, is a video game developer
founded in Stockholm, Sweden in 2003. The company started by developing
browser games on its portal, King.com. Then, it shifted its focus on de-
veloping Facebook-based games to attract a larger player base, becoming the
second publisher on the platform in 2012, with games such as Bubble Witch
Saga and Candy Crush Saga (CCS). In the same year, King started porting
these games for mobile platforms like iOS, pursuing a cross-platform strategy
that allows players to synchronize their data between the Facebook version of
the games and the mobile one. In 2013, the company removed all in-game
advertising from their games, relying solely on its Freemium model based on
microtransactions, which represented 99% of its revenues in that year. In 2014,
King went public in the US with the largest initial public offering for a mobile
gaming company at the time. From then on, the company stopped looking for
another major hit like CCS and focused more on building a balanced portfolio
of games. The company was acquired by Activision-Blizzard in 2016, becom-

1



2 CHAPTER 1. INTRODUCTION

ing part of the Activision-Blizzard-King family, which holds the largest game
network in the world. New releases of Candy Crush games followed in par-
allel, with Candy Crush Soda Saga (CCSS) in 2014, Candy Crush Jelly Saga
(CCJS) in 2016 and Candy Crush Friends Saga (CCFS) in 2018, which is the
latest addition to Candy’s franchise. With four major games in that franchise,
King is now focusing on enabling players with new content on their more pop-
ular games, while expanding the portfolio with new games that cover different
areas from the available ones.

Candy Crush Franchise

All games in the Candy franchise areMatch-3 games, with a game board that
is a 9×9 grid filled with colored candies. The core gameplay features a player
who takes actions in the game by swapping two adjacent candies in order to
match horizontally or vertically three or more candies of the same color. Can-
dies that are part of a match are removed from the board and substituted by
other ones falling from the top, filling the board at random. If four or more
candies are involved in the match, a new Special candy with a special ability is
created. Different types of Special candies exist in the games, which are cre-
ated based on the number of candies that are matched and their arrangement
on the board. Levels can contain Blockers, which are elements that occupy a
cell on the board and prevent a player from making matches there. Blockers
can be removed by making matches on the neighboring tiles. Each level fea-
tures a particular objective to complete, and players have a maximum number
of moves to complete it, otherwise losing the level. An example of a level from
CCFS is displayed in Figure 1.1, containing game features like Blockers and
Special candies in the bottom. Its objective is to spread the jam, represented
by a red background, all over the board. This can be done by making matches
that involve a tile with jam already on it. In the figure, the player is prompted
to match the three red candies in the top-right corner.

Playtesting

King’s approach to supporting its current live games in the Candy franchise
consists of constantly releasing new content and creating events to keep the
players entertained. For instance, in 2019 King released around 1905 new
levels for CCS. At King, the traditional release process without automation
used to involve multiple steps:

1. Level designers create and develop new levels by leveraging their exper-
tise;
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Figure 1.1: A screenshot taken from level 65 in CCFS, suggesting the player
to swap the two candies in the foreground in the top-right corner. This level
includes features like Blockers and Special candies in the initial board.

2. Newly developed levels are tested by dedicated people to make sure that
they are balanced, such that players can enjoy them;

3. Level designers implement the feedback received and release the levels
in the games.

The second step in this process is called playtesting, and it represents a tech-
nique used by gaming companies to assist game development by either per-
forming content balancing, like in this case, or finding bugs in the game. How-
ever, playtesting without automation is the most time-consuming part of the
process, since it can take up to a week to gather feedback from the testers. As
a consequence, level designers have to switch context from their current work
and implement the feedback they received for the levels they developed a week
before. This is a major source of distraction and is not a creative process, so it
is a waste of potential for the designers. Moreover, testers do not statistically
represent the entire player base. They are biased by already knowing how to
play the game at a good level, and are limited in the number of tests they can
run within one week.

For the aforementioned reasons, in the last three years, King has been ex-
ploring alternative approaches to ease the bottleneck of playtesting, making
this step fully automated. The first approach [1], which has currently been
used in production for two years, is based on Supervised Learning (SL), a sub-
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Source: Tech at King, Medium 1

Figure 1.2: An overview of the process of content release, where feedback
is represented by red lines. (Top) Human playtesters. (Bottom) Automated
playtesters.

field of Machine Learning (ML) that uses supervised data to build predictive
models. In particular, the resulting model can predict the action that is most
likely going to be taken by humans in a given board configuration, and thus
allows level designers to receive immediate feedback when they create a level,
rather than at the end of the whole process.

However, King wants to automate playtesting also for features that are yet
to be released, and for new games. In both cases, human data is not available,
so the previous model cannot be trained properly, and its performance would
not be representative of that of the average human player. For this reason, the
company is experimenting with Reinforcement Learning (RL), another sub-
field of ML that does not leverage on human data to build a predictive model.
This work is part of this ongoing research at King and is focused on how to
improve the performance of the existing RL implementation [2] for playtesting
purposes.

1.2 Research Area and Context
RL is a sub-field of ML that deals with teaching a software agent how to take
actions in an environment to maximize a reward signal. The topic is not a new
research field, having its roots in the optimal control theory of Bellman [3],

1https://medium.com/techking/human-like-playtesting-with-deep-learning-92adafffe921
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and in trial-and-error learning from behavioral psychology. The first major
contribution to the field of RL was made by Witten [4] with his work on Tem-
poral Difference (TD) learning, and was followed by plenty of research on the
topic. The theoretical foundations of RL are better laid out in Section 2.2.

Games have always been a popular testbed for the research in the area of
RL, as they are software entities that can be interacted with by a software
agent at high computational speed. Moreover, results on games can easily be
compared to those of humans, highlighting progress in the research. In fact,
RL started gaining popularity among the public in 2015, when researchers
at DeepMind published a paper in Nature [5] showing how software agents,
trained with RL, were able to achieve human performances on a set of classic
Atari games like Breakout. In March 2016, RL made worldwide headlines
when DeepMind’s AlphaGo agent [6], trained to play Go through RL tech-
niques, was the first Artificial Intelligence (AI) to defeat the world champion
Lee Sedol in a best-of-five match, achieving a task that was thought to require
at least 10 more years of advancements in the field.

Generalization
In cognitive psychology, generalization refers to the ability of an agent (either
a human or an animal) to re-use experiences from past situations in a present
setting that is regarded as similar. Experiences are apprehended through the
process of learning, where they are abstracted as rules and patterns that apply
during a given situation. When a new situation with similar characteristics
occurs in the present, the agent can transfer the knowledge learned in the past
and act accordingly. Such a process happens naturally to infants in their earliest
stages of life, as they can generalize and learn with only a few experiences.
This allows them to better navigate the environment around them, recognize
people, and learn to speak.

The same concept can also be applied to software agents, or AIs, when
they undergo a process of induction. In particular, ML agents abstract and re-
use past experiences, available in the form of data or interactions, to provide
results when they are faced with new inputs. A lack of generalization means
that an agent would be unable to act properly in new situations, effectively not
serving its purpose.

An RL agent whose goal is to play new levels of Candy Crush to test if they
are balanced must be able to generalize. When used in production by level de-
signers, such agent will be presented with new levels that have different board
configurations and possibly new game features from the ones it encountered
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before. Just like a human can extract common patterns from the previous lev-
els he/she played, and apply those rules when facing a new level, an RL agent
should transfer the knowledge it learned in the past and apply it to play the new
level. If that agent had to learn everything from scratch, it would be unusable
in a production environment for playtesting. Generalization in the context of
RL is detailed in Section 5.5.

1.3 Problem Definition
The purpose of this research is to improve the generalization ability of the
existing RL agent, developed in the previous years at King, to bring it one
step closer to being used for playtesting in production. In particular, the focus
is on addressing a key challenge faced by the current implementation, which
struggles to generalize and transfer knowledge from the levels it was trained
on to new levels it has never seen before.

The inspiration for this research comes from observing the behavior of
human players; a new player that progresses through a Candy game learns
basic skills that are not necessarily related to the particular objective of the
level he/she is facing. These skills can be re-used to complete high-level tasks
that can help the player to win new levels, regardless of their objective. For
instance, in levels where the objective is to spread the jam, the player will
immediately recognize the importance of a high-level task such as destroying
all Blockers on the board. To do that, it first has to learn how to destroy each
type of Blocker, which is a skill not directly related to spreading the jam.

A human does not need to learn everything from scratch since it can utilize
already learned skills across different levels. Similarly, we first focus on how to
teach an agent a set of basic skills, enabling it to approach new levels without
starting tabula rasa. Instead of rewarding the agent for achieving the objective
of a level (extrinsic reward), we teach these skills by relying on the concept of
intrinsic motivation, where an agent rewards itself for achieving goals that are
not directly related to the objective of a level (intrinsic reward).

If this first phase is successful, we will then attempt to combine these skills
by designing hybrid architectures that allow a new agent to select the most
appropriate behavior according to the board configuration at hand.
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1.4 Research Questions
To formalize what was mentioned in the previous section, we define the fol-
lowing research questions:

1. Can an RL agent learn a set of low-level skills that can be used in high-
level tasks?

1. Can we propose a set of good intrinsic reward functions to learn
them?

2. How well can an agent perform these skills?

3. Can they be be transferred on new levels?

2. How can a new agent employ this set of skills to win levels?

1. What are efficient architectures to combine the previous skills with
a goal-oriented behaviour?

2. Is the new agent better than one rewarded only by pursuing the
objective of a level?

3. Do the previous architectures improve the generalization ability of the
agent?

1. What is the performance on test levels with the same objective used
during training?

For each research question, we formulate a set of hypotheses that are either
confirmed or invalidated by empirical evidence. These hypotheses are stated
in Chapter 7, together with the experimental results needed to validate them.
A discussion on whether the hypotheses are correct is provided in Chapter 8.

1.5 Contributions
The contributions of this work can be divided based on the three research
questions. Firstly, we show that intrinsic motivation represents a successful
technique to design reward functions that can be used to teach an agent a set
of basic skills. We discover a strong correlation between these skills and the
overall win rate: the agents trained with intrinsic rewards outperform the base-
lines trained with extrinsic rewards, despite not knowing anything about how
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to win a level. Regarding Special candies, in Section 5.3.1 we design a tech-
nique to normalize skill-based reward functions that significantly outperforms
the approach presented in [7], and which allows creating all the different Spe-
cial candies while maintaining a good balance and stability in training. This
method also enables an agent to win more than one trained with extrinsic re-
wards, confirming the input of our level designers, who believe that creating
Special candies is a key factor to win in CCFS. As part of this first contribu-
tion, we have submitted our results to IEEE Conference of Games 2020 as a
short paper, which got approved.

Secondly, we design two hybrid architectures, called AB and HSH, which
allow us to combine the basic skills to improve the overall win rate of an agent.
In particular, we show that AB significantly outperforms the baselines, win-
ning more than twice as much as an agent trained with extrinsic rewards, and
even surpasses human performance on one test level. With the results of HSH,
we confirm the findings of [2], showing that sparse rewards do not work in en-
vironments like CCFS, and should be avoided in favor of more dense designs.

Finally, we compare a training pipeline where we train an agent onmultiple
levels at the same time to one where we train the same agent only on one
level. The purpose is to verify if the former is more suited than the latter to
train agents that generalize better across multiple levels. Our results do not
confirm nor deny this claim and should be completed with further research.
However, our hybrid architectures achieve a performance on unseen levels that
is 53% closer to the average human player than extrinsic agents, proving that
our approach is overall better to improve generalization.

1.6 Delimitation
This thesis directly builds on the work carried out by previous researchers at
King [2], which will also be used as a baseline in the experiments. To ensure
comparability with their results, we use CCFS as a testbed for our research.
At the time of writing, the game features more than 3 000 levels released for
players. Reaching a sufficient degree of generalization on so many levels is not
an easy task, and considering their heterogeneity and differences, highlighted
in Chapter 4, it represents an open problem in the literature that is being suc-
cessfully addressed only by a handful of specialized research companies.

The amount of computational resources is limited to what the company
has, so most computation is performed on the server available on-premise for
this research project, running one Nvidia Tesla P100 GPU. Google Cloud vir-
tual machines instances are available in case of need, though we prefer to rely
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more on the machines in-house.
Another limitation is related to the execution speed of the game. CCFS has

been developed and optimized to run on mobile platforms and on Windows,
while for this research an ad hoc build of the game was developed to run in a
container, which is not its native environment. Additionally, the game itself is
not optimized to run in a simulation environment, so it effectively has to play
at human speed.

Due to the aforementioned reasons, we narrow down the scope of this re-
search to a subset of the available levels, objectives, and game features. In
particular, we only use one game objective, five different training levels, and
four different test levels. We select the training and test sets to include all the
possible game features for the objective we use and to cover a broad range
of level difficulties. Moreover, the game has five different characters that can
help a player to complete a level, and one of them is selected at the beginning
of each level. In this research, we always select the one used in [2]. Further
details regarding delimitation are presented in Chapter 4.

1.7 Outline
The rest of the thesis is organized as follows. Chapter 2 provides an exhaustive
introduction to RL. Firstly, it introduces the basics of ML. Then, it goes over
the foundations of RL, lays down the theoretical framework behind it, illus-
trates a first family of solutions used when a model is available, and finally
dives into RL approaches.

Chapter 3 highlights the contributions from existing literature that inspired
this work. At first, it dives deep in the topic of generalization in RL, explaining
existing solutions that directly address the problem, or which could be used for
that purpose. Then, it sums up past results on playtesting, describing how it
was approached by third parties and at King.

Chapter 4 explains the context in which this research is carried out. It first
describes the mechanics and features of CCFS. Then, it provides useful details
on how the game is implemented and how the environment is encoded.

Chapter 5 presents the first part of the solution, related to learning skill-
based behaviors through intrinsic rewards. It first explains the reward func-
tions designed for each skill. Then, it goes over the deep neural network
used. Finally, it explains the different generalization techniques we used to
train agents.

Chapter 6 presents the second part of the solution, which are the hybrid
architectures to combine the skills. The first architecture introduced is inspired
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by ML techniques, while the second one is a more complex RL architecture
based on hierarchies.

Chapter 7 presents the results of the experiments. Firstly, it details the
common experimental setup shared by all experiments. Then, after stating a
series of hypotheses to validate the research questions, it presents the results
for skill learning, followed by the ones for hybrid architectures.

Chapter 8 provides our perspective on the results obtained. It first presents
a discussion related to skill learning, touching on limitations and extensions.
Then, it discusses the results of the hybrid models, also mentioning limitations
and future work.

Chapter 9 concludes the whole thesis. It discusses key issues related to
ethics and sustainability, summarizes the methods followed, and the results
obtained, and finally provides insights to extend this work.



Chapter 2

Background

This chapter presents the theoretical foundations required to understand the
content of this thesis. In particular, Section 2.1 provides a brief overview of
ML and one of its sub-fields: SL. In particular, it explains the Bias-Variance
trade-off, which is fundamental to understandwhat generalizationmeans. Sec-
tion 2.2 introduces the theoretical framework of RL, providing its foundations
and explaining the concept of Markov Decision Process (MDP). Section 2.3
goes over Dynamic Programming (DP), a first family of solutions that can
be used when enough information is available. Then, sections 2.4 and 2.5
explain the RL approach to tackle the same problem of DP, when less infor-
mation is available. Finally, Section 2.6 introduces function approximators,
which extend the previous RL solutions to work in environments with high
dimensionality.

2.1 Machine Learning
A formal definition of ML by Mitchell [8] states that:

"A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with expe-
rience E.

In particular, ML can be considered as a sub-field of AI where knowledge
is represented by experience. Whereas in traditional programming data is fed
into a program to generate an output, in ML data and outputs are used together
to generate a program.

11
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Traditionally, ML is divided in three main branches [9]: SL, UL and RL.
An overview of the first is provided in this section, the second is out of the
scope of this work, and the last one is discussed in the next section.

Supervised Learning
The goal of SL is to estimate the unknown model f that maps a set of known
inputs X , called features, to a set of known outputs t, called targets. Expe-
rience is given in the form of a training set D = {〈x ∈ X, t〉 | t = f(x)}.
According to the type of t, SL can be further classified as:

• t ∈ R: regression problem

• t ∈ [0, 1]: probability estimation problem

• t ∈ {C1, C2}: binary classification problem

• t ∈ {C1, C2, . . . , Cn} | n > 2: multi-class classification problem

Bias-Variance Trade-off

Estimating the unknownmodel f means finding a function h that approximates
f well enough, according to some performance metrics. This process involves
multiple steps. First of all, depending on the problem at hand, we need to
define a loss function Ltrue(t, y) that measures the cost payed by associating a
label y = h(x) to the input x instead of the true label t = f(x). The expected
loss is given by:

E[Ltrue] =

∫ ∫
Ltrue(t, h(x))p(x, t)dxdt (2.1)

This cost is usually measured as a form of distance between y and t. For
example, a common loss function for regression is the squared loss:

E[Ltrue] =

∫ ∫
(t− h(x))2p(x, t)dxdt (2.2)

Then, we have to define a hypothesis spaceH comprising a family of func-
tions that may contain f , and finally solve an optimization problem to find the
function h ∈ H that minimizes the defined loss Ltrue.

In real-world applications of ML, the amount of data in the training set
D is limited, so we have to rely on a proxy of the true loss function Ltrue,
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calculated over the available input points:

Lproxy =
1

N

N∑
i=1

Lproxy(ti, h(xi)) (2.3)

Such an approximation leads to an optimization problem whose result is
generally different from the one we would get using Ltrue, and this requires
prudence in the choice of the hypothesis space H . If Lproxy is not a good
proxy of Ltrue, then:

• A larger family of modelsH , even though more likely to include f , can
cause the optimization process to have very different results from f , as
the variance is higher.

• A smaller family of modelsH causes the optimization process to be less
affected by Lproxy, though since it may not include f , it can still lead to
bad candidates h.

This trade-off in the expressiveness of H is called bias-variance trade-
off, where a larger H represents a model family with low bias (more likely to
contain f ), but high variance (the results may differ a lot when repeating the
same optimization process), whereas a smaller H represents a model family
with high bias (less likely to contain f ), but low variance (the results are closer
when repeating the same optimization process). The trend in ML has been
to rely on more expressive families of models, and use techniques such as
regularization to decrease their variance.

Overfitting and Underfitting

Ideally, we are interested in finding a function h that minimizes Ltrue. Opti-
mizing for the true loss means that the model h inH is obtained by minimizing
the prediction error, which is the error over all the points in the input space. As
mentioned before, this metric is impossible to evaluate, as the amount of data
in D is limited. This forces us to minimize Lproxy instead, meaning that we
are optimizing for the training error, which is the error over all the available
input points.

One way to obtain good results when optimizing for the training error is
to choose a more complex family of models H: the more complex the family
is, the better it can fit the training data, leading to a very small training error.
As shown in Figure 2.1, neither a sinusoidal g nor a linear model l can per-
fectly fit the available training points, and they will have a higher training error
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Figure 2.1: 20 points generated from sin(x) + U(−0.5, 0.5). g(x) is sin(x),
l(x) is x/12 and p(x) is a polynomial function of order 21.

than a more complex model like p, which instead perfectly fits all the training
points. Still, it is clear from the picture that the model that is more adequate to
approximate the distribution of the points is the sinusoidal one, even though it
does not perfectly fit the training data.

The underlying issue is that, other than being limited, data can also be
noisy. The labels provided in the training set D are not necessarily the same
as f(x), but they can be affected by noise, represented as a random variable
with unknown distribution ε. For an additive noise, t becomes:

t = f(x) + ε(x) (2.4)

In fact, the true model f(x) used to generate the data in Figure 2.1 is a
sinusoidal one, with addictive uniform noise. Perfectly fitting the training data
means that we are also fitting the noise in it, leading to undesired behaviors.
If the previous models were used to predict the label associated with a new
input point x, then g(x) would be the closest one to f(x). p(x) represents a
much more complex model than a sinusoidal, and it ended up fitting ε as well.
In this case, the model is said to be overfitting. On the other hand, l(x) should
not be used for prediction either, as it is so simple that it cannot even properly
fit the training data. In this case, the model is said to be underfitting.

Choosing the right model complexity is fundamental to have good predic-
tive performances. The ability of a model to perform well over unseen data is
called generalization, and it is a desirable property to have in SL, as the models
should be used to provide predictions for new data, rather than for data that is
already labeled. Section 5.5 investigates generalization in the context of RL.
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2.2 Foundations of Reinforcement Learning
RL deals with how an agent, interacting with an environment, should select
actions in order to maximize a cumulative reward signal. The problem can be
formalized by considering how the actors interact, as represented in 2.2. At
each timestep t, the agent:

1. Executes an action at by choosing it from the available actions

2. Receives a scalar reward rt representing how well it is doing at time t

3. Receives a quantity st+1 encoding the new state of the environment after
at was taken

and an interpreter:

1. Executes action at in the environment and observes how it evolves

2. Emits the scalar reward rt

3. Encodes and emits the new state st+1

The environment can be categorized based on the state representation of
the agent and the environment itself. The information used by the interpreter to
emit a reward and a new state are called environment state, while the one used
by the agent to select the next action is called agent state. When the two rep-
resentations are different, the environment is said to be partially-observable,
while when they are equal it is fully-observable.

The agent can be categorized based on three main components that dis-
tinguish it. The first one is the policy, representing the behavior of the agent,
i.e., how it selects the next action in a given state. An agent using a policy
to select the next action is called policy-based. The second component is the
value function, either measuring how good a state is (state-value function) or
how good taking an action in a state is (action-value function). An agent us-
ing a value function to choose the next action to take is called value-based. If
an agent uses both a policy and a value function it is called actor-critic. The
third and final component is the model, which is the representation of the en-
vironment as perceived by the agent, and it is used to predict the next state and
the immediate reward. An agent using an explicit representation of the model
is called model-based, otherwise it is called model-free. The full taxonomy
is provided in 2.3. This thesis builds on the work carried out at King in the
previous years, so the focus will be on model-free and value-based agents. An
explanation of the other techniques is available in [10].
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Figure 2.2: Example of an RL framework where an agent takes actions in an
environment, and receives responses from an interpreter.

Markov Decision Processs
An environment in an RL problem is usually modeled using the framework of
MDPs. The key idea behind them is theMarkov assumption, which states that
the future is independent of the past, given the present. Formally, at time t:

Definition 1: A state St is Markov if and only if

Pr(St+1 = j|St) = Pr(St+1 = j|S1, . . . , St) (2.5)

The environment state Se is Markov by definition. If the agent state Sa is
Markov, the problem can be formalized as a MDP, otherwise it is formalized
as a partially-observableMDP. This work uses an environment that is assumed
to be fully-observable, thus modeled as a MDP.

A MDP models an environment in which all states are Markov and time is
divided into stages. Formally, a MDP is defined as a 5-tuple 〈S,A, P,R, γ, µ〉:

• S is the set of all the states in the environment

• A is the set of the actions that can be taken
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Figure 2.3: Taxonomy of RL agents according to policy, value function and
model.

• P is a matrix indicating the probability P (s′|s, a) of ending up in state
s′ by taking action a in state s

• R is amatrix indicating the expected immediate rewardR(s, a) = E[r|s, a]

obtained by taking action a in state s

• γ ∈ [0, 1] is the discount factor

• µ is a vector indicating the initial probability of being in each state s ∈ S

The time horizon of a MDP can either be finite, if the process ends af-
ter a pre-defined amount of steps, indefinite, if the process will end after an
unknown amount of steps or infinite if the process will go on forever.

Return
An agent seeks to maximize a cumulative reward signal. More precisely, its
goal is to maximize the total discounted sum of rewards, also called return.
Formally, the return vt at timestep t is defined as:
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vt = rt+1 + γrt+2 + . . .+ =
∞∑
k=0

γkrt+k+1 (2.6)

where the discount factor γ represents the probability that the process will go
on, or the present value of future rewards (like in finance).

Policy
An agent obtains rewards by taking actions in the environment according to a
policy π(a, s) = Pr[a|s]. A MDP tied to a defined policy is equivalent to a
Markov Reward Process 〈S, P π, Rπ, γ, µ〉, where:

• P π is a matrix indicating the probability
∑

a∈A π(a|s) Pr[s′|s, a] of end-
ing up in state s′ by following policy π in s

• Rπ is amatrix indicating the expected immediate reward
∑

a∈A π(a|s)R(s, a)

obtained by following policy π in state s

Value Function
The state-value indicates the utility of a state. Formally:

Definition 2: The state-value function V π(s) represents the expected return
obtainable by starting in state s and following policy π:

V π(s) = Eπ[vt|st = s] (2.7)

Amore useful quantity to use in practice is the action-value functionQπ(s, a),
that is the utility of a state-action pair. Formally:

Definition 3: The action-value function Qπ(s, a) represents the expected re-
turn obtainable by starting in state s, taking action a and thereafter following
policy π:

Qπ(s, a) = Eπ[vt|st = s, at = a] (2.8)

Using the definition of return vt, the value functions can be further de-
composed by performing a one-step backup, i.e., looking one step ahead in
the future. This formulation for the value functions is called Bellman expec-
tation equation. For the state-value function:

V π(s) = Eπ[rt+1 + γV π(st+1|st = s)]

=
∑
a∈A

π(a|s)
(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V π(s′)
) (2.9)
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while for the action-value function:
Qπ(s, a) = Eπ[rt+1 + γQπ(st+1, at+1)|st = s, at = a]

= R(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a∈A

π(a′|s′)Qπ(s′, a′) (2.10)

where both equations are now expressed as a function of the value function of
the next state (or state-action pair).

Optimality
In each state, we should not be interested in the value function of that state
under a generic policy π, but we should rather look at the maximum value
function of that state under all available policies π ∈ Π. This allows us to
define the optimal value function, representing the maximum over all policies.
For the state-value function, we have that:

V ∗(s) = max
π

V π(s) (2.11)

For the action-value function, we have that:

Q∗(s, a) = max
π

Qπ(s, a) (2.12)

where, if an agent knew the optimal action-value function for each action avail-
able in a state s, it could pick the one with the highest Q∗, and be assured that
it would be achieving its goal of maximizing the return from that state.

As for the normal value functions, we can perform a one-step backup and
obtain the Bellman Optimality equations, that are independent from a partic-
ular policy. For the optimal state-value function, we have that:

V ∗(s) = max
a
Q∗(s, a)

= max
a

{
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)
} (2.13)

while for the action-value function, we have that:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′

Q∗(s′, a′) (2.14)

Policy

The value function V π allows to define an order between policies, where π ≥
π′ if V π(s) ≥ V π′

(s) ∀s ∈ S. The following theorem, whose proof is
provided in [10], formalizes the definition of an optimal policy π∗:
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Theorem 1: For any MDP:

• There exists at least one optimal policy π∗ ≥ π ∀π ∈ Π

• All optimal policies achieve the optimal value functions V ∗ and Q∗

• There always exists one deterministic optimal policy

In particular, the last point can be achieved by acting greedily in every
state, i.e., choosing the action a with the highest Q∗(s, a) in state s:

π∗(a|s) =

{
1, if a = argmaxa∈AQ

∗(s, a)

0, otherwise
(2.15)

A MDP is said to be solved when an optimal policy is found. One final
distinction to make is between prediction and control problems. In the former,
we have a MDP (whose model may or may not be known) and a policy π, and
the goal is to calculate the value function V π orQπ of that policy. In the latter,
we only have a MDP (whose model may or may not be known) and the goal
is to obtain the optimal policy π∗, together with the optimal value functions
V ∗ andQ∗. The problem to be solved in the traditional formulation of RL is a
control problem, even though this often requires solving a series of prediction
problems as well.

2.3 Dynamic Programming
DP is a family of methods that can be used to solve MDPs when the model is
available (model-based). This technique is called planning, where we can plan
ahead and solve the Bellman equations either recursively or in exact form, thus
finding an optimal policy. The two main DP techniques are Policy Iteration
(PI) and Value Iteration (VI), both addressing control problems.

2.3.1 Policy Iteration
PI finds the optimal policy through a process of continuous improvement of
policies, until convergence. It starts from an initial policy π0 and solves a
prediction problem to estimate its value function V π0 . Then, it generates a
policy π1 ≥ π by acting greedily over V π0 . This two steps, respectively called
policy evaluation and policy improvement, are repeated until convergence to
π∗ is achieved.
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One way to perform policy evaluation is by using the Bellman equation for
V π. Expressing the equation for every state s ∈ S, we obtain a system of |S|
linear equations in |S| unknowns, for which a closed-form solution exists. In
matrix notation: V π = (I − γP π)−1Rπ. Another way to solve the prediction
problem is by iteratively applying the Bellman equation to all states. We start
from initial values V0(s) for all states, and then updates those values with a
full backup (i.e. assuming knowledge of the value function of all states):

Vk+1 ←
∑
a∈A

π(a|s)
[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)Vk(s
′)
]

(2.16)

where a recursive application of the previous equation is guaranteed to con-
verge to V π given its contraction properties.

Policy improvement is performed by acting greedily with respect to the
value function V π:

π′(s) = argmax
a∈A

[
R(s, a) + P (s′|s, a)V (s′)

]
∀s ∈ S (2.17)

where the new value function V π′ , associated to π′, is guaranteed to be at least
as good as V π, if not better [10]. When V π′ is equal to V π, π represents an
optimal policy for the given MDP, so convergence is reached.

An improved version of PI, called generalized PI, introduces a stopping
condition to the prediction problem, as we do not need to convergence to V π.
An intermediate value function, where the ordering between the utility of each
state is respected, is sufficient to perform a correct step of policy improvement
and saves computational time in the process.

2.3.2 Value Iteration
VI is conceptually similar to policy evaluation, where full backups are applied
to all states to estimate a new value function. The difference is that the Bell-
man Optimality equation is used for the backups, as opposed to the Bellman
Expectation equation:

Vk+1 ← max
a∈A

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)Vk(s
′)
]

(2.18)

No explicit policy is calculated with VI, and the intermediate Vk may not
correspond to any legal policy at all. Nonetheless, convergence is guaranteed
to V ∗ due to the contraction properties of Bellman Optimality backups.
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2.4 Model-Free Prediction
RL techniques are used either when the model is not available or when it is too
complex, and thus planning is impossible or too computationally demanding.
The idea behind RL techniques for prediction and control remains similar to
DP, but instead of full backups, they employ sample-based backups, relying on
convergence properties in expectation. Prediction problems in RL are solved
either through Monte Carlo (MC) or TD methods.

2.4.1 Monte Carlo
A value function is defined as the expected return starting from a state or state-
action pair. MC methods use the empirical mean as a point estimator of the
expected value of the return, and rely on the guarantees of the Central Limit
Theorem for convergence. In MC, samples are taken from full episodes of
experience s1, a1, r2, a2, . . . , sT under policy π, and can only be applied to
episodic MDPs (i.e. finite or indefinite horizon). Unlike DP, in each state
s we only consider the state s′ that came after it in that experience, not all
the possible states that are reachable from s. Two main techniques are used:
first-visit MC and every-visit MC.

In first-visit MC, the sample return of a state s is calculated only on the
first occurrence of s in the episode by summing all the rewards that follow the
state. If s is visited more than once, the sample return is not calculated again,
and it is instead assumed to be the one of the first visit to s. The value V π(s)

is the mean of the sample returns over all the available episodes of experience.
In every-visit MC, the sample return of a state s is calculated on every

occurrence of s in the episode, so there will be generally more samples of the
return vt in each episode.

In both cases, the value of V (s) can be updated incrementally when a new
episode of experience is accumulated, instead of recalculating the whole mean
over all the episodes. Given a new sample return vt, with N(st) the number
of samples returns available, the new value function is:

V (st)
k+1 ← V (st)

k +
1

N(st)
(vt − V (st)

k) (2.19)

The term 1
N(st)

can be generalized as α, also known as learning rate, used
to keep a running mean for non-stationary problems to forget past experiences.
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2.4.2 Temporal Difference
TD methods [11] are similar to incremental update MC, but they are able to
learn from incomplete episodes of experience. The return vt can be decom-
posed in the TD target rt+1+γV (st+1), so we can look one step into the future,
observe the reward obtained in that step, and use the estimated value of the next
state st+1 as a proxy of all the future rewards. This process is called bootstrap,
as it updates the current guess of vt using another guess, vt+1, and is also used
by DP techniques. The update formula for V (st) becomes:

V (st)← V (st) + α(rt+1 + γV (st+1)− V (st)) (2.20)

where δt = rt+1 +γV (st+1)−V (st) is called TD error, and it is the difference
between our current estimate of V (t) and the TD target.

A natural extension of the previous method is to bootstrap after more than
one step in the future. Ideally, we could observe n steps of experience from an
episode, and then bootstrap:

vt = rt+1 + γrt+2 + . . .+ γt+nrt+n + γV (st+n) (2.21)
V (st)← V (st) + α(vt − V (st)) (2.22)

where this method is called TD(n), as opposed to the previous one, TD(0). The
benefit of lookingmore steps into the future is reducing the bias, as there is less
reliance on the estimation V (st+n) and more evidence from actual experience.
On the downside, the variance is increased, as more steps are being taken in
the environment, and each step is only one of many possible paths that can be
reached from the previous one. TD(n) gets closer to MC in this sense, where
in the limit there is no bias (with first-visit MC) but high variance.

Amore sophisticated extension of TD(n) is TD(λ), where the n-step returns
are averaged through a weighted sum, allowing to express a trade-off between
bias and variance. For more details on TD(λ), the reader can consult [10],
since it is not relevant in the scope of this work.

2.5 Model-Free Control
A key distinction to make before introducing control techniques in RL is be-
tween on-policy and off-policy methods. In the former, the policy that is is
being learned is the same used to collect the experience, while in the latter
the experience can be generated from a different one. Three methods will be
presented next: MC control and SARSA as on-policy, and Q-learning as off-
policy.
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2.5.1 Monte Carlo Control
The idea behindMC control is the same as in PI, but it is done model-free. As
seen in 2.17, greedy policy improvement requires a model of the environment,
as we need to look at the state-value functions of all the next states. If the
improvement step is done using the action-value function Q(s, a), the model
is not needed:

π′(s) = argmax
a∈A

Q(s, a) ∀s ∈ S (2.23)

The policy evaluation step will evaluate Q(s, a) instead of V (s), doing an
equivalent MC update where vt is associated to a state-action pair, rather than
a state:

Q(st, at)
k+1 ← Q(st, at)

k +
1

N(st, at)
(vt −Q(st, at)

k) (2.24)

Another issue with policy improvement is that the greedy policy is deter-
ministic by definition, so it will not allow us to know the Q-values of all the
state-action pairs, thus making the improvement step impossible. To solve the
issue, in model-free control we must use stochastic policies. These are obtain-
able by using ε-greedy strategies, consisting of selecting a random action with
probability ε, and the greedy one with probability 1− ε:

π(a|s) =

{
ε
m

+ 1− ε, if a∗ = argmaxa∈AQ
(s, a)

ε
m
, otherwise

(2.25)

where this allows us to explore the state-action space and collect experience for
more pairs. Moreover, ε-greedy policy improvement has the same properties
of greedy policy improvement, so the new policy is still greater or equal than
the previous one.

On a final note, as in PI, we can perform shallow policy evaluation steps,
not converging to Qπ but obtaining a sufficient approximation of it. The MC
control algorithm uses this modified policy evaluation step, paired with ε-
greedy policy improvement, to find an optimal policy π∗ from experience.
Convergence is guaranteed if all state-action pairs are explored infinitely many
times (GLIE) [10].

2.5.2 SARSA
SARSA [12] is similar to MC control, but instead of MC policy evaluation it
uses TD policy evaluation steps, exploiting the lower variance properties of
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TD methods, and their ability to learn from incomplete episodes. It is still
on-policy, and the update formula for Q(s, a) becomes:

Q(st, at)
k+1 ← Q(st, at)

k + α
[
rt+1 + γQ(st+1, at+1)k −Q(st, at)

k
]
(2.26)

where the next action at+1 is also chosen according to the current policy π.
SARSA can be seen as the sample version of PI methods from DP. Conver-
gence guarantees for it require GLIE policies and learning rates respecting the
Robbins-Monro conditions [10]. Finally, SARSA can be naturally extended
with TD(n) and TD(λ) policy evaluation, leading to SARSA(n) and SARSA(λ).

2.5.3 Q-Learning
Q-learning [13] is an off-policy method, where the policy π we are trying
to learn is generally different from the policy π̄ used to collect experience,
also known as behaviour policy. This decoupling allows to use experience
collected in the past, and learn in both offline and online settings. Whereas
SARSA is the sample version of PI, Q-Learning can be seen as the sample
version of VI methods from DP. In fact, the formula uses the max operator to
choose the next action, and is decoupled from the true choice that was made
when collecting the experience. The update formula becomes:

Q(st, at)
k+1 ← Q(st, at)

k+α
[
rt+1+γmax

a′∈A
Q(st+1, a

′)k−Q(st, at)
k
]
(2.27)

A common choice for the behavior policy is to use an ε-greedy version of
the target policy π, so that it also improves during the learning process, leading
to faster training.

2.5.4 Summary
To conclude this section, a final comparison between DP and RL techniques
is presented and summarized in Figure 2.4. Both families of techniques can
be classified based on their use of sampling and bootstrap.

Since the model of the MDP is available, DP techniques use expectations
(full backups) in their updates and do not rely on sampling. On the other
hand, MC and TD methods do not have the model of the MDP, so they rely on
sampling from experience to approximate expectation (sample backups).

DP techniques and TD methods make updates by looking one step in the
future, and then bootstrap using the current estimate of the next state’s value
function (shallow backups). MC methods instead look at the full trajectory of
the episode, and they never bootstrap (deep backups).
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Figure 2.4: Categorization of methods to solve MDPs based on sampling and
bootstrap.

The family of methods using deep and full backups (no bootstrap, no sam-
pling) is that of exhaustive search. These techniques require the full model of
theMDP, and they plan by unfolding the entire state-action space and then col-
lecting the information to the root node. They rarely are applicable in real-life
applications with high-dimensional state-action spaces due to computational
constraints.

2.6 Function Approximators
Using the methods presented above is challenging with complex MDPs that
have a high dimensional state-action space, as they require an estimation of the
value functions for each state or state-action pair. To solve this, it is possible to
use a function approximator for the value functions, and update its parameters
with the RL algorithm of choice, instead of directly updating the value func-
tions. This allows to generalize over unseen states and state-action pairs, and
scale the solution to even continuous state-action spaces. The parametrization
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for state-value functions and action-value functions is the following:

V̂ (s,w) ≈ V (s) (2.28)
Q̂(s, a,w) ≈ Q(s, a) (2.29)

where w represents the parameters of the function approximator.
In general, these approximators must be differentiable, because the param-

eters are updated through gradient-based methods. In this section, stochastic
gradient descent [14] will be used as gradient-based optimizer to illustrate the
algorithms using function approximators, but other optimizers like RMSProp
[15] and Adam [16] can be used as well.

2.6.1 SARSA
Approximate SARSA performs the same ε-greedy policy improvement step
as exact SARSA, but uses Q̂(s, a,w) for approximate policy evaluation. Like
in SL, we first define the loss function to minimize, which in this case is the
mean squared error between the approximate action-value function and the
true action-value function:

L(w) = Eπ[(Qπ(s, a)− Q̂(s, a,w)2] (2.30)

and then the optimization procedure tominimize the given loss function, which
in this case is SGD:

∆w = α(Qπ(s, a)− Q̂(s, a,w))∇wQ̂(s, a,w) (2.31)

where ∇wQ̂(s, a,w) represents the gradient of the approximate action-value
function with respect to the parameters.

Unlike SL, the true action-value function is not given as part of the dataset
D, and must be substituted by a target. In the case of approximate SARSA(0),
the target is the TD(0) target, so the update formula for the parameters be-
comes:

∆w = α(rt+1 + γQ̂(st+1, at+1,w)− Q̂(s, a,w))∇wQ̂(s, a,w) (2.32)

where the approximate action-value function is itself used as a proxy for the
value of the next state-action pair (st+1, at+1). As for standard SARSA, one
could use TD(n) and TD(λ) targets, leading to approximate SARSA(n) and
approximate SARSA(λ).
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2.6.2 Q-Learning
ApproximateQ-learning shares the same loss function of approximate SARSA,
specified in 2.31. The difference lies in the target used, that is not tied to the
behavior policy but it is a greedy target related to the target policy:

∆w = α(rt+1 + γmax
a′∈A

Q̂(st+1, a
′,w)− Q̂(s, a,w))∇wQ̂(s, a,w) (2.33)

2.6.3 Deep Q Network
Deep Q Network (DQN) [17, 5] is an improvement of approximate Q-learning,
aimed at stabilizing the algorithm to work with a nonlinear function approxi-
mator such as a Convolutional neural network (CNN) [18, 19]. CNNs are use-
ful when learning is done from high dimensional inputs such as pixels from a
videogame or frames from a camera sensor. The two main ideas behind DQNs
are the Experience Replay Buffer (ERB) and the target network.

DQN uses two networks, a prediction network and a target network. The
prediction network is the same used for approximate Q-learning, and its goal
is to approximate the action-value function Q̂(s, a,w). In particular, DQN
uses a variant of the prediction network where the input is a state, and the
output is the Q-values for all the actions available in that state, such that in one
forward-pass the agent can pick the greedy action with the highest Q-values,
performing the policy improvement step.

The target network is architecturally identical to the prediction network,
but has a different set of parameters that are kept frozen for a given number
of steps, and then updated by copying the parameters from the prediction net-
work. This is done to provide an update target that is stable like in SL, and
not a varying one like in the approximate Q-learning algorithm, that is using
a target given by the same network that is being constantly trained. The new
update formula for the parameters becomes:

∆w = α(rt+1 + γmax
a′∈A

Q̂(st+1, a
′,w−)− Q̂(s, a,w))∇wQ̂(s, a,w) (2.34)

where w− is the set of parameters from the Target network.
The ERB is a set of experiences, collected in the past, either by the agent

itself or by someone else, in the form of:

B = {〈s0, a0, r0, s
′
0〉, 〈s1, a1, r1, s

′
1〉, . . . , 〈sn, an, rn, s′n〉} (2.35)

where n is the size of the set. It is populated with a given strategy, the simplest
being random, to form a collection of independent transitions. This alleviates
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the problem of using a dataset D that is not i.i.d. and would lead to unstable
training, especially with non-linear function approximators like CNNs. When
performing a training step on the network, the agent samples a mini-batch of
experiences from the buffer, calculates the loss over those samples, and then
updates the parameters w by performing an optimization step. The use of
the ERB calls for an off-policy algorithm like Q-learning, as the experience is
collected from a policy that is generally different from the current one.

DQN was used to obtain SotA performances on Atari games, and have
since been extended with various improvements. Novel methods like Rainbow
DQN [20], ApeX DQN [21] and the newest Agent57 [22], all make use of
DQN as part of their architecture.



Chapter 3

Related Work

This chapter goes over most of the literature and past contributions that in-
spired this work. At first, Section 3.1 tackles generalization in the context
of RL. It identifies the main contributions to the topic and then explains two
families of solutions, Hierarchical Reinforcement Learning (HRL) and re-
ward shaping, both used to design the proposed solution. Finally, Section 3.2
presents previous research on playtesting for game development, highlighting
how it was approached in the past by third parties and at King.

3.1 Generalization in Reinforcement Learn-
ing

In the context of RL, generalization specifically refers to the ability of an agent
that is trained in one environment to perform well in an environment with
different characteristics, possibly never seen before during training. The focus
of this thesis is on improving zero-shot generalization, which is measured as
the performance of a model on the inference environment, without tuning its
parameters there. In our case, where the training environment contains a set of
levels and the inference environment contains different ones, we can say that
an agent A generalizes better than an agent B if, after training both of them
on the training environment, A displays higher performances on the inference
environment. This means that A can transfer the knowledge learned during
training at inference time better than what B does.

However, the ability of an RL agent to generalize has not always been the
primary focus of research in the field. The most used benchmarks, like the
Arcade Learning Environment (ALE) [23], report the performances of an agent

30



CHAPTER 3. RELATED WORK 31

over the same environment where it is trained on, thus not making a clear
distinction between training, validation and testing like in the SL field.

The first systematic study of generalization is performed by Packer et al.
[24], who propose a defined set of environments, metrics, and baselines to
assess the abilities of agents to generalize. Surprisingly, they find out that
architectures specifically developed to improve generalization fail to obtain
better performances than simpler ones like vanilla PPO and A2C, two other
RL algorithms.

This trend is well analyzed by Cobbe et al. [25], who propose a new bench-
mark that encourages the measurement of generalization. In particular, they
create an environment called CoinRun, where an agent can be trained over
some levels and tested on others bymeasuring the zero-shot performance. This
split allows us to assess how well the agent is generalizing, and the authors
show that more levels in the training set lead to better performances in the test
set. Finally, they try different techniques from the SL field such as deeper net-
work architectures, regularization, dropout, and batch normalization, proving
how they can decrease overfitting in RL tasks as well.

On the same line of research, Justesen et al. [26] also focus on a clear
distinction between training and test environments, and integrate the idea of
curriculum learning, in which every new episode in the training process fea-
tures a level that is harder (easier) if the agent performed well (poorly) in the
previous one. In particular, the levels are all created via procedural content
generation, and this leads to more effective training and better generalization
over unseen levels.

Lee et al. [27] try to address the issue of overfitting to high dimensional
inputs like images by introducing random perturbations of the state-space, al-
lowing an agent to generalize over unseen visual patterns in the test set. Their
method outperforms techniques such as regularization and data augmentation
for the same purpose.

A more interesting and recent result comes from the work of Farebrother
et al. [28]. The authors first propose a test-bed to assess generalization on
the ALE and use it to measure the abilities of a standard DQN algorithm,
showing how it heavily overfits to the training set and is unable to perform
well even with minor differences in the environment. Furthermore, they ex-
periment with regularization and dropout in the network and report that these
techniques improve the generalization abilities of an agent, both considering
zero-shot performance and fine-tuning, achieved through pre-initialization of
the weights with those learned during training.
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3.1.1 Hierarchical Reinforcement Learning
The idea behind HRL is inspired by how humans learn to reuse primitive ac-
tions to achieve more complex goals, or macro-actions. Our process of de-
cision making involves multiple levels of abstraction, or hierarchies, where
we work towards a fixed goal by achieving smaller sub-goals that lead to ac-
complishing the final one. HRL is similar, having a hierarchy of agents with
different goals, working at multiple levels of temporal abstractions from the
others. The benefits of the hierarchy are multiple. Firstly, it leads to better ex-
ploration, as an agent can explore the environment driven by sub-goals, rather
than through random techniques. Secondly, having different levels of temporal
abstraction means that high-level behaviors can be learned by taking actions
less frequently, thus having a faster training process. Finally, learning low-
level behaviors leads to better knowledge transfer. A human that is learning to
play Tennis does not need to also learn how to grab an object or move his arms
again since it already acquired this knowledge in the past and can transfer it to
this new task.

Florensa et al. [29] propose a hierarchical model to tackle environments
with sparse rewards. They first let different agents learn different skills, unre-
lated to the final goal, in a pre-training environment with proxy rewards. Then,
they train one high-level policy for the downstream task to solve, which picks
one of the pre-trained policies and sticks to it for τ steps. The weights of the
high-level policy can be jointly optimized with those of the lower-level ones.

Simpkins et al. [30] try to solve the problem of reusing RL modules with
different reward scales, without having to linearly sum them. They propose an
architecture where an arbitrator chooses one of the modules at each timestep
and executes the action proposed by that module. This allows being scale-
invariant, as each module can have Q-values of any magnitude without affect-
ing the arbitrator’s choice since they are not summed in any way. Ideally, this
architecture works better with on-policy algorithms, but the authors empiri-
cally prove that it also performs well with Q-Learning. The proposed archi-
tecture ends up being a hierarchical one, similar to [29].

Nachum et al. [31] conduct a thorough investigation of hierarchical mod-
els, analyzing what are the reasons behind the benefits of hierarchical archi-
tectures. They find out that the main one is improved exploration, followed
to a lesser degree by temporally extended actions. Additionally, they propose
two non-hierarchical methods that share the same benefits of hierarchical ones.
The first one consists in having multiple policies focused on different goals,
and just randomly sampling one every τ timesteps to use in the environment.
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The second one involves two agents, one focused on maximizing environmen-
tal rewards, and one focused on reaching hand-crafted goals, where the first
one is the default choice for exploitation, while the second one is used for
exploration in the environment.

Feudal RL

The first hierarchical architecture is proposed by Dayan et al. [32] with the
Feudal framework. Here, managers learn to give goals to sub-managers at
lower levels in the hierarchy, who will in turn learn how to achieve them. The
only communication between managers and sub-managers is done through
goal assignment, where sub-managers are rewarded for achieving a goal (re-
ward hiding). Each level in the hierarchy only needs to observe the subset of
the state-space that is useful for it, without the need to know what happens in
the other layers (information hiding). This first version of feudal learning is
not guaranteed to converge to an optimal policy.

Vezhnevets et al. [33] make use of the Feudal framework in an architecture
called FeUdal networks, featuring two layers of hierarchy. A manager picks
explicit sub-goals in a latent space, that is itself learned by the manager, and
provides them to a worker who tries to achieve them. There is no gradient
sharing between manager and worker, but only communication of goals.

Options

The family of architectures based on options stems from the work of Sutton
et al. [34]. An option represents a temporally extended action, and it can be
formally defined as the triple o =< Io, πo, βo >, where:

• Io ⊆ S is the initiation set, i.e., the set of states where the option is
available and can be chosen by the agent.

• πo : S × A → [0, 1] is the policy used to choose actions after option o
is selected.

• βo : S+ → [0, 1] is the termination condition, i.e., the probability distri-
bution over states, indicating when the option ends.

With this framework, a high-level policy-over-options observers the en-
vironment, picks options (sub-policies) and runs until termination, while a
low-level sub-policy observes the environment, picks primitive actions that are
available, and runs until the termination condition is met (or the episode ends).
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This formalization extends actions to high-level skills that can be applied to
different environments. A traditional formalization with primitive actions, for
an agent that has to escape from a house, would include actions like moving
North, West, South, or East. A more efficient formalization, using options,
allows the same agent to use high-level actions like "going to the hallway" or
"leaving the room".

Kulkarni et al. [35] extend the options framework and propose the h-DQN
model, where a meta-controller receives rewards from the environment and
picks high-level goals to provide to a low-level controller, which in turn takes
primitive actions until it reaches the goal. The low-level controller follows the
idea of intrinsic motivation, where an agent rewards itself for exploring the
environment. Goals can be expressed in a versatile way, even as a function of
states.

Bacon et al. [36] propose the option-critic model, which is a variant of
the action-critic algorithms. The authors extend the policy-gradient theorem
to options and come up with an end-to-end architecture where options can
be learned rather than pre-specified. Here, a manager receives the gradients
directly from the workers, unlike in feudal learning.

3.1.2 Reward Shaping
Many RL environments provide an agent with rewards that are too sparse
and/or delayed, making it difficult for an algorithm to identify how past ac-
tions impact the final outcome, as the reinforcement process can happen long
after the action was taken, and with few rewards. Working in such a setting can
lead to a very slow learning process, often too time demanding to be useful
for real-world applications. A way to approach this is to give more frequent
rewards (intrinsic) to the agent, other than those given by the environment
(extrinsic), to guide the learning process and make it faster. This category of
solutions falls under the name of reward shaping, where the reward function
is shaped either manually, by an expert, or through intrinsic motivation, by the
agent itself.

Potential-Based

Manually shaping the reward function by giving additional rewards to an agent
can lead to undesired behaviors. Randlov et al. [37] craft an experiment where
an agent that has to learn to cycle to a goal is given positive rewards when
moving towards the goal. This additional reward is exploited by the agent by
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performing circles on the spot, without ever driving to the goal, as it gains
infinite rewards in the loop every time it is facing the destination.

To address the problem, Ng [38] proposes a reward function that achieves
policy invariance by assigning potentials to states, and giving rewards based
on the difference of potentials between the new state and the previous one,
avoiding loops. The author formally proves that shaping the original reward
with a potential-based intrinsic reward is a necessary and sufficient condition
to still achieve the optimal policy. The new Q-learning update becomes:

Q(s, a)← Q(s, a) + α
[
r + F (s, s′) + γmax

a′
Q(s′, a′)−Q(s, a)

]
(3.1)

where the additional reward F (s, s′) is defined as:

F (s, s′) = γΦ(s′)− φ(s) (3.2)

Devlin et al. [39] build upon Ng’s work and make the potential a func-
tion of time as well, thus dynamic. They also prove how the new function
still achieves the optimal policy, even if it never converges. In this case, F is
defined as:

F (s, t, s′, t′) = γΦ(s′, t′)− φ(s, t) (3.3)

One flaw of Ng’s approach is that the potential does not take into account
the action taken, as it only depends on the visited states. Wiewiora et al. [40]
propose an extension where the potential is now a function of the full transition
from one state to the other, so it is possible to guide an agent by giving it
advises on the best action to take in every state. The authors propose two ways
of defining the new function F . The first way is called look-ahead:

F (s, a, s′, a′) = γΦ(s′, a′)− φ(s, a) (3.4)

where a′ is chosen according to the learning rule (e.g. greedy selection in Q-
learning). To recover the optimal policy, action selection in a state should be
biased by adding the potential of the transition. The new policy becomes:

πb(s) = argmax
a

[
Q(s, a) + Φ(s, a)

]
(3.5)

With look-back advice, we only need to change the reward function F ,
which now takes into account the previous transition as opposed to the future
one:
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F (st, at, st−1, at−1) = Φ(st, at)− γ−1Φ(st−1, at−1) (3.6)

Building upon the previouswork, Harutyunyan et al. [41] propose amethod
to use any kind of reward function to shape the original one, while maintaining
the same guarantees of potential-based shaping. The method involves learn-
ing a new state-action value function Φ(s, a) that is trained using a reward RΦ

equivalent to the negation of the reward function RΨ provided by the expert.
In formulas:

RΦ = −RΨ (3.7)

Φt+1(s, a) = Φt(s, a) + βtδ
Φ
t (3.8)

δΦ
t = rΦ

t+1 + γΦt(st+1, at+1)− Φt(st, at) (3.9)

and using Φ(s, a) as a potential allows to achieve policy invariance and thus
convergence to the optimal policy. In fact, the followng equality holds:

F (s, a) = γΦ(s′, a′)− Φ(s, a) = RΨ(s, a) (3.10)

Curiosity-Driven

The idea of curiosity-driven learning is presented by Chentanez et al. [42].
The authors let an agent explore a playgroundwhere it can learn different skills,
and provide it with a reward based on the prediction error: the more novel a
state is, the higher the reward given. This form of purely intrinsic reward
allows the agent to first learn easy behaviors, which are repeated many times
(decreasing the reward for each repetition), and then more complex behaviors
as the time goes on. Actions are modeled through the options framework for
more expressiveness.

More research followed on curiosity-driven learning. In particular, a thor-
ough study by Burda et al. [43] compares different SotA methods giving in-
trinsic rewards based on prediction error. An interesting result is their thought
experiment, later confirmed empirically, to prove that these methods do not
work with highly stochastic environments, as the agent would only take ac-
tions with the highest entropy, leading to sub-optimal behavior. This is es-
pecially important for a game like CCFS, where an agent would focus only
on exploiting the high stochasticity of the transitions instead of learning the
optimal policy.
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Linear methods

A straightforward way to incorporate relevant events into the reward function
is through linear approaches. Lample et al. [44] make use of this idea to
train an agent in the VizDoom environment, where additional positive rewards
are given for events like picking up ammunition or walking in the map, while
negative rewards are given for events like wasting ammunition. These rewards
are summed to the one given by the environment, representing the simplest
linear approach to combine intrinsic and extrinsic rewards.

A more complex architecture is proposed by Van Seijen et al. [45] and
consists in decomposing a reward function in multiple ones, learning a value
function for each reward stream. Ideally, since each stream is different, the
various policies can be trained using the subset of the entire state-space that
contains relevant information for that stream, decreasing sample complexity.
The architecture can be thought of as a single network having multiple heads,
where each head is trained with a different reward stream, but the body can
be shared among the heads. Action selection is performed by summing the Q-
values of the different policies and picking the action with the highest resulting
Q-value. Theoretically, the method works better with an on-policy algorithm,
as an off-policy one would update the Q-values of each policy as if the next
action was chosen by that policy, while it is not true in this case.

The same concept of multi-head network is presented by Burda et al. [46],
where the additional intrinsic rewards are given as an exploration bonus. The
combination of intrinsic and extrinsic rewards is performed by learning multi-
ple value functions since the linearity of the returns with respect to the rewards
allows to simply sum the two value functions represented by the two heads. In
formulas, if Ve is the value function related to the extrinsic rewards, and Vi the
one related to the intrinsic rewards, the final value function is V = Ve + Vi.
This decomposition also allows training an agent with different discount fac-
tors, as they are factored into the respective value functions.

Other approaches

An approach similar to Curiosity-Driven Learning is proposed by Jaderberg
et al. [47], where an agent tries to maximize more reward functions at the
same time, using unsupervised approaches. The model performs additional
control tasks like learning to change pixels or network features, and it shares
the same convolutional and LSTM layers with the base policy. Moreover, the
model tries to predict additional quantities like the immediate reward given
past states, and the learned weights are shared with the LSTM of the main
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policy.
An interesting intrinsic-only method is proposed by Justensen et al. [7],

where rewards are given using an automated heuristic. An expert first defines a
series of events that are relevant for the task at hand, and the agent is rewarded
for achieving those events: the more it achieves them, the less reward it will
gain. Formally, given a vector of event occurrences x, where xi is the number
of times event i occurred during a timestep t, the reward given to the agent in
t is:

Rt(x) =

|x|∑
i=1

xi
1

max(µt(εi), τ)
(3.11)

where µt(εi) is the temporal episodic mean occurrence of εi at time t, which
represents how often the event occurs every episode on average, while τ is a
constant to avoid division by zero. The idea is that this temporal frequency
heuristic will allow the agent to explore more complex behaviors, and learn
to achieve them. This approach can be adopted to learn skills that are hard to
define with a manual reward without introducing human bias.

3.2 Playtesting
Silva et al. [48] attempt to find an AI that could master the board game called
Ticket to Ride. Their experiments with search techniques like A-Star [49]
and Monte Carlo tree search (MCTS) [50] are not successful due to the large
state-space of the game and its partial observability, so the authors opt for an
heuristic-based approach. They develop four agents, each one based on a strat-
egy commonly accepted by the game community as strong, and test them on
different maps. Their discoveries help to find similarities between maps and
which strategies are desirable for certain maps, thus increasing the common
knowledge on the game. Moreover, the agents discover states that are not cov-
ered by the game rules, effectively representing bugs in the rules.

Ariyurek et al. [51] propose a method to employ automated testers to dis-
cover bugs in games. They use two types of agents, based either on RL or
MCTS and train them using one of two different approaches. The first one
uses test goals from game scenarios modified to reward unintended transi-
tions, while the second one uses Inverse RL to learn a reward function from
human play-testers, such that the agents could imitate their behaviors in find-
ing bugs. The performance of the agents is on par with that of human testers,
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and the final results highlight the similarity between the RL agents and human
behaviors.

Borovikov et al. [52, 53] propose a learning and planning framework to as-
sist developers in building and testing their games. The first approach is based
on model-free RL but is discarded due to the computational cost of training
DQN-based agents to achieve the same performance of human testers on even
short episodes. The authors improve over the first method by using Imitation
Learning instead of RL, allowing the agent to learn from expert demonstra-
tions. Their final architecture consists of a Supervised model trained on a data
set composed of expert demonstrations augmented with artificial ones gener-
ated from a Markov model that is imitating a human player. At any point in
time, a game designer can take control of the model by injecting more demon-
strations samples to learn from.

Amore recent paper by Shin et al. [54] tries to solve play-testing for Jewels
Star Story, a Match 3 game that is very similar to CCFS. The authors define a
set of strategic plays, representing meaningful heuristic strategies that a player
can choose to follow, and train an RL agent using A2C to learn which strategy
to use on the current board. Their results underline that this method performs
better than rule-based agents, that are fully based on heuristics, and close to
human performances on some levels. The authors also conclude that their
results are not extendable to all levels with different goals, as the features may
vary a lot from those used during training, and thus not generalize well.

King
This thesis builds on the work done in the past by researchers at King, who
tried to automate and improve playtesting for level designers.

Poromaa [55] develops a general MCTS algorithm to predict the Average
Human Success Rate (AHSR) on the levels of CCS. His results report more
accurate estimations of the AHSR than SotA methods based on heuristics, and
the author argues that MCTS can be more accurate than a human playtester,
which is limited by the time and number of experiments it can run. However,
the results are relevant on the first levels used for testing, while the accuracy
over harder levels is worse. Finally, the author underlines the limitations of
MCTS in an exhaustive search of the state-space, which is deemed infeasible
due to the computational load of the algorithm.

Gudmundsson et al. [1] approach the problem of estimating AHSR by
using deep learning from available player data. They train a CNN network to
predict the most likely action to be taken in a given board state based on the
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demonstration data collected from real players on 2150 different levels. The
success rate of the CNN bot, measured as the number of wins over the total
number of attempts, is then fed into a binomial regression model that predicts
the success rate of a human (AHSR). Their results over 200 test levels report
stronger prediction accuracy and execution efficiency than theMCTS approach
of [55]. Nonetheless, they are limited by the need to retrain the prediction
model when new game elements are added, as well as collecting new human
data for the training set.

To address the previous points, RL solutions are developed and tested by
Fischer [56] and Karnsund [2]. The former implement a version of PPO, a
policy-based model-free agent, while the latter experiment with DQN and its
variants, namely Double DQN, Dueling DQN and Prioritized Experience Re-
play. In both cases, the research is scoped down on a subset of levels and one
objective in CCFS. This thesis builds directly upon the work of [2], making
use of DQN as its base agent and Q-learning as the underlying algorithm. In
the experiments, the trained agents fail to get rid of Blockers in the available
number of moves and thus have a low overall win rate compared to humans.
Moreover, the agents struggle to transfer their knowledge to unseen levels,
demonstrating poor generalization abilities.



Chapter 4

Problem Setting

This chapter provides the reader with crucial details needed to understand the
CCFS game and its definition as an RL environment. This is a necessary step
before diving into the remaining chapters, as the proposed solution is strictly
intertwined with how the environment is defined. Section 4.1 explains the
mechanics of the game and formalizes it with an MDP. Then, Section 4.2 goes
through the implementation of the environment. It covers the encoding of the
state and action space, the reward functions used in previous works, and how
to keep track of meaningful events such as the creation of Special candies.

4.1 Candy Crush Friends Saga
As mentioned in Section 1.6, the game used in this thesis is CCFS, the latest
released game in the Candy franchise. Each level is completed if its objective
is reached within the number of available moves. Currently, there are five dif-
ferent types of objectives in the game: Free the Animals, Free the Octopuses,
Dunk the Cookies, Fill the Empty Hearts, and Spread the Jam. To ensure con-
sistency with the baseline [2], the objective used in this thesis is Spread the
Jam, so the features introduced in this section are only the ones available in
these levels.

The game board is a grid of 9 × 9 tiles that contains either Regular can-
dies, Special candies, or Blockers (defined below). A basic action in the game,
called match, consists of swapping two candies on the board to create a hori-
zontal or vertical sequence of three or more candies of the same color. These
are then eliminated from the board and replaced with the candies above them,
or with random candies if the action involves the top row.

The behavior of random candies falling from the top is regulated by a seed

41
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number, which also determines the candies that are randomly present at the
beginning of the level. A player that plays the same level twice, with two
different seeds, will have a different game experience: the same move in the
same board configuration will lead to a different game state due to the involved
randomness.

Candies

Regular candies are the most common type of candies that are present in the
game. There are seven types of Regular candies, each one with a distinct color:
blue, cyan, green, orange, purple, red, and yellow. Only candies of the same
colors can be matched together.

Special candies are created by matching at least four candies of the same
color, Regular or Special, in a sequence. There are five types of Special can-
dies: Striped candies, Wrapped candies, Color Bombs, Coloring candies and
Fishes. A Special candy can be used by swapping it with another Special
candy, without necessarily having to match three or more candies of the same
color together. The effect of a Special candy is triggered whenever it is part of
a match. In particular:

• Striped candies are created by matching four candies in a horizontal line
or vertical line. Depending on the direction of the match, the candy can
either have horizontal stripes or vertical stripes. When a striped candy
is involved in a match, it creates a vertical or horizontal blast (according
to its stripe) that clears all candies in that line and is stopped by the first
Blocker it encounters.

• Wrapped candies are created by matching five candies in an "L" or "T"
shape. When a Wrapped candy is involved in a match, it first clears all
the other candies in a 3× 3 space, and then drops down and repeats the
effect. The explosion damages Blockers.

• Color Bombs are created by matching five candies in a straight line.
When a Color Bomb is swapped with another candy, all the candies of
the same color of the latter will be cleared from the board.

• Fishes are created by matching four candies in a square. When a Fish is
involved in a match, it randomly targets another tile on the board, and
either clears the candy in that tile or damages the Blocker in that tile if
present.
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• Coloring candies are created bymatching six ormore candies in a straight
line. When a Coloring Candy is swapped with another candy, it makes
all the other candies on the board of the same color as the latter.

Blockers

Blockers prevent a player from using the tile on which they are located. Each
Blocker has a fixed number of layers, and each layer is removed by making
a match that involves neighboring tiles. When the last layer is removed, the
Blocker is taken out of the board, and the tile is said to be free. In jam levels
there are four main families of Blockers:

• Cupcakes occupy one tile on the board and block the flow of candies, as
well as their effects, from going beyond them. Cupcakes can have up to
six layers. For instance, if a Cupcake with six layers occupies a tile, it
needs to be hit six times to be completely removed from the board.

• Liquorice Chains are similar to Cupcakes, blocking candies, and effects
from traversing their tile. They can have up to four layers, but when one
of them is removed from the board, all the others forming a chain with
it are also removed, regardless of their layers.

• Liquorice Locks are placed on top of a candy and prevent the player
from swapping the candy. They have one layer and are removed when
the candy under the Lock is involved in a match with candies of the same
colors.

• Liquorice Swirls are the only type of moving Blocker, as they fall down
like other candies and do not have a fixed position. They can also be
swapped with a candy, block the flow of candies, and prevent effects
from going through. They only have one layer and are removed by mak-
ing a match on the neighboring tiles.

Characters

Characters, or champions, are entities that can assist a player in completing a
level. One of them is selected before the level starts, and its effect is triggered
once the player makes a certain number of matches that involve the color of
that character. Currently, there are five characters in the game: Tiffy, Yeti,
Nutcracker, Odus and Misty. To ensure comparable results with the baseline
[2], Tiffy is the character used in all the levels in the experiments. Tiffy’s
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effect is triggered once ten red candies are collected and consists of turning
three random candies on the board into three red fishes.

Special candies play an important role in the solution proposed in this the-
sis. Using a champion with respect to another one might introduce bias in that
sense, so ideally one would conduct the research without selecting any at the
beginning of the level. However, this is not feasible to implement in the source
code in the time given, so the choice falls on the same one used in the previous
works.

Spread The Jam

In Spread the Jam levels, the objective is to cover the entire board with jam.
At the beginning of the level, some tiles already contain jam as a background.
When a match involving a tile with jam is performed, the jam is spread to the
other tiles involved in the match. These levels require strategic planning, as
spreading the jam all over the board within the move limit is not straightfor-
ward. In particular, Blockers prevent a player from performing matches on the
board, so the jam cannot be spread on the tiles with Blockers. Unlike other
objectives, in jam levels all Blockers must be taken out of the board, and a
good approach is to focus on doing that initially, so the tiles are then free of
Blockers, and jam can be spread more easily.

4.2 Environment Implementation
The environment was built by King engineers and acts as a medium between
the game and the RL agents. The game exposes two endpoints to the environ-
ment, one to reset the state and start the level passed as a parameter, and one
to perform the action passed as parameter. Both endpoints return an encoded
representation of the current game board after the reset or action is performed.

The environment exposes a uniform interface to the RL agent that is the
same as Gym’s [57], allowing custom implementation of an agent to be used
in the future without compatibility issues with the environment. It receives the
raw state from the game and transforms it by applying an encoding detailed in
this section. Moreover, it exposes two endpoints, one to reset the state and one
to take an action, using a second type of encoding. Both endpoints return a
reward for the move taken, the new state representation, a signal that indicates
if the level is finished, and additional information. As described in this section,
the reward function is part of the environment, so defining an intrinsic reward
function involves defining a new environment.
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The environment receives a raw representation of the game board from
the game itself, without information on what happens as a consequence of the
action of an agent. Key information such as what Special candies have been
created and what Blockers have been damaged are missing in this represen-
tation. Since these types of events are crucial for the solution, we decided
to implement an event tracker in the environment that serves this purpose.
This routine receives the initial board state, the action taken, and the following
board state, and follows a best-effort approach to determine the events caused
by the action.

Determining precisely the consequences of a game action is impossible, as
the game involves randomness due to candies falling from the top to fill up the
board, and we cannot replicate it outside of the game. These random candies
filling the board can be immediately involved in another match, so multiple
matches can be caused by a single action. However, the environment receives
the board state after all effects are applied, therefore, it is only possible to track
the events as a difference between the board state before the move and after
it. For instance, a Special candy may be indirectly activated by the random ef-
fect, and it would wrongly appear to the environment as if this was done by the
agent, which would be rewarded for it. This noise in the measurements can-
not be removed and might impact the performances of some reward functions
proposed in the next chapter.

MDP
CCFS is a complex environment for RL. The state-action space is discrete and
finite, yet very high dimensional. Independently of the encoding, the number
of possible board configurations is exponential with respect to the number of
game features. As a consequence, it is highly unlikely that an agent will face
the same board configuration twice, and this burden on generalization has to be
carried by the function approximator used. The stochasticity of the transition
and reward matrices makes it challenging to learn the correlation between an
action and its consequences, as random candies falling from the top cause
the same action in the same state to lead to different board configurations,
if different game seeds are involved. As a consequence, exploration is harder
than other popular environments, and the number of episodes required to learn
an effective policy grows with it. In this thesis, an episode is a full play on a
level, finishing with a win or a loss. To summarize these characteristics, we
propose to model the environment of the game through the following MDP:

• Time horizon T : finite.
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A player knows beforehand how long the game is going to be, given the
move limit.

• Set of states S: finite.
The number of possible combinations of board states is finite and de-
pends on the encoding.

• Set of actions A: finite.
The number of available actions in a given state is finite and depends on
the encoding.

• Matrix P : partially stochastic.
The transition from a state to another is affected by randomness from
the candies falling.

• Matrix R: partially stochastic.
The reward for a given action is affected by randomness from the candies
falling.

• Vector µ: stochastic.
The initial state distribution is random and depends on the game seed.

• Discount factor γ: undetermined.
Different levels have different time horizons, so γ is treated as a hyper-
parameter.

State Space
The idea behind the encoding of the state space is to use a one-hot binary repre-
sentation for each game feature available. This type of encoding is adopted by
[1], and is also used for the state representation of AlphaZero [58] and OpenAI
Five [59]. The advantage of a one-hot representation in a board game is that it
makes learning much easier compared to using raw pixels. There is no risk of
learning patterns from meaningless components like the background color, so
the network layers can instead focus on the important features directly, without
having to learn how to abstract from them. In this case, feature engineering is
an important preprocessing step that speeds up and improves training.

Another work at King [1] represent the state as a 3D grid of 9 × 9 ×M
dimensions, where M is the number of layers. This number depends on the
Candy game taken into consideration, as different games have different fea-
tures. In CCS, the authors adoptM = 102. In CCFS, [2] usesM = 193. A
representation of the encoding for CCS is provided in Figure 4.1.
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Adopted from [1].

Figure 4.1: One-hot encoding of the board as a 9×9×M 3D matrix for CCS.
The same idea applies to CCFS.

In [2], given the focus on only a subset of jam levels, there is no need to
use the entire 9 × 9 × 193 encoding of CCFS. Most of those layers will hold
zeros, because only a subset of the features is available in their levels, so the
author decides to adopt 27 feature planes.

In this thesis, given the focus on generalization, we opt to make use of a
larger number of levels compared to [2], all having Spread the Jam as the game
objective. The levels are selected from a pool that is diverse enough to cover
all the game features available in these levels. During training, the parameters
of the network used will fit every possible feature, so that an agent will be able
to be tested and used on all the jam levels, even future ones. An exception
is done for entity spawners, which are features that create new candies and
Blockers on the board in addition to the ones present at the beginning of the
level. This group of game features is excluded from the thesis scope, due to
some engineering constraints in the game build used. The full list of levels,
together with the specific reasoning behind the choice of each of them, is pro-
vided in Chapter 7. In total, these cover a feature space with 32 variables: 30
binary ones coming from the raw encoding of the game, and two real ones that
are handcrafted. The explanation for the choice of each layer is provided next.

Layers

Layers 0-5 encode the presence of one of the six Special candies on a tile.
Layers 6-12 encode the color of the candy in the tile, out of the seven available
colors. A Regular candy in position i, j on the board is encoded with 0s in
the feature planes of the Special candies, and a 1 in position i, j of the feature
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plane related to the color of that candy. A Special candy in position i, j is
instead encoded both by a 1 in its corresponding feature plane, and a 1 in the
feature plane related to its color.

Layers 13-18 encode the presence of one of the six Cupcakes on that tile.
For instance, if a Cupcake with two layers is in position i, j, then the 14th state
layer, corresponding to cupcakes with two layers, will have a 1 in position
i, j. When that Cupcake is hit and remains with one layer, there will be a 1 in
position i, j of the 13th state layer, and a zero in position i, j of the 14th state
layer. Layers 19-22 represent Liquorice Links, which behave like Cupcakes.
Layers 23 represents Liquorice Locks. Layers 24 represents Liquorice Swirls.

Layer 25 indicates if the tile contains jam, so it is related to the objective
of the level.

Layer 26 indicates if the tile contains a portal: a feature of the game that
teleports candies from its entrance to its exit, which is represented by another
portal on the board.

Layer 27 is the bias of the network, and it’s a 9× 9 layer full of 1.
Layer 28 is the void layer, and it is used to indicate the true shape of the

board, as some levels do not have a full 9× 9 board playable, but might have
a subset such as a 7× 8 board.

Layer 29 is associated with cannons, which create candies randomly to fill
the board after a match. As mentioned before, in the scope of this thesis we
only use levels with cannons that create Regular candies.

The last two layers are handcrafted and contain fractional numbers. Layer
30 is used to indicate gravity, i.e., the direction in which candies move after
a match, as in some levels they might not fall downwards but in other direc-
tions. Layer 31 contains the number of moves left as a fraction of the initially
available moves. This kind of encoding for scalars is redundant, as they are
represented as a 9× 9 matrix that contains the same value everywhere. A bet-
ter encoding would use two input sources, one represented as a matrix and one
as scalar features. However, this requires creating an ad-hoc layer to merge the
two after feature extraction, and we deem it unnecessary for only two scalar
features, so we leave it for future work. A concise representation of the adopted
feature space is provided in Table 4.1.

Layer Feature Format Render
Special candies

0 Color Bomb Binary

1 Vertical Striped Binary
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2 Horizontal Striped Binary

3 Wrapped Binary

4 Coloring Candy Binary

5 Fish Binary
Colors

6 Cyan Binary

7 Yellow Binary

8 Orange Binary

9 Green Binary

10 Red Binary

11 Purple Binary

12 Blue Binary
Blockers

13 Cupcake_0 Binary

14 Cupcake_1 Binary

15 Cupcake_2 Binary

16 Cupcake_3 Binary

17 Cupcake_4 Binary

18 Cupcake_5 Binary

19 Chainx_1 Binary

20 Chainx_2 Binary

21 Chainx_3 Binary

22 Chainx_4 Binary

23 Lock Binary

24 Swirl Binary
Objective

25 Jam Binary
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Others
26 Portal Binary
27 Ones Binary
28 Void Binary
29 Cannon Binary
30 Gravity [0, 1]

31 Moves left [0, 1]

Table 4.1: A summary of the 32 layers used in the thesis, including their in-
dexes, names, data types and renders.

Action Space
The same encoding of the state space applies to the action space. Following the
idea of [1], actions are represented by one-hot encoding the edge between the
two candies that are swapped, for a total of 144 possible swaps on the board.
This encoding does not take into account the direction of the swap, and this
sometimes matters in the game andmight lead to different results. However, as
the authors notice, this is not worth the cost of doubling the number of actions
to 288 to also include the direction of the swap, so it left for future improve-
ments. For an RL agent, 144 discrete actions can already be considered high
dimensional, compared to many games in the ALE where the actions available
are four. A representation of the encoding is provided in Figure 4.2.

At any point in time, only a few candies can be swapped on the board, i.e.,
those whose swap leads to a successful match. We prevent an agent to choose
illegal actions by marking their Q-values as illegal both before selecting an
action and when performing a Q-learning step.

Illegal Actions

The main logical adjustment we made to the action space consists in changing
the way illegal actions are treated. A legal action is one that leads to a suc-
cessful match, with either three or more candies of the same color in a row
or forming a shape that follows the rules of Special candies. At a given time
t, only a subset of all the 144 actions can be made on the board, and these
are called legal actions. A common approach in the literature is to reward an
agent negatively and bring it back to the same state when it tries to perform
an illegal action so that it will learn to take only legal ones. In CCFS, this is
unfeasible because of the high dimension of the action space, and due to only
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Source: Tech at King, Medium 1

Figure 4.2: One-hot encoding of the actions as 144 indexes marking the edge
between the candies to be swapped.

an extremely small subset of the 144 actions being legal in each state. Trying
to teach the agent to distinguish between legal and illegal actions would be a
complex RL problem itself, so it is discarded. To address this, in [2], the net-
work architecture is fed with a list of legal actions, and the Q-values of illegal
ones are set to a negative threshold by the head of the network. In this way,
when an agent performs the max operation, it only focuses on the actions that
have a positive Q-value, i.e., only the legal ones. However, this assumption
only holds for certain types of reward functions, and it might be false for other
ones that also give negative rewards, for instance when losing. This can make
the training process heavily unstable, as incorrect transitions would be saved
in the ERB. We propose a simple adjustment that consists of dealing with ille-
gal actions downstream, making the network not responsible for this task. It is
now the responsibility of the agent itself, using information obtained from the
environment, to perform ε-greedy action selection only over the legal actions,
masking the illegal ones.

Reward Function
The environment was created by the researchers at King, who also designed
the reward functions. In this work, a function that is directly rewarding an
agent for pursuing the objective of a level is called extrinsic. In this section,

1https://medium.com/techking/human-like-playtesting-with-deep-learning-92adafffe921
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we present examples of extrinsic reward functions for CCFS designed at King
in previous works. On the other hand, a function that rewards an agent for
pursuing other goals that are not the one of the environment is called intrinsic.
This type of reward is used in our solution to teach basic skills and is part of
Chapter 5.

Sparse Reward

Sparse rewards are one of the most adopted form of reward functions due to
their simplicity. They do not introduce any form of human bias, because they
only give a reward when the game is won or lost, and not in between. For
instance, they are widely used in the ALE. They can be defined as follows:

r(st, at) =


0, st+1 6= swin and st+1 6= slose

1, st+1 = swin

−1, st+1 = slose

(4.1)

r(st, at) =

{
0, st+1 6= swin

1, st+1 = swin
(4.2)

according to whether we penalize a losing state (4.1) or not (4.2). These func-
tions can be used interchangeably for different level objectives, as they are not
related to jam in any way. Of course, different environments need to define
when a state is marked as winning or losing, but that is the only difference
between them.

Themain issue with these functions is sparsity. Learning an optimal policy
requires a much higher number of episodes than with a non-sparse (dense)
reward function, because the reward is given at the end of the episode, and
needs to be backpropagated to every action that was involved in achieving it.
With DQN, that is based on TD(0) methods, the reward is backpropagated
one episode at a time, so the process is very slow. Moreover, distinguishing
between actions that contribute to a win and those that did not is hard, as the
only information that an agent gets is if it won or lost.

From the experiments of [2] and [56], we observe that the sparse reward
functions have poor performance in CCFS compared to the dense ones. We
claim that these types of rewards are not a good choice for stochastic environ-
ments, where the effect of an action is impacted by randomness in such a way
that it becomes difficult to assign the correct credits. Instead, the approach
that should be followed is to use a dense function, which rewards every action
for its direct contribution. A final issue that we identify with these rewards
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is related to low win rates. Some levels in CCFS are designed to be really
hard and have an extremely low win rate as a consequence, as low as 5% for
human players. In this situation, a random policy exhibits a win rate of 0%.
This makes the learning process even harder than it normally is, as the winning
signal would be unobtainable at the beginning of the learning process, where
the agent is effectively playing randomly.

Dense Reward

Dense reward functions address the problem of sparsity by giving more fre-
quent rewards to the agent, whenever it progresses towards the objective to
reach. In the context of CCFS, [2] and [56] propose two different dense func-
tions, directly related to jam levels. The idea behind them is to give more
frequent rewards to the agent, whenever it progresses towards covering the
board with jam.

The first one is Delta Jam, and gives a reward for an action that is equal to
the number j of new tiles covered in jam, normalized by the total number B
of tiles on the board. In formulas:

r(st, at) =


∆j
B
, st+1 6= swin and st+1 6= slose

1, st+1 = swin

−1, st+1 = slose

(4.3)

One of the main points in favor of this reward design is that it is normalized to
1. The total amount of reward that an agent can accumulate in an episode is 1,
disregarding the end game rewards. This property is desirable if the agent is
going to be trained on multiple levels at the same time, since it is independent
of any scale related to the specific level.

Despite the normalization properties, Delta Jam performs worse than an-
other alternative, Progressive Jam (PJ). In this case, whenever an agent makes
a move that spreads at least one more tile with jam, it is rewarded with the en-
tire amount J of tiles covered in jam at that moment, normalized by the total
number B of tiles on the board. In formulas:

r(st, at) =

{
J
B
, ∆j > 0

0, ∆j = 0
(4.4)

The immediate reward that the agent receives is always less or equal to 1 (when
a winning move is performed), but the accumulated reward over an episode de-
pends on the particular level that is being used. This reward is denser than the
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previous one and results show that it allows us to cover the last few remaining
tiles on the board that did not have jam yet. In [2] and [56], PJ is the reward
that allows achieving the best experimental results, so it is the default one for
the environment. Therefore, in this thesis, we choose to use PJ as the extrinsic
reward.



Chapter 5

Skill Learning

This chapter introduces the reader to the first part of the solution, related to
learning reusable skills. As explained in Chapter 1, the idea behind the overall
solution is to imitate the behavior of human players during their learning curve
in the game. Section 5.1 presents the detailed motivation behind this first part
of the solution. In this thesis, the focus is on learning three skills: getting rid
of Blockers, creating Special candies, and using Special candies by matching
them with other candies. Reward functions related to Blockers are presented
in Section 5.2 and the ones related to creating and using Special candies are
introduced in Section 5.3. The network architecture is shared by both families
of policies and is illustrated in Section 5.4. Finally, Section 5.5 goes over the
different training methods proposed to improve generalization.

5.1 Motivation
The skills presented in this section are just a few examples of the ones learned
while progressing in the game. As a new player progresses through the levels
in CCFS, he/she learns the wide range impact that Special candies can have,
and will tend to create and use them more frequently to reach the level ob-
jective. This involves recognizing specific board configurations from which
Special candies can be created and making the right moves to make that hap-
pen. Also, as the player learns the game, he/she understand the importance of
triggering the character’s ability and will start to play around it more. For in-
stance, if Tiffy is the selected character, it is usually better to collect more red
candies to activate its effect. Moreover, when dealing with jam levels specif-
ically, the player will immediately recognize the importance of getting rid of
Blockers on the board as quickly as possible, such that it can then spread the
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jam more easily and win. Learning how to get rid of them can also help the
player in levels that have different objectives.

The aforementioned skills are not directly related to achieving the goal of
the level, so it is harder to learn them by giving rewards for spreading jam.
Nonetheless, these skills enable the player to complete most levels. This first
part of the solution deals with exploiting intrinsic motivation, in the form of
rewards that are independent of the level objective, to find a set of functions
that can drive an agent towards learning these skills. In particular, we focus on
getting rid of Blockers, creating Special Candies, and using them. Using the
character’s ability is out of the scope of this thesis, and is left for future work.
We select a candidate function for each skill to learn out of several different
ones that are tested, based on their performances. The goal is to obtain policies
that can retain a good amount of skill proficiency in unseen levels.

To the best of our knowledge, there is only one other recently published
research on Match-3 games following the same idea and was developed inde-
pendently of this thesis. In their work, Shin et al. [54] recognize the potential
of skill-based learning, and try to teach an agent a series of skills relevant for
the game at hand. However, they do this only through handcrafted heuristics,
and not via RL. Instead, they use RL to train an agent that can choose between
those heuristics, and their methodology is not meant to be scaled across lev-
els, as it is presented in this chapter. In this thesis, the focus is on using RL to
also perform skill learning, followed by finding the best way to combine them
effectively, as explained in the next chapter.

5.2 Blockers
As explained in Chapter 4, there are different types of Blockers available in
jam levels, each one with its characteristics. Different levels can contain dif-
ferent types of Blockers, in various quantities, so defining a reward function
that can work across multiple levels and generalize to new ones is not trivial.
Two approaches are followed in this part: (i) Damaging Blockers, which con-
sists of rewarding agents for every Blocker they damage, regardless of the type
of Blockers, and (ii) Freeing Tiles, which is driven by the motivation behind
learning to get rid of Blockers to obtain a free board. Rewards are given when-
ever there is a new tile without Blockers on the board. In both cases, the agent
will learn the mechanics behind how Blockers are stripped of layers, and how
to remove them completely from the board. Throughout this section, we will
use level 65 as an example to make the reward functions more clear. Further
details about the levels can be found in Section 7.1.
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5.2.1 Damaging Blockers
We propose to reward an agent whenever a Blocker loses a layer, without dis-
tinguishing between different types of Blockers. This reward design is denser
than the one for freeing tiles because the agent is rewarded every time it takes
a layer from the Blocker on a specific tile, not only when it completely re-
moves it. To this end, we propose two reward functions: Blockers v1 (Bv1)
and Blockers v2 (Bv2). The difference between them lies in how the normal-
ization is performed. Some levels have more Blockers than others, and the
same level can have more Blockers of a type than another one. For instance,
in level 65 there are nine Cupcake_0, six Cupcake_1, four Cupcake_2, two
Cupcake_3, four Cupcake_4, two Cupcake_5, and three Locks (defined in Ta-
ble 4.1). When a Cupcake_1 is hit, it turns into a Cupcake_0, and this has to be
factored in the initial counters when normalizing the reward function. Other
types of normalization have been designed but were discarded before the ex-
perimental phase after preliminary tests highlighted their poor performances.

Blockers v1

The first function rewards an agent for each Blocker x damaged, normalized
by the initial amount x0 of Blockers of that type. In formulas:

r(st, at) =
∑
x∈X

dx,t
x0

(5.1)

whereX is the set of all Blockers and dx,t is the number of Blockers of type x
damaged at time t. For each Blocker type, the agent will accumulate a reward
that adds up to 1 if it gets rid of it completely. However, the total reward
accumulated in an episode is at most equal to the number of different Blocker
types in that level.

Following the aforementioned example, if on level 65 the agent makes a
move that removes 1 layer from a Cupcake_5, it will be rewarded with a value
of 1

2
, where 2 is the initial number of Cupcake_5 on the board.

Blockers v2

The second function addresses the normalization problem by dividing by the
initial number of different Blockers, making the accumulated reward in an
episode at most 1. In formulas:

r(st, at) =
∑
x∈X

dx,t
x0 ∗ U

(5.2)
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where U is the number of distinct type of Blockers in the level.
Considering the example of level 65, if an agent makes amove that removes

1 layer from a Cupcake_5, it will be rewarded with a value of 1
2∗7 , where 7 is

the number of distinct type of Blockers in level 65.

5.2.2 Freeing Tiles
In this case, we propose to reward an agent whenever it completely removes
Blockers from a tile, making it free. This reward design is more sparse than the
previous one, but introduces less bias as the agent is only rewarded for reaching
the end goal, that is freeing up the board. Additionally, it should perform better
if new Blockers were introduced in the game. Again, two different reward
functions are proposed: Delta Tiles (DT) and Progressive Tiles (PT).

Delta Tiles

The first function is straightforward: whenever a new tile is freed from Block-
ers, the agent is rewarded by 1

B
, where B is the board size. In formulas:

r(st, at) =
δf

B
(5.3)

where δf is the number of new free tiles. The function is normalized by the
total board size B, so the accumulated reward in an episode is at most equal
to the number of initial tiles with Blockers, and is less than 1.

Considering level 65, if the agent makes a move that completely removes
the last two Blockers on the board, it will be rewarded with 2

64
, where 64 is the

total board size.

Progressive Tiles

The second function is inspired from PJ and is more dense than the one defined
above. The idea is to reward an agent more when it gets closer to completely
removing all Blockers, so it will be driven to get rid of the few remaining ones.
This is done by rewarding the agent with the entire number of free tiles F at
the time, whenever a new one is freed. In formulas:

r(st, at) =

{
F
B
, δf > 0

0, δf = 0
(5.4)

Considering the same example of level 65, if the agent makes the same
move that removes the last two Blockers on the board, it will be rewarded with
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64
64
, since all the tiles are now free. Clearly, the agent is more prone to free the

board completely given the higher reward compared to DT.

5.3 Special Candies
Special candies can be created multiple times when playing a level. Some lev-
els, due to the spacial structure of their board, are better suited to create more
Special candies than others. However, it is not possible to predict beforehand
how many candies can be created in the best-case scenario, or how many will
be used by the player. As a consequence, normalizing the reward to keep it
constrained in a fixed range is not possible, so techniques like reward clipping
[5] cannot be used. Additionally, some Special candies can be created more
often than others, so rewarding an agent simply when it creates or uses a Spe-
cial candy is not possible, as it will learn to exploit the more frequent ones,
which in turn have a weaker effect.

The limitations presented in Chapter 4, related to event tracking, are a ma-
jor factor to take into account here since the proposed methods rely on know-
ing exactly when an agent creates or uses a Special candy. The idea is to keep
the same type of function both to learn how to create Special candies and to
use them. The first one will give a reward when a candy is created, while the
second one when it is used on the board.

5.3.1 Creation
An effective way to deal with features that have different frequencies is to use
the frequency itself as a way to balance the weight given to each feature and
constrain the reward scale. We test two types of frequency normalization:
Candy Creation v1 (CCv1) and Candy Creation v2 (CCv2). The first one is
adapted from a proven method proposed in the literature, while the second one
is designed to solve some of the issues with the first method.

Candy Creation v1

The first type of frequency normalization is adapted from thework of Justensen
et al. [7]. In their paper, the authors perform skill learning using intrinsic mo-
tivation for the game of Doom. They define a set of events (skills) that should
be learned, and reward an agent more when it uses a rarer skill. In CCFS, we
define an event for the creation of each type of Special candy, and weight it
using its mean episodic frequency of creation, which is the average of using
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that skill over the last k episodes, where k is a hyperparameter. The mean
episodic frequency is taken reversed since the purpose is to give more rewards
to candies that are created less frequently. In formulas, the function is:

r(st, at) =
∑
x∈X

c
(x)
t ×

[ 1

max(τ, µ
(x)
t )

]
(5.5)

where x is the skill (i.e., creating a specific Special candy), µ(x)
t is the mean

episodic frequency of skill x at episode t, c(x)
t is the number of Special candies

of type x created by at, and τ is a hyperparameter that represents the initial
value of the frequency of each skill, used when no previous data is available
(cold start problem), and also identifies the scale of the weights by setting a
higher bound.

As an example, if in episode 1 an agent creates three Fishes, and in episode
2 it creates five Fishes, the mean occurrence of Fish creation is four. If in
episode 3 the agent makes a move that creates two Fishes at the same time, the
reward will be 2 × 1

4
, where 4 is the new mean episodic occurrence, and 2 is

the number of Fishes created in that action.
The idea of Equation 5.5 is to reward an agent for exploring new parts of the

environment, giving smaller rewards to skills that have already been observed.
Even though the method is designed to have an expected cumulative reward for
each skill of one, if the mean episodic frequency of a skill is smaller than one,
its weight, and thus immediate reward, will be higher than one. In fact, if the
environment presents some skills that are seldom used in the last k episodes,
their mean episodic frequency will be smaller than one, which leads to rewards
with potentially different orders of magnitude, making gradient updates highly
unstable.

Candy Creation v2

To address the problem of an unstable reward scale, we propose to normalize
the reward function by taking into account the proportion of occurrence of a
skill with respect to all the others, such that the weights will always be in the
range [0, 1]. Our function is defined as follows:

r(st, at) =
∑
x∈X

c
(x)
t ×

[
1− µ

(x)
t∑

x′∈X µ
(x′)
t

]
(5.6)

where the denominator of the weight is the sum of all the frequencies of cre-
ation of the Special candies. Similarly to the CCv1, our method does not re-
ward agents for winning a level or spreading jam, but it does so for using novel
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skills. However, unlike the previous one, it does not suffer from the cold start
problem, as all the weights are initially set to one. Moreover, it does not require
a hyperparameter like τ , as the upper bound for the weights is one. Finally,
CCv2 is robust in environments with very unbalanced skills like CCFS, as the
frequency is taken in relative terms. Similarly to the previous example, if the
mean frequency of fish creation is 4, and the one for a color bomb is 0.4, then
the reward for creating one color bomb will be 1×

(
1− 0.4

0.4+4

)
.

5.3.2 Usage
The idea is the same used for Special candy creation, with the difference that
the reward is given when a Special candy is involved in a match on the board.
When combined with the previous skill, an agent will learn how to create Spe-
cial candies and how tomake proper use of them by understanding their effects.
The two types of normalization are the same.

Candy Usage v1

The first type, called Candy Usage v1 (CUv1), is inspired from the work of
Justensen et al. [7], and it is not constrained:

r(st, at) =
∑
x∈X

u
(x)
t × (

1

max(τ, µ
(x)
t )

) (5.7)

where u(x)
t is the number of Special candies of type x used in the action at time

t. The same drawbacks highlighted for candy creation are also valid here.

Candy Usage v2

Again, we propose a second type of frequency normalization, called Candy
Usage v2 (CUv2), to tackle the issues of the first one. In this case, the function
is constrained by taking into account other Special candies when normalizing.
In formulas:

r(st, at) =
∑
x∈X

u
(x)
t × (1− µ

(x)
t∑

x′∈X µ
(x′)
t

) (5.8)

with the same benefits discussed for Special candy creation.

5.4 Network Architecture
We use DQN [17] as the learning algorithm, but the solution can be imple-
mented using any other RL algorithm, even on-policy ones. The deep neural
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Layer Type Size Filters Act. Func. Strides Padding

Input State 9× 9× 32 - - - -
Conv1 Conv. 3× 3 35 ELU 1 Same
Conv2 Conv. 3× 3 35 ELU 1 Same
Conv3 Conv. 3× 3 35 ELU 1 Same
Conv4 Conv. 3× 3 35 ELU 1 Same
Conv5 Conv. 3× 3 35 ELU 1 Same
FCL1 FCL 999 - ELU - -
FCL2 FCL 144 - ELU - -
Output - 144 - - - -

Adapted from [2].

Table 5.1: Overview of the parameters for the SSN used.

networks are based on the work of [2] and are used as non-linear function
approximators for the target network and prediction network to stabilize the
learning algorithm.

The body of the network uses the same design of the supervised approach
of [1], optimized via hyperparameter tuning to extract features from the same
state encoding described in Chapter 4, while keeping the overall complexity
low. It consists of five identical convolutional layers, each having 35 filters
with 3× 3 kernels, zero padding and a stride of 1. The weights of the kernels
are initialized using Xavier initialization [60], and the activation function is
the Exponential Linear Unit (ELU):

f(x, α) =

{
x, x > 1

α(ex − 1), x ≤ 1
(5.9)

The head of the network is made of two Fully-Connected layer (FCL)s.
Both are initialized using Xavier initialization and use ELU as the activation
function. The first one has 999 neurons. The second one is the output layer,
so it consists of 144 nodes, each representing the Q-value of one of the 144
actions. The hyperparameters of the head are the same used in [2], who per-
formed tuning for them. The overall network, called Single Stream network
(SSN), is summarized in Table 5.1.
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5.5 Generalization
Learning skills that can be transferred from one level to the other is not straight-
forward. Theoretically, an agent must be able to experiment in multiple envi-
ronments before it can show a sufficient level of performance in a new one.
An effective way to do that would be to train it on different levels at the same
time. However, given the properties of the MDP used to model CCFS, this
cannot be taken for granted and should be proven empirically. In this section,
we propose two different training pipelines: Multi Level Training (MLT) and
Single Level Training (SLT). These can then be used to discover if the current
multi-level setup is suited for generalization, or if needs improvements.

5.5.1 Multi Level Training
MLT is inspired by recent results in the literature regarding generalization in
RL. Both Cobbe et al. [25] and Justesen et al. [26] argue that training an agent
onmultiple levels of the same game always improves its generalization abilities
because it prevents its parameters from overfitting to a single level. We adapt
their technique to CCFS, and leverage on the idea of curriculum learning [61]
to build a curriculum of distinct levels for each skill to learn, where an agent
can be trained on. This set of levels should comprise as many game features
as possible, and display a heterogeneous win rate distribution, including both
easy and hard levels. According to the authors of [25], the more variations the
agent is subject to, the better its generalization abilities will be.

Unlike [26], we do not have a way to generate infinite levels procedurally,
so we focus on a subset of levels in CCFS that contain all the game features
available, and only use those to train the agent. The training pipeline features
a different level every episode, extracted randomly from the curriculum set to
avoid ordering bias. However, the agent never sees the same level twice, as
every episode is associated with a different game seed, involving different ran-
dom behaviors and board configurations. The resulting pipeline highlighted
in Figure 5.1, theoretically sacrifices training accuracy to improve generaliza-
tion, as the agent is unlikely to be in the same state twice, and will be forced
to adapt its parameters to all the different configurations it meets.

A possible drawback behind this technique is that the current network
might not be expressive enough to capture the unlimited variations caused by
pairing a constantly changing seed with a multitude of levels in the same train-
ing run. The agent might thus not have enough time to adapt its parameters
to each combination and end up not learning anything meaningful as a con-
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sequence. To draw a comparison, this pipeline is equivalent to training an SL
model using only one epoch, since the model never sees the same training data
twice. We will verify whether this is true with empirical evidence in Chapter
7.

5.5.2 Single Level Training
To address the possible drawbacks of MLT, we designed another pipeline to
compare the results with. SLT is the method commonly adopted in the litera-
ture when using the ALE and simply consists of training each skill on a set of
different levels, separately from one another. As in MLT, an agent never plays
the same game seed twice, so it will likely never face the same board config-
uration. However, having the same level removes one layer of complexity in
the generalization process, as the board structure and the game features remain
the same, so the agent might not be limited by the network complexity in its
process of generalization. The pipeline is highlighted in Figure 5.2

Different agents are trained on different levels, and the test levels are the
same between them. By testing the agent on common unseen levels, it is pos-
sible to shed light on which levels are better suited to teach the agent how to
play the game. In fact, some training levels might comprise a larger set of
game features, and allow the agent to have higher performances on the test
levels.

This technique has two possible drawbacks. The first one, similar to the
one of MLT, is that never playing the same seed twice might still lead to a
computationally infeasible learning process, where the agent would take too
long to learn anything meaningful. This is especially true for levels where the
win rate is low, where only playing each seed once means that the agent is not
able to win with that seed, as it cannot explore different options by playing
it again. The second one is that it cannot be used in production since one
level is not enough to represent all the thousand different ones in CCFS. As a
consequence, it is only used to studywhether the current setup and architecture
are expressive enough to capture the differences in the levels, or if something
needs to be adapted to account for the stochasticity and heterogeneity of the
game.
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Figure 5.1: Training pipeline with m Episodes, using m distinct seeds and
only one level. At each episode, the level is associated to a new seed, forming
a unique 〈Level, Seed〉 pair.

Figure 5.2: Training pipeline with m Episodes, using m distinct seeds and n
distinct levels. At each episode, a level is sampled from the pool and associated
to a new seed, forming a unique 〈Level, Seed〉 pair.



Chapter 6

Hybrid Architectures

Once a set of skills is available in the form of different policies, the ques-
tion becomes how to put them together to improve the general win rate of an
agent. Humans have a growing pool of skills to sample from, and they learn
which one is the best in a given situation. For an RL agent, there are different
ways to replicate this process. In this chapter, two distinct approaches are pro-
posed. The first one, presented in Section 6.1, is an ensemble model that can
be thought of as a form of bagging [62]. Action selection is performed by tak-
ing into account the advice of all policies together. The second one, presented
in Section 6.2, is a Hierarchical RL model that learns which policy to select
an action from at every timestep.

6.1 Bagging
The first architecture takes inspiration from the literature on bagging, where
multiple powerful learners are used together to decrease variance, and adapts
the idea to RL. According to how the problem is framed, there are two ways
to perform bagging: Majority Bagging and Average Bagging.

6.1.1 Majority Bagging
In the first one, the output of each policy is considered to be the action it selects,
so it is similar to a classification problem with 144 classes, where the choice
of each learner falls on the class (action) with the highest Q-value. In this
case, bagging can be performed by majority voting: each policy selects an
action, and the one that is selected by the highest number of policies is then
performed in the environment. In SL, this approach is based on the concept

66



CHAPTER 6. HYBRID ARCHITECTURES 67

of wisdom of the crowd, where the more voters are used, the more accurate
the result will be. If the task on which the learners are trained on is the same,
the total variance of the ensemble will be reduced. However, in the context of
this thesis, only one policy is trained to be goal-oriented, so its vote would be
insignificant compared to the sum of all the others, and the final agent would
never reach an optimal policy. A final drawback of this method is that it might
also require a way to break ties in the voting, depending on the number of
sub-policies involved.

6.1.2 Average Bagging
The second approachwe propose, calledAB, is meant to partially address some
of the issues of the previous one. In this case, the output of each policy is
considered to be the set of 144 Q-values for all the actions, and bagging is
performed by selecting the action with the highest average Q-value among all
the learners. Since this approach deals with real numbers, the probability of
encountering a tie is null, so a tie-breaking mechanism is not required. For
this architecture, we propose to adopt three extensions to improve its perfor-
mances: normalization, weighted averaging, and summation. An overview of
the architecture, including all optional extensions, is highlighted in Figure 6.1.

One of the benefits of this architecture is that co-training the policies to-
gether can bring an improvement in the final performance, as described in [45].
Each policy could adapt and learn from the others, optimizing its weights to
work in conjunctionwith them. Additionally, to further impose this form of co-
operation, we could have one shared convolutional layers between all the poli-
cies, and perform a joint optimization of its weights through a loss that is the
sum of the losses of each policy. This architecture can be thought of as a net-
work with one common body, and multiple heads, one per policy. Sharing the
body can improve generalization, as the parameters of the kernels should not
differ between the policies, since the state representation used is the same, and
so is the information to be extracted from the board. The difference between
each policy should instead lie in the FC layers downstream, which are opti-
mized separately. However, training all the policies together in the same run
requires a computational effort the goes beyond the scope of this research, as
the burden of optimization is carried out by the same GPU, and from initial ex-
periments, this makes training computationally infeasible. As a consequence,
we decided to optimize the architecture by pre-training the policies separately.
The ensemble averages the Q-values from networks whose weights have al-
ready been optimized, so the burden of computation is limited to the forward
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Figure 6.1: Action selection in AB. Two policies are displayed in the example.
The first step is normalization of the Q-values for each policy. Then, each
value of the first policy is summed to the corresponding one of the second
policy, using weights w1 and w2. Finally, the argmax operation is performed
to select the action at with the highest sum.

passes on the networks to calculate these values. As a result, the efficiency
mentioned in Research Question 2.1. translates to computational efficiency, at
the cost of possibly sacrificing win rate performance.

Normalization

When dealing with different reward scales, working with Q-values directly can
be problematic, as a policy trained with higher rewards might overshadow the
others. Consequently, the effect of averaging the Q-values and selecting an
action would be the same as just selecting an action directly from that pol-
icy. To address the issue, we propose to use a form of normalization to bring
all the Q-values in the range [0, 1]. For the scope of this thesis, the choice
falls on L2-normalization. Given a vector q = [q1, q2, . . . , q144], represent-
ing the Q-values of a given policy, the output of L2-normalization is a vector
y = [y1, y2, . . . , y144] of the same dimension, where the n-th component yn is
calculated as:

yn =
qn√
qT · q

(6.1)

Other types of normalization, such as L1-normalization orL∞-normalization
could be used instead, but testing their effectiveness is left for future work.
Here, only L2-normalization is compared against not using any form of nor-
malization, to assess whether it brings any considerable benefits.
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Weighted Averaging

In this architecture, the impact of a single vote from a policy is strictly related
to the scale of the Q-values of that policy. Even though normalizing every-
thing in the range [0, 1] brings fairness to the averaging mechanism, we are
still affected by the problem of under-representing some policies that might
be more meaningful for the context at hand. If we are playing a level where
removing all Blockers is crucial, the Q-values of the policy that is trained to
get rid of them might be lost when averaging between all the other policies,
and this would negatively impact performances. The architecture should al-
low us to express this form of prioritization between policies, and we propose
to do it through a weighted average. Each policy is associated with a weight,
which is a hyperparameter found through parameter search, and the Q-values
of that policy are multiplied by that weight before averaging. A good set of
weights can prioritize the right policies considering their real utility in win-
ning the level. Givenm policies, where the i-th policy is associated to a set of
144 Q-values y = [yi,1, yi,2, . . . , yi,144] and a weight wi, the n-th component
tn of the resulting vector t = [t1, t2, . . . , t144] is computed as follows:

tn =
1

m

m∑
i=1

y1,i × wi (6.2)

and the action selected is:

an = argmax
n

tn (6.3)

In the scope of this thesis, this improvement is not considered in the exper-
imental phase as it requires an extensive search for each weight of the policies.
To obtain a useful result, this hyperparameter search should be conducted over
as many levels as possible to find a set that works independently of the specific
level, but this is unfeasible in the time given. However, it remains a promising
extension to be validated with future research.

Summation

The actual implementation of the architecture uses a trick to speed-up training,
inspired by the work of [45]. Instead of performing the average over the Q-
values of different policies, we sum their Q-values, and then pick the action
associated with the one with the highest total value. The result obtained is the
same, thanks to a simple mathematical equivalence. The average is scaled by
the number of points on which it is performed, which is equal to the number
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of different policies m. All the 144 components of the final vector are scaled
by m, which does not change the index of the maximum value selected by
the argmax operation. However, in practice, summing instead of averaging is
computationally faster, so it is the preferred option. Considering weights, the
ensemble becomes a weighted summation, where the n-th component tn of
the resulting vector t = [t1, t2, . . . , t144] is computed as follows:

tn =
m∑
i=1

y1,i × wi (6.4)

and the action selected remains the same, that is is:

an = argmax
n

tn (6.5)

6.2 High-Speed Hierarchy
The second architecture we propose is calledHSH, and uses RL to learn which
policy to choose from at every timestep t. In this case, the inspiration comes
from Hierarchical RL architectures, where different agents interact at different
levels of hierarchy.

More than one hierarchical method was considered when designing HSH.
Options and Feudal architectures, presented in Chapter 3, have been discarded
due to the inability to effectively convey goals from managers to sub-policies
using specific states to reach. Whereas in environments like mazes it is easy
to specify sub-goals like reaching a particular point, in CCFS there is no clear
distinction between which state might be better to win, and specifying it man-
ually would introduce unnecessary human bias. As a consequence, the focus
shifted on architectures where the hierarchies do not interact with each other
through goals but are independent of one another. In particular, we draw in-
spiration from [29] and [30], where a master chooses one among many slaves
which one to use in the environment. In our case, the slaves are related to
skills and goal-oriented behaviors, while the master should learn which one is
better to use in a given situation. An overview of the architecture is provided
in Figure 6.2.

As for the AB architecture, this one also theoretically benefits from co-
training. In fact, in this case, it would be even more beneficial if we could
train the slaves together with the master, such that the former can adapt its
parameters to work better in conjunction with the latter, and vice versa. This
joint optimization would lead to higher win rates, as described in [29] and
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Figure 6.2: Action selection in HSH. First, the master outputs the index of
one of its n slaves. Then, the n-th slave performs a forward pass through its
network to select the action to take in the environment at time t.

[30]. Sharing convolutional layers could be extended to the master to alleviate
the burden of learning weights that should in principle be very similar to un-
derstand the same input representation. In practice, training the slaves at the
same time as the master requires more computational power than available, for
the same reason of AB. In addition to that, this algorithm requires the slaves
to converge to a nearly-optimal policy before the master can do it, so this adds
even more training time to the total required. As a consequence, like before,
we pre-train the slaves separately and then reuse their models as if they were
performing inference. Only the master is trained during the learning process,
using actions from policies whose training is already converged. Like for AB,
the efficiencymentioned in ResearchQuestion 2.1. translates to computational
efficiency in the implementation, sacrificing win rate performance in favor of
training speed.

Slaves
Slaves are agents that have been trained to learn policies related to various ob-
jectives. In the architecture we propose here, each slave knows how to perform
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a skill that can either be goal-oriented or not. One main slave has been trained
using PJ as reward function and learns how to spread the jam to win the given
level. The other slaves are loaded from those that performed best among the
ones presented in Chapter 5, and are focused on removing all Blockers as well
as creating and using Special Candies.

Each slave has its own prediction network to approximate the Q-values of
a given state st and is used to recommend the action to take at time t. Since
the slaves are not being trained, the action selection is purely greedy, always
choosing the one with the highest Q-value. The architecture of the prediction
network is the same presented in Section 5.4, as it is retrieved from the models
trained there.

Master
The master is an RL agent itself. It observes the same state space of the slaves
but has an action-space with dimension equal to the number of slaves. Its
actions correspond to choosing one of the slaves to use in the environment.
Unlike [29], we let themaster select a slave at every timestep, and only take one
action from that particular one. The reason behind this choice is that episodes
in CCFS are quite short. For instance, level 61 allows the player to take at most
25 moves, so the master should adapt the strategy move by move. In our case,
the result would be similar to the one proposed in the aforementioned paper
with τ = 1. The environment provides a reward to the master based on how
good the action performed is with respect to winning the current level, which
is the final goal of this architecture.

The master has a pair of prediction and target networks, according to the
DQN architecture. The network structure is the same as for the slaves, except
for the output layer, that has dimension n, equal to the number of different
slaves used. The overall network, called master network, is summarized in
Table 6.1.

Training

The master is using DQN as the learning algorithm, so it can be trained off-
policy from experiences collected in the past, even by different agents. We
made this choice to rely on the optimal parameters found in [2], and only par-
tially modify the network architecture. However, the learning algorithm is not
a constraint for this ensemble to work and can be changed accordingly to the
needs.
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Layer Type Size Filters Act. Func. Strides Padding

Input State 9× 9× 32 - - - -
Conv1 Conv. 3× 3 35 ELU 1 Same
Conv2 Conv. 3× 3 35 ELU 1 Same
Conv3 Conv. 3× 3 35 ELU 1 Same
Conv4 Conv. 3× 3 35 ELU 1 Same
Conv5 Conv. 3× 3 35 ELU 1 Same
FCL1 FCL 999 - ELU - -
FCL2 FCL n - ELU - -
Output - n - - - -

Table 6.1: Overview of the parameters for the master network. n is the number
of slaves.

The master uses a standard ERB, whose size is to be decided based on
how decoupled the experiences should be. This buffer stores samples of expe-
riences in the form of 〈st, at, rt+1, st+1〉, where at is the identifier of one of the
slaves that is selected at time t, and rt+1 is the reward given by the environment
in response to the action taken by that slave.

The loss that is minimized is the standard one for Q-learning, i.e., the dif-
ference between the Q-values given by the prediction network and those of the
target network. The update formula for the weights of the prediction network,
using any form of gradient descent, is the following:

∆w = α(rt+1 + γmax
a′∈A

Q̂(st+1, a
′,w−)− Q̂(s, a,w))∇wQ̂(s, a,w) (6.6)

that is the standard update rule for vanilla DQN. These parameters are copied
to the target network every τ timesteps, which is an hyperparameter of the
algorithm.

Weight Initialization

Theweights of the head of themaster network are initialized in the sameway as
for the slaves, relying on Xavier initialization. For the body, consisting of the
convolutional layers, we try to adapt the idea of sharing these parameters with
the pre-trained slaves. All the parameters of these body layers are initialized
by copying them from one of the slaves, such that the master can extract better
features from the input representation straight away. The choice of which slave
to use falls on the goal-oriented one, trained with PJ as reward function, as we
believe that the master is more akin to the goal of that slave over the others, so
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it should use its parameters to begin with. This might not be the best approach,
but the validation of this hypothesis is out of the scope of this thesis.

Reward Function

The reward function for the master is crucial to ensure a successful learning
process for the whole ensemble, as explained in [30]. Ideally, the optimal
choice should fall on a reward that represents the purpose of this architecture,
which for CCFS means winning a level. As a consequence, we use the sparse
function described in 4.2, which only rewards the master for winning a level.
Other types of rewards would bias the selection of the master towards one of
its slaves, so they are not considered here. However, as a downside, we should
take into account that the drawbacks of a sparse reward might apply to this
architecture as well, making the learning process slow and possibly affected
by the stochasticity in the game. This will be validated with the experiments.

Action Selection
The process of selecting an action to take in the environment involves both the
master and the slaves. The master uses an ε-greedy strategy, with fixed explo-
ration rate. At every timestep, it either selects a random slave with probability
ε, or it picks the one according to the greedy selection. In particular, the latter
consists of performing a forward pass through the master’s prediction network
and selecting the slave associated with the highest Q-value from those in the
output of the head. From that point, only the chosen slave is used to predict
what primitive action to take in the environment. Since the slaves are using
a pure greedy approach, a forward pass is performed on the network of the
selected slave, and the primitive action with the highest Q-value is chosen and
performed in the environment. The action selection process is optimized for
speed, as pre-calculating the output of each slave ends up taking more time on
a single GPU. However, if more than one GPU was available, the architecture
could be scaled by precomputing the action suggested by each slave while also
computing the slave chosen by the master, without waiting sequentially.



Chapter 7

Results

This chapter contains all the experiments conducted in the thesis. Firstly,
Section 7.1 explains the common experimental setup adopted, including re-
sources, levels, and baselines. Sections 7.2 and 7.3 present the results for the
first part of the thesis, i.e., skill learning. Sections 7.4 and 7.5 present the
results for the second part, i.e., hybrid architectures. Each section contains a
set of hypotheses formulated to answer the research questions that guide this
work and the metrics used to evaluate the agents. When reporting the results,
we follow the notation presented in Chapter 5 to abbreviate names.

7.1 Experimental Setup
We follow the best practices from the literature regarding how to properly eval-
uate RL models [25]. Unlike results published using the ALE, we rely on the
division in levels of CCFS to train an agent on a set of levels and test it on dif-
ferent ones. Using the training set, we can keep track of metrics such as con-
vergence speed of the algorithm and training loss, which are evaluated when
the model is learning and are a good indicator of the stability of the process.
We also evaluate the agent on the same levels used during training, but on dif-
ferent seeds, calculating the final training performance on these levels. On the
other hand, the test set contains levels that the agent has never seen before, and
allows to measure goal-related metrics such as win rate. In particular, the test
set is used as a proxy to measure generalization, which is primarily what we
are interested in. Since the training and test sets have different statistical prop-
erties, in particular related to the win rate, it is important to avoid any type
of direct comparison between the performance of a model on the train levels
and on the test levels. Instead, to measure generalization, we can analyze the

75
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difference in performance of the same model on the two sets, and compare it
to the difference of another model on the same two sets. If we want to focus
on the performance on a single level, we should instead compare the results of
two different models on that level.

The selection of levels to include in the training and test set is performed in
a preliminary study by taking into account heterogeneity in the game features,
board structures, and human win rate, identifying a representative sample of
the rest of the levels in CCFS. According to the task we are trying to complete,
the levels selected differ. For instance, the training set for policies that learn
how to get rid of Blockers is different from the one to create Special candies,
since we are trying to cover different game features. However, we try to also
have some common levels between them, which can later be used for compar-
isons. All levels mentioned in this chapter are displayed in the Appendix A,
respectively divided in training set in Figure A.1 and test set in Figure A.2.
The train and test sets used for each experiment are reported in the following
sections.

Model Runs
We start by clarifying the terminology used to avoid misunderstandings. Test-
ing and inference are used as synonyms. One model is always associated with
one RL agent, and running it means either training or testing that agent. If we
run the exact same model multiple times, we call each run a trial. Given the
high stochasticity in the game, and the randomness involved when running a
model, we want to perform multiple trials to account for the variance in the
results. However, we are limited in the number of trials for each model by the
time available for the thesis, so a trade-off is required. On a final note, the
name of a reward function is used to identify an agent trained with that spe-
cific reward function. For instance, with PJ we usually refer to an agent trained
using PJ as reward function.

Training

We train everymodel for a total number of 80 000 episodes, where each episode
is one full play on a level, either finishing with a win or a loss. Assuming an
average number of 25 maximum moves for the levels used, each training run
amounts to two million steps in the environment, the same order of magni-
tude of other works in the literature. As an example, if we consider level 61,
which is the fastest computationally, each training run would take at least five
days of continued execution if no other run is performed in parallel. If we



CHAPTER 7. RESULTS 77

instead consider an average between all the levels, the training time would be
approximately of seven consecutive days.

For each model, we run five parallel trials. Each trial uses a different value
to initialize the seeds of all Python packages relying on randomness, such as
Random, Numpy, and TensorFlow. Every operation that involves randomness
is regulated by this value, which makes the results completely reproducible.
At the end of training, we have five trained versions of the same agent. For
instance, when we train the performance of an agent using a reward function
like PJ, we launch five training runs with all the parameters fixed, except for
the random seed.

Inference

We first test the performance of a trained model on the levels used during train-
ing, and then on those belonging to the test set. Every inference run consists
of running the trained model for 10 000 episodes. Every episode is associated
with a unique game seed, different from the ones used during training. As a
consequence, when the model is tested on the same levels of the training set, it
will never face the same initial board configuration and random behavior seen
during training. We perform one inference run for each trial of a given model,
so we end up with five results for the same agent at the end of testing. These
final results are averaged to decrease the variance encountered during training,
and the aggregated values are reported in this chapter. We always measure the
inference performance through zero-shot evaluation, meaning that we leave
the weights of all models untouched after training, and avoid fine-tuning them
on the test levels.

Baselines
We use three different baselines throughout the experiments. The first one is
an agent playing randomly, with no learning involved, and it is fundamental
to assess the progress of our agents. This baseline is not trained, and we use
it by running five inference trials to account for the variance involved when
selecting random actions. The second one is a RL agent trained using PJ as
reward function and represents the performances of a behavior focused only
on the level objective. We train the agent using five trials, following the same
process of the other RL agents and then average the results obtained during
inference. The third and final baseline is the available human data on those
levels, from which we infer the human win rate. This data is not available
for each specific seed, but it is aggregated over all the seeds encountered by
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Parameter Value

Buffer size 50 000 (experiences)
Batch size 32 (experiences)

Learning rate, α 5 · 10−4

Epsilon, ε 0.01

Discount factor, γ 0.5

Prediction network update 2 (steps)
Target network update 100 (steps)

Table 7.1: The common hyperparameters and settings used in all experiments

the players, ignoring boosters and using Tiffy. For legal reasons, data coming
from human players is always scaled.

The set of experiments related to skill learning makes use of only the first
two baselines since we can track the skill performances exclusively using RL
agents, including the one playing randomly. On the other hand, the experi-
ments related to hybrid architectures also use human data.

Hyperparameteres
Some hyperparameters related to the DQN algorithm are shared between all
the experiments presented in this chapter. These settings are mostly taken from
the original DQN paper [5]. Some key ones, such as the discount factor γ, the
target network update and the prediction network update, are instead adopted
from [2], who performed hyperparameter search on the CCFS environment for
them. In particular, the prediction network update refers to how frequently the
prediction network performs a training step, and it is measured in environment
steps, while the target network update refers to how frequently the weights
from the prediction network are copied to the target network, and uses the
same measurement unit. An overview of all the shared hyperparameters is
provided in Table 7.1.

Hardware Resources
The hardware used to run the experiments consists of a Debian server inside
King’s premises. The server is equipped with a 48 cores Intel® Xeon® CPU,
running at 2.60 GHz of clock speed, 792 GB of RAM and one Nvidia Tesla
P100 GPU with 16 GB of Memory. With this setup, given that an RL agent
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occupies at least 780 MB of memory on the GPU, we can run at most 20 agents
in parallel. However, since each additional agent slows down all the others,
we decided to never launch more than 15, as the benefits from having five
additional agents running would be lost with the decrease in computational
speed.

During the final phase of experiments, three Virtual Machines (VM) on
Google Cloud Platform were available, each running an eight cores Intel®
Xeon® CPU and an Nvidia K80 GPU with 12 GB of memory. These VMs
can run at most three agents in parallel, otherwise seeing performance drops.

7.2 Blockers
When evaluating policies to removeBlockers, the primarymetric used is called
clearing percentage. It represents the percentage of Blockers removed during
an episode with respect to the initial number of available ones, for each type of
Blocker on a given level. This measure is averaged over the last 100 episodes
using a running mean. Even though these policies should be independent of
the goal of the given level, we also keep an eye on another metric, called win
rate, which is computed by dividing the number of total wins achieved during
the inference run by the total number of episodes played, which is 10 000. This
value is always scaled for legal reasons, and the same applies to all win rates
reported in the results. In the case of two policies that perform similarly as far
as clearing percentage, we take the win rate into account to break the tie.

Level Selection
The philosophy used to select levels for policies trained to remove Blockers
consists in using the minimum number of levels that cover all the existing
types of Blockers for Spread the Jam levels, while including board structures
that differ from one another. As mentioned in Chapter 4, the types of Block-
ers available are Cupcakes, Liquorice Locks, Liquorice Swirls, and Liquorice
Links.

The training set is composed of three levels: 65, 82, and 103. The first one
has a simple board structure, contains all the types of Cupcakes and Liquorice
Locks, and has the lowest human win rate among the three. The second one
starts with less free tiles in the beginning, and covers a subset of Cupcakes
and Liquorice Swirls, with the latter changing position on the board during
the game. The final one has a board structure that is akin to the first one,
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covers all Liquorice Links and as a subset of Cupcakes, and has a much higher
human win rate than the first two.

The test set is composed of three levels as well: 136, 147, and 163. The first
one has a peculiar board structure, quite different from all the others. It features
a few Cupcakes, many Liquorice Swirls, and some Liquorice Locks, and has a
win rate comparable to level 65. The second one has a standard board structure
but introduces portals, never seen during training. This characteristic allows us
to assess how to agent responds to a feature for which it did not learn network
parameters. The level covers Cupcakes, Liquorice locks, and Liquorice Swirls,
so it can be used to measure the skills learned for all Blockers while having a
lower win rate than the levels of the training set. The final one is almost fully
covered with Blockers, including Cupcakes, Liquorice Locks, and Liquorice
Links, and has the lowest human win rate among all the levels seen so far.

Hypotheses
We formulate a first set of hypotheses to answer research questions 1.1. and
1.2., which are related to the ability of the reward functions presented in Sec-
tion 5.2 to learn how to get rid of Blockers. The second set of hypotheses is
meant to answer research question 1.3., and are related to the generalization
ability of the reward functions with respect to the training pipelines presented
in Section 5.5. The hypotheses are:

Hypothesis 1 (H1): There exists at least one reward function that has a clear-
ing percentage greater than both baselines, for each type of Blocker on every
test level.

Hypothesis 2 (H2): The reward function with the highest clearing percentage
score is either Bv1 or Bv2, given the higher rewards density.

Hypothesis 3 (H3): The agents trained with reward functions focused on re-
moving Blockers have a higher win rate than both baselines.

Hypothesis 4 (H4): The performance of an agent trained with MLT is higher
than the performance of the same agent trained with SLT if both are evaluated
on the same test level.

Experiments
In SLT, each reward function is trained on each level from the training set,
separately. For testing, we first test the trained agents on the same levels of the
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training set, using different seeds. Each agent is only tested on the level where
it was trained, not on the other two. Then, we test the agents on the levels from
the test set. We first aggregate the results of the five trials of each agent. Then,
for each level in the test set, we further aggregate the performances from the
same agent trained on different levels. This process is better illustrated in Fig-
ure A.3 of the Appendix. We report the win rate and the clearing percentage
of all Blockers together, both on the train and test set. The results are summa-
rized in Table 7.2. The raw data for each level is instead reported in tables A.5
and A.6 of the Appendix.

After collecting and analyzing the results of SLT, we make a pruning step
before launching MLT experiments, discarding Bv2 and DT. In general, their
performances were clearly sub-par on all levels, and preliminary tests on MLT
indicate that the same applies when training onmultiple levels at the same time
too. For this reason, we decide to move on only with PT and Bv1 as candidate
functions.

In MLT, we train each agent on all the levels from the training set at the
same time, according to the procedure presented in Section 5.5. Firstly, we
test the trained agents on each of the levels of the training set separately. This
allows us to understand if the agents trained on multiple levels meet a decrease
in performance on a specific level of the training set, compared to one trained
on that level only. We then test the agents on the levels from the test set. In
this case, we do not aggregate the results over different levels, as each agent
is trained on all levels together. We use the same metrics used for SLT. The
results are summarized in Table 7.3, while the raw data is reported in tables
A.1 and A.2 of the Appendix.

7.3 Special Candies
The metrics used to compare candidate functions to create and use Special
candies are the creation probability, the usage probability, and the match-3
probability. The first one measures the probability that an action of an agent
will create a Special candy of a given type, while the second one measures
the probability that the action of that agent involves at least one Special candy
of a given type. The third one measures the probability that an action of an
agent does not create any Special candies, which is something that we want
to minimize. They are calculated by measuring how many Special candies
of each type are created and used during an episode, divided by the number
of moves taken in that episode, to account for the differences between lev-
els. These measures are averaged over the last 100 episodes through a running
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Reward Win rate Clearing (%)

Train Test Train Test

Random 0.21 0.05 54.81 63.63

PJ 1.14 0.35 65.08 71.18

PT 2.76 0.50 78.92 73.29

DT 1.32 0.31 69.54 69.31

Bv1 1.95 0.34 75.82 71.35

Bv2 1.31 0.27 73.67 69.64

Table 7.2: Aggregated results in the training and test levels for models trained
with SLT. Random policy and PJ baselines are included.

Reward Win Rate Clearing (%)

Train Test Train Test

Random 0.21 0.05 39.39 63.47

PJ 1.04 0.38 57.38 69.65

PT 2.25 0.69 68.38 74.11

Bv1 1.12 0.43 64.25 71.84

Table 7.3: Aggregated results in the training and test levels for models trained
with MLT. Random policy and PJ baselines are included.

mean. Specifically, when evaluating functions to create Special candies, the
primary metric considered is the creation probability, while the usage proba-
bility is used to break ties when two functions perform similarly. The inverse
applies for functions that use Special candies. Finally, the win rate of the agent
is also used here to understand the relationship between the considered skills
and the ability to win the levels.

Level Selection
For policies trained to create and use Special candies, we focus on selecting
levels where the possibility to create them is different. Some levels have board
configurations and game features that allow creating Special candies easier,
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while others are more constrained by the presence of Blockers, which prevents
their creation. In fact, creating and using Special candies is much easier in a
level without Blockers, as the entire board can be exploited to make the needed
matches.

The training set is composed of three levels: 61, 82, and 151. Level 61 is
the first level in CCFS that introduces Spread the Jam as objective, so it very
simple and does not contain Blockers. On average, humans always win the
level, and we expect to be able to generate Special candies more easily than in
other levels. Level 82 is shared with Blockers policies, and has a much smaller
part of the board without Blockers, so Special candies will be harder to create
and use. Level 151 only has four columns initially empty where an agent can
create Special candies, while the rest is filled with Blockers. This level also
features a portal and has an extremely low human win rate, comparable to 163.

The test set is composed of three levels as well: 62, 147, and 163. The
first one does not contain Blockers and is quite similar to level 61. It features
multiple portals, and its human win rate is halved with respect to 61. The other
two levels are shared with Blockers policies for comparisons and are both quite
challenging as far as creating Special candies since most of the initial board is
filled with Blockers.

Hypotheses
The set of hypotheses related to generalization is the same formulated for
Blockers. In addition to those, we formulate new hypotheses related to the
ability of the reward functions presented in Section 5.3 to learn how to create
and use Special candies. These are:

Hypothesis 5 (H5): There exist two rewards function that respectively have
a higher usage probability and creation probability than both baselines, for
each type of Special candy on every test level.

Hypothesis 6 (H6): The reward functions with the highest usage probability
and creation probability are respectively CUv2 and CCv2, due to a better re-
ward normalization.

Hypothesis 7 (H7): The reward functions trained to optimize the usage prob-
ability also learn how to create more Special candies than the baselines, but
not vice versa.
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Experiments
The setup for SLT is the same as in the previous section. Each reward function
is trained on each level from the training set, separately. We first test the trained
agents on the same levels of the training set and then on those from the test
set. The results on the test set follow the same idea illustrated in Figure A.3
of the Appendix. We report the win rate, the match-3 probability, the usage
percentage, and the creation percentage, aggregating the results for all Special
candies together, both on the train and test set. The results are summarized
in Table 7.4, while the raw data can be found in Tables A.7 and A.8 of the
Appendix.

We decide to perform a similar pruning step after analyzing the results of
SLT. The reward functions using the first type of normalization show lower
performances overall and are discarded. We move on with CUv2 and CCv2
as candidates for MLT.

The setup for MLT is also the same as in the previous section. Each reward
function is trained on all levels from the training set together. We first test
the trained agents on the levels of the training set, and then on those from
the test set. The metrics reported are the same used for SLT. The results are
summarized in Table 7.5. The raw data is reported in Tables A.3 and A.4 of
the Appendix.

7.4 Average Bagging
The main metric used to evaluate this method is the win rate since the overall
purpose of the architecture is to win the game. To provide a fair comparison
against the baselines, we also report the skill rate ρ, which is the increase of
the win rate w of our agent over the random policy, divided by the increase of
another baseline over the random agent. This metric provides a benchmark of
our agent with respect to a given baseline, which is here taken to be human
data. In formulas:

ρ =
wagent − wrandom
wbaseline − wrandom

(7.1)

Level Selection
In AB there is no training involved, so all the levels can effectively be used for
testing. However, we use level 82, which is shared by all the models trained on
the various skills, to find the best combination of skills for the hybrid. Then, if
the first step gives promising results, we use all the other test levels to assess the
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Reward Win Rate Match-3 (%) Usage (%) Creation (%)

Train Test Train Test Train Test Train Test

Random 4.03 1.77 90.17 89.30 7.03 7.32 1.93 2.10

PJ 7.56 3.20 84.97 83.16 8.29 8.80 1.71 1.90

CUv1 6.76 3.33 82.15 80.98 9.73 10.43 1.72 1.76

CUv2 6.54 3.44 81.30 79.89 10.40 10.83 1.70 1.90

CCv1 4.90 1.48 80.93 83.94 7.88 7.58 2.94 2.83

CCv2 7.54 4.03 48.24 62.89 11.93 10.91 9.06 6.71

Table 7.4: Aggregated results in the training and test levels for models trained
with SLT. Random policy and PJ baselines are included.

Reward Win Rate Match-3 (%) Usage (%) Creation (%)

Train Test Train Test Train Test Train Test

Random 4 1.77 90.33 89.33 6.95 7.36 1.93 2.06

PJ 7.31 3.73 83.93 83 8.57 9.11 1.73 1.84

CUv2 6.78 3.90 81.33 78.93 8.73 11.05 1.72 1.78

CCv2 5.07 2.17 74.33 77.20 8.73 8.67 5.01 4.02

Table 7.5: Aggregated results on the training and test levels for models trained
with MLT. Random policy and PJ baselines are included.

performance of this architecture, and whether or not it generalizes better than
the baselines. As a result, there is no training set, and the test set is composed
of levels 62, 136, 147, and 163.

Hypotheses
We formulate a set of hypotheses to answer research questions 2.1. and 2.2.,
related to the ability of AB to mix skills together, independently of generaliza-
tion. Then, we formulate additional hypotheses to answer research question
3.1., and assess the generalization ability of the method. The hypotheses are:

Hypothesis 8 (H8): There exists at least one set of skills, combined with AB,
which performs better than an agent trained using only extrinsic rewards, both
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on train and test levels.

Hypothesis 9 (H9): Using L2-normalization improves the performances of
the architecture as opposed to not normalizing the Q-values.

Hypothesis 10 (H10): The combination of skills that performs best is the one
using all the available skills, including spreading the jam.

Hypothesis 11 (H11): Using sub-policies pre-trained with MLT leads to a
higher win rate in the test levels than the ones pre-trained with SLT.

Experiments
As a first step, we only use the agents pre-trained with SLT on level 82 to have
access to both skills for Blockers and Special candies. AB does not require
a training phase, so all the skills can be combined without further tuning on
the levels used for testing. In particular, we first concentrate on level 82 to
find two combinations that work well enough, compared to the baselines. We
then test these candidate models on all the other levels where the sub-policies
have not been trained and assess the overall generalization capability of the
architecture. We average the results over the five training trials, and report the
performance of the two best performing combinations, on both train and test
levels, in Table 7.6. The full results of the training experiments, where we try
every combination on level 82, are reported in Table A.9 of the Appendix.

As a second step, we focus on themodels pre-trainedwithMLT onmultiple
levels, which theoretically have better generalization capabilities. Again, we
use level 82 to find the two best combinations of skills to use for further testing.
We then test the selected candidates on the levels where the sub-policies have
not been trained and assess generalization. As for SLT, we report the partial
results in Table 7.7, while the full training experiments can be found in Table
A.10 of the Appendix. Finally, Table 7.8 presents the win rate of the best
SLT and MLT combination on each level, compared to the performance of the
baselines.

7.5 High Speed Hierarchy
Since the purpose of HSH is to improve the overall win rate of an agent, we
use the same metrics adopted for AB to evaluate it: win rate and skill rate
against human data. To assess the training performance, we also keep track of
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Level Combination Win Rate Skill Rate

L2 None L2 None

82 PJ+PT+CCv2 7.02 7.40 0.73 0.77

PJ+PT+Bv1+CCv2 7.33 8.08 0.76 0.84

62 PJ+CCv2 16.44 16.25 0.67 0.66

PJ+CCv2+CUv2 17.37 15.83 0.73 0.64

136 PJ+PT+CCv2 3.84 4.12 1.25 1.34

PJ+PT+Bv1+CCv2 3.51 4.41 1.14 1.44

147 PJ+PT+CCv2 2.39 2.65 0.34 0.38

PJ+PT+Bv1+CCv2 2.45 3.01 0.35 0.43

163 PJ+PT+CCv2 0.1 0.12 0.1 0.11

PJ+PT+Bv1+CCv2 0.09 0.14 0.09 0.14

Table 7.6: Win rate and skill rate of the two best performing combinations of
AB The sub-policies are trained on level 82 with SLT. Results are grouped by
whether L2-normalization was used (Left) or not (Right).

Level Combination Win Rate Skill Rate

L2 None L2 None

82 PJ+PT+CCv2 2.46 3.27 0.25 0.33

PJ+PT+Bv1+CCv2 2.84 3.32 0.29 0.34

62 PJ+CCv2 10.78 11.55 0.33 0.38

PJ+CCv2+CUv2 13.34 12.75 0.49 0.45

136 PJ+PT+CCv2 1.31 1.57 0.41 0.5

PJ+PT+Bv1+CCv2 1.68 1.79 0.53 0.57

147 PJ+PT+CCv2 0.91 1.15 0.12 0.16

PJ+PT+Bv1+CCv2 1.19 1.41 0.16 0.2

163 PJ+PT+CCv2 0.01 0.03 0.01 0.03

PJ+PT+Bv1+CCv2 0.03 0.05 0.024 0.043

Table 7.7: Win rate and skill rate of the two best performing combinations of
ABThe sub-policies are trainedwithMLT. The results are grouped bywhether
L2-normalization was used (Left) or not (Right).



88 CHAPTER 7. RESULTS

Level Humans AB (SLT) AB (MLT) PJ Random

82 9.60 8.08 3.32 1.33 0.13

62 21.92 17.37 13.24 10.21 5.22

136 3.10 4.41 1.79 0.81 0.08

147 6.90 3.01 1.41 0.55 0.08

163 1.03 0.14 0.05 0.01 0

Table 7.8: Win rate of the best AB SLT and MLT combinations measured on
both train and test levels. All baselines are included.

the percentage of times that each slave is used during an episode and call this
selection frequency. Theoretically, if the master were not able to distinguish
between the slaves, each one would have a selection frequency of 1/n, where
n is the number of slaves used in that particular combination.

Level Selection
Similarly to AB, we use level 82 to assess whether the architecture works, and
what are the best skill combinations. If the first step gives promising results,
we then use the models trained on level 82 on all the other test levels to assess
the performance of this architecture, and whether it generalizes better than the
baselines. As a result, the training set is composed of level 82, and the test set
of levels 62, 136, 147, and 163.

Hypotheses
We only add two additional hypotheses to the ones formulated for the AB
architecture, related to the ability of HSH to use the best slave in a given state.
H11 and H10 are shared with AB. The new hypotheses are:

Hypothesis 12 (H12): The master avoids selecting a random agent if it is in-
cluded in the slaves.

Hypothesis 13 (H13): There exists at least one set of skills, combined with
HSH, which performs better than an agent trained using only extrinsic re-
wards, both on train and test levels.

Experiments
As a first step, we only use the skills pre-trained with SLT on level 82, similarly
to the experiments for AB. For each combination, we launch five training trials
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on level 82. We then use different game seeds on the same level to find the two
best combinations of skills to use for further testing in unseen levels.

After the first batch of tests on level 82, we notice that the master struggles
to learn how to distinguish the best slave to use at every timestep. The training
results on level 82 are clearly far off the ones obtained with AB, so we decide to
validate whether this is a problem with the level, or if it is more common. We
train HSH on level 61, where we focus on distinguishing between policies to
create Special candies, and then on level 65, where we focus on distinguishing
between policies to remove Blockers. The full results for all these training
runs are presented in Table 7.9. We report the win rate of the three best skill
combinations after averaging the performance of the five trials to account for
the variance. The skill rate is not reported on training levels.

The same negative results of level 82 are confirmed also for level 61 and
level 65, where the master is not able to distinguish between the slaves in a
meaningful way. The selection frequency is roughly 1

n
for all slaves, slightly

biased towards PJ, which we use to initialize the weights of the network. We
report the selection frequency of the slaves for all training runs in Figure 7.3,
where the slaves follow the ordering of Table 7.9. To further test the ability
of the master, we run an additional training run on level 61, where we use a
slave trained with PJ and one that is playing randomly. The hypothesis is that
the master can select the first slave with a frequency close to 1, as the other
one has a much lower win rate. However, as reported in 7.4, the selection
frequency of the first slave is 52%, meaning that the master is almost selecting
randomly. This test discourages us from running this architecture further, and
focus on AB exclusively. Our perspective on these results is presented in the
next chapter.
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Level Combination Win Rate

82 PJ 1.33

PJ+CCv2 2.69

PJ+PT 2.06

PJ+PT+CCv2 2.8

61 PJ 20.7

PJ+CCv2 22.7

PJ+CUv2 20.6

PJ+CCv2+CUv2 22.15

65 PJ 0.75

PJ+PT 1.55

PJ+B1 1.09

PJ+PT+B1 1.57

Table 7.9: Win rate of the three best combinations of HSH tested on the same
levels where the slaves are trained with SLT and compared against PJ as a
baseline.
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Figure 7.1: Selection frequency on level 61, following the ordering of slaves
in Table 7.9, from left to right. (Orange) PJ+CCv2, (Blue) PJ+PT, (Red)
PJ+PT+CCv2.

Figure 7.2: Selection frequency on level 65, following the ordering of slaves
in Table 7.9, from left to right. (Orange) PJ+PT, (Blue) PJ+B1, (Red)
PJ+PT+B1.

Figure 7.3: Selection frequency on level 82, following the ordering of slaves
in Table 7.9, from left to right. (Orange) PJ+CCv2, (Blue) PJ+PT, (Red)
PJ+PT+CCv2.

Figure 7.4: Selection frequency on level 61. (Left) PJ slave, (Right) Random
agent slave



Chapter 8

Discussion

The empirical results presented in the previous chapter are promising, and
leave plenty of room for discussion. However, they do not come free of lim-
itations. This chapter first provides our perspective on how the results relate
to the hypotheses made in Chapter 7. Then, it highlights some key limitations
with our methods and proposes different ways to tackle them, leaving room
for future work. In particular, Section 8.1 addresses skill learning, going over
the correlation found between skills and win rate. Then, Section 8.2 wraps up
the experiments by discussing the possible reasons behind the success of AB
and the failure of HSH.

8.1 Skill Learning
Given the results of the previous chapter, we can positively answer to research
question 1. As highlighted in this section, we found at least one successful
candidate function for each skill to be learned. These candidates are more
proficient than the baselines we defined and can transfer their ability to the test
levels as well. Additionally, they show a higher win rate than the baselines,
proving that these skills are essential to winning levels in CCFS. For each
candidate identified, we discuss its limitations and how it can be improvedwith
future research. Moreover, we validate the same hypotheses by comparing
results with SLT and MLT and call for further experiments to find the best
training pipeline.

92
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8.1.1 Blockers
Starting from the results of SLT, we can immediately validate H1. All the
proposed functions exhibit a higher clearing percentage than both baselines
on the train levels. This means that the reward functions can teach an agent
the desired skills. However, only two of those, namely PT and Bv1, show the
same behavior over test levels, while the remaining two have a worse clearing
percentage than PJ. DT and Bv2 are in fact not able to replicate the same per-
formances over unseen levels, and due to their worse generalization ability are
not used for MLT.

H2 is invalidated by the results, as the function with the highest clearing
percentage on both train and test levels is PT and not Bv1, despite the lower
reward density. We attribute this to a lower degree of bias, as in the former
we only declare the goal that we want to achieve, while in the latter we also
try to specify how to do it. The result is that Bv1 still exploits the reward by
focusing on Blockers that are easier to remove, despite the normalization that
we use, while PT is much more balanced overall.

H3 comes from the intuition that PJ fails on harder levels due to its in-
ability to deal with features like Blockers, and this is fully confirmed by the
empirical results. An agent trained with a reward function like PT, which is
never rewarded for spreading jam or winning a level, still achieves a win rate
about twice as high as the one of PJ, both on train and test levels. This is
an extremely interesting finding, and partially proves the correlation between
skills and game objectives. Moreover, it indicates that this skill is an essential
component to use in the hybrid architectures, and this is also confirmed by the
experiments of sections 7.4 and 7.5.

MLT

Considering MLT, the discussion above still holds, as the same relative be-
havior is observed when training on multiple levels. Figure 8.1 presents a
comparison between models trained with SLT and with MLT. It is clear that
the performance of MLT is worse on the train levels, as the models are less
able to fit the training environment since they are trained on multiple levels
together and not only on the one where they are then evaluated. However, this
translates to superior test performance, especially considering the win rate,
meaning that MLT seems to be better suited for achieving generalization than
SLT, confirming H4. In the figure, the clearing percentage of MLT PJ on the
test levels is lower than SLT PJ, though this is not unexpected, as the model is
not trained to deal with Blockers, so we do not expect any form of improved
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Figure 8.1: Performance comparison of models trained to remove Blockers,
divided in SLT and MLT. (Top row) Win rate. (Bottom row) Clearing per-
centage.

generalization withMLT. A final take away from these results is that PT comes
out as the overall best candidate to train an agent that deals with Blockers, and
it is the reason why it is used so much in the hybrid architectures.

Limitations

The main limitation with the above results is related to what we can conclude
on MLT. The number of experiments conducted, and the results obtained, do
not clearly indicate that MLT is superior to SLT for improving generalization.
In fact, the performance drop on train levels is bigger than the gain on test
levels, so this is a cause of concern. We need to conduct more experiments
to draw a conclusion that is strongly backed by empirical evidence, even ex-
tending MLT to more levels at the same time. In case we obtained negative
results, we could experiment with other training pipelines. For instance, we
could show the same level and same seed to an agent more than once, so it
would better adapt its parameter towards that combination. Most importantly,
we believe that the current network architecture used is not deep enough to
support such a high level of generalization over so many different features and
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levels. Using a better architecture, such as ResNet [63], should probably be
enough to interpolate between all the different variations, at the cost of train-
ing speed. We hypothesize that ResNet, paired with MLT, would allow us to
obtain performances clearly superior to a SLT pipeline.

8.1.2 Special Candies
Considering SLT, H5 is validated by the results reported in Table 7.4. Both
functions designed to use Special candies have a higher usage probability than
the baselines, and both functions designed to create Special candies have a
higher creation probability than the baselines, considering train and test levels.
In particular, the latter also show a lower match-3 percentage than the other
models, confirming the fact that they tend to create more Special candies and
make less simple match-3s.

H6 is also confirmed by looking at the results. CUv2 has a slightly lower
scaled win rate than CUv1 but presents a higher usage probability on both
train and test levels, so it the only function focused on using Special candies
that we train with MLT. CCv2 qualifies as the overall best model under all
performance metrics, creating up to three times as many Special candies as
the other models, using more of them, and even having a higher win rate than
PJ on the test levels. The most interesting result is the match-3 percentage of
this model, which gets as low as 48% on the train levels. This means that, on
average, an action every two creates a Special candy. Given these results, we
decided not to use CCv1 for MLT, and only focus on the reward normalization
proposed by us, which seems to be much more suited for an environment like
CCFS, where events have such low and unbalanced frequencies. In Figure
8.2, we highlight this finding by showing the different training behaviours of
(I) our method, applied to CCv2 (blue curve), (II) the method proposed in [7],
applied to CCv1 (red curve), and (III) PJ, used as a baseline (orange curve).

On the same note, the previous results also invalidate H7, as the opposite
seems to be true: functions trained to create Special candies also learn how
to use them, and not vice versa. This comes as a surprise, and we justify it
by observing that the functions that use Special candies focus much more on
the Fish, which is the only candy generated by Tiffy in our experiments. As
a result, they exploit what is already on the board rather than learning how to
create the candies themselves. On the other hand, functions that create Special
candies are much more balanced in the usage probability exhibited.
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MLT

For what concerns MLT, in Table 7.5 we can observe different results than
the one discussed for Blockers. As also shown in Figure 8.3, PJ, and CUv2
present the same relative behavior, with the MLT models having higher test
level performances on the metrics of interest for each function, i.e. win rate
for both, and usage probability for the second one. However, MLT CCv2 is
clearly worse than its SLT counterpart, despite having a higher creation prob-
ability than the other MLT models. This deficit in performance likely comes
down to the training speed of the model, which is much slower than the oth-
ers, as depicted in Figure 8.2. On MLT, the models may require more training
time, as the parameters have to adjust to different environments. As a con-
sequence, CCv2, which was already the slowest model in SLT, did not have
enough training time to get to the same level of performance.

Limitations

A first major limitation with our experiments is related to the way we track the
creation and usage of Special candies, as mentioned in Chapter 4. Since we
do not receive the events from the game itself, we had to design a best-effort
approach to estimate the number of Special candies affected by the actions of
an agent, and this estimate is very noisy and error-prone. We believe that we
could obtain significantly better results if the game environment provided us
with precise counters on all the events that happen after a move, which would
also relieve us from the computational burden of calculating them ourselves.

We observe promising results using the normalization technique proposed
by us. However, we do not have time to tune a crucial hyperparameter, which
is the number of episodes used to estimate the mean episodic frequency of
the events. This impacts the balance between the rewards, as if we averaged
over the full history we would give more importance to events that were less
frequent in the beginning, and give less value to the progress over time. A
comparison between a running mean approach and a finite number of episodes
should be conducted to understand how this changes the performances of the
first type of normalization, and whether it is impacted by the number of levels
we train on.

Regarding functions designed to use Special candies, we observe that they
tend to exploit the candies that are already present on the board, rather than
creating them on their own. This is heavily affected by the bias introduced by
the character that we use, Tiffy. We expect to solve this issue when testing
without using a specific character so that the functions would not be biased
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towards already existing candies.
Finally, for what concerns functions designed to create Special candies,

we need to look into why MLT CCv2 shows much worse performance than
SLT CCv2. We hypothesize that this is due to a training process that has not
converged, so the first set of experiments should be focused on training the
function for more than 80 000 episodes. We exclude the hypothesis that the
problem lies within the normalization used, as CUv2 does not exhibit the same
issues when training with MLT, so we expect that longer training times should
solve this issue.

Figure 8.2: Training performance on level 61 of CCv2 (Blue), CCv1 (Red) and
PJ (Orange), measured in terms of (a) Match-3 percentage and (b-g) Creation
probability for every type of Special candy.

8.2 Hybrid Architectures
Coming to models meant to combine the skills learned in the first step of the
solution, we can also positively answer research questions 2 and 3. Both ar-
chitectures show a better performance than an agent trained only to reach the
objective of a level. However, whereas AB is clearly superior to both baselines,
and gets close to human performances, HSH fails to distinguish between its
slaves, so it is not used on test levels. In this section, we first discuss why AB
is successful, and then provide our hypotheses on the failure of HSH.

8.2.1 Average Bagging
Considering SLT, H8 is fully validated from the experimental results. The
majority of AB combinations, including those using fewer sub-policies, always
have a higher win rate than both an agent trained with extrinsic rewards and
one playing randomly. Moreover, the best models also have a significantly
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Figure 8.3: Performance comparison of models trained to create and use Spe-
cial candies, divided in SLT and MLT. (Top row) Win rate. (Middle row)
Usage probability. (Bottom row) Creation probability.
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higher win rate than the best performing sub-policy used in the combination,
meaning that the bagging technique gives the expected improvements.

On the other hand, H9 cannot be confirmed nor invalidated by looking at
the experimental results, as the effect of normalization seems to be strictly de-
pendant on the skills used in the combination. For instance, including CUv2
works better with L2-normalization, whereas models that do not use that skill
perform better without normalization, except on level 163, where the perfor-
mance is comparable due to a very low win rate. We guess that CUv2 over-
shadows the other sub-policies that have a better win rate, due to a higher
reward scale, and thus only works with normalization. In the context of this
thesis, we claim that L2-normalization does not bring any significant improve-
ments to the combinations that are tested. However, if this architecture is to
be extended with more models, which could present win rates on a different
scale, using L2-normalization might turn out to be a safer choice.

H10 is also invalidated by experimental results, as the best performing
model is only using a subset of all the skills. In particular, PJ, PT, and CCv2
are the three fundamental skills that significantly improve the win rate of the
model. Then, Bv1 seems to provide an additional benefit to the hybrid, bring-
ing its performance closer to humans’, as reported in Table 8.1. Adding CUv2
to the hybrid instead worsens the performance, proving that using all the sub-
policies does not seem to be the best choice. We attribute this last observation
to the fact that sub-policies focused on removing Blockers and creating Spe-
cial candies have also learned to use Special candies as a side effect. However,
they in turn have a much higher win rate than CUv2, so adding the latter only
makes it worse.

MLT

For what concerns MLT, the above conclusions still hold. There is at least
a model that performs better than an extrinsic agent, and the performance of
L2-normalization depends on the sub-policies used. Also, the best performing
model does not include all the available skills, as CUv2 is once again wors-
ening the performance of the hybrid. However, there is a clear difference be-
tween SLT and MLT, as shown in Table 7.8, which invalidates H11. This is
not unexpected, as we already mentioned that one of the crucial skills in the
architecture is creating Special candies, and MLT CCv2 shows much worse
performances than SLT CCv2, due to the training process not converging. As
a consequence, even though the best model includes the same skills as in SLT
AB, the overall win rate is sometimes even halved, due to a crucial component
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underperforming.
Nonetheless, we are surprised by the full results on test levels reported

in Table A.10 of the Appendix if we compare them to the ones of Table A.9.
Evenmodels that do not includeCCv2 as sub-policy are performingworse than
their SLT counterparts, despite a higher win rate of every single component, as
discussed in the previous section. This is better clarified in Figure 8.4, where
the performance of models not using CCv2 is compared between SLT and
MLT.

Limitations

Given the close performance of SLT and MLT on skill learning, and since we
are not able to explain the difference between them in the hybrid architectures,
we call for a more thorough study on the best way to train an agent on multiple
levels at the same time. First of all, we need to run further tests to prove if
each sub-policy trained with MLT is actually better than training it with SLT.
If that is not the case, we would need to design a new method for multi-level
training, as this is a key step to obtain an agent that can be used across levels
in production. However, if we were sure that MLT is better than SLT for each
sub-policy, we could narrow down the issue to this architecture, and focus on
fixing it instead. We do not see a reason for why AB should work worse when
usingMLT sub-policies, so we believe that the problem lies within the pipeline
itself.

Secondly, more experiments are required to draw a sound conclusion on
whether normalizing the Q-values is better. The results presented here point
out that this can be the case when using models on different reward scales,
which was the initial reason for having a normalization step. However, if the
best hybrid architecture is confirmed to include the current skills, normaliza-
tion would actually worsen the performances and should be avoided. We still
believe that normalization is the best choice to ensure that any component can
be added without worrying about scale problems.

Thirdly, we did not have time to experiment with a weighted average of
the skills. As mentioned in Chapter 6, finding a good set of weights might
improve the performances of the hybrid by giving more prominence to some
skills. However, performing a hyperparameter search is costly and not scalable
when training across levels, as the optimal weight set might change. An inter-
esting extension could be to learn the optimal weights using RL itself, creating
an architecture somewhat similar to HSH, where the agent would output the
weights for each sub-policy.
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Level AB (SLT) AB (MLT) PJ Random

82 -15.8 −65.4 −87.9 −98.8

62 -20.79 −39.5 −49.6 −74.2

136 +42.2 −42.2 −93.6 −98.7

147 -56.3 −79.5 −93.8 −99.8

163 -86.4 −95.1 −99.7 −100

Table 8.1: Percentage difference of win rate of the best SLT and MLT AB
combinations, compared to human players. Results are measured on both train
and test levels. All baselines are included.

Figure 8.4: Performance comparison of AB combinations not using CCv2
on level 82, divided in SLT and MLT. (Left) L2-normalization. (right) No
normalization.

Finally, we did not have a chance to test all the possible combinations on all
the levels, so we cannot conclude that the one presented here is always the best.
Further comparisons are needed before concluding which skill combination is
better to use.

8.2.2 High-Speed Hierarchy
As seen from the experimental results, H13 is not fully backed by empirical ev-
idence, like in AB. Even though HSH shows better performance than an agent
trained with extrinsic rewards, at least on the training levels, it fails to meet its
purpose of distinguishing between the best slave to use in the environment.

We test the architecture further, even formulating H12 for this reason, and
discover that the master fails to even avoid using the random policy in favor of
an agent with amuch better win rate. In all training runs, we observe flat curves
for the selection frequency of all slaves and thus avoid using the architecture
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for further testing.

Limitations

We attribute the failure of HSH to three reasons. The first one is stochastic-
ity. When the master selects a slave that is theoretically worse, like a random
agent, the action taken might have an overall positive outcome, due to the
heavy stochasticity involved in the game from the random effects that follow
a move. As a consequence, since the random policy is never used for a whole
episode, the master fails to understand that the actions coming from that slave
are a worse option.

The second reason is the value of the discount factor γ. Here, we do not
have time to perform a hyperparameter search for every architecture, so we
keep a fixed value of 0.5, which is likely too low when paired with a sparse
reward. To distinguish between the slaves, the master should be able to look
all the way to the end of the episode, but this is only possible with a discount
factor closer to 1. As a consequence, we call for a hyperparameter search to
find the best value of the discount factor for the architecture.

The final reason, and probably the most impactful one, is the choice of the
master’s reward. As seen for the agents in the work of [2], a sparse reward once
again proves to be not suited for an environment like CCFS. Only rewarding
the master for winning a level does not seem to provide enough information to
understand which slave contributed the most to the final outcome, especially
in harder levels like 65 where the reward is very sparse. Ideally, longer training
time should improve this, as the master could learn better correlations between
each slave and the game outcome. However, we believe that a better improve-
ment worth investigating consists in designing a more dense reward function,
still related to the level objective. In this sense, we could try PJ, which provides
a more dense feedback signal and should allow the master to better select the
slaves, knowing however that it would be biased towards the one that was also
trained with PJ itself.



Chapter 9

Conclusions

This closing chapter provides the reader with a summary of the whole thesis.
Firstly, Section 9.1 briefly discusses some key issues related to ethics and sus-
tainability that were faced when conducting the research. Then, Section 9.2
provides a summary of the followed methodology, the setup used to run the
experiments, and the results obtained. To conclude the chapter, Section 9.3
discusses two extensions worth exploring in future work.

9.1 Ethics and Sustainability
The solution proposed in this research can be seen as an improvement over the
supervised approach with respect to privacy. Since RL can learn by unsuper-
vised self-play, it does not need the collection and tracking of user data like the
supervised bot did. Moreover, it is not biased by observing human actions and
can be perceived as more neutral. Another ethical issue that may arise is re-
lated to automation. One could argue that automating this kind of playtesting
process might substitute human labor, and in the long term even replace level
designers, once it can be used for content generation. We believe that instead
of substituting humans, these approaches will work alongside them to improve
their workflows. The need for more repetitive manual labor will decrease, so
the effort of level designers and testing companies will be spent in more effi-
cient ways. A final ethical issue is related to transparency and explainability.
Relying on automated agents to perform content balancing is efficient as long
as an explanation for their results can be clearly given to the level designers. If
the latter are unable to understand why the agent is performing in such a way
on a level, they might fail to balance that level accordingly.

Regarding sustainability, the main issue we identify is power consumption.
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As for all ML models, and in particular for RL agents, the training phase re-
quires an impressive amount of resources, from storage to computation and
networking. We argue that the path towards generalization might alleviate
these problems, as an agent will not have to be retrained multiple times, but
will be able to transfer knowledge effectively and require only one training ses-
sion. In this research, training has been performed using servers on-premise at
King and on Google Cloud Platform, both adhering to common sustainability
principles. All unnecessary computation has been minimized to save as much
energy as possible.

9.2 Summary
This thesis directly builds upon the work of Karnsund [2], with the goal of
developing an RL agent that can be used to playtest King’s games, focusing
on CCFS in particular. We analyzed the results of previous work and observed
that an agent fails to generalize over the test levels if it is trained using extrinsic
rewards. We thus decided to tackle the challenge of improving generalization
by drawing inspiration from human behaviors. Human players learn strategies
and patterns as they progress through the game, and are able to reuse them
when they are in a suitable board state. These strategies are not necessarily
related to the objective of a level, but their execution can indirectly help the
player towards achieving it. Following the input of our game designers, we
identified a set of valuable skills that a player should execute to improve its
win rate. In particular, we focused on removing Blockers from the board, as
well as creating and using Special candies. We designed a set of candidate
intrinsic reward functions to learn the given skills, and trained an agent for
each function to find the best candidate to learn that skill. All agents have
been trained in two ways, the first one using multiple levels in the training
set, and the second one using just one level, with the goal of proving whether
the former improves the generalization ability of the agents over the latter.
After obtaining a suitable set of functions, we designed two architectures that
allow a new agent to make use of the skills it learned. The first one, inspired
by bagging in SL, simply averages the Q-values of the sub-policies associated
with each skill and picks the action with the highest average value. The second
one, which is a Hierarchical RL model, trains a master agent using RL to pick
the best slave in a given board state.

Our experimental setup is designed to provide reproducible and reliable
results, taking into account the high stochasticity of the game. We trained each
agent for a number of steps comparable to SotA results, using five trials with
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different random seeds, which allowed us to average five test results for each
model. We always compared our results to those of an agent playing randomly
and to one trained using extrinsic rewards. For hybrid architectures, we also
drew comparisons to human results. We chose a set of levels on which to train
our agents, and a different set to test them. The two sets have very different
characteristics, so we never compared the results of the same model between
them, but rather between different models tested on the same level.

Results
We observed promising results for what concerns learning skills. Considering
the clearing percentage of Blockers, our chosen candidate function showed an
average improvement of 2% over an agent trainedwith extrinsic rewards on test
levels, and 13% on train levels. Most importantly, even though the candidate
function was not trained to win a level and does not know the concept of jam,
it still managed to improve the average win rate from 0.35 to 0.5 on the test
levels, and from 1.14 to 2.76 on the training levels. The candidate function for
Special candies is selected from the ones trained to create them and showed
even more promising results than for Blockers. In fact, compared to an agent
using extrinsic rewards, the average probability of creating a Special candy is
improved from 1.90% to 6.71% on the test levels, and from 1.60% to 9.06% on
the training levels. Moreover, the win rate on the test levels is 4.03, compared
to 3.20 of the aforementioned baseline. More interestingly, the probability of
not creating any Special candy with a move is down to 63%, from 83% of the
baseline.

For hybrid architectures, we obtainedmixed results. HSH did not show any
meaningful learning process, as the master was not able to distinguish between
even just a random slave and one with a much higher win rate. The average
frequency of selection for each slave is around 1

n
, meaning that the master is

basically selecting at random. However, the model still showed higher per-
formances than one trained only using extrinsic rewards, but we decided to
not run further tests with it. On the other hand, AB showed encouraging re-
sults. Looking at the overall performance of the best model, we believe to have
found a promising approach to tackle the issue of generalization. Compared
to an agent trained with only extrinsic rewards, the average win rate on the
test levels is improved from 2.89 to 6.23. With these results, the difference in
performance from humans is down to −30.3%, compared to −84.1% of the
aforementioned baseline, even surpassing the human win rate on level 136.
The generalization improvement is especially clear on harder levels like 136,
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147, and 163, where careful planning is required to win, and an agent focused
on spreading the jam exhibited close to random performances. As we said,
this is caused by the narrow behavior learned via extrinsic rewards, which we
avoided by teaching an agent different skills that can be used based on the
situation.

9.3 Future Work
As mentioned in the discussion, there are a number of extensions to this work
that are worth exploring in the future. Here, we would like to mention two
of them. AB has proven to be an extremely speed efficient and modular ar-
chitecture, as it effectively does not require a training process. Generalization
to different level objectives comes almost for free since it can directly reuse
the sub-policies learned during skill learning, and only train one sub-policy
with an extrinsic reward for the objective at hand. Training times are heavily
reduced, and we can integrate new game features by re-training or fine-tuning
the sub-policies. Given these reasons, we propose to extend the architecture by
making use of a weighted average and learn the set of weights with RL. This
should allow us to find a set of weights that works across levels and improves
generalization on the test levels even more, hopefully closing the gap with hu-
man performance. For this purpose, we believe that keeping L2-normalization
is the right way to move forward.

Secondly, we call for an extended study on the best way to train an agent on
multiple levels, since our results do not clearly indicate that MLT is better than
SLT. In this context, we also believe that using a deeper and more complex net-
work architecture like ResNet might solve some of the problems highlighted
in the previous chapter, and ensure a better multi-level generalization.
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Figure A.1: Example of start board configurations for the levels used in the
training sets. (Top left) Level 61, (Top center) level 65, (Top right) level 82,
(Bottom left) level 103, (Bottom right) level 151.
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Figure A.2: Example of start board configurations for the levels used in the
training sets. (Top left) Level 62, (Top right) level 136, (Bottom left) level
147, (Bottom right) level 163.
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Figure A.3: Example of how results are computed for a PT model trained on
the three levels from the training set separately, and tested on a generic level
x.
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Level Reward Win Rate Clearing (%)

Links Cupcakes Swirls Locks

65 Random 0.13 / 40.5 / 45

PJ 0.78 / 50.5 / 50

PT 2.02 / 66.5 / 71

Bv1 1.18 / 60.8 / 69

82 Random 0.12 / 32.7 60 /

PJ 1.09 / 39.7 70 /

PT 2.39 / 44.1 80 /

Bv1 0.6 / 36.8 65 /

103 Random 0.37 56.5 58.8 / /

PJ 1.26 67.8 66.3 / /

PT 2.33 76.5 72.2 / /

Bv1 1.59 83 70.8 / /

Table A.1: Aggregated results for Blockers models trained with MLT and
tested on levels from the training set.
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Level Reward Win Rate Clearing (%)

Links Cupcakes Swirls Locks

136 Random 0.08 / 53.5 81.4 57

PJ 0.62 / 66 85 68

PT 1.27 / 73.8 88.6 75

Bv1 0.83 / 69.7 86.4 71.2

147 Random 0.06 100 61.5 69 /

PJ 0.53 100 67 76 /

PT 0.79 100 74.7 82.6 /

Bv1 0.44 100 69.4 76.4 /

163 Random 0 57.7 31.1 / 59

PJ 0.01 61 37.8 / 66

PT 0.02 62.9 42.2 / 67.2

Bv1 0.01 62.6 43.2 / 57.8

Table A.2: Aggregated results for Blockers models trained with MLT and
tested on levels from the test set.
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Level Reward Win Rate Match-3 (%) Usage (%) Creation (%)

61 Random 11.97 90 8.3 1.9

PJ 20.77 84.8 10.3 1.6

CUv2 19.48 81 12.4 1.7

CCv2 14.98 74 9.6 5.1

82 Random 0.02 90 6.58 1.8

PJ 1.12 83 8.4 1.7

CUv2 0.83 81 9.9 1.7

CCv2 0.22 73 9 5.2

151 Random 0 91 5.9 1.9

PJ 0.03 84 6.9 1.8

CUv2 0.04 82 3.8 1.7

CCv2 0 76 7.5 4.6

Table A.3: Aggregated results for candies models trained withMLT and tested
on levels from the training set.
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Level Reward Win Rate Match-3 (%) Usage (%) Creation (%)

62 Random 5.2 88 9.2 2.3

PJ 10.7 81 11.5 1.9

CUv2 11.1 75.6 14.1 1.9

CCv2 6.4 74.6 10.2 4.9

147 Random 0.07 91 5.9 1.9

PJ 0.5 85 7 1.7

CUv2 0.59 81.6 8.9 1.7

CCv2 0.09 81 7 3.6

163 Random 0 89 6.9 2

PJ 0.02 83 8.7 1.8

CUv2 0.02 79.6 10.1 1.8

CCv2 0 76 8.71 3.5

Table A.4: Aggregated results for candies models trained withMLT and tested
on levels from the test set.
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Level Reward Win Rate Clearing (%)

Links Cupcakes Swirls Locks

65 Random 0.13 / 42.2 / 45

PJ 0.75 / 51 / 51

PT 2.83 / 74.5 / 79

DT 1.33 / 62.3 / 68

Bv1 1.18 / 64.8 / 70

Bv2 1.29 / 64 / 71

82 Random 0.12 / 65.3 60 /

PJ 1.33 / 80 71 /

PT 2.88 / 89.7 81 /

DT 1.23 / 80.7 70 /

Bv1 2.37 / 86.7 77 /

Bv2 1.47 / 86.3 78 /

103 Random 0.37 56.5 59.8 / /

PJ 1.34 70.5 67 / /

PT 2.55 75 74.3 / /

DT 1.4 70.2 66 / /

Bv1 2.31 85.2 71.2 / /

Bv2 1.18 76.5 66.2 / /

Table A.5: Aggregated results for Blockers models trainedwith SLT and tested
on levels from the training set.
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Level Reward Win Rate Clearing (%)

Links Cupcakes Swirls Locks

136 Random 0.08 / 54.2 80.3 59.3

PJ 0.61 / 69.6 87 69.3

PT 0.85 / 71.3 87.7 72.3

DT 0.49 / 63.7 85.3 66.7

Bv1 0.63 / 70.1 87 72

Bv2 0.47 / 63.3 87 69.3

147 Random 0.08 100 60.7 69.3 /

PJ 0.44 100 67.8 77 /

PT 0.62 100 73.8 81.7 /

DT 0.42 100 69.3 78.3 /

Bv1 0.38 100 68.2 76.7 /

Bv2 0.34 100 67.8 76.7 /

163 Random 0 56.7 32 / 60

PJ 0.01 60.7 39.7 / 69.3

PT 0.02 61.9 43.9 / 67

DT 0.01 60.1 38.3 / 62

Bv1 0.01 61.6 40.9 / 65.7

Bv2 0.01 59.9 39.1 / 63.7

Table A.6: Aggregated results for Blockers models trainedwith SLT and tested
on levels from the test set.
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Level Reward Win Rate Match-3 (%) Usage (%) Creation (%)

61 Random 11.97 90 8.3 1.9

PJ 21.33 86 9.6 1.6

CUv2 18.64 82.5 12.4 1.6

CUv1 19.68 81.6 12.3 1.5

CCv2 20.41 52.5 11.9 8.7

CCv1 14.54 77 9.6 4

82 Random 0.13 89.5 6.8 1.9

PJ 1.33 82.9 8.7 1.7

CUv2 0.96 81.4 9.5 1.6

CUv1 0.56 82.8 8.4 1.9

CCv2 2.13 46.2 12.1 9.1

CCv1 0.17 82.8 7.4 3

151 Random 0 91 5.9 1.9

PJ 0.02 86 6.6 1.8

CUv2 0.04 80 9.3 1.9

CUv1 0.03 82 8.5 1.7

CCv2 0.07 46 11.8 9.2

CCv1 0 83 6.6 2.9

Table A.7: Aggregated results for candies models trained with SLT and tested
on levels from the training set.
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Level Reward Win Rate Match-3 (%) Usage (%) Creation (%)

62 Random 5.22 88.7 9 2.2

PJ 9.24 80 11.1 2.2

CUv2 9.84 76.7 13.6 1.9

CUv1 9.51 78.7 12.7 2

CCv2 11.7 57.3 12.7 7.6

CCv1 4.4 81.9 9.3 3.4

147 Random 0.08 90 6 1.9

PJ 0.36 85.4 6.9 1.8

CUv2 0.48 82.3 8.8 1.8

CUv1 0.46 82.9 8.7 1.6

CCv2 0.38 69.7 8.9 5.8

CCv1 0.06 86 6.1 2.6

163 Random 0 89.2 6.8 2.1

PJ 0.01 83.7 8.4 1.8

CUv2 0.02 80.7 10.1 1.9

CUv1 0.01 81.3 9.84 1.7

CCv2 0.02 61.7 11 6.7

CCv1 0 83.7 7.3 2.5

Table A.8: Aggregated results for candies models trained with SLT and tested
on levels from the test set.
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Combination Win Rate Skill Rate

L2 None L2 None

PJ+CCv2 5.03 5.37 0.52 0.55
PJ+PT 3.51 3.39 0.36 0.34
PT+CCv2 6.62 6.61 0.69 0.68
PJ+Bv1 3.10 2.52 0.31 0.25
PJ+PT+CCv2 7.02 7.40 0.73 0.77
PJ+B+CCv2 6.21 6.89 0.64 0.71
PJ+PT+CUv2 3.11 2.76 0.32 0.28
PJ+PT+Bv1+CCv2 7.33 8.08 0.76 0.84
PJ+PT+CCv2+CUv2 6.18 5.66 0.64 0.58
PJ+PT+Bv1+CCv2+CUv2 6.61 5.96 0.68 0.62

Table A.9: Win rate and skill rate of the ten best combinations of AB, mea-
sured on level 82. The sub-policies are trained on level 82 with SLT. Results
are grouped by whether L2-normalization was used (Left) or not (Right).
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Combination Win Rate Skill Rate

L2 None L2 None

PJ+CCv2 1 1.4 0.09 0.13
PJ+PT 2.6 2.67 0.26 0.27
PT+CCv2 1.63 2.28 0.16 0.23
PJ+Bv1 1.3 1.4 0.12 0.13
PJ+PT+CCv2 2.46 3.27 0.25 0.33
PJ+Bv1+CCv2 1.39 1.78 0.13 0.18
PJ+PT+CUv2 2.32 1.98 0.23 0.2
PJ+PT+Bv1+CCv2 2.84 3.32 0.29 0.34
PJ+PT+CCv2+CUv2 2.93 2.86 0.3 0.29
PJ+PT+Bv1+CCv2+CUv2 2.85 2.84 0.29 0.29

Table A.10: Win rate of the ten best combinations of AB, measured on level
82. The sub-policies are trained with MLT. Results are grouped by whether
L2-normalization was used (Left) or not (Right).
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