
IN DEGREE PROJECT INFORMATION AND COMMUNICATION
TECHNOLOGY,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2020

Content-based Recommender
System for Detecting
Complementary Products

Evaluating Siamese Neural Networks for
Predicting Complementary Relationships among
E-Commerce Products

MARINA ANGELOVSKA

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Content-based Recommender
System for Detecting
Complementary Products

Evaluating Siamese Neural Networks for
Predicting Complementary Relationships
among E-Commerce Products

MARINA ANGELOVSKA

Master in Data Science
Date: August 19, 2020
Supervisor: Sina Sheikholeslami
Examiner: Amir H. Payberah
School of Electrical Engineering and Computer Science
Host company: E-commerce platform
Company Supervisor: Bas Dunn
Swedish title: Innehållsbaserat rekommendationssystem för att
upptäcka kompletterande produkter

iii

Abstract
As much as the diverse and rich offer on e-commerce websites helps the users
find what they need at one market place, the online catalogs are sometimes too
overwhelming. Recommender systems play an important role in e-commerce
websites as they improve the customer journey by helping the users find what
they want at the right moment. These recommendations can be based on users’
characteristics, demographics, purchase or session history.

In this thesis we focus on identifying complementary relationship between
products in the case of the largest e-commerce company in the Netherlands.
Complementary products are products that go well together, products that
might be a necessity to the chosen product or simply a nice addition to it.
At the company, there is big potential as complementary products increase the
average purchase value and they exist for less than 20% of the whole catalog.

We propose a content-based recommender system for detecting complemen-
tary products, using a supervised deep learning approach that relies on Siamese
Neural Network (SNN).The purpose of this thesis is three-fold; Firstly, themain
goal is to create a SNN model that will be able to predict complementary
products for any given product based on the content. For this purpose, we
implement and compare two different models: Siamese Convolutional Neu-
ral Network and Siamese Long Short-TermMemory (LSTM) Recurrent Neural
Network. We feed these neural networks with pairs of products taken from the
company, which are either complementary or non-complementary. Secondly,
the basic assumption of our approach is that most of the important features for
a product are included in its title, but we conduct experiments including the
product description and brand as well. Lastly, we propose an extension of the
SNN approach to handle millions of products in a matter of seconds.

As a result from the experiments, we conclude that Siamese LSTM can predict
complementary products with highest accuracy of ∼ 85%. Our assumption
that the title is the most valuable attribute was confirmed. In addition, trans-
forming our solution to a K-nearest-neighbour problem in order to optimize it
for millions of products gave promising results.

Keywords: Machine Learning, Deep Learning, Siamese Neural Networks,
E-Commerce, Recommender Systems, Complementary Recommendations

iv

Sammanfattning
Så mycket som det mångfaldiga och rika utbudet på e-handelswebbplatser
hjälper användarna att hitta det de behöver på en marknadsplats, är online-
katalogerna ibland för överväldigande. Rekommendationssystem en viktig roll
på e-handelswebbplatser eftersom de förbättrar kundupplevelsen genom att
hjälpa användarna att hitta vad de vill ha i rätt ögonblick. Dessa rekommen-
dationer kan baseras på användarens egenskaper, demografi, inköps- eller ses-
sionshistorik.

I denna avhandling fokuserar vi på att identifiera komplementära förhållanden
mellan produkter för det största e-handelsföretaget i Nederländerna. Komplet-
terande produkter är produkter passar väl ihop, produkter som kan vara en
nödvändighet för den valda produkten eller helt enkelt ett trevligt tillskott till
den. På företaget finns det stor potential eftersom kompletterande produkter
ökar det genomsnittliga inköpsvärdet och de tillhandahålls för mindre än 20%
av hela katalogen.

Vi föreslår ett innehållsbaserat rekommendationssystem för att upptäcka kom-
pletterande produkter, med en övervakad strategi för inlärning som bygger på
Siamese Neural Network (SNN). Syftet med denna avhandling är i tre steg; För
det första är huvudmålet att skapa en SNN-modell som kan förutsäga komplet-
terande produkter för en given produkt baserat på innehållet. För detta ändamål
implementerar och jämför vi två olika modeller: Siamese Convolutional Neu-
ral Network och Siamese Long Short-Term Memory (LSTM) Recurrent Neural
Network. Vi matar in data i dessa neurala nätverk med par produkter hämta-
de från företaget, som antingen är komplementära eller icke-komplementära.
Det andra grundläggande antagandet av vår metod att de flesta av de viktiga
funktionerna för en produkt ingår i dess titel, men vi genomför också expe-
riment inklusive produktbeskrivningen och varumärket. Slutligen föreslår vi
en utvidgning av SNN-metoden för att hantera miljoner produkter på några
sekunder.

Som ett resultat av eperimenten drar vi slutsatsen att Siamese LSTM kan för-
utsäga komplementära produkter med högsta noggrannhet på ∼ 85%. Vårt
antagande att titeln är det mest värdefulla attributet bekräftades. Därtill är om-
vandling av vår lösning till ett K-närmaste grannproblem för att optimera den
för miljontals produkter gav lovande resultat.

Acknowledgements

I would like to start by thanking my examiner, Asst. Prof. Amir H. Payberah
for his expert feedback and support of my ideas. A great appreciation to my
supervisor Sina Sheikholeslami for his enthusiastic encouragement and help
during the whole process of this research work. His knowledge and guidance
were of a great assistance starting from submitting my proposal until the final
submission.

I am very grateful to my host company for providing me with a unique in-
ternship experience where I truly felt like part of the community. I extend
sincere gratitude to my supervisor at the company, Bas Dunn for the uncondi-
tional support, constant feedback and guidance. His contribution goes beyond
the work for my thesis as he has been selflessly sharing his knowledge with
me throughout the whole internship. I also want to thank the amazing team I
was privileged to be part of.

Big thanks to my family and friends for their unceasing support and enthu-
siasm. Last but not least, special thanks to my boyfriend Vilijan Monev who
unreservedly believed in me. His ideas and interest in the field were of a valu-
able help during this research.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Approach . 6
1.4 Research Question . 8
1.5 Ethics and Sustainability . 10
1.6 Report Structure . 10

2 Background 12
2.1 Machine Learning and Deep Learning 13
2.2 Siamese Neural Networks . 19
2.3 Result Metrics . 22
2.4 Platforms and Frameworks 24

2.4.1 Google BigQuery . 24
2.4.2 Keras and TensorFlow 24

2.5 Related Work . 25

3 Methods 28
3.1 Requirements and Goals . 28
3.2 Hypotheses . 29
3.3 Dataset . 30

3.3.1 Data Retrieval . 30
3.3.2 Exploratory Data Analysis 32
3.3.3 Data Generation . 36

3.4 Methodology . 40
3.4.1 Data Preprocessing 41
3.4.2 Model A: Siamese CNN 43
3.4.3 Model B: Siamese LSTM 46
3.4.4 Additional Embeddings 48

vi

CONTENTS vii

3.4.5 Product Attributes 49
3.4.6 Advantages of the Siamese Architecture 49

4 Results and Discussion 52
4.1 Comparative Analysis . 52

4.1.1 LSTM vs. CNN . 53
4.1.2 Analyzing the Embeddings 54
4.1.3 Comparing to Baselines 56
4.1.4 Testing Product Attributes 60

4.2 Transforming the Siamese LSTM into KNN 61

5 Concluding Remarks 66
5.1 Conclusion . 66
5.2 Future Work . 69

5.2.1 Qualitative Interpretation at the Company 69
5.2.2 Data and Model Improvements 70

Bibliography 72

List of Figures

1.1 Example of a product page at the company’s website showing
add-on suggestions for an Apple iPhone. 4

1.2 Complementary product examples that currently exist at the
company. 5

1.3 The proposed model pipeline using SNN. 7
1.4 An overview of the steps taken in this research including the

needed data sources for each step. 9

2.1 Feedforwaed ANN with one hidden layer. 15
2.2 Detailed concept of a single neuron in an ANN. 16
2.3 Example of a CNN architecture presenting some of the layers . 17
2.4 Example of a RNN architecture presenting how each output

from the timestamp t−1 is passed to the following timestamp
t together with the current input xt. 18

2.5 The difference between RNN (left) and LSTM (right) cell [26]. 18
2.6 SNN architecture. 19
2.7 Types of Siamese networks (a) Late merge, (b) Intermediate

merge and (c) Early merge [28]. 21
2.8 Confusion Matrix. 23
2.9 Example ofAUC-ROCCurvewhere False Positive Rate (FPR)

is shown on the x-axis and True Positive Rate (TPR) on the y-
axis. 23

3.1 Class diagram representing the four main data tables used in
this thesis with some of their main attributes. 31

3.2 Bar chart presenting the sub-categories in theGarden andChrist-
mas shop. 33

3.3 Gini coefficient graph presenting the distribution of the add-on
products. 34

viii

LIST OF FIGURES ix

3.4 Bubble chart of the add-ons distributions. The labels of the
bubbles are representing the occurrence of that product as an
add-on product. 35

3.5 Showcase of a possible training and test set where there is over-
fitting due to limited main products data. The table on the left
is showing a subsample of a training set. The table on the right
is showing a possible test case scenario. 38

3.6 Showcase of a possible training and test set where there is over-
fitting due to limited add-on products data. The table on the
left is showing a subsample of a training set. The table on the
right is showing a possible test case scenario. 39

3.7 Illustration of where we save the weights from the SNN and
apply the dot product between the two matrices of target and
main products. 51

4.1 The difference between intermediate (left illustration) and late
(right illustration) merge in the implementation of the pro-
posed model. 54

4.2 Accuracy and loss over 10 epochs for Siamese LSTM model
with intermediate merge and CNN with late merge. 55

4.3 Accuracy over 10 epochs when we apply Word2vec compared
to when start the training with random weights on Siamese
LSTM. 56

4.4 Comparative results showing the accuracy andAUC for Siamese
LSTM, Single LSTM, Vanilla NN and Random Forest. 58

4.5 Predictions graph for Siamese LSTM. 59
4.6 AUC-ROC curve for Siamese LSTM. 60
4.7 Heatmap of the cosine similarity between five target products

and five candidate products where the green color indicates
high score and the red color indicates no complementarity be-
tween the products. 63

4.8 Example of suggested top five add-on products for the ham-
mock being the target product. 63

4.9 Example of the ground truth when similar/alternative products
are considered as good add-ons. The two vases on the right are
suggested add-ons for the vase on the left. 65

List of Tables

3.1 Analysis about the product title, description and brand in terms
of words. The data is taken from the Garden and Christmas
shop. 33

3.2 Analysis of the brand attribute for the Garden and Christmas
shop. 34

3.3 Model A: Siamese CNN architecture and hyperparameters. . . 43
3.4 Model B: Siamese LSTM architecture and hyperparameters. . 46

4.1 Comparative results showing the performance of SiameseCNN
and Siamese LSTM based on the place of merging the two
product outputs. 55

4.2 Accuracy and AUC score for LSTM with intermediate merge
based on the additional Word2vec embeddings. 56

4.3 Comparing accuracy, AUC score and training time for Siamese
LSTMusing different product attributes when the training was
done on 10 epochs. 61

4.4 Comparing the time needed for predicting complementarity
among 1M pairs of products. 62

4.5 Comparative results in terms of complementarity score be-
tween Siamese LSTM for testing given pairs of products and
the extended approach when we compare all possible pairs of
products. The add-on products shown are suggested when the
colorful hammock is the main product of interest. 65

5.1 The final model and settings that gave most promising results. 67

Chapter 1

Introduction

This thesis discusses the design and implementation of a recommender system
using Siamese Neural Networks for predicting the complementarity between
any two given e-commerce products in the case of an e-commerce platform in
the Netherlands. In this Chapter we will discuss the motivation for implement-
ing such system, the context of the problem and its potential, the implemented
approach, the research questions, the ethical and sustainability aspects of the
approach and the general outline of the thesis.

1.1 Motivation
A very important part of the online platforms nowadays is the ease of find-
ing relevant items and making decisions in the incredibly overwhelming cat-
alogs that they offer. E-commerce platforms such as Amazon, movie plat-
forms as Netflix, music apps as Spotify are a few examples of such online
platforms where billions of users daily have to make a decision for what to
purchase, watch or listen. Recommender systems play big role in making
this process convenient and as effortless as possible for the users. Different
recommendation techniques have been discovered and applied in various use
cases. Amazon recommends products based on what the user previously pur-
chased, viewed or rated, Netflix shows personalizied movies suggestions the
user might like based on the movies watched before, and Facebook presents
advertisements focusing on user’s browsing history. Nowadays, recommender
systems are becoming more and more attractive to the online platforms and
the research area. Most of these recommender systems are focusing on the
user’s previous behaviour, choices, ratings and profile. The ultimate target of
recommendations in the online world is increasing the profit and decreasing

1

2 CHAPTER 1. INTRODUCTION

the platform traffic by helping users find the items they like, eliminating the
enormous amounts of items offered in the platforms.

In the Recommender Systems Textbook [1] there are four different opera-
tional and technical goals of recommender systems stated: Relevance,Novelty,
Serendipity and Increasing recommendation diversity. Relevance refers to the
fact that users are more likely to consume items they find interesting. In ad-
dition, Novelty suggests that users find it very helpful when the system offers
them something, which they did not think of. Serendipity is different from
novelty in the way that the recommendations are truly surprising to the user,
rather than simply something they did not know about before [1]. Finally, the
key in Increasing recommendation diversity is that the system should not offer
top K items, which are similar to each other as it increases the risk that the
user will not decide on selecting either of them but instead offer diverse prod-
ucts. Now, having in mind these four general goals of recommender systems,
companies are designing their offers and suggestions differently for different
parts of the platform.

A specific case of recommender systems that existed long time before the
e-commerce era are complementary products. According to Cambridge Dic-
tionary [2], complementary products are products that are sold separately but
that are used together, each creating a demand for the other. It is worth to
mention that complementary products are different from substitutable prod-
ucts. For instance, when looking to buy a smart phone, the user might be
offered an alternative - similar product having similar specifications from a
different brand. On the other hand, the products that are offered once the user
decides to buy the specific product are called complementary products. In the
example of buying a smart phone, complementary products could be a screen
protector, a case, earphones, wireless charger, etc.

When going to a traditional retail store, shoe sellers offer sprays for main-
taining the quality of the shoes, which are usually placed near the cashier. In
fact, this has been the oldest retail trick in the book, which enables competi-
tive prices for the main products, but have high margins on the complementary
products. The exact place and timing of the complementary products offer in
retail have big importance as this have been associated with impulse buying.
Once the customer decides do buy something more expensive, he/she is more
likely to spend a little extra money on a product that goes well together with it
and the complementary product might feel like a necessity at the moment of
purchasing.

When speaking of recommendations on e-commerce platforms, despite
the frequently bought together items and previously viewed sections, we can

CHAPTER 1. INTRODUCTION 3

clearly see the existence and need of complementary products. Taking the ex-
ample of traditional retail, online retails often offer the complementary prod-
ucts once the user decides to buy the specific item.

1.2 Problem Statement
This thesis’ focus will be on recommdender systems in the online retail indus-
try in the case of the largest e-commerce company in the Netherlands. Due to
the company’s policy, we do not reveal the company’s name in this thesis but
we will refer to it as "the company" or "the e-commerce platform".

The company serves more than 2.5 million visits every day and has over
20 million products in the online store. Recommendations play an important
and big part at the company as they prevent users from being overwhelmed
by the big offer while searching for products in the online catalog. Detect-
ing complementarity in an online catalog consisting of millions of products
is very different than detecting it in retails with specified domain of products.
Some of the complementary products might not be as obvious as the ones in
the example of the smart phone. An interesting scenario would be to suggest
mosquito spray if someone is purchasing a book for travelling to the forests
in Africa. This task of detecting complementarity among products has been
explored in recent years but there is still a lot of room for experiments and
improvements.

Currently, the company offers different recommendations inmultiple screens
across the website that rely on user’s search history and frequently bought to-
gether items. All of these existing recommender systems at the company are
used as up-selling methods, which help the customers find products they might
need quicker. However, there is a need for improving the recommender sys-
tems, which present complementary products to the user. The complementary
products, also known as add-ons in the online world, usually appear once the
users make the decision to put the product in their basket.

Figure 1.1 shows how product add-ons appear once clicked on the "Add
to basket" button. As seen on Figure 1.1, such recommender systems
exist at the company. For each product in the database, there is a list of com-
plementary products referencing to other currently offered products. Figure
1.2 shows how this system approximately looks like.

The problem with the current way of handling complementary products’
recommenders at the company is that it is done manually, thus it takes a lot
of time and requires human assistance. It is done firstly by querying the items
that were bought together more than a few times. Then, human validation is

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of a product page at the company’s website showing add-
on suggestions for an Apple iPhone.

performed as it is not necessarily true that all items that were bought together
are complementary to one another. In addition to the time requirements, the
main limitation of such approach is its focus on already popular and frequently
bought items. In relation to the work of this thesis, the currently used method
of manually querying and validating complementary pairs of products gives
us a "perfect" base of a labelled dataset taking into account that it was done by
industry experts within the company.

Potential

The aforementioned process is done for less than 20% of the 24millions prod-
ucts offered at the moment. The success of the company is measured using
different metrics, including the average purchase value. The average purchase
value is the amount of money that a user spends on one single purchase. Based
on analytics inside the company, the orders with an add-on page in the journey

CHAPTER 1. INTRODUCTION 5

Figure 1.2: Complementary product examples that currently exist at the com-
pany.

have increased purchased items per order using the current system of generat-
ing complementary recommendations whose focus is mainly on popular items.
Nevertheless, these facts prove that there is a big need and potential in imple-
menting a smart model, which will automatically generate the add-ons for all
of the products.

At this point it is worth to mention that at the company only the most pop-
ular and frequently bought items have add-ons, meaning that the items, which
do not have many purchases will stay undiscovered. Easier customer journey
and higher items per order (thus, increased average purchase value) are the
company’s primary goals for automating the complementary products’ sug-
gestions.

6 CHAPTER 1. INTRODUCTION

1.3 Approach
Predicting complementarity is a complex task and it is not as straight forward
as detecting similarity. It is not enough that two products were viewed or
purchased together to be able to detect their complementarity. Thus, we need
to have clear data input, good model and distance measure to predict which
products fulfil the conditions of being complementary to a given product.

To address the above complexities, challenges and potential of recom-
mending complementary products, in this thesis we propose a supervised deep
learning approach using Siamese Neural Networks (SNN). SNNs are widely
used for comparing two inputs, hence, it is considered to be a suitable ap-
proach for experimenting with e-commerce products. As SNN is a concept
for using neural networks with multiple inputs, we can use any type of neu-
ral network in the model architecture. In this thesis the focus is on Siamese
Convolutional Neural Network (CNN) and Siamese Long Short-Term Mem-
ory (LSTM) Recurrent Neural Network.

The pipeline of the model is shown on Figure 1.3. We use manually la-
belled data from the company in the format MainProductID, AddOnPro-
ductID, Label(Y/N) where different product attributes are extracted for
each pair such as the product title, description, brand, sub-category, etc. This
data is extracted from the company’s data warehouse using Google BigQuery.
These product attributes are then used in the neural networks for creating em-
beddings and getting their vector outputs. The final part is the actual distance
between the two given products, which gives us the final result whether the
two products are complementary or not.

A rather challenging part of this pipeline is making it scalable so that this
is a suitable approach for the millions offered products at the company as well
as for determining the model hyperparameters and functions. In the case of
the company with a catalog of more than 20M products, typical, single neural
networks will be traversed (20M)2 times in order to get the complementarity
score for each possible pair in the catalog. On the other hand, Siamese ar-
chitecture will traverse the neural networks for each product only once, which
sums up to 20M runs as each product is treated separately (not in combination
with its pair product). Then, the last part for calculating the similarity distance
for getting the complementarity score will be done (20M)2 times for each pair
of products. One can conclude that performing similarity score is much faster
and scalable compared to traversing the whole neural network as many times.

The proposedmodel is expected to give us good results because the pipeline’s
main functionality is to extract features from two given items, thus match the

CHAPTER 1. INTRODUCTION 7

Figure 1.3: The proposed model pipeline using SNN.

items based on their content complementarity. Expert knowledge will not be
required in the proposed model as the labelled data was built by experts in
the field in combination with what customers purchase together. By taking
this dataset, we will be able to learn what makes two products complementary
and train the model to detect this complementarity on future data inputs for all
items, including non-frequently bought (unpopular) products.

In Figure 1.4 an overview of the report steps is represented. The first area
(yellow part) is representing the Data Preparation, the red area is part of the
Data Preparation but it represents the Storage (local and on cloud) and lastly,
the blue area represents the main part of the thesis, which is theModel imple-
mentations and Comparison. In the first part of this thesis work, we start with
gathering the data from BigQuery, which is the data warehouse that the com-
pany uses. We need four different databases from the company’s cloud ware-
house, therefore, the next step is to combine the data sources into a database
containing all information that we need for the supervised learning approach.

Initially, we only have positive labels, hence the third step from this part
is to generate negative samples, which will indicate that the pair of products
is not complementary. Lastly, after we do data cleaning, the final dataset will
be ready to be used in the models, which will be designed in the second part

8 CHAPTER 1. INTRODUCTION

marked with blue background. The model implementation part will start with
splitting the data into training and testing. As we are dealing with textual data,
embeddings for the input data will be calculated before we give the data as
an input to the models. We will discuss the reasons and need for this later on
in Section 3.4. Implementation of Siamese CNN and Siamese LSTM neural
networks will follow, as well as their comparison during a few different exper-
iments. Once we get the model architecture that gives higher accuracy, hence
is more promising, we will continue using only that model in the further ex-
periments. We will conduct multiple experiments testing the proposed model
in this thesis in comparison to other baselines, as well as experiments showing
how including multiple product attributes can affect the model performance.
Last but not least, the proposed Siamese approach will be transformed into a
scalable solution such that it can handle big data scenarios. All of the men-
tioned steps in Figure 1.4 will be explained in details during this report, with
a big focus in Section 3.4. Big part of the source code including the model
implementation, architecture and experiments is available on GitHub 1.

1.4 Research Question
Many e-commerce websites are offering complementary products in some
form [3, 4, 5], and this has been the subject of many research efforts [6, 7,
8, 9, 10, 11, 12, 13, 14]. Therefore, it is an interesting topic to explore from
both, practical (business) and theoretical aspect. There have been different
approaches using recommender systems for detecting complementary prod-
ucts, which will be described in details in Chapter 2.5. The general research
question in this thesis is as follows:

General Research Question. How can we use Deep Learning to improve the
process of detecting complementary products based on content having the end
goal of increasing the average purchase value on the e-commerce platform?

So, the main approach is to use a Supervised Complementary Recom-
mender using deep learning models. This general research question tackles
the main goal of this thesis, which is designing a model, which will give us
the complementarity score for any given two products from the online catalog.
Furthermore, we are interested in the performance of the chosen model as well
as the features included in the model. Therefore, there are a few more concrete
and technical sub-questions, which this thesis will answer:

1https://github.com/marinaangelovska/complementary_products_suggestions

CHAPTER 1. INTRODUCTION 9

Figure 1.4: An overview of the steps taken in this research including the
needed data sources for each step.

Research Sub-question 1. Which of the proposed twomodels - Siamese LSTM
and Siamese CNN predicts complementarity among products with higher ac-
curacy based on the content?

Research Sub-question 2. Is the title most valuable attribute for content-
based complementary recommender systems?

Research Sub-question 3. Can the proposed SNN be transformed in such way
that it can handle millions of pairs of products in a timely manner? How well
does it perform compared to the manual (human) pipeline?

By answering the general research question, we will be able to answer all
of the aforementioned sub-questions. In addition, by answering those sub-
questions, we will be able to learn much more about products’ complemen-
tarity at the company, which might open different discussions. These ques-
tions will not only help us improve the company’s offer and average purchase

10 CHAPTER 1. INTRODUCTION

value, but also the results and conclusion from these questions would benefit
future research in the field of recommender systems, similarity/complemen-
tarity measures as well as any scientific work related to the e-commerce world.

1.5 Ethics and Sustainability
The implementation of a machine learning system that will generate comple-
mentary products for a chosen product is fully transparent. More precisely,
our system will not make use of any personal information about the user as
the add-ons suggestions will be identical for every user. This means that the
products suggested to the user only depend on the user’s choice of a product to
purchase, but it does not depend on the user’s profile, demographics nor char-
acteristics. This thesis uses the labelled dataset consisting of product pairs,
which were paired with the help of anonymized data for frequently bought
together products at the company.

The aim of this work and experiments is to improve the way people are
purchasing products online. It is not in any way stimulating unwanted user
behaviour as it only suggests products that go well together, products that are
necessary for each other (e.g. batteries for an electric product) and products
that the user most likely needs. One of the company’s main objectives for pro-
viding such recommender systems is to save customer’s time, thus improve
their journey and reduce website traffic. By purchasing two or more items
at a time instead of ordering them separately over a period of time, the envi-
ronmental and economical costs for delivery are reduced, providing a more
sustainable offering. In general, at the company all products that are violating
the sustainability rules are removed and banned from the platform. Such ex-
amples could be products made out of animal ingredients, products tested on
animals, plastic non-reusable cutlery, etc.

1.6 Report Structure
This thesis is organized in the following way. Chapter 2 consists of the back-
ground knowledge the reader needs in order to understand the work done dur-
ing this thesis. More precisely, it includes theoretical explanation for Machine
Learning concepts and SNNs. It also includes information about the metrics,
platforms and frameworks used in the experiments. In the same Chapter we
present the relatedwork. Chapter 3 presents the goals of the thesis, the data (in-
cluding the data retrieval and data generation) and the methodology, which is

CHAPTER 1. INTRODUCTION 11

the implementation of the proposed system. Furthermore, Chapter 4 includes
the results from the experiments together with a discussion. We then conclude
this thesis with Chapter 5, where we give concluding remarks including the
final conclusion of our work and directions for further research.

Chapter 2

Background

Recommender systems for complementary products are present at online re-
tailers such as Amazon, AliBaba, Zalando, Netflix, etc. and these recom-
mender systems are the basis and inspiration for a lot of research focusing
on different approaches including collaborative filtering, product embeddings,
neural networks and frequency co-counting. This thesis will use the knowl-
edge from the academic world based on previously done work in the field of
recommender systems and the gathered knowledge from the company. The
main idea of this thesis is to use Machine Learning (ML) and Deep Learning
(DL) techniques to tackle the challenging problem of detecting complemen-
tarity in comparison of the majority of related work, which do not use ML
techniques. In addition, we want to compare the performance of two different
techniques. Furthermore, we want to design a complex model, which could
potentially be used for solving different tasks. Therefore, we are interested
in proposing a solution, which can be reusable and scalable. In addition, the
models, experiments and results during this process would benefit the research
field to (dis)prove whether ML and DL can solve such problems with high ef-
ficiency.

In this section, we will firstly explain the main idea behind ML and DL,
their usage and benefits over traditional recommender systems’ approaches.
In addition, Convolutional Neural Networks, Recurrent Neural Networks and
SNNs as specific type of neural networks will be introduced and explained as
they are the core idea behind our proposed solution. The next section Plat-
forms and Frameworks will define the libraries and platforms used during this
thesis, focusing on the usage and benefits of Keras and TensorFlow. In the last
subsection of this part of the thesis we will focus on the related work within the
field of finding complementary and/or similar e-commerce products as part of

12

CHAPTER 2. BACKGROUND 13

recommender systems.

2.1 Machine Learning and Deep Learning
ML is a branch of Artificial Intelligence (AI) and it is a scientific study of
algorithms and models for completing a specific task without using explicit
instructions by relying on patterns and inference. ML enables us to tackle
tasks that are too difficult to solve with fixed programs written and designed
by human beings [15]. There have been multiple definitions and explanations
of what precisely ML is, thus a more concise definition would be the one from
theMachine Learning book byMitchell [16], which is as follows: “A computer
program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E.”

Learning Approaches and Data Splitting

Within the field of ML we distinguish two main types: supervised and unsu-
pervised learning. The difference between the two approaches is that in super-
vised learning we are using a ground truth, meaning we have prior knowledge
about the samples whereas in unsupervised learning we do not know anything
about what the output values for our samples should look like. Moreover, in
supervised learning we know the labels of the samples, thus, we are trying
to teach the model to predict those values based on the truth that we feed the
model with such as in the case of regression and classification. Common al-
gorithms used in supervised learning tasks include Logistic Regression, Naive
Bayes, Support VectorMachines, Artificial Neural Networks andRandomFor-
est. The problem we are trying to solve in this thesis is a supervised learning
task as we are trying to predict the complementarity of the products based
on previous knowledge. On the other hand, unsupervised learning, does not
have labeled outputs, so its goal is to deduce the natural structure given in the
training data. Some of the most common tasks with unsupervised learning are
clustering, representation learning and density estimation. It is mainly used in
exploratory analysis.

When we are dealing with labelled data (hence, supervised learning), we
split the data into training, validation and testing set. The training set is used as
the input data during the learning process of the model. In the case of a neural
network, the weights and biases will be updated using the training set. The
validation set is used to evaluate the given model in the process of training. It

14 CHAPTER 2. BACKGROUND

is a small portion of the training set, usually 10%, which is used to provide an
unbiased evaluation of a model fit on the training data while tuning the model
hyperparameters. This means that the model occasionally sees this data, but
never does the learning using it. The goal of a ML task is to train a model that
will give good results on unseen data, thus evaluating the final performance of
the model using the training set, the data that was used to improve the model
is called overfitting. Overfitting means that the model will give great results
on the train or validation data, but performs very poorly on new, unseen data.
For this purpose, we introduce the test set, which provides unbiased evaluation
of the final model fit on the training set. It is a good standard to evaluate the
model and it is used only once the model is completely trained.

These three datasets are formed by splitting the original dataset at the be-
ginning into three parts having different sizes. The actual size of the split
depends on the problem, but usually it is done in the proportion 80:10:10 for
the training, validation and test set.

Artificial Neural Networks

DL is a ML technique based on Artificial Neural Networks (ANN) with rep-
resentation learning. It teaches computer systems to learn by example, some-
thing that comes naturally to humans. In fact, as their name suggests, artificial
neural networks are biologically inspired computer programs designed to sim-
ulate the way in which real human brain gains knowledge by detecting patterns
in the surroundings and learning through experience. Neural network consists
of input and output layers, as well as hidden layer(s) consisting of units that
transform the given input into something that can be used in the output layer. A
sketch of an ANN is shown on Figure 2.1. An ANN contains multiple layers,
which are formed from hundreds of single units or artificial neurons connected
with weights. Each of these neurons has weighted inputs, transfer function and
one output.

On Figure 2.2 the detailed flow of the neural network is presented. Ba-
sically, as an input enters the node, it gets multiplied by a weight value and
the resulting output is either observed, or passed to the next layer in the neu-
ral network. It is common that the weights of the neural network are part of
the hidden layers. On Figure 2.2 we can also see the bias term, which repre-
sents how far off the predictions are from their intended value. The activation
functions within each layer are of a crucial importance for the ANN to learn
and make sense of something complicated, which has non-linear properties.
There are different activation functions. Therefore, there are many things to

CHAPTER 2. BACKGROUND 15

take into account when choosing the right one for the model and task. The
simplest ANN architecture is the one-layer perceptron, but adding more layers
brings the capability of solving more complex tasks.

In fact, neural networks (perceptrons) have been around since the 1940s

but they became a major part in AI only in the last decades [17]. This is due
to the backpropagation technique, which enables networks to learn and adjust
their hidden layers of neurons when their output does not match the real (true)
value. The process of an ANN in a supervised task (a task where we know
what is the true value of the sample) starts with comparing the network’s pro-
duced output with the actual (desired, expected) output. The learning actually
happens by trying to lower this difference between the actual and produced
output and this is done using the backpropagation algorithm. In simple words,
the network works backward going from the output units to the input unis to
adjust the weights associated with each neuron until the difference between
the actual and predicted outcome produces the lowest possible error or until
some stopping criteria is reached. This process of adjusting the weights and
the other hyperparameters of the model in order to have the lowest possible
error rate is called learning process.

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 2.1: Feedforwaed ANN with one hidden layer.

Nowadays, DL is becoming more and more popular as we have enormous

16 CHAPTER 2. BACKGROUND

x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.2: Detailed concept of a single neuron in an ANN.

amounts of data and larger neural networks to train the data on. Moreover,
the performance of ANNs grow as they are bigger, meaning that the networks
have more hidden layers, more connections and more neurons. There are dif-
ferent types of neural networks, which perform better in different scenarios.
They all have their strengths and weaknesses, and one need to fully under-
stand their internal structure to know which would fit a specific task the best.
In the following part, we will explain two complex ANN structures, which this
thesis will be focusing on: Convolutional Neural Networks (CNN) and Long
Short-Term Memory Networks (LSTM).

Convolutional Neural Networks

CNN is a deep feedforward (not-recurrent) neural network containing one or
moreConvolutional Layers. In recent years, CNNs have achieved state-of-the-
art results in isolated character recognition [18, 19], large-scale image recogni-
tion [20, 21], text-classification [22, 23] and modeling sentences [24]. CNNs
require very little preprocessing compared to other classification algorithms,
they have the ability to learn a lot of characteristics and are easily applicable to
any language. The name “Convolutional Neural Network” indicates that the
network applies a mathematical operation called convolution. Convolution is
a specialized kind of linear operation. Convolutional networks are neural net-
works that use convolution in the place of general matrix multiplication in at
least one of their layers. Due to the convolutional operation, the CNN can be
much deeper than standard feed-forward neural networks but with less param-
eters. The convolutional layers can be fully connected or pooled [15]. The
objective of the convolution operation is to extract high-level features. Similar
to the convolutional layer, the Poling Layer of a CNNs is responsible for re-

CHAPTER 2. BACKGROUND 17

ducing the size of the feature map, thus it decreases the computational power
needed for processing the data through dimensionality reduction. In addition,
dominant features can be extracted using the pooling layer. Furthermore, the
Fully Connected Layer is responsible for learning the non-linear combinations
of the high-level features. At the end of a CNN, the classification is achieved
by a dense layer having softmax or sigmoid activation function. CNNs have
shown tremendous success in their application in video and image recogni-
tion, natural language processing tasks and recommender systems. Figure 2.3
presents how a CNN for image classification looks like.

Figure 2.3: Example of a CNN architecture presenting some of themain layers.
Image by Aphex34 1.

Long Short-Term Memory Networks

Recurrent Neural Networks (RNNs) are a family of neural networks for pro-
cessing sequential data. Much as a CNN is a neural network that is specialized
for processing a grid of valuesX such as an image, a recurrent neural network
is a neural network that is specialized for processing a sequence of values
x1...X t [15]. In RNNs, the output of one layer is saved and fed to the input of
the following layer. Therefore, from one time-stamp to another, each node re-
members some information that it had in the previous time-stamp. These kinds
of neural networks capture a challenging design, which overcomes traditional
neural networks’ limitations, which appear when dealing with sequential data,
time series, videos, etc. The RNN architecture is shown on Figure 2.4.

Despite their benefits, there are some disadvantages such as the gradient
vanishing and exploding problem when using Vanilla RNNs. Gradient vanish-
ing problem can happen when the input sequences are very long. Moreover,
the gradients carry information used in the RNN parameter update and when

1Aphex34 - Own work, https://commons.wikimedia.org/w/index.php?curid=45679374

18 CHAPTER 2. BACKGROUND

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 2.4: Example of a RNN architecture presenting how each output from
the timestamp t − 1 is passed to the following timestamp t together with the
current input xt.

the gradient becomes smaller and smaller by going deeper in the network, the
parameter updates become insignificant, whichmeans no real learning is done.

LSTM [25] is a type of RNN architecture, which is capable of maintaining
information for long periods of time and has better control of the flow in gen-
eral, thus it solves the vanishing gradient problem. LSTM implements three
types of gates: input, forget and output gate. The input gate discovers which
values from the input should be used by using the sigmoid and tanh activa-
tion functions. The forget gate determines what should be eliminated from
the block by using the sigmoid function. Finally, the output gate controls the
extent to which the value in the cell is used to compute the output activation
of the LSTM unit. The exact difference between the structure of the cell in an
LSTM compared to a Vanilla RNN is shown on Figure 2.5.

Figure 2.5: The difference between RNN (left) and LSTM (right) cell [26].

CHAPTER 2. BACKGROUND 19

2.2 Siamese Neural Networks
SNN, which is basically a twin neural network, is an ANN composed of two
separate neural networks sharing the same architecture and the same weights.
In other words, the SNN is a neural network architecture capable of learning
similarity knowledge between cases in a case base by receiving pairs of cases
and analysing the differences between their features to map them to a multidi-
mensional feature space [27]. The interesting part of having such approach is
that the idea behind SNN explains the part that the two neural networks work
in tandem but there is no limitation on the actual architecture of the neural
network used. By receiving two different inputs on the train and test level, the
main goal of such network is to develop similarity knowledge between the two
produced outputs. Figure 2.6 shows an overview of a SNN. The outcomes of
the two identical networks are the feature vector outputs for each of the inputs.

Figure 2.6: SNN architecture.

In the case of binary classification as in the example of this thesis, Binary
Crossentropy is considered as the most suitable loss function as the goal is to
see how far the predicted value is from the original value. Binary Crossen-
tropy measures how far away from the true value (which is either 0 or 1) the

20 CHAPTER 2. BACKGROUND

prediction is for each of the classes. Then, it averages these class-wise errors
to obtain the final loss.

More About SNNs and their Advantages

Up until now, SNNs have been widely used for One-Shot Classification. In
comparison to standard classification where the input image is fed to the neural
network and the network outputs the probability of the image belonging to each
of the classes, one-shot classification takes only two images as an input and
outputs the similarity probability, thus classifying if they are the same or not.
In the former approach, we need to have a lot of training instances as one can
assume. The advantage of using a SNN architecture is that it does not require
a lot of training examples. In fact, we only need one item per class in order to
train the network properly.

One such example can be the task of face recognition in a private part of
a company. Now, to achieve this we only need one image from each person
having access to that part of the company. In order to detect whether a person
is allowed to enter the building or not, the system requires only one shot of the
person entering. Then, the SNN compares each picture form the database with
the taken shot and determines whether that person has access or not based on
the similarity measure (in other words, if that person is recognized in another
image).

However, the power and advantages of SNN can be applied beyond image
classification. Recently, SNNs have been used in Natural Language Process-
ing (NLP) tasks as well. In fact, a lot of classification tasks can be represented
in a siamese-like architecture if the problem definition allows so. Such ex-
amples include detecting if two sentences have the same semantic meaning
including questions, titles, book summaries, etc. In relation to our specific
recommender systems problem in this thesis, the images and sentiment anal-
ysis from the previous examples can be replaced by e-commerce products,
while the problem-solution fit remains the same.

There is no clear distinction between the different types of SNNs as it is
mainly a concept of how any neural network can be used in a pair of its copy
for given two separate inputs. But in their book, Fiaz, Mahmood, and Jung
[28] categorize SNN in three groups based on the position/time of merging
the layers: late, intermediate and early merge, which are shown on Figure
2.7. To start with, late merge is the architecture shown on Figure 2.6, which
basically shows that the output vectors of each network are merged at the last
dense layer. Furthermore, the intermediate merge suggests that the outputs

CHAPTER 2. BACKGROUND 21

of the two networks are merged in the middle of the network and processed
together as one output in the last layers, which could be of any type (not just
a fully connected layer). Lastly, as the name suggests, the early merge type
SNN merge the two inputs right before the actual network, thus resulting in a
single-like neural network architecture.

Figure 2.7: Types of Siamese networks (a) Late merge, (b) Intermediate merge
and (c) Early merge [28].

In the use-case of dealing with millions of data points, as in the case of
the company’s product catalog and this thesis, we consider developing a net-
work that will have high efficiency (performance) and very importantly, be
able to scale up for millions of product pairs at the same time. In this thesis
we focus on SNN architecture having intermediate or late merge characteris-
tics. Moreover, by doing so, the model process each input (pairs of products)
to the network and compares their complementarity at the end. Such architec-
ture is the advantage over traditional single neural networks where each pair
of two products needs to be processed separately for all of the millions of pos-
sible pairs available. In fact, by training the same model architecture for both,
a Siamese model and a traditional model of the same type, we expect to obtain
the same results. The main advantage is the scalablity and ability of the SNN
to process each item in the network once and then compute the similarity/com-
patibility score for each of the pairs, which has lower complexity compared to
training the whole model for each pair. As suggested by Zhao et al. [9] in their
Deep Style for Complementary Products paper, we seek items whose repre-
sentations are close to the main product representation under the linear kernel
distance, thus transforming the problem into aK nearest neighbours problem.

22 CHAPTER 2. BACKGROUND

2.3 Result Metrics
For the purpose of analysis and comparing the performance of the two pro-
posed models as well as comparing their performance with baselines models,
we introduce a few different metrics:

• Confusion matrix is a performance measurement for classifications
tasks where the output can be two or more classes. Actually it is a ta-
ble having four different combinations of predicted and actual values.
Figure 2.8 shows how a confusion matrix looks like. True Positive (TP)
value represents the number of correctly predicted values for the posi-
tive class (1, which in our case is the case where the model says that the
pair is an add-on when it really is). False Positive (FP) is the case where
the model predicts that the class has label 1 when in fact the real label
is 0. We have False Negative (FN) if the model predicts 0 but the actual
label is 1. Lastly, True Negative (TN) shows the number of correctly
predicted cases when they belong to the negative 0 class.
The reason why we calculate these occurrences is for calculating Recall
and Precision. Recall represents how many labels the model predicted
correctly out of all positive classes. It is also known as True Positive
Rate (TPR). Mathematically it is calculated as:

Recall(TPR) =
TP

TP + FN

Precision on the other hand represents how many are actually positive
out of all the positive classes the model predicted correctly:

Precision =
TP

TP + FP

Another very important term coming from the confusion matrix is the
False Positive Rate (FPR) defined as

FPR =
FP

TN + FP

It corresponds to the proportion of negative data points that are mis-
takenly considered as positive with respect to all negative data points.
Generally, in the case of our scenario, we are trying to maximize recall.

• Accuracy shows out of all the classes, howmany we predicted correctly,
hence we want to maximize it. This metric works well if we have a
balanced dataset. The values the accuracy can have are are in the range
[0, 1].

CHAPTER 2. BACKGROUND 23

Figure 2.8: Confusion Matrix.

• AUC-ROC Curve is a very widely used metric for models evaluation.
We are using this as it is used for binary classification problems and it
shows the probability that the model will rank a randomly chosen pos-
itive example higher than a randomly chosen negative example. It can
have values in the range [0, 1]. For the purpose of visualizing the prob-
lem we are using the aforementioned terms: TPR and FPR. The ROC
curve is plotted with TPR against the FPR where TPR is on y-axis and
FPR is on the x-axis as shown on Figure 2.9.

Figure 2.9: Example of AUC-ROC Curve where False Positive Rate (FPR) is
shown on the x-axis and True Positive Rate (TPR) on the y-axis.

This shows how much the model is capable of distinguishing between

24 CHAPTER 2. BACKGROUND

the two classes. The higher the ROC curve is, the better the model is as
predicting. The worst scenario is when the curve is overlapping with the
dotted line on Figure 2.9, whichmeans that the model cannot distinguish
the two classes at all.

2.4 Platforms and Frameworks
As this thesis focuses on ML and DL solution, we are using open-source APIs
for looking into big amounts of data and developing ANN architectures. We
use Python (version 3.7.4) as a programming language together with multi-
ple libraries and frameworks such as tensorflow, keras, sklearn, pandas, nltk,
matploit and many more. Therefore, in this section Google BigQuery, Keras
and TensorFlow will be briefly explained as they are the main pillars of this
thesis’ development.

2.4.1 Google BigQuery
Google BigQuery [29] is a serverless, highly scalable and cost-effective cloud
data warehouse, which works in conjuction with Google Cloud Storage. The
company is using Google Cloud services, where different IT teams are up-
dating and analyzing different datasets. This means that there are teams who
make sure that the data in Google Cloud is always up-to-date and reliable.
Therefore, as the company is using Google Cloud services, using BigQuery
during this thesis enabled quick understanding of the available data as well as
efficient data retrieval and analysis. BigQuery enables querying millions of
rows in a matter of a few minutes using SQL queries.

2.4.2 Keras and TensorFlow
Keras [30] is a high-level open-source library for implementation of neural
networks. It can be run on top of different platforms such as TensorFlow [31],
CNTK [32] or Theano [33]. By using Keras, we are able to easily prototype
and change the network architecture within a few lines of code. It is user-
friendly, modular and extensible. Another advantage of using Keras in this
thesis is that it includes different layers, which helps for the creation of different
types of ANN, such as the ones mentioned in Section 2.1.

As previously mentioned, Keras can be run on different backends includ-
ing TensorFlow, which we use in this thesis. TensorFlow [31, 34] is an end-
to-end open-source platform for machine learning. It enables developers to

CHAPTER 2. BACKGROUND 25

easily develop and scale ML-powered applications. TensorFlow was origi-
nally developed by researchers and engineers working on the Google Brain
team within Google’s Machine Intelligence Research organization to conduct
machine learning and deep neural networks research [31].

2.5 Related Work
As previously mentioned there are different approaches to measure similar-
ity and complementarity among two or multiple items. In general, the most
obvious distinction between the methods is splitting them into two groups: un-
supervised and supervised learning approaches.

At the beginning of their existence, complementary recommenders mainly
relied on unsupervised learning. These solutions focused on finding comple-
mentarity between products based on their co-purchase history. One of the
most common methods using unsupervised learning is the Frequent Pattern
(FP) Growth [35] algorithm, which has been widely used in recommenders’
tasks. Basically, the assumption behind such model is that if two items were
bought together more than n times, there is a high probability that those items
are complementary to one another. FP Growth algorithm is based on the FP
tree, making it possible to efficiently search for all frequent patterns in the
purchase history of all users.

Other groups of research focus on using the paradigm of Word2Vec [36]
from NLP field in the case of unsupervised learning. Basically, these models
are taking into account the sequence of previously searched or purchased items
and are predicting the following items that are most likely to be bought. In
the Prod2Vec paper, Grbovic et al. [37] propose a Word2Vec model, which
learns product representations from sequences of retrieved past orders. The
Prod2Vec model involves learning vector representations of products from e-
mail receipt logs by using a notion of a purchase sequence as a “sentence” and
products within the sequence as “words”, borrowing the terminology from
the NLP domain [37]. The Meta-Prod2Vec paper by Vasile, Smirnova, and
Conneau [38] extends the Prod2Vec model by taking into account additional
side information in the input and output space of the Neural Network. The
Meta-Prod2Vec model outperforms the standard Prod2Vec model, especially
when combined with the standard Collaborative Filtering approach.

The main problem with models such as the aforementioned is the possible
lack of ground truth, known as the cold-start problem in the case that there
were no purchases done yet. Complementarity among products cannot be ac-

26 CHAPTER 2. BACKGROUND

curately detected based only on purchase history due to the noise introduced.
For instance, identical items having different sizes or colors are likely to be
bought together, and are pure substitutes instead of complementary products.
Improvement of the approaches, which only make use of purchase data is im-
plemented in the paper by Trofimov [6] introducing BB2Vec. The BB2Vec
model uses both, the browsing and purchase session data, thus it eliminates the
cold-start problem. The BB2Vec model is a combination of several Prod2Vec
models, which are learned simultaneously with partially shared parameters
[6]. Although the core idea of using Prod2Vec model still remains, the pro-
posed model is additionally relying on browsing data and it outperforms its
predecessor models.

There have been several different approaches using supervised learning.
Some of these studies focus on image data, product text attributes or both.
SCEPTRE is a model introduced by McAuley, Pandey, and Leskovec [7] and
stands for Substitute and Complementary Edges between Products from Top-
ics in Reviews. The main goal of the model is topic modelling using Latent
Dirchlet Allocation (LDA) [39] and edge detection of related topics. SCEP-
TRE uses Amazon data of frequently viewed and bought together items, mean-
while collecting the ground-truth. This paper mainly focuses on using review
data for topic modelling and it outperforms typical LDA.

Another interesting approach is making use of multi-modal input (making
use of image, text and user ratings). ENCORE or the Neural Complementary
Recommender explained in the paper by Zhang et al. [8] suggests a three step
algorithm: 1) detecting the complementarity among products based on their
embedding distances of image and text attributes, 2) taking into account user
preferences (ratings) for detecting validity of each complementarity distance
and 3) training a neural network with the outcomes of the previous two steps
[40]. ENCORE is a supervised learning approach as it uses Amazon purchase
history (sections "Also-bought" and "Also-viewed") for labelling the data and
it outperforms its baselines and alternatives mentioned in the paper [8].

So far, we have seen different approaches in the field of finding comple-
mentary products using purchase data, Word2Vec paradigms from NLP, topic
modelling as well as graphs. In Kalchbrenner, Grefenstette, and Blunsom [24]
Dynamic Convolutional Neural Network (DCNN) have been extensively ex-
plored for semantic modeling for sentences using CNNs. The most similar
approach to this thesis work is the paper using SNNs for detecting comple-
mentarity [9]. This paper’s focus is on CNNs for detecting complementarity

CHAPTER 2. BACKGROUND 27

among given two products using only product titles as attributes. When com-
pared to previously mentioned related work, despite the main model, it differs
in the way that it gets two products as an input and only outputs the proba-
bility of those products being complementary while simultaneously learning
and sharing the neural network parameters for both products. We consider this
research as an excellent baseline for our thesis experiments.

Chapter 3

Methods

This Chapter will tackle the data used and the applied methods for solving
the problem of this thesis. Firstly, we will state the requirements, goals and
hypotheses of this work. Furthermore, the data retrieval, data generation and
data analysis will be explained and presented. Section 3.4 will focus on the
implemented models and conducted experiments. Moreover, we will present
the architectures of the two models in details, as well as the hyperparameters
and loss functions used. Last but not least, we want to construct models, which
will be usable in reality, therefore Section 3.4.6 will show the implementation
on how to make the models scalable and usable in real world scenarios when
we have millions of data points to process.

3.1 Requirements and Goals
In this thesis we attempt to develop highly accurate, scalable and usable solu-
tion for detecting complementary products for the company’s online catalog,
which will eliminate any need of human assistance. One of the biggest chal-
lenges is to provide scalability, as in reality we will be dealing with millions
of products, which will need add-on suggestions generated in a matter of sec-
onds. To address the problem and our end-goal, we need to fulfil the following
requirements and goals, ordered by chronological order:

• Retrieve and prepare the labelled dataset for one category of interest.

• Generate negative samples for the aforementioned dataset.

• Conduct data exploration in order to be able to better understand the data
and see possible flaws or improvement points.

28

CHAPTER 3. METHODS 29

• Apply data preprocessing, especially because we are dealing with dif-
ferent kinds of input data. Moreover, transform the data in a format that
be can used by a neural network.

• Include additional word embeddings using Word2vec.

• Implement and test SiameseCNN in order to get complementarity scores
for given two products.

• Implement and test Siamese LSTM in order to get complementarity
scores for given two products.

• Hyperparameter tuning in order to find the parameters of the model that
gives the best performance.

• Comparative analysis between Siamese CNN and LSTM.

• Comparative analysis between Siamese LSTM and the baselines.

• Test whether the title is the most valuable parameter.

• Measure and improve the ability of themodel to handle millions of prod-
ucts.

• Present the results, conclusions and guidelines for future research.

3.2 Hypotheses
Before diving deep into the data and the experimentation part, it is necessary
to gain some domain knowledge and think about the bigger picture of the work.
Formulating hypotheses will help us to better understand the outcomes that we
are trying to achieve and it will structure the problem definition. The hypothe-
ses, which this thesis is trying to prove are as follows:

Hypothesis 1. Siamese LSTM outperforms Siamese CNN for predicting com-
plementary products using the same text attributes.

Hypothesis 2. More product attributes will increase the model accuracy in
both cases. However, the product title is the most valuable attribute for deter-
mining the complementarity.

Hypothesis 3. SNN can scale up to handle millions of data inputs and provide
highly accurate solution for detecting complementarity among e-commerce
products.

30 CHAPTER 3. METHODS

3.3 Dataset
The data is one of the most important parts of the pipeline, especially because
we are using supervised learning approach. As previously mentioned, the
company has around 24M products in their online catalog and most of these
products do not have add-ons. The company as an online catalog has multiple
shops such as Electronics, Health, Beauty, Fashion, etc. As the names suggest,
these shops are in a way product categories, but for simplicity and maintaining
the same naming convention, we will refer to them as product shops. There-
fore, we are interested in picking a shop that: a) already has some add-on
matches for the products and b) where add-ons are of a big importance and
there is a clear need at the moment.

Having in mind these two conditions, as well as the importance of scoping
down the initial experiments, the matches from Garden and Christmas shop
will be used as the training, testing and validation data in our model. In the fol-
lowing subsections of this Chapter, we will explain in details the data retrieval
part, focusing onGoogle BigQuery tables and the data gathering. Wewill con-
tinue more in details about the negative samples generation in Section 3.3.3.
In Section 3.3.2 we will present some interesting findings and very important
data analysis, which might have high impact on the upcoming experiments in
this work.

3.3.1 Data Retrieval
The data that is being used in this thesis is gathered from the company’s data
warehouse - BigQuery, which is used in the company for data and business
analysis. The four data sources (tables) that were used for gathering the needed
data were offers, products, product categories and orders.
Figure 3.1 shows the overall structure of these data sources. The underlined
parameters are primary keys meaning that they uniquely identify the rows in
that dataset.

• Products. The products table holds information on products. Each row
is identified by a unique internal productId and it consists of the title,
description, brand, images and many other product attributes. The col-
umn product-Attributes holds information about more specific
product attributes, which may vary among products, meaning that not
all products have the same attributes. Such attributes can be dimension,
size, color, etc.

CHAPTER 3. METHODS 31

Figure 3.1: Class diagram representing the four main data tables used in this
thesis with some of their main attributes.

• Product Category. This table holds information about the product cate-
gories for each product. In fact, despite the main shop division, products
can belong to different subCategories within that shop.

• Offers. Each product can have multiple offers from different retailers.
For example, a few different sellers can sell an iPhone for different or
even the same price. The same Offers table holds information about
related products for that offer which are actually the add-on products. In
some cases retailers can specify the add-on products for the product they
are offering, but in most cases at the company retailers do not specify
the add-on products manually, which means they are either generated by
the company, thus the add-ons are specified for the product regardless
of who the seller of that product is or not generated at all.

• Orders. The orders table shows every order made by a customer. Each
row has a unique identifier based on the orderId, sellerId and
productId. In fact, there can be multiple products within an order.
We use this table as we can extract information about which items were
frequently (not) bought together but we do not gather any information
for the users.

32 CHAPTER 3. METHODS

Initially, we are mainly interested in getting pairs of matches in the format
(mainProductId, addonProductId) for each product in the Gar-
den and Christmas shop that has at least one add-on. This means that if a
product has multiple add-ons, it will appear multiple times as the main-
Product in the table. On the other hand, a product might be an add-on
to multiple different main products. We name this table consisting of the
pairs of productmatches dataset. After gathering these productmatches
from the shop, we are interested in getting all of the information (attributes)
for those products. We refer to this table from the database as content
dataset. Furthermore, we are using the orders table because we are in-
terested in the ordering frequency of the products. The convenience in using
Google BigQuery for retrieving this data is the simplicity that it offers, the
high speed performance as well as the opportunity to locally save the newly
generated (merged) datasets in pickle files, which can be further used in the
python notebooks. Once we have these two main datasets, we want to merge
their contents to finally get the dataset having the columns (mainProduc-
tId, addonProductId, mainProductTitle, addonProductTi-
tle, mainProductDescription, addonProductDescription,
mainProductBrand, addonProductBrand).

3.3.2 Exploratory Data Analysis
In this part of the report we will present the results of the exploratory analysis
of the data, some interesting numbers as well as the analysis of the newly gen-
erated datasets including the negative samples generated using some rules. To
begin with, Garden and Christmas shop in total has 113.397 products sepa-
rated in 13 sub-categories. Some of the sub-categories areFlowers and Plants,
Garden furniture, Christmas, Ponds and so on. Figure 3.2 shows the distribu-
tion of the products within the sub-categories in this shop.

Moreover, we assume that the three most important features are the prod-
uct title, description and brand. Table 3.1 shows the minimum, average and
maximum length of textual attributes: the title, description and brand. Note
that these numbers might slightly change once we perform the data cleaning
part where we remove unneeded tokens from these textual attributes. Figure
3.2 shows the number of unique categories, the most and least common brand
category.

We will now give a more detailed overview of the information behind the
products that are included in the matches dataset, which includes all
existing matches for that shop together with their textual and categorical at-

CHAPTER 3. METHODS 33

Figure 3.2: Bar chart presenting the sub-categories in the Garden and Christ-
mas shop.

Attribute Max length Min length Average length

Title 53 1 8
Description 2.641 1 116

Brand 8 1 1

Table 3.1: Analysis about the product title, description and brand in terms of
words. The data is taken from the Garden and Christmas shop.

tributes. There are 18.346 pairs of products for which we know that they
are complementary. There are 7.478 unique products in total. The maximum
value one main product appears in this dataset is 9 times, whereas the maxi-
mum value that the same product appears as an add-on is 1.417. On the other
hand, the mean value that a product appears as a main product is 2.6 and 13.7
as an add-on. This tells us that there are some products that appear many times
as add-ons to different main products.

34 CHAPTER 3. METHODS

Attribute Unique categories Most common Least common

Brand 5.397 18.844 1

Table 3.2: Analysis of the brand attribute for the Garden and Christmas shop.

More detailed view on this is show on Figure 3.3. The blue line indicates
how a line of equality should look like in the case of a "perfect" distribution
of the add-ons. The orange line represents the distribution of the add-ons in
our dataset. We see that around 5% of the add-ons (which is approximately
68 products) take up around 80% of the whole add-ons dataset. This means
that there are a few products out of the 1.366 unique products that appear as an
add-on very often. This is also represented in Figure 3.4 where we see bubble
chart of the add-ons distribution. The bigger the bubble is, the bigger portion
of the data that add-on takes. The biggest bubbles take up to 1.417 points as
shown. The dark blue colors represent the most common add-ons and the light
blue color the least common.

Figure 3.3: Gini coefficient graph presenting the distribution of the add-on
products.

CHAPTER 3. METHODS 35

Figure 3.4: Bubble chart of the add-ons distributions. The labels of the bubbles
are representing the occurrence of that product as an add-on product.

In fact, these products that appear more than few hundreds times as an
add-on are mostly Christmas tree decorations, which go well-together will any
product from the sub-category Christmas. These are quite important findings,
which we use for generating the negative samples. For instance, if we do not
include any other information about the product that appears 1.417 times as
an add-on in the training set, but we then want to test if some products go well
together with this item, the model will always say yes (label 1) because it did
not get any information where this product is not an add-on. The model would

36 CHAPTER 3. METHODS

have learnt that it is very frequent add-on and it would have concluded that if it
only appears as add-on to that many different products then it must be an add-
on for every other given product. As one can image, this can be very wrong in
real life scenarios (the Christmas tree decoration does not go well with snow
slides or a garden snowman sculpture from the same shop), but it might be
even more wrong when talking about other more complex and diverse shops.
Such shop can be the Electronics shop: if tripods go well together with any
camera or phone, we know for a fact that they do not go well together with
other electronic devices such as TVs.

3.3.3 Data Generation
The dataset that we use in this thesis, does not have any negative samples. By
negative samples we mean pairs of products (rows of the table) where the label
is set to 0 meaning that the add-on product is not an add-on to the main prod-
uct. As we are dealing with supervised learning approach, it is obvious that we
need these negative samples although they are not stored in any of the retrieved
datasets. If we do not do the negative samples generation, the model will con-
clude that everything is a complementary product (label 1) for every given
main product, simply because we did not teach the model that there are also
products, which are non-complementary. It is only natural that the company
does not have these information as they are not of any interest to the company.
However, we need these negative labels for training the model in this thesis
and for conducting the experiments. The most accurate way of dealing with
this would be manual labelling, but the disadvantage of it is that it requires
many labelling experts with domain knowledge and it is very time consuming.
Therefore, in this thesis, we are proposing two different but also complemen-
tary approaches for generating the negative samples in our database:

• The first approach is to generate the negative samples randomly. We
take the assumption that if a pair of two products is not in the database,
then it is a non-match, meaning that the second product in the pair is
not an add-on to the first product in the pair. Of course, we might lose
lots of valuable information by doing so, because it does not necessarily
mean that if a pair of products is not in the database it is not a match.
For instance, the database shows that a flower vase and wooden chairs
are add-ons to the a wooden table and there is not any information yet in
our database about the relation between the vase and the chairs. Taking
this random approach, we would put the wooden chairs and the vase
as non-complementary products, simply because we do not hold any

CHAPTER 3. METHODS 37

information about their relation. However, it might turn out that those
two products go well together because they are from the same brand
and are in the same colour, or simply because they are a complementary
pair. However, in the previous work done in this field, there have been
approaches where the negative samples generation was done randomly
[8] [9], which proves that this approach can be reliable and useful.

• The second approach, which is basically an extension of the first ap-
proach is based on the assumption that if two products were never bought
together, we consider them as non-complementary. For doing this, we
are taking into account the bought together occurrence for each
pair of products in the dataset and we take that pair if the product pair
is not in that table, meaning that those two products were never bought
together in the same order/purchase. This approach is more intuitive
especially considering the fact that the add-ons at the company, the add-
ons that we are using as a labelled dataset have been generated using the
opposite assumption. That is the assumption that if two products were
frequently bought together, they might be an add-on. We emphasize
might as this is the first part of the human labelling process.

We need to be very careful of the distribution of positive and negative
samples in the dataset as well as the distribution of the unique products. It was
stated that in reality one single product can appear to be an add-on to many
different main products and vice versa, but this can potentially be a big factor
in the model overfitting and generalization. For the reason of understanding
the data in details and getting insights about the possible effects it might have
on the model performance, we did the data analysis showed in Section 3.3.2
and we iterate this process of negative data generation until we are certain that
the data is in good shape and can produce promising results.

Generating Negative Samples

After analyzing the catalog of products in the shop of interest, as well as the
matches’ distributions, we could generate the negative samples following some
rules. So, in a perfect scenario, we would like to have 50−50 positive-negative
ratio, meaning that the number of rows in the dataset having label 0 should be
the same as the number of rows with label 1.

For this purpose, following the second assumption based on never bought
together items we get 50 − 50 positive-negative ratio. However, we get the
scenario shown on Figure 3.5. The left table shows an example of pairs of

38 CHAPTER 3. METHODS

products from the new dataset, where Product 1 only appears as a main
product where the label is set to 1 (Yes). This might be due to the fact that we
were randomly selecting products from the shop and only checking whether
that pair is never bought together and is not in the dataset. Because this is done
by random choice, Product 1 might never be in a pair where the label is
0. Then, if we have a look at the table on the right on Figure 3.5, which is
representing a possible test case, we see that if that Product 1 appears in
a pair with a completely new Product 5, which originally have the label 0,
our model will say that it is 1 with a very high certainty close to 1 because it
has never seen a case where Product 1 was paired with a non-addon.

Figure 3.5: Showcase of a possible training and test set where there is over-
fitting due to limited main products data. The table on the left is showing a
subsample of a training set. The table on the right is showing a possible test
case scenario.

We have the same problem for the add-ons column. The left table on Figure
3.6 presents the possible train set where Product 5 appears as add-on two
times and always having the negative label 0. In the right table on Figure 3.6
we see that for a test case where Product 5 appears with a new unseen main
product our model will say that it is not an add-on because it is very likely that
this product is not an add-on to any product. This comes from the fact that this
product did not go together with any of the products during the training.

For preventing data overfitting, we want to create the data in such way that
the distributions of each main product and add-on product are equal for both
labels. We handle these two criteria in the following way. We iterate through
the add-ons list and for each add-on we make sure that we generate as many
negative samples as there are positive. Given Product 5, which is an add-
on product to 10 different main products, we find another 10 products 2, 3, 4...
for which product Product 5will not be an add-on, meaning that we put the
label 0 to the newly created pairs. For finding those 10 new main products, we
use the assumption that if Product 5 and Product 1 were never bought

CHAPTER 3. METHODS 39

Figure 3.6: Showcase of a possible training and test set where there is over-
fitting due to limited add-on products data. The table on the left is showing a
subsample of a training set. The table on the right is showing a possible test
case scenario.

together, they are non-complementary, therefore we put it in the dataset. After
making sure that we have 50 − 50 ratio in terms of the labels for each of the
add-ons in our dataset, we repeat almost the same process again but now taking
care of the main products. In a nutshell, we want each main product to have
same number of positive and negative samples. If main Product 1 always
has label 0 regardless of the add-on product, there obviously will be overfitting.
Therefore, we want to balance the data from both sides in the same way.

At the end we end up having 60.442 total pairs of products out of which
42.096 negative and 18.346 positive samples. There are 35.978 unique prod-
ucts overall. This number significantly increased because we introduced com-
pletely new products from the same shop while generating the negative sam-
ples based on the never bought together assumption. After making sure that
we have 50− 50 positive-negative ratio for the main and add-on products, the
dataset ended up 24− 76% ratio for the overall data. Ideally, we would like to
have a balanced dataset where the proportion of positive and negative samples
is (almost) equal.

There are different techniques for dealing with such problems, and some
of the most beneficial methods suggest augmenting data by using the data that
we already have [41]. This would mean that new "fake" products will be gen-
erated based on the already known content and what goes well together with
that. This is a rather complex problem on its own as it has not been widely ex-
plored for textual data, meaning that there is not a framework or simple enough
method that could be applied. Therefore, in this thesis for achieving simplicity
in this part we use Random Over Sampling method, which creates duplicates
of the minority class. There are advantages and disadvantages of such process.

40 CHAPTER 3. METHODS

On the positive side, compared to other methods it is fast and easy to generate
these duplicates. On the other hand, by doing this we do not give any new
information to the model because we are simply overpopulating the data with
product titles that were already there.

3.4 Methodology
This section includes the main part of the thesis, which is the actual implemen-
tation [42] of the suggested work and concepts. First, the data prepossessing
part will be explained. This step is needed in order to remove the noise and
unneeded tokens from the text. Previously in this thesis, we mentioned SNN,
which is the model that we are designing, analyzing and experimenting with in
this thesis. In the second subsection of this part, we will explain in details the
structure of the SNNs used, more precisely Siamese CNN and Siamese LSTM.
Initially, we are interested in the differences between these two proposed archi-
tectures, both in the Siamese setup. We want to design two different pipelines
where both of them will have the same input, output and general structure,
but the building blocks of one part of the network to be different. More pre-
cisely, to have different types of layers, Convolutional layers or LSTM layers
respectively.

The reason why we are interested in this comparison comes from the fact
that RNN/LSTM architecture is proven to be one of the best methods for ex-
tracting valuable information out of textual data. In related work, Han et al.
[10] used (Bidirectional) LSTMs for detecting fashion compatibility based on
text. Similarly, in Han et al. [10] LSTM is introduced for detecting fashion
compatibility.

On the other hand, we also want to compare this approach with CNN as
besides their well known and proven usage for extracting features from image
data, they are becoming popular in the field of extracting features out of textual
data as well. The core idea is that once the textual data is transformed in the
feature space, the model will see each word same as it would see a pixel from
an image and therefore, iterate through the sentence similarly as it would iterate
across image pixels. Recent work introduced using CNN for text classification
[22], detecting complementary products [9] and for time-series data [27].

Therefore, we want to compare these two methods and check their perfor-
mances on e-commerce data when the textual attributes are not that rich and
contain very unique words, tailored for the e-commerce platforms and cus-
tomers. For both of these approaches, we use the same techniques, data and
we conduct the same experiments. After analyzing their performance, we are

CHAPTER 3. METHODS 41

interested in testing and exploring the scalability that such Siamese architec-
tures allow. So, the last subsection of this part thoroughly explains how can
our solution be transformed for real-life scenarios with big data.

3.4.1 Data Preprocessing
Data Cleaning

Data preprocessing is an essential part of the pipeline, especially because we
are dealing with textual data, which has a lot of noise and requires time for
proper understanding. We apply a few different techniques to prepare the data.
The following steps are applied to the whole dataset:

• Small-cased all letters

• Removed punctuation signs

• Removed all digits

• Removed measurements (e.g. "cm", "m")

• Removed stop words

During the experimental work, we are checking if all of these steps are nec-
essary and more importantly, whether they improve the model performance.
The outcome is that the combination of all of these steps is essential for get-
ting the best possible results from the data given. Of course, these steps might
differ among categories. We are usingGarden and Christmas shop, a frequent
format of a product title (original, in Dutch language) is the following:

“Triumph tree Forest Frosted kunstkerstboom - 60 x 46 cm - Met jute kluit”

The title shown above starts with a capital letter, has more than nine tokens
and includes dimensions (digits), measurements and signs. We need to remove
these digits as they are presenting more noise than actual new information
about the products. However, if we are using some other shop, for instance the
Electronics shop, the numbers indicating the smart-phone model might be of
crucial importance, therefore in that case we would not exclude the digits from
the product titles without further investigation. In fact, excluding the digits
from the products in our dataset, improves the performance by 10% regardless
if it is Siamese CNN or Siamese LSTM.

42 CHAPTER 3. METHODS

Data Split

In previous sections, we explained how and why the data needs to be split in
three different sets, namely: train, test and validation set. There is a standard
way of splitting the dataset using a python library, which allows to specify the
proportion of the data you want to use in each test set as well as the randomness
of selecting those. However, by doing the typical train-test split, we cannot
guarantee where specific products will end up. Since we are dealing with
textual data and embeddings, we need to make sure that the models do not
overfit and that they generalize well. What this means is that if we split the
data randomly in two parts, we might have Product 2 that appears in the
train set only in the pairs where it has a label 0. Then, if the model sees the
exact same product Product 2 in the test set it will predict 0 because that is
the only thing it learnt. On the other hand, if the data is randomly shuffled in
such way that for each product we have equal number of positive and negative
labels in both, the train and the test set, there is a problem that the model
will give us high accuracy and very good results for the test and validation
set, but once we try it on completely unseen data, it will perform very poorly.
We do not want such scenario as we want to report and analyze the model
performance objectively. For this purpose, we useGroup Shuffle Split in order
to make sure that each product that will appear as an add-on in the train set
will not appear as an add-on in the test set. Therefore, we make sure that the
model’s performance is calculated on new unseen data.

Tokenization

Tokenization is the process of segmenting text data into individual tokens
(words). Before the text data can be presented to the neural network, we first
encode it so that each word is represented by a unique integer. Then, we are
forming sequences out of those integers representing the product titles. For
this task, in this thesis, we were using Tokenizer API provided by Keras. Note
that we do this once we have the train-test set in place. So, this tokenization
does not take into account any frequency of the words compared to other en-
coding techniques, but it only replaces words with a unique integer. We also
add padding to make all vectors of the same length and for this we use the
maximum length from all data, which in our case is 30 when we only use the
product titles as attributes. After we perform this step, the data is ready to be
used by the SNN.

CHAPTER 3. METHODS 43

Layer Input Shape Output Shape Param #
Embedding (None, 30) (None, 30, 300) 6219900

ZeroPadding1D (None, 30, 300) (None, 34, 300) 0
Conv1D (None, 34, 300) (None, 32, 100) 90100

MaxPooling1D (None, 32, 100) (None, 6, 100) 0
ZeroPadding1D (None, 6, 100) (None, 8, 100) 0

Conv1D (None, 6, 100) (None, 7, 100) 20100
MaxPooling1D (None, 7, 100 (None, 2, 100) 0

Dropout (None, 2, 100) (None, 2, 100) 0
Flatten (None, 2, 100) (None, 200) 0
Dense (None, 200) (None, 100) 20100
Dot (None, 100) (None, 1) 0
Dense (None, 1) (None, 1) 2

Table 3.3: Model A: Siamese CNN architecture and hyperparameters.

3.4.2 Model A: Siamese CNN
Themain building block of the task is the neural network architecture. The first
choice for the experimental and scientific analysis is a Siamese CNN, which
will map two product titles from an item pair into representation vectors, which
are then used for computing the compatibility between the two products. After
the preprocessing is done, the main Siamese CNN implementation takes place.

Model Architecture

We will split the implementation part in three different blocks, namely: a)
CNN implementation, b) Merging implementation and c) Compiling imple-
mentation. An overview of the architecture of the Keras model can be seen on
Table 3.3.

CNN Implementation

The first part of the network is to create an architecture, which will support pair
of two inputs (product titles) and return a similarity score. We are building a
Sequential model in Keras, having in total 11 layers out of which one is an
embedding layer and two convolutional layers. We will briefly explain the
function of each of the layers in the case of our specific problem together with
the hyperparameters:

44 CHAPTER 3. METHODS

• Embedding layer is the first layer of the neural network architecture
and it creates embeddings for each of the words in the product titles. It
basically learns the vector representation of the textual data. In Keras,
this layer requires three arguments: input_dim, output_dim and
input_length. The first parameter is the length of the vocabulary
in the data, which is basically a vocabulary of all unique strings in the
data. The second parameter is the size of the vector space in which
words will be embedded, and this is a hyperparameter, which can be
adjusted based on the task. In our case, we choose the output dimension
to be 300, meaning that each word will be represented in 300 different
features in the multi-dimensional space. Finally, the last parameter is
the length of the inputs, which in our case is 30 when we are only using
product titles. This is related to the padding that we did before, so here
all of the inputs have the same length of 30 tokens. Other than these three
parameters, there are two more very important parameters: weights
and trainable parameter, which can be used if we use pretrained
embeddings andwe do not want the embedding layer to start the learning
from scratch. If these two parameters are omitted, the default behaviour
will be to start with random weights and perform the training.

• ZeroPadding1D layer is used to fill the surrounding of the input with
zeros in order to help in preserving features that exist in the edges of the
original input matrix and control the size of the output. The parameter
indicates how many zeros to add and in our case it is set to two.

• Conv1D layer is the first convolutional layer in the network. It extracts
the features from the input data and preserves the relationship among
consecutive parts of the product titles. There are a few hyperparam-
eters, which are very important and need to be tuned for solving the
task. The filters are representing the dimensionality of the output
space, kernel_size is specifying the length of the 1D convolution
window, padding is set to "valid", activation function is "relu",
the kernel_regularizer, bias_regularizer and activ-
ity_regularizer have allL2 regularization penaltywith
the default 0.01 value. L2 regularization pushes the sum of the squares
of the parameters to be small in comparison of L1 regularization, which
pushes the sums of the absolute values of the parameters to be small.
Changing the regularization type significantly increases the performance
of our model.

CHAPTER 3. METHODS 45

• MaxPooling1D layer is used always after the convolutional layer and
it downsamples the input representation by taking the maximum value
over the window defined by hyperparameter pool_size, which in our
case is set to five. The window is shifted by strides. The resulting output
when using "valid" padding option has a shape of:

output_shape =
input_shape− pool_size+ 1

strides

• ZeroPadding1D, Conv1D and MaxPooling1D layer are basically the
same layers that we mentioned earlier in the steps. We are repeating
these three steps by only changing the filter_length with sizes
two and pool_size with three.

• Dropout layer is used to prevent overfitting. Its hyperparameter is set
to 0.01, which indicates that 1% of the input units will be dropped.

• Flatten layer as the name suggests is used to flatten the output so that
we have a simple vector output.

• Dense layer is a fully connected layer with 100 neurons with the "relu"
activation function. It means a linear operation on the layer’s input. In
this case, it applies the rectified linear unit activation function.

Merging

The second part of the pipeline is to merge the two inputs once they have been
processed through the neural network separately. This part consists of two
layers:

• Dot product layer is also provided by Keras and it allows us to give
two inputs in order to get the cosine similarity among each given pair of
inputs.

• Output layer is the last layer, which is a dense layer having the "sig-
moid" activation function as we are solving binary classification prob-
lem. The output of this layer will be the probability of the pair to have
the class 1, meaning the probability that the second input is an add-on to
the first input. We set the threshold to be 0.5, such that each score that
is ≥ 0.5 will have the prediction that the second input is an add-on to
the first input (product) and vice versa.

46 CHAPTER 3. METHODS

Layer Input Shape Output Shape Param #
Embedding (None, 30) (None, 30, 300) 6219900

LSTM (None, 30, 300) (None, 30, 150) 270600
Flatten (None, 30, 150) (None, 4500) 0
Dot (None, 4500) (None, 1) 0
Dense (None, 1) (None, 100) 200

Dropout (None, 100) (None, 100) 0
Dense (None, 100) (None, 1) 101

Table 3.4: Model B: Siamese LSTM architecture and hyperparameters.

Compiling

This part explains the last part of the pipeline and it is not a layer but just
the way that the model is being compiled. In this part there are two impor-
tant parameters: the optimizer and loss function. We used "Adam"
optimizer and "binary_crossentropy" loss function as we have a binary clas-
sification and it has been proven through the experiments that it is the best fit
for the way the problem was formulated.

3.4.3 Model B: Siamese LSTM
The second but as important choice for the experimental and scientific analysis
is a Siamese LSTM, which will map two products’ titles from an item pair into
representation vectors, which are then used for computing the compatibility
between the two products. After all of the preprocessing is done, the main
Siamese LSTM implementation is done in the same way the Siamese CNN is
implemented.

Model Architectuee

Again, same as in the previous subsection, the implementation will be divided
into three blocks. The illustrated picture of the LSTM architecture can be
seen on Table 3.4. Note that some parts of the two Siamese approaches might
be similar or almost the same, however, hyperparameter tuning is performed
independently for the two pipelines.

CHAPTER 3. METHODS 47

LSTM Implementation

We are building a Sequential model in Keras, having in total seven layers from
which one is an embedding layer and one LSTM layer. We will briefly explain
the function of each of the layers in the case of our specific problem together
with the hyperparameters:

• Embedding layer is the first layer of the neural network architecture
same as in the Siamese CNN and basically there is no alteration on its
structure. Therefore, for more information about what each of the pa-
rameters does check Section 3.4.2. In short, input_dim is set to the
vocabulary size, the output_dim is set to 300 and input_length
equals to 30.

• LSTM layer is the core part of this pipeline and it learns the sequential
characteristics of the words in the product titles. There are a few hyper-
parameters, which might affect the model performance a lot. The first
hyperparameter are the units and that represents the dimensionality of
the output space. This is set to 150 neurons. We again use "relu" for the
activation function in the layer. The kernel_regularizer,
bias_regularizer and activity_regularizer have all L2
regularization penalty with the default 0.01 value.

• Flatten layer is used when we have multidimensional output such as in
the case of the LSTM output and we want to make the output linear so
that we can pass it to the Dense layers.

Merging

The second part of the model is to merge the two inputs same as in the Siamese
CNN.

• Dot product layer is used in the same way here having normalize
parameter set to "True" so that we get the cosine similarity between the
two product vector representations.

• Dense layer is a fully connected layer with 100 neurons. In comparison
to the previous Siamese CNN pipeline where, in this case we apply the
dense layer after we perform the merging of the two inputs. More about
this will be explained in Section 4.

• Dropout layer is used to prevent overfitting. Its hyperparameter is set
to 0.01, which indicates that 1% of the input units will be dropped.

48 CHAPTER 3. METHODS

• Output layer is the last layer, which is a dense layer having the "sig-
moid" activation function as we are solving binary classification prob-
lem. Same as in the Siamese CNN, the outcome will be a score indicat-
ing the probability that the second input is an add-on to the first input.
We set 0.5 as the threshold for the decision making.

Compiling

This part is the same in both approaches as we are interested in getting the
same output. What this means is that we use the same "Adam" optimizer and
the logically the same "binary_crossentropy" loss function. As we are using
the "sigmoid" activation function in the last dense layer it is intuitive that we
need to use the "binary_crossentropy" loss function as they are dependant.

3.4.4 Additional Embeddings
In addition to the previous steps of the data preparation, we also create em-
beddings before we give the data to the models. Embeddings are methods for
learning vector representations of the data. They are most commonly used
for working with textual data. Word2vec [36] and GloVe [43] are two popu-
lar frameworks for learning word embeddings. What embeddings do, is they
simply learn to map the one-hot encoded categorical variables to vectors of
floating point numbers of lower dimensionality than the input vectors. For ex-
ample, one-hot encoded vector representing a word from vocabulary of size
50.000 is mapped to real-valued vector of size 100. Then, in the case of the
thesis, the embeddings vector is used in the neural network.

We previouslymentioned that the Embedding layer has a parameterweights,
which can either be left to the default value, meaning that the weights of the
network will be randomly initialized and then they will be updated through
the learning process of the network or they can be initialized with some start-
ing values. However, by applying some pre-trained model or training these
weights before the actual neural network takes place can improve the process
of predicting complementarity among products. Of course, this highly de-
pends on the problem and the size of the dataset.

We are training the embeddings using Word2vec before the Embedding
layer, completely separated from the neural network architecture. Once we
have the embeddings for each of the words in the corpus, we add those weights
to the weights parameter in the Embedding layer. Moreover, when we are
using Word2vec for learning the word embeddings, we are not avoiding the
Embedding layer in the neural network but instead we give these learnt weights

CHAPTER 3. METHODS 49

as an initial weights in the layer instead of letting the layer start from random
numbers for the weights. In practical terms, pre-trained Word2vec embed-
dings can be used as features of any neural network (or other algorithm). On
the other hand, there are examples showing that learning the embeddings only
from our data, optimized for a particular problem, may be more efficient in
some cases [44].

3.4.5 Product Attributes
Furthermore, we try to include multiple product attributes to answer the sec-
ond research question of whether the title is the most and only significant at-
tribute or perhaps the description and the brand might increase the model per-
formance. The description is another textual attribute and it is usually seen
as a complementary text to the title. Therefore, in the later experiments we
concatenate each product description with the title and use it as one textual at-
tribute. The brand is also textual attribute and there are around 5.000 different
brands of product in the shop of interest. However, in general the brand can
also be treated as a separate categorical attribute, but in our case the diversity
of the brands limits us in using it as categorical value and it introduces some
other problems. Therefore, we concatenate each product title with its brand in
the experiments.

3.4.6 Advantages of the Siamese Architecture
The third research question was connected to whether the proposed solution
can be transformed in such way that it can handle big data scenarios. Indeed,
the company offers more than 20M products in its online catalog, therefore
being able to prove scalability is of crucial essence for the proposed solution.
In fact, one of the benefits of using SNN, as suggested by Martin et al. [27]
is that it can be easily transformed into K-Nearest-Neighbour (KNN) problem.
The proposed pipeline’s results are indicating the probability of the second
product being complementary to the first product, for any given pair.

In this part when we refer to the proposed solution, pipeline or neural net-
work we refer to any of the two approaches Siamese CNN or Siamese LSTM
as they both produce the same type of output and offer roughly the same com-
plexity. Thus, if we have pairs of products, both of the suggested solutions
(Siamese CNN and Siamese LSTM) will be able to produce the compatibility
of the pair representing the chances that the second product in the pair is an
add-on to the first target product. But, in a real-life scenario, we do not get pos-

50 CHAPTER 3. METHODS

sible pairs of products for which we want to check this, but instead we would
get a list of main products for which we want to find add-on products from a
specific shop, subcategory, brand, etc. We are usually given target products set
Q = q1, q2, q3...qN and candidate set for the add-ons C = c1, c2, c3, c4, c5...cM
where N and M will probably have values bigger than 106, indicating a few
millions of products, which is a valid scenario taking into account the size of
the company’s catalog. Thus, if we use the proposed solution we would need
to create N ∗ M pairs of products and give those products as inputs through
the neural network. But in a best case scenario, we would just want the topK
candidate products for a given target product as e-commerce websites usually
offer only a few add-on products.

Our approach can be easily extended to handle these big data scenarios
and complete the task of finding top K most complementary products for a
given product in a way which was proposed by Martin et al. [27]. Considering
we have a target product q and a candidate add-on product c. We first generate
their vector representations using only the first part of the proposed SNN. This
means that once the network is trained to create proper vector representations
for each product, we are only interested in the weights that the network produce
before we apply the dot product (basically, before we merge the two inputs).
This is achieved with the Siamese setup as each product is treated separately
until the merge point in the model, thus for each of the products inQ andC we
can get the weights and store them using the Siamese setup. Once we have the
vector representationsXQ andXC for each product fromQ andC respectively,
we can compute the cosine similarity. From this point on, we have a KNN
problem, so once we get the cosine similarities in a matrix format where each
of the columns represents a product from Q and each row represents an add-
on product from C, we can easily get the top K add-on products for a given
product q sorted based on their probability of being an add-on product.

We want to point out what would happen in terms of complexity if we use
the predictions by the neural network when we introduce millions of prod-
ucts. As mentioned, in a real-life scenario we need all possible combinations
as we do not know which are possible pairs. Therefore, we could achieve this
by combining all possible pairs of products from the target and candidate list
and give those pairs as an input to the neural network. While explaining the
computational complexity, for simplicity, we will use the number of products
introduced in the test set we use during the experiments. This is 4.209 unique
candidate products and 9.218 unique target products. In total there are 12.733
unique products from both sets. In the test set there are 16.256 pairs of prod-
ucts (rows). However, in a more realistic scenario we would not know which

CHAPTER 3. METHODS 51

are candidate products, thus we might want to test all possible combinations
between these 12.733 unique products in total, which results in 162.116.556

combinations in total excluding the diagonal of the matrix as it the cosine sim-
ilarity between the same two products, which results in similarity score of 1.
Perhaps we could indicate business rules based on price to filter out some of
these products and indeed create a candidate list set, which will contain less
than 12.733 products.

Furthermore, Figure 3.7 illustrates how the Siamese architecture can be
used to extract the weights of each of the products of interest, where the em-
beddings part is done only once for each product separately. Then, taking the
idea from transfer learning [45], we save those weights in forms of matrices
and apply the dot product between the two matrices having the weights for
each target and candidate product, representing their cosine similarity.

Figure 3.7: Illustration of where we save the weights from the SNN and apply
the dot product between the two matrices of target and main products.

Chapter 4

Results and Discussion

In this section, the previously introduced models will be applied on the real
data taken from the company to predict complementarity among e-commerce
data. The results from various experiments will be presented as well as some
comparative analysis. The data for these experiments is always split in pro-
portion 80 − 20 for the train and test set, while 10% of the train data is used
for validation during training. As stated in the earlier sections, we are only
making these experiments using one category/shop, which is the Garden and
Christmas shop. Unless stated otherwise, we do the experiments using the
products title as attributes because the titles are short but have a very concise
content, which describes the products in the best way. Later on, we will also
include other product attributes in the experiments, which will be accordingly
presented. The hyperparameters of the models and the actual implementation
was introduced in Chapter 3. Therefore, in this section the main focus will be
exploring and discussing: a) the models in terms of their performance, their
(dis)advantages and structure and b) the data in terms of how the data can
impact the model performance and analyze possible drawbacks.

In the comparative analysis we will see how LSTM outperforms CNN us-
ing textual product attributes and Word2vec embeddings. An interesting in-
sight is that using only the product titles produces most promising results in
terms of accuracy and time complexity. Later on, by using transfer learning
we extend the proposed Siamese LSTM approach to KNN problem.

4.1 Comparative Analysis
In this part of the thesis we do comparative analysis in terms of the proposed
models, their architectures, including additional embeddings, baseline com-

52

CHAPTER 4. RESULTS AND DISCUSSION 53

parisons as well as results when including description and brand as an
addition to the title attribute.

4.1.1 LSTM vs. CNN
To answer the first sub-research question regarding the performance of Siamese
CNN and Siamese LSTM, we conducted a few different experiments. We
are trying to compare the performance/accuracy of both models and conclude
which one solves the problem of finding complementary products better.

The first experiment showcases the different accuracy when we implement
the merging - dot layer in different places. We explained that there can be three
types of merging of the two vector outputs from the SNN: early, intermediate
and late merge. In the case of this thesis we are interested in testing the inter-
mediate and late merge. Figure 4.1 illustrates the difference in intermediate
and late merge in the case of our implementation. When speaking of Interme-
diate Merge (IM) we mean that the Dot layer is applied right after the Flatten
layer. What this means is that there is one Dense layer after the merging is
done and before the final Output layer is reached. Late Merge (LM) is rep-
resenting the architecture when the Dot layer is implemented just before the
final Output layer.

Having this in mind, we conduct two experiments for each of the proposed
architectures to check their best performance in terms of the place of merging.
From the results shown on Table 4.1 we see that Siamese CNN performs better
when there is late merge implemented, whereas Siamese LSTM performs bet-
ter when having intermediate merge. Recall− 0 and Recall− 1 on Table 4.1
are presenting the recall of each of the two classes respectively. We see that
Siamese CNN with late merge outperforms Siamese CNN with intermediate
merge. On the contrary, when speaking about Siamese LSTM, having inter-
mediate merge gives better results than having late merge. In fact we can see
that CNN - IM and LSTM - LM have quite low recall for class 1, meaning that
both approaches have problems detecting pairs of products which are com-
plementary. Siamese LSTM with intermediate merge outperforms all other
models’ architectures and that is the architecture we will use in the further
analysis.

Once we got the results out of the experiments where each of the models
performed the best, we run the models to see how the accuracy and loss are
evolving over 10 epochs shown on Figure 4.2. Figure 4.2 represents how the
two models learn over time.

54 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.1: The difference between intermediate (left illustration) and late
(right illustration) merge in the implementation of the proposed model.

4.1.2 Analyzing the Embeddings
As shown before, Siamese LSTM performs better for the task we are trying to
solve in this thesis, thus from now on we conduct all of our experiences only
on the Siamese LSTM architecture. In this part, we are reporting the results
after applying the method described in Section 3.4.4 where additional embed-
dings using Word2vec before the Embedding layer were introduced. This was
applied for all of the tests shown on Table 4.1. Then, we perform experiments
to check how removing the Word2vec model will impact the models’ accu-
racy. We apply this in the LSTM network, taking into account the architecture
(merge layer), which gave most promising results from Table 4.1. The out-
come of these experiments is that training the word embeddings on the train
corpus, taking into account all possible titles from all exiting products in that
shop and applying those weights in the neural network architecture increases
the accuracy and decreases the learning time. This approach is usually used
when the training set is not that large and when we want to help the model to
generalize better on unseen data.

CHAPTER 4. RESULTS AND DISCUSSION 55

Siamese model AUC Accuracy Recall-0 Recall-1

CNN - IM 72% 65% 99% 22%
CNN - LM 82% 78% 63% 93%
LSTM - IM 93% 85% 88% 91%
LSTM - LM 80% 75% 93% 51%

Table 4.1: Comparative results showing the performance of Siamese CNN and
Siamese LSTM based on the place of merging the two product outputs.

(a) Comparing accuracy

(b) Comparing loss

Figure 4.2: Accuracy and loss over 10 epochs for Siamese LSTM model with
intermediate merge and CNN with late merge.

Results for the accuracy over the validation set are shown on Figure 4.3.
We see that when there is no Word2vec applied, the starting point of the ac-

56 CHAPTER 4. RESULTS AND DISCUSSION

curacy for the model is quite low and it rapidly increases and outperforms the
model when there is Word2vec applied. However, this is reasonable to happen
since this is tested on the validation data. Furthermore, the model where the
word embeddings are learnt in the network is naturally more tailored for the
given data. Once we introduce the new unseen data to the model, the model
where we use the pre-trained word embeddings using Word2vec outperforms
the model where the weights are randomly initialized at the beginning. This
is shown on Table 4.2.

Figure 4.3: Accuracy over 10 epochs when we apply Word2vec compared to
when start the training with random weights on Siamese LSTM.

Embeddings Accuracy AUC Training time

With Word2vec 85% 93% 8min
Without Word2vec 76% 81% 12min

Table 4.2: Accuracy and AUC score for LSTMwith intermediate merge based
on the additional Word2vec embeddings.

4.1.3 Comparing to Baselines
In this part of the results, we want to showcase how Siamese LSTM performs
compared to some of the baselines, which are in general frequently used meth-
ods. The methods that we are comparing the Siamese LSTM model with are
Random Forest, Single LSTM network having the same layer architecture as
our Siamese LSTM and Vanilla NN where the first layer is the Embedding

CHAPTER 4. RESULTS AND DISCUSSION 57

layer and then there is one Dense layer before the final output layer. In the
following part we will briefly explain the architectures of the three baselines.

• Random Forest [46] has been widely used for classification tasks such
as this one, it is easy to implement and it performs well on textual data.
Martin et al. [27] are comparing their proposedmodel with RandomFor-
est, thus it is a well-defined baseline for our experiments, especially tak-
ing into account that we want to continue and upgrade the research done
in their paper. The Random Forest implementation starts with combin-
ing the inputs (product titles) from each sample in the database and to-
kenization of the product titles using Count Vectorizer. We then apply
simple Random Forest algorithm, with 1000 estimators.

• On the other hand, we are also implementing a single (we say single to
emphasize that it is not a Siamese) LSTM neural network. By doing so,
we want to see the difference when implementing Siamese compared to
having the same architecture but for a single neural network. The main
different between these two approaches is that in the Siamese approach
the inputs are treated separately until the moment of merging the two
vector outputs. This means that the embeddings for each product title
are done separately and independently from the other product in the pair.
On the contrary, in single neural networks, the two product titles for each
of the product pairs are concatenated since the beginning and are treated
as one input during the tokenization, word embeddings and finally, in the
model architecture. For that reason, the input_length is set to 60,
which is 2 ∗ 30 where 30 represents the maximum title length in our
dataset. The exact layers of the LSTM were presented in Section 3.4.3.

• Lastly, we also implement and test vanilla NN, which is a simple neural
network and has the main component - the Embedding layer. Basically,
we have in total six layers: Input, Emedding, Flatten, Dense, Dropout
and Output layer. The embedding layer uses the exact same parameters
as introduced in the Siamese LSTM, but the input_length parame-
ter is set to 60 as the two titles are treated as one. TheDense layer has 100
neruons and ’relu’ activation function. Furthermore, the dropout rate is
set to 0.01. The final Output layer has the ’sigmoid’ activation function.
We use ’binary_crossentropy’ as the loss function and ’Adam’ as the op-
timizer. The purpose of such implementation was to see the importance
of the Embedding layer and whether only having the Embedding layer
without any specific CNN or LSTM layers will give promising results.

58 CHAPTER 4. RESULTS AND DISCUSSION

The experiments in the implemented baselines are conducted using exactly
the same data with identical preprocessing and train-test split as in the original
implementation. The results showing the accuracy and AUC score for each of
these models are shown on Figure 4.4.

Figure 4.4: Comparative results showing the accuracy and AUC for Siamese
LSTM, Single LSTM, Vanilla NN and Random Forest.

From Figure 4.4 we see that the Siamese LSTM and the Single LSTM net-
work perform with the same accuracy. This is due to the fact that we have
the same architecture in both cases and the way the predictions are done is
identical. The difference and advantage of using SNN is that it can be trans-
formed for big data scenarios and it is more scalable (fast). This will be further
discussed in Section 4.2. Furthermore, Random Forest performs the worst in
this scenario with accuracy of 66%. The two-layered neural network outper-
forms Random Forest but performs worse than LSTM as expected. Although
the network has the Embedding layer, which handles the textual data well, the
network is not specifically trained to handle text sequences, thus there is some
loss of information.

The plot on Figure 4.5 is representing the distribution of the model predic-
tions. Red color represents the True Negatives, the inputs that were correctly
classified as negative. The bars with green color represent the True Positives,
the inputs that were correctly classified as positive (add-ons). We see that
sometimes there is overlapping with the colors. Ideally, we would want all
green bars to be on the right side of the plot, above 0.5 and the other way
around for the red ones. We say 0.5 because this is the standard threshold for
binary classification, which is also the one we use in this thesis. As the out-

CHAPTER 4. RESULTS AND DISCUSSION 59

come of the model is the probability that the input belongs to the positive class,
we formulate it in the way that if the models gives 0.5+ certainty that the pair
belongs to the positive class, then we label is as positive, otherwise we label is
as negative. However, the "perfect" distribution that we would want is not the
case with most of the model outcomes. Figure 4.5 shows the predictions for
the final Siamese LSTM. Here, there are a few cases that are wrongly classi-
fied and we see that some green bars are positioned at the left side of the chart
close to 0. Even if we cannot get the perfect 100% accurate classifier, a better
outcome would be to see that the wrongly classified inputs were somewhere
around 0.5 representing that the model was not sure about the decision.

Figure 4.5: Predictions graph for Siamese LSTM.

The reason why the model is so sure that something is not an add-on when
in fact it is and vice versa, is simply because it was trained in that way. By fur-
ther investigation, we see that there are cases where the training data states that
two products are complementary, but we see that they should not be marked
as complementary based on the product titles and our common sense. This is
due to the fact that the original data labelling process was done by human con-
tent experts and some business rules. So, even if something might not seem

60 CHAPTER 4. RESULTS AND DISCUSSION

as an add-on, the experts might have put it as an add-on simply because of the
purchase frequency of those two products or some previous experience with
the products in general. Another problem is the noise in the data introduced
by products, which have very short one or two-word titles, which are basically
giving no information about the product. In the case of the company, this is
usually done by partner sellers who do not spend a lot of time on the appear-
ance of their products in the company’s catalog and have very few information
about the products they sell. Therefore, having this kind of noise and incon-
sistency in the data might prevent the model to formulate general rules, which
will always be correct.

Figure 4.6 explains the AUC-ROC curve for the same model. We see that
the ROC curve for both classes is in the upper-left corner, which gives us in-
formation that the model performs well, hence it is trustworthy.

Figure 4.6: AUC-ROC curve for Siamese LSTM.

4.1.4 Testing Product Attributes
We included different product attributes in order to investigate the second re-
search question. The results are shown on Table 4.3. When using only the
title, the input length in the Embedding layer (the maximal length in the input)
is set to 30. When we include the description to the title or when it is used as
standalone the input length is set to 200. In the cases where the description is
included, the longest length of the product attributes (title+description) is 800.
However, we treat these long sequences as outliers because they are just a few

CHAPTER 4. RESULTS AND DISCUSSION 61

cases, and it slows down the training time for approximately four times. On the
other hand, when we use the brand as an attribute, we set the input length to
35 as after performing the data cleaning the longest brand name is five words
long.

Product attribute(s) Accuracy AUC Training time

Title 85% 93% 13min
Title + Description 89% 95% 58min

Description 72% 81% 58min
Title + Brand 80% 83% 14min

Table 4.3: Comparing accuracy, AUC score and training time for Siamese
LSTM using different product attributes when the training was done on 10

epochs.

4.2 Transforming the Siamese LSTM into KNN
In this part we will start by showing the difference in the prediction time using
a single LSTM network, Siamese LSTM architecture on its own and the pro-
posed transformed/upgraded approach which is a combination of a Siamese
LSTM and KNN approach. Then we will be showcasing the results obtained
from the experiments when using the transformed approach. Note that we only
take into account the testing set for these experiments. In a real-life scenario
we would run this method between all products from the chosen shop or even
between cross-shops.

In this part we are interested in real-life scenario situation, therefore we are
not interested in testing only the ∼ 16.000 pairs of products that are included
in the test set as in reality we would not have pairs of possible complementary
products. Instead, we are selecting all the unique products from the test set
which are in total around 13.000. We are interested in the add-ons for all of
these 13.000 products as we would not know which are possible target and
candidate products. In total, if we want to pair 13.000 products with each
other, we would get roughly 170M pairs of products for which we want to
know their complementarity relationship. For the purpose of this thesis and
the experiments, due to the limitations of the hardware, we only take 1M pairs
of products in the following experiments.

62 CHAPTER 4. RESULTS AND DISCUSSION

The three approaches that we are comparing here would treat this scenario
as follows. The single LSTM network is traversed 1M times for each pairs
of products. The Siamese LSTM network is traversed 1M times as well, but
with a slightly higher time performance due to its Siamese architecture and
the ability to learn faster. Finally, the transformed approach which is based
on transforming the Siamese LSTM into KNN, will be traversed only 13.000

times, for each product once. Then the cosine similarity will be calculated for
the 1M pairs, which is a very fast operation as it is basically a matrix multipli-
cation. The time analysis for the three approaches are shown on Figure 4.4. If
we mark the number of unique products with N , then the time complexity for
the Siamese LSTM and single LSTM neural network would be O(N2) while
the time complexity for the transformed approach would be only O(N) as the
neural network will be traversed only once for each product.

Model Prediction time Time complexity

Single LSTM 11min O(N2)

Siamese LSTM 8min O(N2)

Transformed Siamese LSTM 10sec O(N)

Table 4.4: Comparing the time needed for predicting complementarity among
1M pairs of products.

From this point on, we focus on analysis of the last approach which is
highly scalable for millions of data points. Therefore, we want to analyze
its performance further. Once the model weights are extracted from the neu-
ral network and the cosine similarity is applied among all possible pairs of
the given products, we get the results in the format shown on Figure 4.7. In
the outcome, each row is representing the main products identifiers and the
columns are representing the candidate add-on products identifiers, which in
this case are all products from the test set. For the purpose of analyzing and
discussing the results we put pictures instead of the original product identifiers
for one of the products shown on Figure 4.8. The target product is the color-
ful hammock in the top left cell. We select five add-on products as based on
discussions with content experts it is the most common number of add-ons to
be shown on e-commerce websites.

Figure 4.8 shows top five detected add-ons for the target product - the ham-
mock in this case. We see that the first suggested add-on is actually another
type of a hammock, meaning that it is not a complementary product but rather a
substitute product. Furthermore, the second suggested product is a real add-on

CHAPTER 4. RESULTS AND DISCUSSION 63

Figure 4.7: Heatmap of the cosine similarity between five target products and
five candidate products where the green color indicates high score and the red
color indicates no complementarity between the products.

Figure 4.8: Example of suggested top five add-on products for the hammock
being the target product.

product, whichwas predicted correctly. With further analysis and comparisons
of multiple products, we can see that in most of the cases the top products that
are suggested are either real add-ons products or substitute/alternative prod-
ucts having the same characteristics. This shows that the model can clearly
detect real complementary items for a given main product, but there are also
a lot of false positives.

On the Figure 4.8 we put either question mark or a tick, where question
mark indicates that the cosine similarity might be wrong and tick where we
clearly see that it is an add-on. Now, having the transformation of the Siamese
model to a simple cosine similarity (dot product) between the model weights
has some advantages and disadvantages.

64 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.5 shows the prediction scores obtained by the two different ap-
proaches for the same product, whichwas shown on Figure 4.8. When columns
have the None value it means that these pairs were not in the test set, thus they
would not have been suggested at all if we use the currently applied method
of manual labelling products at the company. The third product is a hammock
pillow, which is a really interesting add-on. The results show that the extended
approach for millions of products detects products, which were not suggested
with manual labelling based on the frequently bought together filtering. On
the other hand, for the products that were spotted as add-ons by both meth-
ods, we see that the predictions by the transformed approach are with lower
probability.

The reason why the second approach is suggesting substitute products as
well is simply because it was trained to do that using the given ground truth.
In some cases, the add-on suggestions that we have as part of the ground truth
consist of similar/alternative products to the target product. Such case is pre-
sented on Figure 4.9. We see that the add-ons suggestions for the vase are
other vases in different/similar shapes. Now, this is reasonable for the vases
as people usually tend to buy a few of these products. But, if the user decides
to buy a hammock, this would not be the case because it is an expensive prod-
uct, which is needed as one piece. The fact that there are cases in the training
set where alternative products are allowed for some products but not for other
ones is considered as incorrect data because ideally, we would not want our
model to suggest these cases. However, this is set as a learning point in the
model.

The model implemented in this thesis is not able to distinguish whether
for Product A we can suggest similar products, but we should not to that
for Product B. The network learns from the data given, and the data sug-
gests in multiple inputs that having similar products as add-ons is a good idea.
Therefore, besides detecting actual add-on products, our model suggests simi-
lar products as well. Ideas on how this can be further improvedwill be included
in Section 5.2.

CHAPTER 4. RESULTS AND DISCUSSION 65

Figure 4.9: Example of the ground truth when similar/alternative products are
considered as good add-ons. The two vases on the right are suggested add-ons
for the vase on the left.

Table 4.5: Comparative results in terms of complementarity score between
Siamese LSTM for testing given pairs of products and the extended approach
when we compare all possible pairs of products. The add-on products shown
are suggested when the colorful hammock is the main product of interest.

Chapter 5

Concluding Remarks

In this section, we want to give final remarks regarding the work done during
this thesis. First we will start with the Conclusion for the proposed models
based on the experiments conducted. Then, in the Future Work section we
will give ideas and suggestions for future improvements and experiments. The
inspiration for these guidelines for the future work came from the outcomes,
challenges and limitations during this thesis work.

5.1 Conclusion
In this work we conducted a research on content-based complementary prod-
ucts recommendations in the use case of the largest e-commerce company in
the Netherlands. More specifically, the scope of this thesis was to improve
the current manual way of detecting complementary products by suggesting a
deep learning solution using SNN, which was expected to provide promising
results and scale up easily.

We were using a supervised learning approach using the manually labelled
data (matches of complementary products) from the Garden and Christmas
shop at the company. Chapter 3.3 explains the dataset used during this thesis.
In short, after retrieving the data from the company’s online warehouse and
combining the data sources of interest, we only had the positive classes for
the supervised learning approach as the company does not hold information
about the negative classes (the pairs of products, which are not complemen-
tary). Therefore, in Section 3.3.3 we explain how the negative samples were
generated as part of the work in this thesis as well as the problems encoun-
tered during the process. After the data was ready and preprocessed, we im-
plemented and tested the performance of Siamese CNN and Siamese LSTM,

66

CHAPTER 5. CONCLUDING REMARKS 67

both having the same Siamese structure, which accepts pairs of products as in-
puts and produces a complementarity score as the output of the model. More
details about the implementation of the proposed pipelines, methods and met-
rics were explained in Section 3.4. In addition, we conducted experiments
including additional word embeddings using Word2vec as well as several ex-
periments including the description and brand on top of the main attribute -
the title. The proposed model was also compared to other baselines in terms
of the accuracy and AUC score. Last but not least, Section 4.2 explains how
we managed to transform the proposed Siamese approach to handle big data
scenarios, thus be scalable and easily applicable to real-life scenarios at e-
commerce platforms.

For all of the aforementioned experiments, we accordingly documented
the results in Chapter 4. As a conclusion of the experiments, on Table 5.1 we
present in dark letters the final solution to the problem that we were trying to
solve in this thesis.

Siamese Model Word2vec Attributes Accuracy AUC

LSTM Yes Title 85% 93%
LSTM Yes Title+Description 89% 95%
CNN Yes Title 78% 82%

Table 5.1: The final model and settings that gave most promising results.

Although the Siamese LSTM including the description as an addition to
the title attribute increases the accuracy and AUC score, we conclude that a
trade-off between accuracy−vs− time needs to be made since including the
description attribute slows down the training process for about four times.

This thesis’ work was focusing on answering the general research question
and the three sub-questions formulated at the beginning of the work stated in
Section 1.4.

To start with the general question: How can we use Deep Learning to im-
prove the process of detecting complementary products based on content hav-
ing the end goal of increasing the average purchase value on the e-commerce
platform?. We proved that by using Siamese LSTMs and cosine similarity us-
ing only the product titles we can detect add-on products and suggest products
to the user, which will encourage him/her to purchase more than one item at a
time.

The first research sub-question was: Which of the proposed two models
- Siamese LSTM or Siamese CNN predicts complementarity among products

68 CHAPTER 5. CONCLUDING REMARKS

with higher accuracy based on the content?. Based on the results in Section
4, we come to the conclusion that Siamese LSTM gives higher accuracy. We
conducted different experiments by modifying the Siamese CNN and LSTM
structures, but at the end we conclude that Siamese LSTM is most suitable
model for our problem as it learns complementarity using the words in the
product titles as long sequences and it generalizes well.

The second research sub-question was: Is the title the most valuable at-
tribute for content-based complementary recommender systems?. The answer
is "Yes", the title is indeed the most valuable attribute as shown on Figure 4.3.
This is due to the fact that titles are the most informative parts of the products
at the company. They are often short and very concise, consisting of only the
most relevant information for the user, hence for the model as well. Basically,
we can see titles as a summary of the product descriptions.

Last but not least, the third research sub-question: Can SNNs be trans-
formed such that it scales to millions of pairs of products? How well does it
perform compared to the manual (human) pipeline?. We managed to trans-
form the Siamese LSTM into a solution, which can handle big data scenarios.
Compared to the current manual approach, it is scalable (easily extendable)
to all categories and shops in the company and it does provide new informa-
tion, which were not retrieved in the current process. On the other hand, the
proposed extended solution does give some false positives, suggestions that
are incorrectly classified as add-ons but instead they are substitute products.
Further improvements regarding this will be suggested in Section 5.2.1.

In addition to the research questions in this thesis, we also formulated hy-
potheses for each of the three research sub-questions in Section 3.2. We proved
the first hypothesis that Siamese LSTM outperforms Siamese CNN for predict-
ing complementary products using the same text attributes. The second hy-
pothesis was that More product attributes will increase the model accuracy.
However, the product title is the most valuable attribute for determining the
complementarity. We did prove this hypothesis as the title was the most
valuable attribute as expected. In addition, when combining the product title
with the description, we got higher accuracy but this was not the case with
the brand attribute. Lastly, by answering the third research sub-question we
proved the third hypothesis, meaning that SNNs can scale up to handle mil-
lions of data inputs and provide highly accurate solution for detecting com-
plementarity among e-commerce products.

CHAPTER 5. CONCLUDING REMARKS 69

5.2 Future Work
We split the future work in two parts, the Qualitative Interpretation at the
company, focusing on user testing and how the experiments can be further
performed for testing the direct impact to the company. Then, we will suggest
improvement points regarding the data and the model as some ideas for further
experiments.

5.2.1 Qualitative Interpretation at the Company
For proving the real value of the proposed pipeline to the company, we want
to compare the proposed Siamese LSTM pipeline to the current approach at
the company in terms of the impact on increasing the average purchase value
as that is the metric by which the success of recommender systems is valued.
Showing the capability of the model in real-life scenarios and proving that
the manual labelling of the add-ons can be fully automated in the company
is of a big importance. For this purpose, we cannot run experiments in the
experimental setup and metrics we had set up during this thesis work because
the current process at the company for detecting add-on products gives almost
100% accuracy as it is labelled by domain experts. However, by proving that
the solution can easily scale up for millions of products and does not require
human assistance, a trade-off based on the accuracy−vs−time can be made.
With the current labelled data available, we can only validate already existing
pairs of products automatically. This means that for all new matches, the data
itself cannot tell us whether the model is good or bad.

For this purpose, we propose A/B testing. A/B testing is a method of com-
paring two versions of the same page or content against each other to check
which one performs better or which one increases the company’s evaluation
metrics more. In the case of this thesis, the split between the two versions for
testing can be formulated in such way that one group of users will use the pre-
vious version of the add-ons for the Garden and Christmas shop. In the first
group, some of the products will have "perfect" manually added add-ons (the
dataset that we used in the supervised learning approach) but on the other hand
for a lot of products there will be no add-ons suggested. In the second group
of testing users, we will show the add-ons, which our model suggested. By
doing so, after a few weeks of testing, we will be able to make a conclusion for
the last experiment - whether the proposed solution increases the average pur-
chase value as it is the parameter of highest importance when talking about
qualitative interpretation at the company. In Section 4.2 we stated that the

70 CHAPTER 5. CONCLUDING REMARKS

proposed model is suggesting a lot of false positives or alternative/substitute
products. This is wrong in the definition of what a complementary product is.
However, we are trying to increase recall, so we expect that suggesting a few
non-addons as an addition to the real add-ons products will have higher impact
on the average purchase value increase than having no add-on suggestions at
all. But, if we keep suggesting irrelevant add-on suggestions to the user, es-
pecially without suggesting anything interesting and truly complementary, it
might backfire on the customer satisfaction and happiness level.

Therefore, if conducting A/B testing as suggested is not an option at the
company, our solution can be used as a valuable starting point in the current
process of detecting complementary products. Having such solution instead
of the currently used business rules will significantly reduce the labelling time
as we know for a fact that it will only suggest most relevant items (similar or
complementary).

5.2.2 Data and Model Improvements
In Section 4 we mentioned some obstacles and problems with the labelled
data that we use for training. More specifically, throughout the experiments
we stated that some of the incorrectly classified candidate add-ons were due
to the data quality. The problem comes from the fact that the train set consists
of only positive samples, which we take as ground truth, while the negatives
sample were generated with proposed methods Section 3.3.3. However, for the
negative samples generation we take quite extreme cases where two products
are obviously not add-ons as we are starting from the assumption that if two
products were never bought together they are probably not complementary.
Therefore, we omit all of the cases where similar products were bought or
viewed together but in fact are not complementary.

Another interesting approach would be to take into account user click his-
tory to check for items that were viewed in the same session, usually alternative
items, which are very similar in terms of titles, and take these pairs into the
negative training samples. However, the scope of this thesis did not take into
account any user click/history data as the focus was to explore the SNNs given
pairs of products. Hence, an alternative approach for the future would be to
include user click data in the negative samples generation part.

Including more product attributes is always a good idea for experimenta-
tion. Therefore, we propose including the price attribute in addition to the
title, description and brand. The price can be a good indicator of the threshold
when a product can be a substitute and when not in the cases where substitute

CHAPTER 5. CONCLUDING REMARKS 71

products were suggested by the proposed KNN solution in this thesis. Taking
the examples given in Section 4.2, from the data we have in the training set
it is correct that two similarly shaped vases are an add-on to the chosen oval
vase, but suggesting hammocks in similar shapes is wrong when the user de-
cided to buy a hammock. By adding the price as an attribute, this problem
might be fixed as the model will be able to learn when it is accepted to suggest
similar items as add-ons. Although, in reality this should not be the case as
by definition, add-on suggestions should not be similar products in any case
even though people might buy some of these similar products together in bulk.
There are two ways of including the price as an attribute: a) the first one is by
adding it as a separate feature in the model while the learning is being done
and b) adding a price threshold once the suggestions from the proposed KNN
solution are done. By applying the latter approach, wemight be able to analyze
its impact more and learn more about the data provided.

Another interesting attribute which might have high impact on eliminating
the substitute products is including the products sub-subcategory. If we elimi-
nate all of the products of the same type, the problem of suggesting substitutes
can be fixed. In the example of the hammock, all products in the hammocks
or swings sub-subcategory could be eliminated.

Last but not least, including image data in the categories where it is relevant
might be a good idea. Aggarwal et al. [11] have done this for learning the style
compatibility in furniture by combining text and image data. However, this is
very costly compared to using only textual data and might not be applicable to
all product categories, especially where style is not that important such as in
the Garden and Christmas shop used in this thesis.

Bibliography

[1] Charu C. Aggarwal. Recommender Systems, The Textbook. Springer,
2016.

[2] CambridgeDictionary.url:https://dictionary.cambridge.
org/. (accessed: 21.04.2020).

[3] Amazon online store. url: https://www.amazon.com/. (ac-
cessed: 17.07.2020).

[4] Alibaba online store. url: https://www.alibaba.com/. (ac-
cessed: 17.07.2020).

[5] Zalando online store. url: https://zalando.com/. (accessed:
17.07.2020).

[6] Ilya Trofimov. Inferring Complementary Products from Baskets and
Browsing Sessions. Sept. 2018.

[7] JulianMcAuley, Rahul Pandey, and Jure Leskovec. “InferringNetworks
of Substitutable and Complementary Products”. In: Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’15. Sydney, NSW, Australia: Association for
ComputingMachinery, 2015, pp. 785–794. isbn: 9781450336642. doi:
10.1145/2783258.2783381. url: https://doi.org/10.
1145/2783258.2783381.

[8] Yin Zhang et al. “Quality-aware neural complementary item recom-
mendation”. In: Sept. 2018, pp. 77–85. doi: 10.1145/3240323.
3240368.

[9] Kui Zhao et al. “Deep Style Match for Complementary Recommenda-
tion”. In: (Aug. 2017).

72

https://dictionary.cambridge.org/
https://dictionary.cambridge.org/
https://www.amazon.com/
https://www.alibaba.com/
https://zalando.com/
https://doi.org/10.1145/2783258.2783381
https://doi.org/10.1145/2783258.2783381
https://doi.org/10.1145/2783258.2783381
https://doi.org/10.1145/3240323.3240368
https://doi.org/10.1145/3240323.3240368

BIBLIOGRAPHY 73

[10] Xintong Han et al. “Learning Fashion Compatibility with Bidirectional
LSTMs”. In: Proceedings of the 2017 ACM on Multimedia Conference
- MM ’17 (2017). doi: 10.1145/3123266.3123394. url: http:
//dx.doi.org/10.1145/3123266.3123394.

[11] Divyansh Aggarwal et al. Learning Style Compatibility for Furniture.
2018. arXiv: 1812.03570 [cs.CV].

[12] T. Zhao et al. “Improving recommendation accuracy using networks
of substitutable and complementary products”. In: 2017 International
Joint Conference on Neural Networks (IJCNN). 2017, pp. 3649–3655.

[13] Yunzeng Wang. “Joint Pricing-Production Decisions in Supply Chains
of Complementary Products with Uncertain Demand”. In: Operations
Research 54 (Dec. 2006), pp. 1110–1127. doi: 10 . 1287 / opre .
1060.0326.

[14] Ruiliang Yan and Subir Bandyopadhyay. “The profit benefits of bun-
dle pricing of complementary products”. In: Journal of Retailing and
Consumer Services 18 (July 2011), pp. 355–361. doi: 10.1016/j.
jretconser.2011.04.001.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[16] Tom M Mitchell. Machine Learning. McGraw-Hill series in computer
science. McGraw-Hill, 1997. isbn: 0070428077.

[17] Luke Dormehl.What is an artificial neural network? Here’s everything
you need to know. url: https://www.digitaltrends.com/
cool-tech/what-is-an-artificial-neural-network.
(accessed: 01.06.2020).

[18] DanCireşan, UeliMeier, and Juergen Schmidhuber.Multi-columnDeep
Neural Networks for Image Classification. 2012. arXiv: 1202.2745
[cs.CV].

[19] “A further step to perfect accuracy by training CNN with larger data”.
English. In:Proceedings - 2016 15th International Conference on Fron-
tiers in Handwriting Recognition, ICFHR 2016. Proceedings of Inter-
national Conference on Frontiers in Handwriting Recognition, ICFHR.
United States: Institute of Electrical and Electronics Engineers Inc., July
2016, pp. 405–410. doi: 10.1109/ICFHR.2016.0082.

https://doi.org/10.1145/3123266.3123394
http://dx.doi.org/10.1145/3123266.3123394
http://dx.doi.org/10.1145/3123266.3123394
https://arxiv.org/abs/1812.03570
https://doi.org/10.1287/opre.1060.0326
https://doi.org/10.1287/opre.1060.0326
https://doi.org/10.1016/j.jretconser.2011.04.001
https://doi.org/10.1016/j.jretconser.2011.04.001
http://www.deeplearningbook.org
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network
https://arxiv.org/abs/1202.2745
https://arxiv.org/abs/1202.2745
https://doi.org/10.1109/ICFHR.2016.0082

74 BIBLIOGRAPHY

[20] Karen Simonyan andAndrewZisserman.VeryDeepConvolutional Net-
works for Large-Scale Image Recognition. 2014. arXiv: 1409.1556
[cs.CV].

[21] Christian Szegedy et al.Going Deeper with Convolutions. 2014. arXiv:
1409.4842 [cs.CV].

[22] Alexis Conneau et al. Very Deep Convolutional Networks for Text Clas-
sification. 2016. arXiv: 1606.01781 [cs.CL].

[23] Shailza Jolly et al. How do Convolutional Neural Networks Learn De-
sign? 2018. arXiv: 1808.08402 [cs.CV].

[24] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A Con-
volutional Neural Network for Modelling Sentences”. In: Proceedings
of the 52nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Baltimore,Maryland: Association for
Computational Linguistics, June 2014, pp. 655–665. doi: 10.3115/
v1/P14-1062.url:https://www.aclweb.org/anthology/
P14-1062.

[25] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Mem-
ory”. In: Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-
7667. doi: 10.1162/neco.1997.9.8.1735. url: https:
//doi.org/10.1162/neco.1997.9.8.1735.

[26] JeffDonahue et al. Long-termRecurrent Convolutional Networks for Vi-
sual Recognition andDescription. 2014. arXiv:1411.4389 [cs.CV].

[27] Kyle Martin et al. “A Convolutional Siamese Network for Developing
Similarity Knowledge in the SelfBACK Dataset”. In: ICCBR. 2017.

[28] Mustansar Fiaz, Arif Mahmood, and Soon Jung. “Deep Siamese Net-
works toward Robust Visual Tracking”. In: May 2019. isbn: 978-1-
78985-158-8. doi: 10.5772/intechopen.86235.

[29] Goole BigQuery: Cloude Data Warehouse. url: https://cloud.
google.com/bigquery. (accessed: 01.04.2020).

[30] Deep Learning for humans. Nov. 2019. url: https://github.
com/keras-team/keras. (accessed: 01.04.2020).

[31] AnOpen SourceMachine Learning Framework for Everyone. Apr. 2020.
url: https://github.com/tensorflow/tensorflow. (ac-
cessed: 01.04.2020).

[32] CNTK. Apr. 2019. url: https://github.com/microsoft/
CNTK. (accessed: 02.05.2020).

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1606.01781
https://arxiv.org/abs/1808.08402
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/P14-1062
https://www.aclweb.org/anthology/P14-1062
https://www.aclweb.org/anthology/P14-1062
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1411.4389
https://doi.org/10.5772/intechopen.86235
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://github.com/tensorflow/tensorflow
https://github.com/microsoft/CNTK
https://github.com/microsoft/CNTK

BIBLIOGRAPHY 75

[33] Theano. July 2020.url:https://pypi.org/project/Theano/.
(accessed: 02.05.2020).

[34] Martin Abadi et al. “TensorFlow: A system for large-scale machine
learning”. In: 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). 2016, pp. 265–283. url: https://
www.usenix.org/system/files/conference/osdi16/
osdi16-abadi.pdf.

[35] Han Jiawei et al. “Mining Frequent Patterns without Candidate Genera-
tion: A Frequent-Pattern Tree Approach”. In: Data Mining and Knowl-
edge Discovery. Ed. by Springer. 8. 2004, pp. 53–87.

[36] Tomas Mikolov et al. “Efficient Estimation of Word Representations in
Vector Space”. In: Jan. 2013, pp. 1–12.

[37] Mihajlo Grbovic et al. “E-commerce in Your Inbox: Product Recom-
mendations at Scale”. In: (June 2016). doi: 10.1145/2783258.
2788627..

[38] Flavian Vasile, Elena Smirnova, and Alexis Conneau. “Meta-Prod2Vec
- Product Embeddings Using Side-Information for Recommendation”.
In: (July 2016). doi: 10.1145/2959100.2959160.

[39] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet
Allocation”. In: J. Mach. Learn. Res. 3.null (Mar. 2003), pp. 993–1022.
issn: 1532-4435.

[40] H. Yu et al. “Complementary Recommendations: A Brief Survey”. In:
2019 International Conference on High Performance Big Data and In-
telligent Systems (HPBD IS). 2019, pp. 73–78.

[41] Fabio Henrique Kiyoiti dos Santos Tanaka and Claus Aranha. Data
Augmentation Using GANs. 2019. arXiv: 1904.09135 [cs.LG].

[42] MarinaAngelovska.Github source code. 2020.url:https://github.
com/marinaangelovska/complementary_products_suggestions.

[43] Jeffrey Pennington, Richard Socher, andChristopherManning. “GloVe:
Global Vectors for Word Representation”. In: Proceedings of the 2014
Conference on EmpiricalMethods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct. 2014,
pp. 1532–1543. doi: 10 . 3115 / v1 / D14 - 1162. url: https :
//www.aclweb.org/anthology/D14-1162.

[44] YeQi et al.When andWhy are Pre-trainedWord Embeddings Useful for
Neural Machine Translation? 2018. arXiv: 1804.06323 [cs.CL].

https://pypi.org/project/Theano/
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1145/2783258.2788627.
https://doi.org/10.1145/2783258.2788627.
https://doi.org/10.1145/2959100.2959160
https://arxiv.org/abs/1904.09135
https://github.com/marinaangelovska/complementary_products_suggestions
https://github.com/marinaangelovska/complementary_products_suggestions
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1804.06323

76 BIBLIOGRAPHY

[45] Chuanqi Tan et al. “A Survey on Deep Transfer Learning”. In: Artificial
Neural Networks and Machine Learning – ICANN 2018. Ed. by Věra
Kůrková et al. Cham: Springer International Publishing, 2018, pp. 270–
279. isbn: 978-3-030-01424-7.

[46] Andy Liaw, Matthew Wiener, et al. “Classification and regression by
randomForest”. In: R news 2.3 (2002), pp. 18–22.

www.kth.se

	Introduction
	Motivation
	Problem Statement
	Approach
	Research Question
	Ethics and Sustainability
	Report Structure

	Background
	Machine Learning and Deep Learning
	Siamese Neural Networks
	Result Metrics
	Platforms and Frameworks
	Google BigQuery
	Keras and TensorFlow

	Related Work

	Methods
	Requirements and Goals
	Hypotheses
	Dataset
	Data Retrieval
	Exploratory Data Analysis
	Data Generation

	Methodology
	Data Preprocessing
	Model A: Siamese CNN
	Model B: Siamese LSTM
	Additional Embeddings
	Product Attributes
	Advantages of the Siamese Architecture

	Results and Discussion
	Comparative Analysis
	LSTM vs. CNN
	Analyzing the Embeddings
	Comparing to Baselines
	Testing Product Attributes

	Transforming the Siamese LSTM into KNN

	Concluding Remarks
	Conclusion
	Future Work
	Qualitative Interpretation at the Company
	Data and Model Improvements

	Bibliography

