
DEGREE PROJECT IN TECHNOLOGY,
SECOND CYCLE, 30 CREDITS
STOCKHOLM, SWEDEN 2021

Rare Event Learning
In URLLC Wireless
Networking
Environment Using
GANs

KTH Thesis Report

Jón Rúnar Baldvinsson

KTH ROYAL INSTITUTE OF TECHNOLOGY
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Authors
Jón Rúnar Baldvinsson (jrba@kth.se)
Machine Learning
KTH Royal Institute of Technology

Place for Project
Stockholm, Sweden

Examiner
Amir H. Payberah
Stockholm, Sweden
KTH Royal Institute of Technology

Supervisor

Mårtin Björkman

Stockholm, Sweden

KTH Royal Institute of Technology

ii

Abstract

Industry 4.0 imposes strict requirements on Fifth Generation (5G) system, such as

high reliability, availability, and low latency. Guaranteeing such requirements means

that there are supposed to be a low number of system failures. Such rareness can

cause problems when access to a broader range of these failures is necessary (e.g.,

finding optimal scheduler or learning in Deep Reinforcement Learning (DRL)). This

work will investigate the possibility of using Generative Adversarial Network (GAN)

to generate rare events in wireless communication data that might cause failure

events. Conventional training methods fall short when trained on such a dataset,

as they will overfit the common values while ignoring the rare values. We propose

an alternative training method for GANs, called incremental learning, that aims at

increasing learning in the rare sections without sacrificing the learning of the rest of

the dataset.

Keywords

URLLC, GANs, Simulation

iii

Abstract

Industry 4.0 ställer strikta krav på 5G­systemet, såsomhög tillförlitlighet, tillgänglighet

och låg latens. För att säkerställa uppfyllandet av kraven ovan på systemet, måste

antalet systemfel vara sällsynta. I vissa fall som t.ex. skapandet av en optimal

”scheduler” eller inlärning av DRL kan det vara problematiskt att ha ett system med

sällsynta systemfel. Detta är sant, eftersom det kommer att vara nödvändigt och

nästintill ett krav att ha tillgång till ett brett utbud av systemfel. Denna studie

kommer undersöka möjligheten att använda GAN för att generera sällsynta händelser

i trådlös kommunikationsdata. Konventionell träning misslyckas när den tränas på en

sådan datamängd, eftersom den kommer att vara överanpassad för de vanliga värdena

samtidigt som de sällsynta värdena ignoreras. Vårt förslag är att använda en så kallad

”incremental learning” somen alternativmetod förGANs. Inom”incremental learning”

strävar man efter att öka inlärningen i de sällsynta fallen utan att offra inlärningen av

de resterande datamängd.

Nyckelord

URLLC, GANs, Simulering

iv

Acknowledgements

I would like to expressmy gratitude to AbdulrahmanAlabbasi andMiladGanjalizadeh,

my supervisors at Ericsson, for the weekly discussion, and support during this thesis.

Thanks to Ericsson for giving me the chance to work on such an interesting project.

Additionally, I would like to thank Mårten Björkman and Amir Payberah at KTH for

their help during this work.

v

Acronyms

5G Fifth Generation

DRL Deep Reinforcement Learning

GAN Generative Adversarial Network

URLLC Ultra­Reliable Low Latency Communication

VAE Variational Autoencoder

ALOE At Least One Rare Event

IS Importance Sampling

MC Monte Carlo

MIS Multiple Importance Sampling

SER Symbol Error Rate

CGAN Conditional Generative Adversarial Network

3GPP The 3rd Generation Partnership Project

LST Learning to Segment the Tail

KL Kulback­Leibler

JSD Jensen­Shannon Divergence

DNN Deep Neural Network

ReLU Rectified Linear Unit

WGAN Wasserstein GAN

IL Incremental Learning

IL­GAN Incremental Learning GAN

CSI Channel State Information

CE Channel Estimate

SINR Signal to Interference & Noise Ratio

IT Interarrival Time

PL Packet Lengths

vi

Contents

1 Introduction 1
1.1 Research Question . 2

1.2 Stakeholders . 2

1.3 Outline . 3

2 Background 4
2.1 Wireless Communication . 4

2.2 Machine Learning . 5

2.2.1 Neural Networks . 5

2.2.2 Generative Models . 7

2.3 Related Works . 9

2.4 Summary . 12

3 Methods 13
3.1 Data . 13

3.1.1 Data collection and processing 13

3.1.2 Data segmentation . 15

3.2 Training methods ­ Incremental Learning 17

3.3 Models . 21

3.4 Methods for analysis . 23

4 Experiments and Results 24
4.1 Experiments . 24

4.2 Results . 24

4.2.1 Channel Estimate . 24

4.2.2 Signal to Interference & Noise Ratio (SINR) and Delay 25

4.2.3 Interarrival Time (IT) & Packet Lengths (PL) 28

vii

CONTENTS

5 Conclusion 30

References 32

viii

Chapter 1

Introduction

The Fourth Industrial Revolution (or Industry 4.0) is the ongoing automation of

manufacturing and industrial practices using modern technology such as Cyber­

Physical Systems, Internet of Things (IoT), Cloud Computing, and Cognitive

computing. 5G is the fifth­generation of technology standard for broadband cellular

networks. 5Gwill be crucial for realizing the full potential of Industry 4.0. applications

such as IoT sensing and control, autonomous driving, drones, remote control of

autonomous vehicles, and virtual and augmented reality that require high data rates,

low latency, and high reliability [1]. The requirements of Industry 4.0 are the

primary motivation behind 5G, as 4G can not meet the high demands of Industry 4.0

applications.

Ultra­Reliable Low Latency Communication (URLLC) is a set of features and

requirements used to ensure reliability, availability, and low latency in wireless

communication. URLLC requires high reliability (e.g., 10 years without failure),

high availability (e.g., 99.9999%) and low latency (e.g., <1 ms) [5, 6]. URLLC is

an important feature for ensuring that 5G networks are reliable and fast enough for

Industry 4.0 applications.

Due to the reliability requirements in URLLC, there is a lack of rare event data. That

can cause problemswhen, for example, training aDeepReinforcement Learning (DRL)

agent to act as a scheduler for URLLC. The limited access to rare event data causes a

problem during training, as it will encounter these rare events infrequently. Collecting

actual data and simulating it is both time­consuming and expensive. Simulators would

have to run for long and consume many computational resources to get sufficient rare

1

CHAPTER 1. INTRODUCTION

events. Collecting actual data is also time­consuming and has privacy concerns.

GAN is a type of generative model first introduced in 2014. GANs utilize an

adversarial learning process, using two separate networks, a generator network and

a discriminator network. The generator network generates a data sample, and the

discriminator network receives the generated sample and a data sample from a real

dataset. The discriminator’s objective is to detect the generated data, while the

generator’s objective is to generate data that can trick the discriminator.

1.1 Research Question

This thesis aims to examine the possibility of using GANs to generate URLLC data. We

implement an alternative learning method that helps with learning to generate data

from all segments of the distribution of wireless communication data, including rare

events.

The Research Question of this thesis is ”Can GANs incrementally learn real

and simulated wireless communication data distributions without catastrophically

forgetting previously learned segments?”

Benefits, Ethics and Sustainability

The benefit of this project is that using GANs to generate URLLC data can be a solution

to the problems described above. Generating data using GANs is faster then simulating

data. There are fewer privacy concerns using generated data then using actual data and

generative models can be used to generate further rare events that are not present in

the dataset.

The work does not raise any ethical concerns.

1.2 Stakeholders

This degree project is a collaboration between KTH the Royal Institute of Technology,

and Ericsson Research in Stockholm.

2

CHAPTER 1. INTRODUCTION

1.3 Outline

This thesis is divided into five chapters. Chapter 2 provides the necessary background

in wireless communication, URLLC, GANs and related works. Chapter 3 goes into

detail about the engineering methods used in this thesis, and Chapter 4 shows the

implementation of them using experiments and presents the thesis results. Chapter

5 concludes the project with an analysis of the results, discussion on future works, and

final words.

3

Chapter 2

Background

In this chapter the background material needed to understand the thesis is presented.

First the area of wireless communication is introduced. Next an overview of machine

learning and generative models and other related works. Finally, we motivate why

GANs were chosen for this particular problem.

2.1 Wireless Communication

The area of wireless communication has evolved significantly over the past decades.

It has evolved from analog technology and low data rates to making video calls and

watching their tv shows on smartphones. 4G offers everything that most people need,

but for Industry 4.0 applications, the needs are much greater.

The 3rd Generation Partnership Project (3GPP) is a combined effort between seven

telecommunication standards development organizations. 3GPP defines the URLLC

requirements for different applications. This thesis will follow the 3GPP standard in

URLLCwhich includes a set of features used in wireless communication to ensure high

reliability, availability, and low latency. Table 2.1.1 shows an example of requirements

for a few different use cases. Each use case has different requirements, the number

of users (UEs) that can connect to the base station, service availability and reliability

requirements, maximum latency, etc.

From Table 2.1.1 we can see the strict requirements URLLC imposes. For example,

reliability requirements of 10 years without failure, availability of 99.9999%, and

latency of less than 1ms in some cases.

4

CHAPTER 2. BACKGROUND

Table 2.1.1: 3GPP defined URLLC Requirements[1]

Characteristic parameter Infuence Quantity

User Case Service availability Service reliability
End­to­end

latency maximum
Transfer Interval:

target value
Survival time # of UEs Service area

Motion Control
99,9999 % ­
99,999999 %

∼10 years <transfer interval value 1 ms 1 ms 50 50 m x 10 m x 10m

Control­to­control
in motion control

99,9999 % ­
99,999999 %

∼10 years <transfer interval value 10 ms 10 ms 5 ­ 10 100 m x 30 m x 10 m

Mobile Robots >99,9999 % ∼10 years <transfer interval value 1 ms ­ 50 ms transfer interval value 100 10 km

Due to these strict requirements, URLLC is supposed to have a low number of system

failures. There are many causes for possible failure events. Channel fading, delay,

and load are factors that might lead to errors. Channel fading and load would lead to

variable interference, and consecutive interference and delay violation lead to a failure

event.

Wireless communication has many parameters involved in linking the client with the

server.

Channel State Information (CSI) is information about known channel properties

in the communication link between a server and a client. Channel Estimate (CE) uses

the CSI to estimate how a signal will transmit between a client and server. Channel

fading is included in the CSI.

SINR is used to quantify the rate of information that can reliably be transferred in

wireless communication systems.

Delay is the difference between the time of arrival and time of sending.

IT is the time between the arrival of a signal and the arrival of the next signal.

PL is the number of bytes in a network packet.

2.2 Machine Learning

2.2.1 Neural Networks

Neural Networks were inspired by the nervous system in the human body. Data is used

as an input and is passed through the neural network, and the network gives an output.

A neural network commonly consists of an input layer, a number of hidden layers, and

an output layer. At each layer, there are neurons. Between layers, there are weights

and biases used to transform the input to the desired output.

Additionally, there is an activation function used on each node in a layer. Many

5

CHAPTER 2. BACKGROUND

different activation functions exist, but the most commonly used ones are the Sigmoid

function, Rectified Linear Unit (ReLU) and Tanh. The activation function is used

to introduce non­linearity into the neural network. Figure 2.2.1 shows a general

architecture of a feed­forward neural network, and Equation 2.1 shows how the output

is calculated in that neural network.

Figure 2.2.1: Neural Network

H = A(X ∗W + b1)

O = A(H ∗ V + b2) (2.1)

A loss function is used to calculate the difference between the output of a neural

network and the desired output. To train a neural network, the gradient of the loss

function is calculated, with regard to the weights and biases. Then, using Stochastic

gradient descent, theweights and biases aremodified. Thismethod of training is called

back­propagation.

Deep learning is a subset of Machine Learning where Deep Neural Network (DNN) are

utilized. A DNN consists of many hidden layers. DNNs are an old concept but only

became viable in recent years due to advances in processing units like CPUs and GPUs

and the increased availability of enough data to train them.

Two subsections of machine learning are supervised learning and unsupervised

learning. Supervised learning uses labeled data, while unsupervised learning uses

unlabeled data.

6

CHAPTER 2. BACKGROUND

Two common uses of machine learning are generative models and discriminative

models. Discriminative models aim to maximize the probability of the output given

the input (P (y|x)). Generative models aim to learn the distribution of a dataset and

produce further examples from the same distribution (P (x) or P (x|y)). A well­known
dataset is the MNIST dataset consisting of images of handwritten digits from 0­9.

In discriminative learning, the input (x) is the image’s pixel values, and the output

(y) is a class label. The discriminative model aims to predict which digit the image

contains. In Generative learning, the input (x) is the image’s pixel values and possibly

a class label (y), and the output is a new data sample (x´). Discriminative learning is

a supervised learning method, while Generative learning can be either supervised or

unsupervised.

2.2.2 Generative Models

While discriminative learningwas themain reason for the increased popularity of deep

learning in the last decade, interest in generative learning has increased steadily. Many

different generative models exist, but this discussion will focus on the most common

ones. Those are Variational Autoencoder (VAE) and GANs

VAE [13] is a type of generative models. VAEs are split into three parts, an Encoder, a

Decoder, and a latent space. The Encoder encodes the input data as a distribution over

the latent space. That distribution is sampled, and the Decoder decodes the sampled

point. Instead of mapping the input to a single point, VAEs encode the input as a

distribution over the latent space. To ensure that points close to each other in the latent

space have similar output and that each point in the latent space has a meaningful

output, the latent space is regularized. The latent space is regularized using Kulback­

Leibler (KL) divergence. KL divergence is used to minimize the distance between the

latent space and a target distribution. This method is called variational inference.

Figure 2.2.2 shows the architecture of a variational auto­encoder.

To generate new data, z is sampled from the latent distribution and used as an input

to the decoding network. The output should be a data point that follows the same

distribution as the training data.

Generative Adversarial Network were first introduced in 2014 [7]. GANs utilize

adversarial learning. A discriminative model estimates the probability that a data

sample came from the real dataset or was generated by a generator. The generator

7

CHAPTER 2. BACKGROUND

Figure 2.2.2: Variational Auto­encoder

tries to generate samples that lead to the discriminative model making an incorrect

guess. Figure 2.2.3 shows the conventional architecture of GANs. The generator is

fed input noise or a latent space, like a multivariate distribution, and it generates a

data sample. The discriminator receives both the generated data and real data as

input, and it predicts whether each data sample came from the real dataset or from

the generator.

Figure 2.2.3: GAN

Conditional Generative Adversarial Network (CGAN) [14] is a modification of the

original GANarchitecture. A class label y is used as an additional input to the generator

and the discriminator. This modification allows for control over the generated data.

Figure 2.2.4 shows the architecture of a Conditional GAN.

Figure 2.2.4: Conditional GAN

8

CHAPTER 2. BACKGROUND

The original loss function used in [7] was

minGmaxDV(D, G) = Ex~pdata(x)[log D(x)] + Ez~pz(z)[log(1 ­ D(G(z))] (2.2)

where the discriminator D is trained to maximize the probability of predicting the

correct label while the generator G is trained to minimize it. This is the equivalent

of a zero­sum game between two players.

2.3 Related Works

Training GANs is unstable, and it has been shown that the KL­divergence and JS­

divergence used in minimizing GANs is a possible source of instability and vanishing

gradients in GAN training [2] [3]. Wasserstein GAN (WGAN) [3] propose using the

Earth­Mover distance, also known as the Wasserstein­1 distance, instead.

W (Pr,Pg) = inf
γ∈

∏
(Pr,Pg)

E(x,y)~γ

[
||x− y||

]
(2.3)

And using the Kantorovich­Rubinstein duality to remove the infimum, the loss

function becomes

max
w∈W

Ex~Pr

[
fw(x)

]
− Ez~p(z)

[
fw(Gθ(z))

]
(2.4)

where fw is the set of 1­Lipschitz functions. To enforce the Lipschitz constraint on

the Discriminator,a gradient penalty is used on the parameters of the Discriminator

[8].

Instead of the Discriminator predicting a probability of a sample being real, theWGAN

discriminator output values are not bounded to be between 0 and 1. Instead, the

Discriminator attempts to assign the low values to generated samples and high values

to real samples. The loss function for the generator becomes

max
θ∈Θ

Ez~p(z)

[
fw(Gθ(z))

]
(2.5)

9

CHAPTER 2. BACKGROUND

So the generator tries to get the Discriminator to give the generated data high values.

WGANs have been shown to increase stability in trainingGANs as it has amore reliable

gradient in all areas.

Other methods have been utilized to speed up simulators in rare­event environments.

Importance Sampling (IS) is an alternative to Monte Carlo (MC) sampling. It is used

when MC sampling is infeasible or inefficient, e.g., in rare­event environments. IS is

different fromMC in that itmodifies the sampling procedure to increase the probability

of sampling from a specific area of the distribution. So while MC samples from the

Gaussian distribution of the observed variables, π(x), IS samples from a proposal

distribution q(x). Let us call that area D. D can, for example, be the area that the

rare events are in. To provide an unbiased result, the samples from D are weighed

proportional to the increase in sample rate.

Multiple Importance Sampling (MIS) is an extension of IS. In MIS multiple proposal

distributions are used.

The authors of [4] analyzed the effects of estimating a MIS technique called At Least

One Rare Event (ALOE), first introduced in [15], does in evaluating the Symbol

Error Rate (SER) in the presence of Gaussian Noise. The proposal distributions in

ALOE sample the system conditional on an error taking place, providing an unbiased

estimation of the SER. In this environment, where the signal­to­noise ratio is high

(symbol errors happen rarely), ALOE provides a speedup of orders of magnitude over

MC methods.

It has been shown that IS and ALOE offer speedup of orders of magnitudes over

MC methods in different rare­event environment simulations [4, 18]. The speedup

is only on the simulation side, so while IS provides a faster simulation time, it also

requires problem­specific analysis to design a suitable proposal distribution before the

simulation is run.

Many environments have the characteristic of having a few head classes occupying

most of the instances and a long­tail distribution having very few instances. In this

thesis, we call those environments rare­event environments. Training robust systems

in these rare­event environments is challenging. The danger is that the focus goes

towards the head classes while the tail classes are ignored. Methods such as under­

sampling the head classes or oversampling the tail classes have the risk of either under­

fitting the head classes or over­fitting the tail classes.

10

CHAPTER 2. BACKGROUND

Learning to Segment the Tail (LST) [9] is a method to increase learning in rare event

environments. The first step in LST is to split the unbalanced dataset into T balanced

datasets (C0,...,T−1). The most frequently occurring head classes are in dataset C0, and

the least frequently occurring tail classes are in datasetCT−1. Each dataset is trained in

a class­incremental learning style. Class­incremental learning aims to create a model

that can classify both the new and the old classes. The architecture for LST is shown in

Figure 2.3.1. A basemodel θ0 is trained onC0, then sequentiallyC1,...,T−1 is used to train

a newmodel θ1,...,T−1. During each training phase, data from the previously seen classes

are also used. This is necessary to prevent catastrophic forgetting of the previously seen

data. The data from the previously seen classes have a significantly higher number of

occurrences, so it needs to be sampled to enable the model to learn the new classes.

Additionally, a meta­learning­based weight generator is used to increase learning

in rare­event cases. The meta­learning­based weight generator transfers knowledge

from the previously seen classes to the rarely seen classes. The paper shows 8% AP

improvements in the tail classes over baseline models, while overall, the improvement

is 2.2%.

Figure 2.3.1: LST architecture

Using GANs to augment the training of a DRL trained as a URLLC scheduler has

been done before [12]. The objective was to give the agent more experience before

deployment. The input to the GAN was synthetic data of traffic arrival and channel

information. They conditioned the GAN so that the output of the generator network

would be similar to the input. Using this GAN, they created a comprehensive dataset

thatwas used to pre­train the agent before deployment. The paper shows that the agent

trained on the generated data recovered faster in unexpected extreme events that can

cause failures. The environment used in that work is not comparable to the one in our

work.

11

CHAPTER 2. BACKGROUND

2.4 Summary

GANs were chosen for this project due to the simplicity of the adversarial learning

process. GANsmake no assumptions about the data, model, or latent variables, unlike

VAEs. CGANs also allow for a conditional generation, which is what wewill be focusing

on in this thesis.

12

Chapter 3

Methods

3.1 Data

This section will describe the data used to train the models in question. We found

no real dataset using URLLC data that includes rare events that we can train on, so

a different approach was taken. The dataset used in this thesis is a mix of real data

and simulated data. We hypothesize that training a Generative model to correctly and

faithfully generate data from this dataset is a step in the right direction to solving the

problemusing real URLLC data and that using themethods described in this paper will

translate to solving that problem. Additionally, showing that the model can generate

data in the tail distribution sections with no data shows that the model can generate

rare events not present in the dataset.

3.1.1 Data collection and processing

Two datasets were gathered from simulated data. The first dataset consists of Channel

Estimate (CE) data and has 10.000.000 data points. 3.1.1a shows the distribution of

the CE data along with a zoom­in of the less common section.

The second dataset consists of Signal to Interference & Noise Ratio (SINR) and delay

data. That dataset has 15.000.000 data points. Figure 3.1.1b shows a plot of the

distribution of the SINR data along with a zoom­in on the less common sections, while

3.1.1c shows the distribution of the Delay data.

The real dataset was gathered from Crawdad [17] and consists of wireless networking

13

CHAPTER 3. METHODS

0 2 4 6 8
1e−12

0

2

4

6

8

10

12

14

0 2 4
1e−12

0.0

0.1

0.2

5 6 7 8
1e−12

0.000

0.002

0.004

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(a) CE

0 5 10 15 20 25 30 35
0

10

20

30

40

50

0 10 20 30
0.00

0.05

0.10

0.15

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(b) SINR

0.000 0.001 0.002 0.003 0.004 0.005
0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(c) Delay

Figure 3.1.1: Simulated Dataset

0 20 40 60 80 100
0

20

40

60

80

100

0.00 0.05 0.10
0.0

0.5

1.0

0 50 100
0.000

0.002

0.004

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(a) IT

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

200 400 600 800 1000 1200 1400
0.00

0.05

0.10

0.15

0.20

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(b) PL

Figure 3.1.2: Crawdad Dataset

data gathered from various video streaming platforms, like YouTube, Skype, Google

Hangouts, etc. From that data, the Interarrival Time (IT) and Packet Lengths (PL) was

extracted and calculated. The dataset has 2.494.707 data points. Figure 3.1.2a shows a

plot of the IT data along with a zoom of the less common sections. Figure 3.1.2b shows

a plot of the PL data along with a zoom of the less common sections.

14

CHAPTER 3. METHODS

3.1.2 Data segmentation

In this work, we will be segmenting our datasets and using it to train a CGAN

conditioned on data segments. Figure 3.2.1 shows how the data can be segmented.

Then a CGAN can be trained, conditioning on the segment. CE, SINR and IT are

continuous variables while Delay and PL are discrete variables. The continuous

variables were normalized to be between 0 and 1, and the discrete variables were

categorized. For the CE and SINR datasets, the whole dataset was normalized to be

between 0 and 1. For the IT the whole dataset is from values 0 ­ 100, and the majority

of the samples are below 0.002, so normalizing it caused problems when training the

model. So for the IT, we normalized each segment of the data individually. Delay has

four possible values, so we categorized it into four categories, and PL has 1368 possible

values, so we categorize it into 1368 categories.

Table 3.1.1 shows the segmentation and distribution of the Channel Estimate dataset.

From the table, we can see a clear head distribution. The first segment has more than

half of the data points in the dataset, while the first three segments have over 99% of

the data. The last two segments can be considered rare events.

Table 3.1.1: Segmentation and distribution of the Channel Estimate dataset

Segment Segmentation Distribution

Segment 1 0 ­ 0.125 5374842 (54%)

Segment 2 0.075 ­ 0.4 2307424 (23%)

Segment 3 0.3 ­0.55 2279126 (22%)

Segment 4 0.45 ­ 0.75 38449 (0.3%)

Segment 5 0.7 ­ 1 159 (0.00016%)

Figure 3.1.3 shows a plot of the segmentation of the normalized CE dataset.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

0.0 0.2 0.4
0.0

0.1

0.2

0.6 0.8 1.0
0.000

0.002

0.004

Segment 1
Segment 2
Segment 3
Segment 4
Segment 5

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

0.0 0.2 0.4 0.6 0.8 1.0

5
10
15

Segment 1

0.0 0.2 0.4 0.6 0.8 1.0

0.1
0.2

Segment 2

0.0 0.2 0.4 0.6 0.8 1.0

0.05
0.10
0.15 Segment 3

0.0 0.2 0.4 0.6 0.8 1.0

0.002
0.004 Segment 4

0.0 0.2 0.4 0.6 0.8 1.0
0

5
1e−5

Segment 5Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

Figure 3.1.3: CE Data

15

CHAPTER 3. METHODS

Table 3.1.2 shows the segmentation and distribution of the SINR and delay dataset.

The table shows that both features have a clear head distribution, with the first segment

having around 50% of the data and the first three segments around 99% of the data.

There is a big difference in the number of data points in the fourth segment. SINR has

only 1712 data points which constitute around 0.001% of the dataset, while the delay

data has 199.996 data points in the fourth segment or around 1.3%.

Table 3.1.2: Segmentation and distribution of the SINR & Delay dataset

Segment SINR Delay

Segmentation Distribution Segmentation Distribution

Segment 1 1 7394029 (49%) 0 7799941 (52%)

Segment 2 0.4 ­ 0.9999 5769242 (38%) 1 5349919 (36%)

Segment 3 0.1 ­ 0.65 1834850 (12%) 2 1649977 (11%)

Segment 4 0 ­ 0.15 1712 (0.001%) 3 199996 (1.3%)

Figure 3.1.4 shows a plot of the segmentation of the normalized SINR & delay dataset.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

Segment 1
Segment 2
Segment 3
Segment 4

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

0.0 0.2 0.4 0.6 0.8 1.0

25

50
Segment 1

0.0 0.2 0.4 0.6 0.8 1.0

0.05
0.10
0.15 Segment 2

0.0 0.2 0.4 0.6 0.8 1.0

0.025
0.050 Segment 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0002 Segment 4

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

10

20

30

40

50 Segment 1
Segment 2
Segment 3
Segment 4

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

25

50
Segment 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10
20
30 Segment 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

5

10 Segment 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

1 Segment 4

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

Figure 3.1.4: SINR and Delay Data

Table 3.1.3 shows the segmentation and distribution of the IT and PL dataset. This

dataset is the most unbalanced. The first segment of the IT data has around 91% of the

data and the first two have around 99% of the data. The first segment of the PL data

has around 99% of the data.

16

CHAPTER 3. METHODS

Table 3.1.3: Segmentation and distribution of the IT & PL dataset

Segment Interarrival Packet

Segmentation Distribution Segmentation Distribution

Segment 1 0 ­ 0.002 2265737 (91%) 1367 2472335 99%

Segment 2 0.001 ­ 0.2 190501 (8%) 900 – 1366 9254 0.4%

Segment 3 0.01 ­ 2 34429 (1%) 600 – 899 2632 0.1%

Segment 4 1 ­ 20 3311 (0.1%) 300 ­ 599 3977 0.16%

Segment 5 10 ­ 100 729 (0.03%) 0 ­ 299 6509 0.2%

Figure 3.1.5 shows a plot of the segmented IT & PL dataset.

0 20 40 60 80 100
0

20

40

60

80

0.00 0.05 0.10
0.0

0.5

1.0

0 50 100
0.000

0.002

0.004

Segment 1
Segment 2
Segment 3
Segment 4
Segment 5

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
) 0.5

1.0 Segment 1

0.2
0.4 Segment 2

0.025
0.050 Segment 3

0.001
0.002 Segment 4

0.0 0.2 0.4 0.6 0.8 1.0

0.0002
0.0004 Segment 5Pe

rc
en

ta
ge

 o
f o

cc
ur

en
ce

s (
%

)

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

0 200 400 600 800 1000 1200
0.00

0.05

0.10

0.15

0.20

Segment 1
Segment 2
Segment 3
Segment 4
Segment 5

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
) 50

100
Segment 1

0.05
0.10
0.15 Segment 2

0.005
0.010
0.015

Segment 3

0.005
0.010
0.015

Segment 4

0 200 400 600 800 1000 1200 1400
0.000

0.025 Segment 5Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

Figure 3.1.5: IT & PL Data

When jointly generatingmore than one feature, such as generating SINR&Delay or IT

& PL, it is not possible to split the data into training segments by the segments of the

features. Since a data point can have SINR from segment one and Delay from segment

3, the data needs to be segmented into training segments. Many possible methods,

such as using the maximum of the feature segments, their sum, or joining them into

both segments. Table 3.1.4 shows the different methods

3.2 Training methods ­ Incremental Learning

Many different training methods are possible when training generative models. Each

method has its pros and cons, and they will be analyzed in this work.

17

CHAPTER 3. METHODS

Table 3.1.4: Segmentation

Method SINR segment Delay segment Training segment

Max 1 3 3

Sum 1 3 4

Join 1 3 1 & 3

Figure 3.2.1: Data segmentation

Training on data dominated by a large head distribution and a long tail distribution is

problematic. A simple GAN trained on the whole dataset will most likely fit well to the

head distribution while ignoring parts of the distribution.

Another method is the one used in [9], that was discussed in Section 2.3. The model is

trained incrementally on the data, beginning with the head segment and ending with

the tail segment. During training on each segment, the model learns the data of the

current segment while remembering the data of the previous segments. This method

is called Incremental Learning in this work. Figure 3.2.2 show the different training

methods.

The method used in [9] is used to train a discriminative model. The main work of this

thesis is to modify the method in that work to work for generative models. As far as

the author knows, this has not previously been done.

The main idea behind incremental learning is learning new segments without

forgetting the old segments. The first step is to divide the data into segments as

described in the previous section. Then a model is trained on the data in the first

18

CHAPTER 3. METHODS

(a) Single GAN (b) Incremental learning

Figure 3.2.2: Different training methods

segment, the onewhich includes the head distribution. Themodel is trained until some

convergence criteria is met or for a fixed number of epochs. After segment one training

is complete, the model is trained using the data from segment two. This continues

until all segments are done and then we have a final model. Figure 3.2.2b shows how

incremental learning works. During incremental learning, the focus is on learning new

segmentswithout forgetting the previous segments. To combat catastrophic forgetting,

we propose two methods, first described in [9] and modified to work on GANs. Those

methods are sampling from the previous segments and having training data from all

previous segments in the current training segment, and freezing the weights of the

model after finishing training on a segment.

The first method is Balanced Replay, where we sample from the old segments, so there

is a balance between previously learned segments and the current segment. Data is

sampled from the previous segments so that there is a representation of all segments

seen so far, along with the current segment data. Balanced Replay allows the model

to modify the weights to remember the old segments and learn the new segments.

Since there is a balance between the segments during training, the model can learn to

generate data from the rare­event segments. Also, since there is still a representation

of the old segments, there should be no catastrophic forgetting. Figure 3.2.3 shows

how an example of the balance in the training data at each segment. In that Figure,

an equal amount of data is sampled from previous segments, as there is in the current

segment.

The method of freezing nodes in a neural network are a known way to keep a feature

representation of a batch of data. They have been used in other methods, such

as class incremental learning [16]. Freezing causes parts of the model to never be

updated again during backpropagation. The motivation behind this is that some of

the representation learned in each segment is kept, helping the model remember old

classes despite less representation during training of new segments. Many different

19

CHAPTER 3. METHODS

(a) Original dataset

(b) Segment 1 training (c) Segment 2 training

(d) Segment 3 training (e) Segment 4 training

Figure 3.2.3: Balanced Replay

methods for freezing exists. One method is to freeze and grow an network. In that

scenario, after training on a batch of data, all the weights are frozen and the network is

grown. That saves the representation learned in the original network, and creates new

layers and nodes to learn new representations.

Many other possible methods for freezing are possible, such as layer freezing, vertical

freezing or gradually changing vertical freezing [10]. In layer freezing, a number of

layers are frozen completely. In vertical freezing a fixed portion of many layers are

frozen. Gradually changing vertical freezing can either start with most of the layer

being frozen and then the number of frozen nodes gradually decrease, or start with a

small portion of the layer being frozen and gradually increase the number of frozen

nodes. Figure 3.2.4 shows how the different freezing methods might look.

Another method is incrementally freezing layers vertically. Initially all weights are

unfrozen, but after training on the first segment, some of the weights and biases

between the input layer and the first layer are frozen. After training on the second

segment, some of the weights between the first layer and second layer are frozen. This

continues until training of all segments is done. The motivation behind incrementally

freezing is freezing a representation of each segment in the model. Since the focus of

the thesis is on equally generating data from each segment, this is preferable to other

freezing methods. Figure 3.2.5 shows the freezing of the model parameters during

training of different segments.

20

CHAPTER 3. METHODS

(a) Layer freezing (b) Vertical freezing

(c) Gradually increase (d) Gradually decrease

Figure 3.2.4: Different freezing methods. Weights and biases between grey nodes are
frozen

3.3 Models

The previous section outlines the incremental learning training method for GANs. We

will call this model Incremental Learning GAN (IL­GAN) in this work. The IL­GAN

will be trained as a CGAN conditioned on training segment. The model will be tested

on a few experiments and it will be compared to a baseline model. The baseline model

will also be a CGAN conditioned on training segments.

Both the IL­GAN and the baseline model will have five hidden layers with 200 nodes

in each layer. The latent space has a dimension of 100 and it is sampled from normal

distribution with µ = 0 and σ = 1. Dropout is used for regularization. Each model will

be trained as a Wasserstein GAN using a gradient penalty of 10 like recommended in

[8]. The Adam optimizer with a learning rate of 0.0002 is used.

Since wireless communication data can both be categorical and continuous, the

generator needs to be able to generate both types of data. To generate continuous

variables the Sigmoid activation function is used in the output nodes of the generator.

The data has been normalized to be between zero and one, so the Sigmoid activation

function is well suitable to generate data in that range. To generate categorical

variables, the Gumbel­softmax[11] is used. The data has been one­hot encoded so the

Gumbel­softmax is used to generate one­hot encoded data

The IL­GAN uses both Balanced Replay and layer freezing. The Balanced Replay

21

CHAPTER 3. METHODS

(a) Segment 1 training (b) Segment 2 training

(c) Segment 3 training (d) Segment 4 training

Figure 3.2.5: Incremental freezing. Weights and biases between grey nodes are frozen

schemeused is the one shown in figure 3.2.3. During training of each segment, an equal

amount of data is sampled from previous segments, as there is in the current segment.

The layer freezing method used is the one shown in Figure 3.2.5. After training on a

segment, a portion of the model is frozen. In this work, 75% of the nodes in each layer

are frozen. The weights from the labels in the conditional GAN are never frozen and

are not considered a part of the 75% that are frozen.

For training, the number of epochs during training on each segment can vary. For

the first segments, the number of epoch can be relatively low, since learning those

distributions does not take a long time and most of the weights are unfrozen. During

training on the later segments, and especially the last segment, the epochs need to be

increased. That is due to the fact that a majority of the weights have been frozen, and

the fact that each epoch has a relatively low number of datapoints. For the Channel

Estimate dataset, the first segment has 5.374.842 datapoint, but the last segment only

has a 159 datapoints. Due to Balanced Replay there will be 159 datapoints sampled

from segments 1­4, and that means that there are 795 datapoints used during segment

5 training. Due to that, the time that is saved by using fewer epochs during training on

the first segments, is significantly higher then the time lost by having more epochs for

the last segments. Due to the increased complexity of the problem in later segments,

and the low number of datapoints, the model often need more then 1000 epochs to

successfully learn the rare event distribution.

22

CHAPTER 3. METHODS

The convergence criterion used for training IL­GAN is the Jensen­ShannonDivergence

(JSD). JSD will be explained in the next section. We will use early stopping as a way

to determine when to stop training on each segment and when to stop training on the

baseline GAN. The patience hyper parameter determined the number of epochs the

model continues training without an improvement of the JSD. For each segment the

patience hyperparameter is different. For the first segment the patience parameter

is set very low. For the last segment the patience parameter needs to be set very

high.

3.4 Methods for analysis

To analyze the outputs of each GAN, we will use the JSD, a measurement to compare

probability distributions. JSDwill be used to compare the generated distributions with

the true distribution. JSD is based on KL­divergence but is symmetric and bounded to

be inbetween 0 and 1, unlike KL­divergence.

JS(P ||Q) =
DKL(P ||M)

2
+

DKL(Q||M)

2
(3.1)

whereM = 0.5∗ (P +Q), P is the true distribution andQ is the generated distribution.

JSD = 0 means that the distributions are the same, and JSD = 1 means that there

are no common elements in the distributions.

23

Chapter 4

Experiments and Results

4.1 Experiments

This thesis will compare the generated data of a conventionally trained GAN with one

trained using incremental learning. The comparison will be made using JSD, and the

distribution of the generated rare events will be investigated.

Three experiments will be done

1. Generate Channel Estimate data

2. Jointly generate SINR and Delay

3. Jointly generate Interarrival time and Packet length

Three IL­GANs and three baseline GANs will be trained for each experiment and the

average JSD was taken.

4.2 Results

4.2.1 Channel Estimate

The first experiment was generating Channel Estimate. The Channel Estimate data

was normalized from the original range to be between 0 and 1. The patience

hyperparameter for early­stopping was set at [1, 3, 5, 15, 2000] for the IL­GAN and

5 for the baseline GAN. On average, the baseline GAN used 6.67 ∗ 107 datapoins for

24

CHAPTER 4. EXPERIMENTS AND RESULTS

training while the IL­GAN used 1.4 ∗ 108. So the IL­GAN used over twice the amount

of datapoints as the baseline GAN.

Table 4.2.1 shows that the baseline GAN performs well on the first three segments.

However, it performs poorly on the last two segments. IL­GAN performs better on all

segments, and most notably it shows significant improvement over the baseline GAN

on the last two segments.

Table 4.2.1: JS error on the Channel Estimate dataset

Segment Baseline GAN IL­GAN
Segment 1 0.0211 0.0193

Segment 2 0.0524 0.0107

Segment 3 0.0636 0.0184

Segment 4 0.27 0.0548

Segment 5 1.0 0.264

Average 0.285 0.0777

Figure 4.2.1 shows the generation of rare events. For comparisons, both the baseline

GAN and IL­GAN generated 1.000.000 data points from the rare event segments.

As can be seen, the baseline GAN performed worse on the last two segments. The

distribution of segment 4 is not comparable to the real distribution. On the other

hand, incremental learning is very comparable to the true distribution of segment four.

In segment 5, the baseline GAN has the distribution in the incorrect area and gets a

JSD of 1.0. That means that the generated data distribution of the baseline GAN has

no common elements with the true distribution. On the other hand, the IL­GAN has

the distribution in the correct area. The generation of the rare events can not be fully

judged using JSD because the GANs need to predict the true distribution of the rare

events from only 159 data points. Nevertheless, we can see that the IL­GAN predicted

distribution is reasonable and significantly improved over the baseline GAN.

4.2.2 Signal to Interference & Noise Ratio (SINR) and Delay

The second experiment was jointly generating SINR and Delay using a single GAN.

The SINR data is normalized from the original range to be between 0 and 1. The

Delay data is discrete, so it was categorized into four possible categories. The patience

hyperparameter for early­stopping was set at [1, 1, 1, 10] for the IL­GAN and 5 for the

baselineGAN. Onaverage, the baselineGANused 1.95∗108 datapoins for trainingwhile

25

CHAPTER 4. EXPERIMENTS AND RESULTS

0.002

0.004 Segment 4

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

1e−5
Segment 5

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(a) Real data

0.0005

0.0010

0.0015 Segment 4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

5.0

7.5
1e−6

Segment 5

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(b) Baseline GAN

0.002

0.004 Segment 4

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2
1e−5

Segment 5

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(c) IL­GAN

Figure 4.2.1: Channel Estimate rare­events

the IL­GANused 1.35∗108. So the IL­GANused 70%of the datapoints the baselineGAN

used.

Table 4.2.2 shows that the baseline GAN performs well on the first three segments of

the SINR. However, it performs poorly on the last segment. IL­GAN also performs

well on the first three segments of the SINR, having a lower JSD in segments 1 and

3. However, on the last segment, like in the previous experiment, IL­GAN shows

significant improvement over the baseline GAN. Both the baseline GAN and the IL­

GAN have low JSD on the delay dataset, but the IL­GAN has lower in segments 3, and

4.

Table 4.2.2: JS error on the SINR & Delay dataset

Segment SINR Delay

Baseline GAN IL­GAN Basline GAN IL­GAN
Segment 1 0.0023 0.0093 0.0005 0.0019

Segment 2 0.0356 0.047 0.0003 0.0037

Segment 3 0.0391 0.0339 0.0018 0.0005

Segment 4 0.799 0.444 0.0069 0.0003

Average 0.219 0.133 0.0024 0.0016

Figure 4.2.2 shows the generation of rare events. For comparisons, the baseline GAN

and IL­GAN generated 1.000.000 data points from the rare event segment. As can

26

CHAPTER 4. EXPERIMENTS AND RESULTS

be seen, the baseline GAN performed worse on the last segment on the SINR. Like

in the previous experiment, the distribution of segment 4 is not comparable to the

real distribution. On the other hand, the IL­GAN distribution is closer to the true

distribution of segment four. The baseline GAN has not learned the true distribution

of the rare event section, as it generates data in all areas. The IL­GAN does better,

but there are still some problems with the generated distribution. The generated

distribution is not as believable as in the previous experiment.

For the Delay distribution on the last segment, the baseline GAN has a low JSD, but

the generation leaks into category one. For the IL­GAN is slightly more accurate.

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06
Segment 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0001

0.0002 Segment 4

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Segment 4

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(a) Real SINR & Delay

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06 Segment 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0002

0.0004 Segment 4

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Segment 4

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(b) Baseline GAN

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06
Segment 3

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6
1e−5

Segment 4

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Segment 4

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(c) IL­GAN

Figure 4.2.2: SINR and Delay rare­events

27

CHAPTER 4. EXPERIMENTS AND RESULTS

4.2.3 Interarrival Time (IT) & Packet Lengths (PL)

The third experiment was jointly generating IT and PL using a single GAN. The IT was

split into segments, and each segment was normalized individually. The PL data was

discrete, so it was categorized into 1368 categories. The patience hyperparameter for

early­stopping was set at [3, 5, 10, 25, 500] for the IL­GAN and 10 for the baseline

GAN. On average, the baseline GAN used 8.4 ∗ 107 datapoins for training while the

IL­GAN used 8.7 ∗ 107. So the IL­GAN and the baseline GAN used a similar amount of

data for training.

Table 4.2.3: JS error on the Interarrival time & Packet length dataset

Segment Interarrival time Packet length

Baseline GAN IL­GAN Baseline GAN IL­GAN
Segment 1 0.0279 0.0168 0.0003 0.0003

Segment 2 0.0784 0.0492 0.509 0.186

Segment 3 0.1457 0.0908 0.707 0.180

Segment 4 0.1927 0.1627 0.6403 0.078

Segment 5 0.4393 0.2883 0.543 0.036

Average 0.1767 0.1217 0.4797 0.0963

Table 4.2.3 shows that the IL­GAN performs better then the baseline GAN on all

segments. The most significant improvement in all the experiments can be seen on

the PL dataset. The baseline GAN does significantly worse on segments 2, 3, 4, and

5.

Figure 4.2.3 shows the generation of rare events. For the IT dataset, the baseline GAN

generated data at and close to zero where there is no data in the dataset. The IL­GAN

is close to the correct starting place of the distribution. Both the GANs fall short on

generating data from all the distribution, but the IL­GAN covers more of the area that

the dataset distribution lies in.

For the PL dataset, the baseline GAN has not managed to learn the segmentation of

the rare event data in any meaningful way, while the IL­GAN generates data from

the correct area in every segment. The improvement seen here is significant over the

baseline GAN.

28

CHAPTER 4. EXPERIMENTS AND RESULTS

0.001

0.002
Segment 4

0.0 0.2 0.4 0.6 0.8

0.0002

0.0004 Segment 5

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

0.05
0.10
0.15 Segment 2

0.005
0.010
0.015

Segment 3

0.005
0.010
0.015

Segment 4

0 200 400 600 800 1000 1200 1400
0.00

0.02 Segment 5
Pe

rc
en

ta
ge

 o
f o

cc
ur

en
ce

s (
%

)

(a) Real IT & PL

0.0002

0.0004 Segment 4

0.0 0.2 0.4 0.6 0.8 1.0

0.00005

0.00010

0.00015 Segment 5

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
) 0.1

0.2
Segment 2

0.01
0.02
0.03

Segment 3

0.005
0.010
0.015

Segment 4

0 200 400 600 800 1000 1200 1400
0.00

0.01
Segment 5

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(b) Baseline GAN

0.0001

0.0002

0.0003 Segment 4

0.0 0.2 0.4 0.6 0.8 1.0

0.00005

0.00010

0.00015 Segment 5

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
) 0.1

0.2 Segment 2

0.005
0.010
0.015 Segment 3

0.005
0.010
0.015 Segment 4

0 200 400 600 800 1000 1200 1400
0.000

0.025 Segment 5

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
s (

%
)

(c) IL­GAN

Figure 4.2.3: Interarrival time and Packet length rare­events

29

Chapter 5

Conclusion

In this work, we have shown that IL­GANs give better performance in generation of

all segments on wireless communication data. The biggest improvement is on the rare

event data, where the baseline model almost always fails to generate data from a likely

distribution.

The generated data for SINR using IL­GAN was not as good as in other experiments.

We hypothesize that the joint generation of SINR and Delay and the significant

discrepancy in the number of datapoints in segment 4 caused those problems. While

SINR only has 1712 data points in segment four, delay has almost 200.000 data points

in the same segment. So during segment four learning, there are too many SINR

values from other segments paired with the delay values in segment 4. A possible

improvement for these cases is using an alternative method for Balance Replay than

the one used in this work to keep a better balance between previous segments and the

current segment.

For datasets such as the Interarrival time dataset, where the data can not be normalized

to be between 0 and 1, finding a better method than the one provided in this thesis will

be reserved for future work.

For the SINR & Delay and Incremental Learning (IL) & PL datasets, the IL­GAN used

similar or less amount of data then the baseline GAN. For the CE dataset, the IL­GAN

used over twice the amount of data. Thatmeans that themethods had a similar training

for two of the three datasets, while IL­GAN had over twice the training time on one of

the datasets. Since IL­GAN uses more epochs then the baseline GAN, some additional

time is added between epochs to calculate the validation error.

30

CHAPTER 5. CONCLUSION

Finding a better balance between the Balanced Replay, freezing and the number of

epochs to decrese training time and improve learning is reserved for future work.

31

Bibliography

[1] 3GPP. Service Requirements for cyber­physical control applications in vertical

domains. URL: https://portal.3gpp.org/desktopmodules/Specifications/

SpecificationDetails.aspx?specificationId=3528.

[2] Arjovsky, Martin and Bottou, Léon. “Towards Principled Methods for Training

Generative Adversarial Networks”. In: (Jan. 2017). URL: http://arxiv.org/

abs/1701.04862.

[3] Arjovsky, Martin, Chintala, Soumith, and Bottou, Léon. “Wasserstein GAN”. In:

(Jan. 2017). URL: http://arxiv.org/abs/1701.07875.

[4] Elvira, Victor and Santamaria, Ignacio. “Multiple importance sampling for

efficient symbol error rate estimation”. In: IEEE Signal Processing Letters 26.3

(Mar. 2019), pp. 420–424. ISSN: 10709908. DOI: 10.1109/LSP.2019.2892835.

[5] Ganjalizadeh, M et al. “Impact of Correlated Failures in 5G Dual Connectivity

Architectures for URLLC Applications”. In: 2019 IEEE Globecom Workshops.

2019.

[6] Ganjalizadeh, Milad, Alabbasi, Abdulrahman, Sachs, Joachim, and Petrova,

Marina. “Translating cyber­physical control application requirements to

network level parameters”. In: IEEE International Symposium on Personal,

Indoor andMobile Radio Communications. 2020. ISBN: 9781728144900. DOI:

10.1109/PIMRC48278.2020.9217378.

[7] Goodfellow, Ian J., Pouget­Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde­

Farley, David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. “Generative

Adversarial Networks”. In: (June 2014). URL: http://arxiv.org/abs/1406.

2661.

32

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3528
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3528
http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1701.07875
https://doi.org/10.1109/LSP.2019.2892835
https://doi.org/10.1109/PIMRC48278.2020.9217378
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661

BIBLIOGRAPHY

[8] Gulrajani, Ishaan, Ahmed, Faruk, Arjovsky, Martin, Dumoulin, Vincent, and

Courville, Aaron. “Improved Training of Wasserstein GANs”. In: (Mar. 2017).

URL: http://arxiv.org/abs/1704.00028.

[9] Hu, Xinting, Jiang, Yi, Tang, Kaihua, Chen, Jingyuan, Miao, Chunyan, and

Zhang, Hanwang. “Learning to Segment the Tail”. In: (Apr. 2020). URL: http:

//arxiv.org/abs/2004.00900.

[10] Isikdogan, Leo F, Nayak, Bhavin V, Wu, Chyuan­Tyng, Moreira, Joao Peralta,

Rao, Sushma, and Michael, Gilad. SemifreddoNets: Partially Frozen Neural

Networks for Efficient Computer Vision Systems. Tech. rep.

[11] Jang, Eric, Gu, Shixiang, and Poole, Ben. “Categorical Reparameterization with

Gumbel­Softmax”. In: (Nov. 2016). URL: http://arxiv.org/abs/1611.01144.

[12] Kasgari, Ali Taleb Zadeh, Saad, Walid, Mozaffari, Mohammad, and Poor,

H. Vincent. “Experienced Deep Reinforcement Learning with Generative

Adversarial Networks (GANs) for Model­Free Ultra Reliable Low Latency

Communication”. In: (Nov. 2019). URL: http://arxiv.org/abs/1911.03264.

[13] Kingma, Diederik P and Welling, Max. “Auto­Encoding Variational Bayes”. In:

(Dec. 2013). URL: http://arxiv.org/abs/1312.6114.

[14] Mirza, Mehdi and Osindero, Simon. “Conditional Generative Adversarial Nets”.

In: (Nov. 2014). URL: http://arxiv.org/abs/1411.1784.

[15] Owen, Art B.,Maximov, Yury, and Chertkov,Michael. “Importance sampling the

union of rare events with an application to power systems analysis”. In: (Oct.

2017). URL: http://arxiv.org/abs/1710.06965.

[16] Rebuffi, Sylvestre­Alvise, Kolesnikov, Alexander, Sperl, Georg, and Lampert,

Christoph H. “iCaRL: Incremental Classifier and Representation Learning”. In:

(Nov. 2016). URL: http://arxiv.org/abs/1611.07725.

[17] Sengupta, Satadal, Gupta, Harshit, Ganguly, Niloy, Mitra, Bivas, De, Pradipta,

and Chakraborty, Sandip. {CRAWDAD} dataset iitkgp/apptraffic (v. 2015­11­

26). Nov. 2015. DOI: 10.15783/C77S3W.

[18] Townsend, J Keith, Haraszti, Zsolt, and Freebersyser, James A. Simulation of

Rare Events in Communications Networks. Tech. rep.

33

http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/2004.00900
http://arxiv.org/abs/2004.00900
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1911.03264
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1710.06965
http://arxiv.org/abs/1611.07725
https://doi.org/10.15783/C77S3W

TRITA-EECS-EX-2021:824

www.kth.se

	Introduction
	Research Question
	Stakeholders
	Outline

	Background
	Wireless Communication
	Machine Learning
	Neural Networks
	Generative Models

	Related Works
	Summary

	Methods
	Data
	Data collection and processing
	Data segmentation

	Training methods - Incremental Learning
	Models
	Methods for analysis

	Experiments and Results
	Experiments
	Results
	Channel Estimate
	Signal to Interference & Noise Ratio (SINR) and Delay
	Interarrival Time (IT) & Packet Lengths (PL)

	Conclusion
	References

