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Abstract

In recent years, Large Language Models (LLMs) have shown exceptional capabilities
across various Natural Language Processing (NLP) tasks. However, such impressive
performance often comes with the trade-off of an increased parameter size, posing
significant challenges for widespread deployment. Knowledge Distillation (KD) provides
a solution by transferring knowledge from a large teacher model to a smaller student
model. In this thesis, we explore the task-specific distillation of LLMs at the logit
level. Our investigation reveals that the logits of fine-tuned LLMs exhibit a more
extreme long-tail distribution than those from vision models. Moreover, existing logits
distillation methods often struggle to effectively utilize the internal ranking information
from the logits. To address this, we propose the Bi-directional Logits Difference (BiLD)
loss. The BiLD loss filters out the long-tail ”noise” by utilizing only top-k teacher
and student logits, and leverages the internal logits ranking information by constructing
logits differences. To evaluate BiLD loss, we conduct comprehensive experiments on 13
datasets using two types of LLMs. Our results show that the BiLD loss, with only the top-
8 logits, outperforms supervised fine-tuning (SFT), vanilla Kullback–Leibler (KL) loss,
and five other distillation methods from both NLP and Computer Vision (CV) fields.
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Sammanfattning

På senare år har stora språkmodeller (LLMs) visat exceptionella förmågor över olika
NLP-uppgifter. Men sådan imponerande prestanda kommer ofta med en kompromiss
i form av ökad parameterstorlek, vilket innebär betydande utmaningar för utbredd
användning. Kunskapsdistillation (KD) erbjuder en lösning genom att överföra kunskap
från en stor lärarmodell till en mindre studentmodell. I denna avhandling utforskar
vi uppgiftsspecifik distillation av stora språkmodeller på logitnivå. Vår undersökning
visar att logiterna från finjusterade LLMs uppvisar en mer extrem långsvansfördelning
än de från visionsmodeller. Dessutom kämpar befintliga metoder för logitdistillation
ofta med att effektivt utnyttja den interna rankningsinformationen från logiterna. För
att åtgärda detta föreslår vi förlustfunktionen BiLD (Bi-directional Logits Difference).
BiLD-förlusten filtrerar bort långsvansens ”brus” genom att endast använda de översta k
lärar- och studentlogiterna, och utnyttjar den interna logitrankningsinformationen genom
att konstruera logitskillnader. För att utvärdera BiLD-förlusten genomför vi omfattande
experiment på 13 datamängder med två typer av LLMs. Våra resultat visar att BiLD-
förlusten, med endast de översta 8 logiterna, överträffar både övervakad finjustering
(SFT), vanilj-KL-förlust och fem andra distillationsmetoder från både NLP- och CV-
fälten.

Nyckelord

Stor Språkmodell, Modellkompression, Kunskapsdestillation
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Chapter 1

Introduction

The last few years have witnessed Large Language Models (LLMs) risen to prominence,
demonstrating remarkable proficiency in natural language understanding and generation.
However, these capabilities come at the cost of an ever-increasing number of parameters.
Due to constraints on computational resources, the formidable size of LLMs hinders their
democratization and widespread deployment. Knowledge Distillation (KD), as a classic
model compression method[1], provides a solution for reducing model size while striving
to maintain performance. KD transfers knowledge from a large teacher model to a smaller
student model, thereby enhancing the student model’s performance and making it a viable
alternative for deployment.

As an important branch of KD, logits distillation has gained popularity due to its
straightforward application. The goal of logits distillation is to minimize the Kullback–
Leibler (KL) divergence between the teacher and student logits. A significant portion of
research on logits distillation has focused on vision models [2, 3, 4, 5]. However, the
application of these methods to distill LLMs has yet to be thoroughly explored due to
potential differences in structure, data distribution, and output space between vision and
language models.

For LLMs, research on logits distillation is still emerging, with methods such as
reverse KL [6, 7, 8] and those based on optimal transport metrics [9]. However, in
practical applications, the former suffers from the ”mode-seeking” problem [10, 11],
while the latter is computationally too complex for open-source large models with billions
of parameters.

In this thesis, we investigate the characteristics of logits in LLMs. Compared to
the limited output space of vision models, LLMs’ output space comprises sequences
of discrete tokens of potentially infinite length, making LLM logits significantly more
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complex. Furthermore, LLM logits exhibit a noticeable long-tail distribution, indicating
a substantial portion of ”noise” beyond a small amount of ”key knowledge”. We also
observe that in LLM text generation, common strategies like top-k sampling and top-p
sampling are influenced by the internal ranking of logits when selecting output tokens.
However, existing logits distillation methods often struggle to exploit this latent ranking
information [5].

Inspired by these characteristics, we design a novel loss, the Bi-directional Logits
Difference (BiLD) loss, for task-specific LLM distillation. BiLD loss emphasizes
reducing long-tail ”noise” and explicitly utilizes the ranking information in logits. It
computes KL divergence based on reconstructed ”logits differences,” which are obtained
by calculating the internal pairwise differences of values from top-k teacher (student)
logits and the corresponding student(teacher) logits. Our experiments show that BiLD
loss, using only the top-8 logits, achieves state-of-the-art (SOTA) results across various
Natural Language Processing (NLP) tasks.

To conclude, we make the following contributions:

• We investigate the characteristics of LLMs’ logits, discussing their intrinsic
distribution and the significance of logits ranking.

• We propose the Bi-directional Logits Difference (BiLD) loss for logits distillation
in LLMs. BiLD filters out inherent ”noise” in logits while leveraging logits
ranking information to enhance performance. Our method can serve as an
alternative to the vanilla KL loss in existing LLM distillation methods.

• To demonstrate the effectiveness of BiLD loss, we conduct comprehensive
experiments on 13 NLP datasets using two open-source LLMs, BLOOM [12]
and Qwen1.5 [13]. We evaluate various logits distillation methods from both
Computer Vision (CV) and NLP domains. Experimental results show that our
BiLD loss outperforms SFT, vanilla KL loss and five other methods using only
the top-8 logits. Furthermore, our comparison of teacher and student logits shows
that BiLD loss promotes better imitation of teacher behavior at the logit level.

1.1 Problem

Existing logits distillation methods are not specifically tailored to the unique
characteristics of LLMs’ logits. Consequently, the research problem of this thesis is to
develop a novel distillation method that better aligns with the characteristics of LLMs’
logits, thereby improving distillation performance.
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The research questions of the thesis can be formulated as follows:

• What are the characteristics of LLMs’ logits? How can these characteristics be
leveraged to design effective distillation loss?

• Can we improve logits distillation performance by designing methods that better
align with the characteristics of LLMs’ logits?

1.2 Purpose

The purpose of this project is to explore logit-based knowledge distillation methods
suitable for LLMs. While logits distillation methods for vision models are well-
established, the unique characteristics of text data, such as output space size and internal
logits distribution, prevent the methods from the CV field directly applicable to LLMs.
Therefore, this thesis aims to design distillation methods specifically tailored to the
characteristics of LLMs’ logits, thereby advancing related research.

1.3 Goals

The goal of this project is to design a logit-based knowledge distillation method for LLMs.
This has been divided into the following three sub-goals:

1. Show the characteristics of LLMs’ logits through simple experiments.

2. Design a logit distillation method tailored to the characteristics of LLMs’ logits.

3. Conduct comprehensive experiments on various datasets to validate the method’s
effectiveness and analyze the results.

The expected outcome of this thesis is a distillation algorithm that can be used
directly for LLMs.

1.4 Research Methodology

This research is grounded in a pragmatist perspective, emphasizing practical outcomes
and empirical evidence. We first qualitatively explored the characteristics of LLM
logits, discovering that they exhibit a highly extreme long-tail distribution. Furthermore,
existing distillation methods fail to effectively utilize the internal ranking information
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of LLMs. To address these issues, we designed the BiLD loss for LLM distillation. To
thoroughly demonstrate the effectiveness of our approach, we considered various baseline
methods from both the CV and NLP domains. In our result analysis, we primarily
employed quantitative methods, calculating accuracy, EM score, F1 score, and more for
the distillation experiments with different methods. Additionally, we proposed a novel
metric, called overlap@k, to evaluate the performance of different methods at the logit
level.

1.5 Delimitations

Apart from knowledge distillation, approaches like quantization and pruning are also
utilized for compressing LLMs. However, this thesis focuses solely on investigating
knowledge distillation methods for LLM compression. This decision stems from OPPO’s
concurrent exploration of diverse research directions. Following discussions with OPPO
supervisor, I am tasked with delving into the avenue of knowledge distillation for model
compression.

Simultaneously, this project conducts experiments exclusively on two LLMs,
BLOOM and Qwen, encompassing both teacher training and student distillation. This
choice arises from the significant computational overhead associated with training
teachers on different models. Moreover, due to the substantial size of LLMs, effective
methods are often unbiased towards specific model types.

1.6 Structure of the thesis

Chapter 2 presents relevant background information about LLMs and KD, as well as
some related works about logits distillation and other distillation methods for LLMs.
Chapter 3 introduces the formulation of traditional logits distillation, the characteristics of
LLMs’ logits, as well as our proposed BiLD loss. In Chapter 4, we introduce the datasets,
baselines and our implementation details, following our main results and analysis for the
results, as well as two analyses about the impact of temperature and k value in BiLD loss.
Finally, Chapter 5 presents our conclusion, limitations and reflections.
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Chapter 2

Background

This chapter aims to provide a comprehensive overview of the research area of this thesis
and some related works. This chapter is divided into four parts: section 2.1 introduces the
development and current process in the field of LLMs. section 2.2 introduces knowledge
distillation, a model compression technique used in this thesis. Section 2.3 presents
some works related to our thesis, mainly focusing on two aspects: logits distillation and
distillation methods for LLMs.

2.1 Large Language Models

LLMs have become a cornerstone in the field of NLP, powering a wide range of
applications from machine translation to conversational agents. These models are
characterized by their massive scale, typically consisting of billions of parameters. The
success of LLMs is attributed to their ability to capture complex patterns in vast amounts
of text data, enabling them to generate human-like text and understand nuanced linguistic
contexts.

The development of LLMs began with the introduction of the Transformer
architecture [14], which revolutionized the field by providing a more efficient way to
handle long-range dependencies in text compared to previous recurrent neural networks
(RNNs) and convolutional neural networks (CNNs). The self-attention mechanism in
Transformers allows for the parallelization of computations, making it feasible to train
on large datasets and scale up the model size significantly.

One of the key milestones in the evolution of LLMs is the release of BERT
(Bidirectional Encoder Representations from Transformers) [15]. The structure of BERT
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Figure 2.1: The structre of BERT model.

is shown in Figure 2.1. It introduces a novel pre-training approach based on masked
language modeling and next sentence prediction, setting new benchmarks in various
NLP tasks. Following BERT, models like GPT-2 [16] and GPT-3 [17] by OpenAI
demonstrated the potential of autoregressive language models trained on vast and diverse
datasets to generate coherent and contextually relevant text.

In recent years, the development of LLMs has advanced to even larger scales and
higher performance levels. Models such as GPT-4 [18] and Gemini [19] have pushed the
boundaries of model size and capability, boasting hundreds of billions of parameters and
achieving remarkable results across numerous benchmarks and real-world applications.
Concurrently, there has been a growing movement towards creating open-source, smaller-
scale LLMs that are suitable for private deployment. Models like BLOOM [12] and
Qwen[13], offer powerful language understanding and generation capabilities while
being more accessible and easier to deploy in resource-constrained environments. This
dual trajectory of scaling up for performance and scaling down for accessibility reflects
the diverse needs of the NLP community and the broader technology landscape.

Despite the impressive capabilities, LLMs come with challenges such as high
computational costs, substantial memory requirements, and the need for large-scale
annotated data for fine-tuning. Moreover, deploying these models in resource-constrained
environments remains a significant hurdle. To mitigate these issues, the thesis has
focused on model compression techniques, specifically distillation methods.
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2.2 Knowledge Distillation

KD is a technique used to transfer knowledge from a larger, more complex model (the
teacher) to a smaller, more efficient model (the student). This method is pivotal in
the field of machine learning, especially for deploying models in resource-constrained
environments where computational power and memory are limited.

The concept of knowledge distillation was first introduced in [20] and later
formalized by [1]. The main idea is to train the student model to mimic the output of the
teacher model. Instead of training the student model directly on the ground truth labels,
it is trained to reproduce the teacher model’s output probabilities (logits). These logits
often contain richer information than the hard labels because they encode the relative
probabilities of all classes, providing a more informative signal for training.

The distillation process involves two primary steps. 1) Train the Teacher Model.
The teacher model, usually a deep and complex neural network, is trained on a large
dataset to achieve high accuracy. 2) Train the Student Model. The student model, which
is typically smaller and less complex, is trained to match the softened output (logits)
of the teacher model. The soft targets are generated using a higher temperature in the
softmax function, which smooths the output distribution of the teacher, providing more
information about which classes the teacher found to be similar. The loss function used
in KD is a combination of the traditional cross-entropy loss with the ground truth labels
and the Kullback-Leibler divergence loss with the teacher’s softened output. This
dual objective helps the student model learn both the exact labels and the generalization
characteristics of the teacher model.

In the context of LLMs, knowledge distillation is particularly valuable. LLMs are
extremely resource-intensive, making them impractical for many real-world applications.
By using KD, smaller versions of these models can be created, which retain much of the
performance of the original models but require significantly fewer resources.

2.3 Related Works

2.3.1 Logits Distillation

One representative approach of knowledge distillation is logits distillation, which
transfers knowledge by minimizing the divergence of output logits [21]. For vision
models, there has been substantial research on logits distillation. Approaches like DKD
[2] and NKD [22] decouple the target and non-target components of logits, applying
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weighting or regularization. NormKD [4] dynamically customizes temperatures during
the distillation process. However, the differences in structure, data, and output space
between vision models and LLMs make it challenging to directly apply these methods to
LLMs.

Recent research has introduced several logit distillation methods suited for LLMs.
Reverse KL (RKL) [6, 8] has been used to mitigate the ”mode-averaging” problem;
however, it can sometimes lead the student model towards ”mode-seeking” behavior.
DistiLLM [23] proposes mixing the logits distributions of the teacher and the student,
but this introduces additional hyperparameters, increasing its complexity in practical
applications. SinKD [9] replaces KL divergence with Sinkhorn Distance, but its
computational demands can pose challenges when applied to larger models.

Our work continues the paradigm of reducing the divergence of logits. However,
unlike previous approaches, we calculate the divergence using logits differences instead
of the logits themselves. Our method focuses the model on the ”key knowledge” in
the teacher logits without introducing excessive hyperparameters that require extensive
tuning.

2.3.2 Other Distillation Methods for LLMs

Previous works on distillation for LLMs extend beyond logits-based methods, primarily
falling into two categories: white-box and black-box approaches [24]. White-box
distillation [8, 25, 26] leverages the teacher’s internal representations and hidden states to
facilitate knowledge transfer. However, these methods often rely on structural similarities
between the teacher and student models. In contrast, black-box distillation only permits
the student to access the teacher’s outputs. Current research in black-box distillation
mainly focuses on learning from the teacher’s output texts [27, 28, 29]. While BiLD
can be classified as black-box distillation, it serves as an alternative to the vanilla KL
divergence loss and can be easily integrated with white-box distillation methods.
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Chapter 3

Methods

In this chapter we explain the methods used in thesis. We introduce the theory about
KL divergence, teacher and student models’ role in KD, as well as logits distillation
(section 3.1, 3.2, 3.3). Then we analyse the characteristics of LLMs’ logits through a toy
experiment in section 3.4. Base on these two sections, we formally propose the BiLD
loss in section 3.5.

3.1 Brief Review of KL Divergence

KL divergence, or relative entropy, is a metric used to compare two data distributions.
It is a concept of information theory that contrasts the information contained in two
probability distributions. The form of KL divergence can be represented as:

DKL(P ∥ Q) =
∑
i

P (i) log
P (i)

Q(i)
. (3.1)

In this formula, P and Q are the probability distributions, and i represents each
possible outcome. This expression calculates the KL divergence from distribution Q to
distribution P .

Knowledge distillation in the context of large language models (LLMs) typically
uses KL divergence as the loss, as it involves training a smaller ”student” model to
imitate the behavior of a larger ”teacher” model. Instead of using the hard labels from the
original dataset, the student model learns from the soft targets provided by the teacher
model, which are probability distributions over the possible vocabularies. KL divergence
is well-suited for comparing these probability distributions because it measures how one
probability distribution diverges from a second, expected probability distribution. This
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helps the student model learn to produce a similar distribution to the teacher model.

3.2 Brief Review of the Teacher Model and Student
Model in Knowledge Distillation

In the distillation of LLMs, the teacher model is a large, pre-trained LLM that serves as a
source of knowledge. The text generated by the teacher can be represented as a sequence
of tokens, and each token can be represented as a logit. The length of a logit corresponds
to the size of the LLM’s vocabulary. Each position in the logit represents the model’s
predicted score for each word in the vocabulary, indicating the likelihood that the current
token is that specific word.

To elaborate, when a sentence is input into the teacher model, it generates a logit
vector for each token in the sequence. This logit vector contains the model’s prediction
scores for all possible words in its vocabulary. By applying a softmax transformation
to these scores, we obtain a probability distribution over the vocabulary, showing which
word is most likely to be the current token.

For instance, consider a vocabulary consisting of [”wolf”, ”cat”, ”sheep”]. If
the teacher model processes the phrase ”the dangerous grey” and is going to generate
the next token. Assume it generates a logit vector [1.2, 0.9,−0.3] for the next token,
applying the softmax function to this vector might yield a probability distribution of
[0.5092, 0.3772, 0.1136]. This distribution indicates that the model predicts a 50.92%
probability for ”wolf”, 37.72% for ”cat”, and 11.36% for ”sheep”.

In the distillation process, we aim for the student model to learn these crucial
probability distributions rather than replicating the teacher’s output tokens exactly.
Through different distillation loss, we focus the student on the the logits from the teacher.
This approach effectively utilizes the internal knowledge in logits, promoting student
model’s imitation of the teacher.

3.3 Brief Review of Logits Distillation

Logits distillation calculates the divergence between the teacher’s and student’s output
logits as the optimization target. Consider a teacher model t and a student model s, both
with a vocabulary size N . During the process of single token prediction, the teacher
logits zt and student logits zs at a certain position can be represented as:
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zt =
[
zt1, z

t
2, · · · , ztN

]
∈ R1×N ,

zs = [zs1, z
s
2, · · · , zsN ] ∈ R1×N .

(3.2)

Logits are the raw outputs of language models and cannot be directly used to
calculate the loss. We process the logits into probabilities pt and ps, where the element
pi from pt or ps represents the probability of the token at the i-th position being sampled
as the output:

pt =
exp(zt/T )∑i=1
N exp(zti/T )

∈ R1×N ,

ps =
exp(zs/T )∑i=1
N exp(zsi /T )

∈ R1×N ,

(3.3)

where T is the temperature during normalization. The vanilla KL divergence loss is
defined as:

LKL = DKL
[
pt ∥ ps

]
. (3.4)

By aligning the student’s logits distribution with that of the teacher using vanilla
KL loss, the student can imitate the teacher’s performance at the logit level, thereby
facilitating knowledge transfer.

3.4 The Characteristics of LLMs’ Logits

Compared to vision models, LLMs have an output space consisting of infinitely long
sequences of tokens, making their logits more complex. We conduct a toy experiment
to compare the logit characteristics of vision models and LLMs. We choose ResNet-101
[30] and Qwen-4B [13] for the toy case. We randomly select five images and five sets
of instructions from our test data as inputs for the vision and language models (details
about images and instructions are provided in Appendix C). We use kurtosis to measure
the extremity of logits’ long-tail distribution and calculate the proportion of top-k logit
values. We report the experimental results in Table 3.1. The kurtosis of text logits is 2-3
orders of magnitude higher than that of image logits, suggesting that text logits are much
”sharper” than image logits. Given that text logits are much longer than image logits, the
proportion of top-k logit values also indicates that text logit values are more concentrated
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than those of image logits.

Input Image / Text Model Kurtosis
Top-k logits percentage (%)

k=8 k=64 k=512 k=1024
cat.jpg

ResNet-101

975 99.540% 99.642% 99.993% \
dogs.jpg 782 93.977% 98.433% 99.882% \

lioness.jpg 995 99.904% 99.973% 99.999% \
mushroom.jpg 914 99.756% 99.968% 99.998% \

hat.jpg 906 83.982% 93.643% 99.646% \
Instruction 1

Qwen-4B

135404 99.991% 99.996% 99.997% 99.998%
Instruction 2 46163 99.998% 99.998% 99.998% 99.998%
Instruction 3 79604 99.982% 99.990% 99.993% 99.994%
Instruction 4 50719 99.528% 99.604% 99.634% 99.651%
Instruction 5 116329 94.778% 94.826% 94.977% 95.081%

Table 3.1: The kurtosis and top-k proportion of image logits and text logits.

Moreover, previous logits distillation methods have not fully utilized the internal
rank information of logits [31, 5], even though this ranking information significantly
affects LLMs’ generation performance. When LLMs generate text, two sampling
strategies, top-k sampling and top-p sampling, are commonly used to control the diversity
of the generated content. Top-k sampling controls the maximum length of the candidate
tokens list, while top-p sampling filters tokens according to cumulative probability.
The ranking of logit values impacts the selection process in both strategies, as higher-
ranked tokens are more likely to be selected as candidates. Therefore, maintaining rank
consistency will better assist the student in imitating the teacher’s generating patterns.

3.5 Bi-directional Logits Difference Loss

3.5.1 Overview

The Bi-directional Logits Difference (BiLD) loss is a novel optimization target for task-
specific LLM distillation. It filters out the ”noise” in the long-tail distribution of LLMs’
logits and constructs bi-directional differences that reflect the internal ranking of logits.
Our goal is not for the student logits to fully match the teacher’s but for the student to
effectively learn the key knowledge represented in the non-long-tail part. The detailed
process of BiLD is shown in Figure 3.1.
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Figure 3.1: An illustration of vanilla KL, top-k KL and our BiLD loss. The vanilla KL
loss directly calculates the KL divergence between teacher and student logits, whereas the
top-k KL loss uses clipped logits instead of the full logits. In contrast to these methods,
our BiLD loss computes KL divergence based on reconstructed ”logits differences.” The
logits difference is derived by calculating the pairwise differences between logit values.
We construct two groups of logits differences and compute the KL divergence within each
group as a loss: the top-k teacher logits and their corresponding student logits are used to
calculate the teacher-led logits difference (t-LD) loss, while the top-k student logits and
their corresponding teacher logits are used to calculate the student-led logits difference
((s-LD)) loss. The BiLD loss is the sum of these two losses.

3.5.2 Formal Definition

The BiLD loss consists of two components: the teacher-led logits difference (t-LD) loss
and the student-led logits difference (s-LD) loss. Given the similarity between the two
components, we explain the process using the calculation of the t-LD loss. First, we
select the top-k teacher logits and sort them in descending order to build the teacher-led
logits ztled:

ztled =
[
zti1 , z

t
i2
, · · · , ztik

]
∈ R1×k, (3.5)

where the elements of ztled satisfy zti1 ≥ zti2 ≥ · · · ≥ ztik . Then, we create the
corresponding student logits zscor by selecting the student logit values at the corresponding
positions [i1, i2, · · · , ik]:

zscor =
[
zsi1 , z

s
i2
, · · · , zsik

]
∈ R1×k. (3.6)

Next, we build the logits differences dt
led and ds

cor by calculating the internal pairwise
value differences of ztled and zscor respectively:
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dt
led =

[
ztim − ztin | 1 ≤ m < n ≤ k

]
,

ds
cor =

[
zsim − zsin | 1 ≤ m < n ≤ k

]
,

(3.7)

where both dt
led and ds

cor ∈ R1× k(k−1)
2 . Then we normalize dt

led and ds
cor into probabilities:

pt
led =

exp(ztled/T )∑i=1
k(k−1)

2
exp(ztled,i/T )

,

ps
cor =

exp(zscor/T )∑i=1
k(k−1)

2
exp(zscor,i/T )

.

(3.8)

To obtain the teacher-led logits difference loss Lt−LD, we calculate the KL
divergence between pt

led and ps
cor:

Lt−LD = DKL
[
pt

led ∥ ps
cor
]
. (3.9)

The calculation of the s-LD loss is similar to that of the t-LD loss. The key difference
is that the s-LD loss selects the top-k student logits zsled and extracts the corresponding
teacher logits ztcor. Based on these, we can sequentially calculate the logits differences
ds

led and dt
cor as well as the probabilities ps

led and pt
cor. The s-LD loss can be represented

as:

Ls−LD = DKL
[
pt

cor ∥ ps
led
]
. (3.10)

Finally, we obtain the BiLD loss:

LBiLD = Lt−LD + Ls−LD. (3.11)

To aid comprehension, we outline the calculation process of the BiLD loss in
Algorithm 1.

3.5.3 The Application of BiLD loss: An Example

For simplicity, we explain the BiLD loss process with k = 3 and T = 1. In a knowledge
distillation scenario, we assume there is a knowledgeable teacher model and a smaller
student model that aims to learn from the teacher. We input a text sequence, ”a dangerous
grey.” At this time, the teacher and student will give their predictions of next token.
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Algorithm 1 Calculation of BiLD Loss
Input: teacher logits zt, student logits zs, temperature T , hyperparameter k that controls

the number of clipped logits
Output: the BiLD loss LBiLD

1: select top-k teacher logits ztled (Equation 3.5)
2: select corresponding student logits zscor (Equation 3.6)
3: build the teacher and student logits differences dt

led and ds
cor (Equation 3.7)

4: normalize differences to probabilities pt
led and ps

cor (Equation 3.8)
5: calculate the teacher-led logits difference loss Lt−LD (Equation 3.9)
6: calculate Ls−LD (Equation 3.10), generally following steps 1-5
7: sum Lt−LD and Ls−LD to obtain LBiLD (Equation 3.11)

Step 1 Select the top-k teacher logits and sort them in descending order. We need the
teacher model to predict the next token in the form of logits. Typically, the length of the
logits corresponds to the entire vocabulary. We select the top-3 logit values and arrange
them in descending order. Suppose the top-3 predicted tokens by the teacher are [”wolf”,
”cat”, ”sheep”], with corresponding logit values of ztled = [1.2, 0.9,−0.3].
Step 2 Select the corresponding student logits. We select the student logits corresponding
to the words [”wolf”, ”cat”, ”sheep”], with values of zscor = [−0.5, 0.6, 0.4].
Step 3 Construct the logits differences for teacher top-k logits ztled and corresponding
student logits zscor. The teacher top-k logits difference is:

dt
led = [1.2− 0.9, 1.2− (−0.3), 0.9− (−0.3)] = [0.3, 1.5, 1.2] .

The student corresponding logits difference is:

ds
cor = [−0.5− 0.6,−0.5− 0.4, 0.6− 0.4] = [−1.1,−0.9, 0.2] .

Step 4 Apply softmax to dt
led and ds

cor to get pt
led = [0.1475, 0.4897, 0.3628] and ps

cor =

[0.1698, 0.2073, 0.6229].
Step 5 Calculate the KL divergence between pt

led and ps
cor, which represents the teacher-

led logits difference loss. Lt−LD = DKL [pt
led ∥ ps

cor] = 0.0089

Step 6 Select the top-k student logits and sort them in descending order. This time we use
the student’s prediction of the next token in the logits form. Assume the top-3 predicted
tokens by the student are [”rock”, ”cat”, ”toy”], with corresponding logit values of zsled =

[0.8, 0.6,−0.2].
Step 7 Select the teacher logits corresponding to the words [”rock”, ”cat”, ”toy”], with
values of ztcor = [−0.4, 0.9,−0.6].
Step 8 Construct the logits differences for student top-k logits zsled and corresponding
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teacher logits ztcor. The student top-k logits difference is:

ds
led = [0.8− 0.6, 0.8− (−0.2), 0.6− (−0.2)] = [0.2, 1.0, 0.8] .

The teacher corresponding logits difference is:

dt
cor = [−0.4− 0.9,−0.4− (−0.6), 0.9− (−0.6)] = [−1.3, 0.2, 1.5] .

Step 9 Apply softmax. We can get ps
led = [0.1981, 0.4409, 0.3610] and pt

cor =

[0.0456, 0.2044, 0.7500].
Step 10 Calculate the KL divergence between pt

cor and ps
led, which represents the student-

led logits difference loss. Ls−LD = DKL [pt
cor ∥ ps

led] = 0.0142

Step 11 The BiLD loss LBiLD = Lt−LD + Ls−LD = 0.0231

3.5.4 Explanation about the Utilization of Logits Ranking

The calculation of the logits difference (Equation 3.7) ensures that the student model
learns the ranking information embedded in the teacher logits. We demonstrate this by
taking the calculation of the t-LD loss as an example. Since ztled satisfies zti1 ≥ zti2 ≥
· · · ≥ ztik , it is guaranteed that every element in the teacher-led logits difference dt

led is
non-negative. For the corresponding student logits difference ds

cor, consider an element
ds = zsim − zsin . If zsim < zsin , then ds < 0. In this case, the order zsim < zsin is
inconsistent with the order in the teacher logits ztim > ztin . Therefore, the sign of the
elements in the corresponding logits difference ds

cor reflects whether the ranking of the
teacher and student logits value pairs is consistent. When calculating Ls−LD, this acts
as a constraint, promoting the student logits to align their ranking order with the teacher
logits.
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Chapter 4

Experiments, Results and Anal-
ysis

In this chapter, we introduce our main experimental process, including an analysis of
the datasets used and their characteristics (Section 4.1), the selection of baselines for
comparison with BiLD loss (Section 4.2), and implementation details (Section 4.3). We
provide a detailed description of the main results and their analysis in Section 4.4. A
more detailed analysis of the experimental results can be found in Sections 4.5 and 4.6.
In Section 4.7 and 4.8, we conduct ablation experiments on the impact of temperature
and the k value in BiLD loss.

4.1 Datasets

We evaluate our BiLD loss on 13 NLP datasets: (1) 8 datasets from the SuperGLUE
benchmark [32], including BoolQ [33], CB [34], COPA [35], MultiRC [36], ReCoRD
[37], RTE [38], WiC [39] and WSC [40]; (2) 5 extra datasets used in previous works
about model compression [41, 42], including: Arc-C, Arc-E [43], HellaSwag [44], PIQA
[45] and WinoGrande [46]. We observe that these datasets vary significantly in size (the
visualization of dataset sizes is presented in Appendix A). Using small datasets alone for
SFT and distillation would result in severe overfitting. To prevent unreliable experimental
results, we use these datasets collectively for SFT and distillation and evaluate each
separately.
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4.2 Baselines

We compare BiLD loss with seven baselines: (1) supervised fine-tuning (SFT), where all
parameters are adjusted during adaptation to downstream tasks; (2) vanilla KL loss; (3)
vanilla KL loss with only top-k logits (short as top-k KL), to demonstrate the performance
improvements from noise filtering; (4) three logits distillation methods for vision models,
including DKD [2], NKD [22], and NormKD [4]; (5) Reverse KL loss (RKL) used in
MiniLLM [8], which has been proven to enhance distillation performance on LLMs.

4.3 Implementation Details

We conduct experiments using the BLOOM and Qwen1.5 (abbreviated as Qwen) models,
chosen for their availability in various sizes. Specifically, We employ BLOOM-7B and
Qwen-4B as teacher models. For student models, we select BLOOM-3B and BLOOM-
1B from the BLOOM series, and 1.8B and 0.5B versions from Qwen.

We perform three epochs of SFT on each teacher model and eight epochs of
distillation for each student. Both SFT and distillation processes are conducted with a
batch size of 64 and a micro batch size of 2, using the full dataset. We employ a cosine
scheduler with an initial learning rate of 1e− 5 for SFT and 2e− 5 for distillation. The
warm-up steps are set to 64. During SFT, we utilize the cross entropy loss.

For the different distillation methods we tested, all parameters, except for
temperature, are set to their default values. Due to the computational complexity of
some distillation methods, we use the vanilla KL loss for the instruction part to expedite
the distillation process, and apply different distillation losses to the output part. The
temperature T for all loss functions is set to 3. For the top-k KL loss, we set k=1024,
and for our proposed BiLD loss, we set k=8.

All our experiments are carried out on 8 NVIDIA A100 GPUs. To reduce memory
usage, we employ DeepSpeed during both SFT and distillation processes, along with
gradient checkpointing and BFLOAT16 mode [47]. We have not explored the minimum
memory requirements. However, in practice, except for the DKD [2], NKD [22],
and NormKD [4], experiments involving other methods can be conducted with half of
the computational resources. During the evaluation, we employ vLLM [48] for faster
inference. The evaluation can be performed with a single NVIDIA A100 GPU. More
implementation details can be found in our open-source repository.
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4.4 Main Results

Model Method
Arc-C Arc-E boolQ CB COPA HellaSwag MultiRC PIQA ReCoRD RTE WiC WinoGrande WSC

Avg.
(Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (F1a/EM) (Acc.) (F1/Acc.) (Acc.) (Acc.) (Acc.) (Acc.)

BLOOM-7B Teacher 50.84 68.95 85.26 89.29 81.00 76.08 81.36/40.82 74.92 79.87/78.50 83.03 72.41 71.51 65.38 72.15

BLOOM-3B

SFT 44.15 61.75 84.04 87.50 67.00 57.00 77.09/36.20 70.84 76.05/74.59 78.34 69.75 69.69 64.42 66.56

Vanilla KL 49.50 68.07 84.50 87.50 76.00 72.60 78.89/36.52 74.27 79.81/78.32 81.59 71.94 70.96 74.04 71.21

RKL 50.50 68.42 84.62 87.50 80.00 72.20 78.95/36.41 74.48 79.63/78.13 82.31 72.57 71.35 68.27 71.29

DKD 49.50 69.82 85.26 91.07 80.00 71.54 77.84/35.68 73.01 79.09/77.65 79.42 73.20 70.96 66.35 71.04

NKD 50.17 67.19 84.01 92.86 79.00 72.68 79.69/37.67 73.50 78.50/77.09 81.23 71.32 72.06 66.35 71.16

NormKD 48.16 67.54 85.35 89.29 79.00 70.57 77.19/35.57 71.82 78.44/76.98 80.87 72.88 70.48 68.27 70.52

Top-k KL 47.49 68.25 84.19 87.50 77.00 72.75 79.39/37.67 74.59 79.40/78.01 82.67 72.10 70.80 64.42 70.57

BiLD (ours) 49.83 67.54 84.86 91.07 80.00 72.10 79.49/37.78 73.61 79.96/78.57 82.67 72.88 71.98 71.15 71.85

BLOOM-1B

SFT 34.78 53.86 80.76 87.50 64.00 37.39 73.18/30.12 65.72 72.04/70.59 73.65 67.71 67.40 64.42 61.38

Vanilla KL 45.48 64.39 83.67 87.50 73.00 65.31 77.66/33.37 70.95 77.11/75.67 77.62 68.03 68.43 68.27 67.82

RKL 45.48 65.44 83.43 85.71 74.00 65.70 76.63/32.95 70.78 77.51/76.10 79.42 70.69 68.27 64.42 67.88

DKD 42.47 64.56 84.10 85.71 72.00 63.72 75.49/31.79 69.48 75.78/74.46 79.78 71.79 68.98 69.23 67.55

NKD 43.14 60.88 82.75 89.29 68.00 63.53 76.94/34.84 70.73 75.31/73.87 77.62 69.44 69.30 61.54 66.53

NormKD 42.81 61.05 83.82 83.93 69.00 62.80 74.13/30.75 67.74 74.49/72.95 77.62 69.91 67.80 65.38 65.81

Top-k KL 49.50 62.11 83.06 89.29 74.00 65.72 78.30/34.73 71.22 77.28/75.89 77.98 70.22 69.30 60.58 67.97

BiLD (ours) 44.48 62.98 83.39 91.07 77.00 64.84 78.37/35.78 72.20 77.23/75.93 80.14 70.53 69.30 68.27 68.92

Qwen-4B Teacher 68.23 81.40 87.43 96.43 89.00 86.30 85.85/51.63 82.10 82.59/81.10 87.73 72.73 80.82 74.04 79.92

Qwen-1.8B

SFT 52.17 73.86 83.88 91.07 86.00 72.58 79.95/39.66 75.90 77.37/76.05 84.12 71.79 72.06 61.54 72.36

Vanilla KL 55.52 74.74 85.60 96.43 86.00 77.74 79.46/36.52 76.66 79.24/36.52 85.56 69.59 75.14 64.42 73.98

RKL 50.84 76.14 85.14 94.64 87.00 77.85 79.52/39.14 76.39 79.49/77.98 84.48 71.47 76.64 69.23 74.38

DKD 51.84 77.02 85.75 98.21 85.00 76.90 80.56/39.77 74.54 77.91/76.18 84.48 71.16 76.56 67.31 74.21

NKD 51.84 73.33 84.53 92.86 88.00 77.49 81.98/42.18 76.61 79.03/77.58 84.12 70.85 74.98 66.35 73.90

NormKD 52.84 76.49 85.26 96.43 85.00 77.24 80.81/40.50 74.76 78.22/76.48 85.92 70.53 76.87 70.19 74.50

Top-k KL 53.85 76.14 85.93 96.43 82.00 77.99 81.81/41.03 76.71 80.08/78.71 83.39 71.32 75.85 67.31 74.36

BiLD (ours) 54.85 73.16 84.53 96.43 88.00 77.56 81.49/42.92 77.97 79.87/78.56 85.56 72.10 76.01 68.27 75.07

Qwen-0.5B

SFT 37.46 62.11 80.40 87.50 77.00 46.71 74.24/28.54 68.44 71.19/69.79 77.26 66.30 69.38 59.62 63.88

Vanilla KL 43.14 63.68 81.74 85.71 78.00 66.73 75.97/29.07 71.87 72.55/70.91 79.78 70.53 71.35 60.58 67.16

RKL 46.49 64.39 81.53 87.50 79.00 67.06 75.37/29.38 71.16 71.46/69.55 82.31 69.91 70.80 58.65 67.52

DKD 40.80 62.98 82.66 82.14 77.00 61.03 72.35/26.55 66.87 65.68/63.20 81.59 70.06 70.64 61.54 65.16

NKD 41.14 63.86 82.42 94.64 78.00 68.30 79.33/36.20 73.01 74.81/73.35 82.31 67.40 72.22 71.15 69.54

NormKD 41.14 61.40 82.72 83.93 77.00 62.31 74.13/29.07 68.55 67.17/64.79 82.31 71.16 71.43 62.50 66.02

Top-k KL 43.14 65.79 82.39 94.64 77.00 68.58 78.83/35.89 71.82 74.30/72.95 82.31 69.28 73.24 62.50 69.19

BiLD (ours) 41.81 67.54 83.43 96.43 78.00 68.99 79.72/37.78 73.34 75.22/73.94 81.59 69.75 72.22 74.04 70.68

Table 4.1: The overall performance of various distillation methods and SFT baselines,
with best results shown in bold. When choosing the best results and calculating the
Average Accuracy (Avg.), we use EM score for the MultiRC dataset and Accuracy for the
ReCoRD dataset. The instruction templates for each dataset are listed in Appendix D.

We report the experimental results on all 13 datasets in Table 4.1. Across all four
sets of distillation, the BiLD loss achieves the highest average accuracy, outperforming
SFT, vanilla KL, and the other five methods we tested. In the distillation from Qwen-4B
to 0.5B, the BiLD loss showed a significant improvement in average accuracy, surpassing
the vanilla KL loss by 3.52%. This improvement is also observed in the distillation
from Qwen-4B to 1.8B and from BLOOM-7B to 1B, with improvements of 1.09% and
1.10% over the vanilla KL loss, respectively. A notable case is the distillation from
BLOOM-7B to 1B, where the student using vanilla KL loss can easily match the teacher’s
performance. In this scenario, our BiLD loss still maintained a consistent advantage,
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showing an average increase of 0.64% over the vanilla KL loss. In contrast, other methods
achieve only marginal performance improvements or even experience declines. The
robust performance of the BiLD loss across various distillation scenarios underscores
its superiority and effectiveness.

4.5 Analysis of the Effectiveness of Clipping Logits

The experimental results in Table 4.1 indicate that in three sets of distillation, simply
clipping the full logits to the top-k logits improves the performance of the KL loss. This
suggests that filtering out the noise in the logits’ long tail distribution can be a practical
and straightforward approach to enhancing distillation performance. Our statistics show
that the top-1024 logits cover over 99% of the probability in both Qwen-4B and BLOOM-
7B teachers. For computational simplicity, we set k=1024 for the top-k KL loss to verify
that excluding the long-tail distribution of logits can improve distillation results.

4.6 Analysis of Performance at the Logit Level

To demonstrate the performance of different distillation methods at the logit level,
we introduce a new metric, top-k overlap (overlap@k). Consider an instruction I

represented as a sequence of tokens. We denote the output tokens generated by the
teacher with I as At, and the concatenated sequence of tokens as Ct = I ⊕ At. The
logits sequence for the teacher’s output part can be represented as Zt = [zt1, zt2, · · · , ztM ],
where M is the length of At. The element zti within Zt is the logits at the i-th position
of the teacher’s output part. By feeding the whole Ct into the student, we denote the
student logits sequence corresponding to the positions of At as Zs = [zs1, zs2, · · · , zsM ].
Consequently, we define the top-k overlap as:

overlap@k =
1

M

M∑
i=1

topk(zti) ∩ topk(zsi )
k

, (4.1)

where topk(·) is a function to select tokens corresponding to the top-k logit values.
The metric overlap@k measures the average degree of overlap for the top-k logits
corresponding tokens at the same positions in Zt and Zs. Specifically, overlap@1

evaluates if the token corresponding to the highest logit values of both the teacher’s
and the student’s outputs match at each position. Overlap@1 can measure the efficacy
of LLMs in greedy search mode, where LLMs generate text based on the token with
the highest probability. For k > 1, overlap@k calculates the ratio of overlapping
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Figure 4.1: Impact of model temperature.

tokens corresponding to the top-k logits from both student and teacher at each position,
reflecting how well the student imitates the important parts of teacher logits. From
another perspective, overlap@1 measures the performance of models in scenarios where
there is only one correct answer, while overlap@k(k > 1) reflects the degree of similarity
between the student and teacher responses in open-ended scenarios.

According to the results in Table 4.2, our proposed BiLD loss notably enhances
overlap@8 while maintaining a competitive overlap@1. Compared to other methods,
students trained with BiLD loss better imitate the teacher’s primary behaviors at the
logit level, indicating that BiLD loss helps student logits align with the important part
of teacher logits.

4.7 Impact of Temperature

To understand the impact of temperature during the distillation of BiLD loss, we vary the
temperature parameter T ∈ {0.1, 0.5, 1, 3, 5, 8, 10}while keeping other hyperparameters
and model architectures constant. The experimental results, as depicted in Figure 4.1,
indicate that lower temperatures significantly degrade the performance of BiLD loss. We
choose T=3, which yields the best performance, for our distillation experiments.
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Model Method Overlap@1 Overlap@8

BLOOM-3B

SFT 74.89 44.61
Vanilla KL 82.51 54.64

RKL 82.31 54.64
DKD 74.00 52.39
NKD 82.11 53.25

NormKD 48.80 36.95
Top-k KL 81.67 55.73

BiLD 81.72 56.57

BLOOM-1B

SFT 74.40 40.71
Vanilla KL 80.82 51.91

RKL 80.71 51.58
DKD 75.44 48.83
NKD 79.59 50.01

NormKD 73.56 42.70
Top-k KL 80.20 50.87

BiLD 81.21 52.86

Qwen-1.8B

SFT 93.30 53.28
Vanilla KL 94.35 68.02

RKL 94.31 67.93
DKD 94.09 67.01
NKD 94.02 65.01

NormKD 94.26 68.32
Top-k KL 94.43 67.55

BiLD 94.39 70.97

Qwen-0.5B

SFT 91.67 47.29
Vanilla KL 92.72 61.81

RKL 92.54 61.65
DKD 91.50 56.62
NKD 92.88 59.11

NormKD 91.76 58.16
Top-k KL 93.11 64.00

BiLD 93.23 68.58

Table 4.2: The top-1 and top-8 overlap of different distillation methods on 4 distillation
settings.

4.8 Impact of the k Value in BiLD Loss

The hyperparameter k controls the length of clipped logits in BiLD loss. We experiment
with k ∈ {1, 2, 4, 8, 12, 16, 32} and evaluate the distillation results using average
accuracy as well as top-1, top-8, and top-32 overlap, as defined in Equation 4.1. We
report the results in Figure 4.2 and Table 4.3. Smaller k values (k ∈ {1, 2}) lead to
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Figure 4.2: Impact of k values in BiLD loss.

overly short logits, resulting in poor performance. As k increases, both average accuracy
and overlap@1 rise and then stabilize, while significant improvements can be seen in
overlap@8 and overlap@32. However, higher k values lead to increased computational
costs. Considering the trade-off between computation time and performance, we select
k=8 for BiLD loss in our experiments.

top-k Overlap@1 Overlap@8 Overlap@32
k=1 91.93 49.57 38.91
k=2 91.97 49.60 38.93
k=4 93.21 63.64 47.05
k=8 93.23 68.58 52.98
k=12 93.16 69.46 56.00
k=16 93.17 69.56 57.75
k=32 93.12 69.29 60.77

Table 4.3: Top-1, top-8 and top-32 overlap.
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Chapter 5

Discussion and Conclusion

5.1 Conclusion

In this work, we propose the Bi-directional Logits Difference (BiLD) loss, a novel
optimization objective for distilling LLMs. The BiLD loss enhances distillation
performance by filtering out long-tail noise and leveraging internal ranking information
from LLMs’ logits. It achieves superior distillation performance using only the top-
8 logits compared to vanilla KL loss using full logits and other distillation methods.
Our extensive experiments across diverse datasets and model architectures confirm the
effectiveness of the BiLD loss, demonstrating its ability to more efficiently capture key
knowledge from the teacher model.

5.2 Limitations

Our approach falls within the realm of logits distillation, necessitating access to teacher
logits. However, powerful LLMs such as GPT-4 [18] and Gemini [19] currently provide
only output text or incomplete logits access, making our method unable to utilize these
highly capable LLMs as teachers. Additionally, our Bi-directional Logits Difference
(BiLD) loss requires shared vocabularies between the teacher and student models to
ensure vector space alignment.

Another challenge lies in the computational complexity of our BiLD loss,
particularly during the construction of logits differences using top-k logits. Although we
demonstrate that using only the top-8 logits achieves better results than the vanilla KL
loss, increasing the number of clipped logits leads to a rapid escalation in our method’s
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time overhead, which becomes a practical concern.
Furthermore, our approach directly clips the long-tail part of logits during

distillation. While this approach improves performance, it unavoidably results in the loss
of knowledge contained within the long-tail distribution. Investigating methods to better
utilize the knowledge hidden in the long-tail distribution represents a promising avenue
for future research.

5.3 Reflections

From a sustainability perspective, the method we propose falls within the domain of
knowledge distillation. It enables small student models to compete with larger teacher
models. Substituting distilled smaller models for larger ones during inference not only
significantly reduces computational power consumption and carbon emissions without
noticeable performance degradation but also holds obvious significance for sustainable
development.
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Appendix A

Details about Datasets

Figure A.1: A visualization of the dataset sizes. There are significant size differences
among the datasets, with the smallest datasets (CB, COPA, WSC) differing by three orders
of magnitude from the largest dataset (ReCoRD).
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Appendix B

Calculation Efficiency of BiLD

In Figure B.1, we visualize the distillation speed of various methods during the distillation
from Qwen-4B to 0.5B. Compared to the vanilla KL loss, our BiLD loss achieves
better distillation performance with an acceptable increase in training time. Among
all methods, DKD [2] and NKD [22], which are designed for vision models, have the
slowest computation speeds due to the calculation of numerous intermediate variables.
In contrast, the computation speeds of RKL, NormKD, and top-k KL are comparable to
the vanilla KL loss.

In the code implementation, the BiLD loss consists of two main steps: selecting the
top-k logit values and calculating the internal pairwise differences. Our analysis reveals
that the latter step is where the significant time expenditure occurs. The time complexity
for computing the internal pairwise differences is O(n2), and it frequently necessitates
extracting values from the tensor. This has become the time bottleneck for the BiLD loss.
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Figure B.1: The average calculation speed of different distillation methods.
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Appendix C

Toy Experiment to Compare
Vision Model and LLMs’ Log-
its

The five images we used in the toy experiments are shown in Figure C.1, and the five sets
of instructions are in Table C.1.

((a)) cat.jpg ((b)) dogs.jpg ((c)) lioness.jpg ((d)) mushroom.jpg

((e)) hat.jpg

Figure C.1: Five images used in the toy experiment.
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Instructions Content

Instruction
1

Question: A mass of air is at an elevation of 1000 meters in the low
pressure center of a Northern Hemisphere storm. Which of the following best
describes the motion of air particles in this air mass due to storm conditions
and the rotation of Earth as the air mass moves outward?
Choices: [’Air particles move up and to the left.’, ’Air particles move up and
to the right.’, ’Air particles move down and to the left.’, ’Air particles move
down and to the right.’]
Answer:

Instruction
2

Premise: A: No, I don’t either. B: Uh, I mean it’s, you know it, A: I don’t
think it’s going to change very much
Hypothesis: it’s going to change very much
Question: Determine whether the premise entails the hypothesis or not.
Choices: [’entailment’, ’neutral’, ’contradiction’]
Answer:

Instruction
3

Goal: Keep laptop from overheating.
Choose the most sensible solution to achieve the goal. Choices: [’Use on
top of egg carton.’, ’Use on top of egg shells.’]
Answer:

Instruction
4

Choose the most sensible text to replace the ”_” in the following sentence:
Kyle asked Brett for some tips on healthy eating because _ has recently lost
weight.
Choices: [’Kyle’, ’Brett’]
Answer:

Instruction
5

Meanwhile, in the forest, the elephants are calling and hunting high and low
for Arthur and Celeste , and their mothers are very worried. Fortunately,
in flying over the town, an old marabou bird has seen them and come back
quickly to tell the news.
Question: In the above text, does ’their’ refer to ’their mothers’?
Choices:[’true’, ’false’]
Answer:

Table C.1: Five instructions used in the toy experiment.
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Appendix D

Templates

The template of each dataset can be seen in Table D.1.

Dataset Template

Arc-C

Question: A scientist is measuring the amount of movement along a fault.
Which tool is best used for making this measurement?
Choices: [’barometer’, ’stopwatch’, ’meter stick’, ’magnifying lens’]
Answer:

Arc-E
Question: Which color shirt will reflect the most light on a hot, sunny day?
Choices: [’black’, ’blue’, ’red’, ’white’]
Answer:
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BoolQ

Turn on red –Right turns on red are permitted in many regions of North
America. While Western states have allowed it for more than 50 years;
eastern states amended their traffic laws to allow it in the 1970s as a fuel-
saving measure in response to motor fuel shortages in 1973. The Energy
Policy and Conservation Act of 1975 required in §362(c)(5) that in order
for a state to receive federal assistance in developing mandated conservation
programs, they must permit right turns on red lights. All 50 states, the
District of Columbia, Guam, and Puerto Rico have allowed right turns on
red since 1980, except where prohibited by a sign or where right turns are
controlled by dedicated traffic lights. (On January 1, 1980, Massachusetts
became the last US state to allow right turns on red.) The few exceptions
include New York City, where right turns on red are prohibited, unless a
sign indicates otherwise.
Question: is it legal to turn right on red in california?
Choices: [’true’, ’false’]
Answer:

CB

Premise: B: And I’ve worked in the hospital for fifteen years and I’ve taken
care of a few AIDS patients. A: Uh-huh. B: Uh, when they asked us did we
want to, uh, keep it the same or, uh, spend more, spend less, uh, I think right
now what they’re spending is adequate. Uh, for my personal opinion. Uh,
because I think it’s something that’s going to take them a while to come up
with a, uh, vaccine for. A: Yeah. Uh-huh. Uh-huh. B: I don’t think it’s going
to be that easy to come up with
Hypothesis: it is going to be that easy to come up with
Question: Determine whether the premise entails the hypothesis or not.
Choices: [’entailment’, ’neutral’, ’contradiction’]
Answer:

COPA

Premise: The woman betrayed her friend.
Question: What could be the possible effect of the premise?
Choices: [’Her friend sent her a greeting card.’, ’Her friend cut off contact
with her.’]
Your answer:
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HellaSwag

Please choose the most appropriate text to complete the passage below:
Passage: [header] How to clean a plastic retainer [title] Rinse the retainer
with warm or cold water. [step] The water will prep your retainer for the
cleaning process. [title] Apply a mild soap onto a toothbrush.
Choices: [’[step] Rinse the retainer under the faucet bowl with warm water.
Suds will accumulate on the toothbrush.’, ’[step] Rinse the retainer slowly
from top to bottom and then wipe it on the toothbrush. Soap can effectively
clean a plastic retainer but it can potentially cause irritation.’, ’[step] If you
are using an old toothbrush, you may brush the bristles for pleasure. Fill
a bucket, then fill it with a cup of liquid soap.’, ’[step] You can use liquid
castile soap or a mild dishwashing detergent. Additionally, use a soft-bristled
toothbrush.’]
Answer:
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MultiRC

Passage: One of the most dramatic changes in priorities proposed by the
City Council would shift $25.6 million from funding for court-appointed
lawyers to the Legal Aid Society. In a document released yesterday to justify
its reordered priorities, the Council contended that Legal Aid can achieve
greater economies of scale than lawyers appointed pursuant to Article 18-
B of the County Law. The Council document also noted that ïnexplicablÿ
18-B lawyers are handling 50 percent of the indigent criminal cases in New
York City, even though their mandate is to handle only multi-defendant cases
where the Legal Aid Society had a conflict. In past years, the City Council
had consistently added $5.6 million to the $54.7 million proposed for the
Legal Aid Society by former Mayor Giuliani, bringing the total to just a shade
over $60 million. But this year for the first time, the Council is proposing
shifting more than $20 million in funds earmarked by the Mayor for 18-B
lawyers to the Legal Aid Society, which would increase its total funding to
$80.4 million. That would reflect a jump in its current finding of about one-
third. Meantime, the City Council proposed slashing the Mayor’s allocation
of $62.8 million for 18-B lawyers by 66 percent, to $21.4 million.
Question: By increasing current funding to the Legal Aid society by $25.6
million, how much is the Council increasing their funding?
Choices: [’$60 million’, ’$62.8 million’, ’One third’, ’$54.7 million’, ’$80.4
million’]
Note: 1. there can be multiple correct answers. 2. each line contains one
answer. 3. If no correct answer, reply ’none’.
Your answer:

PIQA

Goal: how do you flood a room?
Choose the most sensible solution to achieve the goal. Choices: [’fill it with
objects.’, ’fill it with water.’]
Answer:
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ReCoRD

A father has admitted killing his 13-year-old son by giving him a morphine
tablet when the boy complained that he was feeling ill. Kevin Morton gave
his son Kye Backhouse an extremely strong painkiller, a court heard - a
mistake which he says he will ’have to try and live with it for the rest of
my life’. He could now face jail after pleading guilty to manslaughter over
the teenager’s death at Preston Crown Court. Tragedy: Kevin Morton, right,
has admitted killing his son Kye Backhouse, left, by giving him morphine
’Happy-go-lucky’ Kye was found dead at his home in Barrow-in-Furness,
Cumbria in October last year.@highlight Morton gave Kye Backhouse a
strong painkiller when he was ill@highlight teenager subsequently died and
his father has admitted manslaughter@highlight, 49, faces jail when he is
sentenced next month
Question: Death: @placeholder, 23, complained of feeling unwell before
his father gave him the strong painkiller What is the @̈placeholder?̈
Answer:

RTE

Premise: Euro Disney is one of the most popular theme parks of USA.
Hypothesis: Euro-Disney is an Entertainment Park.
Question: Determine whether the premise entails the hypothesis or not.
Choices: [’entailment’, ’not_entailment’]
Answer:

WiC

Sentence1: An early movie simply showed a long kiss by two actors of the
contemporary stage.
Sentence2: We went out of town together by stage about ten or twelve miles.
Question: Does ’stage’ have the same meaning in both sentences?
Choices: [’true’, ’false’]
Answer:

WinoGrande

Choose the most sensible text to replace the ’_’ in the following sentence:
Natalie was less religous than Patricia, therefore _ attended church services
more often on Sundays.
Choices: [’Natalie’, ’Patricia’]
Answer:
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WSC

The mothers of Arthur and Celeste have come to the town to fetch them.
They are very happy to have them back, but they scold them just the same
because they ran away.
Question: In the above text, does ’them’ refer to ’mothers’?
Choices:[’true’, ’false’]
Answer:

Table D.1: The template of each dataset.
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In recent years, \gls{LLMs} have shown exceptional capabilities across various \gls{NLP} tasks. However, such

impressive performance often comes with the trade-off of an increased parameter size, posing significant

challenges for widespread deployment. \Gls{KD} provides a solution by transferring knowledge from a large

teacher model to a smaller student model. In this thesis, we explore the task-specific distillation of

\gls{LLMs} at the logit level. Our investigation reveals that the logits of fine-tuned \gls{LLMs} exhibit a

more extreme long-tail distribution than those from vision models. Moreover, existing logits distillation

methods often struggle to effectively utilize the internal ranking information from the logits. To address



this, we propose the \textbf{Bi}-directional \textbf{L}ogits \textbf{D}ifference (BiLD) loss. The BiLD loss

filters out the long-tail ”noise” by utilizing only top-$k$ teacher and student logits, and leverages the

internal logits ranking information by constructing logits differences. To evaluate BiLD loss, we conduct

comprehensive experiments on 13 datasets using two types of \gls{LLMs}. Our results show that the BiLD loss,

with only the top-\textbf{8} logits, outperforms supervised fine-tuning (SFT), vanilla \gls{KL} loss, and five

other distillation methods from both \gls{NLP} and \gls{CV} fields.
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På senare år har stora språkmodeller (LLMs) visat exceptionella förmågor över olika NLP-uppgifter. Men sådan

imponerande prestanda kommer ofta med en kompromiss i form av ökad parameterstorlek, vilket innebär betydande

utmaningar för utbredd användning. Kunskapsdistillation (KD) erbjuder en lösning genom att överföra kunskap

från en stor lärarmodell till en mindre studentmodell. I denna avhandling utforskar vi uppgiftsspecifik

distillation av stora språkmodeller på logitnivå. Vår undersökning visar att logiterna från finjusterade LLMs

uppvisar en mer extrem långsvansfördelning än de från visionsmodeller. Dessutom kämpar befintliga metoder för

logitdistillation ofta med att effektivt utnyttja den interna rankningsinformationen från logiterna. För att

åtgärda detta föreslår vi förlustfunktionen BiLD (Bi-directional Logits Difference). BiLD-förlusten filtrerar

bort långsvansens ”brus” genom att endast använda de översta $k$ lärar- och studentlogiterna, och utnyttjar

den interna logitrankningsinformationen genom att konstruera logitskillnader. För att utvärdera BiLD-förlusten

genomför vi omfattande experiment på 13 datamängder med två typer av LLMs. Våra resultat visar att

BiLD-förlusten, med endast de översta 8 logiterna, överträffar både övervakad finjustering (SFT),

vanilj-KL-förlust och fem andra distillationsmetoder från både NLP- och CV-fälten.
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