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Abstract
In radiation therapy, it is important to control the radiation dose absorbed by
Organs at Risk (OARs). The OARs are represented as 3D volumes delineated
by medical experts, typically using computed tomography images of the pa-
tient. The OARs are identified using user-provided text labels, which, due to a
lack of enforcement of existing naming standards, are subject to a great level
of heterogeneity. This condition negatively impacts the development of proce-
dures that require vast amounts of standardized data, like organ segmentation
algorithms and inter-institutional clinical studies. Previous work showed that
supervised learning using deep-learning classifiers could be used to predict
OARs labels. The input of this model was composed of 2D contours of the
OARs, while the output was a standardized label. In this work, we expanded
this approach by qualitatively comparing the performance of different machine
learning algorithms trained on a clinical data set of anonymized prostate can-
cer patients from the Iridium Kankernetwerk clinic (Belgium). The data set
was partitioned in a semi-automatic fashion using a divide-and-conquer-like
approach and various 2D and 3D encodings of the OARs geometries were
tested. Moreover, we implemented a reject class mechanism to assess if the
inference probability yielded by the model could be used as a measure of con-
fidence. The underlining goal was to restrict human intervention to rejected
cases while allowing for a reliable and automatic standardization of the re-
maining ones. Our results show that a random forest model trained on sim-
ple 3D-based manually engineered features can achieve the twofold goal of
high classification performance and reliable inferences. In contrast, 3D con-
volutional neural networks, while achieving similar classification results, pro-
duced wrong, but confident, predictions that could not be effectively rejected.
We conclude that the random forest approach represents a promising solution
for automatic OAR labels unification, and future works should investigate its
applications on more diversified data sets.
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Sammanfattning
En viktig faktor i strålbehandling är att kontrollera hur mycket av strålningen
som absorberas av riskorgan. Med hjälp av medicinska bilder, vanligtvis från
datortomografi, konturerar medicinska experter riskorgan som sedan repre-
senteras som tredimensionella volymer. Riskorganens typ anges via manuell
namngivning från den medicinska experten. Detta samt bristande efterlevnad
av namngivningsprotokoll, har resulterat i hög heterogenitet bland angivna or-
gannamn. Där denna heterogenitet bromsar utvecklingen av metoder som krä-
ver stora mängder standardiserade data, såsom organsegmenteringsalgoritmer,
därutöver försvårar det studier som utförs på intraklinisk basis. Tidigare arbe-
te inom fältet för namngivning av konturerade organ har visat att övervakad
inlärning med djupinlärningsklassificerare kan användas för att automatiskt
identifiera riskorgannamn. Indata till dennamodell bestod av tvådimensionella
riskorgankonturer och utdata bestod av standardiserade riskorgannamn. Det-
ta arbete bygger vidare på det tidigare tillvägagångssättet genom att kvalitativt
jämföra och utvärdera olika maskininlärningsalgoritmers prestanda för samma
ändamål. Algoritmerna tränades på en klinisk datamängd bestående av anony-
miserade prostatacancerpatienter från den belgiska kliniken Iridium Kanker-
netwerk. Datamängden partitionerades på ett semi-automatiserat vis med hjälp
av ett tillvägagångssätt inspirerat av söndra-och-härska-tekniken och flera ty-
per av två- och tredimensionell representationer av patientbilderna testades.
Vidare implementerades en mekanism för att utvärdera om inferenssannolik-
heten från modellen kunde användas som ett tillförlitligt konfidensmått. Med
bakomliggande mål att enbart behöva involvera mänsklig inblandning i de fall
som bedöms som extra svåra av mekanismen och på så sätt åstadkomma en
automatisk standardiseringen av resterande fall. Resultaten visar att en ran-
dom forest-modell som tränats på enkla och manuellt designade variabler kan
uppnå de två uppsatta målen: hög klassificeringsprestanda och pålitlig infe-
rens. Jämförelsevis lyckades tredimensionella faltningsnätverk uppnå likvär-
diga klassificeringsresultat men producerade felaktiga prediktioner som inte
var möjliga att avfärda på ett effektivt sätt. Vår slutsats är att den framtagna
random forest-metoden är en lovande lösning för automatisk och standardise-
rad namngivning av riskorgan. Framtida arbete bör utvärdera metoden på data
med större variation.
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Chapter 1

Introduction

“Artificial intelligence will revolutionize health care!”

These kinds of claims have become increasingly frequent both in the health
care industry and the academia [1, 2, 3, 4, 5, 6, 7]. As bold as they may sound,
they are supported by the unprecedented series of advancements achieved in
the last decade by artificial intelligence and in particular by machine learning
(ML) and deep learning (DL). These advancements impacted multiple fields
like computer vision, machine-translation, natural language processing, and
representation learning [8, 9, 10, 11]. This, along with the lower cost of stor-
ing and processing of data, has marked a shift in many industries from first-
principle based models to heavily data-based ones [12].

No straightforward reasons seem to obstacle the adoption of such tech-
niques in the health care world. In fact, various advancement of computer
vision and ML have been introduced in the medical domain to successfully
solve problems of very diversified nature like disease detection, diagnosis,
work-flow management, and, more generally, medical imaging problems [13,
14, 15, 16, 17, 18, 19].

These results are a promising starting point for a wider adoption of ML
techniques in the health care sector. However, the unique challenges of health-
care data management - like an inherent heterogeneity and the need to cope
with legal and ethical constraints [20] - brought the medical ML community
to a condition known as Data Starvation; that is “[...] an urgent need to find
better ways to collect, annotate, and reuse medical imaging data” [21]. This
situation spurred the necessity for a more data-savvy approach towards a sce-
nario “[...]in which the best treatment decisions are computationally learned
from electronic health record data” [22].

As naïve as it may sound, data-based approaches are only as good as the

2
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data they have been fed. In particular, modern medical data sets are com-
posed only by few hundreds patients cases.1 This is in stark contrast with the
incredible variety and size of well established computer vision data sets like
ImageNet [23], CIFAR [24] or MSCoCo [25].

The consequence of having such a restricted ground truth has an effect on
the models’ ability to be employed in real-world scenarios, because of their
reduced generalization capabilities [21, 26]. In addition to the limited sample
size, clinical annotations compose the most important building block of med-
ical imaging ground truth2 and they are mainly inserted by medical experts
in free-text form. Although standards exist, they are seldom followed by the
parties involved, resulting in an important heterogeneity of labeled data [21].

This condition may come as a surprise, considering that medical imaging,
and radiology in particular, was one of the first sectors to introduce a widely
adopted standard for Digital Imaging and Communications in Medicine (DI-
COM) [27, 28]. The application of the DICOM standard effectively enabled
radiologist and medical experts to store, retrieve, and exchange medical data
safely and reliably. Unfortunately, this standard is not designed to cope with
the data quality constraint typical of an ML data set since, for example, many
data fields may be filled incorrectly or not be filled at all [21, 29].3 While these
issues are not an impediment in daily medical practice, they may constitute a
major hassle when attempting to merge or federate data sets while trying to
create a more comprehensive ground truth for the ML task at hand [30].

On the other hand, the wide adoption of the DICOM standard has fos-
tered the storage and aggregation of large sets of medical data in specialized
archiving systems, the so-called PACS (Picture Archiving and Communica-
tion System). Thus, a controversial situation is originated: there is, in theory,
a great abundance of medical data, but the lack of standardization renders them
unusable for any ML application [21, 22].

Consequently, this work focuses on the investigation of automatic stan-
dardization techniques of medical data to streamline their usage in ML ap-
plications. In particular, we take into consideration the standardization of ra-
diation oncology data to address the heterogeneity generated by “Organs At
Risk” (OARs) labels. The next section further explains the problem and the

1Multiple cases may belong to the same patient, being visited multiple times.
2Annotations are a special kind of meta-data that pertain to particular regions contained

in a medical image (being it the diagnoses, anatomical or pathological). An example in the
radiology field could be the area of an X-RAY image delimiting the left lung of the patient,
labeled as “LT_LUNG”.

3Some with standard and others with proprietary format
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data structures used in radiation oncology.

1.1 Problem Formulation
Radiation therapy (or radiotherapy) (RT) is a kind of medical therapy that uses
ionizing radiation as part of a cancer treatment procedure [31]. More precisely,
“[it] aims to sculpt the optimal isodose on the tumour volume while sparing
normal tissues” [32]. To achieve this goal medical experts identify a series of
important regions within the patient’s body. This is done on a 3D represen-
tation of the patient obtained from medical images (see section 2.1.1). These
regions are eponymously called Regions of Interest (ROIs).4 These regions
define precise 3D volumes inside the patient and are of different types. In
some regions, referred to as target regions, the radiation dose must be max-
imized in order to treat the tumor and lower the chances of re-appearance of
the disease. In other regions, the dose must be minimized as much as possible.
This is especially the case for organs, which are indeed called Organs at Risk.
If the target region partially includes an organ, then not all the volume of the
organ should receive minimum radiation. For these cases, a special volume
containing the part of the organ outside the target region is created and com-
monly named an avoidance region. The process of delineating all the relevant
ROIs for the treatment is called patient modeling. When it is terminated, a
single patient’s representation can contain from ten to thirty ROIs, and to each
of them the medical expert assigns a free text label, normally referred to as the
ROI name.

Between all the ROIs, OARs have particular importance when it comes
to daily clinical practice. Their location is identified with a process known
as multi-organ segmentation (MOS), during which medical images (usually
from a CT or MRI5) are analyzed and the exact 3D position of the organs
is delineated. Performing MOS manually is a lengthy and time-consuming
process, hence a variety of automatic and semi-automatic methods have been
developed, the vast majority of these being statistically based [33, 34, 35, 36,
37, 38, 39]. As anticipated in section 1, an extensive and high-quality ground
truth data set is needed for these methods to be robust [21]. MOS is only
one example of data-intensive problems in radiation oncology requiring such
a high quality and quantity of data, as a matter of fact all ML application share

4Section 2.1.2 explains in great detail how ROIs are defined and the taxonomy used to
categorize them.

5Plese refer to section 2.1 for further details.
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the same constraints (for more on the application of ML techniques in the
medical domain see section 2.5).

Figure 1.1: 3D Multi-organ segmentation performed on an head-and-neck disease
site from a CT scan of the cetuximab data set [40]. Segmented organs are: spinal
cord (blue), larynx (yellow), oral cavity (red), right parotid gland (turquoise), left
parotid gland (green).

Luckily, many medical institutions possess and maintain large storage sys-
tems called PACS where patients folders containing already segmented CT
images are stored. These archiving systems have the upside of containing
ground truth segmentation that has already been verified by a medical expert,
which, in theory, perfectly suits an ML task. Unfortunately though, the regu-
latory and technical constraints concerning health-care data management [20]
result in two major obstacles to ML applications: the data sets usually con-
tain few hundreds patients, and the free-text nature of the labels associated
to organs are often heterogeneous and inconsistent in many different levels.
Different institutions, hospitals and even medical experts within the same in-
stitution may use different naming conventions, and lexicographical errors and
abbreviations may be recurrent [41] [42], as well as highly locale-dependent
dictionaries.

Using standard data-warehouse terminology we can classify the different
sources of heterogeneity as ”single-source instance level“ and ”multi-source
schema level“ data quality problems [43]. The former refers to “errors and
inconsistencies that cannot be prevented at the schema level” [43], like mis-
spellings, duplicates, and contradictory values. The latter concerns problems
that arise when multiple different data sources are integrated. An example
that particularly fits to our case is constituted by naming conflicts: the same
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Table 1.1: Examples of names associated to the same anatomic structure in twelve
different clinics [41].

Structure Examples

Left Optic Nerve

Lt Optic Nerve, OPTICN_L, OPTNRV_L,
optic_nrv_l, L_optic_nerve, OPTIC_NRV_L,
OpticNerve_L, LOPTIC, OpticNerve_L (3),
Lef Optic Nerve, ON_L

Left Lung Lt Lung, Lung_L(4), LUNG_L(3), lung_l,
L_lung, LLUNG, L Lung

Both Lungs
Lungs(2), LUNGs, LUNG_TOTAL, lung_total,
combined_lung, LUNG, LUNGS(2), Lung,
BilatLung, Lung_Both

organ called differently in different patient’s folders. To give a practical exam-
ple, table 1.1 reports some examples of different names associated to the same
OAR, based on the work of the task group 263 of the American Association of
Physicist in Medicine (AAPM) [41].

To rephrase the problem in a rather pragmatic way: for many institutions
it is not possible nowadays to formulate a simple query like this: “Retrieve all
the contours of the left lung of all our patients”, as the left lungmay have rather
different names. Let alone trying to perform such a query on two institutions’
PACS located in two different countries with different languages, for example
a Dutch and American clinic.

1.2 Purpose
The focus of this work is to compare different supervised ML-based approach
to classify OAR volumes based only on their geometric representation. This
would enable the association of the volume with a unique OAR label, thus
performing the standardization of the OAR data set. The complete process
is taken under consideration: the initial analysis of a real-world clinical data
set, the partition of the data set in a divide-and-conquer-like fashion (using
reliable patients for training and more complex cases for testing), the training
of the model along with its performance evaluation, and, most notably, the
assessment of the quality of the obtained inferences. Despite its importance,
this last aspect is seldom analyzed, resulting in excessive attention posed to the
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performance of the model, and not considering howmuch the model inference
could be trusted in a production environment.

We decided to restrict our efforts only to OARs labels because they are
central in many RT operations, like MOS or treatment planning. But also be-
cause once standardized they can be easily used to identify the disease site
and detect the kind of tumor being treated by comparing the position of tar-
get volume with the one of the OARs in its proximity.6 A complete list of
possible benefits is reported in section 1.7. Moreover, concentrating on OARs
reduces sensibly the scope of the project and allows for a comprehensive study
of different approaches.

1.3 Goal
The goal is to identify a viable strategy for automatic data cleaning of OAR
labels in oncology data sets. Also, to suggest possible directions of devel-
opment of more comprehensive systems concerning data-quality assessment
in radiation oncology like anomaly and outlier detection, target and avoid-
ance structure standardization (see section 2.1.2), and oncology information
retrieval systems.

1.4 Research Questions and Hypothesis
If consistency is lacking at annotation level, we cannot say the same for hu-
man bodies. In fact, a certain level of consistency is to be expected. We can
safely say that, excluding peculiar clinical cases, organs look alike in differ-
ent patients. Most importantly, they belong to a well-defined spatial context:
that is, their respective position is the same in all human bodies. As an ex-
ample, the rectum is always below the bowel, the bladder is always between
the two femurs, the left parotid gland is always on the left of the spinal cord.
This, together with the assumption that the MOS is performed consistently by
a medical expert, opens two tightly coupled questions:

Research Question 1
Is it possible to exploit OARs’ contours spatial consistency to enable
unique classification through an ML algorithm, hence enforce unam-
biguous labeling?

6It may seem odd, but the actual information of the kind of tumor being treated is rarely
contained in the patient treatment plan.
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Considering the label standardization aspect is not enough though. Any
obtained model is subject to the risk of errors at inference time. Hence, the
result obtained by such a system must go hand-in-hand with an estimate of its
confidence. To put it more clearly, how “trustworthy” are the system’s infer-
ences? Is the model able to discriminate between a risky prediction and an
extremely confident one?

In our particular case:
Research Question 2

Is it possible to use the inference probability yielded by the ML algo-
rithm as a measure of confidence?

Or, posed more pragmatically: can we establish an inference probability
threshold above which all the inferences of the model can be safely trusted and
below which they have to be rejected? Hence signaling the need for human
expert intervention to discriminate doubtful cases. It must be stated that the
target of this study is not to reach full automatic standardization, but to reduce
human intervention only to cases that necessitate it.

Concerning the first question, our hypothesis is that it will be possible to
build an ML model capable of correctly classifying the OARs based on their
unique features and their positioning in the spatial context.

While, for the second question, in case the aforementioned model - or set
of models - is able to produce inference probability, we hypothesize that it
will be possible to estimate such a threshold or, at least, obtain its qualitative
behavior.

1.5 Research Methodology
For the nature of the formulated hypotheses and the resources at our disposal,
a qualitative approach is selected. At the same time, it must be also considered
that the performed experiments use measurable quantities and, as such, have a
non-negligible quantitative aspect. The collected data derive from a real-world
phenomenon, which the author has no power to control or influence. For these
reasons, an inductive research strategy is preferred, where propositions are
derived directly from observations, thus giving the practitioner more freedom
in terms of altering the path and direction of the research process [44]. This
choice was also driven by the need for solving a practical problem with real-
world data. As such, the work was organized in an iterative fashion. This
allowed us to obtain results and insights into the complexity of the problem at
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an early stage, inductively driving our choices for the next iterations towards
a more promising strategy. A total of three iterations were performed in the
time at our disposal. Please refer to chapter 3 for an in-depth explanation of
the method followed.

Two main principles were used as a reference when selecting an approach:
simplicity and pragmatic stance. For the former, special care was put in avoid-
ing un-necessary steps and complications in the methodology. Rather than
selecting exotic and complex models, we preferred to start from very simple
solutions and add complexity gradually, always justifying the choice following
the principle that “plurality should not be posited without necessity” [45], thus
striving for a “less moving parts” solution. For the latter, we made sure that
the proposed approach was implementable easily using well tested industry
standard open source tools.

The author is a master thesis student belonging to the ML department of
Raysearch Laboratories AB, based in Stockholm. His main responsibilities are
to build and compare different classification models for OAR geometries, as
well as assessing the quality of the obtained inferences. This included various
steps: literature review, data collection and encoding, model selection, model
training and hyperparameter tuning, model evaluation. The author received
feedback and guidance not only from the assigned supervisors, but from the
whole ML department, enjoying and appreciating the open mindset and ex-
treme curiosity shown by its members. The author also had the opportunity to
work in earnest as a member of the company, participating to various company
business meetings and social events, training and seminaries; experiencing the
full spectrum of activities and responsibilities the ML engineer position de-
mands. For these reasons, when explaining and justifying the decisions taken
during the development of the work, the author prefers to use the “we” per-
sonal pronoun, instead of referring only to himself as the sole contributor to
the decision making process.

1.6 The Importance of aGeometric Approach
As explained above, the problem revolves around the heterogeneity in OAR
labels, which are encoded as text. A more direct approach would have been to
consider only the labels and use ad-hoc mappings to correct and standardize
clinical data sets.

Although being more straightforward and less computational intensive,
such a solution have numerous issues. First, it has to take into account lo-
cal dependency, meaning that it has to cope with different languages, used in
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an extremely technical fashion. Second, it may be impossible to establish rules
valid even for a single clinic, given that different conventions may be followed
by different experts (even in a single patient case!). Third, rules do not offer
any measure of confidence. They either match or do not match, hence they re-
quire to be trusted in an agnostic fashion, with the risk of obtaining incorrect
labels that will be blindly considered as correct. Finally, by the words of San-
tanam et al. [46] “variability of free-text structure names limits the reliability
of such heuristic methods for mapping structure names, thus requiring a great
deal of manual quality assurance” [46].

On the other hand, a geometric approach is immune to language specific
aspects and removes from the equation the labels themselves. It builds on the
sole assumption that the organs are segmented with a fair degree of coher-
ence. As a plus, an ML approach based on geometries also yields an inference
probability that may be used to discard dubious cases, which is one of the
hypotheses under investigation in this work.

1.7 Benefits, Ethics and Sustainability
Various are the benefits that could arise from OAR label standardization:

• The company will directly benefit from a more reliable ML pipeline,
with an increased quality of the ground truth. This is particularly appli-
cable onOAR segmentation taskswhich are under constant development
and improvement.

• OAR label standardization is a key enabler for treatment planning au-
tomation [46, 47, 41, 48], which is already saving a noticeable amount
of resources in various clinics and is allowing doctors, physicians, and
oncologist to spend more time at direct contact with the patients. When
health care is managed mostly with public resources (i.e. in most of
Europe), this directly translates in saving tax-payers money while in-
creasing service quality, throughput, and consistency.

• Label standardization will render communication more reliable, which
has already shown to be a key factor in reducing the occurrence of inci-
dents and mistreatment in clinical operations [49, 50]

• Facilitation of report generation, information retrieval, plan benchmark-
ing and quality assurance [51, 52, 53].
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• If privacy preserving distributed ML will become a reality in the health
care field, it would have to be developed on the assumption that the data
set is standardized and of high quality. This is because by definition the
access to the raw data will be incapacitated.

The ethical aspects concerning this work revolve around the concept of au-
tomation and its use. In particular, job loss and accountability may be a major
concern. For the former, we think that this is a non-existent issue given the
direct outcomes of this work. The standardization of OAR labels is currently
stealing precious time from highly trainedmedical experts that should dedicate
their efforts to more important causes, like impacting the life and improving
the care of patients. The latter is a much more complicated issue. Automation
is not a panacea for all the problems and there are no guarantees that it will
be fully fool proof. Errors have to be expected, as some labels will still be
incorrect after automatic standardization, that is why a thorough risk-benefit
analysis should be performed before employing any automatic solution. We
should ask ourselves how many mistreatment cases will be caused by incor-
rect automatic labeling compared to the ones already generated by the lack of
standardization.7 The author believes the benefits will overcome the risks, and
this is exactly why this work focuses also on finding strategies to ensure high
quality of inference rather than just good classification scores.

Finally, to evaluate the environmental impact of this work we must have a
broader view of possible future outcomes. Good and robust label standardiza-
tion has the main potential of saving precious man-time. This will also mean
that the computational and energy resources that are nowadays allocated to
manual operations will be freed and dedicated to more important tasks. The
direct consequence of this scenario is a wiser use of energy and resources,
but also the reduction of e-waste material. From a more practical standpoint,
RaySearch Laboratories AB enforces policies to prevent the waste of natural
resources and energy, which contribute to long term environmental sustain-
ability by complying with or exceed all applicable environmental legislation,
standards, and industry codes.

1.8 Limitations
We focus on a data set containing only prostate cancer cases coming from a
single medical institution. This implies that the conclusions drawn from this

7To make a parallel with self-driving cars: how many car accidents are generated by auto-
mated driving compared to the ones generated by incorrect human driving behaviors.
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work may apply only to data sets where the disease site is known beforehand.
However, this work delineates a procedure that can be easily extended to other
data sets, provided that they contain only one disease site. The nature of the
features engineered in section 3.4.2, in particular the relative position towards
the body center of mass, suggests the necessity for a dedicated model per dis-
ease site. It must be considered that the disease site may be easily inferred
from other information contained in the patient folder, like the plan name and
the ROI names themselves, or even by classifying the raw CT scan transverse
slices [54, 26].

The data set used contains geometric representations that are consistently
oriented in the same direction. Patient orientation is encoded in the DICOM
standard8 and is an important and commonly used information in modern clin-
ical operations. Cases of incorrect recording of patient orientation are ex-
tremely rare, given that specific medical protocols have been designed to avoid
this eventuality [55, 56]. Moreover, automatic techniques exist to detect pa-
tient orientation directly from CT images [57].

Finally, as it is explained in detail in chapter 3.4.2, we assume that the
segmentation of the OAR is coherent. However, it must be noted that close
to the surface of the organ different segmentation protocols may be followed.
For this reason, we opt for selecting features that are robust in this regard and
that describe the global shape of the organ rather than relying on its surface.

1.9 Outline
Chapter 2 gives the reader the necessary background and nomenclature needed
to understand the content of this work. In particular, we suggest to dedicate
particular attention at section 2.1, in order to acquire the much-needed context
and terminology proper of radiation oncology. When possible, surveys and
other materials are reported as a support for further studies. Chapter 3 explains
the method followed to answer the research questions, while chapter 4 contains
all the results collected during the performed experiments. Finally, chapter 5
is dedicated to our final considerations and to the directions that future works
should follow.

8Field PatientOrientation code (0020,0020). See section 2.1.3.



Chapter 2

Background

2.1 Data in Radiation Therapy
This section covers the most common data encoding and protocols that are
used in RT. First, in section 2.1.1, Computed Tomography (CT) medical im-
ages are introduced. Basic terminology and conventions are reported, with the
aim of helping the reader to orient themselves in the coordinate system used to
model the patient. Then, section 2.1.2 explains how CT images are converted
into a 3D geometrical representation of the patient and how important struc-
tures inside the patient are encoded. Particular attention should be posed to
this section as all the data used in this work follows the aforementioned struc-
ture. Finally, section 2.1.3 gives a brief introduction to the DICOM standard,
which is the de facto standard for storage, communication, and retrieval of
medical data in the RT domain.

2.1.1 CT Scans
Computed Tomography images are the basic diagnostic tool used in 3D Con-
formal Radiotherapy (3DCRT), a medical procedure that takes under consid-
eration the full 3D representation of the treatment region within the patient
[31]. CT images are central in the diagnosis and localization of a tumor, as
well as the delineation of all the structures required to plan the treatment (see
section 2.1.2). CT images are generated using X-ray radiation, a type of elec-
tromagnetic waves with photon energies in the order of 100 eV to 100 keV.1
When X-rays pass through a material (for example biological tissue) a certain
amount of radiation is absorbed or scattered, which may vary depending on

1Which correspond to a wavelength range within 0.1 and 10 nanometers.

13
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the kind of material. The amount of radiation that passes through a specific
material is described by the linear attenuation and can be measured to obtain
a radiograph, which is a 2D projection of the internals of the irradiated object
(see figure 2.1a).

(a) Radiograph of human lungs
[58]. (b) Principle of a CT scan, where the generator

and the detector rotates around the object [59].

Figure 2.1

When generating a CT scan, an X-ray generator rotates around an object
on a predefined axis, together with a detector on the opposite side (see figure
2.1b). The object is then translated along the rotation axis in order to cover
the region subject to diagnosis, commonly referred to as the field of view.

The raw data obtained from the detector at different angles are then com-
bined by a process called tomographic reconstruction into a 3D representation
of the imaged object. The end result is stored as a series of 2D cross-sectional
images called CT slices (see figure 2.4a), where each pixel contains a scalar
value from +3071 (most attenuating) to−1024 (least attenuating). These val-
ues are obtained after a linear transformation of the attenuation coefficients
obtained while scanning and are expressed on the Hounsfield scale [60].

By stacking a series of 2D CT slices and factoring in the thickness of each
slice, a discretized patient representation is built by defining a 3D volumetric
grid2 (see figure 2.4b). Each element of the grid is called a voxel and can be
thought of as a 3D generalization of an image pixel (see figure 2.3). Each voxel

2To be more precise, the original data source is natively a 3D representation of the per-
pixel attenuation of the imaged volume. But it is always stored as a series of 2D slices, which
is what every medical visualization tool uses, and this work as well. The author preferred the
reported formulation in order to ease the interpretation.
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(a) Open CT machine [61]

(b) CT machine by SIEMENS [62]

Figure 2.2: (a) Internals of a CT machine, called a CT gantry. The letter “T” points
to the X-ray generator, while the detector is with the letter “D”. The letter “R” with
the adjiacent arrow indicates that the apparatus rotates clockwise with respect to the
observer. (b) A CT gantry with a patient and a technician;

represents an element of volume inside the patient body in which an estimated
amount of radiation was absorbed (see figure 2.4b).

An important technical aspect to consider is the spatial definition of a
voxel, i.e. what are its actual dimensions. In most of the CT scans used for
RT, the distance between two subsequent CT slices is much higher than the
size of a pixel on the slice itself. As a result, the actual CT voxels have a
box shape rather than a cubic shape (much higher than wider). On transver-
sal slices typical pixel dimensions are around 1.25mm × 1.25mm, while the
distance between two slices3 can be up to 3mm.4

Moreover, the field of view may vary between patients, depending on the
goal of the diagnostic procedure. As a result, the number of transverse CT
slices differs from patient to patient, as well as the final CT 3D.

3i.e. the height of the voxel.
4 The exact pixel dimensions in practice depend on a series of factors. The technician

usually sets only the number of pixels on the transverse slice, which is usually 512 × 512

pixels. But the limiting factors defining the vertical resolution are time, storage and the field
of view. Using modern machines and small fields of view, the voxels dimension can reach
0.5× 0.5× 0.5mm3.
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Figure 2.3: A series of voxels in a stack with a single voxel shaded [63].

(a) CT slices of a human brain [64].
(b) Volume created by stacking CT
slices [65].

Figure 2.4: (a) Series of subsequent CT slices of a human brain, from the lower part to
the upper part. (b) Volume created by stacking subsequent CT slices in the abdominal
region.

Anatomic Planes and Coordinates Systems

During diagnostic and visualization procedures, the 3D representation of the
patient is commonly sliced in three perpendicular planes called anatomical
planes (see figure 2.5):

• Axial or transverse plane: an horizontal plane that divides the patient’s
body into superior and inferior parts (considering the patient as stand-
ing). It is perpendicular to the axis of rotation used to perform the scan.
The slices obtained on this plane coincide with the original CT slices
generated by the tomographic process.5

5For this reason, transverse slices are considered to contain the most information and are
used as a base for diagnosis.
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• Coronal or Frontal plane: a vertical plane that divides the patient’s body
into ventral and dorsal sections.6

• Sagittal or Longitudinal plane: a vertical plane that divides the patient’s
body into right and left parts, always defined from the point of view of
the patient.

(a) Depiction of the anatomical planes of a human
brain [66] (b) Sagittal (top left), frontal

(top right) and transverse (bot-
tom) views of the abdominal re-
gion [65].

Figure 2.5

At this point we can introduce the spatial coordinate system that is used
in this work. We will use a Cartesian reference system composed of three
orthonormal vectors: {x̄, ȳ, z̄}. Each of these vectors is perpendicular respec-
tively to the frontal, sagittal, and transverse plane. A depiction of the coordi-
nate system in respect to a patient body can be found in figure 2.6.

2.1.2 RT Patient Modeling
The 3D model obtained by stacking CT slices is a great tool for diagnostic
purposes, but there is no explicit information on where the tumor and the sen-
sible tissues are. It is just a 3D grid of scalar values which are proportional to

6That is, dividing the patient’s body into the belly and back sections.
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Figure 2.6: Voxel geometric representation of OARs and external ROI of pelvic dis-
ease site. Left femur in violet, right femur in green, bladder in orange, rectum in blue,
pelvic bulbus in red, anal canal in brown, external ROI in light blue. Created with
[67]

.

the amount of X-ray radiation absorbed and scattered by each voxel. To plan
and proceed with the treatment it is necessary to identify at which Region of
Interest (ROI) each voxel belongs to.

Depending on the part of the body contained in the region and their role
in the treatment planning, ROIs can be categorized in different types:

Target Volumes: represent a series of encapsulated volumes that will
receive a maximal dose of radiation, for this reason they are also known
as targets. The innermost one is the Gross Tumor Volume (GTV). It is
then extended with a margin, in order to treat microscopic tumor exten-
sion, forming the Clinical Target Volume (CTV). The CTV is further
expanded by an anisotropic margin to accommodate uncertainties de-
riving from setup variation. This last and outermost volume is called
the Planning Target Volume (PTV) [31]. A graphical representation of
all the target volumes is reported in figure 2.7.

Organs At Risk (OARs): all the organs that are at risk of receiving
a radiation dose. The goal of treatment planning is to minimize the
radiation received by OARs while maximizing it for PTVs.

Markers: also called fiducial markers are small metal objects that are
surgically placed in or near a tumor in preparation for RT. Their goal is
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GTV

CTV

PTV

Figure 2.7: Schematic of the different volumes irradiated
in RT. Image reproduced with the permission of the author

(Cecilia Battinelli)

to identify the tumor’s location with greater accuracy and help deliver
the maximum radiation dose to the tumor [68].

Avoidance: generic volume in which the radiation dosage should be
minimized. They are frequently composed of so-called Algebraic ROIs,
which are ROIs generated when the PTV partially includes one OAR. In
this case, it will be incorrect to minimize the dosage on the totality of the
organ, hence an ROI is calculated by subtracting the PTV from the organ
(see figure 2.9). Other types of avoidance ROIs are the No Treatment
(NT) ROIs, which are an isometric margin around the PTV used to guide
the optimization process to avoid irradiation to all the tissue around the
PTV, regardless if it is an organ or not. NT can be represented as a
hollow container encapsulating the PTV.

HelperROIs: all the ROIs that are useful to tune the treatment planning,
register the image or position the patient.

External: this ROI represents the body of the patient and should enclose
all other ROIs.

Note that each voxel, or group of voxels, can belong to multiple ROIs. For
example, a voxel in the GTV is included both in the CTV and PTV (see figure
2.7).

From an operative perspective, depending on the institution and the reg-
ulation, ROIs may be delineated by different medical experts (usually oncol-
ogists) and RT technicians. The process may be manual, automatic or semi-
automatic7 (as reported in section 1.1), but the end result is always encoded

7The medical expert will always review, verify and sign the result.
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as an overlay of the CT transverse slice (see figure 2.8). For this reason, the
operation of segmenting the patient geometry may also be called contouring,
as contours are drawn to delineate the segmented ROI. In figure 2.6 we can see
the final geometric representation of a pelvic disease site obtained by stacking
all the transverse contours of the OARs.

(a) CT image (b) Targets (c) OAR

Figure 2.8: (a) 2D CT image and external ROI in pink; (b) contours of targets: GTV
in red, CTV in purple, PTV in blue; (c) contours of OARs: spinal cord in light blue,
left parotid gland in turquoise, right parotid gland in green, oral cavity in brown;
Patient 0522c0766 from [40].

It must be noted that the above list covers only the ROIs types that are
relevant for this work, the complete list specified by the DICOM standard (see
section 2.1.3) can be found in [69].

2.1.3 The DICOM Standard
The DICOM standard (Digital Imaging Communication in Medicine) is the de
facto standard for transmission, storage and retrieval of digital images in the
medical field [70].

The central components of the DICOM data structures are called Infor-
mation Object Definitions (IODs). They may be considered as a well-defined
schema of attributes associated with each object. Examples of objects are: CT
images, RT plan specifics, voice audio recordings, PDF documents and many
more.8

Every attribute inside this schema has a unique identifier composed of two
hexadecimal numbers: the group number and the item number. For example,

8For a complete description of thewholeDICOMstandard please seehttps://dicom.
innolitics.com/ciods

https://dicom.innolitics.com/ciods
https://dicom.innolitics.com/ciods
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(a) Rectum OAR. (b) Rectum OAR minus PTV

Figure 2.9: (a) A normal contoured rectum; (b) An avoidance ROI obtained by sub-
tracting the PTV from the OAR in figure (a);

the ROI name attribute has code (3006, 0026). Every single image9 encoded
using DICOM has its respective IOD [71], which at filesystem level is stored
as a file header.

ROIs are considered an attribute of the RT structures set IOD [72], which
is called RT ROI Observation. For this reason, the terms “ROI” and “RT struc-
ture” (or just “structure”) are commonly used interchangeably.

We do not enter into the details of the DICOM standard specifications,
but it is important to understand how ROIs are encoded and represented in
DICOM.

Each ROI defined in a transverse CT slice contains also a series of at-
tributes, the most important for this work being:

• ROIName (3006,0026): user-defined name for the ROI.

• RTROIInterpretedType (3006, 00A4): type of ROI (PTV, CTV,
GTV, AVOIDANCE, ORGAN, etc.)

• ROIContourSequence (3006,0039): series of points on the CT trans-
verse slice representing an open or closed polygon.

As clearly stated in the DICOM specifications, there is no enforcement
or check on the content of the ROIName field, as it is a free text field com-
pletely in the hands of the user. The field RTROIInterpretedType may

9A single transverse CT slice
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be optionally used to define the type of ROI, as explained in section 2.1.2. The
ROICOntourSequence contains the actual polygon that defines the ROI on
the transverse CT slice. By stacking the polygons on all the slices and interpo-
lating them, the 3D “voxelized” representation in figure 2.6 is obtained. Note
that in DICOM it is totally possible for an ROI to not define any contour, re-
sulting in an empty ROI (i.e. without any associated voxel). It is also possible
to have single-point ROI (actually called Points of Interest (POI)). Common
uses of POI are for patient and image registration as well as identification of
fiducial markers.

2.2 Naming Standards
The current lack of standardization in ROI naming should not be associated
to the actual inexistence of standards. In fact, multiple standards have been
proposed and the general attention of the clinical world to the need of nam-
ing standardization is increasing. In this section we discuss the standards and
ontologies used in medical practice and RT.

2.2.1 Ontologies
Ontologies offer a rich framework for defining concepts and inter-relationships
among them. Ontologies have been extensively used in the medical domain
and represent an important component in interoperability and integration into
health care informatics systems. The BioPortal [73] website maintained by
the National Center for Biomedical Ontology (based in Stanford, California)
contains a wide variety of medical ontologies that are publicly accessible.

Foundational Model of Anatomy

The Foundational Model of Anatomy (FMA) [74] defines anatomic structures
and interrelationships necessary for a phenotypic representation of the human
body. The intent of the FMA is to accommodate all current naming conven-
tions, rather than attempting to standardize terminology. The FMA is often
used by other ontologies and other naming standards as an important refer-
ence to define concepts with a very high degree of precision. For its inherent
complexity, the FMA is seldom used in daily medical practice. This is par-
ticularly the case for radiation oncology, where the DICOM standard does not
provide for any explicit reference to the FMA.
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SNOMED CT

The Systematized Nomenclature of Medicine–Clinical Terms (SNOMED CT)
is a standardized terminology owned and licensed by the International Health
Terminology Standards Development Organization (based in London UK).
According to the authors, it is “the most comprehensive, multilingual clinical
healthcare terminology in the world” [75], actively used in eight countries. It
is particularly aimed to store and organize electronic health records in the wide
sector of health care. As such, it lacks the simplicity and pragmatic aspects re-
quired to be proficiently used in daily RT practice. Moreover, the labels of the
concepts in SNOMED CT contains special characters that are not supported
by all the vendors providing solutions to the RT field [41].

2.2.2 AAPM TG-263
The American Association of Physicists in Medicine (AAPM) is an established
organization that focuses on advancing patient care by providing education,
improving safety and efficacy of radiation oncology and medical imaging pro-
cedures through research. At the beginning of 2018, AAPM released the final
report of its task group number 263 (TG-263) [48] having as a sole goal the
identification of a comprehensive nomenclature standard for RT that could be
easily and proficiently used in every medical institution in the United States.

After reviewing the ontologies reported above and the recent development
in standards for nomenclature in RT [46, 76, 77, 78], the task group developed
a comprehensive nomenclature system of all the concepts used in RT. Special
attention was posed to practical limitations (like characters supported by ven-
dors’ solutions) and to the utilization of names that minimizes the chance of
communication errors. As a result, TG-263 names are short but easy to under-
stand and interpret, even without a strong background in anatomy. Important
concepts of RT that were not reported in medical ontologies (like algebraic
ROIs and target structures) are covered in great detail. TG-263 is not an on-
tology and does not aspire to be one. It can be considered as a set of simple
naming guidelines and conventions. On the other hand, when possible (i.e.
for OARs) the FMA identifier that most closely match the represented ROI is
provided, thus enabling direct linking with the FMA structure. This latter as-
pect is not to be underestimated; a properly standardized TG-263 clinical data
set isn’t just more usable for medical purposes, but it also allows for the use of
semantic web technologies thanks to the integration with the FMA ontology.

The list of standardized OAR names is publicly accessible and constantly
updated [79]. Given its straightforward architecture and its growing adoption,
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we decided to use TG-263 in the course of this work to label the OARs in our
data set (see section 3.3).

2.3 Shape Descriptor and Normalized Cen-
tral Moments

Shape descriptors are a class of features used in computer vision that are based
on the shape of an object rather than on other, maybe richer, sources of infor-
mation (like the intensity of color in an image). They are an important tool
used in content based image retrieval, image search, and image classification.

Following the taxonomy outlined in [80], shape descriptors can be divided
into two main categories: contour-based and region-based descriptors. As
the name may suggest, contour-based descriptors extract features only from
the contour of the shape (i.e its border). Instead, in region-based descriptors,
the features are extracted from the whole region occupied by the object.

As already stated in section 1.8, given that the contouring protocol used
by the medical expert in the proximity of the organ surface can vary from
institution to institution, in this work we preferred to use region-based shape
descriptors10.

In the case of 3D shapes, simple shapes descriptors are the volume intended
as the number of voxels contained in the shape, the surface as the number of
voxels on the surface of the shape, the circularity as the square of the surface
over the volume and the major axis orientation.

A particular family of region-based shape descriptors is composed of mo-
ments invariants. The first and most simple moment invariants are the geo-
metric moment invariants [82]. Their definition for the 2D case is

Mpq =
∑
x

∑
y

xpyqf(x, y)

p, q = 0, 1, 2, ...,

(2.1)

where x and y are the coordinates of the pixel in the image, f(x, y) is the
intensity of the pixel with coordinates (x, y), and p and q are the parameters
dictating the order of the moment. Geometric moments are not translation in-
variant in this simple formulation, because changing the position of the object
offsets the x and y coordinates. To render them translation invariant and con-
struct the central moments, it is sufficient to subtract to x and y the coordinates

10For an in-depth review of contour-based shape descriptors we suggest the reading of [80]
and the excellent survey by Zhang and Lu [81].
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of the centroid of the shape:

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y),

x̄ =
M10

M11

=

∑
x

∑
y xf(x, y)∑

x

∑
y f(x, y)

,

ȳ =
M01

M11

=

∑
x

∑
y yf(x, y)∑

x

∑
y f(x, y)

.

(2.2)

The centroid is nothing more than the 2D discrete form of the center of mass
of an object, a concept borrowed from physics:

R̄ =
1

M

∫∫∫
V

r̄ρ(r̄)d̄r =
1

M

∫∫∫
V
xρ(r̄)d̄r∫∫∫

V
yρ(r̄)d̄r∫∫∫

V
zρ(r̄)d̄r

 ,

M =

∫∫∫
V

ρ(r̄)d̄V .

(2.3)

Where r̄ is the coordinate vector used to integrate in the whole space V , d̄r
is the infinitesimal volume in position r̄, ρ(r̄) is the density of the object in r̄,
and M is the total mass of the object (not to be confounded with the central
moment of the shape).

As shown by Hu [82], translation and scale invariance can be achieved by
further diving the central moments by a properly scaled zero-th central mo-
ment:

νij =
µij

µ
1+ i+j

2
00

,

i+ j ≥ 2.

(2.4)

Thus constructing the Normalized Central Moments (NCMs), which will be
extensively used in this work (see section 3.4.2).

An evolution of geometric moments are the orthogonal moments, where
the kernel xpyq is replaced by a generic kernel Pp(x)Pq(y), where P can be a
Legendre or a Zernike polynomial [83].11 Orthogonal moments require to in-
scribe the shape into a unity sphere in order to be transition and scale invariant,
which implies a form of up/down interpolation of the object.

Other types of region-based shape descriptors are the generic Fourier shape
descriptors [84], in which a 2D Fourier transform is applied on the polar-raster

11The name “orthogonal” comes from the fact that the Zernike and Lagrange polynomials
are orthogonal.
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of the surface of the object. The Fourier coefficients are then used as feature
vector.

In this work, we opted to employ only NCMs as they perform well on con-
tour based shapes without interior content [80], their implementation is sup-
ported by major open source libraries and they are sensibly less computational
expensive than orthogonal moments, where the calculation of Zernike or La-
grange polynomial is not trivial. Following the principles exposed in 1.5, to
avoid the re-implementation of the NCMs in the 3D form, we preferred to use
already existing tools on the projections of the OAR on each anatomic axis.
The projection was calculated by summing the voxels along each of the direc-
tions in figure 2.6, therefore obtaining one projected 2D image per anatomic
plane.

More formally, if I(x, y, z) is the binary intensity of the 3D OAR (i.e. the
value of the voxel in position x, y, z), then for each direction we calculate the
2D projections

f(x′, y′)x =
∑
x

I(x, x′, y′),

f(x′, y′)y =
∑
y

I(x′, y, y′),

f(x′, y′)z =
∑
z

I(x′, y′, z),

(2.5)

where (x′, y′) are the coordinates on the 2D projection, and f(x′, y′)x is the
intensity of the 2D projection along direction x of the 3D OAR. For each pro-
jection we calculate a series of NCMs up to a defined order, constructing a
feature vector of scalar values that is used to describe the shape of the OAR.

2.4 Machine Learning Algorithms
In this section, we explain the concept of supervised learning, the learning
framework used in this work, and we report a brief explanation of the ML
algorithms employed.

2.4.1 Supervised Learning and Classification
As the name might suggest, in the framework of supervised statistical learning
a strong supervising signal is required to train a model to produce predictions.
This supervised signal is composed of a set ofK examplesD = {x̄k, yk}Kk=1,
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also known as the ground truth, where x̄k ∈ RN is a single data instance
or predictor and yk is the response variable. The goal of the ML algorithm
is to learn the entailing function f : x̄ → y from the supervising signal,
in order to predict the response variable of an unknown data instance. The
response variable can take various forms, it could be a categorical variable
yk ∈ {1, ..., C}, or it could be a real value yk ∈ R. In the former case, the
task of learning is called classification, in the latter is called regression [85].
In this work we are interested only in supervised classification, more precisely
in mono-label classification, meaning that the response variable is composed
of one and only one value, while in multi-label classification the response
variable can have multiple coexisting values.

2.4.2 Training Process and Classification Metrics
In order to train an ML model and evaluate its performance, the ground truth
is divided into three sets:

Train: it contains the instances and the labels used to train the model.

Validation: also known as “development” or “evaluation” set, it is used
to calculate the performance of the trainedmodel and perform parameter
tuning.

Test: also known as “held out” set, it is composed of instances that
neither themodel nor the practitioner has ever used. It is used to evaluate
the performance of the model in a real-world scenario.

The performance of the model is evaluated by comparing the model pre-
diction ŷk with the corresponding response variable in the ground truth yk.
In order to ease the explanation, we are going to use as an example a binary
classification, meaning that the response variable can only have two values
yk ∈ {0, 1}, respectively called the negative and positive value; for example
an ML algorithm able to tell if a patient is affected (positive) or not (nega-
tive) by a disease. The single model prediction can then be categorized in the
following outcomes:

True Positive (TP): meaning that the model predicted a positive and the
response variable in the ground truth is positive.

True Negative (TN): meaning that the model predicted a negative and
the response variable in the ground truth is negative.



28 CHAPTER 2. BACKGROUND

False Positive (FP): meaning that the model predicted a positive, but
the response variable in the ground truth is negative.

False Negative (FN): meaning that the model predicted a negative, but
the response variable in the ground truth is positive.

In case of TP and TN we have that ŷk = yk, while for FP and FN we have
that ŷk 6= yk. When considering the full set of predictions of the model, the
number of TP, TN, FP, and FN can be summarized in a confusion matrix

Table 2.1: Confusion matrix of a binary classifier.

Tr
ue

va
lu
e

Predicted Value

p n total

p′ True
Positives

False
Negatives P′

n′ False
Positives

True
Negatives N′

total P N

If the classification is perfect, all the examples will be on the diagonal of
the confusion matrix.

Based on the confusion matrix, a series of scalar metrics comprised in the
range [0, 1] can be built. Precision is defined as Prec = TP

TP+FP
, and repre-

sents (in a frequentist fashion) howmuch the model is correct when predicting
that the instance is a positive. Recall is defined as Rec = TP

TP+FN
, and repre-

sents how many of the total number of positive cases in the data set have been
actually retrieved.

Following the example of the diagnosis of a disease, having an high preci-
sion and low recall means that if the model predicts a positive than the chances
of the patient to be ill are high and actions should be taken; while the low recall
implies that many of the actually ill patients have not been identified as such.

To better represent the trade-off between precision and recall in a single
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scalar value, the f1 score is commonly used

f1 =
2

1
Prec

+ 1
Rec

= 2
Prec ·Rec
Prec+Rec

, (2.6)

which is the harmonic mean of the two values and it is also bound in the inter-
val [0, 1].

Another global metric commonly used is the accuracy

Acc =
TP + TN

TP + TN + FP + FN
. (2.7)

Accuracy is valuable only in case the number of examples per class is bal-
anced. If the condition is not met, accuracy is bound to be biased towards the
more frequent class. Again following the diagnosis example, if only 1% of
patients is actually ill, a classifier that always predicts the patient to be fine has
a 0.99 accuracy, which is indeed a misleading number. On the other hand, the
precision is undefined and the recall is 0.00, signaling that the classifier is not
functioning properly.

The extension of the confusion matrix to multi-class cases (i.e. not bi-
nary), is immediate. The true and predicted labels have C possible values,
and the matrix is of size C ×C, like the ones in figure 4.1. The precision and
recall metrics are then calculated by treating each class as a one-vs-rest binary
problem. Then, the per-class metrics are combined with a weighted average,
taking into account the frequency of each class in the data set12.

2.4.3 Decision Trees
Decision Tree (DT) classifiers are among the most simple ML classification
algorithms.13 They are structured as a tree-like graph, where each node corre-
sponds to a particular condition applied to one of the features of the instance.
The effect of the node is to split the data set,14 with the end goal of producing
leaves that contain only one class of examples, a situation named pure leaf.
The conditions in each node are selected during the training phase based on
how effective they are in splitting the training data set. This effectiveness is
measured either in terms of information gain or of Gini impurity. The infor-
mation gain is calculated as the difference between the entropy of current tree
and the weighted sum of the entropy of the candidate child condition. The

12The explicit formulas for the problem at hand are reported in section 3.5.
13They can be adapted to regression tasks.
14For the scope of this work, each node can only perform a binary split



30 CHAPTER 2. BACKGROUND

Gini impurity is calculated as the sum of the probability of an instance with a
specified target label to be picked, multiplied by the probability of an incorrect
classification of that instance.

2.4.4 Random Forest
Decision trees can be combined together forming a well renowned ensemble
model called Random Forest (RF) [86]. In RF, the trees are called estimators
and they are independent of one another. Each tree is trained from a set of
randomly sampled training examples, a procedure called bagging. Moreover,
the candidate features for the split in each node are randomly sampled from
the N total features. Compared to a single DT, the feature sampling lowers
the correlation between the trees and avoid that only the strongest features in
terms of splitting criterion are always picked, forcing the whole model to make
a more extensive use of the feature set. Once a set of T estimators t1, t2, ..., tT
is trained, the prediction on new instances is performed by taking the majority
vote of all the estimators. The baggingmechanism is instrumental in achieving
better predictions, as it reduces the variance without increasing the bias of the
model. The set of parameters used for tuning are the number of estimators,
the maximum number of features sampled in each split, the minimum number
of samples a node can have to be considered a leaf, and the maximum depth
of each tree.15

2.4.5 3D Convolutional Neural Networks
3D Convolutional Neural Networks (3DCNN) are a particular kind of convo-
lutional neural network that operates on 3D voxelized volumes rather than on
2D images or on 1D signals. For this reason, the kernels of a 3DCNN are 3D
tensors that slides through the input volume on the x, y, z axis. To each direc-
tion the practitioner can associate a different stride. Besides this aspect, all the
mechanics of the network and of the training process are exactly the same as
in 2D and 1D CNNs.

A thorough explanation of neural networks models is outside the scope of
this work. We suggest the read of [87] for a complete overview of the topic.
For a more succinct read, the initial sections of [19] and [88] are an excellent
starting point, especially for readers having a medical background.

In this work we selected a particular 3DCNN called VOXNet [89], initially
developed for point-cloud object classification, but still capable to achieve ex-

15See appendix A.6 for an in-depth report of the tuning process.
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tremely good classifications results also on voxel-based data sets like the mod-
elnet40 [90], this despite its rather simple architecture of just two convolutional
layers:

input: [32 × 32 × 32 × 1] voxelized occupation grid with only one
channel.

Conv1: 32 filters, kernels of size [5× 5× 5], strides of (2, 2, 2) for the
(x, y, z) directions, ReLU activations. The resulting input for the next
layer is [14× 14× 14].

Conv2: 32 filters, kernels of size [3× 3× 3], strides of (1, 1, 1), ReLU
activations.

Max Pooling: max pooling with a kernel of size [2×2×2], the resulting
input size after Conv2 andmax pooling is [6×6×6] that is then flattened
in a feature vector of 128 scalar values.

Fully connected: fully connected layer of K units, where K is the umber
of classes, using as input the 128 features above. Relu activations.

The justification of this choice can be found in section 3.4.3.

2.5 Machine Learning in Medical Imaging
In this section we briefly report the main areas of medical imaging in which
ML algorithms have been used to solve medical problems. Following the clas-
sification outlined in [19], we can categorize these areas as follows:

Feature Representation: features are either automatically learned or
manually engineered to describe rawmedical images. These features are
then used for image clustering or content based medical image retrieval
(CBMIR) to ease the search for similar images.

Computer Aided Detection (CADe): CADe aims to find and/or local-
ize suspicious and abnormal regions, with the intent of automatically
alerting clinicians. The goal is to increase the detection rate of disease
regions with a particular focus on reducing false-negatives that can be
caused by excessive fatigue of the clinician or by human error.

Computer Aided Diagnosis (CADx): in CADx, an automatic system
provides an opinion over the nature of a possible disease in order to help
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the human expert. The typical application involves the discrimination
between malignant or benign lesions.

Segmentation: in segmentation, area of the patient body corresponding
to a well-defined entity are identified and contoured. Segmentation of
medical images is not only applied to MOS (as explained in chapter 1),
but also to brain imaging, neonatal imaging, and histopathology.

Clinical Outcome Prediction: the goal is to predict if a patient will or
will not develop (or re-develop) a disease after a certain period of time
from when the imaging procedure was performed. Typical examples of
application in this area are to predict the risk of a patient to be hospital-
ized again after a treatment. For its nature, clinical outcome prediction
requires models to be interpretable, and, when possible, allow for casual
inference. This is to identify the causes of risk and apply countermea-
sures to decrease the probability of re-hospitalization.

Anatomical Structures Detection and Classification: in this area ML
algorithms are used to detect important anatomic regions (organs, body
parts, or even cells). After the detection process, which usually consists
in identifying promising bounding boxes in the image, a classification
task is performed to identify which kind of anatomic region is repre-
sented.

Covering all these areas in details is far from the scope of this work, but
we point the reader to [19, 88, 16, 91, 92] for a series of well-curated surveys
on the use of ML in medical imaging.

We now focus on a series of works in the area of anatomical structure
detection and classification that are of particular interest for this work.

Roth et al. [54] used a Deep Learning (DL) fully supervised approach
to classify and map transverse CT slices to one of five body parts they belong
(neck, lung, liver, pelvis, and legs). The architecture used was a CNNwith five
convolutional layers for feature extraction and a dual layer 4096 units fully con-
nected part for the classification task. The training set contained roughly 4K
slices, obtaining a classification accuracy of 94.1%. However, for this strategy
to be effective in real-world scenarios, a higher grade of discrimination than
just five body parts may be needed.

This limitation is overcome by Yan et al. [93] by using a CNN trained in a
multi-stage fashion (pre-training and boosting) with multi-label classification
objective (given that each CT slice may contain multiple organs). The final
stage was based on the classification of sliding windows on the CT scans. The
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network showed peaky response only to the windows containing organs, that
were then used for classification purposes. The data set used contained 12 or-
gans; 2413 slices (225 patients) were used for training, 656 slices (56 patients)
for validation, and 4043 slices (394 patients) for testing.

In [26], Chow et al. investigated the learning curve associated to the same
procedure used in [54], suggesting that the high quality and low variability
of medical images do not require excessive amounts of data to obtain good
classification results, provided that peculiar and anomalous cases are excluded
from the training.

In [94], Yan et al. demonstrated the validity of mining CT scan annota-
tion contained in hospitals PACS to create a large scale data set (32K lesions
from 10K studies) for lesion detection. Although their approach was simply
based on a specific kind of annotation used only for lesion identification, they
were able to generate such a data set with minimal manual work. They then
demonstrated it’s validity by successfully training a lesion detection (CADe)
DL model.

All the works reported above suggests that the classification of organs from
CT slices through an ML approach is a viable solution. Moreover, for the
classification task, huge data sets may not be required, while they can indeed
be extracted for other tasks from already existing clinical PACS.

Finally, the work that most closely resembles our problem is the one from
Rozario et al. [95], in which a CNN is used to classify OARs on 2D slices
and then assign them a unique TG-263 label. Instead of working on raw CT
images (like all the works above), Rozario used only the OAR contours an-
notated by the medical experts. The approach followed was to represent in
each data instance both the OAR to classify and its spatial context, which was
assumed to be coherent in every patient. Instead of using the full OAR geom-
etry (like in figure 3.2), each data instance was derived from a 2D transverse
slice. More precisely, the whole 3D patient’s representation containing all the
OARs (see section 2.1.2 and figure 3.4), was sliced on the horizontal plane and
each transverse slice was treated separately. Then, for each OAR present in the
slice, a 2D data instance was created with the following encoding: the pixels16
pertaining to the OAR to classify were encoded with a value of 1; the pixels
belonging to the other OARs in the slice had a value of 0.5; while all other
pixels had a value of 0. The end result was a 2D matrix of float values that
can be plotted as an image. The mechanics of this method imply that if a slice
contained n OARs, then n instances would be created. In fact, by taking into

16It would be more correct to refer to them as voxels, but the author prefers the term pixel
to ease the explanation, given that they are located on a 2D transverse slice.
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account the number of horizontal slices per patient, Rozario generated 40K in-
stances from a data set containing only 100 patients. The results sensationally
reported on a prostate and head-and-neck data sets were of 100% accuracy.
However, a series of aspects were not treated by this study. First of all, the
whole data set was manually cleaned before training the model, thus remov-
ing the automation goal from the scope of the work. Then, no baseline method
was attempted or reported to establish a measure of comparison. Moreover,
the OARs in the data set did not show any sign of overlapping, a condition that
is not met in our data set. No consideration on the confidence of the prediction
was performed, either silently implying that the data set did not contain any
peculiar case or that the inference of the model should be trusted blindly. This
is not the case for our data set, were, for example, prosthetic femurs may be
present. We would like to take this eventuality under consideration. Finally,
the study suggested as a future line of investigation to use the whole 3D rep-
resentation rather than just the 2D slices, an aspect on which we would like to
focus.

We can say that the main contribution of the work by Rozario et al. is
that it proves that using an ML approach to classify OAR contours is possible
and that in this effort the encoding of the spatial context at which each OAR
belongs is likely to be important.
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Method

Our goal was to implement an automatic standardization approach of OAR
labels based on their geometries by exploiting their spatial consistency. The
underlying hypothesis was that it would be possible to do achieve this result
through the application of an ML model. As such, we formulated the problem
outlined in section 1.1 as a multi-class mono-label classification task [85],
where a unique OAR label is associated to a generic ROI geometry encoded
as a 3D binary tensor (like in figure 3.2). Then, a fully supervised approach is
followed to train anML classifier. This approach was chosen as being the most
established and successful methodology in object classification tasks [85, 11].

The data set at hand was a real-world clinical database of prostate cancer
cases containing annotated ROIs geometries. The raw format of the data is
reported in section 3.1, and we advise the reader to familiarize with it early
on. The train, evaluation and testing set were constructed in a semi-automatic
fashion by following a divide-and-conquer-like approach. First, only OARs
were selected, and second, patients containing the highest number of OAR
were used in the train and evaluation set, while less representative patients
and potentially more peculiar cases were confined in the test set. This with
the goal of simulating the application of the final model to a real-world clin-
ical database, which may contain complex cases. Through three iterations,
we were able to use different data encoding upon which various ML models
were trained and their performance was evaluated with standard classification
metrics. In order to answer our second research question, that the inference
probability could be used as a measure of confidence, we implemented a reject
class mechanism and evaluated the thread-off between coverage of the solution
and its final accuracy.

The goal of this section is to ease the reproduction of the results, by ex-

35
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plaining in great detail the process followed, which can be divided into the
following steps:

1. Raw data set: (section 3.2) the data set at hand is analyzed to underline
the frequency of each ROI label, the number of patients and the number
of ROI per patient.

2. Creation of ground truth: (section 3.3) based on the results of the
previous step, three sets of patients are created: training, evaluation,
and testing. For each patient only ROIs that are considered to belong to
OAR are taken under consideration.

3. Input encoding and model training: (section 3.4) each ROI in the
ground truth is encoded as a vector.1 A classifier is selected and trained
on the encoded ground truth.

4. Classification evaluation: (section 3.5) the weighted precision and re-
call, as well as the confusion matrix and accuracy are calculated on the
inferences obtained on the evaluation set.

5. Inference Probability Evaluation: (section 3.6) the distribution of the
inference probability obtained on the evaluation set is used to establish
a probability threshold below which each inference is rejected. The test
set is used to calculate the reject rate of OAR and, when possible, of
all ROI in the data set. The presence of incorrect classifications above
threshold is considered a particularly negative factor in the model per-
formance.

As stated above, steps 3 to 5 were repeated in an iterative fashion and the
insights obtained in each iteration were used to inductively select the more
suitable strategy for the following one. In order to assure a fair comparison
ground for all the developed solutions, only step 3 was changed in each iter-
ation. Finally, a summary of the methodology in the form of a flux diagram
can be found in figure 3.1.

1Being it binary or a feature vector, depending on the method used.
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Figure 3.1: Methodology diagram.

3.1 Raw Data Encoding
In the totality of this work, the fundamental data instance is the ROI, which is
composed of a set of three attributes:

Attribute ROI Name Patient ID Geometry
Format alphanumeric string alphanumeric string voxels

Example “RECTUM” “anonymized_01” 3D tensor binary mask

The “ROI name” is a user defined text label associated to the ROI; examples
could be: “RECTUM”, “BLADDER”, “marker”, “PTV”, “BLADDER-PTV”.
The “Patient ID” is a unique identifier of the patient and it carries no informa-
tion with regards to the personal identity.2 The ROI geometry is encoded as a
3D tensor (or grid) covering the whole patient where each voxel in the tensor
has value 0 if it is outside of the ROI or value 1 if it is contained in the ROI.

2All the data in this study are fully anonymous. Although, given the nature of the disease,
only male patients are present.
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Figure 3.2: 3D tensor representation of a rectum (OAR). The voxels in dark blue have
value 1, while the voxels in shaded blue have value 0. The tensor covers the whole
pelvic area of the patient.

Effectively, this encoding can be thought to as a binary mask identifying the
voxels contained in the ROI. Taking as an example the rectum OAR of figure
3.2, the dark blue voxels have value 1 and represent the voxels inside the rec-
tum, while the light shaded voxels have value 0 because they are outside it, but
still covering the whole patient body section.

“ROI name” and “Patient ID” derives directly for their DICOMequivalents
reported in section 2.1.3, while the geometry is obtained by interpolating the
DICOM polygon on each transverse slice and considering as belonging to the
ROI only the voxels internal to the polygon.

The combination of “ROI name” and “Patient ID” is a unique identifier of
the ROI as the data set contains only one full CT scan per patient.

As explained in section 2.1.2, the ROI geometry is based on the CT 3D
representation of the patient, which has a well-defined spatial definition. In
the specific case of the data set at hand, the original CT voxels have a dimen-
sion of 1.25×1.25×3.0millimeters respectively for the x, y, and z direction3),
resulting in a 512×512 pixels for each transverse CT slice.4 In order to obtain

3See section 2.1.1
4The number of transversal slices is not the same for every patient, as such the number of

voxels in the z direction.
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an isotropic representation (i.e. having voxels of the same spatial definition in
all the three dimensions), the original CT volume is downsampled and inter-
polated to obtain cubic voxels of dimensions 2.5× 2.5× 2.5 millimeters. The
resulting number of voxels on the transverse plane is 256× 256, while on the
vertical axis it depends on how many 2D CT slices have been acquired and
then stacked.5

In order to reduce the memory footprint of the data set, in case a top or
bottom set of transverse slices does not contain any ROI other than the external
one (i.e. the body), the slices are removed. This can be though as similar to
removing leading or trailing spaces in a string.

3.2 Raw Data Set Analysis
The anonymized patient data set used for this study was received from Iridium
Kankernetwerk (Belgium) with whom RaySearch has a data transfer agree-
ment covering this project. It is composed of 181 male patients that have been
diagnosed with prostate cancer. As such, all the ROIs included in the data
set belongs to the “pelvic” region [48]. The ROI names are written in Dutch
language.

The total number of ROIs is 3144, with an average of 17.3± 1.3 ROIs per
patient. The difference in the number of ROI is mainly caused by the number
of avoidance structures, which depends on the size and location of the PTV
dictated by the clinical condition of the patient. Also, the presence of different
fiducial markers can influence the total number of ROIs.

Although the names are not in the English language, some ROI types
can be inferred: target structures (“CTV_high”, “CTV_low”, “GTV_high”,
“PTV_TOTAAL”, “Dose 103”, “Dose 104”, ...); fiducial markers (“marker”,
“markers”, “merkers”); avoidance structures (“rectum - PTV”, “rectumOver-
lap”, “rectum Post”, “rectum in PTV”, “rectum in ptv”, “rectum overl”, ...);
the external ROI (“BODY”); the OARs (“rectum”, “blass”, “heup re”, “heup
li”, ...).

More details about the raw data set composition can be found in appendix
A.2.

5As explained in section 2.1.1, it means that the third dimension of the ROI tensor may
vary sensibly from patient to patient. This characteristic is particularly important when the
voxels are directly used as features for a classification task (typical in DL pipelines), because
the input must always have the same dimensions.
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3.3 Ground Truth
Following the established ML methodology reported in 2.4, the raw data set
was partitioned in a training, evaluation and testing set. In addition to regular
parameter tuning, the evaluation set was also used to establish the rejection
threshold. While the test was used to simulate a real-world, uncleaned, clinical
data set.

The building of the ground truth was performed in a semi-automatic fash-
ion based on the results of the previous step. The rationale behind this choice
is to limit human intervention as far as possible. Moreover, no extensive and
time-consuming data-cleaning should be performed beforehand, otherwise the
purpose of this study would be completely defeated.

Particular attention was given in taking into account what is the informa-
tion known at inference time. For instance, we must consider that every ROI
pertains to a specific patient and no one else. Hence it is very important that
different input instances pertaining to the same patient must not be included
in the train, validation and test data sets at the same time. For example, let’s
suppose that we are classifying OARs contained in a 2D transverse slice of a
CT scan (as outlined in section 3.4.1). Given the resolution of the CT scan
being of some millimeters on the z dimension,6 two adjacent slices coming
from the same patient will appear to be very similar. If most of these slices
are in the train set and some in the validation set, the model will have very
little difficulty in correctly classifying the “unknown” instances, because they
closely resemble the one used in training as they belong to the same individ-
ual. This effect is commonly referred to as a source of “data leakage” [96]
and its consequences are that the obtained performance metrics will be sensi-
bly over-optimistic compared to the the ones expected in real life applications.

For the reasons above, the train, validation and test set are composed of
separate groups of patients that are mutually exclusive. This approach also
grants the independence of the encoding strategy, as long as the obtained en-
coded input contains information pertaining to the same patient.

That said, to build the ground truth the following issues must be addressed:

• Which ROI names should be considered as belonging to OARs.

• Which patients should be included in each set.
6See section 2.1.1
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OAR Names identification

To address the first issue, one could simply argue that the DICOM attribute
RTROIInterpretedType introduced in section 2.1.3 could be used to
identify ROIs that belong to OARs.7 On the other hand, this attribute may
not be used in all data sets as it is not mandatory to specify it.8

Although this information is present in our data set, a different strategy was
used in order to have a more general approach. First of all, common names
that belonged to target and helper ROIs where excluded.9 Then, based on the
fact that clinical guidelines often require the expert to contour all the organs in
the disease site (even if some OARs may not be needed to plan the treatment),
we assumed that OARs names were the most frequently encountered ones.10
We then counted the frequency (or support) of each ROI label in the data set
(which at most can coincide with the total number of patients) and sorted them
in descending order having the most frequent in the first position and the least
frequent as last. For each ROI in position “i” we calculated the cumulative
sum of the frequencies of the ROIs in positions [0, ..., i] included. By dividing
this number by the total number of ROIs names in the data set, we obtained
the percentage coverage of ROI names corresponding to taking the first imost
frequent ones. The results are reported in table 3.1. For example, if we take
the first three most frequent ROI names (“rectum”, “blaas”, “bulbus”), we
would include in the ground truth 540ROI over a total of 1515 not-target ROIs,
corresponding to a 35.6% of coverage.

Finally, we plotted in figure 3.3 the frequency and the cumulative coverage
in function of the ROI name. We observed a sharp drop in frequency between
the 5th and 7th most popular ROI names, as well as a long tail of fairly infre-
quent names. The decision was to include the first 6th of those names, which
granted a coverage of 1097 ROIs (72%) that was deemed to be “good enough”
for our purposes.

7As one of the possible values is literally “ORGAN”.
8It is common for open data sets to avoid this attribute. On the other hand, the data sets

coming directly from clinical practice use it more consistently as it is employed as a parameter
during the treatment planning process.

9This was done using a simple regular expression that can be found in appendix A.3.
10This assumption is based on expert clinical knowledge.
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Table 3.1: non-target ROI names sorted by frequency in descending order. The “cu-
mulative sum” of row i is obtained by summing to its frequency all the previous
(higher) frequencies. The “coverage” is calculated by dividing the cumulative sum
by 1515, which is the total number of non-target ROIs.

frequency cumulative sum coverage
ROI name

rectum 181 181 11.94
blaas 181 362 23.89
bulbus 178 540 35.64
anaal kanaal 173 713 47.06
heup li 157 870 57.42
heup re 156 1026 67.72
dunne darm 71 1097 72.40
blaas-PTV 36 1133 74.78
rectum-ptv 35 1168 77.09
rectum-PTV 35 1203 79.40
blaas-ptv 34 1237 81.65
RectumOverlap 22 1259 83.10
NS_Fiducial 19 1278 84.35
rectum overlap 14 1292 85.28
rectum in PTV 14 1306 86.20
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Figure 3.3: Every entry on the x axis is an ROI name; on the left y axis, in blue, we
have the frequency of each ROI name (i.e. the total number of patients in which that
ROI name appears); on the right y axis, in orange, we have the cumulative coverage
corresponding to taking the first x ROI names.

As such, the final list of OAR names is: “rectum”, “blaas”, “bulbus”,
“anaal kanaal”, “heup li”, “heup re”, “dunne darm”.

In order to help the reader to better understand the meaning of each name,
from now on we will only use their translation obtained by applying the TG-
263 guideline (see section 2.2.2). The result is reported in table 3.2. A repre-
sentation of all the OAR geometries for a patient having all the ROI listed in
table 3.2 can be seen in figure 3.4.

Table 3.2: Translation from original OAR names to TG-263 compliant ones

Index Original Name TG-263 Name

0 rectum Rectum
1 blaas Bladder
2 bulbus PenileBulb
3 anaal kanaal Canal_Anal
4 heup li Femur_L
5 heup re Femur_R
6 dunne darm Bowel
7 BODY Body
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Figure 3.4: OAR geometries contained in a patient. Rectum in dark blue, Bladder in
orange, PenileBulb in green, Canal_Anal in violet, Femur_L in brown, Femur_R in
grey, Bowel in yellow, Body in light blue.

An alternative method based on frequent item sets mining yielded the same
results as the one explained above (see appendix A.1).

Patients Partitioning

After having selected the list of OAR names to be included in the ground truth,
it was necessary to distribute each patient either in the train, evaluation or test
data set.

In order to make this decision, we considered how many of the selected
OARs in table 3.2 were actually contained in each patient. In figure 3.5 we can
see that roughly one hundred patients have at least 6, and we reach 152 total
patients if we factor in also the patients with seven of the selected OARs, while
a total of 29 patients have less than 6 covered ROIs. We decided to compose
the train and evaluation data set with a total of 100 patients that had at least
6 OARs (70 for train and 30 for evaluation, with random splitting), with the
assumption that this will relegate peculiar cases to the test set. The rationale
behind this decision was that it would allow us to verify how themodel behaves
in a sub-optimal scenario once deployed. In particular, to see if the inference
probability could be used as a measure of confidence to discard such cases.
Moreover, this setup left the test set with 81 patients, which is close to the
average size of medical research data sets that contains RT structures [97].
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Figure 3.5: Histogram of number of patients in function of the number of selected
OARs contained in the patient.

For reference, table 3.3 reports the number of patient and OARs per each
set, while table 3.4 contains the per OAR break-down.

Table 3.3: Number of patients and number of OARs contained in each split of the
ground truth.

Patients OARs

train 70 450
evaluation 30 186
test 81 461

Table 3.4: Number of OARs contained in each split of the ground truth.

Rectum Bladder PenileBulb Canal_Anal Femur_L Femur_R Bowel

train 70 70 70 70 70 69 31
evaluation 30 30 30 30 30 29 7
test 81 81 79 73 57 57 33

3.4 Encoding and Model Training

3.4.1 2D Transverse Slices
Rather than already providing final results, the goal of this sectionwas twofold:
first to familiarize with the data set, and second to obtain an estimate of the



46 CHAPTER 3. METHOD

difficulty of the problem from a classification standpoint. The most closely re-
lated work found in the literature was the study fromRozario [95], in which the
ROI classification was done using a 2D CNN. As already noted in section 2.5,
no comparison with different and more traditional methods was provided, and
the sensational results obtained suggest the fact that the problemmay be easier
than expected. For this reason, we decided to use Rozario’s work as a starting
point and borrow the idea of the 2D encoding (with some modifications) of
the OAR, but using simpler classification models.

Encoding

Our decision was to modify slightly the encoding scheme used in [95] (ex-
plained in detail in section 2.5) by adding also the pixels of the body to the 2D
data instance. In our case, the final values of a pixel could be: 1.0 if it was in
the OAR we want to classify, 0.5 if it was contained in one of the other OAR
in the slice, 0.1 if it was in the body, 0 if it was outside the body.

Following the example in figure 3.6, there is one “original” transverse
slice containing the following OARs: Rectum, Femur_L, and Femur_R. Start-
ing from the Rectum, a new transverse slice of size 256 × 256 is generated
with all its values set to 0 (in violet). Then, the pixels belonging to the rectum
are set to value 1 (in yellow); the pixels of the Femur_L and Femur_R are set
to value 0.5 (in green); finally, the pixels of the body are set with value 0.1

(in light blue). The resulting 2D instance is the leftmost one in figure 3.6b,
and its associated class label is “Rectum”. The same procedure is repeated for
Femur_L and Femur_R, thus creating three input classification instances from
a single transverse slice.
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(b) Generated instances for training, validation and testing.

Figure 3.6: (a) The original transverse slice. Each OAR is depicted in a different
color but is effectively a separate tensor; (b) Three instances generated from the slice
above. The OAR that we aim to classify is yellow, the other OARs in green, the body
in light purple. The class associated to the instance is reported on top.

As stated in section 2.5, this kind of encoding alters the number of in-
stances belonging to each class. Simply put: the “taller” (longer on the z di-
rection) an OAR, the more instances will be generated. This effect on the
distribution of the number of instances per class is clearly visible in figure 3.7,
where the PenileBulb and the Bowel are sensibly less represented than the oth-
ers. As we can see in figure 3.4, the former is a rather small OAR, while the
latter is already less frequent but also tends to be present in a small amount of
slices because it is far from the treatment volume.

ML Algorithms

To establish a baseline we decided to train first a simple DT model. The ra-
tionale behind this choice is that the DT is one of the simpler classification
models, and it has the upside of being able to deal with multiclass classifica-
tion problems in a native fashion. Having used another classifier, for example
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Figure 3.7: 2D encoding; number if instances per each class on the whole data set.

a logistic regressor, would have requested to train a one-vs-rest model for each
class. Considered the class imbalance reported above, we wanted to avoid any
up/downsampling of the data set, thus maintaining a simple and “less moving
parts” approach, as declared in section 1.5.

The input is composed of a 2D matrix of floats that can be interpreted as
a simple image of 256 × 256 pixels. To be used by the classifier, the matrix
is flattened into a 65536 elements vector. Hence, from the point of view of
the model, each element of the matrix (a pixel) is a different and independent
feature.

After obtaining the first results, we selected a tree ensemble classifier,
namely RF, as being the natural evolution of the DT, while still conserving the
desired characteristic of supporting natively multi-class classification tasks.

With this encoding based on [95], every slice was considered as a separate
independent instance. This is an excessively constraining framework, given
that at inference time we are aware of which set of instances belong to the same
OAR in a specified patient; what we don’t know is which OAR it actually is.
For example, for a given unknown OAR j made of 100 slices, we may have
80 slices which are classified as a Rectum and 20 slices as an Canal_Anal, but
the OAR can be only one of the two. We exploited the information contained
in the inferences of the model and implemented a majority voting strategy11

11To not confound with majority voting used in ensemble methods. Here the voters are not
the learners but the inference probability obtained on each 2D instance.
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saying, for example, that the OAR above is a rectum rather than a Canal_Anal.
This approach does not require to modify the trained model, as it is based on
the already obtained classification probability distributions.

More formally, consider Xij = {x1, ..., xK}ij being the set of all the K
slices belonging to patient i and unknown OAR j. After classifying a certain
xk, the model yields a discrete probability distribution expressed as a vector
p̄k = [pk1, .., pk7] with k ∈ [1, .., K] where

∑7
c=1 pkc = 1 and each pkc repre-

sent the probability of the instance xk to belong to class c. Classifying all the
instances inXij we obtain the set of probability distributionsPij = {p̄1, ..., p̄k}
that we can express as a k × 7 matrix of element pkc. We then sum the com-
ponents of this matrix column-wise (i.e. class-wise) to obtain a 1 × 7 vector
that we normalize by the sum of its component to have an overall probability
of 1 as in

p̄ij =
1∑7

c=1

∑K
k=1 pck

[
K∑
k=1

pk1, ...,
K∑
k=1

pk7].

In this framework, p̄ij is the discrete probability distribution associated to the
OAR i in patient j obtained by majority voting. As usual, the position of the
element in the vector with the highest value corresponds to the predicted class

ŷij = argmax(p̄ij).

This moves the problem from a per OAR per slice classification, to just a per
OAR classification, reducing the number of instances and the class distribution
to the ones in table 3.3 and 3.4.

The results obtained by this majority voting approach should suggest if
considering the whole 3D OAR structure is better than separate the problem
in a set of independent 2D instances.

The results obtained in this iteration gave us important insights on which
feature and encoding may work best in the future iteration. This process is
discussed in greater details in the results section.

3.4.2 3D Feature Engineering
The results obtained with the 2D encoding highlighted the importance of con-
sidering the full volumetric geometry of the ROI, while still relying on infor-
mation of the spatial context. This led us to develop a set of hand-engineered
features comprehensive enough to offer good separation between the classes.
In order to compare the results with the ones obtained in the previous step, we
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decided to use the same classification models. Using a “raw-like” 3D encod-
ing, having each voxel as a feature, would have resulted in high memory con-
sumption given that the ML library we used [98] had reduced support for large
data sets.12 Coping with this constraint would have requested to implement a
great deal of custom data pipelines, which, besides adding extra complexity,
would have introduced the risk of creating hard-to-detect bugs in the process.
Having a small set of hand generated features allowed us to train models effi-
ciently, which gave us the opportunity to do extensive hyperparameter tuning
by means of cross validation.

Encoding

We can divide the engineered features into two groups: OAR specific features
and spatial context features.

OAR specific features are features that derive from a single OAR as an
independent entity. That is, regardless of its location with respect to the patient
body and all the other ROIs in the patient. The features belonging to this group
are the following:

• volume: the total number of voxels contained in the OAR.13 Intuitively,
OARs like the Bladder are sensibly bigger than the PenileBulb, hence
will have higher volume.

• surface: the total number voxels on the surface of the OAR. The surface
was obtained by applying a 3D Sobel-Feldman operator14 [99]. OARs
with more complex geometries, like the Rectum and the Femurs should
have higher surface than others.

• bounding box dimensions: the three dimensions (x,y,z) of the bounding
box enclosing the OAR. This features should highlight OARs that have
a prominent extension in one direction, for example Femurs.

• maximum intensity of the projection: the maximum intensity of a
pixel after projecting the OAR on one of the anatomic planes.15 The
projection is calculated by summing all the voxels values on the direction
perpendicular to the anatomic plane considered.

12Using data-intensive frameworks like Spark was not possible due to technical limitations
and the constraint that the data could not leave RaySearch premises.

13That is, the total number of voxels set to 1 in the tensor representing the OAR geometry
(see section 3.1)

14Also known as “edge detection filter”.
15Section 2.5
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• surface over volume: the surface itself may introduce some confusion.
The Rectum and the Bladder may have similar surface but sensibly dif-
ferent volumes. Dividing the surface by the volume should allow to
distinguish between more spherical OARs than elongated ones. This
feature is also known as circularity [80].

• Normalized Central Moments: NCMs calculated on the projection of
the ROI on anatomic axes, as explained in section2.3. NCMs aim to
identify asymmetry in the mass distribution of the shape. They were
also chosen because they are invariant to translation and scale transfor-
mations. This is important because the features introduced above are
already aimed to represent the different scale of the OARs. Translation
invariance is also important given that we decided to encode the spatial
context with dedicated independent features. We also preferred to avoid
local surface descriptors [81] as they solely rely on the surface in the
proximity of key points. This is because while the delineation of most
of the OAR shape is generally coherent and well-defined, deciding how
the proximity of the surface should be segmented may depend on differ-
ent factors and can sensibly vary between medical experts [100]. The
maximum computed order for NCMs was 3 (included). Meaning that
for each projection we have 13 NCMs16, for a total of 39 NCMs.

Except for NCMs, all the features listed above are considered “simple
shape descriptors” [80], and are often used in combination with other descrip-
tors because they are not deemed to be enough discriminative when employed
alone.

To encode the spatial context we wanted to express the position of the OAR
with respect to other points of reference. To have an easy to compute and
simply understandable representation of the position of the OAR, we used its
center of mass (section 2.3), which is a simple 3D vector. We then decided
to compare it to the body center of mass, thus rendering this approach inde-
pendent from any choice of system of reference.17 The comparison is done by
simply calculating the difference vector between the two points as explained

16For each projection, p and q have value [0, 1, 2, 3], which means 4×4 = 16moments, but
NCMs are defined only for p+ q ≥ 2 so we have to subtract 3 moments that are not defined,
hence 13 moments per projection.

17Provided that the orientation of the patient is always the same (see section 1.8).
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in the following equation:

r̄ = ō− b̄ =

ox − bxoy − by
oz − bz

 =

rxry
rz

 .

Where r̄ is the obtained difference vector, ō is the OAR center of mass and b̄
is the body center of mass. Figure 3.8 has a graphical representation of the
obtained vector for the case of the Femur_R, while in figure 3.9 we can see the
3D representation of the centers of mass of each OAR in the body. Finally
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Figure 3.8: On the left, the Body and Femur_R with their respective centers of mass.
On the right, the difference vector between the two centers of mass.

we decided to use as features only the components on the transversal plane
(rx and ry), because series of transver slices may be missing in clinical data
sets, thus representing incorrectly the distance on the z axis. Even though our
data set did not present this problem, we preferred to follow a more robust
approach. Moreover, we decided to compare only to the body center of mass
rather than other possible reference points (like the compounded mass of all
the other ROIs) because the body ROI is always segmented and manifest a
very high level of consistency.

ML Algorithms

We decided to select the same model architectures used in the previous itera-
tion: DT and RF. We also decided to train with and without NCMs to assess
their effect on the overall performance. For both cases, when RF was used,
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Figure 3.9: OAR in body with their respective centers of mass highlighted as a single
voxel

grid search cross validation was performed to find the best set of hyperpa-
rameters. For more details about the tuning process, please refer to appendix
A.6.

3.4.3 3DCNN
The recent advancements in computer vision have been mainly driven by the
adoption of deep CNNs [11]. In order to have a comparison with a more mod-
ern approach, we decided to select a 3DCNN to perform automatic feature
learning.

Encoding

The advantage of using a DL approach is to avoid the manual feature engi-
neering. For this reason, the input was used in a form as close as possible to
the original 3D geometric encoding of the OAR (see section 3.1). To repre-
sent the spatial context we worked on the same line of what was done with the
2D encoding of section 3.4.1, but instead of using a different value to distin-
guish between the OARs,18 we used a separate channel for each one. Each of
the three channels contained a 3D binary tensor, one with the OAR we aim to
classify, one with all the other OARs in the patient,19 and one with the Body.
A representation of the final input instance can be found in figure 3.10.

CNNs require all the input samples to be of the same size, unfortunately in
18The one we want to classify, the other OARs, and the body
19Effectively obtained with a 3D “or” operation.
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Figure 3.10: Input of the 3DCNN. The OAR we aim to classify (the Bladder in this
case) is highlighted in blue. The other OARs are in brown while the patient body is in
light grey. Note that the value contained in each voxel is always 1, as the three groups
above are in separate channels.

our case the number of transversal slices in the representation may vary from
patient to patient (see section 2.1.1). To solve this issue we zero-padded each
input instance on the z direction to reach 128 voxels,20 adding the same amount
of empty voxels above and below the patient representation. The final shape
of the input tensor after padding was 256× 256× 128× 3 respectively for the
x, y, z directions and channels.

ML Algorithms

The network chosen was a VOXNet [89] which architecture is discussed in de-
tails in section 2.4.5. Such an architecture was chosen for a series of reasons.
First, it was a well documented and published model with over 260 citations
at the time of the writing. Second, it contained a low number of parameters
compared to more complex 3DCNNs which allowed us to complete the train-
ing process in roughly one hour (see appendix A.8). Third, despite its simplic-
ity, it managed to obtain discrete results on the modelnet40 data set [90]. We
thought this to be particularly important because the encoding of modelnet40
resembles the one used in this work (an example can be seen in figure 3.11).

Themodel was trained from scratch (no fine tuning) and the only difference
20128 was the smallest power of 2 that allowed to include all the patients without discarding

slices.
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Figure 3.11: Two instances in the modelnet40 data set.

with a vanilla VOXNet architecture is the last fully connected layer, which in
our case was composed of seven units (one per each target class). The deci-
sion to avoid the down-sampling of the input resulted in instances with a large
memory footprint. For this reason, the batch size was only consisting of 8
examples, requiring 58 batches to complete an epoch.

3.5 Classification Evaluation
The problem is formulated as a multi-class mono-label classification task [85].
As such, for each instance of the evaluation set, the ML model yields a vector
of seven real values in the interval [0, 1] corresponding to the probability of
the instance belonging to one of the classes reported in table 3.2. The labels
are mutually exclusive, implying that the sum of the element in the probability
vector is 1. The instance is considered to belong to the class with the highest
probability value.21

Two metrics were mainly considered for evaluating the performance of the
model: weighted precision and recall. They are calculated in the following
way. First, the precision and recall of each class is computed, by considering
each class as a binary classification problem in a one-vs-rest fashion.22 Then
the values obtained are averaged with weights corresponding to the class sup-
port (i.e. the number of instances for each class in the ground truth labels),

Prec =

∑7
i=1wiPreci∑7

i=1wi

;Rec =

∑7
i=1wiReci∑7

i=1wi

. (3.1)

Wherewi, Preci, andReci are respectively the support, precision and recall of
each class. Using the weighted average accommodates for the class imbalance
concerning the under-representation of the Bowel class.

21Probability thresholds are discussed in the next section.
22For class i, what is labeled to be of class i is a positive, what is label with a class different

than i is a negative.
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We also made extensive use of the confusion matrix to better highlight the
behavior of the model with respect to specific classes.

ROC curves23 [70] were initially considered but later discarded due to the
lack of a uniquely accepted formulation for multi-class mono-label classifica-
tion tasks [101, 102, 103, 104]. Although in principle the same approach used
for weighted precision and recall could have been used, it would have required
a great deal of custom implementation and testing of the metric, which we pre-
ferred to avoid. Moreover, it would have not been representative of the actual
area (hyper-volume in this case) under the curve, which is what it is actually
interesting to consider.

The implementation of the metrics was provided by the scikit-learn library
[98], please refer to appendix A.7 for further details.

3.6 Inference Probability Evaluation
This step was completely dedicated to answering the second research question:
if it is possible to use the inference probability as a measure of confidence.

Keeping a pragmatic approach, we decided to answer it by implementing
the concept of a reject class. The basic idea is rather simple: given an instance,
if the maximum probability returned by the classifier is lower than a threshold,
the instance is rejected [105]. This translates into assigning to the instance a
"reject" class label, which does not exist in the ground truth but has the sole
goal of signaling that the inference of the model on that instance is not "trust-
worthy" and, as such, the instance should be manually checked by a human
expert. Keeping in mind that, as stated in section 1.4, we are not aiming for
full automation, but manual labor reduction in front of reliable predictions.

If the classifier behaves correctly (i.e. all the incorrect classifications have
a low inference probability), by increasing the threshold the precision is ex-
pected to increase24, while the recall should decrease (as instances are effec-
tively "lost" by refusing to classify them).

To better understand the behavior of the model one can look at the rejection
ratio (i.e the number of rejected instances over the total number of instances) in
function of the probability threshold, as well as the trend of the precision and
recall. It is also helpful to look at the histogram of the obtained probabilities
and locate where the misclassification cases are.

23Namely the area under the ROC curve
24Small fluctuations are possible due to the different weights assigned to each class. Note

that the "reject" class does not exist in the ground truth, hence it does not have an associated
precision or recall, but its effect is to alter the classification metrics of the other classes.



CHAPTER 3. METHOD 57

0.0 0.2 0.4 0.6 0.8 1.0
prob. threshold

0.2

0.4

0.6

0.8

1.0
Precision and Recall after rejection

precision_rej
recall_rej

0.0 0.2 0.4 0.6 0.8 1.0
prob. threshold

0
10
20
30
40
50
60
70
80
90

100

%

Percentage of rejections
rej_perc

0.4 0.5 0.6 0.7 0.8 0.9 1.0
inference probability

0

10

20

30

40

nu
m

. o
f i

ns
ta

nc
es

Distribution of inf. probabilities

Figure 3.12: 3D engineered features, RF rejection curves.

Figure 3.12 shows the rejection curves on the evaluation set for the RF
model trained with the 3D engineered features without NCMs. In the leftmost
plot, we have theweighted average precision (blue line) and recall (orange line)
on the vertical axis, in function of the probability threshold on the horizontal
axis. For example, if we select a rejection threshold of 0.9, the precision will
rise to 1 but the recall will go down to 0.8. The vertical dotted line, in all three
of the plots, corresponds to the highest probability of a misclassification case.
The central plot represents the reject rate on the vertical axis in function of the
same probability threshold as above. Looking at the plot we can see that a 10%

rejection rate correspond to a probability threshold of around 0.78. Also, by
increasing the rejection threshold we increase the rejection rate (obviously) up
to a tipping point where only the inferences with probability equal to 1 remain.
The third and last plot is a histogram of inference probabilities. The red ticks
on the horizontal axis correspond to the probabilities of all cases of misclassi-
fication in the evaluation set. We can see that the distribution is skewed to the
right and that all the misclassification cases have a lower probability compared
to most of the cases. Please note that the horizontal scale of the rightmost plot
does not start from zero.

The final probability threshold is inferred by looking at the rejection curves
on the evaluation set. To be effective, the threshold must be greater than the
highest misclassification case. As an educated guess, we used a probability
threshold corresponding to a 10% rejection rate, this because it coincides with
reducing the time needed to clean the data set by one order of magnitude com-
pared to a complete manual cleaning.

Finally, the combination of the classifier and the rejection class (with its
probability threshold) are applied to the test set. Then two aspects are assessed:
first that all misclassifications have been rejected, i.e. the accuracy on the not-
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rejected instances is 100%; second, the percentage of rejected instances over
the total.

The goal of these two aspects is to estimate the compromise betweenmodel
accuracy and the need for manual checking. That is, even if a model is 100%
accurate there is no point if it is rejecting 90% of the data set, because expert
intervention will be required in nine over ten cases.



Chapter 4

Results

This chapter contains the results obtained following the method outlined in
chapter 3. The results are arranged in six main sections respectively aimed
to expose the following aspects: i) establishing a baseline with a simple DT
model based on the 2D slices encoding, and comparing it with a random clas-
sifier (section 4.1); ii) evaluating the results of a more complex tree-based
ensemble model on the same encoding (section 4.2); iii) investigating the im-
portance of considering the full 3D OAR volume by implementing a slice
based majority voting (section 4.3); iv) evaluating the performance of tree-
based classifiers and CNNs on 3D based features (section 4.4); v) evaluating
if the inference probability could be used as a measure of confidence through
the implementation of a reject class mechanism (section 4.5); vi) analyzing
the rejected inferences to qualitatively evaluate the results of the reject class
mechanism (section 4.6);

Finally, section 4.7 contains a summarizing table of all metrics collected
during the performed experiments.

4.1 Baseline: DT on 2D slices
As stated in the method section, the first iteration was aimed at obtaining an
estimate of the problem complexity. It was also used to collect pointers on
the kind of encoding and features that were more effective in the classification
effort, in order to further refine our strategy in the next iterations.

Recall that the encoding used for the ground truth1 was reported in sec-
tion 3.4.1, where each data instance was a transverse 2D slice containing the
OAR we wanted to classify, the nearby OARs and the body, all with a different

1Which was a modification of the encoding used in [95].

59
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pixel value. Please refer to figure 3.6 at page 47 for a clear representation of
the input. Given this encoding (each slice per OAR was a different instance),
the number of instances was much higher than the total number of OARs, as
clearly reported in figure 3.7.

In figure 4.1 we report the classification results on the evaluation set ob-
tained by a vanilla DT. The parameters used2 were the following: the criterion
for splitting was the Gini criterion; the depth was not restricted, meaning that
the tree was free to grow until a leaf node was pure or no more splits were pos-
sible; the minimum number of samples per leaf was one, again not restricting
the growth of the tree. All the features (i.e. the 256× 256 pixels) were used.

Figure 4.1: 2D transverse slices encoding, DT results on the evaluation set.
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The model was particularly efficient in distinguishing the slices pertaining
to the Femur_L and Femur_R (which were the most displaced), but there was
a great deal of confusion around the Canal_Anal and the Rectum. This was
due to the fact that the Canal_Anal was usually contoured as a subset of the
Rectum, being its terminal part. This implied that the two OARs overlap for
most of the slices where the Canal_Anal was defined, an aspect not considered
by [95]. Nevertheless, the Bowel and the PenileBulb, two OARs with differ-
ent horizontal extensions but similar number of slices per OAR, had sensibly
lower performances. The overall f1 score achieved by this simple classifier
was 84.18%. Compared to a random baseline classifier3, that would achieve
roughly a 14.8% score4, it was already a very interesting result.

2The default ones offered by the implementation [98].
3Picking uniformly at random one of the seven labels.
4Not taking into account class imbalance.
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4.2 RandomForest: an ensemble of decision
trees

f1-score precision recall support

weighted avg 0.8796 0.8800 0.8792 4752
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Figure 4.2: 2D transverse slices encoding, RF results on the evaluation set.

Once we increased the complexity of the model to its natural evolution, a RF
model, we could see in figure 4.2 a significant improvement on the overall
score, as well as the performance on Bowel and PenileBulb. The number of
Canal_Anal slices correctly classified went from 164 to 247, but there was still
a good amount of confusion. The model was made of 50 decision trees (also
known as estimators), each of them with the same parameters as the ones used
before. The maximum number of features for each split was the square root of
the total number of features5.

5Again the default values offered by [98].
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Figure 4.3: Feature importance of the DT and the RF, respectively the left and right
plot. Mind the logarithmic color scale.

Figure 4.3 represents the feature importance of the two models. In both
cases it was calculated as the sum of information gain brought by every feature
used for a split, normalizing the total importance to 1. Keeping in mind that
each independent feature was a pixel of the 2D slice in figure 3.6b, it is clear
that both the models were looking at the whole content of the patient, thus
exploiting the spatial context on the 2D representation. As expected, due to
the random sampling of features and instances performed during the training,
the RF model had a more complete view of the patient with a finer distribution
of feature importance. Nevertheless, the highest features were in the proximity
of where the OARs are usually located. Interestingly enough, the shape of the
body and its borders seemed to play a non-negligible role.

4.3 Slice Based Majority Voting: towards 3D
features

As explained in section 3.4.1, we also used the inference probability distribu-
tions obtained by the two models to implement a majority voting mechanism
based on the 2D slices, as a mean to suggest if considering the whole 3D struc-
ture of the OAR could improve classification performance. The results of this
approach for the DT and the RF are reported in figure 4.4.
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Figure 4.4: 2D transverse slice encoding, majority voting results.

Looking at both the confusion matrices, we can immediately see that the
misclassification of the Rectum (true label) in Canal_Anal (predicted label)
was almost totally removed (totally in the RF case). This is due to the fact that
the Rectum was much taller than the Canal_Anal (on the z direction), hence
it had more slices that were likely to be classified correctly, thus shifting the
majority vote to its correct classification. For the same reason, the majority
voting had little effect on the opposite case, Canal_Anal (true label) classi-
fied as Rectum (predicted label). The Canal_Anal was short and most of its
volume was shared with the bottom part of the Rectum. This latter aspect
was particularly penalizing in the DT case, which obtained a lower overall f1
score. On the other hand, the RF f1 score improved by 1.5%. The change in
class distribution might have also accounted for the DT performance.
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Table 4.1: Classification results on the evaluation set for DT and RF approach based
on 2D encoding (section 3.4.1).

enconding model evaluation set

prec rec f1

2D slices DT .8419 .8418 .8418
RF .8800 .8792 .8796

2D maj DT .8573 .8226 .8396
RF .9071 .8817 .8942

In light of these results and the feature importance plots, we decided to
focus our efforts on encodings that kept considering the whole OAR volume,
as well as its spatial context. This is also the reason why we did not perform
any experiment on the testing set and the reject class implementation, as we
found more promising to focus our resources on 3D approaches.

4.4 Classification of 3D Volumes
Following the results exposed above, the two encoding and classification strate-
gies reported in section 3.4.2 and 3.4.3 were designed. The first one was based
onmanual feature engineering and used the sameML algorithms as before (DT
and RF), while in the second one the features were automatically learned from
the data during the training of a 3DCNN. Moreover, regarding the manually
engineered features, we trained our classifiers with and without NCMs in the
feature set. For completeness, we report both results with the aim of high-
lighting which role they play in the classification performance as well as the
inference probability evaluation that is reported in the next section.
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Figure 4.5: 3D engineered features without NCMs, DT and RF results on the evalua-
tion set.

Figure 4.5 contains the results of the DT and the RF on the manually engi-
neered features without NCMs. The DT had the same parameters used in the
previous section, while for RF they were selected after performing five fold
cross validation (as reported in appendix A.6) and were the following: 256
estimators, 3 max features, 10 maximum depth and 1 minimum samples per
leaf.

Compared to the ones obtained in the previous section, the improvement is
clear. The confusion surrounding Rectum and Canal_Anal was almost totally
removed and even small OARs were classified correctly. On the quantitative
side, the f1 score improved by 12.01% and 9.01% respectively for the DT and
the RF, compared to the majority voting results.
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Figure 4.6: Feature importance of the DT and the RF, respectively the left and right
plot.

If we take a look at the feature importance plot in figure 4.6, we can see
how the spatial context played a major role in both models. In particular, the
position of the OARs center of mass in respect to the body center of mass on
the y direction was the major contributor in increasing the information gain. If
we look at the PCA plots in appendix A.4, we can see how easily this feature
can be used to separate the two Femurs.
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Figure 4.7: 3D engineered features with NCMs, DT and RF results on the evaluation
set.
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When the NCMs were added to the feature set, as in figure 4.7, the results
sensibly improved and RF achieved almost perfect classification.

From figure 4.8, we can see that the spatial context kept playing an im-
portant role, even in this enriched set of features. However, in the RF case
the moments were more important than in the DT. This effect was probably
due to the fact that the number of moments was higher than the engineered
features, thus when sampling the features in a node the probability of having
only moments was higher, forcing the estimator to use them.
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Figure 4.8: Feature importance of the DT and the RF, respectively the left and right
plot.

f1-score precision recall support

weighted avg 0.9788 0.9790 0.9785 186
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Figure 4.9: 3DCNN, VOXNet results on the evaluation set.

Finally, figure 4.9 contains the results obtained by the VOXNet 3DCNN
architecture (see section 3.4.3). The details concerning its training process are
reported in appendix A.8. The confusion matrix showed results comparable
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to the ones of the RF model without NCMs, suggesting that also DL methods
might be effective in the classification task.

4.5 Inference Probability asConfidenceMea-
sure

In section 3.6, we explained in detail how the reject class mechanism was im-
plemented and how it was used to evaluate if the inference probability yielded
by the classifier could be used as a measure of confidence. Please refer to the
aforementioned section to have an explanation on how to interpret the rejection
curves plots.

We remind the reader that we wanted to find the threshold corresponding
to a rejection rate of 10% on the evaluation set, in order to then apply it to the
test set and reject all the inference probabilities below it. We then measured
the precision and recall after rejection, as well as the rejection rate on the test
set.
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Figure 4.10: (a) Rejection curves of the RF model on 3D features without NCMs. (b)
Rejection curves of the RF model on 3D features with NCMs. (c) Rejection curves of
the VOXNet 3DCNN on 3D OAR geometries 4.10c.
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Figure 4.10 shows the rejection curves of the three models employed in the
previous section: the RF without and with NCMs, and the VOXNet 3DCNN
architecture.6

Comparing the RF curves without and with NCMs (figure 4.10a and 4.10b)
we can see that in the latter case there were fewer instances with inference
probability of 1.7 Moreover, there was only one misclassification case (as
seen in the previous section) which had a very low probability compared to the
case without NCMs. On the contrary, the VOXNet architecture showed a very
different behavior. Most of the inferences had probability of 1, and between
them there were various misclassifications. For this reason, the rejection rate
curve was much flatter than the others.

The probability threshold at 10% reject rate on the evaluation set were
0.785, .730, and .975, respectively for the RF without NCMs, the RF with
NCMs and the VOXNet 3DCNN.

6As reported in 3.6, decision trees are not suited for this approach as they mostly return
very high inference probabilities.

7For the RF to yield a probability of 1, all the trees must agree in the classification of the
instance.
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Figure 4.11: The top row: confusion matrices on the test set before applying the re-
jection mechanism. The bottom row: confusion matrices on the test set after applying
the rejection mechanism; rejected instances are collected in the “REJECT” columns,
there is no “REJECT” row because the class does not exist in the ground truth.

Figure 4.11 shows the effect of the application of the reject threshold (bot-
tom row) on the test set predictions (top row). The first two columns from
the left contain the results obtained on the RF without and with NCMs. It is
apparent that the rejection policy removed all the misclassifications by assign-
ing them the reject class labels. Thus obtaining a perfect classification on the
remaining inferences, which meant a global precision of 1. This happened at
the cost of discarding also some correct, although not confident, predictions
that could be quantified simply by calculating the reject rate, which for these
two models was respectively of 11.93% and 11.71%.

The third and rightmost row contains the results of the rejectionmechanism
applied to the predictions of the VOXNet model. Various differences can be
noted compared to the first two approaches. First, there were still misclassifi-
cations after applying the rejection policy. Second, the per-class rejection rate
was less homogeneous compared to the one of the RF approach: for the Pe-
nile_Bulb and Canal_Anal, the two smallest OARs, it was much higher than
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the others, and all the other OARs have a lower number of rejections. Third,
the global rejection rate was 11.59%, slightly lower than the previous two.

Table 4.2: Classification metrics of RF without NCMs, RF with NCMs, and VOXNet
3DCNN architecture.

enconding model evaluation set test set - no rej test set - with rejection

prec rec f1 prec rec f1 thr prec rec f1 rej rate

3D RF .9847 .9839 .9843 .9807 .9805 .9806 .785 1.000 .8807 .9365 .1193
3D + NCM RF .9948 .9946 .9947 .9808 .9805 .9806 .730 1.000 .8828 .9377 .1171
DL VoxNet .9790 .9758 .9788 .9521 .9519 .9520 .975 .9901 .8752 .9291 .1159

Table 4.2 contains the classification metrics of the three approaches on the
evaluation and test set, without and with rejection mechanism. It is clear that
only the RF approaches reached perfect precision after rejection, while the
VOXNet architecture had consistently lower metrics on all the sets (excluding
rejection rate).

Finally, the resources at hand allowed us to test the two RF approaches
on all the avoidance ROIs present in the data set (see section 2.1.2).8 The
rationale behind this choice was to have a rough estimate of the suitability of
this method in a scenario where the assumption of having only OARs in the
data set was not valid. Ideally, the classifier should reject most (hopefully all)
of these not-OARs ROIs. The resulting rejection rate for the RF without and
with NCMs was respectively of 84.06% and 86.57%.

4.6 Rejected Cases
In this section we report some of the most interesting cases of OAR rejection
for the RF approach with NCMs.

We first focus on the misclassification cases reported in the confusion ma-
trix in the top row and center column of figure 4.11. We report a 3D rendering
of the patient OARs in figure 4.12.

8Dealing with extracted feature is much easier than with the 3D encoding of the VOXNet
approach, especially when factoring in memory occupation.
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(a) (b)
(c)

(d)
(e) (f)

Figure 4.12: (a) both Femurs as Rectum, inf. prob. 0.60 and 0.58. (b) Rectum as
Bladder, inf. prob. 0.44. (c) Bladder as Bowel, inf. prob. 0.48. (d) Canal_Anal
as Rectum, inf. prob. 0.40. (e) Canal_Anal as PenileBulb, inf. prob. 0.69. (f)
Canal_Anal as PenileBulb, inf. prob. 0.64.

In patient (a) both the Femurs were classified as Rectum with an inference
probability of around 0.60, but as we can see the Femurs had actually been sub-
stituted by two prosthetics. In patient (b) the Rectum and the Bowel showed
a very abnormal segmentation. In fact, the Rectum should end before (see
the other patients). The bladder of patient (c) was classified as Bowel and ap-
peared to be deflated. This was interesting because as a diagnostic procedure
the patients are usually invited to drink a good amount of liquids before the
CT scan is performed9. Instead, most of the other patients had more spherical
Bladders. Patient (d) had an abnormally wide Canal_Anal, and between the six
patients above, this was the inference with the lowest probability of 0.40. Fi-
nally patient (e) and (f) had the same misclassification, Canal_Anal classified
as a PenileBulb. Initially, there seemed to be no particular reason or anomaly
in their Canal_Anal OARs. The interesting fact was that they were the two
inferences with the highest probability, signaling that indeed the Canal_Anal
and the PenileBulb usually look very similar in most of the patients, but maybe
in this case the Canal_Anal should be taller. The common trait of the misclas-
sifications patients (a),(b),(c),and (d), was that they were the most abnormal

9Water absorbs radiations and stretches the bowel wall thus lowering the chance of damage
during treatment.
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ones. At the same time, their inference probability was far below the rejection
threshold of 0.730. On the other hand, for patients (e) and (f) the probability
was close to threshold.

(a) (b)
(c)

Figure 4.13:
(a) Rejected: Femur_L (0.55), Femur_R (0.63), Bowel (0.52), Bladder (0.69).
(b) Rejected: Femur_L (0.58), Femur_R (0.43), Bowel (0.62), PenileBulb (0.68).
(c) Rejected: Femur_L (0.65), Femur_R (0.59).

Figure 4.13 contains the patients with more rejected OARs, regardless of
whether the classification was successful or not.10 In patient (a), the segmen-
tation of the Canal_Anal was peculiar: probably the medical expert forgot to
interpolate the slices. However, the Canal_Anal was not rejected11, but other
four OARs were. Although the Femurs were not prosthetics, their segmenta-
tion was peculiar because they have hollow internals. Both patients (a) and (b)
had a very large Bowel. In patient (b) the Femurs were rather short compared
to other contours. Patient (c) had two prosthetics Femurs that have both been
segmented in a very anomalous “bumpy” way.

10In this list we should also include patient (a) and (b) of figure 4.12, but we omitted them
to avoid repetition.

11Maybe signaling the need for a feature counting the number of connected components in
the OAR



CHAPTER 4. RESULTS 75

(a) (b)

(c)

Figure 4.14:
(a) Rejected: Both femurs are prosthetics but in the same OAR as Femur_L (0.43).
(b) Rejected: Rectum (0.44).
(c) Rejected: Rectum (0.39).

Finally, the patients in figure 4.14 have one rejected OAR with particularly
low inference probabilities. In patient (a), both prosthetic Femurs had been
contoured rigorously. The anomalous thing was that they had been included
in the same OAR, like if they were belonging to the same organ. For this
reason, they appeared to have the same color. This aspect might be the main
reason why the inference had such a low probability of 0.43. In patients (b) and
(c) the Rectums were rejected. In the former, it was rather short; in the latter,
it was too inflated. Moreover, although patient (c) had two quite peculiar and
short Femurs, they were both classified correctly with an inference probability
of 0.78.
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4.7 Summary

Table 4.3: Comparative table of all the experiments performed

enconding model evaluation set test set - no rej f test set - with rejection g

prec rec f1 prec rec f1 thr prec rec f1 rej rate

2D a DT .8419 .8418 .8418 - - - - - - - -
RF .8800 .8792 .8796 - - - - - - - -

2D maj b DT .8573 .8226 .8396 - - - - - - - -
RF .9071 .8817 .8942 - - - - - - - -

3D c DT .9625 .9570 .9597 .9837 .9826 .9832 - - - - -
RF .9847 .9839 .9843 .9807 .9805 .9806 .785 1.000 .8807 .9365 .1193

3D + NCM d DT .9654 .9624 .9639 .9712 .9696 .9704 - - - - -
RF .9948 .9946 .9947 .9808 .9805 .9806 .730 1.000 .8828 .9377 .1171

DL e VoxNet .9790 .9758 .9788 .9521 .9519 .9520 .975 .9901 .8752 .9291 .1159
a 2D slice encoding (section 3.4.1).
b 2D slice encoding (section 3.4.1) with slice-based majority voting.
c 3D engineered features (section 3.4.2) without NCMs.
d 3D engineered features (section 3.4.2) with NCMs.
e 3D voxelized encoding (section 3.4.3).
f Before the application of the reject class (section 3.6).
g After the application of the reject class (section 3.6).

In order to summarize all the results obtained and allow for an easier compari-
son, table 4.3 reports the classification metrics used for all the approaches and
experiments outlined in chapter 3.



Chapter 5

Discussion

This work was aimed to tackle the problem of OAR label standardization in RT
oncology data. We were particularly interested in investigating if the spatial
consistency of OAR’s contours could be exploited by an ML classification
algorithm, and enforce unambiguous labeling. Such a problem had already
been investigated in a work by Rozario et al [95] using a DL approach based
on an encoding of 2D slices. Although the reported results were sensationally
good, multiple aspects were not investigated, leaving gaps open for further
studies and discussions.

This work was able to fill those gaps. Our results highlight that even a sim-
ple DT model adopted on a similar encoding strategy achieves an f1-score of
0.88, which is already far better than the one achieved by a trivial random clas-
sifier. This signals that simpler models may be employed to solve the problem.
In addition, we observe that using a 2D encoding renders very difficult for this
type of model to correctly classify OARs in case of overlapping (an instance
of an aspect not taken under consideration in [95]).

The feature importance analysis highlights that the spatial context has a
major contribution to increasing model performance; this is valid both for 2D
and 3D input encodings. In particular, the location of the OAR with respect to
the body (and not only in respect to other OARs like in [95]) plays an important
role in the classification process.

Our findings also suggest that considering the whole 3D structure of the
OAR, either by implementing a slice-based majority voting or by engineering
3D features, has a positive impact on the classification performance. In par-
ticular, it significantly helps to reduce the confusion when two OAR overlaps,
like in the case of Rectum and Canal_Anal.

Continuing the discussion on 3D engineered features, the results and the

77
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feature importance analysis suggest that NCMs, a set of global shape descrip-
tors, improves the outcome of the classification task. Moreover, an RF ap-
proach based on manually engineered 3D features obtains very high classi-
fication performance with an f1 score of 0.9947 on the evaluation set. This
result is not matched by an automated feature learning approach (i.e. DL),
like the 3DCNN VOXNet architecture, with an f1 score of 0.9788. However,
had we performed a more thorough and comprehensive optimization of the
VOXNet hyperparameters, we are positive we would have achieved similar
classification performance.

The second aspect touched by this work was evaluating if the inference
probability yielded by the ML algorithm could be used as a measure of confi-
dence to discard a not-confident prediction. The rationale behind this research
question lies in the fact that we are not interested in the full automation of
the standardization process, but in reducing the need for manual check to only
peculiar cases (like prosthetic arts or incoherence in the contouring phase),
while standardizing most of the remaining labels in an automatic and trust-
worthy fashion. We decided to answer this question by implementing a reject
class mechanism on the test set, based on a probability threshold obtained from
the 10% reject rate of the evaluation set1.

This approach obtained promising results when applied to the test set infer-
ences of the RF model based on 3D engineered features. By rejecting around
12% of the classifications, the remaining 88% of the OARs were classified
perfectly. The same cannot be said for the DL approach, which contained mis-
classifications even after the application of the reject class. DL models are
known to yield confident but yet incorrect predictions, which can be exploited
in so-called adversarial attacks. This aspect is an active area of research and
an excellent survey on the matter can be found in [106].

As an unexpected result, the analysis of the rejections of the RF model in-
cluded cases of extremely peculiar segmentation, prosthetic femurs and mul-
tiple OARs in the same contour. This suggests that explicit techniques for
outliers and anomaly detection can be successfully employed on OAR geome-
tries. On the other hand, the reject class mechanism had included many cor-
rectly classified and apparently normal OAR contours, implying that there is
still a wide margin of improvement.

We can conclude that the RF approach based on manually engineered 3D
features may be a viable solution for the problem of OAR label standardiza-
tion based on OAR geometries. Compared to a DL approach it has several
advantages: lower computational cost; lower overhead when integrating the

1Please see section 3.6 for a justification on this particular approach and reject rate value
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solution in existing software (compared to GPU based solutions); higher in-
terpretability of the model; and support for simple but effective reject class
mechanism.

The validity of our conclusions is framed by the set of limitations outlined
in section 1.8. Tackling these aspects and broadening the impact of this work
should be prioritized when planning for future works.

The most pertinent limitation from an implementation point of view is that
we restricted our approach only to one data set of a well-defined disease site,
coming from a single medical institution. This limitation was originated by the
choice of offering a more complete comparison of different methods, namely
testing also the 3DCNN approach, as well as performing a robust optimization
of the random forest approach. Introducing another data set while comparing
all three models would have required efforts exceeding the time framework
allocated for this work. For this reason, future works should focus also on other
disease sites, most notably the head and neck, abdominal and thorax regions.
Moreover, the assumption that all the patients’ cases in the data set pertain to
the same disease site is excessively restrictive and the viability of a disease-
site agnostic model should be investigated with high priority. Nevertheless,
the standardization of a single data set is already a relevant result; given that
it constitutes an important resource in scientific research projects involving
RaySearch Laboratories AB and the Iridium Kankernetwerk clinic.

Another important assumption is that the data set is OAR only, a condition
that was achieved with a statistically based divide-and-conquer-like approach
outlined in section 3.3. However, there is no guarantee that this approach is vi-
able on all data sets. In future, the research should focus on obtaining a model
able to cope with all the type of OARs used in RT oncology (see section 2.1.2),
possibly by performing a pre-classification, although it might be particularly
difficult in case of avoidance ROIs.

In addition, the ML algorithms used were trained on a data set made of 70
patients. In the future, it would be very interesting to assess if a smaller training
set may achieve similar results. This can be done with learning curve estima-
tion, and the results contained in [26] show the viability of this approach with
medical imaging data. The end goal could be to obtain a one-shot-learning
system or few-shot-learning system [107] capable of standardizing a whole
data set from just a handful of very well-curated and cleaned patients’ cases
that have been manually controlled.

Moreover, the aim of this work was not to find the perfect and best solution
to the OAR label standardization problem, but rather to identify a promising
path to explore towards and industry-grade robust solution. Many different
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approaches and try-outs could have been attempted, if more time and resources
were available.

As already reported above, hyperparameter tuning of the VOXNet archi-
tecturemay give better results. Also, it has been shown in [108] that simultane-
ously predicting the class label and the object orientation with a slightly mod-
ified VOXNet architecture sensibly improves the classification performance.
This resembles closely the very interesting approach used in self-supervised
learning, where a data set without annotation is used to automatically learn
features that can boost the classification task.

Also, using an unsupervised learning approach could bypass the need for
a divide-and-conquer strategy. Given that the 3D engineered features used in
this work seem to be effective, we could more quickly and more easily attempt
a classic clustering method (like K-means), or density based clustering that
does not require to know beforehand the number of clusters (i.e. the number
of OARs).

As we were interested only to evaluate the feasibility of the approach, the
reject class implementation in this work was rather classic and simple as well.
Nevertheless, given the promising results obtained, future works can focus on
more refined rejection strategies, like the ones based on the distance from the
decision boundaries of the model and use per-class local thresholds like in
[109] and [110]. Or, more simply, they can focus on how to perform probabil-
ity calibration of the model inferences to find an optimal rejection threshold
[111, 112].

Finally, it could be interesting to experiment with other classifiers like lo-
gistic regression; or cast the problem to a series of one-vs-rest binary classifi-
cation problems, while properly dealing with the inherent class unbalance.
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Appendix

A.1 Frequent Item Sets for OAR Names De-
tection

We attempted an alternative approach to the one explained in section 3.3 to
obtain the names of the OARs in the ROI data set.

Given the assumption that OARs are frequent and they frequently appear
together, we can consider every patient as a transaction and every ROI name
as an item in that transaction. Then, using the apriori algorithm [113] ( imple-
mentation offered by [114]), we can mine frequent item sets. We can select the
item set with the highest support and the length equal to the expected number
of OARs a patient should have1, which in our case is seven.

In table A.1 we report the item set with the highest support for a given size.
The minimum item set support was set to 0.2. We can clearly see that if we
are looking for seven OARs in a patient the resulting ROI names list coincides
with the one obtained in section 3.3. Its support is 0.29 meaning that 29% of
the patients contain that item set.

1It is a very reasonable assumption that this number is known beforehand.
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Table A.1: Frequent item sets with highest support per set size.

support itemsets size

1.000000 (rectum) 1
1.000000 (blaas, rectum) 2
0.983425 (bulbus, blaas, rectum) 3
0.944751 (bulbus, blaas, anaal kanaal, rectum) 4
0.839779 (blaas, heup re, rectum, bulbus, heup li) 5
0.823204 (blaas, heup re, rectum, anaal kanaal, bulbus, heup li) 6
0.292818 (blaas, heup re, dunne darm, rectum, anaal kanaal, bulbus, heup li) 7

If we look closely to all the item sets with length equal or higher than seven
and we sort then by support (higher first), we can see in table A.2 that the
selected item set has almost double the support of the subsequent one, which
contains the first avoidance algebraic ROI.

Table A.2: Frequent item sets of length 7 or 8, sorted by support (only first 9).

support itemsets size

0.292818 (blaas, heup re, dunne darm, rectum, anaal kanaal, bulbus, heup li) 7
0.165746 (blaas-PTV, blaas, heup re, rectum, anaal kanaal, bulbus, heup li) 7
0.160221 (blaas-PTV, blaas, rectum-PTV, heup re, rectum, bulbus, heup li) 7
0.160221 (blaas, rectum-PTV, heup re, rectum, anaal kanaal, bulbus, heup li) 7
0.149171 (blaas-PTV, blaas, rectum-PTV, heup re, anaal kanaal, bulbus, heup li) 7
0.149171 (blaas-PTV, blaas, rectum-PTV, rectum, anaal kanaal, bulbus, heup li) 7
0.149171 (blaas-PTV, blaas, rectum-PTV, heup re, rectum, anaal kanaal, bulbus) 7
0.149171 (blaas-PTV, blaas, rectum-PTV, heup re, rectum, anaal kanaal, heup li) 7
0.149171 (blaas-PTV, blaas, rectum-PTV, heup re, rectum, anaal kanaal, bulbus, heup li) 8

A.2 Raw Data Set Additionals
The data set contained 1165 emptyROIs. Formost of them, their origin derives
from the fact that some structures where imported from a series of MRI scans
and their contour was not replicated on the CT based representation. MRI
images are more detailed but at the same time more expensive to acquire, for
this reason their are mostly used to detect the GTV [115].

Other ROIs were empty because they were automatically added but never
segmented, this typically happens to the lower Bowel (“dunne darm” in Dutch)
as it is usually far from the PTV and outside the irradiation plane where the
beam lays (so not subject to any radiation and not needed for treatment plan-
ning). For this reason, the expert will avoid spending precious time in seg-



APPENDIX A. APPENDIX 83

menting it.
Figure A.1 shows the distribution of the not-empty ROIs per patients. Low

outliers were manually checked, the conclusion is that most of the contained
ROIs were empty but do not involved OARs.

ROI name
10

12

14

16

18

20

22

Boxplot of number of ROIs per patient

Figure A.1: Boxplot of number of ROI names per patient

Figure A.2 shows the average number of slices per OAR. We can clearly
see that the Bowel presents the highest relative error. This is probably due
to the fact that the CT field of view is reduced only to the proximity of the
prostate, or by partial segmentation of the Bowel due to its distance from the
treatment site.

A.3 Target ROI Names Identification
ROI names belonging to targets were identified using the following code python
code:

import r e
p a t t e r n = r ’ ( ^CTV ) | ( ^ PTV ) | ( ^GTV ) | ( ^ Dose ) | (BODY) ’ + \

r ’ | ( ^m[ a , e ] r k e r [ s ] ? ) | ( NT ) | ( ^ Couch ) ’
n o t _ t a r g e t s = [ ]
f o r i in unique_not_empty_ROI_names :

i s _ma t ch= r e . match ( p a t t e r n , i , r e . IGNORECASE)
pr in t ( " {}{} " . format ( ">>>␣ " i f i s _ma t ch e l s e " " , i ) )
i f i s _ma t ch i s None :

n o t _ t a r g e t s . append ( i ) .
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Figure A.2: Average number of slices per OAR, error bar is the standard deviation.
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A.4 3D Engineered Features
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Figure A.3: Box plots of the engineered feature on the train data set
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Figure A.5: left column: projection of the training data on the first three principal
components. right column: corresponding correlation circle plot.
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A.5 Extended Results

f1-score precision recall support

Rectum 0.9747 1.0000 0.9506 81
Bladder 0.9938 1.0000 0.9877 81
PenileBulb 0.9875 0.9753 1.0000 79
Canal_Anal 0.9726 0.9726 0.9726 73
Femur_L 0.9912 1.0000 0.9825 57
Femur_R 1.0000 1.0000 1.0000 57
Bowel 0.9429 0.8919 1.0000 33

weighted avg 0.9832 0.9837 0.9826 461
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Figure A.6: 3D engineered features, DT results on the test set.

f1-score precision recall support

Rectum 0.9693 0.9634 0.9753 81
Bladder 0.9877 0.9877 0.9877 81
PenileBulb 0.9811 0.9750 0.9873 79
Canal_Anal 0.9726 0.9726 0.9726 73
Femur_L 0.9821 1.0000 0.9649 57
Femur_R 0.9912 1.0000 0.9825 57
Bowel 0.9851 0.9706 1.0000 33

weighted avg 0.9806 0.9807 0.9805 461
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Figure A.7: 3D engineered features, RF results on the test set.

f1-score precision recall support

Rectum 0.9811 1.0000 0.9630 81
Bladder 0.9560 0.9744 0.9383 81
PenileBulb 0.9565 0.9390 0.9747 79
Canal_Anal 0.9655 0.9722 0.9589 73
Femur_L 0.9912 1.0000 0.9825 57
Femur_R 1.0000 1.0000 1.0000 57
Bowel 0.9296 0.8684 1.0000 33

weighted avg 0.9704 0.9712 0.9696 461
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Figure A.8: 3D engineered features with NCMs, DT results on the test set.
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f1-score precision recall support

Rectum 0.9693 0.9634 0.9753 81
Bladder 0.9756 0.9639 0.9877 81
PenileBulb 0.9875 0.9753 1.0000 79
Canal_Anal 0.9790 1.0000 0.9589 73
Femur_L 0.9912 1.0000 0.9825 57
Femur_R 0.9912 1.0000 0.9825 57
Bowel 0.9697 0.9697 0.9697 33

weighted avg 0.9806 0.9808 0.9805 461
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Figure A.9: 3D engineered features with NCMs, RF results on the test set.

f1-score precision recall support

Rectum 0.9750 0.9750 0.9750 80
Bladder 0.9390 0.9167 0.9625 80
PenileBulb 0.9299 0.9241 0.9359 78
Canal_Anal 0.9371 0.9437 0.9306 72
Femur_L 0.9912 1.0000 0.9825 57
Femur_R 0.9913 0.9828 1.0000 57
Bowel 0.8710 0.9310 0.8182 33

weighted avg 0.9520 0.9521 0.9519 457
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Figure A.10: 3DCNN, VOXNet results on the test set.

A.6 RF Hyper-parameters Tuning
Hyper-parameter tuning was performed using a grid search approach. More-
over, five fold cross validation was used on the train data set. Thus, both the
average and standard deviation of the classification metrics were collected.

The final combination of hyperparameters had both the best metrics per-
formance, as well as the lowest standard deviation.

The following tuning parameters were selected according to the litera-
ture[116]:

number of estimators: total number of estimators. Variance should
improve with higher number of estimators, up to a certain tipping point.

max number of features: maximum number of features sampled at
each node of the tree.

max depth: maximum depth of the trees in the forest.
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minimum samples per leaf node: minimum number of samples in a
node to consider it a leaf. Meaning that there could not be a leaf with
less samples than this number.

Table A.3: Parameters used for grid search.

parameter values

n_estimators 4, 8, 16, 32, 64, 128, 256, 512
max_features 3, 4, 5, 6
max_depth 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, not limited
min_samples_leaf 1, 2, 4, 8

The results are reported in figure A.11
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Figure A.11: 5 fold cross validation results, top 50 results per metric. Left column:
average metric result, bigger is better. Right column: metric standard deviation,
smaller is better. First row F1 score. Second row precision. Third row recall. Points
have been jittered to allow for better interpretation of the results. We can also see that
most of top 50 results share the min_samples_leaf value at 1, which means that the
three is fully developed until maximum depth.
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which means that the three is fully developed until maximum depth.

A.7 Experimental Setup and Running Times
Python libraries
ab s l py ==0 . 7 . 0
a s t o r ==0 . 7 . 1
b a c k c a l l ==0 . 1 . 0
b l e a c h ==3 . 1 . 0
c l o u d p i c k l e ==0 . 7 . 0
co lo rama ==0 . 4 . 1
c y c l e r ==0 .10 . 0
Cython ==0 .29 . 4
dask ==1 . 1 . 1
d e c o r a t o r ==4 . 3 . 2
de fusedxml ==0 . 5 . 0
e n t r y p o i n t s ==0.3
g a s t ==0 . 2 . 2
g r a phv i z ==0 .10 . 1
g r p c i o ==1 .18 . 0
h5py ==2 . 9 . 0
i p y d a t aw i d g e t s ==4 . 0 . 0
i p y k e r n e l ==5 . 1 . 0
i p y t h on ==7 . 2 . 0
ipy thon g e n u t i l s ==0 . 2 . 0
i p yw i d g e t s ==7 . 4 . 2
j e d i ==0 .13 . 2
J i n j a 2 ==2.10
j sonschema ==2 . 6 . 0
j u p y t e r c l i e n t ==5 . 2 . 4
j u p y t e r co r e ==4 . 4 . 0
j u p y t e r l a b ==0 .35 . 4
j u p y t e r l a b s e r v e r ==0 . 2 . 0
K3D==2 .5 . 5
Keras ==2 . 2 . 4
Keras A p p l i c a t i o n s ==1 . 0 . 7
Keras P r e p r o c e s s i n g ==1 . 0 . 9
k iw i s o l v e r ==1 . 0 . 1
mahotas ==1 . 4 . 5
Markdown ==3 . 0 . 1
MarkupSafe ==1 . 1 . 0
m a t p l o t l i b ==3 . 0 . 2
mi s t une ==0 . 8 . 4
nb conve r t ==5 . 4 . 0
nb fo rma t ==4 . 4 . 0
ne tworkx ==2.2
no tebook ==5 . 7 . 4
numpy ==1 .16 . 1
pandas ==0 .24 . 1
pandoc ==1 . 0 . 2
p a n d o c f i l t e r s ==1 . 4 . 2
p a r s o ==0 . 3 . 3
p i c k l e s h a r e ==0 . 7 . 5
P i l l ow ==5 . 4 . 1
p l y ==3.11
prometheus c l i e n t ==0 . 5 . 0
prompt t o o l k i t ==2 . 0 . 8
p r o t o b u f ==3 . 6 . 1
p ydo t p l u s ==2 . 0 . 2
Pygments ==2 . 3 . 1
p yp a r s i n g ==2 . 3 . 1
python d a t e u t i l ==2 . 8 . 0
py t honne t ==2 . 3 . 0
py t z ==2018.9
PyWavele t s ==1 . 0 . 1
pywinpty ==0 . 5 . 5
PyYAML==5.1
pyzmq ==17 .1 . 2
r a y l e a r n e r ==1.0
s c i k i t image ==0 .14 . 2
s c i k i t l e a r n ==0 .20 . 2
s c i p y ==1 . 2 . 0
s e abo r n ==0 . 9 . 0
Send2Trash ==1 . 5 . 0
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s i x ==1 .12 . 0
s k l e a r n ==0.0
t e n s o r b o a r d ==1 .12 . 2
t e n s o r f l ow ==1 .12 . 0
t e n s o r f l ow gpu ==1 .12 . 0
t e rmco l o r ==1 . 1 . 0
t e rm inado ==0 . 8 . 1
t e s t p a t h ==0 . 4 . 2
t o o l z ==0 . 9 . 0
t o r n a do ==5 . 1 . 1
tqdm ==4 .31 . 1
t r a i t l e t s ==4 . 3 . 2
t r a i t t y p e s ==0 . 2 . 1
wcwidth ==0 . 1 . 7
webencodings ==0 . 5 . 1
Werkzeug ==0 .14 . 1
w i d g e t s n b e x t e n s i o n ==3 . 4 . 2
wordc loud ==1 . 5 . 0
x l r d ==1 . 2 . 0

Workstation hardware (training of DT and RF models):
OS Name Microsoft Windows 10 Pro
Version 10.0.17763 Build 17763
System Manufacturer Exertis_CapTech
System Model MS-7A93
System Type x64-based PC
Processor Intel(R) Core(TM) i9-7940X CPU @ 3.10GHz, 3096 Mhz, 14 Core(s), 28 Logical Processor(s)
BaseBoard Manufacturer Micro-Star International Co., Ltd.
BaseBoard Product X299 SLI PLUS (MS-7A93)
BaseBoard Version 1.0
Hardware Abstraction Layer Version = "10.0.17763.503"
Installed Physical Memory (RAM) 64.0 GB
Total Physical Memory 63.7 GB
Available Physical Memory 41.6 GB
Total Virtual Memory 73.2 GB
Available Virtual Memory 23.9 GB
Page File Space 9.50 GB
Hyper-V - VM Monitor Mode Extensions Yes
Hyper-V - Second Level Address Translation Extensions Yes
Hyper-V - Virtualization Enabled in Firmware Yes
Hyper-V - Data Execution Protection Yes
CUDA version cuda-9.0

GPU server hardware (training of VOXNet model):
Processor : Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
cores : 72
Distributor ID: Ubuntu
Description: Ubuntu 18.04.2 LTS
Release: 18.04
Codename: bionic
GPU1: NVIDIA Corporation GV100GL [Tesla V100 SXM2 32GB] (rev a1)
GPU2: NVIDIA Corporation GV100GL [Tesla V100 SXM2 32GB] (rev a1)
GPU3: NVIDIA Corporation GV100GL [Tesla V100 SXM2 32GB] (rev a1)
GPU4: NVIDIA Corporation GV100GL [Tesla V100 SXM2 32GB] (rev a1)
CUDA version: cuda-9.0

VOXNet training time: 5 minutes 36 seconds per epoch, 10 total epochs.
VOXNet evaluation time for eval data set: 1 minute 42 seconds. VOXNet
evaluation time for test data set: 4 minutes 42 seconds.

Random forest cross validation: 7040 fits performed in 2 minutes 40 sec-
onds, parallelism of n_jobs=12

Training time for single RF model with best parameters from cross val-
idation: 162 ms ± 1.16 ms per loop (mean ± std. dev. of 7 runs, 10 loops
each)
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A.8 VOXNet Training Process
Optimizer used was Adam with an initial α = 0.0001, β1 = 0.9, β2 = 0.999.
The batch sizewas composed of 8 instances, requiring 57 batches to complete a
training epoch. The training instances were shuffled randomly at the beginning
of each epoch.

Figure A.12: Top row loss, bottom row accuracy. Blue training, orange validation.
Training metrics computed per each batch. Evaluation metrics computed on the whole
evaluation data set.

The training metrics in figure A.12 (blue lines) are computed per each
batch. For this reason, they may be occasionally higher than the evaluation
result (for particularly easy batches).
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