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Abstract
Chromosome enumeration is an indispensable but monotonous procedure in
chromosome karyotyping analysis which is an essential process for genetic
disorder diagnostics. To automate the enumeration process, we have devel-
oped a chromosome enumeration framework based on the region based object
detection scheme using supervised machine learning. We apply several data
augmentation techniques on our dataset, i.e. Karyogram images. Then, we
developed and trained four different classifiers which are SSD, Faster RCNN,
RFCN, and YOLO v5 to predict the class of each chromosome. The results
showed that YOLO v5 outperformed SSD, Faster RCNN, and RFCN. Finally,
using our model that can predict the class of each chromosome, we can auto-
matically generate Karyograms using the original chromosome images.
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Sammanfattning
Kromosomuppräkning är en väsentlig men monoton procedur i kromosom-
karyotypanalys, vilket är en viktig process för genetisk störningsdiagnostik.
För att automatisera uppräkningsprocessen har vi utvecklat ett ramverk för
kromosomuppräkning baserat på det regionbaserade objektdetekteringssche-
mat med hjälp av övervakad maskininlärning. Vi tillämpar flera dataförstärk-
ningstekniker på vår dataset, dvs. karyogram-bilder. Sedan utvecklade vi och
utbildade fyra olika klassificeringsapparater som är SSD, Faster RCNN,RFCN
och YOLO v5 för att förutsäga klassen för varje kromosom. Resultaten visa-
de att YOLO v5 överträffade SSD, Faster RCNN och RFCN. Slutligen, med
hjälp av vår modell som kan förutsäga klassen för varje kromosom, kan vi
automatiskt generera karyogram med originalkromosombilder.
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Chapter 1

Introduction

Automation of genetic diagnostic has been a major research topic in the last
few years. The process of diagnosing genes and chromosomes is very complex
and requires years of training for doctors to be able to diagnose with a small
percentage of error. In chromosome abnormality diagnostics, the unbalance
of normal and abnormal data makes it more challenging for trainees to learn
how abnormal chromosomes look like because the majority of chromosomes
are normal. As a result, doctors need more data and more years of training to
gain expertise in this field.

Chromosome abnormality refers to the anomaly, disorder, mutation, amiss-
ing, extra, or irregular sections of chromosomal DNA. According to studies
done by Gert de Graaf [1], the number of Down-Syndrome (DS) is 12.6 per
10,000 with an average of 5300 births annually in the years (2006-2010) in
the United States. By 2007, the estimated number of DS births decreased by
30% due to the DS-related implementation of the medical project in the United
States, see figure 1.1. Hence, Prenatal screening and diagnosis of chromoso-
mal diseases gain massive importance as it significantly reduces the incidence
of birth defects.

Figure 1.1: Estimates of non-selective and live birth prevalence of Down Syn-
drome and reduction percentage in Massachusetts for 2006–2010 [1].

1
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A karyotype is the number, size, and shape of chromosomes in an organ-
ism. To determine the karyotype of an organism, scientists must follow these
steps:

• Collect a cell from an individual

• Induce the cell to divide

• Stop cell division in metaphase when chromosomes are easiest to see

• Stain the chromosomes to make them visible

• View the cell under a microscope

• Another entry in the list

A regular Human has a total of 46 chromosomes (23 from each parent),
which you can see in the Karyograms. In a Karyogram, homologous chromo-
somes, or pairs of chromosomes that are the same size and shape, are grouped
together. Humans have 22 pairs calledAutosomes. Autosomes are the chromo-
somes that contain genes for determining all human characteristics except the
determination of human sex. Autosomes are numbered from class 1 through
class 22, and we have two of each class because one came from your mom
and one came from your dad. Class 1 chromosome is the largest, and class
22 chromosome is the smallest. Autosomes only account for 44 of your to-
tal chromosomes, the remaining two chromosomes in humans are called sex
chromosomes or chromosomes X and Y because they are the ones that deter-
mine whether you are male or female. They are placed after autosomes in a
Karyogram as shown in figure 1.2. If someone has two X chromosomes, it is
a female. If someone has an X and a Y chromosome, it is a male.

1.1 Motivation
Karyotyping is a laboratory procedure that allows doctors to examine people’s
set of chromosomes. A Karyotype refers to the actual collection of chromo-
somes that are being examined by doctors. Examining chromosomes through
karyotyping allows doctors to determine any abnormalities or structural prob-
lems within the set of chromosomes.

Chromosomes are in every cell of your body. They contain the genes that
are inherited from our parents. Genes determine the way every human devel-
ops and they are composed of Deoxyribose Nucleic Acid (DNA). Cells need to
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pass on a complete set of genetic instructions to each newly formed cell during
cell division and cells are lined up in pairs. When there is no cell division, the
chromosomes are arranged in an unorganized way. A karyotype test investi-
gates these dividing cells. Each pair of chromosomes is arranged by its size
and appearance. Helping doctors to easily determine if any chromosome is
missing or damaged.
The process of Karyotyping is typically done by a Cytogeneticist and it takes
long time and expertise to do it accurately with a low error rate. Our main
motive is to develop a tool that helps to automate the process of Karyotyp-
ing, helping doctors and patients who wait in long queues to have their genetic
test done. First, we create a machine learning model that creates bounding
boxes around each chromosome, then we generate a new image and compare
the size of each chromosome and align them in a way similar to the Karyo-
gram arranged from largest to smallest. Finally, we train our machine learning
model for abnormality detection using the newly generated images.

1.2 Problem
Chromosome genetic disorder diagnostics is currently done by Cytogeneti-
cists. First, they look into the cells using a microscope and take around 96
images of the chromosomes from different angles, then they select 5 images
with the fewest overlapping. Then using these images, they create another
image called Karyogram using the selected chromosomes, an example of a
Karyogram is shown in Figure 1.2. A Karyogram is a way used to depict
chromosomes, chromosomes are organised in the image in a way that makes
them easy to visualize. They are arranged into homologous pairs where each
is arranged in order from largest to smallest.

The research question that this thesis tries to solve can be phrased as: "Can
machine learning and image processing approaches achieve good accuracy in
generating Karyograms?"
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Figure 1.2: An example of a Karyogram

1.3 Goals
The goal of this project is to create an application that automates chromosome
abnormality diagnostics with image processing and machine learning tech-
niques using the original chromosome images. Our research has shown that
using only the unorganized chromosome set shown in figure 1.3 will result in
dramatically low predictions for our machine learning model due to the high
complexity even if we have hundreds of thousands of images.
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Figure 1.3: Original Chromosome image

1.4 Thesis contributions
The contribution of this thesis includes implementing several machine learn-
ing classifiers for the task of chromosome classification and detection. We
implemented the machine learning models, faster RCNN Inception v2, RFCN
Resnet101, SSD Mobilenet v2 and YOLO v5 for our image processing classi-
fiers. Then we did hyperparameter tuning to optimize our models to achieve
the best possible recall and precision results.

1.5 Ethics and sustainability
This thesis addresses problem that could have a huge societal impact. Diagnos-
ing humans early for any genetic abnormality will not only free up resources in
the resource-starved healthcare system around the world but will also mitigate
the adverse outcomes of genetic abnormalities on people. Thereby it could aid
physicians or health workers to concentrate the fewer health resources towards
the subjects who are actually in need of it and in a timely manner. This project
has been proposed by the host company for their internal research and appro-
priate GDPR regulations were met before carrying out work on this dataset.
The dataset is primarily medical in nature where the predictor variables are al-
ready chosen and anonymized in an appropriate manner such that leaving no
grounds to link the data to any of the patients fromwhom it has been collected.
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1.6 Outline
Chapter 2 presents the theoretical background of the concepts that are em-
ployed in developing our machine learning classifiers and their performance
metrics. Chapter 3 dives into the related research work and papers that have
been published relating to our project. Chapter 4 presents the researchmethod-
ologies that are incorporated to study our problem statement. Chapter 5 presents
and discusses the results of our project. Chapter 6 concludes this thesis work
and provides insight for future work.
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Background

2.1 Machine Learning in image processing
There are 3 key learning paradigms in image processing tasks, supervised,
unsupervised and reinforcement learning as shown in Figure 2.1. Supervised
learning is learning using pre-labelled data which are used as inputs to the ma-
chine learning model. For each training example, there will be a set of values
as inputs and one or more output values associated. This form of training is
used to reduce the model’s overall classification error, through the correct cal-
culation of the output value of the training example [2]. On the other hand,
Unsupervised learning’s training set does not include any labels. Success is
measured by whether the neural network is able to reduce or increase an asso-
ciated cost function. Although, most image-focused pattern-recognition tasks
often depend on classification with supervised learning.

7
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Figure 2.1: Describing different machine learning techniques with some use-
case examples

Figure 2.2: Machine learning process

As shown in Figure 2.2, the process of machine learning can be defined in
the following steps:

1. Data Collection : Collect the data for training the model.

2. Data Preparation: Extracting important features, format the data into
the optimal format, and performing dimensionality reduction.

3. Training: The model is selected and trained using the data that we pre-
pared in the previous step.

4. Evaluation: Gaining insights from the model’s results, and evaluating
how well the model performs.

5. Tuning: In order to maximize the model performance we perform fine
tuning.

6. Repeat from Step 3.
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2.1.1 Supervised machine learning
Supervised Machine Learning (SML) requires human guidance for a specific
training dataset of labelled examples data, for instance, when SML algorithm
is used, the algorithm is supported by a dataset containing classified data (His-
torical) with known inputs and outputs aiming to train the model on predicting
the output through identifying the input itself, see Figure 2.3. A well known
SML application is image recognition, for instance, to identify whether there
is an apple in a picture or not, SML algorithm is used for checking whether
there is an apple in the picture or not through historical labelled data of apple
pictures, in the previous example, the dataset will be thousands of apple pic-
tures with a variety of types, shapes, and colours, the algorithm will learn how
to identify whether that input is an apple or not later on.

Figure 2.3: Structure of supervised machine learning

A good supervised machine learning model must be able to adapt to new
inputs and make predictions. During model training, we need to maximise
generalisation, thus, the supervised model defines a ‘general’ underlying re-
lationship for the data. If we overtrain the model, this will cause overfitting
to the inputs used and the model will not be able to adapt to new or unseen
inputs. On the other hand, we must be aware of a major side-effect in super-
vised learning which is that the our supervision to the model introduces bias to
the model prediction. The model can only learn what it was provided, so it is
crucial to show it reliable, unbiased examples. Moreover, supervised learning
usually requires large amounts of labelled data in order to have accurate pre-
dictions. However, Acquiring enough reliably labelled data is often the most
difficult and expensive part of using supervised learning.
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2.1.2 Classification
Classification is used to group similar data points into different sections in
order to classify them. For this task, we use machine learning to determine the
rules that explain how to identify different data points. Rules focus on using
data and answers to discover rules that linearly separate data points. There are
many ways to discover the rules. The most common rule is Linear separability
which is a key concept in machine learning where the main task of it is to find
the best way to separate data-points/classes with a line which is known as the
decision boundaries. The entire area that is chosen to define a class is known
as the decision surface. As shown in Figure 2.4, If a data point falls within the
boundary of the decision surface it will be assigned a certain class [3].

Figure 2.4: Multi-class Classification example

2.1.3 Object Detection
Object recognition is a technique in computer vision that is used to identify
different objects in images or videos. Deep learning and machine learning
algorithms are the main techniques for performing object detection. The goal
for these techniques is to show the computer how to identify objects the same
way humans do, i.e. to have an understanding of what an image contains.
Driverless cars are examples for systems that uses object detection, machine
learning teaches the the car’s system to recognize a stop sign and distinguish
a pedestrian from other objects in the street. Moreover, It is useful in a variety
of applications such as medical diagnostics, robotics, and face recognition.

Most modern object detection applications are using Deep learning algo-
rithms. Deep learning models such as CNNs, are used to learn features in
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objects in order to identify that object. For instance, CNNs can learn to dif-
ferentiate between apples and oranges by analyzing thousands of images and
learning the features that make apples and oranges different.

Performing a deep learning based object recognition can be done using 2
different methods:

• Train a model from scratch: In this method, we need to gather a large
dataset and design a neural network algorithm that will learn the features
and build the model. The results of this method can be outstanding,
however, it needs massive amounts of data to achieve good predictions
and you need to add weights and layers in the network.

• Using a pretrained deep learning model: This is the most common tech-
nique inmost applications, and it involves fine-tuning a pretrainedmodel.
You start with an existing network, such as Inception V2, and feed the
network with new data containing classes unknown to the network. This
method much faster and because the model has already been pre-trained
on thousands of images.

2.1.4 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are models that simulate how the hu-
man brain processes information. This is typically done by developing a large
number of interconnected processing units (nodes) that represents an abstract
version of neurons.
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Figure 2.5: Example of a neural network [2].

As shown in Figure 2.5, the most basic neural network is arranged in 3 lay-
ers, an input layer, one or multiple hidden layers; and an output layer, with a
unit representing the target field. Each unit is connected with different connec-
tion weights. The first layer is storing the input data, while values are prop-
agated from each neuron to all neurons in the next layer. Finally, a result is
delivered from the output layer [4].

The CNN architecture shows the best performance by processing multi-
media data formats such as image and videos. The visual cortex is a complex
arrangement of the cell which are sensitive to a small region of the visual field
called a receptive field. Generally, ANN uses a matrix multiplication which
is replaced in CNN by using Convolution layers. Convolution layers are used
to reduce the complexity of the network by reducing the number of weights.
Consequently, there is no need of separate feature extraction algorithm, which
is popular in standard learning algorithms.

Similarly to a neural network, CNN consists of input, output and hidden
layers in between. These hidden layers performs feature detection and it per-
forms three operations on data; Convolution, Pooling and Rectifier Linear Unit
(ReLu). First, The convolution layer is used to learn certain features of an im-
age, by inserting the input image into a set of convolutional filters. Each filter
learns different features from the image. Secondly, the pooling layer helps re-
ducing the number of irrelevant parameters by simplifying the output using
nonlinear downsampling method [5]. Thirdly, ReLu improves the efficiency
and learning speed of the network bymapping negative values to zeros in order
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to maintain only positive values. These three different operations are applied
repeatedly to tens or thousands of layers to be able to detect different levels of
features. Before the last layer there is a fully connected layer that outputs an
N dimension vector, where N is the number of output classes the network is
able to predict. Finally, The last layer is a softmax layer used to provide the
classification output. The components of the CNN is depicted in the following
figure 2.6

Figure 2.6: The architecture of a Convolution neural network [5].

2.1.5 Faster RCNN
The current advancement of object detection is driven by the region-based con-
volutional neural networks (RCNN) [6]. During the early development RCNN
techniques in [7], the computational costs were very high. However, their cost
has been reduced by using sharing convolutions across proposals. The lat-
est advancement of RCNN is faster RCNN, using very deep networks, faster
RCNN achieves real-time speeds when ignoring the time spent on region pro-
posals. Currently, proposals are considered the computational bottleneck in
object detection systems.

As shown in Figure 2.7, Faster RCNN is based on 2 models, Region Pro-
posal Network RPN) and Fast RCNN. RPN is based on the fully convolutional
networks [8], it can predict the target area frame and confidence score (the
probability of a correct prediction) at each region of the input picture. RPN is
used to generate high quality bounding boxes around target objects, it shares
the convolution feature of the whole graph with the detection network and
solves the speed problem of the original Selective Search [9], which signif-
icantly improves the performance of object detection. Furthermore, Faster
RCNN uses Fast-RCNN for classification and object detection, this method
solves the problems of slow speed of RCNN detection and large memory con-
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sumption. Fast RCNN uses the quality region proposal which is provided by
RPN for target recognition which greatly improved the speed and accuracy of
object detection.

Figure 2.7: Faster RCNN structure

2.1.6 YOLO CNN
You Only Look Once (YOLO) is a real-time object detection system which is
famous for its simplicity and speed. As shown in figure 2.8, YOLO applies a
single neural network to the whole image, it divides the image into regions and
predicts multiple bounding boxes and class probabilities(confidence score) for
those boxes. These bounding boxes are weighted by the predicted probabil-
ities. YOLO trains on full images and directly optimizes detection perfor-
mance. Thus, its predictions are informed by the global context in the image.
Unlike sliding window and region proposal-based techniques, as YOLO pro-
cesses the entire image during training and test time, it encodes contextual
information implicitly about classes as well as their appearance. Fast RCNN
[10], oftenmistakes background patches in an image for objects because it does
not see the larger context. YOLO makes less than half the number of back-
ground errors compared to Fast RCNN. Using a single neural network makes
YOLO around 100x faster than Fast RCNN and 1000x faster than RCNN as
these models require thousands of networks for a single image.
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Figure 2.8: The YOLO Detection System. Processing images with YOLO is
simple and straightforward. First, the YOLO system resizes of the input image
to 448 x 448 pixels, then it runs a single convolutional network on the image,
finally, it thresholds the resulting detections by the model’s confidence [11].

YOLO’s speed could reach 155 frames per second, achieving double the
mAP of other real-time detectors like Fast RCNN. YOLO’s base network runs
at 45 frames per second without batch processing on a Titan X GPU and some
faster versions runs at more than 150 fps. Consequently, we can do video
stream processing in real-timewith less than 25milliseconds of latency. More-
over, YOLO achieves more than twice the mean average precision of other
real-time systems.

YOLO learns the general representations of objects. YOLO outperforms
top detection methods like Deformable Part Models DPM and RCNN by a
wide margin When trained on natural images and tested on artwork. Since
YOLO can be used generally in many use cases. It is less likely to break down
when applied to unexpected inputs or new domains. On the other hand, YOLO
makes more localization errors than other state-of-the-art systems but is less
likely to predict false positives on the background. Furthermore, it lags behind
in terms of accuracy compared to state-of-the-art detection systems. YOLO
can quickly identify objects in images, although, it struggles to localize small
objects precisely.

As shown in figure 2.9, the detection network consists of 24 convolutional
layers followed by 2 fully connected layers. Alternating 1 x 1 convolutional
layers to reduce features space from preceding layers. The model is pretrained
on the ImageNet classification task at half the resolution (224 x 224 input im-
age) and then double the resolution for detection.
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Figure 2.9: YOLO’s Architecture [11].

2.1.7 Microsoft COCO: Common Objects in Context
Microsoft COCO dataset was created to advance state-of-the-art object detec-
tion by placing the question of object detection in the context of the broader
question of understanding scenes. Microsoft achieved this by gathering im-
ages of complex scenes containing common objects where the images were
taken in their natural contexts [12].

2.2 Performance measures for the machine
learning model

There are various metrics that we can use to evaluate the performance of ma-
chine learning algorithms. These metrics must be identified for evaluating
ML performance for various reasons. Firstly, how the performance of ML al-
gorithms is measured and compared will be dependent entirely on the chosen
metric. Secondly, how you weight the importance of various characteristics
in the result will be influenced completely by the metric you choose. In this
section, we discuss the chosen metrics for evaluating our ML models.

2.2.1 Precision and Recall
Precision, also known as positive predicted value is defined as the fraction of
relevant instances among all the retrieved instances. In other words, precision
describes the percentage of the results that are relevant. Recall, which is in the
medical diagnostics terms widely known as sensitivity, is the percentage of
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total relevant results that are labelled correctly by our model. Both precision
and recall are a measurement of the relevance of the results. In a classification
task, which is our main task in this project, the precision for a class is defined
as the number of objects of response variable correctly labelled as belonging
to the positive class divided by the total number of objects of response variable
labelled as part of the positive class by our model. In the same context, Recall
is defined as the number of objects of response variable labelled correctly as
belonging to the positive class divided by the total number of objects of the
response variable that in original belong to the positive class including objects
that were not labelled as belonging to the positive class by the model.
A perfect precision score of 1.0 for a class, let’s say class 1 chromosomes,
would mean that every instance labelled as belonging to class 1 indeed is a
class 1 object, but precision doesn’t highlight the number of instances from
class 1 objects that were not labelled correctly as. A perfect recall of 1.0 sig-
nifies that every chromosome of class 1 was labelled as belonging to class 1,
but recall doesn’t highlight how many class 1 objects were incorrectly labelled
as any other class. This also highlights an inverse relationship between Preci-
sion and Recall, where it is possible to increase either one of the two quantities
often at the expense of others.
Mathematically, precision and recall are described in the following equations:

Precision =
TruePositives

TruePositives+ FalsePositives
(2.1)

And Recall is defined as

Recall =
TruePositives

TruePositives+ FalseNegatives
(2.2)

Figure 2.10 explains how recall and precision in a simplified way.
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Figure 2.10: Difference between Precision and Recall[13].

.

2.2.2 F1 Score
In many image classification and object detection tasks, increasing precision
will lead to a decrease in recall or vice-versa. Hence, using these two quantities
to measure the performance of our model could be tricky. However, there is
a simpler metric, F1 score, which takes into consideration both precision and
recall. Hence, our goal is to maximize this number to make our model better.
F1 score can be defined as the weighted average of precision and recall. Both
the precision and recall have an equal contribution to the calculation of the F1
score. F1 score assumes values between 0, the worst score, and 1, the best-
score.

F1 Score = 2 ∗ Precision ∗Recall

Precision+Recall
(2.3)
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Related Work

The paper Abnormality Detection and localization in Chest X-Rays (CXR)
using deep neural networks proposes a scheme for automated abnormality de-
tecting with deep neural networks on the Indiana chest X-Ray dataset, JSRT
dataset and Shenzhen dataset [14]. The solution used heat maps obtained from
occlusion sensitivity as a measure of localization in the CXRs. The research
conducted the following findings:

• Multiple random train/test data split achieve good accuracy results when
the number of training examples is low.

• Shallow features or earlier layers have better performance than deep fea-
tures for classification accuracy.

• Same Deep Convolutional Networks (DCN) architecture doesn’t per-
form well across all abnormalities.

• Ensemble of DCN models has better performance than single models.
Although, mixing DCN and rule-based ensemble model decreases ac-
curacy.

• The application of the methods in this paper achieved the highest accu-
racy for tuberculosis detection.

• The results show a 17 percent improvement in accuracy over rule-based
methods for Cardiomegaly detection using DCN.

Another paper by Chouhan et. al. [15] discuss an approach bases on trans-
fer learning for pneumonia detection in chest X-ray images. Pneumonia is one

19
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of the top diseases that cause most of the deaths around the world. Several fac-
tors such as Virus, Bacteria and Fungi can cause Pneumonia. Although, judg-
ing Pneumonia is extremely difficult just by looking at the chest X-rays. Hence,
researchers are trying to solve this problem to make it easier for doctors the
decision of whether this chest has pneumonia or not. In this paper, researchers
suggested a deep learning framework using transfer learning [16] for detecting
pneumonia. Features are extracted using different pre-trained neural networks
on ImageNet, then these models are fed to a classifier for prediction. The paper
proposed an ensemble model that gathers outputs from the pre-trained mod-
els which outperformed individual models, then combines them. This method
reached the state-of-the-art performance in pneumonia detection, reaching an
accuracy of 96% and recall of 99.62% on data from the Guangzhou Women
and Children’s Medical Center dataset. First, they do chest X-ray image pre-
processing, followed by data augmentation, transfer learning using Inception
v3, AlexNet, DenseNet121, GoogLeNet, and Resnet18 neural networks. Fi-
nally, they did feature extraction and ensemble classification.

Tuberculosis (TB) is a common lung disease that targets millions of peo-
ple every year of all different age group around the world. Rajaraman [17]
discusses a scheme based on deep convolutional neural networks to automat-
ically detect TB using chest CXR images. Figure 3.1 shows CXR images of
normal lungs, lungs with pleural effusion, and cavitary lung lesion.

Figure 3.1: examples of CXR images showing pulmonary abnormalities (left:
pleural effusion, middle: cavitary lung lesion, and right: normal lung image)
[17].

The research evaluated the performance of a stacked ensemble which com-
bined classifiers using hand-engineered feature extraction methods in addition
to those extracted from the pre-trained CNNs using two proposals to improve
the accuracy of TB detection in CXR images. The first proposal uses the fea-
tures GIST, HOG, and SURF extracted from CXR images and trained an SVM
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classifier to predict whether the chest is normal or abnormal.In the second pro-
posal, the authors used four CNN pre-trained models, AlexNet [18], VGG-16
[19], ResNet-50 [20], and GoogLeNet [21] for feature extraction from CXT
images and trained a Support Vector Machine (SVM) classifier to detect ab-
normal images that show TB manifestation.

Automated classification of chromosomes was discussed in [22], the paper
proposes a new karyotyping scheme using a two-layer classification platform,
this reduced complexity of automated karyotyping and improved its perfor-
mance. Furthermore, the paper suggested a mechanism that selects the most
significant and effective feature sets and optimizing classifiers in an adaptive
manner for the different groups of chromosomes with similar image charac-
teristics. Using 6900 chromosome images, a genetic algorithm was applied to
the data to optimize the topology of multi-feature Artificial Neural Networks
(ANN). The first layer of the scheme has a single ANN that classifies the 24
chromosomes into seven classes, each group represents a group of classes.
Groups A,B,C,D,E,F,G represents classes 1-3, 4-5,6-12-X, 13-15, 16-18, 19-
20, 21-22-Y respectively. Table 3.1 shows a detailed explanation of the Den-
ver group chromosome classification. The results have shown an accuracy of
91.1% of all classes. The second layer consists of seven ANNs that are opti-
mized for seven classes for identifying individual chromosomes. The scheme
was evaluated using a ‘train–test–validate” method.

Note: Metacentric centromere is located in the middle of a chromosome, sub-
metacentric lies between middle and end of a chromosome, and acrocentric
centromere is close to the tip of a chromosome.
Chromosome Class Size Relative Position of Centromere
Group A(1− 3) Large Metacentric
Group B(4− 5) Large Submetacentric
Group C(6− 12, X) Medium Submetacentric
Group D(13− 15) Medium Acrocentric
Group E(16− 18) Relatively short Submetacentric
Group F (19− 20) Short Metacentric or Submetacentric
Group G(21− 22, Y ) Short Acrocentric

Table 3.1: Chromosomes classification based on Denver group classification
[22]

The paper proposes a technique for feature computation to extract features
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from the chromosome images. They first used a thinning algorithm to detect
the medial axis where some pixels are missing near both ends of the chro-
mosome and some redundant pixels are added around the middle part of the
chromosome. Then an interpolation algorithm is used for connecting each se-
lected fifth pixel and generate a new smoothed medial axis than can remove
the redundant pixels. Figure 3.2 shows a flow diagram of the automated clas-
sification of chromosomes.

Figure 3.2: A flow diagram of automated classification of chromosomes [22]

For retrieving the absent pixels near both ends of the axis, the algorithm
looks for the tip pixels based on the interpolation of previous slopes of the
medial axis. Then the medial axis is connected. The final step checks whether
the ending pixels reach the exterior contour of the chromosome; if this condi-
tion happens, the process is completed and the optimal medial axis is detected.
Else, the algorithm retraces two ending pixels iteratively at the medial axis till
they reach the exterior contour of the chromosome. A visualization of medial
axis detection is shown in figure 3.3.
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Figure 3.3: Several medial axis detection results of chromosome 1 with dif-
ferent morphologies obtained by a modified thinning algorithm [22].
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Machine learningmodels for chro-
mosome classification

The purpose of this chapter is to give an overview of the research methods,
methodologies, and engineering approaches used in this project.

4.1 Research Methodology
The main task for this project is to automate the process of generating Karyo-
grams by detecting the class of each chromosome in a microscopic image of
human chromosomes. In order to analyse human chromosomes for abnormal-
ities, we need to have a Karyogram image which is typically done manually.
Moreover, implementing a machine learning classifier using original chromo-
some images for abnormality detection is too complex and will result in a
very low recall, precision and accuracy scores. Our methodology for solving
this problem is as follows; First, we implement several data augmentation our
karyogram images that we received for one of the labs in China which are
75 original and Karyogram images, an example is shown in figure 4.1. We
developed scripts to do several data augmentations such as 90, 180 degrees
rotations, random rotations, reflections/mirroring, random change in bright-
ness, noise injections, and random cropping in order to increase the number
of images, reduce overfitting of our model and improve our classifier’s recall,
precision and accuracy.

24
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Figure 4.1: Original vs Karyogram images

Secondly, we develop several convolutional neural network classifiers for
chromosome detection and classification using the augmented Karyogram im-
ages. The models we used for classification are RFCN Resnet101, Faster
RCNN Inception v2, YOLOv5, and SSDMobilenet v2 classifiers. Eachmodel
is pre-trained using the coco (Common Objects in Context) dataset 2018 Fur-
thermore, for each classifier, we did hyperparameter tuning and chose the best
hyperparameters for each model then we compare the models in terms of re-
call, precision and number of predicted bounding boxes(detected objects) per
image, our goal is around 46 bounding box (number of chromosomes in hu-
mans) for each image. Selecting the best hyperparameters is crucial for im-
proving the number of predicted bounding boxes per image. For example,
selecting a small epoch number will result in less detected bounding boxes.
Moreover, selecting too large batch size might result in longer model train-
ing time and less recall and precision. The hyperparameters we changed were
learning rate, number of epochs, IOU_threshold and batch size.

4.2 Implementation & Tools
In this section, we discuss different tools and platform that we used to do dif-
ferent tasks. The project has different phases.First, we did data preparation
and labelling for chromosome images to classify chromosome classes using
LabelIMG. Then, we did data augmentation using python and Roboflow. Fi-
nally, we prepared the machine learning model for training our chromosome
dataset using Tensorflow on Google co-laboratory which provides free GPU
for training the model.
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4.2.1 LabelIMG
LabelIMG [23] is one of the most widely used tools for image annotation and
labelling. It is written in Python and uses Qt for its graphical interface. It runs
on Linux, Windows and macOS. The tool has a nice and simple user interface
to make it easy and fast to label your data. The tool also enables developers to
save annotations as XML files, PASCAL VOC, and YOLO format.

4.2.2 Roboflow
Roboflow is a web-based tool that is used to help engineers working on com-
puter vision andmachine learning projects to organise their data and do several
different pre-processing operations on the images before training the model.
This will save a lot of money and CPU/GPU processing power. It saves over
10% by pre-processing and performing pre-computed augmentation on CPU
beforehand. Roboflow also saves a lot of time spent on writing code to do data
processing, conversion, augmentation and organization of the datasets. An-
other advantage of roboflow is that teams can save their datasets in one place,
hence, data is kept up-to-date giving the users the ability to export the data
in many formats such as JSON, TXT, XML, CSV and TFRecords(For Tensor-
flow). Finally, Roboflow allows you to export your data directly to your python
notebook using a single command.

Roboflow provides multiple pre-processing options, these options include
Auto Orientation(Discarding EXIF rotations and standardize pixel ordering),
image Resizing, grey-scaling, Contrast adjustment. It also provides some aug-
mentation options such as image flipping, rotation, random shear, changing
brightness exposure, blurring and adding random noises.

4.2.3 Tensorflow
We used Tensorflow as my machine learning platform. It is an open-source
software library for data analytics and deep learning purposes. It offers hun-
dreds of libraries that are specifically made for implementing deep learning
models. Tensorflow is written in python and was developed at Google in
November 2015.
In this project, we developed a Faster RCNN Inception v2model, RFCNResnet101,
SSDMobilenet v2 andYOLOv5models for chromosome detection using Ten-
sorflow version 1.15.
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4.2.4 Google co-laboratory
we used the GPU resources of Google Co-laboratory (Colab) for running the
neural networks. Instead of running the model on PC resources, Colab has
the same format as Jupyter notebooks and it provides free 70GB disk space,
13GB RAM and GPU resources to run machine learning models for up to 12
hours. The GPU I used was Tesla P100-PCIE-16GB which has a memory of
16GB which is much faster than my local GPU speed. Colab saves to Google
Drive which allows users to share and have multiple people work on the same
document at once which allows easier code collaboration.
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4.3 A look into the dataset
In this section, we discuss the dataset we used and we describe the data aug-
mentation methods that we used to increase the number of images as our
dataset was only 75 images which are very low and will typically result in
underfitting.

Our dataset is composed of 75 original chromosome images and 75 Karyo-
gram images. Each image consists of 23 pairs of chromosomes or 46 chromo-
somes in total. Each chromosome typically belongs to a class from 1 to 23
(The 23rd class is usually an X and a Y or 2 X chromosomes). Originally the
images were raw so we had to label it and we used the tool LabelIMG to la-
bel the data manually as shown in figure 4.2. Then we developed scripts that
do data augmentation to generate new images in order to improve the model
prediction, reduce class undersampling and reduce underfitting. We generated
832 images with multiple data augmentations such as 180, 90 degree and ran-
dom rotations, reflections, change in brightness, noise injections, and random
cropping as shown in figures 4.3 and 4.4. More information about the class
distribution of our dataset can be found in figure 4.5. Finally, our dataset was
divided into 583 test, 166 validation and 83 Test images as shown in figure
4.6.

Figure 4.2: Example of labeled data
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Figure 4.3: Examples of random cropping to emulate real chromosomes for
testing our model

Figure 4.4: Examples of images generated from our data augmentation func-
tions using Python
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Figure 4.6: Train,test, and validate split

Figure 4.5: Class distribution of our dataset, the diagram shows a similarity in
the number of classes from class 1 to 22, an undersample of class X and class
Y.
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PerformanceEvaluation of clas-
sification Models

In this chapter we present the results of our experiment and correspondingly,
we discuss those results. First, we describe the performance metrics that we
used in more details and how we selected the best model for solving our prob-
lem. Secondly, we evaluate the results and mention the hyperparameters that
achieved the best results.

5.1 Performance Metrics
The metric employed to evaluate a classifier is crucial for determining whether
the model is good or not. To evaluate a model, choosing the wrong metric
could result in choosing the wrong model or have a wrong holistic view of
the expected performance of the model in real-life scenarios. In our problem,
we are performing chromosome detection of augmented Karyogram images
(which emulate real chromosomes) in order to identify chromosomes and the
class of each one of them. We are dealing with a problem which is the under
representation of some classes that are lesser than others such as classes X
and Y. This will largely affect the choice of evaluation of performance metrics.
Let’s take for example our case, we have about 1200 classes of X and 420 class
Y in our dataset. Thus, the choice of our performance metrics should give us
detailed information about our classification models in predicting classes 1-
22, X and Y. Consequently, the performance metrics used for the evaluation
of our models are- Precision, Recall, and F1 score. F1 score is of particular
interest here as described in section 2.2.2, it provides a good overview of the
classification algorithms in terms of how good it is in predicting the classes of
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each chromosome which are the main interest in our experiment.
We list below the results obtained after running cross-validation using our

data and we used several different hyperparameters and we chose the best-
performing ones. Subsequently, we recorded the metrics- precision, recall, F1
score of each model. Furthermore, in figures 5.1, 5.2, 5.3 and 5.4 we present
the predicted images with bounding boxes of our models and the confidence
scores of each prediction. The figures show the predictions using the models
Faster RCNN Inception v2, RFCN Resnet101, SSD Mobilenet v2 and YOLO
v5 respectively with epoch number of 5000 for all models except YOLO v5
which performed better with less epoch number which was only 200, more
than 200 resulted in a very slight improvement and it takes a long time for the
model to train.

Figures 5.6, 5.7, and 5.8 presents the recall, precision and F1 scores of the
YOLO model which outperformed all other models in terms of recall, preci-
sion, F1 as well as the number of bounding boxes per image. Figures 5.9, 5.11
and 5.11 shows the average recall, precision and prediction image for RFCN
Resnet. RFCN Resnet. Figures 5.13, 5.12, and 5.2 shows the average recall,
precision and prediction image for Faster RCNN Inception v2. Figures 5.16,
5.15 and 5.3 shows the average recall, precision and prediction image for SSD
Mobilenet v2.

Table 5.1 presents and compares the recall, precision and F1 results of
each model. The table shows the epoch number and batch size used for each
of the models. Batch size plays a big role in how fast the model trains and the
number of epochs improves the model results when we increase the number
of epochs till a certain level, after that the model does not improve and then
we can understand that later on when we perform further tests with the same
hyperparameters but different images, we should not increase the epoch num-
ber above this level as it will not improve the results and the model will take
longer time to complete its training.
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Figure 5.1: Predictions of YOLO v5 model with epoch number of 250.

Figure 5.2: Predictions from a test image using Faster RCNN Inception v2.

Figure 5.3: Predictions from a test image using SSD Mobilenet v2.
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Figure 5.4: Predictions from a test image using RFCN Resnet101.

Figure 5.5: Predictions from a test image with only 20 chromosomes using
inception v2.

Figure 5.6: Recall YOLO v5. epoch: 250, batch size: 12.
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Figure 5.7: mAP YOLO v5 . epoch: 250, batch size: 12.

Figure 5.8: F1 Score YOLO v5 . epoch: 250, batch size: 12.
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Figure 5.9: Recall RFCN Resnet101. epoch: 10K, batch size: 12, learning
rate: 0.0002.

Figure 5.10: mAP RFCN Resnet101. epoch: 10K, batch size: 12, learning
rate: 0.0002.
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Figure 5.11: Prediction image RFCN Resnet101. epoch: 10K, batch size: 12,
learning rate: 0.0002.

Figure 5.12: Recall of Faster RCNN Inception v2. epoch 5K, batch size: 14,
learning rate: 0.0002.
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Figure 5.13: mAP Faster RCNN Inception v2. epoch: 5K, batch size: 14,
learning rate: 0.0002.

Figure 5.14: Prediction image Faster RCNN Inception v2. epoch: 5K, batch
size: 14, learning rate: 0.0002.
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Figure 5.15: Recall SSD Mobilenet v2. epoch: 10K, batch size: 12, learning
rate: 0.0002.

Figure 5.16: mAP SSD Mobilenet v2. epoch: 5K, batch size: 12, learning
rate: 0.0002.
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Figure 5.17: Prediction image SSDMobilenet v2. epoch: 10K, batch size: 12,
learning rate: 0.0002.

Model Batch Size Epoch No. Recall Precision F1
YOLO v5 16 250 0.98 0.83 0.89
Faster RCNN Inception v2 14 5000 0.66 0.59 0.62
RFCN Resnet101 12 5000 0.68 0.72 0.69
SSD Mobilenet v2 12 10000 0.60 0.69 0.64

Table 5.1: A comparison of the results of our models

5.2 Evaluation of Results
Predictions from models SSD Mobilenet v2, Faster RCNN Inception v2 and
RFCN Resnet101 show poor results compared to the ones by YOLO v5 which
outperformed all other models in terms of the number of detected chromo-
somes (bounding boxes) per image. We tested our software for bugs that might
be resulting in this worse performance but testing with images with fewer chro-
mosomes resulted in better bounding boxes results as shown in figure 5.5.

Table 5.1 shows that YOLO scored significantly better results with small
epoch number, the model was faster, results were more accurate and it detected
all chromosomes and predicted the correct classes for each chromosome for
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all the test results. The precision score for YOLO was not better than Faster
RCNN because we are using a small epoch number, using more images and
a higher epoch number will result in a much better result. However, YOLO
will take a very long duration to train the model for slight improvement so
I decided to keep the epoch number low as long as the model is performing
well. On the other hand, the models Faster RCNN, RFCN and SSN showed
similar results, after performing many tests, I observed that the model training
time is significantly slower than YOLO v5 and it needed more epochs to show
good precision and recall results. Furthermore, the number of bounding boxes
for these models were limited to 21-24 bounding boxes even after performing
many tests with 5000, 6000, 7000, 8000, 9000, and 10000 epochs which took
more than 8 hours to run the 10000 epochs for these 3 models without showing
any improvement in the recall and precision.



Chapter 6

Conclusion and Future work

We implemented 4 methods, Faster RCNN, RFCN, SSN, and YOLO v5 for
chromosome detection and classification to automate the process of karyotyp-
ing. First, as we only had 75 images, we performed several image augmen-
tation techniques on our dataset that resulted in generating 832 images to im-
prove the model prediction. Secondly, We trained each model using tens of
different hyperparameters to get the best results possible. Finally, We com-
pared the results of each model and we can clearly notice that YOLO v5 the
best. Unlike other models, YOLO v5 showed impressive recall, precision and
F1 scores, with the scores 0.98, 0.83 and 0.89, respectively. Furthermore,
it was able to detect and classify all the 46 chromosomes in the Karyogram
dataset. Our approach is a large step towards automating chromosome diag-
nostics using Artificial Intelligence and machine learning. Other chromosome
diagnostics approaches that use machine learning with unorganized chromo-
some datasets instead of Karyogram datasets have significantly low accuracy
scores for detecting and predicting chromosome abnormalities. Thus, we have
to first take this step towards automating karyotyping then we can use machine
learning for chromosome abnormality detection using the results used for clas-
sification.
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