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Abstract

In radiation therapy, it is important to control the radiation dose absorbed by
Organs at Risk (OARs). The OARs are represented as 3D volumes delineated
by medical experts, typically using computed tomography images of the pa-
tient. The OARs are identified using user-provided text labels, which, due to a
lack of enforcement of existing naming standards, are subject to a great level
of heterogeneity. This condition negatively impacts the development of proce-
dures that require vast amounts of standardized data, like organ segmentation
algorithms and inter-institutional clinical studies. Previous work showed that
supervised learning using deep-learning classifiers could be used to predict
OARs labels. The input of this model was composed of 2D contours of the
OARs, while the output was a standardized label. In this work, we expanded
this approach by qualitatively comparing the performance of different machine
learning algorithms trained on a clinical data set of anonymized prostate can-
cer patients from the Iridium Kankernetwerk clinic (Belgium). The data set
was partitioned in a semi-automatic fashion using a divide-and-conquer-like
approach and various 2D and 3D encodings of the OARs geometries were
tested. Moreover, we implemented a reject class mechanism to assess if the
inference probability yielded by the model could be used as a measure of con-
fidence. The underlining goal was to restrict human intervention to rejected
cases while allowing for a reliable and automatic standardization of the re-
maining ones. Our results show that a random forest model trained on sim-
ple 3D-based manually engineered features can achieve the twofold goal of
high classification performance and reliable inferences. In contrast, 3D con-
volutional neural networks, while achieving similar classification results, pro-
duced wrong, but confident, predictions that could not be effectively rejected.
We conclude that the random forest approach represents a promising solution
for automatic OAR labels unification, and future works should investigate its
applications on more diversified data sets.



Sammanfattning

En viktig faktor i strdlbehandling &r att kontrollera hur mycket av stralningen
som absorberas av riskorgan. Med hjdlp av medicinska bilder, vanligtvis fran
datortomografi, konturerar medicinska experter riskorgan som sedan repre-
senteras som tredimensionella volymer. Riskorganens typ anges via manuell
namngivning fran den medicinska experten. Detta samt bristande efterlevnad
av namngivningsprotokoll, har resulterat i hog heterogenitet bland angivna or-
gannamn. Dir denna heterogenitet bromsar utvecklingen av metoder som kri-
ver stora mingder standardiserade data, sdsom organsegmenteringsalgoritmer,
ddrutover forsvarar det studier som utfors pa intraklinisk basis. Tidigare arbe-
te inom féltet for namngivning av konturerade organ har visat att 6vervakad
inldrning med djupinldrningsklassificerare kan anvindas for att automatiskt
identifiera riskorgannamn. Indata till denna modell bestod av tviddimensionella
riskorgankonturer och utdata bestod av standardiserade riskorgannamn. Det-
ta arbete bygger vidare pa det tidigare tillvigagdngssittet genom att kvalitativt
jamfora och utvirdera olika maskininldrningsalgoritmers prestanda for samma
dndamaél. Algoritmerna trinades pa en klinisk datamingd bestdende av anony-
miserade prostatacancerpatienter fran den belgiska kliniken Iridium Kanker-
netwerk. Dataméngden partitionerades pa ett semi-automatiserat vis med hjélp
av ett tillvagagdngssitt inspirerat av sondra-och-hirska-tekniken och flera ty-
per av tva- och tredimensionell representationer av patientbilderna testades.
Vidare implementerades en mekanism for att utvirdera om inferenssannolik-
heten frdn modellen kunde anvindas som ett tillforlitligt konfidensmétt. Med
bakomliggande mal att enbart behdva involvera ménsklig inblandning i de fall
som bedoms som extra svara av mekanismen och pa si sitt dstadkomma en
automatisk standardiseringen av resterande fall. Resultaten visar att en ran-
dom forest-modell som trinats pa enkla och manuellt designade variabler kan
uppné de tva uppsatta mélen: hog klassificeringsprestanda och pélitlig infe-
rens. Jamforelsevis lyckades tredimensionella faltningsnétverk uppné likvir-
diga klassificeringsresultat men producerade felaktiga prediktioner som inte
var mojliga att avfarda pa ett effektivt sétt. Var slutsats ér att den framtagna
random forest-metoden ir en lovande 16sning for automatisk och standardise-
rad namngivning av riskorgan. Framtida arbete bor utvirdera metoden pé data
med storre variation.
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Chapter 1

Introduction

“Artificial intelligence will revolutionize health care!”

These kinds of claims have become increasingly frequent both in the health
care industry and the academia [1} 2} 3} 4,5, 6l 7]. As bold as they may sound,
they are supported by the unprecedented series of advancements achieved in
the last decade by artificial intelligence and in particular by machine learning
(ML) and deep learning (DL). These advancements impacted multiple fields
like computer vision, machine-translation, natural language processing, and
representation learning [8},|9, 10, 11]. This, along with the lower cost of stor-
ing and processing of data, has marked a shift in many industries from first-
principle based models to heavily data-based ones [|12].

No straightforward reasons seem to obstacle the adoption of such tech-
niques in the health care world. In fact, various advancement of computer
vision and ML have been introduced in the medical domain to successfully
solve problems of very diversified nature like disease detection, diagnosis,
work-flow management, and, more generally, medical imaging problems [|13,
14, (15,16} 17, (18, [19].

These results are a promising starting point for a wider adoption of ML
techniques in the health care sector. However, the unique challenges of health-
care data management - like an inherent heterogeneity and the need to cope
with legal and ethical constraints [20] - brought the medical ML community
to a condition known as Data Starvation; that is “[...] an urgent need to find
better ways to collect, annotate, and reuse medical imaging data” [21]]. This
situation spurred the necessity for a more data-savvy approach towards a sce-
nario “/... Jin which the best treatment decisions are computationally learned
from electronic health record data” [22].

As naive as it may sound, data-based approaches are only as good as the
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data they have been fed. In particular, modern medical data sets are com-
posed only by few hundreds patients casesE] This is in stark contrast with the
incredible variety and size of well established computer vision data sets like
ImageNet [23]], CIFAR [24] or MSCoCo [23]].

The consequence of having such a restricted ground truth has an effect on
the models’ ability to be employed in real-world scenarios, because of their
reduced generalization capabilities [21, 26]. In addition to the limited sample
size, clinical annotations compose the most important building block of med-
ical imaging ground trut}ﬂ and they are mainly inserted by medical experts
in free-text form. Although standards exist, they are seldom followed by the
parties involved, resulting in an important heterogeneity of labeled data [21].

This condition may come as a surprise, considering that medical imaging,
and radiology in particular, was one of the first sectors to introduce a widely
adopted standard for Digital Imaging and Communications in Medicine (DI-
COM) [27} 28]. The application of the DICOM standard effectively enabled
radiologist and medical experts to store, retrieve, and exchange medical data
safely and reliably. Unfortunately, this standard is not designed to cope with
the data quality constraint typical of an ML data set since, for example, many
data fields may be filled incorrectly or not be filled at all [21, 29]E] While these
issues are not an impediment in daily medical practice, they may constitute a
major hassle when attempting to merge or federate data sets while trying to
create a more comprehensive ground truth for the ML task at hand [30].

On the other hand, the wide adoption of the DICOM standard has fos-
tered the storage and aggregation of large sets of medical data in specialized
archiving systems, the so-called PACS (Picture Archiving and Communica-
tion System). Thus, a controversial situation is originated: there is, in theory,
a great abundance of medical data, but the lack of standardization renders them
unusable for any ML application [21} [22]].

Consequently, this work focuses on the investigation of automatic stan-
dardization techniques of medical data to streamline their usage in ML ap-
plications. In particular, we take into consideration the standardization of ra-
diation oncology data to address the heterogeneity generated by “Organs At
Risk” (OARs) labels. The next section further explains the problem and the

"Multiple cases may belong to the same patient, being visited multiple times.

2 Annotations are a special kind of meta-data that pertain to particular regions contained
in a medical image (being it the diagnoses, anatomical or pathological). An example in the
radiology field could be the area of an X-RAY image delimiting the left lung of the patient,
labeled as “LT_LUNG”.

3Some with standard and others with proprietary format
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data structures used in radiation oncology.

1.1 Problem Formulation

Radiation therapy (or radiotherapy) (RT) is a kind of medical therapy that uses
ionizing radiation as part of a cancer treatment procedure [31]. More precisely,
“[it] aims to sculpt the optimal isodose on the tumour volume while sparing
normal tissues” [32]. To achieve this goal medical experts identify a series of
important regions within the patient’s body. This is done on a 3D represen-
tation of the patient obtained from medical images (see section [2.1.T)). These
regions are eponymously called Regions of Interest (ROIs)ﬂ These regions
define precise 3D volumes inside the patient and are of different types. In
some regions, referred to as target regions, the radiation dose must be max-
imized in order to treat the tumor and lower the chances of re-appearance of
the disease. In other regions, the dose must be minimized as much as possible.
This is especially the case for organs, which are indeed called Organs at Risk.
If the target region partially includes an organ, then not all the volume of the
organ should receive minimum radiation. For these cases, a special volume
containing the part of the organ outside the target region is created and com-
monly named an avoidance region. The process of delineating all the relevant
ROIs for the treatment is called patient modeling. When it is terminated, a
single patient’s representation can contain from ten to thirty ROIs, and to each
of them the medical expert assigns a free text label, normally referred to as the
ROI name.

Between all the ROIs, OARs have particular importance when it comes
to daily clinical practice. Their location is identified with a process known
as multi-organ segmentation (MOS), during which medical images (usually
from a CT or MRIE]) are analyzed and the exact 3D position of the organs
is delineated. Performing MOS manually is a lengthy and time-consuming
process, hence a variety of automatic and semi-automatic methods have been
developed, the vast majority of these being statistically based [33, 34} |35, 36,
37,138, [39]]. As anticipated in section [I] an extensive and high-quality ground
truth data set is needed for these methods to be robust [21]. MOS is only
one example of data-intensive problems in radiation oncology requiring such
a high quality and quantity of data, as a matter of fact all ML application share

4Section explains in great detail how ROIs are defined and the taxonomy used to
categorize them.
SPlese refer to section |2.1|for further details.
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the same constraints (for more on the application of ML techniques in the
medical domain see section [2.3)).

Figure 1.1: 3D Multi-organ segmentation performed on an head-and-neck disease
site from a CT scan of the cetuximab data set [40]. Segmented organs are: spinal
cord (blue), larynx (yellow), oral cavity (red), right parotid gland (turquoise), left
parotid gland (green).

Luckily, many medical institutions possess and maintain large storage sys-
tems called PACS where patients folders containing already segmented CT
images are stored. These archiving systems have the upside of containing
ground truth segmentation that has already been verified by a medical expert,
which, in theory, perfectly suits an ML task. Unfortunately though, the regu-
latory and technical constraints concerning health-care data management [20]
result in two major obstacles to ML applications: the data sets usually con-
tain few hundreds patients, and the free-text nature of the labels associated
to organs are often heterogeneous and inconsistent in many different levels.
Different institutions, hospitals and even medical experts within the same in-
stitution may use different naming conventions, and lexicographical errors and
abbreviations may be recurrent [41]] [42], as well as highly locale-dependent
dictionaries.

Using standard data-warehouse terminology we can classify the different
sources of heterogeneity as “single-source instance level“ and “multi-source
schema level data quality problems [43]. The former refers to “errors and
inconsistencies that cannot be prevented at the schema level” [43]], like mis-
spellings, duplicates, and contradictory values. The latter concerns problems
that arise when multiple different data sources are integrated. An example
that particularly fits to our case is constituted by naming conflicts: the same
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Table 1.1: Examples of names associated to the same anatomic structure in twelve
different clinics [41]].

Structure Examples

Lt Optic Nerve, OPTICN_L, OPTNRV_L,
optic_nrv_l, L_optic_nerve, OPTIC_NRV_L,
OpticNerve_L, LOPTIC, OpticNerve_L (3),
Lef Optic Nerve, ON_L

Lt Lung, Lung_L(4), LUNG_L(3), lung_1,
L_lung, LLUNG, L Lung

Lungs(2), LUNGs, LUNG_TOTAL, lung_total,
Both Lungs combined_lung, LUNG, LUNGS(2), Lung,
BilatLung, Lung_Both

Left Optic Nerve

Left Lung

organ called differently in different patient’s folders. To give a practical exam-
ple, table[I.T]reports some examples of different names associated to the same
OAR, based on the work of the task group 263 of the American Association of
Physicist in Medicine (AAPM) [41)].

To rephrase the problem in a rather pragmatic way: for many institutions
it is not possible nowadays to formulate a simple query like this: “Retrieve all
the contours of the left lung of all our patients”, as the left lung may have rather
different names. Let alone trying to perform such a query on two institutions’
PACS located in two different countries with different languages, for example
a Dutch and American clinic.

1.2 Purpose

The focus of this work is to compare different supervised ML-based approach
to classify OAR volumes based only on their geometric representation. This
would enable the association of the volume with a unique OAR label, thus
performing the standardization of the OAR data set. The complete process
is taken under consideration: the initial analysis of a real-world clinical data
set, the partition of the data set in a divide-and-conquer-like fashion (using
reliable patients for training and more complex cases for testing), the training
of the model along with its performance evaluation, and, most notably, the
assessment of the quality of the obtained inferences. Despite its importance,
this last aspect is seldom analyzed, resulting in excessive attention posed to the
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performance of the model, and not considering how much the model inference
could be trusted in a production environment.

We decided to restrict our efforts only to OARs labels because they are
central in many RT operations, like MOS or treatment planning. But also be-
cause once standardized they can be easily used to identify the disease site
and detect the kind of tumor being treated by comparing the position of tar-
get volume with the one of the OARs in its proximityﬂ A complete list of
possible benefits is reported in section[I.7} Moreover, concentrating on OARs
reduces sensibly the scope of the project and allows for a comprehensive study
of different approaches.

1.3 Goal

The goal is to identify a viable strategy for automatic data cleaning of OAR
labels in oncology data sets. Also, to suggest possible directions of devel-
opment of more comprehensive systems concerning data-quality assessment
in radiation oncology like anomaly and outlier detection, target and avoid-
ance structure standardization (see section [2.1.2)), and oncology information
retrieval systems.

1.4 Research Questions and Hypothesis

If consistency is lacking at annotation level, we cannot say the same for hu-
man bodies. In fact, a certain level of consistency is to be expected. We can
safely say that, excluding peculiar clinical cases, organs look alike in differ-
ent patients. Most importantly, they belong to a well-defined spatial context:
that is, their respective position is the same in all human bodies. As an ex-
ample, the rectum is always below the bowel, the bladder is always between
the two femurs, the left parotid gland is always on the left of the spinal cord.
This, together with the assumption that the MOS is performed consistently by
a medical expert, opens two tightly coupled questions:

Research Question 1

Is it possible to exploit OARs’ contours spatial consistency to enable
unique classification through an ML algorithm, hence enforce unam-
biguous labeling?

®It may seem odd, but the actual information of the kind of tumor being treated is rarely
contained in the patient treatment plan.
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Considering the label standardization aspect is not enough though. Any
obtained model is subject to the risk of errors at inference time. Hence, the
result obtained by such a system must go hand-in-hand with an estimate of its
confidence. To put it more clearly, how “trustworthy” are the system’s infer-
ences? Is the model able to discriminate between a risky prediction and an
extremely confident one?

In our particular case:

Research Question 2

Is it possible to use the inference probability yielded by the ML algo-
rithm as a measure of confidence?

Or, posed more pragmatically: can we establish an inference probability
threshold above which all the inferences of the model can be safely trusted and
below which they have to be rejected? Hence signaling the need for human
expert intervention to discriminate doubtful cases. It must be stated that the
target of this study is not to reach full automatic standardization, but to reduce
human intervention only to cases that necessitate it.

Concerning the first question, our hypothesis is that it will be possible to
build an ML model capable of correctly classifying the OARs based on their
unique features and their positioning in the spatial context.

While, for the second question, in case the aforementioned model - or set
of models - is able to produce inference probability, we hypothesize that it
will be possible to estimate such a threshold or, at least, obtain its qualitative
behavior.

1.5 Research Methodology

For the nature of the formulated hypotheses and the resources at our disposal,
a qualitative approach is selected. At the same time, it must be also considered
that the performed experiments use measurable quantities and, as such, have a
non-negligible quantitative aspect. The collected data derive from a real-world
phenomenon, which the author has no power to control or influence. For these
reasons, an inductive research strategy is preferred, where propositions are
derived directly from observations, thus giving the practitioner more freedom
in terms of altering the path and direction of the research process [44]]. This
choice was also driven by the need for solving a practical problem with real-
world data. As such, the work was organized in an iterative fashion. This
allowed us to obtain results and insights into the complexity of the problem at
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an early stage, inductively driving our choices for the next iterations towards
a more promising strategy. A total of three iterations were performed in the
time at our disposal. Please refer to chapter 3| for an in-depth explanation of
the method followed.

Two main principles were used as a reference when selecting an approach:
simplicity and pragmatic stance. For the former, special care was put in avoid-
ing un-necessary steps and complications in the methodology. Rather than
selecting exotic and complex models, we preferred to start from very simple
solutions and add complexity gradually, always justifying the choice following
the principle that “plurality should not be posited without necessity” [45], thus
striving for a “less moving parts” solution. For the latter, we made sure that
the proposed approach was implementable easily using well tested industry
standard open source tools.

The author is a master thesis student belonging to the ML department of
Raysearch Laboratories AB, based in Stockholm. His main responsibilities are
to build and compare different classification models for OAR geometries, as
well as assessing the quality of the obtained inferences. This included various
steps: literature review, data collection and encoding, model selection, model
training and hyperparameter tuning, model evaluation. The author received
feedback and guidance not only from the assigned supervisors, but from the
whole ML department, enjoying and appreciating the open mindset and ex-
treme curiosity shown by its members. The author also had the opportunity to
work in earnest as a member of the company, participating to various company
business meetings and social events, training and seminaries; experiencing the
full spectrum of activities and responsibilities the ML engineer position de-
mands. For these reasons, when explaining and justifying the decisions taken
during the development of the work, the author prefers to use the “we” per-
sonal pronoun, instead of referring only to himself as the sole contributor to
the decision making process.

1.6 Thelmportance of a Geometric Approach

As explained above, the problem revolves around the heterogeneity in OAR
labels, which are encoded as text. A more direct approach would have been to
consider only the labels and use ad-hoc mappings to correct and standardize
clinical data sets.

Although being more straightforward and less computational intensive,
such a solution have numerous issues. First, it has to take into account lo-
cal dependency, meaning that it has to cope with different languages, used in
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an extremely technical fashion. Second, it may be impossible to establish rules
valid even for a single clinic, given that different conventions may be followed
by different experts (even in a single patient case!). Third, rules do not offer
any measure of confidence. They either match or do not match, hence they re-
quire to be trusted in an agnostic fashion, with the risk of obtaining incorrect
labels that will be blindly considered as correct. Finally, by the words of San-
tanam et al. (46| “variability of free-text structure names limits the reliability
of such heuristic methods for mapping structure names, thus requiring a great
deal of manual quality assurance” [46].

On the other hand, a geometric approach is immune to language specific
aspects and removes from the equation the labels themselves. It builds on the
sole assumption that the organs are segmented with a fair degree of coher-
ence. As a plus, an ML approach based on geometries also yields an inference
probability that may be used to discard dubious cases, which is one of the
hypotheses under investigation in this work.

1.7 Benefits, Ethics and Sustainability

Various are the benefits that could arise from OAR label standardization:

* The company will directly benefit from a more reliable ML pipeline,
with an increased quality of the ground truth. This is particularly appli-
cable on OAR segmentation tasks which are under constant development
and improvement.

* OAR label standardization is a key enabler for treatment planning au-
tomation [46, 47, 41, 48], which is already saving a noticeable amount
of resources in various clinics and is allowing doctors, physicians, and
oncologist to spend more time at direct contact with the patients. When
health care is managed mostly with public resources (i.e. in most of
Europe), this directly translates in saving tax-payers money while in-
creasing service quality, throughput, and consistency.

¢ Label standardization will render communication more reliable, which
has already shown to be a key factor in reducing the occurrence of inci-
dents and mistreatment in clinical operations [49, 50|

* Facilitation of report generation, information retrieval, plan benchmark-
ing and quality assurance [51], 52, 53].



CHAPTER 1. INTRODUCTION 11

* If privacy preserving distributed ML will become a reality in the health
care field, it would have to be developed on the assumption that the data
set is standardized and of high quality. This is because by definition the
access to the raw data will be incapacitated.

The ethical aspects concerning this work revolve around the concept of au-
tomation and its use. In particular, job loss and accountability may be a major
concern. For the former, we think that this is a non-existent issue given the
direct outcomes of this work. The standardization of OAR labels is currently
stealing precious time from highly trained medical experts that should dedicate
their efforts to more important causes, like impacting the life and improving
the care of patients. The latter is a much more complicated issue. Automation
is not a panacea for all the problems and there are no guarantees that it will
be fully fool proof. Errors have to be expected, as some labels will still be
incorrect after automatic standardization, that is why a thorough risk-benefit
analysis should be performed before employing any automatic solution. We
should ask ourselves how many mistreatment cases will be caused by incor-
rect automatic labeling compared to the ones already generated by the lack of
standardization[] The author believes the benefits will overcome the risks, and
this is exactly why this work focuses also on finding strategies to ensure high
quality of inference rather than just good classification scores.

Finally, to evaluate the environmental impact of this work we must have a
broader view of possible future outcomes. Good and robust label standardiza-
tion has the main potential of saving precious man-time. This will also mean
that the computational and energy resources that are nowadays allocated to
manual operations will be freed and dedicated to more important tasks. The
direct consequence of this scenario is a wiser use of energy and resources,
but also the reduction of e-waste material. From a more practical standpoint,
RaySearch Laboratories AB enforces policies to prevent the waste of natural
resources and energy, which contribute to long term environmental sustain-
ability by complying with or exceed all applicable environmental legislation,
standards, and industry codes.

1.8 Limitations

We focus on a data set containing only prostate cancer cases coming from a
single medical institution. This implies that the conclusions drawn from this

"To make a parallel with self-driving cars: how many car accidents are generated by auto-
mated driving compared to the ones generated by incorrect human driving behaviors.
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work may apply only to data sets where the disease site is known beforehand.
However, this work delineates a procedure that can be easily extended to other
data sets, provided that they contain only one disease site. The nature of the
features engineered in section [3.4.2] in particular the relative position towards
the body center of mass, suggests the necessity for a dedicated model per dis-
ease site. It must be considered that the disease site may be easily inferred
from other information contained in the patient folder, like the plan name and
the ROI names themselves, or even by classifying the raw CT scan transverse
slices [54, [26].

The data set used contains geometric representations that are consistently
oriented in the same direction. Patient orientation is encoded in the DICOM
standard®|and is an important and commonly used information in modern clin-
ical operations. Cases of incorrect recording of patient orientation are ex-
tremely rare, given that specific medical protocols have been designed to avoid
this eventuality [55, 56]]. Moreover, automatic techniques exist to detect pa-
tient orientation directly from CT images [57].

Finally, as it is explained in detail in chapter [3.4.2] we assume that the
segmentation of the OAR is coherent. However, it must be noted that close
to the surface of the organ different segmentation protocols may be followed.
For this reason, we opt for selecting features that are robust in this regard and
that describe the global shape of the organ rather than relying on its surface.

1.9 Outline

Chapter[2|gives the reader the necessary background and nomenclature needed
to understand the content of this work. In particular, we suggest to dedicate
particular attention at section|2.1}, in order to acquire the much-needed context
and terminology proper of radiation oncology. When possible, surveys and
other materials are reported as a support for further studies. Chapter[3|explains
the method followed to answer the research questions, while chapter[d|contains
all the results collected during the performed experiments. Finally, chapter [3]
is dedicated to our final considerations and to the directions that future works
should follow.

8Field PatientOrientation code (0020,0020). See section



Chapter 2

Background

2.1 Data in Radiation Therapy

This section covers the most common data encoding and protocols that are
used in RT. First, in section [2.1.1) Computed Tomography (CT) medical im-
ages are introduced. Basic terminology and conventions are reported, with the
aim of helping the reader to orient themselves in the coordinate system used to
model the patient. Then, section [2.1.2]explains how CT images are converted
into a 3D geometrical representation of the patient and how important struc-
tures inside the patient are encoded. Particular attention should be posed to
this section as all the data used in this work follows the aforementioned struc-
ture. Finally, section gives a brief introduction to the DICOM standard,
which is the de facto standard for storage, communication, and retrieval of
medical data in the RT domain.

2.1.1 CT Scans

Computed Tomography images are the basic diagnostic tool used in 3D Con-
formal Radiotherapy (3DCRT), a medical procedure that takes under consid-
eration the full 3D representation of the treatment region within the patient
[31]. CT images are central in the diagnosis and localization of a tumor, as
well as the delineation of all the structures required to plan the treatment (see
section[2.1.2). CT images are generated using X-ray radiation, a type of elec-
tromagnetic waves with photon energies in the order of 100 eV to 100 keVE]
When X-rays pass through a material (for example biological tissue) a certain
amount of radiation is absorbed or scattered, which may vary depending on

"Which correspond to a wavelength range within 0.1 and 10 nanometers.

13
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the kind of material. The amount of radiation that passes through a specific
material is described by the linear attenuation and can be measured to obtain
a radiograph, which is a 2D projection of the internals of the irradiated object

(see figure [2.Ta).

Rotationalaxis

e
e

Lt

Detector

Conical beam

__
A
— —— —=
(a) Radiograph of human lungs
[58]]. (b) Principle of a CT scan, where the generator

and the detector rotates around the object [159)].

Figure 2.1

When generating a CT scan, an X-ray generator rotates around an object
on a predefined axis, together with a detector on the opposite side (see figure
[2.1D). The object is then translated along the rotation axis in order to cover
the region subject to diagnosis, commonly referred to as the field of view.

The raw data obtained from the detector at different angles are then com-
bined by a process called tomographic reconstruction into a 3D representation
of the imaged object. The end result is stored as a series of 2D cross-sectional
images called CT slices (see figure [2.4a)), where each pixel contains a scalar
value from +3071 (most attenuating) to —1024 (least attenuating). These val-
ues are obtained after a linear transformation of the attenuation coefficients
obtained while scanning and are expressed on the Hounsfield scale [60)].

By stacking a series of 2D CT slices and factoring in the thickness of each
slice, a discretized patient representation is built by defining a 3D volumetric
gricﬂ (see figure . Each element of the grid is called a voxel and can be
thought of as a 3D generalization of an image pixel (see figure[2.3). Each voxel

2To be more precise, the original data source is natively a 3D representation of the per-
pixel attenuation of the imaged volume. But it is always stored as a series of 2D slices, which
is what every medical visualization tool uses, and this work as well. The author preferred the
reported formulation in order to ease the interpretation.
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SOMATOM Sensation
“

555 W

(b) CT machine by SIEMENS

(a) Open CT machine

Figure 2.2: (a) Internals of a CT machine, called a CT gantry. The letter “T” points
to the X-ray generator, while the detector is with the letter “D”. The letter “R” with
the adjiacent arrow indicates that the apparatus rotates clockwise with respect to the
observer. (b) A CT gantry with a patient and a technician;

represents an element of volume inside the patient body in which an estimated
amount of radiation was absorbed (see figure [2.4D)).

An important technical aspect to consider is the spatial definition of a
voxel, i.e. what are its actual dimensions. In most of the CT scans used for
RT, the distance between two subsequent CT slices is much higher than the
size of a pixel on the slice itself. As a result, the actual CT voxels have a
box shape rather than a cubic shape (much higher than wider). On transver-
sal slices typical pixel dimensions are around 1.25mm x 1.25mm, while the
distance between two slices’| can be up to 3mm /]

Moreover, the field of view may vary between patients, depending on the
goal of the diagnostic procedure. As a result, the number of transverse CT
slices differs from patient to patient, as well as the final CT 3D.

3i.e. the height of the voxel.

 The exact pixel dimensions in practice depend on a series of factors. The technician
usually sets only the number of pixels on the transverse slice, which is usually 512 x 512
pixels. But the limiting factors defining the vertical resolution are time, storage and the field
of view. Using modern machines and small fields of view, the voxels dimension can reach
0.5 x 0.5 x 0.5mm3.
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Figure 2.3: A series of voxels in a stack with a single voxel shaded [63|].
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' ' ' (b) Volume created by stacking CT

(a) CT slices of a human brain [|64)]. slices [63].

Figure 2.4: (a) Series of subsequent CT slices of a human brain, from the lower part to
the upper part. (b) Volume created by stacking subsequent CT slices in the abdominal
region.

Anatomic Planes and Coordinates Systems

During diagnostic and visualization procedures, the 3D representation of the
patient is commonly sliced in three perpendicular planes called anatomical

planes (see figure [2.5)):

* Axial or transverse plane: an horizontal plane that divides the patient’s
body into superior and inferior parts (considering the patient as stand-
ing). It is perpendicular to the axis of rotation used to perform the scan.
The slices obtained on this plane coincide with the original CT slices
generated by the tomographic processﬂ

SFor this reason, transverse slices are considered to contain the most information and are
used as a base for diagnosis.
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* Coronal or Frontal plane: a vertical plane that divides the patient’s body
into ventral and dorsal sections ]

* Sagittal or Longitudinal plane: a vertical plane that divides the patient’s
body into right and left parts, always defined from the point of view of
the patient.

Sectional Planes

Frontal plane

Transverse plane

(a) Depiction of the anatomical planes of a human
brain @] (b) Sagittal (top left), frontal
(top right) and transverse (bot-
tom) views of the abdominal re-

gion @]

Figure 2.5

At this point we can introduce the spatial coordinate system that is used
in this work. We will use a Cartesian reference system composed of three
orthonormal vectors: {Z, 7, Z}. Each of these vectors is perpendicular respec-
tively to the frontal, sagittal, and transverse plane. A depiction of the coordi-
nate system in respect to a patient body can be found in figure[2.6

2.1.2 RT Patient Modeling

The 3D model obtained by stacking CT slices is a great tool for diagnostic
purposes, but there is no explicit information on where the tumor and the sen-
sible tissues are. It is just a 3D grid of scalar values which are proportional to

That is, dividing the patient’s body into the belly and back sections.
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Figure 2.6: Voxel geometric representation of OARs and external ROI of pelvic dis-
ease site. Left femur in violet, right femur in green, bladder in orange, rectum in blue,
pelvic bulbus in red, anal canal in brown, external ROI in light blue. Created with

(67

the amount of X-ray radiation absorbed and scattered by each voxel. To plan
and proceed with the treatment it is necessary to identify at which Region of
Interest (ROI) each voxel belongs to.

Depending on the part of the body contained in the region and their role
in the treatment planning, ROIs can be categorized in different types:

Target Volumes: represent a series of encapsulated volumes that will
receive a maximal dose of radiation, for this reason they are also known
as rargets. The innermost one is the Gross Tumor Volume (GTV). It is
then extended with a margin, in order to treat microscopic tumor exten-
sion, forming the Clinical Target Volume (CTV). The CTV is further
expanded by an anisotropic margin to accommodate uncertainties de-
riving from setup variation. This last and outermost volume is called
the Planning Target Volume (PTV) [31]]. A graphical representation of
all the target volumes is reported in figure 2.7]

Organs At Risk (OARs): all the organs that are at risk of receiving
a radiation dose. The goal of treatment planning is to minimize the
radiation received by OARs while maximizing it for PTVs.

Markers: also called fiducial markers are small metal objects that are
surgically placed in or near a tumor in preparation for RT. Their goal is
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cTvV

GTV PTV

Figure 2.7: Schematic of the different volumes irradiated
in RT. Image reproduced with the permission of the author
(Cecilia Battinelli)

to identify the tumor’s location with greater accuracy and help deliver
the maximum radiation dose to the tumor [|68]].

Avoidance: generic volume in which the radiation dosage should be
minimized. They are frequently composed of so-called Algebraic ROIs,
which are ROIs generated when the PTV partially includes one OAR. In
this case, it will be incorrect to minimize the dosage on the totality of the
organ, hence an ROl is calculated by subtracting the PTV from the organ
(see figure [2.9). Other types of avoidance ROIs are the No Treatment
(NT) ROIs, which are an isometric margin around the PTV used to guide
the optimization process to avoid irradiation to all the tissue around the
PTV, regardless if it is an organ or not. NT can be represented as a
hollow container encapsulating the PTV.

Helper ROISs: all the ROIs that are useful to tune the treatment planning,
register the image or position the patient.

External: this ROI represents the body of the patient and should enclose
all other ROIs.

Note that each voxel, or group of voxels, can belong to multiple ROIs. For
example, a voxel in the GTV is included both in the CTV and PTV (see figure
2.7).

From an operative perspective, depending on the institution and the reg-
ulation, ROIs may be delineated by different medical experts (usually oncol-
ogists) and RT technicians. The process may be manual, automatic or semi-
automaticﬂ (as reported in section , but the end result is always encoded

"The medical expert will always review, verify and sign the result.
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as an overlay of the CT transverse slice (see figure 2.8). For this reason, the
operation of segmenting the patient geometry may also be called contouring,
as contours are drawn to delineate the segmented ROL. In figure[2.6] we can see
the final geometric representation of a pelvic disease site obtained by stacking
all the transverse contours of the OARs.

(a) CT image (b) Targets (c) OAR

Figure 2.8: (a) 2D CT image and external ROI in pink; (b) contours of targets: GTV
in red, CTV in purple, PTV in blue; (c) contours of OARs: spinal cord in light blue,
left parotid gland in turquoise, right parotid gland in green, oral cavity in brown;
Patient 05220766 from [|Z_U|]

It must be noted that the above list covers only the ROIs types that are
relevant for this work, the complete list specified by the DICOM standard (see

section [2.1.3) can be found in [69)]].

2.1.3 The DICOM Standard

The DICOM standard (Digital Imaging Communication in Medicine) is the de
facto standard for transmission, storage and retrieval of digital images in the
medical field [[70].

The central components of the DICOM data structures are called Infor-
mation Object Definitions (I10Ds). They may be considered as a well-defined
schema of attributes associated with each object. Examples of objects are: CT
images, RT plan specifics, voice audio recordings, PDF documents and many
more ]

Every attribute inside this schema has a unique identifier composed of two
hexadecimal numbers: the group number and the item number. For example,

8For a complete description of the whole DICOM standard please see ht t ps : //dicom.
innolitics.com/ciods


https://dicom.innolitics.com/ciods
https://dicom.innolitics.com/ciods
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(a) Rectum OAR. (b) Rectum OAR minus PTV

Figure 2.9: (a) A normal contoured rectum; (b) An avoidance ROI obtained by sub-
tracting the PTV from the OAR in figure (a);

the ROI name attribute has code (3006, 0026). Every single imageﬂ encoded
using DICOM has its respective IOD [71], which at filesystem level is stored
as a file header.

ROIs are considered an attribute of the RT structures set 10D [72], which
is called RT ROI Observation. For this reason, the terms “ROI” and “RT struc-
ture” (or just “structure”) are commonly used interchangeably.

We do not enter into the details of the DICOM standard specifications,
but it is important to understand how ROIs are encoded and represented in
DICOM.

Each ROI defined in a transverse CT slice contains also a series of at-
tributes, the most important for this work being:

e ROIName (3006,0026): user-defined name for the ROI.

* RTROIInterpretedType (3006, 00A4): type of ROI (PTV, CTV,
GTYV, AVOIDANCE, ORGAN, etc.)

* ROIContourSequence (3006,0039): series of points on the CT trans-
verse slice representing an open or closed polygon.

As clearly stated in the DICOM specifications, there is no enforcement
or check on the content of the ROIName field, as it is a free text field com-
pletely in the hands of the user. The field RTROIInterpretedType may

°A single transverse CT slice
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be optionally used to define the type of ROI, as explained in section[2.1.2] The
ROICOntourSequence contains the actual polygon that defines the ROI on
the transverse CT slice. By stacking the polygons on all the slices and interpo-
lating them, the 3D “voxelized” representation in figure[2.6]is obtained. Note
that in DICOM it is totally possible for an ROI to not define any contour, re-
sulting in an empty ROI (i.e. without any associated voxel). It is also possible
to have single-point ROI (actually called Points of Interest (POI)). Common
uses of POI are for patient and image registration as well as identification of
fiducial markers.

2.2 Naming Standards

The current lack of standardization in ROI naming should not be associated
to the actual inexistence of standards. In fact, multiple standards have been
proposed and the general attention of the clinical world to the need of nam-
ing standardization is increasing. In this section we discuss the standards and
ontologies used in medical practice and RT.

2.2.1 Ontologies

Ontologies offer a rich framework for defining concepts and inter-relationships
among them. Ontologies have been extensively used in the medical domain
and represent an important component in interoperability and integration into
health care informatics systems. The BioPortal [73] website maintained by
the National Center for Biomedical Ontology (based in Stanford, California)
contains a wide variety of medical ontologies that are publicly accessible.

Foundational Model of Anatomy

The Foundational Model of Anatomy (FMA) [74] defines anatomic structures
and interrelationships necessary for a phenotypic representation of the human
body. The intent of the FMA is to accommodate all current naming conven-
tions, rather than attempting to standardize terminology. The FMA is often
used by other ontologies and other naming standards as an important refer-
ence to define concepts with a very high degree of precision. For its inherent
complexity, the FMA is seldom used in daily medical practice. This is par-
ticularly the case for radiation oncology, where the DICOM standard does not
provide for any explicit reference to the FMA.
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SNOMED CT

The Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT)
is a standardized terminology owned and licensed by the International Health
Terminology Standards Development Organization (based in London UK).
According to the authors, it is “the most comprehensive, multilingual clinical
healthcare terminology in the world” [[75]], actively used in eight countries. It
is particularly aimed to store and organize electronic health records in the wide
sector of health care. As such, it lacks the simplicity and pragmatic aspects re-
quired to be proficiently used in daily RT practice. Moreover, the labels of the
concepts in SNOMED CT contains special characters that are not supported
by all the vendors providing solutions to the RT field [41]].

2.2.2 AAPMTG-263

The American Association of Physicists in Medicine (AAPM) is an established
organization that focuses on advancing patient care by providing education,
improving safety and efficacy of radiation oncology and medical imaging pro-
cedures through research. At the beginning of 2018, AAPM released the final
report of its task group number 263 (TG-263) [48] having as a sole goal the
identification of a comprehensive nomenclature standard for RT that could be
easily and proficiently used in every medical institution in the United States.
After reviewing the ontologies reported above and the recent development
in standards for nomenclature in RT [46|76,|77, 78], the task group developed
a comprehensive nomenclature system of all the concepts used in RT. Special
attention was posed to practical limitations (like characters supported by ven-
dors’ solutions) and to the utilization of names that minimizes the chance of
communication errors. As aresult, TG-263 names are short but easy to under-
stand and interpret, even without a strong background in anatomy. Important
concepts of RT that were not reported in medical ontologies (like algebraic
ROIs and target structures) are covered in great detail. TG-263 is not an on-
tology and does not aspire to be one. It can be considered as a set of simple
naming guidelines and conventions. On the other hand, when possible (i.e.
for OARs) the FMA identifier that most closely match the represented ROI is
provided, thus enabling direct linking with the FMA structure. This latter as-
pect is not to be underestimated; a properly standardized TG-263 clinical data
set isn’t just more usable for medical purposes, but it also allows for the use of
semantic web technologies thanks to the integration with the FMA ontology.
The list of standardized OAR names is publicly accessible and constantly
updated [[79]]. Given its straightforward architecture and its growing adoption,
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we decided to use TG-263 in the course of this work to label the OARSs in our
data set (see section[3.3).

2.3 Shape Descriptor and Normalized Cen-
tral Moments

Shape descriptors are a class of features used in computer vision that are based
on the shape of an object rather than on other, maybe richer, sources of infor-
mation (like the intensity of color in an image). They are an important tool
used in content based image retrieval, image search, and image classification.

Following the taxonomy outlined in [80], shape descriptors can be divided
into two main categories: contour-based and region-based descriptors. As
the name may suggest, contour-based descriptors extract features only from
the contour of the shape (i.e its border). Instead, in region-based descriptors,
the features are extracted from the whole region occupied by the object.

As already stated in section given that the contouring protocol used
by the medical expert in the proximity of the organ surface can vary from
institution to institution, in this work we preferred to use region-based shape
descriptorﬂ

In the case of 3D shapes, simple shapes descriptors are the volume intended
as the number of voxels contained in the shape, the surface as the number of
voxels on the surface of the shape, the circularity as the square of the surface
over the volume and the major axis orientation.

A particular family of region-based shape descriptors is composed of mo-
ments invariants. The first and most simple moment invariants are the geo-
metric moment invariants [82]]. Their definition for the 2D case is

Myq = Z pryqf(x, Y)
oy

p7q:071727"'7

2.1)

where = and y are the coordinates of the pixel in the image, f(x,y) is the
intensity of the pixel with coordinates (z,y), and p and ¢ are the parameters
dictating the order of the moment. Geometric moments are not translation in-
variant in this simple formulation, because changing the position of the object
offsets the x and y coordinates. To render them translation invariant and con-
struct the central moments, it is sufficient to subtract to x and y the coordinates

10For an in-depth review of contour-based shape descriptors we suggest the reading of [80]
and the excellent survey by Zhang and Lu [81]].
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of the centroid of the shape:

ZZ (= 2)(y — 9)"f(z,y),

My Z 2 zf(z,y)
My h Zy flz,y)’

Mo > Zy yf(z,y)
My 3,3, flzy)

The centroid is nothing more than the 2D discrete form of the center of mass
of an object, a concept borrowed from physics:

i fffvw;_
R—M///VW(T)C” Vi %ﬂﬁf o] (2.3)
- fff o

Where 7 is the coordinate vector used to integrate in the whole space V, dr
is the infinitesimal volume in position 7, p(7) is the density of the object in 7,
and M is the total mass of the object (not to be confounded with the central
moment of the shape).

As shown by Hu [82], translation and scale invariance can be achieved by
further diving the central moments by a properly scaled zero-th central mo-
ment:

I
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(2.2)
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Thus constructing the Normalized Central Moments (NCMs), which will be
extensively used in this work (see section (3.4.2).

An evolution of geometric moments are the orthogonal moments, where
the kernel 27y9 is replaced by a generic kernel P,(z)F,(y), where P can be a
Legendre or a Zernike polynomial [83]E] Orthogonal moments require to in-
scribe the shape into a unity sphere in order to be transition and scale invariant,
which implies a form of up/down interpolation of the object.

Other types of region-based shape descriptors are the generic Fourier shape
descriptors [84]], in which a 2D Fourier transform is applied on the polar-raster

""The name “orthogonal” comes from the fact that the Zernike and Lagrange polynomials
are orthogonal.
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of the surface of the object. The Fourier coefficients are then used as feature
vector.

In this work, we opted to employ only NCMs as they perform well on con-
tour based shapes without interior content [80], their implementation is sup-
ported by major open source libraries and they are sensibly less computational
expensive than orthogonal moments, where the calculation of Zernike or La-
grange polynomial is not trivial. Following the principles exposed in[I.5] to
avoid the re-implementation of the NCMs in the 3D form, we preferred to use
already existing tools on the projections of the OAR on each anatomic axis.
The projection was calculated by summing the voxels along each of the direc-
tions in figure [2.6] therefore obtaining one projected 2D image per anatomic
plane.

More formally, if /(z,y, z) is the binary intensity of the 3D OAR (i.e. the
value of the voxel in position x, ¥, z), then for each direction we calculate the
2D projections

F@y)e =Y I(x,2'y),
f(l'/, y/)y = Z I(ZL‘/, Y, y/)v (25)
Y

flay). => Iy, 2),

where (2, 1) are the coordinates on the 2D projection, and f(2',1/), is the
intensity of the 2D projection along direction = of the 3D OAR. For each pro-
jection we calculate a series of NCMs up to a defined order, constructing a
feature vector of scalar values that is used to describe the shape of the OAR.

2.4 Machine Learning Algorithms

In this section, we explain the concept of supervised learning, the learning
framework used in this work, and we report a brief explanation of the ML
algorithms employed.

2.4.1 Supervised Learning and Classification

As the name might suggest, in the framework of supervised statistical learning
a strong supervising signal is required to train a model to produce predictions.
This supervised signal is composed of a set of K examples D = {Zy, yx } 5|,
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also known as the ground truth, where T, € RY is a single data instance
or predictor and yy, is the response variable. The goal of the ML algorithm
is to learn the entailing function f : ¥ — y from the supervising signal,
in order to predict the response variable of an unknown data instance. The
response variable can take various forms, it could be a categorical variable
yr € {1,...,C}, or it could be a real value y,, € R. In the former case, the
task of learning is called classification, in the latter is called regression [85].
In this work we are interested only in supervised classification, more precisely
in mono-label classification, meaning that the response variable is composed
of one and only one value, while in multi-label classification the response
variable can have multiple coexisting values.

2.4.2 Training Process and Classification Metrics

In order to train an ML model and evaluate its performance, the ground truth
is divided into three sets:

Train: it contains the instances and the labels used to train the model.

Validation: also known as “development” or “evaluation” set, it is used
to calculate the performance of the trained model and perform parameter
tuning.

Test: also known as “held out” set, it is composed of instances that
neither the model nor the practitioner has ever used. Itis used to evaluate
the performance of the model in a real-world scenario.

The performance of the model is evaluated by comparing the model pre-
diction g, with the corresponding response variable in the ground truth .
In order to ease the explanation, we are going to use as an example a binary
classification, meaning that the response variable can only have two values
yr € {0, 1}, respectively called the negative and positive value; for example
an ML algorithm able to tell if a patient is affected (positive) or not (nega-
tive) by a disease. The single model prediction can then be categorized in the
following outcomes:

True Positive (TP): meaning that the model predicted a positive and the
response variable in the ground truth is positive.

True Negative (TN): meaning that the model predicted a negative and
the response variable in the ground truth is negative.
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False Positive (FP): meaning that the model predicted a positive, but
the response variable in the ground truth is negative.

False Negative (FN): meaning that the model predicted a negative, but
the response variable in the ground truth is positive.

In case of TP and TN we have that ¢, = y;, while for FP and FN we have
that g # yx. When considering the full set of predictions of the model, the
number of TP, TN, FP, and FN can be summarized in a confusion matrix

Table 2.1: Confusion matrix of a binary classifier.

Predicted Value
p n total
p True False P
Positives || Negatives|
= g
n False True N
Positives | | Negatives
total P N

If the classification is perfect, all the examples will be on the diagonal of
the confusion matrix.

Based on the confusion matrix, a series of scalar metrics comprised in the
range [0, 1] can be built. Precision is defined as Prec = 77155, and repre-
sents (in a frequentist fashion) how much the model is correct when predicting
that the instance is a positive. Recall is defined as Rec = TPTJF%, and repre-
sents how many of the total number of positive cases in the data set have been
actually retrieved.

Following the example of the diagnosis of a disease, having an high preci-
sion and low recall means that if the model predicts a positive than the chances
of the patient to be ill are high and actions should be taken; while the low recall
implies that many of the actually ill patients have not been identified as such.

To better represent the trade-off between precision and recall in a single



CHAPTER 2. BACKGROUND 29

scalar value, the fI score is commonly used

2 Prec - Rec

fi= 1 T )
e T e Prec + Rec

(2.6)

which is the harmonic mean of the two values and it is also bound in the inter-
val [0, 1].
Another global metric commonly used is the accuracy

TP+ TN

Acc — .
CTTPYTNYFP+FN

2.7)

Accuracy is valuable only in case the number of examples per class is bal-
anced. If the condition is not met, accuracy is bound to be biased towards the
more frequent class. Again following the diagnosis example, if only 1% of
patients is actually ill, a classifier that always predicts the patient to be fine has
a 0.99 accuracy, which is indeed a misleading number. On the other hand, the
precision is undefined and the recall is 0.00, signaling that the classifier is not
functioning properly.

The extension of the confusion matrix to multi-class cases (i.e. not bi-
nary), is immediate. The true and predicted labels have C' possible values,
and the matrix is of size C' x C, like the ones in figure d.1] The precision and
recall metrics are then 