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Abstract

Recently, there has been a lot of interest in explainable predictions, with new

explainability approaches being created for specific data modalities like images and

text. However, there is a dearth of understanding and minimal exploration in

terms of explainability in the multimodal machine learning domain, where diverse

data modalities are fused together in the model. In this thesis project, we look

into two multimodal model architectures namely single­stream and dual­stream for

the Visual Entailment (VE) task, which compromises of image and text modalities.

The models considered in this project are UNiversal Image­TExt Representation

Learning (UNITER), Visual­Linguistic BERT (VL­BERT), Vision­and­Language BERT

(ViLBERT) andLearningCross­Modality EncoderRepresentations fromTransformers

(LXMERT). Furthermore, we conduct three different experiments for multimodal

explainability by applying the Local Interpretable Model­agnostic Explanations

(LIME) technique. Our results show that UNITER has the best accuracy among these

models for the problem of VE. However, the explainability of all these models is

similar.
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Abstract

Under den senaste tiden har intresset för förklarbara prediktioner (eng. explainable

predictions) varit stort, med nya metoder skapade för specifika datamodaliteter

som bilder och text. Samtidigt finns en brist på förståelse och lite utforskning

har gjorts när det gäller förklarbarhet för multimodal maskininlärning, där olika

datamodaliteter kombineras i modellen. I detta examensarbete undersöker vi två

multimodala modellarkitekturer, så kallade en­ström och två­strömsarkitekturer

(eng. single­steam och dual­stream) för en uppgift som kombinerar bilder och

text, Visual Entailment (VE). Modellerna som studeras är UNiversal Image­TExt

Representation Learning (UNITER), Visual­Linguistic BERT (VL­BERT), Vision­and­

Language BERT (ViLBERT) och Learning Cross­Modality Encoder Representations

from Transformers (LXMERT). Dessutom genomför vi tre olika experiment för

multimodal förklarbarhet genom att tillämpa en metod som heter Local Interpretable

Model­agnostic Explanations (LIME). Våra resultat visar att UNITER har bäst

prestanda av dessa modeller för VE­uppgiften. Å andra sidan är förklarbarheten för

alla dessa modeller likvärdig.

Nyckelord

Multimodal, förklarbarhet, fusion, tolkbarhet
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Chapter 1

Introduction

Over the last decade, Deep Neural Networks have achieved new state­of­the­art

performance across a wide range of machine learning problems. However, the size

and complexity of these models make them opaque and difficult to understand, which

limit the adoption for many real­world use cases. For instance in medical decision

support systems, it is often not sufficient to solely provide a prediction, but a doctor

would need some reasoning or explanation for the prediction to trust the model and

use it in practice. Explaining a model’s decision process can also be used as a tool

for data scientists to debug and improve a model, and to detect potential data issues

and underlying biases to help build fair AI systems. Explainable Predictions have

received a lot of interest lately, with novel explainability methods being developed

for specific data modalities like images and text. However, in the multimodal setting

where different data modalities are fused together in the model, there is a lack of

understanding and little explored in terms of explainability. Multimodal fusion in itself

is a challenging task that has to deal with potential redundancies and varying quality

between modalities, and sometimes the modality fusion can even hurt performance.

This makes it even more important and interesting to try to understand and explain

the fusion process.

1.1 Background

Multimodal machine learning is a thriving multi­disciplinary research area that

integrates and models multiple communicative modalities, such as textual, auditory,

and visual messages, to meet some of artificial intelligence’s original goals. Given
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CHAPTER 1. INTRODUCTION

the heterogeneity of the data and the contingency frequently encountered between

modalities, this research area has presented some specific challenges for multimodal

researchers, beginning with audio­visual speech recognition and more lately with

language and vision projects such as image and video captioning [14].

1.2 Problem

There are many multimodal models available. The differences between them are

the pre­training data, hyperparameters, initialization and the architecture. There

are two main architectures of multimodal models namely single­stream and dual­

stream encoders. In single­stream architectures the concatenation of visual and

linguistic features of an image­text pair are fed into the standard Bidirectional

Encoder Representation from Transformer (BERT) architecture which allows for an

unrestricted fusion of cross­modal information whereas in dual­stream architecture

the visual and linguistic features are first processed by two independent stacks of

Transformer layers and then the generated representations are sent into the cross­

modal Transformer layers which alternate between intra­modal and inter­modal

interactions [5]. We would like to find out which architecture is best in case of

explainability. For this thesis project we have used VE inference task. VE consists

of image­sentence pairs whereby a premise is defined by an image, rather than a

natural language sentence as in traditional Textual Entailment tasks [26]. A trained

VE model’s purpose is to predict whether or not the text semantically implies the

image.

Research Questions:

• Do single stream models perform better or worse than dual stream models for

visual entailment?

• Which architecture among single­stream or dual­stream performs better in

terms of explainability?

1.3 Goal

Explainability for multimodal models has received little attention so far. If there is

any work, it is in relation to a specific problem. Our thesis will assist in making an

2



CHAPTER 1. INTRODUCTION

informed decision about which model architecture to choose (single­stream or dual­

stream) in the case when the input is combination of image+text. We will compare

and analyse different single­stream and dual­stream multimodal models. Our work

has been divided into the following sub­goals:

1. To provide assistance in choosing which multimodal architecture is better for

visual entailment problem.

2. To introduce explainability technique for multimodal models.

1.4 Benefits and Ethics

To be able to use any system, trust is highly important. This project will help in

multimodality domain. One example in the area of medicine could be a system which

takes the x­ray report (text) and image as input and then outputs the diagnosis. In this

case explainability can help in highlighting the relevant text and image areas on which

the diagnosis (prediction) has been made. Moreover, explainability can also help us in

identifying biases in the system.

1.5 Outline

Chapter 2 describes the theoretical background of the thesis project. It explains

the Transformers, multimodality, the single­stream and dual­stream models and

explainability along with the relevant work in the domain. Chapter 3 describes the

experiments performed and the technical limitations faced. Chapter 4 discusses the

result of the experiments. Chapter 5 concludes our thesis project and discusses the

future work that could be done for this project.

3



Chapter 2

Theoretical Background

This chapter firstly introduces NLP and provides some basic background information

about Transformers, different multimodal models and explainability. Additionally,

this chapter describes related work in multimodal models and explainability.

2.1 NLP

NLP is a branch of Artificial Intelligence that enables computers to read, understand,

and interpret human languages. The ultimate goal of NLP is to read, decipher,

comprehend, and make sense of human languages in a useful manner. Machine

learning is used in most NLP techniques to extract meaning from human languages.

NLP is used in language translation applications like Google Translate and word

processors like Microsoft Word and Grammarly to check the grammatical accuracy of

documents.

Two of the commonly used algorithms in NLP for describing vocabulary of terms

are:

• Bag of Words (BOW): BOW is a widely used approach for counting all of

the words in a piece of text. In essence, it generates an occurrence matrix

for the sentence or text, ignoring syntax and word order. The frequency or

occurrences of these words are subsequently employed as features in the training

of a classifier.

• Tokenization: Tokenization is the process of breaking down a continuous

stream of text into sentences and words. In essence, it entails slicing a text into

4



CHAPTER 2. THEORETICAL BACKGROUND

tokens while discarding some characters, such as punctuation.

2.2 Transformers

Transformers were first introduced in the paper “Attention is all you Need” [24]. The

Transformers is a type of neural network architecture and is most popular for NLP.

Transformers primarily use the attention mechanism and avoid recurrence. This is

one of the reasons why the training can be heavily parallelized and thus train much

faster. The Transformer model (Fig: 2.2.1) uses an encoder­decoder architecture. The

input is feed into the encoder. The encoder learns the representation and then sends

that representation to the decoder. The decoder receives the representation and then

generates the output.

Figure 2.2.1: The Transformer ­ model architecture [24]

The Transformer components are explained below:

• Encoders: Transformer consists of N number of encoder layers. In the paper

5



CHAPTER 2. THEORETICAL BACKGROUND

[24] they have used 6 encoders stacked together. The output of one encoder is

sent to another encoder above it. Each encoder has two sub­layers namely,Multi­

head attention and Feed­forward network.

• Decoders: Transformer also consists of N number of decoder layers. In the

paper [24] they have used 6 decoders stacked together. The decoder receives two

inputs, one from the encoder representation and one from the previous decoder.

The decoder consists of one more additional sub­layer compared to the encoder

which is the Masked multi­head attention layer.

• Attention: The mapping of a query and a set of key­value pairs to an output

is characterized as an attention function, where the query, keys, values, and

output are all vectors. The result is a weighted sum of the values, with the weight

allocated to each value computed by a compatibility function of the querywith the

corresponding key [24]. The attention function is computed on a set of queries

simultaneously, packed together into a matrix Q. In matrices K and V the keys

and values are also packed together. The output matrix is computed as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.1)

• Multi­head attention: Multi­head attention uses multiple attention heads in

order to provide an accurate attention matrix.

• Feed­forward network: The feed­forward network is made of two linear

transformations with ReLU activation. While the linear transformations are the

same across different positions, the parameters used in each layer change [24].

• Maskedmulti­head attention: It is same asmulti­head attention except that

during test the decoder can only see the words generated till the previous input

step [16].

BERT: BERT was introduced by Google in the paper “BERT: Pre­training of Deep

Bidirectional Transformers for Language Understanding” [7]. BERT has been a state

of the art model and has provided excellent results for a variety of NLP tasks including

sentence classification, question answering, text generation and many others. BERT’s

popularity is due to the fact that it is a context­based embedding model, as opposed to

other common embedding models like word2vec, which is context­free [16].

6



CHAPTER 2. THEORETICAL BACKGROUND

BERTmodel is first trained on a large dataset for a specific task and the trained model

is saved. For a new task we can use the saved weights of the previously trained model

(pre­trainedmodel) instead of initializing the newmodel with randomweights. In this

case instead of training a new model from scratch the pre­trained model is used and

the weights are tweaked (fine­tuned) for the new down­stream task. This technique is

known as Transfer­Learning. The pre­training and fine­tuning of BERT is explained

below:

• Pre­training BERT: Before feeding the input sequence to BERT, the input

text is first embedded using three embedding layers namely Token embedding,

Segment embedding and Position embedding. The token embedding layer first

tokenizes the input sequence, then adds the classification token [CLS] at the

beginning of the first sentence and then adds a separator token [SEP] at the end

of every sentence. The segment embedding layer distinguishes between the two

given sentences. It receives the input tokens and then returns either EA if token

belongs to sentence A or EB if token belongs to sentence B as output. As the

transformer can process all the words in parallel, the position embedding layer

helps in marking the position of the word.

BERT uses Masked Language Modeling (MLM) and Next Sentence Prediction

(NSP) tasks for pre­training. The goal of the MLM is to predict the original

vocabulary id of the masked word based only on its context, whereas NSP task

jointly pre­trains text­pair representations [7].

In MLM task, 15% of the words are randomly mask. To avoid any discrepancy

between pre­training and fine­tuning the 80­10­10% rule is followed in masking

which is 80% are replaced with [MASK], 10% token with a random token and for

the remaining 10% no changes are made.

InNSP task two sentences are given as input and it finds the relationship between

them. 50% of the time the sentence B is the actual next sentence of sentence

A (labeled as IsNext) and remaining 50% of the time it is a random sentence

(labeled as NotNext).

• Fine­tuningBERT: By swapping out the appropriate inputs and outputs BERT

can be fine­tuned for different downstream tasks. Simply insert the task­specific

inputs and outputs into BERT and fine­tune all of the parameters end­to­end for

each task.

7



CHAPTER 2. THEORETICAL BACKGROUND

2.3 Multimodal models

Modality refers to the way something occurs or is experienced [4]. The aim of

multimodal machine learning is to create models that can process and relate data from

a variety of sources for instance images, text and video etc.

Multimodal machine learning has five main challenges [4]:

1. Representation ­ how to represent and summarizemultimodal data in a way that

exploits the complementarity and redundancy of multiple modalities.

2. Translation ­ how to translate (map) data from one modality to another. Not

only is the data heterogeneous, but the relationship between modalities is often

open­ended or subjective.

3. Alignment ­ to identify the direct relations between (sub)elements from two or

more different modalities.

4. Fusion ­ to join information from two ormoremodalities to perform a prediction.

5. Co­learning ­ to transfer knowledge between modalities, their representation,

and their predictive models.

In this thesis, we primarily consider data modality fusion and how it can be used for

prediction tasks. There are three types of Fusion techniques [4]:

1. Early Fusion: In this technique the features from eachmodality are combined at

the start and then the fullmodel architecture is applied on the combined features.

It is feature based.

2. Late Fusion: In this technique the individual modalities are run through their

own architecture and the outputs are combined at the end to make a prediction.

It is decision­based.

3. Hybrid Fusion: It tries to combine the benefits of both the early and late fusion

techniques into a single framework.

2.3.1 Single­stream models

In single­stream models, concatenation of image and text features are provided to a

standard BERT architecture [5]. It comes under the category of early fusion.

8



CHAPTER 2. THEORETICAL BACKGROUND

UNITER:

UNITER [6] has a single­stream architecture model (Fig: 2.3.1). UNITER first uses an

Image Embedder to encode image regions (visual features and bounding box features)

and a Text Embedder to encode textual words (tokens and positions) into a single

embedding space. Then it applies a Transformer module to learn the generalizable

contextualized embeddings for each region and eachwordwith the help of pre­training

tasks [6].

Figure 2.3.1: UNITER model [6]

UNITER is pre­trained on four image­text datasets namely COCO [10], Visual Genome

[8], Conceptual Captions [19] and SBU Captions [15]. It uses four pre­training tasks:

MLM, Masked Region Modeling (MRM) with three variants, Image Text Matching

(ITM), and Word Region Alignment (WRA) [6].

UNITER achieved state of the art across six Vision + Language tasks (over nine

datasets), including Visual Question Answering, Image­Text Retrieval, Referring

Expression Comprehension, Visual Commonsense Reasoning, Visual Entailment, and

Natural Language for Visual Reasoning (NLVR) [6].

VL­BERT:

The VL­BERT model is a single­stream architecture model (Fig: 2.3.2). It is based on

a unified multi­modal Transformer architecture which takes both visual and linguistic

embedded features as input. The main differences between other multimodal models

and VL­BERT model are:

9



CHAPTER 2. THEORETICAL BACKGROUND

1. Sentence­Image Relationship prediction is not incorporated as it is of no help in

pre­training visual­linguistic representations.

2. VL­BERT is pre­trained on both large visual­linguistic corpus (Conceptual

Captions dataset) and a text­only (BooksCorpus) dataset.

3. In VL­BERT, the parameters of Fast Region Based Convolutional Neural

Networks (R­CNN), deriving the visual features, are also updated. There is

improved tuning of the visual representation.

Figure 2.3.2: VL­BERT model [21]

2.3.2 Dual­stream models

In dual stream models, the image and text features are first provided to two

independent Transformer layers and then later into cross­modal Transformer layers

[5].

ViLBERT:

ViLBERT is a dual­stream model. It processes both visual and textual inputs

in separate streams that interact through co­attentional transformer layers (Fig:

2.3.3). The ViLBERT model is pre­trained on 3.1 million image­caption pairs

from the Conceptual Captions dataset. It accommodates each modality’s unique

processing requirements while also allowing for interaction across modalities at

various representation depths. As per the paper [11], ViLBERT model outperformed

the single­stream architecture models.

10
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Figure 2.3.3: ViLBERT model [11]

LXMERT:

LXMERT is also a dual­stream model. It has three Transformer encoders: an object

relationship encoder, a language encoder, and a cross­modality encoder [23].

Themain difference between LXMERT andViLBERT is that the image representations

obtained from the object detector are directly sent in ViLBERT whereas LXMERT

further processes them through normalization layers. The normalization layers are

shown in the Fig: 2.3.4 before the Object­Relationship Encoder (image) and Language

Encoder (text).

Figure 2.3.4: LXMERT model [23]

2.4 Explainability

Most of the deep learning models are black boxes and the user does not know on what

basis the prediction has been made. In mission critical systems and in the field of

medicine, it is really important to know what the model has learned. Explainability

helps in increasing the trust of the users for the model [18].

There are different explainability techniques and the one that we have used in this

thesis project is LIME. The reason for choosing LIME is that we will be looking into

single prediction explanation and not the entire model explanation.

11
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2.4.1 LIME

Surrogate model is a machine learning model (not a simulation). The purpose of

(interpretable) surrogate models is to approximate the predictions of the underlying

model as accurately as possible and to be interpretable at the same time [13]. Individual

predictions of black box machine learning models can be explained using local

surrogate models, which are interpretable models. Surrogate models are trained to

approximate the underlying black box model’s predictions. LIME [18] focuses on

training local surrogate models to explain individual predictions rather than creating

a global surrogate model [13].

The explanation produced by LIME is obtained by the following optimization problem:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (2.2)

The explanation model for x is the model g (e.g. linear regression model) that

minimizes lossL (e.g. mean squared error), which evaluates how close the explanation

is to the prediction of the original black­box model f , while keeping the model

complexityΩ(g) low (e.g. prefer fewer features). G stands for the group of interpretable

models, such as all linear regression models. The proximity measure πx specifies the

size of the neighborhood that we evaluate for the explanation around instance x.

2.4.2 Other Explainability Techniques

SHapley Additive exPlanations (SHAP): In [12], they have provided strong

theoretical proofs of the method. It calculates the feature contribution and uses the

concept of baselines. For each prediction, SHAP provides an importance value to each

feature. It has two novel components: (1) the identification of a new class of additive

feature importance measures, and (2) theoretical results demonstrating that this class

has a single solution with a set of desirable properties. It is a black box explanation

method as it does not need access to the underlying model.

Integrated Gradients (IG): IG [22] takes less time to compute compared to SHAP.

This technique works by summing up gradients along a path from a baseline to a

specific input. The baseline for text models could be the zero embedding whereas

for image networks it could be a black image. IG can be applied to any differential

model.

12
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Deep Learning Important Features (DeepLIFT): DeepLIFT [20] recognizes

thatwhatwe care about is the slope, which describes how y changes asxdiffers from the

baseline and not the gradient. It is fast as it requires one backward pass of themodel to

calculate feature importance values. Moreover, it is exact unlike integrated gradients,

there is no approximation that takes place. However, it redefines how gradients are

calculated so we need to dig deep into most deep learning frameworks to implement

it. Furthermore, it has no theoretical guarantees compared to SHAP and IG.

2.5 Related Work

The paper “Multimodal Pretraining Unmasked: Unifying the Vision and Language

BERTs” [5] has compared five different multimodal models namely ViLBERT [11],

LXMERT [23], UNITER [6], VisualBERT [9] and VL­BERT [21]. They have

created a controlled environment based on unified mathematical framework called

VisiOLinguistic Transformer Architectures (VOLTA) to conduct their experiments and

observe the differences. As per their experiments, there is not much difference in

single­stream and dual­stream models. The main difference occurs in the result due

to the training data and hyper parameters. Moreover, they also observed that the

embedding layer plays a crucial role in these massive models [5]. In this thesis project

we have used their controlled environment VOLTA to run our experiments in order to

have a common ground to observe the differences in the explainability of single­stream

and dual­stream models.

Not much work has been done on multimodal explainability. In the paper “Faithful

Multimodal Explanation for Visual Question Answering” [25] they provide a novel

way to construct a high­performing Visual Question Answering (VQA) system that

can explain its answers with integrated textual and visual explanations that properly

reflect key features of the underlying reasoning process while capturing the style

of understandable human explanations. This solution is specific to the VQA

problem.

13



Chapter 3

Methodology

This chapter describes the dataset used and the experiments that we have

performed in order to find out whether single­stream architecture is better or dual­

stream architecture for the problem of visual entailment as well as in terms of

explainability.

3.1 Dataset

We used the VE problem. In the VE task, a real world image premise Pimage and a

natural language hypothesis Htext are given, and the goal is to determine if Htext can

be concluded given the information provided by Pimage [26]. Based on the relationship

indicated by the (Pimage,Htext), three labels are assigned:

• Entailment holds if there is enough evidence in Pimage to conclude that Htext is

true.

• Contradiction holds if there is enough evidence in Pimage to conclude thatHtext is

false.

• Otherwise, the relationship is neutral, implying the evidence in Pimage is

insufficient to draw a conclusion aboutHtext [26].

14



CHAPTER 3. METHODOLOGY

Figure 3.1.1: An example from SNLI­VE dataset [26]

The data that we have used for this thesis project is the SNLI­VE dataset [26].

This dataset is based on Standford Natural Language Inference (SNLI) corpus and

Flickr30k dataset. The figure 3.1.1 shows an example of the SNLI­VE dataset.

3.2 Image Feature Extractor

As mentioned in chapter 2, for the image the features are extracted and then sent as

input to the models. To extract the features we use the Bottom­Up and Top­Down

attention mechanism. In this approach the bottom­up mechanism (based on Faster

R­CNN) proposes image regions, each with an associated feature vector, while the

top­down mechanism determines feature weightings [3]. The attention mechanisms

driven by non­visual or task­specific context are referred as ‘top­down’ whereas purely

visual feed­forward attention mechanisms are referred as ‘bottom­up’. The bottom­

up attention is implemented by using Faster R­CNN [17], which represents a natural

expression of a bottom­up attention mechanism. The top­down mechanism uses

task­specific context to predict an attention distribution over the image regions. The

attended feature vector is then computed as a weighted average of image features over

all regions [3].

In VOLTA framework, they used the docker image of bottom­up attention [1]. The

code base of bottom­up attention is written in python 2 whereas VOLTA framework

uses python 3. In VOLTA they had already extracted the features of the images and

then used those extracted features for their experiments. They were not extracting the

features during run time. To run our explainability task, we had to extract features

of the given image during run time and we could not store the features separately.
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This was a very difficult task to achieve. We earlier thought of integrating the feature

extraction code within our code base but due to python version differences this was

not possible. We then created virtual python environment for VOLTA and from that

virtual environment we called the bottom­up attention docker in order to extract the

features.

3.3 Comparison

In order to find which multimodal architecture is better for visual entailment problem

we used the VOLTA framework. The VOLTA github repository [5] provides with the

pre­trained models of UNITER, VL­BERT, ViLBERT and LXMERT in the VOLTA

controlled environment. In order to train the models for the VE down­stream task

we ran the training script for 5 epochs. The hyperparameters were kept the same for

all the multimodal models. The batch size was 128 with gradient accumulation step of

16. We used warm­up of 0.1, learning rate adam optimizer with adam epsilon value

10−6 and weight decay as regularization with value 0.01.

Once the training was completed we ran the test script. The performance evaluation

metric used was accuracy. Accuracy is the number of correctly predicted data points

out of all the data points.

3.4 Multimodal Explainability

In order to run our experiments, we firstly fine­tuned all our models for the SNLI­VE

data set and once that was done we used the best trained model of each multimodal

model for the experiments.

For explainability we have used the technique of LIME along with using the available

LIME python library [2]. LIME follows the following steps for explainability:

1. Perturb the data

2. Calculate distance between perturbations and original instance

3. Make predictions using the model on the perturbed data

4. Fit a simple model to the perturbed data and use the distance as weights
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5. Feature weights of this simple model predict the feature weights of the original

model

Figure 3.4.1: Illustration of Multimodal Explainability. The highlighted yellow
box is the custom made multimodal explainer.

There are three ways in which we could perform the explainability tasks in image­text

multimodality (Fig: 3.4.1):

1. Perturbing the image and keeping the text fixed

2. Perturbing the text and keeping the image fixed

3. Perturbing both image and text

3.4.1 Perturbing the image and keeping the text fixed

In this case we used the LimeImageExplainer() function. We gave the same text as

input for all the image perturbations. The LimeImageExplainer explains predictions

on the image data.
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c l a s s l ime . lime_image . LimeImageExplainer ( kernel_width =0.25 ,

kernel=None , verbose=False , f e a tu r e_se l e c t i on = ‘ auto ’ ,

random_state=None)

Below is the description of LimeImageExplainer parameters [2]:

• kernel_width – kernel width for the exponential kernel.

• kernel – similarity kernel that takes euclidean distances and kernel width as

input and outputs weights in (0, 1). If None, defaults to an exponential kernel.

• verbose – if true, print local prediction values from linear model

• feature_selection – feature selection method. Can be ‘forward_selection’,

‘lasso_path’, ‘none’ or ‘auto’.

• random_state – an integer or numpy. RandomState that will be used to

generate random numbers. If None, the random state will be initialized using

the internal numpy seed.

To generate explanation for the prediction we used the explain_instance() function.

This function generates the neighborhood data by randomly perturbing features from

the instance. It then learns locally the weighted linearmodel on the neighborhood data

to explain each of the classes in an interpretable way.

expla in_instance ( image , c l a s s i f i e r_ f n , l a b e l s =(1 , ) ,

hide_color=None , top_labe ls =5 , num_features=100000,

num_samples=1000, batch_size =10 , segmentation_fn=None ,

dis tance_metr ic = ‘ cosine ’ , model_regressor=None ,

random_seed=None , progress_bar=True )

Below is the description of explain_instance parameters [2]:

• image – 3 dimension RGB image.

• classifier_fn – classifier prediction probability function, which takes a numpy

array and outputs prediction probabilities.

• labels – iterable with labels to be explained.

• top_labels– if notNone, ignore labels andproduce explanations for theK labels

with highest prediction probabilities, where K is this parameter.
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• num_features – maximum number of features present in explanation

• num_samples – size of the neighborhood to learn the linear model

• batch_size – The number of images that are sent together in one batch.

• distance_metric – the distance metric to use for weights.

• model_regressor – sklearn regressor to use in explanation. Defaults Ridge

regression in LimeBase.

• segmentation_fn – Segmentation Algorithm, wrapped skimage function

(segmentation)

• random_seed – integer used as random seed for the segmentation algorithm.

If None, a random integer, between 0 and 1000, will be generated using the

internal random number generator.

• progress_bar – if True, show tqdm progress bar.

In the experiment we first initialized the LimeImageExplainer function and then called

the explain_instance function by sending the image as an array input. The other

parameters that were sent were the classification function, number of samples, batch

size and the top label.

3.4.2 Perturbing the text and keeping the image fixed

In this case we used the LimeTextExplainer() function. We give the same image

features as input for all the text perturbations. The LimeTextExplainer explains the

text classifiers.

c l a s s l ime . l ime_text . LimeTextExplainer ( kernel_width=25 ,

kernel=None , verbose=False , class_names=None ,

f e a tu r e_se l e c t i on = ‘ auto ’ , sp l i t_expres s ion = ‘\W+ ’ ,

bow=True , mask_string=None , random_state=None ,

char_leve l=False )

Below is the description of LimeTextExplainer parameters [2]:

• kernel_width – kernel width for the exponential kernel.
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• kernel – similarity kernel that takes euclidean distances and kernel width as

input and outputs weights in (0, 1). If None, defaults to an exponential kernel.

• verbose – if true, print local prediction values from linear model

• class_names – list of class names, ordered according to whatever the classifier

is using.

• feature_selection – feature selection method. Can be ‘forward_selection’,

‘lasso_path’, ‘none’ or ‘auto’.

• split_expression – Regex string or callable.

• bow– if True (bag of words), will perturb input data by removing all occurrences

of individual words or characters. Explanations will be in terms of these words.

Otherwise, will explain in terms of word­positions, so that a word may be

important the first time it appears and unimportant the second. Only set to

false if the classifier uses word order in some way (bigrams, etc), or if you set

char_level=True.

• mask_string – String used to mask tokens or characters if bow=False if None,

will be ‘UNKWORDZ’ if char_level=False, chr(0) otherwise.

• random_state – an integer or numpy. Random State that will be used to

generate random numbers. If None, the random state will be initialized using

the internal numpy seed.

• char_level – an boolean identifying that we treat each character as an

independent occurrence in the string.

To generate explanation for the prediction we again used the explain_instance()

function. This function works similar to the previous one. The only difference is

that the previous one was for image explanation whereas this function is for the text

explanations.

Below is the description of explain_instance parameters [2]:

• text_instance – raw text string to be explained.

• classifier_fn – classifier prediction probability function, which takes a list of d

strings and outputs a (d, k) numpy array with prediction probabilities, where k is

the number of classes.
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• labels – iterable with labels to be explained.

• top_labels – if not None, ignore labels and produce explanations for the K

labels with highest prediction probabilities, whereK is this parameter.

• num_features – maximum number of features present in explanation

• num_samples – size of the neighborhood to learn the linear model

• distance_metric – the distance metric to use for sample weighting, defaults to

cosine similarity

• model_regressor – sklearn regressor to use in explanation. Defaults Ridge

regression in LimeBase.

In this experiment we first initialized the LimeTextExplainer with the class names

namely ‘contradiction’, ‘neutral’, ‘entailment’ and the bag of words set as False. We

then called the explain_instance function by sending the text, the classification

function, number of features and number of samples.

3.4.3 Perturbing both image and text

This was one of the most trickiest experiment. We had to create our own explainer

function in order to perturb both image and text.

For this experiment we had computational limitations as feature extractor needed

more GPU (at least 12GB) where as we only had 8GB GPU. Due to this limitation we

could only run the experiment for 10 number of samples.

We implemented two separate functions for image perturbations

and text perturbations. The image perturbation function creates multiple images by

segmenting the image into ‘super pixels’ and then turning those super pixels on or off.

Similarly, the text perturbation function works by randomly removing words from the

original sentence. While perturbing both the functions saves the distances (or weights)

from the original image and text respectively. These functions then return the weights

and the perturbations.

We then implemented our main multimodal explainer function which calls the image

perturbation and text perturbation function. The multimodal explainer follows the

LIME technique. It sums the weights of image and text and also concatenates the

perturbations of both image and text.
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After this step, we need to get the predictions from the model and for that we

need to send the image features. For this purpose we call the feature extraction

function. Once all this is complete we call themodel prediction function and save those

predictions.

We then create our local surrogate model by using Linear Regression. We give the

concatenated perturbations asX, themodel predictions as y and the combinedweights

as sample_weight. The coefficient of this simple model is the feature importance.

The starting coefficients are for the image and the later ones are for the text as while

concatenating the perturbations we gave the image perturbations before the text.

Below we have provided a simplified code of our model explainer function:

def multimodal_explainer ( image , sentence , answer , num_samples ) :

image_perturbations ( image , num_samples )

tex t_per turbat ions ( sentence , answer , num_samples )

# FEATURE EXTRACTION

f ea tu re_ex t rac t i on ( )

# LINEAR MODEL

#Combined weights

weights = weightsImage + weightsText

#Combined perturbat ions

perturbat ionsC = np . concatenate ( ( imagePerturbs , t ex tPer turbs ) )

#Get PREDICTIONS from model

pred i c t i ons = predic t_fn ( )

#Surrogate Model

simpler_model = LinearRegression ( )

simpler_model . f i t (X=perturbationsC , y=pred ic t ions , weights )

co e f f = simpler_model . coef_ [0]
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#Disentangling Coe f f i c i e n t s

coeffImage = coe f f [ : num_superpixels ]

coe f fTex t = coe f f [ num_superpixels : ]

# IMAGE EXPLANATION

#Use c o e f f i c i e n t s from l inear model to ex trac t top features

#Show only the superp ixe l s corresponding to the top features

# TEXT EXPLANATION

#Use c o e f f i c i e n t s from l inear model to f ind word importance
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Result

In this chapter we present the results of the experiments that we have performed.

Section one displays the results of the comparison experiments and section two shows

the results of the different explainability experiments.

4.1 Comparison

When we trained both the single­stream and dual­stream multimodal models we

observed that UNITER had the best testing accuracy of 77.230. Rest of the models also

had similar accuracy as shown in the table 4.1.1.

Model Accuracy Loss

UNITER 77.230 0.354
VL­BERT 76.828 0.358
ViLBERT 76.605 0.406
LXMERT 76.482 0.389

Table 4.1.1: Accuracy and Loss of multimodal models on Visual Entailment task

From the table 4.1.1 we can see that the single­stream models UNITER and VL­BERT

perform better on the VE task compared to the dual­stream models ViLBERT and

LXMERT.
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4.2 Multimodal Explainability

As mentioned previously, we ran the explainability experiments for only 10 number

of samples due to which the explainability results were not stable enough. For the

experiments where we perturb only one modality and keep the other fixed we used the

image 4.2.1. The hypothesis text given was “The man painted the picture of a boy that

happened to be his grandson.” and the expected answer was “neutral”.

Figure 4.2.1: Original Image

4.2.1 Perturbing the image and keeping the text fixed

The figure 4.2.2 displays the explainability result of UNITER (Fig: 4.2.2a), VL­BERT

(Fig: 4.2.2b), ViLBERT (Fig: 4.2.2c) and LXMERT (Fig: 4.2.2d) for the experiment

where we perturb the image but keep the text fixed. We can see that only UNITER

predicted neutral correctly however, the explainability shows all the highlighted

segments as red meaning negative influence on the prediction.

4.2.2 Perturbing the text and keeping the image fixed

The figure 4.2.3 displays the explainability result of UNITER (Fig: 4.2.3a), VL­BERT

(Fig: 4.2.3b), ViLBERT (Fig: 4.2.3c) and LXMERT (Fig: 4.2.3d) for the experiment

where we perturb the text but keep the image fixed. We can see that UNITER and

LXMERT both predict correctly. Moreover, they have similar explanation for their

prediction.
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4.2.3 Perturbing both image and text

For the experiment where we perturb both image and text we selected 5 images with

all the three label outputs. This report only shows the result for the image 4.2.1.

In the figures 4.2.4, 4.2.5, 4.2.6 and 4.2.7 the visible part of the images are the

important feature segments and for the text the green bar shows positive impact and

the red bar shows the negative impact of the word on the prediction. The predicted

output by the model can be seen on top of the text bar chart. The first row of result

shows the explainability result where neutral is the true label, the second row shows

for entailment and the last row shows for the contradiction.

We can see that UNITER and ViLBERT predicted correctly in all the three cases (refer

Fig: 4.2.4 and 4.2.6).
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(a) Model: UNITER
Prediction: neutral

(b) Model: VL­BERT
Prediction: entailment

(c) Model: ViLBERT
Prediction: entailment

(d) Model: LXMERT
Prediction: entailment

Figure 4.2.2: Explainability of the models where the image is perturbed and the
text remains fixed. Red represents the image segments that had negative effect on the
prediction whereas Green represents the positive effect
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(a) Model: UNITER
Prediction: neutral

(b) Model: VL­BERT
Prediction: entailment

(c) Model: ViLBERT
Prediction: contradiction

(d) Model: LXMERT
Prediction: neutral

Figure 4.2.3: Explainability of the models where the text is perturbed and the
image remains fixed. Strongly color highlighted text represents the words which had the
most impact on the prediction.
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Figure 4.2.4: Multimodal Explainability of UNITER.
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Figure 4.2.5: Multimodal Explainability of VL­BERT.
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Figure 4.2.6: Multimodal Explainability of ViLBERT.
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Figure 4.2.7: Multimodal Explainability of LXMERT.
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Chapter 5

Conclusions

In this thesis project we firstly trained themultimodalmodels for the visual entailment

problem and then we performed experiments for the three possible permutations for

explainability. We implemented our ownmultimodal explainer by following the LIME

technique.

We observed that multimodal explainability can be performed by adding the weights

and perturbations of both themodalities. The results of our experiments were random

due to the computational limitations, however, we can still conclude based on our

observations that even the explainability of both single­stream and dual­streammodel

is similar. Therefore, before selecting a model to perform prediction the model which

has the best accuracy could be selected. It does notmatter whether it is a single­stream

model or a dual­stream model.

5.1 Future Work

The down­stream task for all the models could be run for more number of

epochs. Moreover, we could also apply different explainability techniques like SHAP,

Integrated gradients etc. As we faced technical limitations there are a lot of things that

could be performed as future work if these limitations are overcome. We can run the

experiment for more number of samples (at least 1000) to further investigate which

model architecture is better with respect to explainability. Furthermore, we can also

try changing the kernel width in the LIME explainability technique.
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