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Abstract
Modern neural network (NN) models require more data and parameters in or-
der to perform ever more complex tasks. When an NN model becomes too
massive to fit on a single machine, it may need to be distributed across multi-
ple machines. What policies should be used when distributing an NN model,
and more concretely how different parts of the model should be disseminated
across the various machines is called the device placement problem. Tackling
the matter is the focus of this thesis.

Previous approaches have required the placement policies to be created
manually by human experts. Since that method does not scale well, the cur-
rent efforts to tackling the device placement problem focus on automating the
process using reinforcement learning (RL). Most of the RL systems contain
different kinds of graph embedding modules.

Our work tries to increase the knowledge about how to tackle the device
placement problem by measuring and assessing the impact of graph embed-
dings on the quality of the device placement policies. We compare the dif-
ferent approaches in two main ways: runtime improvement and computation
time. The former is a metric of how much faster is the new placement policy
compared to a baseline. The latter describes how much time is required by
the system to achieve that runtime improvement. In this thesis, we build on
previous efforts in the device placement field in order to explore how different
state-of-the-art graph embedding architectures affect device placement poli-
cies. The graph embedding architectures we compare are Placeto (used as a
baseline), GraphSAGE and P-GNN.

In terms of runtime improvement, we achieve an increase of 23.967%when
using P-GNN compared to Placeto, and 31.164% absolute improvement from
the initial placement. GraphSAGE produces 1.165% better results than Placeto
with the same setup. Regarding computation time, GraphSAGE has a gain
of 11.560% compared to Placeto, whereas P-GNN is 6.950% slower than the
baseline.

Given our results, we can confirm that graph embedding architecture can
have a significant impact on device placement policies and their performance.
More complex graph embedding architectures that capture more data about the
graph and its topology provide better runtime improvements. However, that
complexity may come at the cost of the computation time required to train the
placement system.



iv

Sammanfattning
Moderna neurala nätverk (NN) -modeller kräver mer data och parametrar för
att utföra allt mer komplexa uppgifter. När en NN-modell blir för stor för att
rymmas på en dator, kan den behöva distribueras över flera datorer. Vilka vil-
kor som ska användas vid distributionen av en NN-modell, och mer konkret
hur olika delar av modellen ska spridas över olika datorer kallas enhetsplats-
problemet. Avhandlingen kommer att fokusera på detta problem. Tidigare till-
vägagångssätt har krävt att placeringspolicyn skapas manuellt av människor
med expertis i detta område. Eftersom den metoden inte går att skala upp fo-
kuserar man på att hantera enhetsplaceringsproblemet genom att automatisera
processen med reinforcement learning (RL). De flesta av RL-systemen inne-
håller olika typer av grafinbäddningsmoduler.

I arbetet försöker vi öka kunskapen om hur man hanterar problem med
enhetsplacering genom att mäta och bedöma effekterna av grafinbäddningar
på kvaliteten på villkoren för enhetsplacering. Vi jämför de olika metoderna
på två sätt: runtime improvement and computation time. Den förstnämnda är
ett värde för hur mycket snabbare den nya placeringspolicyn är i jämförelse
med en baslinje. Det andra beskriver hur mycket tid som krävs av systemet
för att uppnå den förbättrade runtime.Den här avhandlingen bygger på tidigare
forskning inom området av enhetsplacering för att undersöka hur olika topp-
moderna metoder till enhetsplaceringsprinciper. Grafinbäddningsarkitekturer
som vi jämför i avhandlignen är Placeto (används som en baslinje), Graph-
SAGE och P-GNN.

Vi uppnår en förbättring av runtime med en ökning på 23.967% när vi
använder P-GNN jämfört med Placeto och 31.164% ökning från baslinjen.
GraphSAGE ger 1.165% bättre resultat än Placeto med samma installation.
När det gäller beräkningstiden har GraphSAGE en förbättring på 11.560%
jämfört med Placeto, medan P-GNN är 6.950% långsammare än baslinjen.

Med resultaten kan vi bekräfta att grafinbäddningsarkitektur kan ha en be-
tydande inverkan på enhetsplaceringsprinciper och deras prestanda. Desto mer
invecklad grafinbäddningsarkitekturer fångar mer data om grafen och dess to-
pologi ger runtime improvment. Däremot blir kan komplexiteten kosta i com-
putation time på grund av det tid som krävs för att utbilda placeringssystemet.
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Абстракт

Модерните модели на невронни мрежи (МНМ) изискват все повече
параметри, за да изпълняват все по комплексни задачи. Когато МНМ
стане прекалено голям, за да се побере на едно устройство, той тряб-
ва да бъде разпределен върху множество машини. Какви политики
трябва да се използват при дистрибутиране на МНМ и по-конкретно
как различни части на модела трябва да се разположат върху раз-
лични машини се нарича проблемът за разположение на устройства.
Този труд се фокусира върху справянето с този проблем.

Предишни подходи са налагали политиките за разпределение на
модел да бъдат извършвани на ръка от експерти. Тъй като този под-
ход не може да се скалира настоящите метод за справяне с проблема
за разположение на устройства се фокусират върху автоматизация-
та на процеса чрез използване на обучение с утвърждение. Повечето
такива системи имат разнообразни модули за вграждане на графове.

С този труд изследваме как може да бъде преодолян проблемът
за разположение на устройства, като се измерва и оценява влиянието
на влагания на графове върху качеството на политики за разположе-
ние на модел. Сравняваме различните подходи по две метрики: по-
добрение на времето за изпълнение и време за изчисление. Първата
метрика показва какво подобрение носи новата политика в сравне-
ние с началното ниво. Втората описва колко време е необходимо на
системата да достигне дадено подобрение на времето за изпълнение.
Ние изследваме как различни модерни архитектури за влагане на
графове влияят на политиките за разпределение. Архитектурите за
влагане на граф, които сравняваме са Placeto, GraphSAGE и P-GNN.

От гледна точка на подобряване на времето на изпълнение, ние
постигаме 23.967% по-добро време използвайки P-GNN вместо Placeto,
или 31.164% абсолютно подобрение спрямо първоначалното разполо-
жение. GraphSAGE постига 1.165% по-добри реултати от Placeto при
същите условия. Относно времето за изчисляване, GraphSAGE e с
11.56% по-бърз от Placeto, докато P-GNN e с 6.95% по-бавен.

Постигнатите резултати потвърждават, че различните архитекту-
ри за влагане на графове оказват влияние върху качеството на поли-
тиките за разположение на устройства. По-комплексни архитектури,
улавящи повече данни за структурата на графа и неговата тополо-
гия показват по-добри резултати. Тази комплексност, обаче, идва на
цената на увеличение на времето за изчисляване нужно на системата.
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Chapter 1

Introduction

Neural Networks (NNs) have become an inseparable part of our daily lives
- our voice assistants, our photo tagging, face recognition, and many more.
To achieve this, NN models have been growing in size and continue to do so.
Machines have become sufficiently powerful to withstand resource demand.
That ability of the machines is one of the reasons that Artificial Intelligence
(AI), and in particular NN research have seen a resurgence in the early 2000s
after the last AI Winter (Hsia (2018)).

However, there are several factors that cast a shadow over the bright pic-
ture of the current AI and NN landscape. On the one hand, the datasets that
we have available are enormous, while still growing in size and scope. On
the other hand, the NN models are growing in unison with the complexity of
the problems that we want to solve. Furthermore, the very resource that the
machines can provide and is expected to handle the load is not infinite. In fact,
the exponential growth in computational power predicted by Moore’s Law is
underdelivering and current developments are falling of the curve (Economist
(2016)).

From the perspective of an NN researcher, there are two main ways to deal
with the boost in resource demand. The first option is to scale vertically. That
implies adding or upgrading the hardware of a single machine, i.e., adding
more RAM, or getting a more powerful CPU. It is a reasonable solution, but
its limiting factor is the price of the newly added parts. The second option is to
scale horizontally or to make a cluster of commodity machines work together
and finish a task as if it was a single machine. This method does not have
the price problem; however, other issues arise, such as synchronization, fail-
safety, consistency of data, to name a few. Still, those problems are acceptable,
and there are ways of dealing with them. That is why this method is used for

1



2 CHAPTER 1. INTRODUCTION

scaling larger systems even outside of the NN field, and we will focus our
efforts in this direction.

There are two popular ways for scaling an NN model horizontally, namely
data parallelization and model parallelization. In data parallelization, the
model is replicated on each machine of the cluster, and each machine works
on a different part of the input dataset. This approach is easy to implement, as
it does not require specific setup for the NN model. On top of that, it does not
care about what model it works with, as the model is replicated entirely. It is
suitable for large datasets. Data parallelization has been studied (Recht et al.
(2011), Dean et al. (2012), H. Li et al. (2015), H. Cui et al. (2016), Koliousis
et al. (2019)) and is the current go-to strategy for spreading an NN model on
multiple machines. However, when a model has memory or computational
requirements that cannot be met by a single machine (or in other words the
model does not fit on a single machine), this technique falls short.

Model parallelization, on the other hand, aims to solve the aforementioned
issue. It is de facto a must use method if a model is too large. The approach
is to split the computation of such a model across multiple machines, such
that each machine is assigned the calculation of a certain part of the model.
The machines execute the assigned work in parallel. Each datapoint of the
dataset is propagated through all machines containing the model. Here, the
luxury of model agnosticism and no additional work that data parallelization
provides are gone. Synchronization and communication costs are increased.
It is a trade-off, which is going to be faced more and more commonly. De-
vice placemenet is the study of how to split an NN model and disseminate its
operations across different machines, as to optimize runtime of the model and
reduce the computation costs. This thesis focuses on the exploration of various
device placement techniques.

1.1 Research Question
The issue with the device placement problem and model parallelism is that
we have limited knowledge about how to split the model in such a way as
to optimize the runtime of the distributed NN. Most of the previous methods
are based on manual splitting by experts, which hinders the scalability of this
method. On top of that, each model needs to be split separately, as there is
no one-size-fits-all solution yet. Efforts have been made towards automating
the process of device placement. However, since it is a rather new topic, many
possibilities and options have not been explored.
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Thus, the research question for this thesis is how to tackle the automated
device placement for model parallelization?

1.2 Goals
The current state of the art solutions use Reinforcement Learning (RL) to
tackle the device placement problem (Mirhoseini, Pham, et al. (2017), Mirho-
seini, Goldie, et al. (2018), Addanki et al. (2019)). As part of their RL algo-
rithms, many use different Graph Embedding approaches. However, since re-
search in the device placement area has emerged quite recently with one of the
first works being Mirhoseini, Pham, et al. (2017), many options for graph em-
bedding architectures are yet to be explored. Thus, given the problem stated,
the goal of this thesis is to analyze and compare the impact of different graph
embedding architectures on the performance of an RL system for automatic
device placement.

1.3 Thesis Contributions
The contributions of this thesis include:

• The expansion of an automated NN device placement framework based
on RL with additional graph embedding architectures. We explore the
impact different graph embedding architectures have on performance as
part of automatic device placement system. Concretely, we have used
the framework provided as reference code for Addanki et al. (2019), and
have added the graph embedding methods presented in Hamilton, Ying,
and Leskovec (2018) and You, Ying, and Leskovec (2019) on top of the
one described in the original paper.

• We have conducted experiments based on the simulator provided in the
aforementioned framework. The experiments measure the quality of the
automatic device placement based on the improvement of simulated run-
time. The experiments also explore the impact of the graph embedding
methods on computation time needed by the simulator.

1.4 Methodology
Quantitative research methodology has been used for this thesis. Using the ter-
minology introduced in Meredith et al. (1989), the methodology of this work
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can be more precisely described as axiomatic research. Axiomatic research
produces knowledge about the behaviour of different variables in the model,
based on assumptions regarding the behaviour of others. In line with this, we
achieve the goals of this thesis by utilizing a simulator used in Addanki et al.
(2019).

Given that framework as a base, we compare and analyze the estimated run-
time improvement of the simulations with the core graph embedding method
of the framework replaced with different graph embedding architectures. We
also evaluate the computation time needed to reach the runtime improvements.
In order to fulfill the goals, we have conducted studies of the most recent liter-
ature in the fields of graph embeddings and neural network device placement.

1.5 Ethics and Sustainability
Device placement, and by extension, the usage of device placement methods
with deep learning models can raise ethical concerns. For example, it is possi-
ble that certain device placement policies suggested by the algorithms in this
work might introduce bias in the model’s predictions. That bias might be in
essence unethical in its inferences, if for example the model deals with classi-
fication and characterization of people. It is important to check if the model’s
predictions are ethically compromised after it has been automatically placed
using the presented methods. Better understanding of device placement algo-
rithms can lead to reducing such a possible impact.

With the increase in size of deep learning models, more resources are be-
ing used for training and inference. Resources, such as electrical power and
materials used for hardware, need to be reduced. Exploring methods for op-
timizing the training and inference times, such as the ones presented in this
thesis, can lead to reduction of the required resources, and thus contribute to
a more sustainable development for machine learning and deep learning re-
search.
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Background

Supporting the ever growing amounts of information, as well as artificial NN
models that are increasingly more complex, requires a lot of resources. The
computational power of a single machine can easily become insufficient to
facilitate the training and inference processes of NNs. Increasing the power
of a single machine can quickly become too expensive. That is why there is a
need for methods that allow for multiple machines to combine their work and
overcome the issue.

The purpose of this chapter is to give an overview of the background of the
research question by presenting short summaries of the related topics, meth-
ods, and technologies. The section is divided into several parts. Each one
introduces a concept that is required to understand this thesis.

First, an outline of artificial NNs is presented. It is comprised of a descrip-
tion of the technology and its impact.

Second, a brief introduction about the distribution and parallelism in the
context of neural network models is presented. This part of the text describes
the need for distribution of NN models, as well as two types of parallelism:
data parallelism and model parallelism. An introduction to the Device Place-
ment problem is presented. In that part we take a look at scalability issues in
general and in paticular in NNs.

Third, a brief overview of RL is needed to gain a full view of the presented
work, as the current state of the art regarding device placement relies on RL
techniques to achieve better results.

Fourth, in order to understand the current state of the art solutions, the topic
of graph embeddings is explained. Some recent developments in the field, such
as Graph Neural Networks (GNN) are presented and discussed. The section
covers some of state-of-the-arts in more details, as their approaches are pivotal

5
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for this work.
Last, we lay out alternative approaches to tackling the device placement

problem. Since this is the focal point of this thesis, a more thorough summary
of the current work is presented.

2.1 Neural Networks
Understanding the device placement of NNs, requires certain knowledge about
NNs themselves.

Artificial NNs (NNs for short) are not a new concept. In fact, the first work
that proposed the idea was written by McCulloch and Pitts (1943). The con-
cept is loosely related to biological NNs. When a (biological) neuron produces
a signal, it travels via the axons to the synapses. The synapses are connected
to the bodies of other neurons. If the synapses release a sufficient amount of
signals, the latter neuron is activated and in turn sends its own signal forward.

In the paper, McCulloch and Pitts present an artificial structure that is able
to mimic this behaviour. It is an artificial neuron that has multiple binary
inputs and a single binary output (an on/off switch). A neuron is activated, if
a certain number of its inputs are in turn activated. This allow for performing
many logical tasks (e.g., AND, OR, etc). Combining such neurons allows for
computing more complex tasks.

Rosenblatt (1957) built on top of the idea and proposed a new version of
the artificial neuron, called Linear Threshold Unit (LTU) - see Figure 2.1.
From now on we will use the term neuron to represent an LTU. The inputs
are now numbers and each is associated with a weight. The LTU computes
a sum of the inputs and applies a step function, the result of which is used
as output. A single layer of LTUs is called a perceptron or simply a layer.
Stacking multiple layers of perceptrons creates a multilayer perceptron, or a
deep NN (Figure 2.2).

Figure 2.1: A Linear Threshold Unit. Source: (Géron 2017)

A deep NN by itself is not an effective tool to perform its intended tasks. In
order to take advantage of a deep NN, it needs to be trained. When training an
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Figure 2.2: A multilayer perceptron. Source: (Géron 2017)

NN, a concept from the biological neurons is adapted. D. O. Hebb suggests
in his book - The Organization of Behavior: A Neuropsychological Theory
(1949) - that neurons that communicate more often reinforce the connection
between each other. A useful analogy is that we, humans, tend to get better at
things that we practice more. Hebb’s idea, or Hebb’s rule is the idea behind
the training algorithm used even today in neural networks.

The algorithm that is used to this day is called backpropagation (Rumel-
hart, Hinton, and Williams (1985)). In short, the algorithm used in deep NNs,
consists of two main steps: a forward pass, and a backward pass. During the
forward pass, the input is passed through the network and all the sums and
activation function (e.g. a step function) outputs are calculated until the net-
work produces an output. An error, or a loss, is calculated as a function of the
prediction and the true value. In the backward pass, the weights of the connec-
tions that produced an answer closer to the correct one are strengthened based
on the loss function.

How each weight is updated after each iteration is presented in the formula
below.

w
(next)
i,j = wi,j − η ×

∂Etotal
∂wi,j

,

where wi,j is the weight of the connection between neuron i and neuron j. η is
the training rate. ∂Etotal

∂wi,j
represents how much wi,j contributes to the total loss

Etotal.
NNs can be utilized to performmany tasks. However, there are some prob-

lems that arise when using that technology. The more intricate a task is, the
more neurons and layers need to be added. This increases the size of a model
and increases its complexity. Performing backpropagation on a growing num-
ber of neurons increases the training time, as well as the requirements formem-
ory and computational power. To handle the increasing computational load,
we need to scale our systems.
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2.2 Distributed training
It is possible to scale systems vertically or horizontally. Vertical scaling or
scaling up implies adding more resources to a single machine. For example
- adding more RAM or adding more hard drives to a computer to make it
more capable of handling bigger loads. Scaling up has the benefit of paving a
simpler course of action because usually no additional work needs to be done
on existing software solutions. However, that approach has its limitations, as
scaling is limited by either hardware or price issues.

An alternative approach to vertical scaling is the horizontal scaling or scal-
ing out. The concept in short is to link "weaker" machines into a collectively
working cluster to perform a task together in a parallel manner. It allows for
the addition of new resources in the form of other devices. On the one hand, it
is possible to achieve more computational power. On the other, the distributed
nature of the the system brings additional issues such as synchronization, fault
tolerance, communication, and coordination among others. This adds com-
plexity as a trade-off to the additional power available. In the domain of NNs
scaling horizontally is essential as it enables us to use large models that are
able to perform complex tasks while operating on big datasets.

Provided we are working in a distributed environment, according to Mayer
and Jacobsen (2019), there are several possible approaches to parallelising and
distributing an NN model.

Data parallelism

In data parallelism the model is replicated on each machine of a cluster. The
dataset is then divided into disjoint subsets, and each is passed to a worker (see
Figure 2.3).

The main advantage of data parallelism is that it is model agnostic. It can
easily be applied without knowledge or understanding of the domain and the
specifics of a model. This approach scales well if the number of parameters
in a model are low. This leads to the main disadvantage of data parallelism.
Synchronization of parameters betweenworkers can become a huge bottleneck
(Krizhevsky (2014), Jia, Zaharia, and Aiken (2018)). Every machine calcu-
lates the gradients of its part of the data. After each pass, the machines need
to communicate their calculations.

The main approaches are either a centralized parameter server (H. Cui et
al. (2016), Abadi et al. (2016)), or a decentralized all-reduce communication
(Zhao andCanny (2013), Sergeev andDel Balso (2018)). There is still ongoing
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Figure 2.3: Data parallelism. Source: (Xiandong 2017)

research in the area and a lot of effort has been put to tackle this issue. Mayer
and Jacobsen (2019) has compiled the most recent advancements. Since this
part of the field is so dense, this thesis is not going to focus on data parallel
approaches.

Model parallelism

Model parallelism is characterised by the division of the model itself, rather
than the dataset (see Figure 2.4). Each machine is responsible for a differ-
ent part of the model’s structure. The machines that hold the input layer are
then fed with the data. The output signals are propagated to the machines that
hold the parts of the next layer and so on. During the backward pass, workers
communicate in reverse order.

Figure 2.4: Model parallelism. Source: (Xiandong 2017)

The main advantage of this approach is the reduced need for resources.
When the model is too big to fit on a single machine, this is the preferred ap-
proach. It is possible to take advantage of different devices for performing dif-
ferent tasks in the most optimal way. The reduced requirements for resources,
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however, are traded-off for larger amounts of communication. In model paral-
lelism the communication overhead is bigger than the overhead in data parallel
methods and is the main disadvantage of this approach.

A major challenge for parallelising an NN model is how to divide and
distribute the model throughout a heterogeneous cluster of machines. In other
words, which parts of an NNmodel are placed on what device of the cluster in
order to achieve optimal training and inference times. The current approaches
focus on the use of NNs, graph embeddings and RL to decide how the model
should be split. Efforts from Mirhoseini, Pham, et al. (2017), Mirhoseini,
Goldie, et al. (2018), Addanki et al. (2019), and others have been made in the
direction of automating the model placement on different devices. This is the
device placement problem. The device placement problem is the main focus
of this work.

2.3 Reinforcement Learning
Machine Learning (ML) is a field of Computer Science that aims to create sys-
tems to learn automatically from data. ML algorithms are trained in order to
improve their performance in different tasks. The range of applications for ML
algorithms is huge and extremely varied and spans across various fields. Some
examples include spam filters for emails (Guzella and Caminhas (2009)), nat-
ural language processing tasks (Young et al. (2018)), credit card fraud detec-
tion (Awoyemi, Adetunmbi, and Oluwadare (2017)), handwriting recognition
(Abu Ghosh andMaghari (2017)), etc. ML algorithms are separated into three
main categories: supervised learning, unsupervised learning, and RL.

In supervised learning, the system tries to learn a predictive model by us-
ing data with known outcomes. In other words, the training data is labeled
and used as ground truth, and as a result the model makes predictions about
unseen data points. An example is a spam filter. A spam filter algorithm is
trained using emails labeled as either spam or not spam. Later that system can
flag new emails accordingly.

In contrast to supervised learning, unsupervised learning algorithms are
used when the information is not labeled, and thus no ground truth is provided.
The advantage is that the unsupervised models can find complex or hidden
connections and structures between the data points. Such algorithms are used
to group data into different clusters or to find outliers and anomalies.

Sutton and Barto (2018, p. 1) introduce the concept of reinforcement learn-
ing (RL) as “learning what to do - how to map situations to actions - so as to
maximize a numerical reward signal.” In RL, an agent learning how to per-



CHAPTER 2. BACKGROUND 11

form a task is not given a specific way to achieve the results. Rather, it must
discover on its own which actions bring the most reward. Even though there is
an obvious similarity between RL and unsupervised learning, in the fact they
both do not need a model to operate, there exists a fundamental difference.
The goal of RL algorithms is to maximize a reward signal, and not to find a
hidden structure in the data. A good application of RL would be a system that
needs to respond to an actively changing environment.

Figure 2.5: Agent-environment interaction. Source: (Sutton and Barto 2018)

There are several important concepts in RL. The agent is the part that
"thinks", i.e., learns and makes decisions. It interacts with the environment
that is everything outside its scope. At each time step t the agent receives
some representation of the current state of the environment St, called state.
Based on that state, the agent performs some action At. At the next time step
t+ 1, the agent obtains a reward Rt+1 from the environment, as well as a new
state St+1. The actions of the agent are governed by a policy π, which is a
mapping from a given state to an action. The interaction between the environ-
ment and an agent is comprised of a sequence of States, Actions, and Rewards
(S1, A1, R1, S2, A2, R2, ..., ST , AT , RT ), where the sequence ends at a termi-
nal state ST . Such a sequence from time period 1 to the terminal state at time
T is called an episode.

On top of that, an agent might have amodel of the environment. Themodel
is an optional element of an RL system that helps the agent with planning
further actions, as it can simulate how the environment would respond in some
cases. The goal of the agent is to maximize the reward signal provided by the
environment based on its actions. Formally, this process is known as Markov
Decision Process (MDP) (see Figure 2.5). MDP is an idealized form of the
problem of learning from an interactive environment.

There are many RL algorithms as can be seen in the taxonomy presented
in Figure 2.6. However, we will not go into detail into most of them. We
recommend "Reinforcement learning: an introduction" which is a great book
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to dive deeper in RL.

Figure 2.6: RLAlgorithms taxonomy. Source: Part 2: Kinds of RL Algorithms
— Spinning Up documentation (2020)

Almost all RL algorithms involve estimating value functions - functions
of state-action pairs that estimate how good it is to perform a given action
in a given state. Policy Optimization methods, by contrast, aim to learn a
parametrized policy and thus not needing to learn a value function. We use θ
for the parameter vector of the policy, and denote the parametrized policy as:

π(a|s, θ),

where a is an action and s is a state. Policy Optimization methods try to learn
θ, based on some performance measure J(θ), dependent on θ. Maximizing
performance is the goal, so these methods approximate gradient ascent in J :

θt+1 = θt + α∇̂J(θt),

where ∇̂J(θt) is "a stochastic estimate whose expectation approximates the
gradient of the performance measure with respect to its argument θ" (Sutton
and Barto (2018)).

Current state of the art of device placement solutions (described later in
Section 2.5) mainly focus on REINFORCE as a Policy Optimization method
(Williams (1992)).

REINFORCE

REINFORCE estimates a reward using sampled completed episodes to update
the policy θ. The flow of the algorithm is the following (Weng (2018)):
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1. θ is initialized randomly

2. Generate a complete episode using policy

πθ : S1, A1, R1, S2, A2, R2, ..., ST , AT , RT

3. For t = 1, 2, ..., T :

(a) Estimate the reward Gt

(b) Update the policy:

θ ← θ + αγtGt∇θlnπθ(At|St),

where α is a hyperparameter, and γ is a discount factor.

REINFORCE is explained in detail in Sutton and Barto (2018).

2.4 Graph Embeddings
According to the Mariam-Webster dictionary1, a graph is a a collection of ver-
tices and edges that join pairs of vertices. Indeed, in mathematics, a graph is
a structure that maps pairs of points (vertices) with connections (edges).

Figure 2.7: A graph. Source: Wikipedia, Graph theory (2020)

Now that the basic fundamentals of NNs are explained in Section 2.1, it is
easy to see how NN (see Figure 2.2) can be considered as a graph (see Figure
2.7). This fact is one of the pivotal points for the approaches to tackling the
device placement problem in general.

Graphs are used to represent data and relationships in many areas such as
social graphs of people, linguistic relationships, biological networks, etc. It is
possible to do analysis or run various algorithms (for example ML ones) on

1Mariam-Webster Definition of graph (2020)
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the whole graph. A way to represent a graph and its relationships is to use a
so-called adjacency matrix. The adjacencymatrix is a matrix of size |V |×|V |,
where V is the number of nodes in the graph. If there is a connection between
two nodes, the corresponding element of thematrix will have a non-zero value.
Using such a matrix for large graphs quickly becomes infeasible. For example,
a graph with only one million nodes would have a matrix with a size of 1012.

This is where graph embeddings come into play. Graph embeddings are
compressed vector representations of graphs with lower dimensions. They try
to preserve the topology of the graph, as well as the relationships between
nodes. Nodes that are similar, tend to be closer together in the target vector
space. Some applications of graph embeddings are node classification (sur-
veyed in Bhagat, Cormode, and Muthukrishnan (2011)), link prediction (sur-
veyed in Liben-Nowell and Kleinberg (2007)), clustering (White and Smyth
(2005)), and compression (Feder andMotwani (1991), Navlakha, Rastogi, and
Shrivastava (2008)). To formalize what is a graph embedding, the definition
from Goyal and Ferrara (2018) is used:

Graph embedding: Given a graph G = (V,E), a graph embedding is a
mapping f : vi → yi ∈ Rd,∀i ∈ [1, |V |] such that d � |V | and the function
f preserves some proximity measure defined on graph G.

Preserving proximity means that if nodes vi and vk are close or similar to
each other in G, then they will be close or similar in the embedding space Rd.

Graph embedding is a relatively new field of research, especially when
compared to the NNs. There are several notable directions of how researchers
tackle the graph embeddings problem as described byGoyal and Ferrara (2018).
The first direction is factorization based methods. This approach represents a
graph in the form of a matrix, and then factorizes it into a vector. This is the
first area of research dating to the early 2000s (Roweis and Saul (2000), Belkin
and Niyogi (2001), Ou et al. (2016)).

The second direction is based on the random walk methods. As it is stated
in the name, the method relies on random walks over the graph, thus, allow-
ing for acquiring node similarity and node centrality (Perozzi, Al-Rfou, and
Skiena (2014), Grover and Leskovec (2016)). The third direction, and themost
relevant one to this thesis, is to use deep learning and deep NNs to learn non-
linear dependencies between nodes to generate graph representations. These
methods use NN architectures, such as Variational Autoencoders (Wang, P.
Cui, and Zhu (2016), Cao, Lu, and Xu (2016)), and Graph Convolutional Net-
works (GCN) (Kipf and Welling (2017)).

The papers, highlighted below, are the most recent state-of-the-art solu-
tions. One of their traits is that they can inductively represent graphs, meaning
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that they can generate an embedding for unseen nodes and graphs. Previous
works were mainly transductive - only focus on working with static and un-
changing graphs. This is important for this thesis, as the method could speed
the device placement and work on different models without the need to be
trained over and over.

GraphSAGE

As mentioned above, GraphSAGE (Hamilton, Ying, and Leskovec (2018)) is
an inductive method to create graph embeddings, whereas previous methods
are mostly transductive. Transductive in this context means that they operate
optimally only on static graphs. In other words, those methods were not able
generalize and predict labels for graphs that they had not been trained on.

However, in many modern scenarios, graphs are not static and are con-
stantly changing. That is why an inductive method is required. Such an ap-
proach allows for training the algorithm on a subset of a graph to create an
embedding, which is broad enough to represent the whole graph. Given that
general embedding, it is possible to create embeddings for unseen nodes with-
out additional training. Moreover, labeling unseen nodes of that graph is also
possible.

Figure 2.8: Left: neighbourhood sampling, Middle: Neighbourhood fea-
ture aggregation, Right: GraphSAGE embedding generation process. Source:
Hamilton, Ying, and Leskovec (2018)

Algorithm 1 presents the method used to achieve these capabilities. In
essence, the algorithm consists of creating an embedding for each node based
on its own features (such as text attributes, node profile information, node de-
grees) in combination with the aggregated features of the nodes in its neigh-
borhood. The neighborhood of node v consists of layers of the neighbors of
the current node up to a distance of K. Each layer consists of a sample of
nodes with the same distance to v. The immediate neighbors of v are located
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K = 1 hops away; their respective descendants are at a distance of K = 2

hops; and so on. Note that as aggregations might be computationally expen-
sive, the samples of each node include only a subset of their respective im-
mediate neighbors. Figure 2.8 (Left) shows a sample neighborhood of a node
with maximum distance of K = 2.

The next phase in the algorithm is the formation of the embeddings. The
embedding is the concatenation of the features of a node with the aggregation
of the embeddings of its own immediate neighborhood. Given a neighbor-
hood of a node v, the feature aggregation starts with the nodes locatedK hops
away from v (h0

v). Since they do not have further neighbors within the current
neighborhood, their embedding is only their own feature vector.

Nodes at the next level (vk−1) form their embeddings by combining the fea-
tures of their neighbors from the previous level using an aggregation function
(AGGk(hk−1

u ,∀u ∈ neighborhood of vk−1)) and concatenating them to their
own features at the current level. This concatenation is multiplied by a weight
matrixWk and passed through some non-linearity - σ. The process is repeated
K times, until node v has all the information needed to form its own embed-
ding. Figure 2.8 (Middle) provides a visual example of the feature aggregation
described above.

The weight matrices Wk are separate for each layer in order to propagate
information between different layers. At training time the parameters of the
weight matrices are updated. During inference time - node labels and embed-
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dings are predicted based on the learned aggregators.
Algorithm 1: GraphSAGE algorithm
Input: Graph G = (V,E); node input features {xv,∀v ∈ V }; depth

K; weight matricesWk,∀k ∈ K; non-linearity σ;
differentiable, order invariant aggregation functions
AGGk,∀k ∈ K; Neighbourhood function N: v → S where S
is some subset of neighbors of v.

Output: Graph embeddings zv,∀v ∈ V

1 h0
v ← xv,∀v ∈ V ;

2 for k = 1...K do
3 for v ∈ V do
4 hkN(v) ← AGGk({hk−1

u ,∀u ∈ N(v)});
5 hkv ← σ(Wk·CONCAT(hk−1

v ,hkN(v)));
6 end
7 h0

v ← h0
v/‖h0

v‖2, ∀v ∈ V ;
8 end
9 return zv ← hKv ,∀v ∈ V

P-GNN

Positional aware Graph Neural Networks or P-GNN (You, Ying, and Leskovec
(2019)) is a part of the current movement in graph embedding research that
revolves around Graph NNs. Using graph NNs has the advantage of good
performance and inductive capabilities. GraphSAGE (Hamilton, Ying, and
Leskovec (2018)) is an avid example of GNNs, however, it has its own lim-
itations. The main limitation is that such methods, and GraphSAGE as an
example, fail to catch the positioning and location information of a node, as
they only capture its local neighbourhood. This becomes a problem in the case
when two nodes with the same neighbourhood structure, located in different
parts of a graph, end up in an identical place in the vector space of the graph
embedding. For example, in Figure 2.9a, vertices v2 and v2 have the same
neighbourhood tree. The subtree is shown in Figure 2.9b.



18 CHAPTER 2. BACKGROUND

(a) v1 and v2 have similar neigh-
bourhoods

(b) The identical neighbourhood
tree of v1 and v2

Figure 2.9: Source: You, Ying, and Leskovec (2019)

The authors of P-GNN tackle this issue by introducing sets of nodes within
the graph, called anchor sets. In addition to the neighbourhood aggregation
used in GraphSAGE, the nodes additionally aggregate information from the
anchor sets. This additional information is weighed based on the distance of
the node to the anchor set. This allows for the embedding to also capture the
locality of the node in relation to the whole graph. In the case of the example
in Figure 2.9, vertex v3 is introduced as an anchor set. The shortest distance
between v1 and v3 is different than the shortest distance between v2 and v3.
Thus, in the embedding space, v1 and v2 can be distinguished.

Algorithm 2 shows in more detail how the P-GNN approach works. The
first step is to calculate the anchor sets S for the current graph G. In the pa-
per, the authors choose log2(|V |) number of anchor sets. The sets come in
different sizes. The reason for that is that only choosing small anchor sets pro-
vides very good locality information. However, not all nodes can be covered
by those anchor sets. On the other hand, choosing only large anchor sets solves
the coverage issue, but does not provide good locality data, as many nodes are
covered by it. Choosing anchor sets with varying sizes balances this trade-off
and leads to a combination of good coverage and more precise locality infor-
mation. Note that in the paper the anchor sets are re-chosen at each forward
pass of the algorithm.
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Algorithm 2: P-GNN algorithm
Input: Graph G = (V,E); node input features {xv,∀v ∈ V }; Set S

of k different-sized anchor-sets {Si ⊂ V, i ∈ 1..k}; Message
aggregation function F : x→ r-dimensional message; weight
matrix W; non-linearity σ; order invariant aggregation
function AGG

Output: Graph embeddings zv,∀v ∈ V

1 hv ← xv, ∀v ∈ V ;
2 for v ∈ V do
3 Mv = 0 ∈ Rk×r;

4 for i = 1 . . . K do
5 Mi ← {F (v, u,hv,hv),∀u ∈ Si};
6 Mv[i]← AGG(Mi);
7 end
8 zv ← σ(Mv ·W);
9 end

10 return zV ← zv,∀v ∈ V
After the sets have been chosen, an embedding is calculated for each node

v and its relation to all nodes u ∈ Si, where i ∈ 1 . . . k, and k is the number
of anchor sets. The relation between v and u is calculated using a function F
that combines features of both nodes, as well as locality information, such as
distance. The final embedding is formed from a vector Mv that is a vector of
size k. Each element Mi corresponds to an aggregation of the relation of v to
each node u for each anchor set Si. Mv is multiplied by a weight matrix W

and is passed through a non-linearity σ to produce the final embedding zv for
node v.

2.5 Device Placement
As previously mentioned, device placement is the study of parallelizing an NN
model across a cluster of heterogeneous machines when the model does not fit
on a single machine.

We have taken a look at what is the problem and we have described all un-
derlying technologies and methods used in the state-of-the-art solutions. More
concretely, we have described what are NNs. Then, we described what are
graph embeddings and what is their relation with NNs. Finally, we have briefly
described what is RL. In this section we describe how these components are
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combined to tackle the device placement problem.
The field is quite new and only recently has become a hot topic for re-

searchers with one of the first works being Mirhoseini, Pham, et al. (2017).
There is a clear outline on the basic approach of how scientists tackle the is-
sue. First, an input NN, represented as a graph is separated into groups for
optimization purposes. Next, embeddings for the input graph created from
those groups are made. The embeddings are then passed to an NN that is used
as a classifier. The output of the classifier indicates which group should be
placed on which device. The resulting placements are used as the state to an
RL policy that tries to reduce the runtime of the input NN.

In the rest of this section we introduce some of the state-of-the-art solu-
tions. Namely, we go through one of the first efforts - Mirhoseini, Pham, et
al. (2017). We then go through the continuation of that work - Mirhoseini,
Goldie, et al. (2018). Next, we describe Gao, Chen, and B. Li (2018), fol-
lowed by Nazi et al. (2019). Finally, we describe the latest work in the field -
Addanki et al. (2019).

Device Placement Optimization with Reinforcement Learning

One of the first major works was done byMirhoseini, Pham, et al. (2017). They
propose a method that learns how to optimize the device placement of Ten-
sorFlow graphs using RL. To achieve this, they use a Sequence-to-Sequence
Recurrent Neural Networks (RNN) (Jain and Medsker (1999)) model that pre-
dicts the optimal placements of operations on different devices. An overview
of the architecture, as presented in the original paper, is shown in Figure 2.10.

Figure 2.10: Device placement optimization with Reinforcement learning ar-
chitecture. Source: (Mirhoseini, Pham, et al. 2017)

In essence, they have an encoder RNN model and a decoder RNN model.
The encoder receives information about the operations and dependencies (i.e.
nodes and links) between them (as concatenated embeddings for the type of
operation, output shape, and one-hot encoded adjacency information), after
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which a proposal for placement for each device is predicted by the decoder.
Each placement is consequently executed on the actual hardware environment.
A reinforcement function based on runtime execution is used to reward good
placements (see Section 2.3).

To optimize training and avoid vanishing/exploding gradients in the RNN
models, the authors manually co-located certain operations on the same device
based on different heuristics. A downside of this method is that it is limited to
small graphs (less than around 1000 nodes).

A Hierarchical Model for Device Placement

“A Hierarchical Model for Device Placement” from Mirhoseini, Goldie, et al.
(2018) steps on the previous work from Mirhoseini, Pham, et al. (2017). It
presents a model for automatic placement of operations on distributed, het-
erogeneous devices.

To achieve the placements, a Sequence-to-Sequence model called placer
is introduced. It is similar to the one presented in Mirhoseini, Pham, et al.
(2017). Again, a reinforcement function is used to reward the placement pre-
diction model. The reinforcement function calculates the reward based on the
execution time of the predicted placement in the actual hardware environment.

The main difference between the two papers is that the current one pro-
poses an end-to-end solution that does not require human intervention. The
team added a new submodel called grouper. InMirhoseini, Pham, et al. (2017),
the co-location of operations and their grouping is performed manually using
various heuristics, which are not scalable. The grouper, on the other hand, re-
places the need for manual intervention with a dense network using a softmax
layer at the end with an output size equal to the number of groups.

As seen in Figure 2.11, the input to the grouper is the same concatenated
vector as used in the paper by Mirhoseini, Pham, et al. (2017) (three con-
catenated vectors: count of each operation in the group, count of total output
shapes in a group, and group one-hot encoded adjacency information). As an
output, it uses a softmax layer to predict which group an operation belongs
to. The input to the placer’s sequence-to-sequence model is an embedding for
each group. The overall model output is a device placement for each group
(unlike Mirhoseini, Pham, et al. (2017), where the output is a placement for
each operation).
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Figure 2.11: A hierarchical model for device placement architecture. Source:
(Mirhoseini, Goldie, et al. 2018)

Spotlight

Spotlight (Gao, Chen, and B. Li (2018)) is another RL approach, similar to
Mirhoseini, Pham, et al. (2017) andMirhoseini, Goldie, et al. (2018). The sim-
ilarity is that they are using an Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber (1997)) layer to produce device placements per group of de-
vices. There are a few differences for this paper in comparison to Mirhoseini,
Pham, et al. (2017).

First, in addition to the LSTM architecture, a content attention mechanism
is added before the output. Second, the Gradient Policy is calculated using
PPO (see Section 2.3), which is a more modern RL approach, compared to
the one used previously. In order to apply it, however, the device placement
problem needs to be modeled as an MDP. This is an iterative decision process,
in which a device is placed at time t, and the next device is placed with the
previous steps in mind. An overview of the architecture is presented in Figure
2.12.

Spotlight operates by first mapping NN operations to a dictionary with the
name of the existing operators. The set is then fed to the RNN and at each
time step an assignment is produced for each set item. Unlike Mirhoseini,
Goldie, et al. (2018), the grouping is not done using the default TensorFlow
functionality but rather on a newly defined heuristic.
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Figure 2.12: Spotlight: Optimizing Device Placement for Training Deep Neu-
ral Networks. Source: (Gao, Chen, and B. Li 2018)

GAP: Generalizable Approximate Graph Partitioning Framework

In this paper, the authors propose a generalizable model for graph partition-
ing. Their approach uses unsupervised learning with an NN to learn optimal
partition probabilities. A key achievement is that the algorithm can be taught
on small graph sets, but at the same time works well on big (with up to 20000
vertices) unseen graphs with no assumptions about the graph structure.

One of the base elements of the model is the embedding module. It is used
to produce node embeddings that are learned during training by incorporating
node features and graph structure (node degrees, features, adjacency informa-
tion). The second part is the graph partitioning module, which is a dense NN
with a softmax layer that yields the probabilities for a node to belong to one
of the partitions. The embeddings from the embedding module are used as
input to the graph partitioning module. This module is trained using the cus-
tom differentiable loss function that takes into account the probabilities, node
degrees, and the adjacency matrix among other features. Unlike the previ-
ous papers, this work focuses on balanced graph partitioning itself rather than
optimizing runtime.

Placeto

"Placeto: LearningGeneralizableDevice PlacementAlgorithms forDistributed
Machine Learning" (Addanki et al. (2019)) is the latest proposition for using
an RL method for device placement. The key differentiator is that it is the
first paper that proposes placement policies that is generalized to a previously
unseen family of graphs.

The algorithm works in the following way. First, it is presented with an
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Figure 2.13: GAP: Generalizable Approximate Graph Partitioning Frame-
work. Source: (Nazi et al. 2019)

arbitrary device placement (e.g., all nodes are located on a single device, or
are spread out randomly). It traverses all nodes (or node groups, similar to
Mirhoseini, Goldie, et al. (2018)). For each node, the algorithm creates em-
beddings, and based on an RL model, it assigns a placement for that node.
After the placement, a reward is calculated using a simulator based on the
runtime of the whole graph provided the new placement. That reward is then
presented to the next time step, where the next node is considered. Thus, itera-
tively the algorithm proposes better placements for consecutive nodes using a
reward function based on execution runtimes. This is anMDP process, similar
to the one used in Spotlight (Gao, Chen, and B. Li (2018)).

Figure 2.14: Placeto: Learning Generalizable Device Placement Algorithms
for DistributedMachine Learning Architecture. Source: (Addanki et al. 2019)

The decision model, or RL agent, consists of two main parts: a graph em-
bedding NN, and a policy dense network (Figure 2.14), such that the latter
outputs a device probability for the embedding of the current node, given the
current placement. The approach in the model is somewhat similar to the ap-
proach in GAP (Nazi et al. (2019)), where the graph embedding is learned.
Here the context of a node n is learned by using information about parents
(nodes that can reach n via their outgoing connections), children (nodes that
can be reached by n via outgoing connections) and parallel nodes (nodes that
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cannot be reached by n) using message passing. If the embedding is learned,
instead of being a concatenation of graph information (as proposed by Mirho-
seini, Goldie, et al. (2018)), it becomes possible to capture general graph struc-
ture.

The graph embedding mechanism is presented in more detail in Figure
2.15. First, feature information for a node is collected. The information in-
cludes node properties, such as total runtime, output tensor size, and the cur-
rent placement, among others. Information about the graph from the perspec-
tive of the node is also collected by passing messages to all descendants and
parent nodes. Moreover, all nodes that are parallel to the current one, i.e.
nodes that are not connected, are considered as well. All those components
are passed through a dense NN to form the final embedding. That embedding
is passed to the next step in the algorithm - namely the policy network.

Figure 2.15: Graph embedding information aggregation process of Placeto.
Ada[ted from: (Addanki et al. 2019)

At the time of writing, Placeto is the latest published work on the topic. It
achieves the best performance and on top of that is able to generalize to previ-
ously unseen graphs. One of their contributions is a simulator that allows for
measuring performance without the need for actual hardware. On top of that,
the authors have provided reference source code that is used as a foundation
for this thesis. The graph embedding mechanism is used as a baseline for our
contributions, as our work consists of replacing that mechanism with different
alternatives.



Chapter 3

Method and Implementation

In this chapter, we describe how we implemented the contributions of this
thesis. We go into detail regarding the foundation of this work, as well as how
we extended it to reach our goals. First, we describe the Placeto framework,
provided as reference code for (Addanki et al. (2019)) and its purpose related
to the thesis. Second, we describe what parts of that framework were changed
or extended. We then go over some limitations of our work.

3.1 Method overview
In essence, our work aims to explore what is the impact of different graph
embedding architectures on current device placement methods.

The lastest device placement methods for NNs use RL to learn placement
policies, that require less time than policies created by human experts. Another
goal is to reduce the computation time the RL agent needs to produce such
policies.

In order for the RL agent to work with an input NN, that NN is usually
represented as a graph. That is why different graph embedding methods are
explored in various works within the field (as described in Section 2).

Placeto (Addanki et al. (2019)) is the latest work in device placement.
We extend that work by replacing its graph embedding module with differ-
ent state-of-the-art graph embedding methods - GraphSAGE (Hamilton, Ying,
and Leskovec (2018)), and P-GNN (You, Ying, and Leskovec (2019)). Figure
3.1 shows more concretely what are our additions to Placeto.

We explore what is the impact of the different graph embedding architec-
tures on the quality of the placement policy and how does it compare to the
default baseline implementation of Placeto. We measure the quality by simu-
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lating the runtime of the input NN graph representation before and after devis-
ing a new placement policy. We also observe how the different architectures
affect the computation time required by the RL agent.

Figure 3.1: This thesis’ additions to Placeto. We replace the Graph neural
network module with different graph embedding architectures (GraphSAGE
and P-GNN), and explore the effects. Adapted from: (Addanki et al. 2019)

3.2 Foundation
As part of the contributions of Addanki et al. (2019), partial source code
for "Placeto: Learning Generalizable Device Placement Algorithms for Dis-
tributed Machine Learning" is open sourced (Addanki (2020)). We are us-
ing it as a foundation for our work. Placeto uses an NN based RL agent to
parametrize an MDP that optimizes a placement policy. The agent is trained
using a Policy Gradient algorithm (see Section 2.3).

The framework works with graph representations. The input graph is pre-
processed, such that each node has several features, that are used in the place-
ment process:

• total_runtime - total runtime measured in. The information about
runtimes is provided as part of the datasets we are using. They are de-
scribed in more detail in Section 4.1.1.

• output_size - the number of edges going out of the current node

• current_placement - carries information about the device onwhich
the node is placed currently. This property may change at every itera-
tion, depending on the placement policy
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• is_node_current - this property bears meta information used to
facilitate the MDP

• is_node_done - another property with meta information to help run
the MDP. When all the nodes are marked as done, the episode finishes.

The graph is passed to an RL agent, whose internal structure is an NN.
The architecture consists of two modules, that are logically separated into a
graph neural network and a policy neural network. The NN’s architecture is
described in more details in Section 2.5. For clarity, in Figure 3.2, we show
again how Placeto uses the features of the input graph to produce a placement
suggestion.

Figure 3.2: Graph embedding information aggregation process of Placeto.
Adapted from: (Addanki et al. 2019)

The source code allows for changes to the internal NN architecture of the
RL agent. It is possible to build a custom NN for both the graph embedding
network and the policy network. Since Placeto uses Tensorflow (TF) (Abadi
et al. (2016)), all operations in TF are allowed, as long as they abide the rules
for input and output tensor sizes. Furthermore, Placeto provides a simple im-
plementation of an MLP called Feedforward NN (FNN), which is used as the
building block of the whole NN. Provided input size, output size and hidden
layer size, it creates a three-layer TF network with the given dimensions. The
biases of each layer are initialized with zeroes, and the initial weights are ini-
tialized using the method presented in Glorot and Bengio (2010). The chosen
non-linearity function between each layer is Rectified Linear Unit (ReLU).

The framework provides an engine for running MDP episodes. It allows
for choosing initial placements for the nodes in the graph. It can run episodes
of the MDP and update the weights in the NN based on rewards. Placeto can
automatically calculate the rewards based on the Policy Gradient algorithm.
The parameters used in the algorithm are updated based on the output from the
built-in simulator. The simulator can compute with high accuracy the runtime
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of an NN. The simulation does not require real hardware, which makes the
usage of the whole framework resource effective.

There are mechanisms in place for controlling hyperparameters and mon-
itoring the results.

3.3 Implementation details
To achieve our goal of figuring out how to tackle the device placement prob-
lem, we have implemented two different graph embedding network architec-
tures - GraphSAGE (Hamilton, Ying, and Leskovec (2018)) and P-GNN (You,
Ying, and Leskovec (2019)). The two architectures are state-of-the-art tech-
niques in graph embedding. For an in-depth description of the algorithms and
how they work - see Section 2.4.

Both the GraphSAGE and the P-GNN implementation we have can be used
instead of the one already presented in the Placeto framework. They are im-
plemented as modules, and thus they can be easily swapped with the default
implementation.

3.3.1 GraphSAGE implementation details
Our implementation of GraphSAGE follows the algorithm presented in Hamil-
ton, Ying, and Leskovec (2018) faithfully. In this section, we will go into more
technical details and explain design choices. The logic behind GraphSAGE is
that an embedding of a node is constructed using that node’s mean aggregated
neighbourhood information, concatenated with its own features. The aggrega-
tion of the neighbourhood of a node encompasses nodes located at a distance
of up to two levels (the number is configurable).

Node embedding

Initially, we pass each node’s features through an FNN (see Section 3.2) to
create the initial node embeddings. The node features that we use are the same
as the ones used by Placeto and are described in Section 3.2. The features are:

• total_runtime

• output_size

• current_placement

• is_node_current
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• is_node_done

The random sample of neighbours for each node is chosen as well.
We then proceed to build the subsequent embedding levels using the em-

beddings we have already created. A node’s embedding is calulated using the
formula:

nodelvl=i = FNN(CONCAT(nodelvl=i−1, AGG(neighbourlvl=i−1))),

where nodelevel=i is the node embedding of node u at level i ∈ [1, n].
neighbourlvl=i−1 is the embedding of the immediate neighbourhood of node
u at level i− 1. AGG is an order invariant aggregation function, such as mean
or sum. FNN is a 3 layer MLP, which serves as a non-linearity.

Figure 3.3 shows an example of how the graph embedding module is used
to help produce a device placement suggestion. On the left side, we see a
sample graph, where the current node is marked. Its features are described
as well. In the middle section, we see how the neighbourhood embedding of
the current node is aggregated from neighbours 2 hops away. Lastly, on the
right side of the figure, we see that the embedding is the combination of the
current node and the aggregated information from the neighbourhood. That
information is passed to the PolicyNetwork, which outputs a device suggestion
for the current node.

Figure 3.3: Example of how GraphSAGE architecture is used to create node
embeddings and produce device placement suggestions. Left: Sample graph
and node features. Middle: Neighbourhood embedding. Right: Concatena-
tion of the aggregated neighbourhood embedding.

We initialize different FNNs for each level in the algorithm. For example,
if the algorithm is configured to have two hops (as presented in the original
paper), then we initialize three FNNs - one for final embeddings of the nodes,
and one for each hop away. Using a single instance of an FNN by multiple
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nodes means that the weights are shared between the nodes. One of the prin-
ciples of the GraphSAGE algorithm is that nodes that are n hops away share
the same weights.

Based on the temporary embeddings of each node’s own features, we create
the embedding of each node by concatenating those features with the aggre-
gation of the features of its neighbours. The aggregation function we use is
mean, which is the same as the one used in Hamilton, Ying, and Leskovec
(2018). However, we provide the option to use other aggregation functions,
such as max, min, or sum.

The concatenation is then stored as the embedding of this node for the next
level. We continue this process until we have stored the embeddings for the
needed level. We then return a vector containing the embeddings for each node
of the graph.

Before adding an embedding for the next level to the list of embeddings,
we add a dropout layer to the FNN. A dropout layer forces some neurons of
the network to be excluded from the calculation of weights. The chance of a
neuron being turned off is controlled by a hyperparameter called droupout
rate. We use dropout layers in order to prevent overfitting of the model to the
current graph. Overfitting would prevent generalization of the model, and that
would, in turn, hinder the performance of the final placement policy when used
with unseen graphs. The dropout layer is added for every node embedding at
every level of the algorithm, except the last one. It has slight performance
impact but improves the produced placement policies.

Partial code of our implementation is shown in Code Block 1.

1 # Generate embeddings for nodes located n hops away.
2 for i in range(self.hops + 1):
3 for n in G.nodes():
4 # Get the embeddings of the current node and its
5 # neighbours at the current level
6 embedding, neighbor_embedding =
7 self._get_embeddings(G, n, i)
8

9 # Aggregate the neighbours of the current node.
10 neighbor_aggregation =
11 self._aggregate_for_node(neighbor_embedding)
12

13 # Concatenate the neighbourhood aggregation
14 # with the embedding of the current node
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15 concatenated_with_current =
16 tf.concat((neighbor_aggregation, embedding),axis=1)
17

18 # Generate embedding for the concatenation
19 embedding = self.fnns[i]
20 .build(concatenated_with_current)
21

22 # Add the generated embedding to the dictionary
23 if i != self.hops:
24 self.samples[n][str(i + 1)] = embedding
25 else:
26 embedding = tf.nn.l2_normalize(embedding)
27 self.samples[n][str(i)] = embedding

Code Block 1: Function for building GraphSAGE embeddings

We have exposed some controls to manage the behaviour of the algorithm.

• sample_ratio - what percentage of a node’s neighbourswill be taken
into account when generating the embeddings of that node. The ratio
does not change, no matter which level of embedding we are creating.
The default value is 50%, meaning that half of the neighbours will be
considered in the calculations.

• hops - the number of levels of neighbours from which we are aggre-
gating information. The original paper works with two levels which is
also our default.

• aggregation - we allow for choosing which order invariant aggre-
gation function can be used to calculate the embedding of a node. The
options are: mean, max, min, or sum. Our default aggregation function
is mean, which is also the one used by the authors of the original paper.

• dropout_rate - is the hyperparameter used to control how many
nodes will be switched off during each iteration of training. Our default
is 0.5.
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3.3.2 P-GNN implementation details
The second graph embedding architecture we have implemented is based on
the work presented in You, Ying, and Leskovec (2019). The main idea be-
hind that paper is that even if a node has an embedding that encompasses the
information about a node itself and its neighbourhood, it can still lack local-
ity information. That is why anchor sets are introduced. Anchor sets are sets
of nodes integrated into a node’s embedding. They allow for differentiation
between similar nodes, located at different places in the input graph.

Node embedding

Our implementation of P-GNN uses our GraphSAGE implementation as a
base. That means that a node’s self-embedding is the same embedding pro-
duced by our GraphSAGE function. The P-GNN addition of anchor sets can
be seen as an extension to the former. That embedding variant differs from the
original implementation of P-GNN; however, it is mentioned in You, Ying,
and Leskovec (2019) as a viable option.

We have chosen to step on the GraphSAGE implementation because of
two reasons. First, because of the way we have implemented GraphSAGE,
it is trivial to use the generated embeddings further down the line. Second,
we wanted to investigate what would be the impact of combining those two
state-of-the-art works on the final placement policies.

Figure 3.4 gives a visual example of how we use GraphSAGE as a base
embedding and then how we add anchor sets to the overall node embeddings.
On the left side of the figure, we see how a GraphSAGE type of embedding
is created for the current node. Next, we see how two anchor sets of different
sizes are randomly chosen - Anchor Set 1 and Anchor Set 2. Lastly, we see
how the information of the current node is combined with the information of
all anchor sets. The information from the anchor sets is aggregated (described
later in this section). After that, it is multiplied with the distance between the
current node and the anchor set.

When using the P-GNN architecture, the node embeddings are calculated
as previously. However, due to performance issues, the final GraphSAGE em-
bedding’s dimension is reduced using a pooling layer.

Building anchor sets

After the embeddings for each node are completed, we choose the anchor sets
based on the method used in the original paper. An anchor set is a set of
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Figure 3.4: Example of how P-GNN architecture is used to create node em-
beddings and produce device placement suggestions. Left: GraphSAGE em-
bedding is created for the current node. Different sized random sets of nodes
(anchor sets) - AS1 and AS2 are picked. Right: The information between a
node and all anchor sets is combined.

randomly chosen nodes from the input graph. The number of sets is c.log2(n),
where c is a hyperparameter. The sets are of varying size. The size is equal to

n

2i+anchor_exponent

where n is the number of nodes, i ∈ [1, .̧log(n)). The anchor_exponent
is our addition to provide better control over the size of the anchor sets. It also
serves as an optimization function. See Code Block 2 for the actual anchor
sets building implementation.

1 def _build_anchor_sets(self, G):
2 # G is the input graph
3 n = len(G.nodes())
4 m = int(np.log(n))
5

6 # `self.pgnn_c` defaults to 0.5
7 copy = int(self.pgnn_c * m)
8

9 for i in range(m):
10 # self.pggn_anchor_exponent is a mechanism
11 # to control the size of the sets
12 anchor_size = int(n / np.exp2(i +
13 self.pgnn_anchor_exponent))
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14

15 for j in range(np.maximum(copy, 1)):
16 self.anchor_sets.append(
17 random.sample(G.nodes(), anchor_size))

Code Block 2: Function for building anchor sets given an input graph

Adding positional information

The next step is to create an embedding for each node with all anchor sets.
We create this embedding using the same method as You, Ying, and Leskovec
(2019). The combination of anchor set information and node information is
done using an aggregation of the anchor set. The aggregation is then concate-
nated with the embedding of the node. The concatenation is multiplied by
the distance between the node and the anchor set. More formally, a relation
between a node and an anchor set is the following:

node_anchor_relation = dist(n,u).CONCAT(node_emb, anchor_emb),

where n is the current node, u is a node from an anchor set. dist(n,u) is the
distance between the nodes n and u. anchor_emb, or anchor embedding is an
aggregation of an anchor set.

We have implemented two types of anchor set aggregations - a mean aggre-
gation, and a max aggregation, that can be used as anchor embeddings. Figure
3.5 provides an example of how the two types of aggregation work. Max ag-
gregation (Figure 3.5 Right Top) calculates the relation between a node and
an anchor set by combining the embedding of the current node with the em-
bedding of the furthest node of the anchor set. In this case - node A, as it is
located at a distance of 2. NodeB is located at a distance of 1 from the current
node. Mean aggregation (Figure 3.5 Right Bottom) implies that a relation is
calculated between the current node and every single node from the anchor
set. The final embedding is the mean of those relations.
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Figure 3.5: Mean and max anchor set aggregation example. Left: Sample
graph, where the anchor set consists of nodes A and B. Right (Top): Max
anchor set aggregation. Right (Bottom): Mean anchor set aggregation.

The mean aggregation calculates the node_anchor_relation for a node
n to each node in the anchor set. The final embedding for this anchor set is cal-
culated using amean aggregation between the resulting node_anchor_relations.
This approach has a considerable performance impact and is not our default
solution.

On the other hand, we have max aggregation. Here we calculate a
node_anchor_relation between a node n and only a single node u from the
anchor set. That node is the one with the maximum distance between n and
u. Partial code is shown in Code Block 3. It is equal to the number of edges
of the graph in the shortest path between n and u.

When a node has calculated its relation to each anchor set, those relations
are aggregated into the ultimate node embedding. Finally, that embedding is
passed through an FNN.

1 def _max_aggregate_anchor(self, anchor_set, node):
2 # get the node with the maximum distance
3 max_agg_anchor = max(anchor_node_intersections)
4 node_embedding = self.samples[node][str(self.hops)]
5 # get the precalculated embedding of the max node
6 anchor_embedding =
7 self.samples[max_agg_anchor[0]][str(self.hops)]
8

9 # calculate the distance
10 positional_info = 1 /
11 (self.distances[node][max_agg_anchor[0]] + 1)
12

13 # concatenate the embeddings of the node
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14 # and the max anchor node
15 feature_info =
16 tf.concat((node_embedding, anchor_embedding),
17 axis=0)
18

19 node_anchor_relation =
20 positional_info * feature_info
21

22 return node_anchor_relation

Code Block 3: Function for max aggregation of anchor sets

We have exposed several control levers to manipulate the behaviour of the
code.

• c hyperparameter - used to control the number of anchor sets

• anchor_exponent - used to control the size of the anchor sets.

• aggregation - controls how to combine a node and an anchor sets.
Possible options are mean and max, with max being the default

• neighbour_cutoff - controls how far apart two nodes can be to be
considered connected. The default value is 6

All GraphSAGE controls, described in the previous section, apply to the
embeddings here.

3.4 Design choices and Limitations
In this section, we make an overview of some of the technical limitations we
faced and what decisions were made based on them. Some of them stem from
the implementation of the Placeto framework, whereas others are deliberate
choices.

First, from a higher perspective, we use the RL and Simulator capabilities
of the framework without changing them, accepting their limitations. Our
focus is not to prove or disprove the work done in Addanki et al. (2019) (except
the graph embedding part), but instead, we have used the provided work as
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a stepping stone, based on which we can compare and contrast the different
architectures we have implemented.

Second, for the feature representation of graph nodes, we use the same
feature set as the one used in Placeto. It contains several different properties,
some of which describe the node itself, while others containmetadata. In order
to integrate our code with the framework, we comply with its structure and are
using it as-is. This has an impact on the input and output dimensions of the
sub-networks we have developed.

Third, our implementation of the position-aware architecture is mostly
faithful to the source You, Ying, and Leskovec (2019). However, there are
several differences. In the paper, the anchor sets are picked at every forward
pass of the network. In contrast, we are choosing the anchor sets only once
in the beginning. The reason is that Placeto uses an old version of Tensor-
flow. In it, the computation graph is built lazily at the beginning. In addition
to that, our models become large. That leads to a considerable performance
impact when trying to rebuild the computation graph with the new anchor sets
in mind. We implemented this approach as well, but it rendered testing im-
possible due to its performance. Tensorflow 2 allows for the eager building
of the computation graph, and we would have been able to perform this. The
reference code provided by the authors of the paper is written using the Py-
Torch framework (Paszke et al. (2019)), which is an alternative to Tensorflow.
Its architecture allows for easy calculation on per iteration basis. However,
rewriting the Placeto framework to use Tensorflow 2 or PyTorch is out of the
scope of this thesis.



Chapter 4

Evaluation

In this chapter, we describe the outcome of our work. First, we explain our
experimental setup. That includes our datasets, what we are comparing and
other details that might be useful for the reproducibility of our experiments.
We then go to report the results and discuss them.

4.1 Experimental Setup

4.1.1 Datasets
Our work requires us to evaluate different NNmodels. Our approach needs the
NNmodel to be represented as a graph. That is why we choose to evaluate our
workwith computation graphs generated by Tensorflow. Tensorflow can create
a computation graph of all the operations in the model before performing any
computation. That approach is what we use as a base for our input datasets
because it transforms an NN model into our desired input - a graph.

We evaluate our work on three different synthetic datasets, comprised of
graphs with different sizes and structures. The datasets are the same used
to evaluate the generalizability of Addanki et al. (2019). Our goal is not to
evaluate the generalizability of Placeto. However, the same datasets provide
varied input for our experiments and allow us to assess our work better. In a
similar fashion to the paper, we refer to the datasets as cifar10, ptb, and nmt
(lowercase, italic).

Two of our synthetic datasets are generated using the Efficient Neural Ar-
chitecture Search (Pham et al. (2018)) (ENAS) system. ENAS is a system that
is able to generate artificial NNmodels using an RL based approach by search-
ing for an optimal subgraph within a larger graph. It is trained to maximize

39
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some reward based on a given dataset. An example is shown in Figure 4.1. On
the left side of the figure, there is a graph containing different operations, i.e.
conv 3x3, conv 5x5, max 3x3, sep 3x3. The RL agent of ENAS can generate
different ordered combinations of the operations in that graph. On the right,
we see an example of a constructed convolutional NN.

Figure 4.1: ENAS generated convolutional NN architecture. Left: graph of
operations. Right: subgraph of operations created from the graph on the left.
Source: (Pham et al. 2018)

The cifar10 and ptb datasets are generated using ENAS system.
Our cifar10 dataset is created using ENASbased on the CIFAR-10 (Krizhevsky

(2009)) image dataset. The CIFAR-10 image dataset consists of 60000 32x32
colour images in 10 classes, with 6000 images per class. Using CIFAR-10 and
classification accuracy as the reward signal to the ENAS controller, multiple
convolutional NN models with high accuracy over the dataset are generated.
N sized sample of these architectures is randomly chosen to form the cifar10
dataset that we are using.

The Penn Treebank language modeling dataset (Marcus et al. (1999)) is
the basis for the second graph dataset we have - ptb. It contains 2499 stories
from a three year Wall Street Journal (WSJ) collection of 98732 stories for
syntactic annotation. Using the validation perplexity as a reward to the ENAS
controller, recurrent NN models, which are suited for language modelling, are
automatically generated by ENAS. N sized random sample of the generated
models is chosen to become the provided ptb dataset.

Last, the nmt dataset is based on the NN architecture used in Neural Ma-
chine Translation with Attention (Tensorflow (2020)) (NMT ). It is a sequence
to sequence recurrent model using an encoder-decoder architecture (Luong,
Pham, and Manning (2015)). N different variations of the NMT model are
generated by sampling the number of unrolled steps to produce the Tensor-
flow computation graphs.

In order to reduce the number of operations (ops) in each computation
graph, some operations are grouped into groups of similar operations. The
approach is similar to the grouping in Mirhoseini, Pham, et al. (2017).
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Table 4.1 summarizes our datasets - what is their architecture and what
is their average size in terms of node groups. The datasets contain varied
amounts of nodes, which provides data on how our work affects different sized
graphs.

2* 2*Model architecture # of nodes
Average σ

cifar10 Convolutional 301 12
ptb Recurrent 500 47
nmt Recurrent 188 31

Table 4.1: Dataset summary

4.1.2 Baselines
We compare the two graph embedding architectures we have implemented to
the one presented in Addanki et al. (2019). To compare, we use the runtime of
the input graph, which represents an NN, calculated by the built-in simulator.
All of the Placeto framework settings are set to identical values. We evaluate
each of the architectures on the same datasets. For all experiments, the default
placement is that all nodes are located on a single device.

To compare, we use the runtime of the input graph, which represents an
NN, calculated by the built-in simulator. We evaluate Placeto, GraphSAGE
and P-GNN on the same datasets in order to calculate averages in runtime
improvement and computation time. We then assess the improvements or de-
creases in the results of GraphSAGE and P-GNN in relation to Placeto. All of
the Placeto framework settings are set to identical values. For all experiments,
the default placement is that all nodes are located on a single device.

4.1.3 Training Details
We conduct the experiments on the three different datasets - cifar10, ptb, and
nmt. The baseline, i.e. the Placeto default implementation, is used with the
framework’s default settings, where the graph embedding module uses the ag-
gregation presented in Addanki et al. (2019). Each graph embedding is then
aggregated using an NN. The purpose is to funnel the graph embedding into
the policy module, that outputs the actual device placement suggestion.

When testing the GraphSAGE graph embedding module, we bypass the
Placeto embedding. The embeddings are again aggregated before being fed
to the policy module. The P-GNN graph embedding module steps on top of
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the GraphSAGE implementation as it uses the GraphSAGE embeddings as its
base node embeddings. When testing P-GNN, all GraphSAGE settings are
kept the same as when testing GraphSAGE on its own.

The settings for our GraphSAGE module are shown in Table 4.2. These
settings are carried over all datasets. Initially, all nodes of the input graph
are placed on a single device, and that placement is updated as the episodes
progress. The way the experiment progresses is that the best placement from
an episode is used as an input to the next one.

GraphSAGE P-GNN
Initial placement Single device
Sample ratio 0.8

Hops 2
Aggregation (neighbourhood) mean

Droupout rate 0.7
c hyperparameter - 0.2
Anchor exponent - 4

Aggregation (anchor set) - max
Neighbour cutoff - 6

Table 4.2: Training settings for GraphSAGE and P-GNN

We conduct experiments on all three datasets described in Section 4.1.1,
namely cifar10, nmt, and ptb. For each dataset, the simulator classifies op-
erations across 3, 5 and 8 devices. That adds up to 9 experiments in total.
Each experiment runs the simulation over 51 randomly picked input graphs
(17 graphs for each dataset). Each input graph passes through 20 episodes.
We chose 20 episodes, as the improvements on average reach a plateau after
about 10 to 15 episodes.

All of our experiments are conducted on a machine with an AMD Ryzen
Threadripper 2920X 12-Core Processorwith amax boost clock of up to 4.3GHz.
The machine is equipped with a GeForce RTX 2070 SUPER GPU with 8GB
of memory.

4.2 Results
In this section, we evaluate how the different graph embedding modules im-
pact the runtime of an NN according to the simulator (which we refer to as
runtime improvement), as well as the time it takes the RL agent to calculate
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the placement suggestions (computation time). We describe and compare the
following parameters:

• Runtime improvements of a placement using a particular graph embed-
ding architecture compared to the initial state

• Computation time of the RL agent’s internal NN in the different exper-
iments

• Relation between a placement runtime improvement and the computa-
tion time required to achieve that result.

The section is separated according to the researched metrics. Finally, we
summarize the results.

4.2.1 Hypotheses and expectations
Our primary hypothesis is that changing the graph embedding module would
bring improvement to the runtime of a placement. The reason is that it should
better capture the structure of the input graph. That would lead to a more op-
timal classification and placement suggestion from the policy module. Since
we are comparing three different graph embedding architectures - we are ex-
pecting different runtime gains.

First, we hypothesise, that the Placeto graph embedding architecture (Ad-
danki et al. (2019)) would have a similar positive impact on runtime as the
GraphSAGE architecture (Hamilton, Ying, and Leskovec (2018)). The reason
is that both graph embedding methods are similar in the sense that both ap-
proaches collect data from each node’s neighbourhood in some way. On the
one hand, Placeto collects information for each node’s surroundings by com-
bining information about child nodes, parent nodes, and parallel nodes. On
the other hand, GraphSAGE collects that information by combining a node’s
immediate neighbourhood at some distance. Regarding the time it takes the
RL agent - we expect to see similar times due to the architectural similarities.

Second, we hypothesise that the position-aware architecture (P-GNN) pre-
sented inYou, Ying, and Leskovec (2019)would improve on the results achieved
by the other two architectures. The reason is that on top of the neighbourhood
information contained in the graph embedding, there is information regarding
the locality of each node. We expect that to help better represent the graph
as an embedding to pass to the policy module. We expect that the runtime
improvement would come at the expense of the time it takes the RL agent to
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suggest node placements. That is because our P-GNN implementation is an
extension to our GraphSAGE one, and includes additional overhead.

Finally, we relate the runtime improvement to the RL agent’s NN runtime
using the ratio between the average percentage of improvement and the to-
tal RL agent runtime: α.improvement/β.nn_runtime. The purpose is to
show the performance gain and how it might be offset by longer computation
time. For brevity we call that ratio the Performance-Computation Ratio, or
P-C Ratio. If there is no improvement, the ratio becomes 0. α and β are hy-
perparameters, that can be used to give different weights to the components.
In our case, the improvement and the NN runtime of the RL agent have equal
weights. Thus α = β = 1.

4.2.2 Runtime improvement
In this section we show the results we achieved regarding the runtime im-
provements of placement policies using our different graph embedding archi-
tectures. We group the experiments into datasets, where each dataset has a
dedicated subsection. Each subsection contains the results of all experiments
(3, 5, and 8 devices) ran on that dataset. Finally, we present a summary of all
runtime improvement results.

cifar10

When running the simulation over the graphs in the cifar10 dataset, we see
that all graph embeddingmodules help produce better placement policies. The
policies are such that they improve the runtime compared to the initial single
device placement. In Figure 4.2, we see an example that runtimes improve
after a single episode after passing the input NN through the RL agent. The
runtimes are progressively reduced until a plateau is reached around the 10th or
15th episode. Figure 4.2 is representative of the general trend of how runtimes
improve over the course of the experiments.
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Figure 4.2: Runtime improvement of an input convolutional NN from the
cifar10 dataset using different graph embedding modules (Placeto, Graph-
SAGE, and P-GNN) over 20 episodes. Logarithmic scale.

As hypothesised, we see that the position-aware architecture provides the
most significant runtime improvement after 20 episodes. This is true for all
experiments on the cifar10 dataset, namely experiments with 3, 5, and 8 de-
vices. TheGraphSAGE architecture performs better than the Placeto one in the
experiments with 3 and 5 devices. However, in the experiment with 8 devices,
the Placeto architecture brought more substantial runtime improvement.

In the experiment with 3 devices, Placeto provides a significant improve-
ment to the default runtime with 24.585%. The Placeto improvements are less
than the improvements provided by theGraphSAGE architecture - 29.566%. P-
GNNachieves themost prominent andmost consistent improvement of 32.717%
(Figure 4.3). It needs to be noted that for some input NNs, the Placeto archi-
tecture provides no improvement whatsoever.
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Figure 4.3: Average improvement of the runtime based on suggested place-
ments in %. Experiment is run on the cifar10 dataset. Simulator classifies
nodes on 3 devices.

Running the experiment on cifar10 with 5 devices affirms the trend of P-
GNN providing the biggest runtime improvement with an average of 36.084%.
The difference between P-GNN and the runner-up in this experiment is bigger
than the 3 devices one. GraphSAGE edges over Placeto with 30.567% for the
former and 28.250% for the latter (Figure 4.4).

Figure 4.4: Average improvement of the runtime based on suggested place-
ments in %. Experiment is run using the cifar10. Simulator classifies nodes
on 5 devices.

Lastly, our experiment with 8 devices produces smaller differences be-
tween the implementations. P-GNN again shows the best results with 37.114%
average runtime improvement. In this experiment, Placeto performs better
than GraphSAGE, and its difference with P-GNN is quite small - 2.775%.
Placeto averages the runtime improvements to 34.339%, while GraphSAGE
scores 31.374% (see Figure 4.5).
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Figure 4.5: Average improvement of the runtime based on suggested place-
ments in %. Experiment is run on the cifar10 dataset. Simulator classifies
nodes on 8 devices.

In Table 4.3, we summarize the results we achieved when measuring the
runtime improvements when using the different graph embedding architec-
tures. The overall average confirms our first hypothesis that P-GNN would
achieve the most significant improvements. We also see the expected result
that the GraphSAGE and Placeto architectures would bring similar gains. In
other words, GraphSAGE does not differ from the baseline regarding runtime
improvements.

We see a tendency that the improvement percentage increases the more
devices we test with. That is true for all architectures. For example, P-GNN
scores 32.717% when the simulation works with 3 devices, 36.084% when
working with 5 devices, and 37.114% with 8 devices.

3 devices 5 devices 8 devices Overall average
Placeto 24.585% 28.250% 34.339% 29.058%

GraphSAGE 29.566% 30.567% 31.374% 30.502%
P-GNN 32.717% 36.084% 37.114% 35.305%

Table 4.3: Summary of the achieved runtime improvements (in %) on the
cifar10 dataset with 3, 5, and 8 devices.

nmt

Similar to our cifar10 experiment results, the results of the experiments we
conduct on the nmt dataset further increase our certainty in our hypotheses.
Namely, we see again that the P-GNN architecture yields the best runtime im-
provements out of all three tested architectures. The difference here is that
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Placeto performs better than GraphSAGE, and we do not see the similarity in
the results produced in the cifar10 experiments.

Our experiment on the nmt dataset with 3 devices show very close results
between all three architectures (see Figure 4.6). P-GNN has the best results,
with an average of 30.232% runtime improvements. However, the difference
between the architecture with the second-best result, Placeto, is rather small
- only about 2.125%. Placeto achieves an average runtime improvement of
28.107%. Conversely, GraphSAGE yields results that are quite close to Placeto
- 27.037%.

Figure 4.6: Average improvement of the runtime based on suggested place-
ments in %. Experiment is run on the nmt dataset. Simulator classifies nodes
on 3 devices.

When simulating 5 devices, we see similar results (see Figure 4.8). P-
GNN takes the lead with 39.350%; Placeto is again second with 36.040%;
GraphSAGE achieves 34.177%.

Figure 4.7: Average improvement of the runtime based on suggested place-
ments in %. Experiment is run on the nmt dataset. Simulator classifies nodes
on 5 devices.
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Our simulation with 8 devices further solidifies the results when using the
nmt dataset (see Figure 4.8). Namely, P-GNN achieves the best average run-
time improvement - 39.350%. Placeto reaches 36.040%, while GraphSAGE
yields 34.177%.

Figure 4.8: Average improvement of the runtime based on suggested place-
ments in %. Experiment is run on the nmt dataset. Simulator classifies nodes
on 8 devices.

In Table 4.4 we summarize our simulation results from the nmt dataset.
P-GNN provides the biggest average runtime improvement - 37.327%. Placeto
and GraphSAGE improve the runtime average compared to the initial place-
ment, but by a smaller percentage - 34.321% and 31.201% respectively.

Once again, we see signs of the trend that the more devices are simulated,
the more overall improvement the architectures can provide. As an example,
P-GNN provides 30.232% for 3 devices, 39.350% for 5, and 42.399% for 8
devices. The same is true for Placeto. On the other hand, the GraphSAGE
architecture does not follow the same path - 5 devices experiment yields better
absolute results than the 8 devices one. However, the differences are small.

3 devices 5 devices 8 devices Overall average
Placeto 28.107% 36.042% 38.813% 34.321%

GraphSAGE 27.037% 34.177% 32.388% 31.201%
P-GNN 30.232% 39.350% 42.399% 37.327%

Table 4.4: Summary of runtime improvements on the nmt dataset in %

ptb

Running our experiments on the ptb dataset brings similar results in terms of
which graph embedding architecture brings the most runtime improvements.
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Similar to experiments conducted on nmt and cifar10, P-GNN achieves the
best results. GraphSAGE and Placeto lack behind with GraphSAGE being the
better of the two.

Simulating 3 devices shows a big gap between P-GNN (17.930%) and
Placeto (8.981%), with GraphSAGE scoring improvements somewhere in be-
tween the former two (12.492%).

Figure 4.9: Average improvement of the runtime based on suggested place-
ments in %. Experiment is run on the ptb dataset. Simulator classifies nodes
on 3 devices.

Similar results are achieved when the experiment simulates 5 devices (Fig-
ure 4.10). Here, P-GNN reaches runtime improvement of 21.117%, while
Placeto only improves the initial state with 11.304%. GraphSAGE (14.658%)
again performs better than Placeto but is nowhere near the percentage achieved
by P-GNN.

Figure 4.10: Average improvement of the runtime based on suggested place-
ments in %. Experiment is run on the ptb dataset. Simulator classifies nodes
on 5 devices.
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In our last experiment, where we simulate 8 devices, the results are in line
with the other experiments on the ptb dataset. P-GNN once again achieves
the best runtime improvement (23.536%). GraphSAGE is second with al-
most 7% smaller improvement - 16.625%. Placeto yields the worst results
- 15.831%. However, the difference between GraphSAGE and Placeto is not
as pronounced as in the previous experiments.

Figure 4.11: Average improvement of the runtime based on suggested place-
ments in %. Experiment is run on the ptb dataset. Simulator classifies nodes
on 8 devices.

In Table 4.5 we see a summary of our results on the ptb dataset. On aver-
age, Placeto improves the initial placement policy with 12.039%, GraphSAGE
achieves 14.592%, and finally - P-GNN yields the biggest improvements of
20.861%.

There are a couple of things to note regarding the experiments on the ptb
dataset.

First, similar to the experiments conducted on cifar10 and nmt, we see
that all architectures improve the runtime progressively when more devices
are added. As an example - P-GNN improves 17.930% the placement on 3
devices, 21.117% on 5, and 23.536% when 8 devices are simulated.

Second, the ptb dataset contains the largest input graphs. At the same time,
the absolute improvements from all graph embedding architectures are smaller
than the improvements on the other datasets. For example, GraphSAGE im-
proves runtimes on cifar10 with 30.502% and nmt with 31.201%, and only
14.592% on ptb. The situation with Placeto and P-GNN is similar.
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3 devices 5 devices 8 devices Overall average
Placeto 8.981% 11.304% 15.831% 12.039%

GraphSAGE 12.492% 14.658% 16.625% 14.592%
P-GNN 17.930% 21.117% 23.536% 20.861%

Table 4.5: Summary of runtime improvements on the ptb dataset in %

Summary

Showing the effects on runtime improvement of placement policies from dif-
ferent graph embedding architectures is one of the main goals of this thesis.
We show that all of the tested architectures bring improvements to the runtime
of the placement policy. Figure 4.12 serves as a confirmation of two of our
hypotheses.

First, we see that the Placeto and GraphSAGE architectures achieve almost
identical average improvements - 25.139% and 25.432% respectively. There
are variations in the results between the different datasets. Nonetheless, the
overall average is identical due to the similarity of the architectures. This result
is in line with our expectations.

Second, we hypothesised that P-GNN would achieve more significant run-
time improvements because it embeds more information about the input graph
- particularly the locality of the input graph’s nodes. P-GNN yields better re-
sults than the other two architectures, with an average of 31.164%. That is
an improvement of more than 20% compared to GraphSAGE and Placeto and
supports our hypothesis.

Figure 4.12: Average improvement of the runtime based on suggested place-
ments in % from all experiments on all datasets.

Table 4.6 shows an aggregation of all the runtime improvements achieved
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by each graph embedding architecture on each dataset. It also displays the
summarized overall average runtime improvement for each architecture. We
also outline the runtime improvement compared to our baseline - the default
Placeto architecture. Asmentioned, GraphSAGE provides similar runtime im-
provements, and it improves policy runtimes by only 1.165%. P-GNN has a
significant lead compared to Placeto - 23.967%.

cifar10 nmt ptb Overall
average

Improvement
(%)

Placeto 29.058% 34.321% 12.039% 25.139% -
GraphSAGE 30.502% 31.201% 14.592% 25.432% +1.165%

P-GNN 35.305% 37.327% 20.861% 31.164% +23.967%

Table 4.6: Overall average runtime improvements for all graph embeddingar-
chitectures in %. Bigger improvement is better.

4.2.3 Computation time
In this section, we are going to show how the different graph embedding ar-
chitectures impact the computation time needed by the RL agent. Similar to
Section 4.2.2, this section is separated by datasets. Each subsection contains
the results of all experiments conducted on the particular dataset. Last, we
summarize all of the computation time results.

cifar10

In our experiments on the cifar10 dataset with 3 devices, the results consis-
tently meet our expectations that the P-GNN architecture would require more
time to complete than GraphSAGE. However, what we did not expect was for
the default Placeto architecture to be the slowest of the three. As shown in Fig-
ure 4.13, Placeto has an average time of 110.730 seconds per episode for all
input NNs. P-GNN averages the NN time of the RL agent at 101.170 seconds.
GraphSAGE improves on Placeto by 19.519%, and on P-GNN with 11.915%

with an average NN runtime of 89.116 seconds.
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Figure 4.13: Average computation time for the RL agent in seconds per input
NN. Experiment is run on the cifar10 dataset. Simulator classifies nodes on
3 devices.

When simulating 5 devices, the results from the 3 devices experiment are
repeated almost entirely (Figure 4.14). The relation between the average times
is kept the same. The only difference is the absolute increase in the average
time, which is present for all architectures. More concretely, P-GNN is on
average slower than GraphSAGE with 105.721 seconds compared to 91.930

seconds. Placeto once again requires the most computation time of all three
architectures on average - 112.030 seconds.

Figure 4.14: Average computation time for the RL agent in seconds per input
NN. Experiment is run on the cifar10 dataset. Simulator classifies nodes on
5 devices.

Our last cifar10 experiment simulates 8 devices. The computation time
continues the same tendency as with the previous two experiments (with 3 and
5 devices). GraphSAGE requires the least computation time with an average
of 93.443 seconds. P-GNN requires 10 seconds more on average - 103.420
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seconds. Placeto is again the slowest architecture, requiring 108.118, which is
15.705% more than GraphSAGE.

Figure 4.15: Average computation time for the RL agent in seconds per input
NN. Experiment is run on the cifar10 dataset. Simulator classifies nodes on
8 devices.

Table 4.7 summarizes the average computation times for the three graph
embedding architectures for each experiment. The overall averages showGraph-
SAGE as the fastest architecture on the cifar10 dataset with 91.497 seconds.
P-GNN averages 103.437 seconds, while Placeto is the slowest with 110.293

seconds.

3 devices 5 devices 8 devices Overall average
Placeto 110.730 112.030 108.118 110.293

GraphSAGE 89.116 91.930 93.443 91.497
P-GNN 101.170 105.721 103.420 103.437

Table 4.7: Summary of average computation time on the cifar10 dataset in
seconds

nmt

Experiments on the nmt dataset produce outcomes that are somewhat similar
to the ones produced by the experiments on cifar10. The results demonstrate
that GraphSAGE is the architecture that needs the least amount of computation
time. We also observe that P-GNN and Placeto require similar computation
times, with Placeto being marginally faster.

For the 3 devices experiment (Figure 4.16) GraphSAGE on average re-
quires 42.504 seconds, whereas Placeto needs 47.054 seconds. Lastly - P-
GNN is the slowest with 47.787 seconds.
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Figure 4.16: Average computation time for the RL agent in seconds per input
NN. Experiment is run on the nmt dataset. Simulator classifies nodes on 3
devices.

The simulation with 5 devices shows similar results with GraphSAGE be-
ing the fastest, and P-GNNbeing the slowest architecture (Figure 4.17). Graph-
SAGE achieves 43.788 seconds, Placeto reaches 47.519 seconds, while P-
GNN - 49.009 seconds on average.

Figure 4.17: Average computation time for the RL agent in seconds per input
NN. Experiment is run on the nmt dataset. Simulator classifies nodes on 5
devices.

Our experiment on nmt with 8 devices further confirms the previous re-
sult on that dataset (Figure 4.18). GraphSAGE scores 43.550 second, while
Placeto is second with 48.996. P-GNN has the largest computation time, but
the difference with Placeto is less than a second, namely 49.670 seconds.



CHAPTER 4. EVALUATION 57

Figure 4.18: Average computation time for the RL agent in seconds per input
NN. Experiment is run on the nmt dataset. Simulator classifies nodes on 8
devices.

Table 4.8 summarizes all computation times from all experiments con-
ducted on the nmt dataset. The results are consistent in all experiments on
nmt. More concretely, GraphSAGE is requiring less time than all the other ar-
chitectures averaging at 43.281 seconds. Placeto and P-GNN are slower, with
the former always outperforming the latter. Placeto averages 47.856 seconds
over all experiments, whereas P-GNN achieves 48.822 seconds.

3 devices 5 devices 8 devices Overall average
Placeto 47.054 47.519 48.996 47.856

GraphSAGE 42.504 43.788 43.550 43.281
P-GNN 47.787 49.009 49.670 48.822

Table 4.8: Summary of average computation time on the nmt dataset in sec-
onds

ptb

We conducted our last experiments on the ptb dataset. The results on this
dataset affirm what we observe in our experiments with the other two datasets.

In the experiment with three devices, GraphSAGE requires the least com-
putation time - 288.443 seconds. Placeto needs 335.376 seconds on average.
P-GNN uses up the most computation time and averages 362.761 seconds (see
Figure 4.19).
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Figure 4.19: Average computation time for the RL agent in seconds per input
NN. Experiment is run on the ptb dataset. Simulator classifies nodes on 3
devices.

Figure 4.20 shows the results of the experiments with 5 devices. We ob-
serve a similar pattern - GraphSAGE is quickest with 298.736 seconds, and
P-GNN is the slowest at 368.460. Placeto’s computation time is in between
the other two - 327.175 seconds.

Figure 4.20: Average computation time for the RL agent in seconds per input
NN. Experiment is run on the ptb dataset. Simulator classifies nodes on 5
devices.

Lastly, in Figure 4.21 we see the results from our experiments on ptb with
8 devices. The computation times are similar to the ones reached in the other
experiments. GraphSAGE averages 298.736 seconds, Placeto - 327.175 sec-
onds, and P-GNN - 368.460 seconds.



CHAPTER 4. EVALUATION 59

Figure 4.21: Average computation time for the RL agent in seconds per input
NN. Experiment is run on the ptb dataset. Simulator classifies nodes on 8
devices.

This dataset contains the largest input graphs. That is the reason why the
average computation times here (around 330 seconds) are so high compared to
the computation times achieved using nmt (average of around 46 seconds) or
even using cifar10 (average of around 101 seconds). The size, however, does
not have an impact on how the architectures rank (see Table 4.9). GraphSAGE
is 11.137% faster than Placeto and 24.582% faster than P-GNN. GraphSAGE
has average computation time of 295.130 seconds, Placeto scores 328.000 sec-
onds, and P-GNN achieves 367.679 seconds.

3 devices 5 devices 8 devices Overall average
Placeto 335.376 327.175 321.450 328.000

GraphSAGE 288.443 298.736 298.210 295.130
P-GNN 362.761 368.460 371.815 367.679

Table 4.9: Summary of average computation time on the ptb dataset in seconds

Summary

Our experiments provided data regarding the required computation time of the
different architectures over different datasets. The results are homogeneous
with regards to how the different graph embedding architectures are ranked
in terms of their average computation times. Figure 4.22 visualizes that rank-
ing. GraphSAGE shows the shortest computational times, with an average
of 143.302 seconds. Placeto is second with 162.050 seconds. P-GNN is the
slowest with an average of 173.313 seconds.
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Figure 4.22: Cummulative average computation time for the RL agent in sec-
onds per input NN

Provided that data, we can confirm our hypothesis that P-GNN requires
the most time, as its complexity is more significant than the other two archi-
tectures. On the other hand, we do not have evidence to confirm our hypothesis
that Placeto and GraphSAGE would require the same amount of computation
time, as GraphSAGE is consistently faster.

It is noteworthy that the number of devices that the experiment uses does
not definitively influence the computation requirements. In the runtime im-
provement experiments (Section 4.2.2), we observed a trend where the more
devices the system simulated, the more significant the runtime improvement.
The amount of devices does not affect the computation runtime for the exper-
iments. For example, the average computation time of GraphSAGE is 42.504
seconds for 3 devices, 43.788 for 5 devices, and 43.550 seconds for 8 devices.

Table 4.10 summarizes the different computation times. It also shows
the improvement percentage compared to our baseline, which is the default
implementation - Placeto. GraphSAGE improves the computation time with
11.569%, while P-GNN adds an overhead of 6.950%.

cifar10 nmt ptb Overall
average

Improvement
(%)

Placeto 110.293 47.856 328.000 162.050 -
GraphSAGE 91.497 43.281 295.130 143.302 +11.569%

P-GNN 103.437 48.822 367.679 173.313 -6.950%

Table 4.10: Overall average computation time for all graph embedding archi-
tectures per input NN in seconds. Bigger improvement is better.
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4.2.4 P-C ratio
The P-C ratio is a metric that might give us a hint about the usefulness of a
graph embedding architecture. It takes into account the runtime improvement
and relates it to the computation time and is calculated as the ratio between the
two. For example, if an architecture achieves 25% runtime improvement over
100 seconds, it would get the same P-C ratio as an architecture which brings
less runtime improvement - 20% but quicker - 80 seconds, as 25%

100s
= 20%

80s
=

0.25.
Table 4.11 gives us an interesting insight. The average of P-C ratio of

Placeto is 0.339, GraphSAGE scores 0.368, and P-GNN has the highest ratio
of 0.387. To better understand, we look at Table 4.10 containing computa-
tion time summaries, as well as Table 4.6 containing the runtime improve-
ment summaries. What we see is that despite being the slowest, P-GNN still
brings the highest performance gain due to its large runtime improvements.
On the other hand, GraphSAGE achieves similar runtime improvements with
the baseline - Placeto. However, due to its comparatively fast speeds, it has a
higher P-C ratio than Placeto.

cifar10 nmt ptb Average Improvement
(%)

Placeto 0.264 0.716 0.037 0.339 -
GraphSAGE 0.333 0.720 0.049 0.368 8.555%

P-GNN 0.341 0.763 0.057 0.387 14.159%

Table 4.11: P-C ratio summary in %/seconds



Chapter 5

Discussion and Conclusion

In this thesis, we have explored what is the impact of graph embeddings on the
performance of device placement systems and the placement policies produced
by them. The latest efforts in the field harness RL to automatically create
device placement policies. Our work steps on one such example of state-of-
the-art solutions - Placeto (Addanki et al. (2019)).

An essential part of the RL systems, including Placeto, is the graph embed-
ding module. Our goal is to gauge the quality of placement policies created
by Placeto using different graph embedding methods. We evaluate our work
in two main areas. First, we evaluate runtime improvements - estimated im-
provement of the runtime of an input NN when using a policy. Second, we
assess computation time - the time required to reach the achieved runtime im-
provement.

In order to assess how graph embeddings impact the performance of the
placement policies, we replace its graph embedding module with implementa-
tions of current state-of-the-art graph embedding architectures, namelyGraph-
SAGE (Hamilton, Ying, and Leskovec (2018)), and P-GNN (You, Ying, and
Leskovec (2019)).

We expected that different graph embeddings would affect the quality of
the placement policies differently. In Table 5.1, we present a summary of all
the results we achieved in our experiments. We have looked at all of the di-
mensions of our experiments and their results separately and into much detail.
Here, we will not go into such depths. Instead, we take a look at the whole
picture of how graph embeddings influence the device placement policies.

First, we take a look at Placeto (Addanki et al. (2019)). Placeto, with its
default graph embedding module, provides an improvement of 25.139%. The
computation time required is 162.050 seconds. The ratio between the runtime
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Runtime
improvements

(%)

Computation
times

(seconds)

P-C ratio
(%/seconds)

Average Improvement
(%) Average Improvement

(%) Average Improvement
(%)

Placeto 25.139 - 162.050 - 0.339 -
GraphSAGE 25.432 1.165% 143.302 11.569% 0.368 8.555%

P-GNN 31.164 23.967% 173.313 -6.950% 0.387 14.159%

Table 5.1: Complete summary of all results for all tested parameters.

improvement and the computation time (P-C ratio) is 0.339. The improve-
ments achieved by this architecture are explored in the original paper. We use
it as a baseline and compare all our results to it.

Second, GraphSAGE (Hamilton, Ying, and Leskovec (2018)), provides
runtime improvements very similar to the ones of Placeto - 25.432%. The
result is in line with our expectations, as the graph embedding architectures
are somewhat similar to each other. What we did not expect is the computation
time required by GraphSAGE. It reaches its runtime improvements for 143.302
seconds on average, which is 11.569% faster than Placeto. The larger speed
helper GraphSAGE achieve a P-C ratio of 0.368.

Last, we take a look at our implementatin of P-GNN (You, Ying, and
Leskovec (2019)). Since it has the most complex graph embedding architec-
ture, we expected that it would bring the most significant runtime improve-
ments. Indeed, our expectations are met, and P-GNN achieves 31.164% run-
time improvement, which is 23.967% more than Placeto. As predicted, the
improvement comes at the cost of slower computation times. P-GNN achieves
its runtime results for an average of 173.313 seconds, which is 6.950% slower
than the baseline. Regardless, the P-C ratio is still the highest of the three, as
the substantial runtime improvement offsets the somewhat slower computation
time.

Provided the results we achieved in our work, we can confirm that graph
embeddings indeed have an impact on device placement policies. Further-
more, the more information about a graph is contained within a graph em-
bedding, the better the runtime improvements. At the same time, the added
complexity can harm the time required for the device placement system to
achieve that policy.
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