ahe

L,
FKTH

VETENSKAP
28 OCH KONST 2%

e o

Degree Project in Information and Communication Technology

Second cycle, 30 credits

Decoupling Popularity Bias and User
Fairness in LLM-Based
Recommendation Systems
A prompt-engineering approach to achieve accurate,

exposure-balanced, and demographically fair recommendations

MUHAMMAD HAMAD

Decoupling Popularity Bias and
User Fairness in LLM-Based
Recommendation Systems

A prompt-engineering approach to achieve
accurate, exposure-balanced, and demographically
fair recommendations

MUHAMMAD HAMAD

Master’'s Programme, ICT Innovation, 120 credits
Date: July 2, 2025

Supervisor: Shirin Tahmasebinotarki
Examiner: Amir H. Payberah
School of Electrical Engineering and Computer Science
Host company: HOLVI Payment Services, Helsinki Finland
Swedish title: Att frikoppla popularitetsbias och anvandarrattvisa i
LLM-baserade rekommendationssystem
Swedish subtitle: En snabb och effektiv metod for att uppna korrekta,
langsiktiga och demografiskt rattvisa rekommendationer

© 2025 Muhammad Hamad

Abstract | i

Abstract

Large Language Models (LLMs) are rapidly being adopted as “plug-and-
play” recommenders that require no task-specific training, although their
recommendations can still face two long-standing problems: popularity bias
(overexposing blockbusters) and consumer unfairness (unequal treatment of
users who differ only in sensitive attributes). This thesis investigates whether
these problems can be decoupled and simultaneously mitigated purely through
prompt engineering, with no access to model weights.

Working with the MovieLens-1M corpus, we generate 434,880 prompts
that vary three dimensions: how a user’s historical tastes are sampled
(top-rated, most recent, or a newly proposed ’polarized’ mix of likes and
dislikes), whether sensitive attributes are disclosed (neutral versus gender—
age, occupation, or all), and which popularity debiaser has been applied (from
a hard ’exclude-popular’ order to a gentle “temporal-diverse” request). We
evaluate every prompt with a triad of metrics: Hit-Rate for accuracy, log-
popularity difference (LPD) for popularity bias, and Jaccard similarity for the
stability of recommendations when sensitive attributes are toggled on or off.

The results reveal four insights. First, supplying the LLM with a rich,
polarized taste signal increases accuracy by 42%. Second, temporal diversity
reduces popularity bias by 0.6 log-units while incurring only a 1% loss in
accuracy, whereas hard “exclude-popular” filters decrease accuracy by up to
65%. Third, popularity bias and user fairness are orthogonal; once popularity
is neutralized, adding even minimal demographic information still halves
list overlap, confirming that the two dimensions must be audited separately.
Finally, only one configuration, polarized sampling strategy, temporal-
diverse debiaser, and attribute-neutral prompt, simultaneously satisfies strict
thresholds on accuracy (HR=0.85), popularity bias ([LPD|<0.8), and fairness
(Jaccard=0.41).

These results show that lowering popularity bias alone does not guarantee
fairness, underscoring the need to handle each bias independently. These
findings establish prompt engineering as a lightweight yet powerful lever for
balancing accuracy, long-tail exposure, and demographic fairness in LLM-
driven recommender systems without model retraining. Beyond empirical
insights, the thesis contributes a rigorous evaluation framework and practical
guidelines to build fair, bias-aware recommendation systems with large
language models.

ii | Abstract

Keywords

Large Language Models, Recommender Systems, Popularity Bias, Algorith-
mic Fairness, Prompt Engineering

Sammanfattning | iii

Sammanfattning

Stora sprdkmodeller antas snabbt som ’plug-and-play”-rekommendationer
som inte krdver ndgon uppgiftsspecifik utbildning, dven om deras rekom-
mendationer fortfarande kan forvirra tva langvariga problem: popularitetsbias
(6verexponering av storfilmer) och orittvisa bland konsumenter (ojimlik
behandling av anvindare som bara skiljer sig at i skyddade attribut). Denna
avhandling undersoker om dessa problem kan frikopplas och samtidigt mildras
enbart genom prompt engineering, utan tillgdng till modellvikter.

Med hjilp av MovieLens-1M-korpusen genererar vi 434 880 prompts
som varierar i tre dimensioner: hur en anvindares historiska smak samplas
(topprankad, senaste eller en nyligen foreslagen polariserad” blandning av
gilla- och ogilla-attribut), om kénsliga attribut avslojas (neutral kontra kon-
alder, yrke eller alla), och vilken popularitetsdebiaser som har tillimpats
(frdn en hard “exkludera-populédr” ordning till en mild tidsméssig-divers”
begiran for filmer himtade frin flera epoker). Vi utvirderar varje prompt
med en triad av mitvarden: Hit-Rate for noggrannhet, log-popularitetsskillnad
(LPD) for popularitetsbias och Jaccard-likhet for rekommendationernas
stabilitet ndr kénsliga attribut dr aktiverade eller avaktiverade. Resultaten
avslojar fyra insikter. For det forsta Okar noggrannheten med 42 %
om LLM forses med en rik, polariserad smaksignal. For det andra
minskar tidsmissig méngfald popularitetsbias med 0,6 log-enheter samtidigt
som det bara medfor en forlust pd 1 % i noggrannhet, medan héirda
“exkludera populéra” filter minskar noggrannheten med upp till 65 Y%.
For det tredje ar popularitetsbias och anvéndarrittvisa ortogonala; nér
popularitet dr neutraliserad, halverar dven minimal demografisk information
listan, vilket bekréftar att de tvd dimensionerna maste granskas separat.
Slutligen uppfyller endast en konfiguration, polariserad samplingsstrategi,
tidsmaéssigt diversifierad debiaser och attributneutral prompt, samtidigt strikta
trosklar for noggrannhet (HR=0,85), popularitetsbias ([LPD|<0,8) och rittvisa
(Jaccard=0,41). Dessa resultat visar att enbart minskad popularitetsbias
inte garanterar rittvisa, vilket understryker behovet av att hantera varje
bias separat. Dessa fynd etablerar prompt engineering som en ldtt men
kraftfull hivstdng for att balansera noggrannhet, exponering med lang
svans och demografisk rittvisa i LLM-drivna rekommendationssystem utan
modellomskolning. Utover empiriska insikter bidrar avhandlingen med ett
rigorost utviarderingsramverk och praktiska riktlinjer for att bygga rittvisa,
biasmedvetna rekommendationssystem med stora sprakmodeller.

iv| Sammanfattning

Nyckelord

Stora Sprakmodeller, Rekommendationssystem, Popularitetsbias, Algoritmisk
Rattvisa, Promptkonstruktion

Acknowledgments | v

Acknowledgments

In the name of Allah, the Most Gracious, the Most Merciful.

This journey could not have begun—Iet alone reached its destination—
without the unwavering prayers of my family in Pakistan. Leaving my parents,
my beloved wife, and our two beautiful daughters was the hardest decision of
my life, and every success I have tasted here is a reflection of their strength. My
father, whose faith in education is matched only by his generosity, paid my very
first tuition fee and planted the seed that has now borne fruit. My daughters
whisper a simple prayer each night—*“O God, make our father successful”—
and, by His grace, that prayer has carried me through every moment of doubt.

I am deeply grateful to the EIT Digital Master School for granting me the
opportunity to pursue its double-degree programme at KTH Royal Institute of
Technology, Sweden, and Aalto University, Finland. The academic rigour,
exposure to diverse cultures, and the many events hosted across Europe have
broadened my horizons far beyond the lecture room.

I wish to acknowledge Professor AmirH. Payberah, my examiner, for
organising regular progress meetings, asking the incisive questions that kept
me on course, and demonstrating scholarly integrity in action. My heartfelt
gratitude also goes to my supervisor, Dr Shirin Tahmasebinotarki, whose
technical insight, constructive critique, and generous sharing of resources
transformed vague ideas into a concrete methodology.

My warmest thanks go to my mentor, Mr Ronald Clark, whose calm advice
and clear vision guided my every professional decision. His mentorship has
been an anchor throughout this marathon.

To my friends and colleagues in Stockholm, Helsinki, and beyond—thank
you for the late-night debugging sessions, and the sense of community you
brought into my life far from home.

Finally, to all those whose names may not appear on these pages but whose
kindness and prayers have shaped this work, please accept my sincere thanks.
May Allah reward you abundantly.

Stockholm, July 2025
Muhammad Hamad

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Background 1
1.2 Problem 3
1.3 Purpose e e 5
1.4 Goals e 5
1.5 Research Methodology 6
1.6 Delimitations 7
1.7 Structure of the thesis 9
2 Background 11
2.1 LLM-Based Recommender Systems 11
2.1.1 Large Language Models for Recommendation 11
2.1.2 Prompt Engineering for Recommendation 12
2.1.3 Zero-Shot Recommendation Performance 13
2.2 Fairness and Bias in LLM-Based Recommender Systems . . . 14
2.2.1 Popularity Bias in LLM Recommendations 14
2.2.2 Consumer-Side Fairness 15
2.2.3 Item Side Fairness and Popularity Bias 17
2.3 Challenges and Limitations of LLM-Based Recommenders . . 18
24 RelatedWork 19
24.1 LLM-Based Recommendation Systems 19
2.4.2 Fairness in LLM-Based Recommendation 20
2.4.3 Fairness and Popularity Bias in Traditional Recom-
mendersl 21
2.4.4 Bias in Language Model-Based Information Access . 23
2.5 Summary e e e e e e 23
3 Method or Methods 25

3.1 ResearchProcess 25

viii | Contents

3.2 Research Paradigm 26
33 DataCollection, 27
33.1 Dataset 27

332 LLMOutputs e 28

3.4 Experimental design/Planned Measurements 28
3.4.1 Hardware/Softwaretobeused 31
34.1.1 Hardware 31

34.12 Software, 32

3.5 Assessing reliability and validity of the data collected 32
3.5.1 Validityof method 32

3.5.2 Reliability of method 33

353 Datavalidity 33

3.5.4 Reliabilityofdata. 33

3.6 Planned Data Analysis 34
3.6.1 Data Analysis Technique 34

3.6.2 SoftwareTools 35

3.7 Evaluation Framework 35
37.1 HitRate(HR) 35

3.7.2 Log Popularity Difference (LPD) 36

3.7.3 Jaccard Similarity 36

4 Implementation 39
4.1 Profiling Strategies 40
4.2 Fairness Injection 42
4.2.1 Bias Mitigation Strategies 43
4.2.2 Prompt Examples and JSON Format 44

4.2.3 Naming Convention and Prompt Combination Count . 46

4.3 Fuzzy Matching with RapidFuzz: 46
4.4 Metric Interplay and Evaluation Logic 47
S Results and Analysis 49
5.1 Overview e 49
5.2 Interpreting Aggregated Metrics 49
5.3 Isolated (Single-Factor) Effects 51
5.3.1 Effects of Profiling Strategy 51

5.3.2 Effects of Bias Mitigation Configurations 52

5.3.3 Effects of Sensitive-Attribute Injections 55

5.4 Two-Factor Interaction Effects 55

5.4.1 Profiling Strategy x Bias-Mitigation Interaction Effects 56

Contents | ix

5.4.2 Bias-Mitigation x Fairness-Attribute Interaction Effects 58
5.4.3 Profiling Strategy x Fairness Attributes Interaction

Effects 61
5.5 Unified Perspective and Cross-Metric Synthesis 63
5.5.1 Deeper Insights from the 72-row Grid 68
5.5.2 Actionable design strategy 69
5.5.3 The most optimal configuration 70
6 Discussion 71
6.1 Interpretation of Principal Findings 71
6.1.1 Popularity-Bias Control 71
6.1.2 Demographic Fairness 71
6.1.3 Predictive Accuracy 72
6.1.4 Synthesis: A Single Optimal Triplet 72

6.2 Why Decoupling Popularity Bias from User Fairness Is
Essential? 72
6.3 Relation to Existing Literature 73
6.4 Implications for Recommender-System Design 74
6.4.1 Theoretical 74
6.4.2 Methodological 74
6.43 Practical oL 75
6.5 Answer to the Research Question 75
7 Conclusions and Future work 77
7.1 Conclusions e 77
7.2 Limitations 78
7.3 Reflection 80
7.3.1 Social implications 80
7.3.2 Ethical considerations 81
7.3.3 Alignment withthe UN SDGs 81

References 83

x| List of Figures

List of Figures

3.1

5.1
5.2

5.3
54
5.5
5.6

5.7
5.8

59

5.10

5.11

5.12

5.13

Research Process 26
Hitrate Based on popularity debiasing technique 53
Log Popularity Difference based on popularity debiasing

technique 54
Hitrate of Startegy xBias Mitigation 57
Log Popularity Difference of Startegy xBias Mitigation 57
Hit Rate of Bias Mitigation strategies xfairness group 59
Log Popularity Difference of Bias Mitigation stratgey xfair-

NESS ZIOUP « & v v v v v e e e e e e e e e e e e e e 60

Jaccard Similarity of Bias Mitigation strategies xfairness group 60
Heatmap of Log Popularity Difference of Bias Mitigation

stratgey xfairness groupo L. L 61
Log Popularity Difference of Profiling Strategy xFairness
Injection 63
Hit Rate of Profiling Strategy xBias Mitigation xFairness
Injection e 64
Jaccard Similarity of Neutral vs Prompt Variant in-Polarized
R 77723 65
Jaccard Similarity of Neutral vs Prompt Variant in-Recent
SIFATEZY v v v v o e e e e e e e e e e e e e e e e e e e 65

Jaccard Similarity of Neutral vs Prompt Variant in-Top-rated
SIFATegY . . . o o e e e e e e e e e e e e e 66

List of Tables | xi

List of Tables

3.1

5.1
5.2

53
54
5.5
5.6
5.7
5.8

59

6.1

Core components of the offline testbed

Evaluation metrics for recommender system experiments . . .

Profiling Strategies: Impact on Recommendation (Fair-

ness/Bias in Reference Settings)

Bias Mitigation: Impact on Recommendation (Strategy/Fair-

ness in Reference Settings)

Fairness configurations: Impact on Recommendation (Strate-

gy/Bias in Reference Settings)
Profiling Strategy x Bias-Mitigation Interaction Effects
Bias-Mitigation x Fairness-Attribute Interaction Effects
Profiling Strategy x Fairness-Attribute Interaction Effects . . .

Full factorial analysis of recommender system across profiling

strategies fairness attributes, and bias mitigation cues metrics .
Deeper Insights from the 72-row Grid

Workflow of Analytical Depth and Evolving Conclusions . . .

50

52

53

55
58
62
63

66
69

74

xii | List of Tables

Introduction | 1

Chapter 1

Introduction

On today’s digital platforms, what people read, watch, or buy is often decided
more by algorithms than by human editors. Recommender systems now play
a major role in shaping what content gets seen and what remains hidden.
A single algorithmic choice can bring a little-known item into the spotlight
or bury it under a wave of popular content. As Large Language Models
evolve beyond simple chat tools into more general-purpose recommendation
systems, they offer more personalized and interactive suggestions. But
they also carry forward—and sometimes worsen—the biases seen in earlier
systems. This thesis explores how these models direct users’ attention, and
whether that attention is fairly shared between users and lesser-known content.
Understanding and improving this process is a key challenge in building more
balanced and inclusive recommendation systems.

1.1 Background

Recommender systems have become one of the primary channels through
which people discover movies, music, products, and information online. These
systems greatly influence what content users see, raising concerns about
the fairness and biases in their recommendations. One well-documented
issue is popularity bias — the tendency for recommendation algorithms to
disproportionately favor popular items while overlooking less popular ones.
This bias can be self-reinforcing and unfair, as it amplifies the visibility of
already popular content and marginalizes niche items and their creators. It
also risks harming consumers whose tastes lie in the long tail, as they receive
fewer relevant recommendations aligned with their unique preferences.
Inrecent years, the advent of artificial intelligence has introduced powerful

2| Introduction

Large Language Models into the recommendation landscape. LLMs like GPT-
3 and ChatGPT are pretrained on vast text corpora and exhibit capabilities
such as understanding context, reasoning with knowledge, and generating
coherent text [1]. This has led to the emergence of a new paradigm termed
Recommendation via LLM (RecLLM), in which an LLM is used to generate
or aid recommendations based on user input. The integration of LLMs into
recommender system architectures is promising because these models come
with extensive world knowledge and the ability to generalize. For example, an
LLM-based system can potentially reason that “users who enjoyed a particular
novel might also appreciate a film adaptation of that novel,” leveraging
connections that may be missed by narrow collaborative filtering models.
However, incorporating LLMs also raises critical questions. Researchers
have noted concerns that using an LLM as a recommender could exacerbate
popularity bias, since popular entities are more likely to appear in the model’s
training data and thus in its outputs. Conversely, the flexibility of prompt-
based LLM recommendations might offer new means to mitigate such bias
(for instance, by explicitly instructing the model to consider less well-known
items).

Beyond item popularity, there are also worries about user-side fairness:
LLM:s trained on uncurated Internet text may contain latent social prejudices,
which could be reflected in whom or what they recommend to different
users. If a recommender system systematically favors or disfavors certain
user demographics (intentionally or not), that poses a serious fairness
problem. A dual research question thus arises: How do we ensure fairness in
recommendations when using LLMs, and in particular, how can we alleviate
popularity bias without introducing or exacerbating biases against users?

Early studies have offered interesting insights. Lichtenberg et al.
compared a simple LLM-driven recommender in [2] with traditional
algorithms on a movie dataset and found that the LLM’s recommendations
were less skewed toward popular titles. This suggests that LLMs might
inherently generate more diverse, long-tail recommendations, perhaps because
they can draw on a wider range of knowledge beyond the most popular
catalog items. On the other hand, separate research focusing on user fairness
indicates that LLM recommenders can still reproduce unwanted biases. For
example, when evaluating ChatGPT’s recommendation behavior, Zhang et al.
observed significant disparities in [3] the recommendations given to users of
different genders and age groups, even when those users had similar taste
profiles. In their benchmark tests (covering attributes such as gender, age,
and nationality), ChatGPT’s recommendations showed measurable unfairness

Introduction | 3

toward certain demographic groups. These findings underscore that while
LLM-based recommenders may help with one aspect (popularity bias), they
do not automatically resolve other fairness concerns. Instead, decoupling
popularity bias and user fairness becomes crucial in this context: we need to
understand and address each of these issues without inadvertently worsening
the other.

This thesis is situated at the intersection of these emerging concerns
in recommender systems. It builds on the premise that improving long-
tail (popularity) fairness and ensuring equitable treatment of users are both
essential goals, and it aims to contribute insights and methods for achieving
both in the realm of LLM-powered recommendations.

1.2 Problem

The core problem addressed in this thesis is the presence of popularity
bias and user fairness issues in LLM-based recommendation systems, and
how to decouple these two issues in order to tackle them effectively. We
define popularity bias in recommendations as the phenomenon where “popular
items are disproportionately recommended, overshadowing less popular but
potentially relevant items”. In other words, a recommendation algorithm
afflicted by popularity bias will overly concentrate its suggestions on the most
popular items in the catalog, leading to a lack of diversity and neglect of the
long-tail. By contrast, we define user-side fairness (also known as consumer
fairness) as the principle that users with different backgrounds or attributes
should receive equitable recommendation quality and treatment. A fair
recommender should not, for instance, systematically favor one demographic
group over another in terms of recommendation relevance or diversity. In
traditional recommender research, user fairness is often evaluated with respect
to sensitive user attributes such as gender, age, or ethnicity. If a system’s
performance or outputs differ significantly across these groups, it may be
deemed unfair.

While popularity bias and user fairness are distinct concepts, they can
interact in subtle ways. A system biased toward popular items might
implicitly disadvantage users whose taste lies outside the mainstream (a form
of indirect unfairness), and efforts to enforce user fairness (e.g., making
recommendations gender-neutral) might have side effects on which items
are recommended. Original problem and definition The key research
problem here is how to measure and mitigate popularity bias in an LLM-
based recommender without degrading user fairness, and how to ensure

4 | Introduction

fairness across users without re-introducing popularity bias through another
avenue. Decoupling these concerns means developing approaches to address
each bias in isolation and understanding their interplay. Recent literature
has highlighted that popularity bias can directly impact the overall fairness
of recommendations, but in the context of LLM-based systems this issue
remains largely unexplored. Research Question How can popularity bias
be effectively mitigated in LLM-based recommendation systems, and what
are the implications of this mitigation for user fairness? Scientific and
engineering issues Addressing the above problem involves several scientific
and engineering challenges. These include:

* Representing user preferences for an LLM: Unlike a conventional
recommender that directly accesses a user’s interaction history, an
LLM must be prompted with a summary of the user’s preferences.
Determining how to encode a user profile into the prompt effectively
is non-trivial. Without careful design, the LLM may not accurately
understand the user’s past behavior or may ignore important preference
details.

* Extremely large candidate item space: Recommending from a catalog
of thousands or millions of items poses a challenge for a generative
model. An LLM might have knowledge of many items in its parameters,
but directing it to choose specific relevant items out of the entire space
is difficult. Wang and Lim in [4] highlight that to enable effective LLM
recommendations, one often needs an external candidate generation or
filtering step to narrow down the item set, before the LLM ranks or
recommends from those candidates. Balancing open-ended generation
with catalog constraints is thus an engineering hurdle for real-world
deployment.

* Lack of established evaluation metrics for RecLLM fairness:
Because the LLM-based recommendation paradigm differs from
traditional matrix factorization or deep learning recommenders, some
conventional fairness and bias metrics may not directly apply. For
example, metrics assuming a fixed model or requiring retraining for
counterfactual analysis are hard to use with an API-based LLM that
generates recommendations on the fly. The research community has had
to devise new evaluation frameworks (e.g. the FaiRLLM benchmark
[5]) tailored to LLM recommenders to measure biases and fairness. This
indicates a need for novel methodology to assess the fairness of RecLLM
outputs reliably.

Introduction | 5

» Balancing popularity bias mitigation with user fairness: Perhaps the
most subtle challenge is that optimizing one dimension of fairness can
impact the other. Reducing popularity bias (shifting recommendations
toward the long-tail) might inadvertently affect different user groups in
different ways — for instance, if certain user demographics have more
niche tastes, they might benefit more from long-tail recommendations
than others. Conversely, procedures to equalize recommendations
for different user groups could interfere with algorithms intended to
promote item diversity. Recent LLM-based studies have shown that
the outcomes of fairness interventions can be sensitive to how user
profiles are constructed or sampled. This complexity means designers
must carefully trade off between popularity fairness and user fairness
objectives, ensuring that gains in one do not translate to losses in the
other.

* Control and interpretability of LLM outputs: From an engineering
perspective, LLMs are generative and stochastic, which makes it
harder to ensure a specific fairness constraint compared to, say, re-
ranking a list deterministically. An LLM might occasionally produce
an irrelevant or even non-existent recommendation (a hallucination)
if prompted inadequately. Ensuring that the model’s output stays
within acceptable bounds (both in content and in respecting fairness
constraints) is challenging and requires iterative prompt refinement or
additional filtering. In our work, we do not fine-tune the LLM itself,
so our ability to control its intrinsic behavior is limited. This places
greater importance on prompt engineering and post-processing to guide
the model towards fair outcomes.

1.3 Purpose
1.4 Goals

The goal of this project is to develop, evaluate, and document a prompt-
engineered, LLM-based recommender system that (i) achieves high predictive
accuracy, (ii) significantly mitigates popularity bias, and (iii) ensures equitable
treatment across sensitive user attributes. This has been divided into the
following three subgoals:

1. Subgoal 1

6 | Introduction

Design and validate prompt-engineering techniques that mitigate
popularity bias while preserving recommendation utility and user
fairness.

2. Subgoal 2

Advance knowledge on relationship of accuracy, popularity bias
and consumer side unfairness in RecLLMs

3. Subgoal 3

Prove competence in conceiving, executing and documenting a full
ML-system study under real-world constraints.

1.5 Research Methodology

To achieve the above goals, we adopt a quantitative experimental research
methodology. The study involves using an existing movie ratings dataset
and a Large Language Model to simulate a recommendation scenario. For
concreteness, we focus on the popular MovieLens-1M dataset (a well-known
benchmark of user—movie ratings) as our source of user preference data. We
interface this dataset with a state-of-the-art LLM (specifically, OpenAl’s GPT-
4.1 nano model) by constructing prompts that convey a given user’s historical
prefrences and asking the LLM for recommendations. This prompt-based
approach allows the LLM to act as a zero-shot recommender — i.e. the model
generates personalized recommendations without any additional training on
the dataset, relying only on its pretrained knowledge and the prompt context.
We draw on recent techniques explained in [4] for next-item recommendation
via prompting to design effective prompts (for example, by instructing the
model to consider the user’s favorite genres or by explicitly requesting a
list of N movie suggestions). We will evaluate two main aspects of the
LLM’s recommendations: (1) popularity bias, and (2) user fairness. To assess
popularity bias, we will evaluate the log popularity difference of recommended
items vs ground truth. To evaluate user-side fairness, we do not create artificial
counter-factual (e.g., “male vs. female”) clones of the same user profile.
Instead, we leverage the real sensitive attributes recorded in the MovieLens-
1M data for each user. For every user, we generate two types of prompts:

1. Neutral prompt — contains only user’s preference history (e.g.
polarized sample of liked and disliked films) and omits all sensitive

Introduction | 7

fields.

2. Attribute-aware prompt — is identical to the neutral prompt except that
it explicitly inserts the actual sensitive value drawn from MovieLens
(e.g., “Gender: Female”, “Age group: Young”, or “Occupation:
Engineer”).

The LLM is queried once with each type of prompt, producing two
recommendation lists. Fairness is then assessed by measuring the Jaccard
similarity between these two lists. High Jaccard (i.e., the two lists largely
overlap) implies that the model’s recommendations are insensitive to the user’s
sensitive attribute — an indicator of fair treatment.Low Jaccard signals that
the attribute changes the items suggested, pointing to potential unfairness.
Because every comparison uses the same user with and without their own
attribute, this design isolates the influence of the sensitive field while keeping
the preference signal and ground-truth tastes constant. The neutral list also
serves as a reference for other metrics (e.g., hit-rate and popularity bias),
allowing us to gauge how much each fairness intervention disturbs relevance.
Finally, our methodology includes a bias mitigation experiment. Based on
the initial evaluation, we will attempt to reduce popularity bias in the LLM’s
outputs and observe the effects. The technique used is prompt engineering for
diversity: for instance, augmenting the prompt with an instruction like “Please
include some lesser-known or under-appreciated movies the user might enjoy”
to explicitly encourage long-tail recommendations. After applying such
interventions, we will re-evaluate the recommendations, measuring both the
change in popularity bias metrics (did the long-tail exposure improve?) and
any change in fairness metrics (did the interventions maintain fairness between
user groups, or introduce any new disparities?). All experiments are conducted
in an offline setting using the historical dataset and simulated user profiles,
which allows for controlled evaluation of metrics without involving live user
feedback.

1.6 Delimitations

The scope of this thesis is defined by a few key delimitations:

* Domain and Dataset: Our experiments are limited to the movie
recommendation domain (using MovieLens data). Focusing on one
domain allows us to deeply analyze bias and fairness with domain-
specific context, but it means the findings may not directly generalize

8| Introduction

to other domains (such as music or e-commerce) without additional
investigation.

» Sensitive Attributes Considered: The fairness evaluation in this
thesis is deliberately limited to those user attributes that are explicitly
recorded in the MovieLens-1M dataset and can therefore be injected
into prompts in a verifiable, controlled manner. Four prompt variants
are employed. In the neutral variant no sensitive fields are added,
providing a reference list for each user. The gender_age_only variant
appends the user’s gender (M or F) and coarse-grained age group
(Teen, Young, or Adult), reflecting the two demographic factors
most frequently examined in recommender-system fairness studies.
The occupation_only variant adds the user’s occupation code (one
of 21 predefined roles in MovieLens), offering a socio-professional
dimension that is less explored yet still directly available. Finally, the
all_attributes variant combines gender, age group, and occupation to
give a limited, three-way intersectional test. Attributes not present in
MovieLens—such as ethnicity, geographic location, or income—are
excluded because reliable ground-truth values are unavailable, making
any fairness claim unverifiable; likewise, richer intersectional identities
beyond the gender_age_occupation triple fall outside the scope of this
work. Constraining the study to recorded demographics ensures that all
fairness comparisons are grounded in real user metadata.

 Fairness Definitions: We focus on group fairness at the consumer side
— measuring whether different user groups (e.g., defined by gender)
receive equitable recommendations. We do not extensively cover
individual fairness (the idea that similar individuals should get similar
recommendations) or provider-side fairness beyond popularity bias
(e.g., fairness for item creators not related to popularity). While these
are important, our work emphasizes the long-tail (item popularity)
fairness and user group fairness as the two primary angles.

 LLM Mode of Use: We use the LLLM in a zero-shot, prompt-driven
manner only. Due to resource constraints, we do not fine-tune or retrain
the LLM on the recommendation dataset. This limits our ability to
adjust the model’s internal parameters for fairness; instead, we rely on
prompt manipulation and output processing. It also means the LLM’s
knowledge is fixed to its pretraining data). We acknowledge that this
may cause the LLM to be unaware of very recent movies or trends, but

Introduction | 9

mitigating that would require techniques (like retrieval augmentation or
model updating) which are beyond our scope.

* Offline Evaluation: All evaluations are conducted offline on historical
data and simulated scenarios. We do not deploy a live system or
collect feedback from real users. As such, dynamic effects (e.g.,
how user behavior might change in response to less popularity-biased
recommendations, or how an unfair recommendation might affect user
engagement over time) are not captured in our study.

1.7 Structure of the thesis

The remainder of this thesis is organized as follows. Chapter 2 provides
background on the major topics relevant to our study, including an overview
of LLM-based recommender systems, the concepts of popularity bias and
fairness in recommendations, and related work in these areas. Chapter 3
and Chapter 4 describes the research methodology in detail, including the
dataset, the design of the LLM-based recommendation approach, the baseline
comparator, and the metrics and experimental procedures used. Chapter 5
presents the results of the experiments, focusing on the measurements of
popularity bias and user fairness for both the LLM recommender and the
baseline, and reporting the effects of any bias mitigation strategies. Chapter 6
discusses the implications of the findings, examining how reducing popularity
bias interacts with user fairness and what trade-offs or synergies were
observed, as well as situating the results in the broader context of recommender
system research. Finally, Chapter 7 concludes the thesis, summarizing the
contributions and offering suggestions for future work on developing fair and
bias-aware LLM-driven recommender systems.

10 | Introduction

Background | 11

Chapter 2

Background

2.1 LLM-Based Recommender Systems

2.1.1 Large Language Models for Recommendation

Large Language Models have recently opened new possibilities for recom-
mender systems [6]. Traditionally, recommendation algorithms have relied on
patterns in user—item interaction data (e.g., matrix factorization of user ratings
or graph-based similarity) to predict what a user will like. In contrast, an LLM
can leverage its broad training on textual knowledge to make recommendations
in a more semantic or knowledge-driven way. The concept of using LLMs as
recommenders has gained interest only in the last couple of years. In an LLM-
based recommender, we typically provide the model with a textual description
of the recommendation context (such as a summary of the user’s preferences
or a query asking for suggestions), and then let the model generate item
suggestions in natural language. This approach can be used in conversational
recommendation scenarios (where the system and user engage in dialogue),
or as a one-shot predictor that outputs a list of recommended items given a
prompt. One reason LLMs are seen as promising for recommendations is
their ability to incorporate external knowledge and reasoning. Because they
are trained on vast swaths of internet text, LLMs have embedded knowledge
about items (for example, plot descriptions of movies, popularity and cultural
impact, or the content of user reviews) that standard collaborative filtering
models lack. This means an LLM might know that “The Godfather” is a
highly acclaimed crime drama film and could recommend it to someone who
likes crime dramas, even without seeing a single user rating. Additionally,
LLMs can perform cross-domain reasoning: an LLM could learn from a user’s

12| Background

movie preferences and suggest a novel or book that aligns with those tastes,
leveraging its understanding of storylines and adaptations. For instance, if a
user loves The Lord of the Rings films, an LLM might recommend the original
Tolkien books or similar fantasy literature, thereby connecting domains
(movies to books) through its general world knowledge. These capabilities hint
at a more flexible recommendation engine that is not tied to a single domain
or narrow user—item matrix. However, using LLMs for recommendation is
not straightforward. A key difference is that LLMs generate free-form text.
Ensuring that the output corresponds exactly to valid items in a catalog can
be challenging. There are two general strategies for building LLM-based
recommenders: (1) Generative recommendation via prompting, where the
LLM is directly asked to produce a list of recommendations (possibly with
some guiding context or examples), and (2) Reranking or scoring, where the
LLM is given a set of candidate items (e.g., top results from a traditional
recommender or search engine) and asked to refine or justify which of those
best match the user’s needs. The first strategy leverages the LLM’s knowledge
and language generation to produce novel recommendations in a zero-shot
manner, while the second uses the LLM more as a knowledgeable re-ranking
model that can incorporate richer criteria (like analyzing item descriptions or
user reviews in a human-like way). This thesis mainly focuses on the former
approach (direct generation), aligning with the recent surge in research on
zero-shot LLM recommenders.

2.1.2 Prompt Engineering for Recommendation

In deploying LL.Ms as recommenders, prompt engineering plays a critical role
[7]. Prompt engineering refers to the craft of designing the input query or
instructions to the LLM in order to elicit the desired output. Because LLMs
do not inherently understand that they should produce a list of item identifiers
or titles for recommendations, we must guide them with an appropriate
prompt. A simple example prompt might be: “The user has recently enjoyed
movies X, Y, and Z. What other movies might they like?” The model then
completes this prompt by generating some suggestions. This straightforward
approach can work, but research has found that more structured prompts
often yield better results. One advanced prompting strategy, introduced
by Wang and Lim in [4], is called Zero-Shot Next-Item Recommendation
(NIR) prompting. In their method, rather than asking the model directly for
recommendations, they break the task into a few sub-steps (all handled within
a single prompt). For instance, the prompt might first instruct the LLM to

Background |13

summarize the user’s preferences or identify the main themes from the user’s
liked items; next, it might ask the LLM to consider a set of candidate items
(perhaps generated by an external filtering module) and pick which ones best
match those preferences; finally, it asks the LLM to output a ranked list of,
say, 10 recommended items. This 3-step prompting approach (preference
understanding — candidate consideration — recommendation listing) was
shown to guide GPT-3 in producing high-quality recommendations. Crucially,
providing a bit of “chain-of-thought” structure in the prompt can help the
LLM focus and avoid superficial or generic suggestions. Another important
aspect of prompt engineering is giving the LLM explicit cues or constraints to
mitigate bias. Since our focus includes popularity bias, one can experiment
with prompt phrasing that encourages long-tail recommendations. For
example, adding a line like “Try to include some lesser-known titles that the
user might not have heard of” could nudge the model to retrieve more niche
knowledge from its memory. This idea of prompt tuning for bias mitigation
suggests that carefully crafted prompts might reduce popularity bias in LLM
recommendations, see [2]. The prompt effectively becomes our tool to steer
the LLM: we can emphasize diversity, specify the number of outputs, set
formatting (to ensure the model lists items clearly), or include additional
context (such as a brief user profile description) — all of which significantly
influence the recommendations the LLM will generate.

2.1.3 Zero-Shot Recommendation Performance

The feasibility of zero-shot LLM recommendation has been affirmed by initial
experiments. In the study by Wang et. al., their GPT-3 based recommender
(using the NIR prompting strategy described above) was evaluated on the
MovieLens 100K dataset [4] . Remarkably, even without any training on that
data, the LLM’s recommendations attained accuracy metrics (such as hit rate
and NDCQG) that were on par with, or even exceeded, those of some strong
sequential recommendation models trained on the same dataset [4]. In fact,
the zero-shot GPT-3 approach outperformed certain state-of-the-art sequence-
based recommenders that had been fully trained on user interaction sequences.
This result demonstrates the power of LLMs’ pretrained knowledge and
inference capabilities.

LLM-based recommender could achieve competitive recommendation
quality while inherently reducing the severity of popularity bias compared to
traditional models [2]. These successes have led to growing optimism that
LLMs might serve as a novel kind of recommender engine, especially useful

14| Background

in scenarios where little training data is available or where we want the system
to generalize beyond narrow patterns. It’s worth noting, however, that most
evaluations so far are offline and on relatively static datasets. The true test
of an LLM recommender’s performance would be in a live setting, where
it must handle evolving user interests, very large item catalogs in real-time,
and efficiency constraints. Nonetheless, the current evidence indicates that
zero-shot recommenders powered by LLMs are a viable concept, highlighting
ample research opportunities for using LLMs in recommendation tasks.

2.2 Fairness and Bias in LLM-Based Recom-
mender Systems

2.2.1 Popularity Bias in LLM Recommendations

A central question for our work is whether LLM-based recommendations
suffer from the same popularity bias as traditional systems, and if so, how
that bias manifests. The evidence so far is mixed but intriguing. On
one hand, an LLM’s training data is likely to contain a lot of information
about widely known items (for instance, blockbuster movies are discussed
extensively online, whereas obscure indie films are rarely mentioned) [2].
On the other hand, LLMs do not have direct access to platform-specific
popularity signals — unlike a collaborative filter, an LLM isn’t directly reading
user interaction counts from a database; it’s generating recommendations
based on what it “knows” and the prompt it’s given. Lichtenberg et al.
(2024) tackled this issue by explicitly measuring the popularity bias of an
LLM’s recommendations versus a standard recommender system. They
introduced a principled way to quantify how skewed toward popular items
a recommendation list is, arguing that some existing metrics were not fully
adequate. Using their metrics, the comparison revealed that the LLM-based
recommender exhibited significantly less popularity bias than the traditional
algorithms on the same data. In other words, the LLM recommended a more
balanced mix of popular and less popular items, whereas the conventional
collaborative filtering approach heavily favored the head (most popular items).
This finding suggests that LLMs might inherently bring more diversity or
novelty into their recommendations. One hypothesis is that because the LLM
is generating items based on semantic associations and broad knowledge, it
can surface relevant long-tail items that a collaborative filter (which learns
mostly from frequency and co-occurrence patterns in the user data) might

Background |15

overlook. It’s also possible that, since the LLLM wasn’t explicitly optimized
for accuracy on historical user—item interactions, it doesn’t over-fit to majority
preferences the way a typical model might, thereby avoiding some of the
popularity-driven feedback loop. The result is potentially a fairer distribution
of recommendation attention across the item catalog. Of course, more research
is needed to confirm this behavior in other domains and with other LLM
variants. It is not guaranteed that every LLM will behave similarly — for
instance, if an LLM’s knowledge cutoff means it misses very recent or less-
documented items, it might inadvertently omit those from its suggestions
(which could introduce a bias toward older, well-documented popular items)
[8]. Nonetheless, the reduction of popularity bias observed in initial studies
is an encouraging sign that LLM-based recommenders could help promote
long-tail content.

2.2.2 Consumer-Side Fairness

In recommender systems, consumer-side fairness refers to the idea that
the system’s performance and behavior should be equitable across different
groups of users. In other words, a user should not receive poorer or
less useful recommendations simply because of some intrinsic attribute
like their gender, age, or ethnicity, when those factors are not actually
relevant to their tastes [9]. This form of fairness is analogous to fairness in
classification or ranking systems: we want to avoid systematic discrimination
whereby certain user groups are underserved or negatively impacted by
the recommendations. Ensuring consumer fairness is important for both
ethical reasons and user satisfaction — if a subset of users consistently gets
lower-quality recommendations, they are being disadvantaged and may lose
trust in the system. However, achieving user fairness in recommendations
is complicated by the fact that recommendation algorithms learn from
historical user behavior, which itself may carry societal biases. For
example, if historically a certain demographic group interacted less with
a platform (perhaps due to the platform’s content or external factors),
a collaborative filtering algorithm might inadvertently learn to give that
group fewer or less diverse recommendations, thereby reinforcing a lower
engagement cycle. This outcome is not a reflection of those users’ actual
preferences, but rather a byproduct of biased data. Traditional approaches to
fairness in recommender systems have borrowed concepts from fair machine
learning, introducing metrics like statistical parity (e.g., the similarity of
recommendation distributions between group A and group B) or equal

16 | Background

opportunity (e.g., ensuring that users in different groups with similar tastes
have similar chances of receiving relevant recommendations). Researchers
have also proposed methods such as re-ranking algorithms that adjust or
calibrate recommendation lists to improve fairness across demographics (for
instance, interleaving recommendations to ensure each user group gets a
proportional share of certain recommendation opportunities) [10] [11]. With
the introduction of LLM-based recommenders, these fairness concerns persist
and can become even more complex. LLMs may contain latent biases from
their training data (which is web text and can include stereotypes or societal
biases), and thus the recommendations they generate might reflect those biases
if not checked. For instance, an LLM might associate certain genres or
content with a particular gender due to stereotype text in its training corpus,
resulting in gender-biased recommendations. Evaluating the fairness of LLM-
based recommendations requires new approaches; Zhang et al. proposed the
FaiRLLM benchmark for this reason [3]. In their evaluation of ChatGPT’s
recommender behavior, they discovered that the model’s outputs were not
fair with respect to several sensitive user attributes. For example, the
recommendations presented to a user profile labeled as female versus male
showed systematic differences that were not explainable by taste alone —
indicating a gender bias in how the LLM generated suggestions. Similarly,
profiles with different age labels (but identical preference histories) received
different recommendations, pointing to age-based disparities. This example
highlights that even a highly sophisticated model like ChatGPT can carry
or introduce biases in personalized results. It is therefore imperative to
audit and adjust RecLLM systems for fairness just as one would for any
other recommendation algorithm. To mitigate user-side biases, a variety of
techniques are being explored. One approach is counterfactual testing and
prompt adjustment: essentially, querying the model in pairs of scenarios (with
and without a sensitive attribute mentioned) and then adjusting the prompts or
filtering the results to minimize any differences. Another approach is fine-
tuning or conditioning the model using balanced data . In general, the goal
is to ensure that the model’s recommendations depend primarily on a user’s
demonstrated preferences and not on demographic attributes that have nothing
to do with those preferences. In our thesis, we adopt some of these evaluation
strategies (e.g., comparing recommendations for same user profiles that differ
only in a demographic label) to diagnose fairness.

Background |17

2.2.3 Item Side Fairness and Popularity Bias

Beyond user-centric fairness, recommender systems also face fairness
questions on the item side — often framed in terms of giving fair exposure
to items or content providers. Popularity bias is essentially an item-side
fairness issue: if an algorithm predominantly recommends already-popular
items, it creates a “winner-takes-all” dynamic where a small subset of content
(and their producers) get the vast majority of attention, while other content
is largely ignored [12] [13]. This is considered unfair from the perspective
of content creators (especially new entrants or niche creators who don’t yet
have a large audience) and can also harm consumers by limiting the diversity
of content they are exposed to. Recommender systems are known to be
affected by popularity bias, and while this bias stems partly from human
tendencies, algorithms can amplify it, resulting in unfair treatment of both
end-users and content creators. In other words, the rich get richer: popular
items keep getting more exposure, and users end up confined to what is already
trending, potentially missing out on equally relevant but less famous items.
One way to view long-tail fairness is through the lens of equal opportunity
for items: ideally, every item that might be relevant to someone should have
a chance to be recommended, rather than being overshadowed purely due
to lack of initial popularity. Traditional algorithms, particularly those based
on collaborative filtering, often exacerbate popularity bias — they learn from
aggregate user behavior, which naturally skews toward popular items, thereby
reinforcing that skew in recommendations [13]. Over time, this feedback
loop can severely skew the recommendation ecosystem. As noted earlier,
initial evidence suggests that an LLLM-based recommender may naturally
exhibit less popularity bias than a conventional system . This could be a
significant positive: if LLMs inherently give more exposure to niche items,
they might promote long-tail fairness by default, reducing the need for complex
bias mitigation. Our work will explore techniques to decouple popularity
influence from the LLM’s recommendations — for example, by instructing
the model (via the prompt) to ignore how famous an item is and focus only
on relevance, we can test whether the model can be guided to be even more
long-tail-friendly. The ultimate goal is aligned with the fairness objective
from traditional recommender research: not letting popularity alone drive the
recommendations, but rather balancing popularity with personalization and
novel discovery. If LLM-based systems can achieve that balance more easily
or effectively, it would be a compelling advantage of this new technology.

18| Background

2.3 Challenges and Limitations of LLM-Based
Recommenders

Despite their promise, LLM-based recommenders face a number of challenges
and limitations.

* Scalability is one practical concern: running a large model for every
recommendation request can be computationally expensive and slow
[14]. Traditional recommender algorithms are typically designed
for efficiency (e.g., using precomputed user—item matrices or fast
vector computations), whereas querying an LLM involves significant
computation [15]. If an LLM is hosted via an API, there are also
monetary costs and latency to consider for each call.

* Moreover, the item space in a real system is huge — on the order of
thousands or millions of items — and naively asking an LLM to choose
from among all of these is infeasible. As noted earlier, Wang& Lim had
to incorporate an external candidate generation step precisely because
of this issue [4]. For large-scale use, a pure LLM approach likely needs
to be hybridized with traditional retrieval components to handle the
volume of items and return results in a timely manner [16].

* Another limitation is the static knowledge and recency of LLMs.
These models have a fixed training cutoff [17]. They do not
automatically know about new items introduced after their training. In
a live recommender system, new products, songs, or movies appear
frequently, and capturing the appeal of these fresh items is crucial. An
LLM would not have any information about a brand-new movie release,
so unless provided with that information via the prompt or an external
update mechanism, it cannot recommend that movie. This could cause
LLM-based recommenders to lag in adapting to trends or to favor older
content that was prevalent in their training data.

* Additionally, LLMs might occasionally generate recommendations that
are not valid or precise — for instance, mentioning a slightly incorrect
title or a non-existent item (an artifact of hallucination) [18]. Ensuring
that all outputs correspond to real, available items in the catalog
might require a post-processing step to verify or correct the LLM’s
suggestions.

Background |19

* Output control is thus a related challenge: the format and content
of the LLM’s recommendation output can vary. Unlike a traditional
system that outputs a fixed set of item IDs, an LLM might produce
a nicely formatted paragraph or a list of items with explanations.
Parsing the output to extract the recommended items reliably is an
extra engineering step. We have to design prompts that encourage the
LLM to list items clearly (e.g., enumerating them) and possibly limit
extraneous commentary, depending on how the recommendations will
be consumed by the downstream system or user.

* Finally, there are ethical and fairness considerations inherent to LLM
recommenders. Because LLMs learn from broad internet text, they
may carry forward biases present in that data. For example, if certain
genres or user communities are underrepresented or portrayed with
bias in the training corpus, the LLM’s recommendations might reflect
those biases (perhaps by systematically under-recommending content
by creators from those communities, or by associating certain content
with certain demographic profiles). Recent work underscores that LLM-
based recommendations can indeed perpetuate social biases, making
fairness evaluation imperative.

In summary, while LLMs introduce a powerful new approach to recommen-
dation, one must be mindful of these practical and ethical limitations. In many
cases, it may be necessary to combine LLMs with other system components
or apply special interventions (like bias mitigation prompts or result filters) to
achieve a robust and fair recommender solution.

2.4 Related Work

2.4.1 LLM-Based Recommendation Systems

Several key studies have begun exploring the use of LL.Ms for recommendation
tasks. Lichtenberg et al. were among the first to directly compare an
LLM-based recommender to traditional algorithms, in a study focused on
movie recommendations, see [2]. They found that a GPT-style LLM,
prompted to make movie suggestions, produced recommendations with
accuracy comparable to collaborative filtering and additionally showed lower
popularity bias in its outputs. Another foundational work by Wang and Lim
demonstrated the viability of zero-shot recommendation using GPT-3, see
[4]. By carefully prompting GPT-3 to assume the role of a recommender,

20 | Background

they got the model to generate next-item recommendations that rivaled,
and in some cases outperformed, conventional recommendation models on
standard benchmarks . These studies provided early evidence that large pre-
trained language models can serve as effective recommenders even without
domain-specific fine-tuning. Beyond these individual studies, the idea of
LLM-driven recommendation has garnered significant interest. The emerging
consensus is that LLMs bring new capabilities to recommender systems —
such as understanding contextual information or item content in a deep way,
and potentially addressing issues like cross-domain recommendations and
cold-start users — but they also introduce new challenges (like including
scalability and output control). Our thesis fits into this growing body of
work by focusing specifically on the bias and fairness implications of LLM
recommenders, which is a facet only briefly noted by early studies but not yet
deeply investigated.

2.4.2 Fairness in LLM-Based Recommendation

On the fairness front, research is just beginning to assess how LLM-based
recommenders behave. Zhang et al. took an early look at this issue with
the question “Is ChatGPT fair for recommendation?”. They developed a
benchmark called FaiRLLM in [3] to evaluate ChatGPT’s recommendations
for fairness across multiple user attributes. As discussed, their findings
revealed that ChatGPT’s zero-shot recommendations still exhibited noticeable
biases — certain user groups (defined by attributes like gender or age) received
systematically different or lower-quality recommendations. This work
underscored that deploying LLMs in recommenders does not automatically
resolve fairness issues and that new evaluation tools are needed to identify
and quantify these biases. Deldjoo and Di Noia in [5] extend Zhang et al.’s
FaiRLLM benchmark with CFaiRLLM, highlighting a central limitation of
the earlier work. FaiRLLM diagnoses consumer unfairness by comparing
the overlap between two recommendation lists—one generated with, and
one without, an explicit sensitive attribute in the prompt. A large drop in
overlap is taken as evidence of bias. CFaiRLLM argues that this criterion
can misclassify legitimate personalisation as unfairness: if revealing a user’s
gender or age simply helps the model tailor results more closely to true taste,
overlap will decrease even though the system behaves appropriately. To
disentangle bias from valid personalisation, CFaiRLLM introduces a true-
preference-alignment metric that checks whether the attribute-conditioned
recommendations better match the user’s demonstrated interests (hit and rank

Background | 21

agreement with held-out ratings) rather than merely counting shared titles.
The framework also stresses that fairness findings are highly sensitive to
how the user profile delivered to the LLLM is built—random, recent, or top-
rated samples each yield different alignment gaps—and that intersectional
prompts (e.g., “Teenage female) often expose larger disparities than single
attributes alone. Thus CFaiRLLM reframes RecLLM fairness as a balance
between equal treatment and faithful personalisation, offering a more nuanced
lens than FaiRLLM’s list-overlap heuristic. On the mitigation side, Hua et
al. introduced a method called Counterfactually-Fair Prompting (CFP) in
[19] as part of an approach to create an Unbiased Foundation Model for
Fairness-aware Recommendation (UPS) in [?]. The core idea is to adjust
the prompting of the LLM in a way that enforces a form of counterfactual
fairness — for example, ensuring that for a given user, prompts that differ only
in a sensitive descriptor yield similar recommendations. In their experiments
on MovieLens and another dataset, they showed that the CFP technique can
substantially reduce recommendation disparities between user groups while
maintaining strong recommendation performance. In fact, their LLM-based
approach with fairness-aware prompting outperformed several traditional
fairness-aware recommender models on both accuracy and fairness metrics.
This is an encouraging sign that the flexibility of LLMs can be harnessed
to achieve fairness goals (potentially more easily than retraining an entire
algorithm from scratch). In summary, these related works indicate two key
points: (1) LLM-based recommenders do exhibit bias and fairness issues that
need careful evaluation, and (2) there are emerging techniques to mitigate such
biases, especially using clever prompt designs or slight fine-tuning, which
show promise. Our thesis builds upon this foundation by examining popularity
bias and user fairness together in an LLM recommender. Whereas prior works
have largely examined either popularity bias [3] or user fairness [3] [5] in
isolation, we aim to assess them in tandem and explore how a strategy that
improves one aspect might affect the other. This integrated perspective is
important for developing LLM recommenders that are both fair to users and
fair to content.

2.4.3 Fairness and Popularity Bias in Traditional
Recommenders
For context, it is useful to consider how the recommender systems community

has traditionally dealt with popularity bias and fairness before the advent
of LLMs. Popularity bias has long been recognized as a source of

22 | Background

unfairness in recommender systems, particularly in how it can skew outcomes
for both users and item providers. Over the years, researchers have
explored many interventions to counteract popularity bias and improve long-
tail fairness. Some approaches involve modifying the recommendation
algorithm’s objective function — for example, adding a term that penalizes
recommending too-popular items, thus encouraging more diverse, long-tail
recommendations. Other approaches operate at the ranking stage, such as
re-ranking the list of recommendations to inject a certain percentage of less-
popular items [20]. The idea is often to balance accuracy with coverage:
ensuring that users still get relevant suggestions, but from a broader palette
of items than just the blockbusters. This line of work often falls under the
umbrella of multi-stakeholder fairness or aggregate diversity, where the aim
is to ensure that no stakeholder (neither users with niche tastes nor providers
of niche content) is systematically left behind by the algorithm. Carnovalini
et al. provide a comprehensive survey of these efforts in their review of
popularity bias and fairness in the long tail, see [21]. They emphasize that
while popularity bias partly originates from human behavior (users do tend to
gravitate toward popular options), recommender algorithms amplify this effect
and thus bear responsibility for mitigating it. The survey discusses numerous
bias mitigation strategies and notes that each has its trade-offs — many methods
can reduce bias to some extent, but often at the cost of a small drop in
accuracy or requiring careful tuning to avoid hurting the user experience. The
analysis highlighted the need for a multi-disciplinary approach to this problem,
examining not just the algorithms but also how users respond to different
recommendation diversity levels, and considering platform objectives (for
instance, platforms sometimes prioritize popularity for business reasons). Our
work is informed by this rich body of traditional research. We aim to bring
some of those insights into the LLM era — for example, evaluating whether an
LLM-based recommender naturally provides some of the long-tail diversity
that earlier systems needed explicit techniques to achieve, and ensuring that the
metrics we use align with those historically used so we can compare outcomes.
Ultimately, the goal of a fair recommender remains the same as in past work:
to serve users well without unduly favoring a small set of popular items or
a particular user group. By examining an LL.M-based approach through the
lens of both popularity bias mitigation and user fairness, we hope to identify
whether these new models help alleviate long-standing issues, or whether they
require similar (or new) corrective measures to meet fairness objectives.

Background |23

2.4.4 Bias in Language Model-Based Information
Access

Finally, it is worth noting that biases introduced by large language models
have been observed beyond recommender systems, in related information
access domains like search. For example, in information retrieval, recent work
has shown that using LLM-derived text embeddings can bias results towards
certain writing styles. Cao found in [22] that state-of-the-art embedding
models tended to prefer documents written in a formal, sophisticated style,
while more informal or emotive writing styles were less favored by these
models. In terms of query matching, many embedding-based retrieval systems
would match the style of the query with the style of retrieved documents;
some models even displayed a consistent preference for content that resembled
the style of text they were trained on, which was often Wikipedia-like or
academic in tone. This writing style bias means that certain voices or
communities—those that use a different dialect, slang, or emotional tone—
could be systematically down-ranked, inadvertently silencing or marginalizing
those content creators. Such a bias poses a significant threat to fairness in
information retrieval, as it goes beyond relevance and starts filtering content
based on stylistic attributes. The relevance of this example to our work is that
it reinforces a general lesson: every time we integrate a complex Al model
(like an LLM) into an information access system, we must be vigilant for
unexpected biases. Whether it’s a search engine or a recommender system, the
model may introduce new bias patterns or amplify subtle ones that a simpler
algorithm might not. In the case of LLM recommenders, we are mindful that
biases might manifest in ways we have not traditionally measured—perhaps
in the phrasing of recommendations, or in which contextual details the model
focuses on for different users. By learning from findings in IR and NLP,
we approach our LLLM-based recommender with caution, actively checking
for biases (popularity-based, demographic, stylistic, or otherwise) rather than
assuming the model will be fair just because it is more “intelligent.” This
interdisciplinary awareness helps ensure we cast a wide net in our evaluation
and mitigation strategies.

2.5 Summary

In summary, this chapter surveyed the context and literature around using
LLMs for recommendation and the twin concerns of popularity bias and
fairness. We reviewed how LLM-based recommender systems work and

24 | Background

the novel capabilities they bring, as well as their limitations. Critically, we
discussed how popularity bias remains a challenge — tending to surface the
same popular items repeatedly — and how this bias relates to fairness for item
providers in the long tail. We also examined user-side fairness, especially how
LLM-generated recommendations might reflect or even amplify social biases,
requiring new evaluation benchmarks and mitigation techniques. Initial
research has shown that LLM recommenders can achieve strong performance
and may even reduce popularity bias compared to traditional systems, but they
are not immune to fairness issues and must be carefully audited. Our review
of related work highlighted that these issues have been studied separately
in early LLM recommender research: some work focused on popularity
bias, while other work evaluated demographic fairness. There is a clear
gap when it comes to studying them together. This thesis addresses that
gap by evaluating an LLLM-based recommendation approach on both fronts
simultaneously. In the next chapter, we will outline the methodology for
our experiments, including how we measure popularity bias and fairness, and
how we will attempt to decouple these factors to understand and improve
the recommender’s performance on both dimensions. The insights from this
background will directly inform our experimental design and the interpretation
of our results.

Method or Methods | 25

Chapter 3
Method or Methods

3.1 Research Process

This research follows a quantitative experimental approach to assess how
LLM-based recommendations can be tuned to balance accuracy, popularity
bias, and user fairness. We systematically varied the prompt inputs to a large
language model recommender along multiple dimensions and observed the
effects on recommendation outcomes. The study was conducted as an offline
simulation using a public movie rating dataset(Movielens 1M) and a pre-
trained LLM(ChatGPT 4.1-nano) as the recommendation engine. We first
defined the problem of popularity bias — where recommenders over-focus on
popular items at the expense of niche items — and recognized its unfair impact
on users with niche interests.

Building on prior discussion in [6] that LL.Ms integrated into recommender
systems might exacerbate or alleviate such bias via prompt design, we
designed an experiment to probe prompt-based interventions. The overall
process involved: (1) constructing diverse user profiles from the dataset,
(2) generating tailored recommendation prompts with various fairness and
bias-mitigation cues, (3) querying the LLM for recommendations, and (4)
evaluating the results with respect to accuracy, popularity bias, and fairness.
Figure 3.1 shows the complete workflow. This process was iterative and
exploratory — initial pilot prompts were tested, and insights from those trials
(e.g. feasibility of parsing outputs, influence of prompt phrasing) informed
refinements in the final prompt templates and experimental conditions. By
iterating through this cycle, we ensured that the methodology remained
grounded in the LLM’s actual behavior while addressing the research
questions.

26 | Method or Methods

% ‘UserID |Gender| Age |Mov|e | Genre ‘Ha\mglOccupallon‘ row 1
[#41 [Male [Acu [Titanic [Drama | 4 | Engineer |

MovieLens 1M ... 229 rows omitted

Source Dataset

41 | Male [Adult [Tarzan [Comedy| 4 | Engineer | row 231

1M Ratings
6040 Users
3706 Ratings

231 Historic ratings of user 41

Y

Prompt Generation

ey Sty Sensitive Attribute Injection S e gt Gt
. Advisory lext that steers the LLM
Should we include demographic aw.;’;}: from popularity bias.

Which subset of 231 films shouid be attributes (Gender, Age, Occupation) in

highiighted in the prompt so that the LLM

i ?
learns the user's historical preferences? g oo o pat i Options
oo Baseline
Options NF;'U‘[’;; Exclude Popular
Top Rated (5 top rated movies) Gender + Age erche Genre
Recent (5 recently watched movies) Occupation Indie Internation

Polarized (3 liked and 2 disliked movies) Temporal Diverse

All Attributes. Obscure Theme
72 prompt variants/user

3 (profiling) x 4 (Sensitive Attribute Injections) X 6 (Bias Mitigation Cue)

)

Build JSONL

72 X 6040 = 434,880 prompts for OpenAl Batch AP1

LLM Inference

Generate LLM Recommendation

Ask LLM to recommend 10 movie user will enjoy 10 Movie Recommendations list
LLM Used movies= [Lion King, ,.......,GeoStorm]
GPT 4.1-nano

wvlichaticompletions AP|

Metrics Engine

Post Processing
Hitrate (HR) .
' Filter Hallucinations
Generate one way, Wo way : Are any of the 10 films relevant to the user ? #

| and Unified Interaction effects

| i)) | mormatize Tities

¥ Log Popularity Difference
Generale Visualizations ™
Do we over-recommend blockbusters vs ——— IR
| users normal preferences 7
[Jaccard Similarity
How much does the list change when

sensitive attributes are included?

Insights

Recommended with
Historical Preferences

Figure 3.1: Research Process

3.2 Research Paradigm

We treat the LLM-based recommender as a computational artifact whose be-
havior under different configurations can be measured. The study emphasizes
user-side fairness, meaning we examine how consistent the recommender’s
performance and outputs are across users with different attributes. Each
user’s data is run through every prompt variant, allowing direct comparisons
of outcomes with and without fairness prompts for the same individual.
We acknowledge that LLMs come with inherent sociotechnical unfairness
from training data. Thus, our paradigm also incorporates a bias-awareness

Method or Methods | 27

perspective: rather than assuming the recommender is neutral, we actively
probe it for fairness behavior by toggling sensitive inputs. The paradigm
combines exploratory analysis (to discover how the LLM responds to prompts)
with confirmatory evaluation (to test specific hypotheses about bias mitigation
and fairness). Overall, this approach provides a structured yet flexible way to
investigate if and how prompt engineering can decouple popularity bias from
user fairness in LLM recommendations.

3.3 Data Collection

3.3.1 Dataset

We utilized the MovieLens dataset (1M version) as the source of user
preference data. This dataset contains 6,040 users and 3706 movies, with each
user having rated a variety of films. The total ratings that exist are equal to 1
million. It provides not only user—item ratings but also demographic attributes
for users (e.g. age, gender, and occupation) which are relevant for fairness
analysis. The target population thus consists of movie viewers with diverse
profiles, and the sampling approach was comprehensive — we included all users
from the dataset (no sampling exclusion) to maximize coverage of different
user types. Each user’s full rating history was considered as their pool of past
interactions. From these histories, we constructed profile samples to feed into
the LLM. Specifically, for each user we extracted a small set of representative
movies to form a profile summary. Depending on the experimental condition,
this profile was either the user’s top-rated movies, most recent movies, or a
mix of polarized preferences. This profiling step ensured that the LLM was
given a concise yet informative snapshot of the user’s taste.

The MovieLens data provided each user’s self-reported gender, age (in
years), and occupation category (21 in total). We leveraged these attributes
to create variations of prompts that include or exclude sensitive information.
The inclusion of these attributes allowed us to simulate scenarios where the
recommender is aware of a user’s demographics versus scenarios where it is
“blind” to them. By doing so, we collected data on how recommendations
might differ when a user is presented, for example, as a “25-year-old male
engineer” versus just a generic user. This approach aligns with fairness testing
methodologies that examine recommendation differences across user groups.
All demographic information used was drawn directly from the dataset (no
additional user data collection was needed), and we took care to handle it
ethically — only using it to craft prompt contexts, not for any discriminatory

28 | Method or Methods

decision-making.

3.3.2 LLM Outputs

Data collection also encompassed the recommendations generated by the
LLM. For each user-profile and prompt variant, we recorded the top-10 movies
recommended by the LLM. In total, we constructed 434,880 distinct prompts
(72 variants for each of 6,040 users) and collected the LLM’s outputs for
each. Each output was captured in a structured format (JSON) for subsequent
analysis. Alongside the movie titles, we also stored metadata such as the
prompt variant used in the form of custom_id, and the timestamp of the query.
This yielded a rich dataset of LLM-driven recommendations. To facilitate
evaluation, each recommended title was mapped to the corresponding movie
in the MovieLens database (or flagged if it did not match any known movie).
We employed fuzzy matching (discussed later) for this mapping to ensure that
minor discrepancies in titles (e.g. punctuation, year inclusion) did not prevent
us from identifying the intended movie. The result of the data collection
phase was a comprehensive table of (User, ProfileType, FairnessContext,
BiasMitigation, RecommendedMovies), which forms the basis for our analysis.

3.4 Experimental design and
Planned Measurements

Our experiment was designed as a fully crossed factorial evaluation,
manipulating three independent variables in the prompt generation pipeline:
(a) User Profile Strategy, (b) Fairness Context Injection, (c) Bias Mitigation
Instruction. Each combination of these factors constitutes a unique prompt
variant. The prompt generation pipeline is illustrated conceptually and
proceeds in stages:

1. Profile Construction: Given a target user, we generate a brief profile
description. We implemented three strategies for this. In the Top-Rated
profile condition, we identify the top 5 movies that the user rated highest
(indicating strong likes) and include those titles. In the Recent profile
condition, we take the most recent 5 movies the user has watched/rated
(based on timestamps) to reflect current interests. In the Polarized
profile condition, we include a mix of movies the user loved and movies
they rated very low, creating a deliberately contrasting set of likes and

Method or Methods | 29

dislikes. The profile is then embedded into a prompt sentence (e.g. “The
user enjoyed Movie A, Movie B, ...”).

. Fairness Context Injection:Next, we optionally prepend a user de-
scription highlighting demographic attributes. We defined four variants:
neutral (no personal attributes), gender_age_only, occupation_only,
and all_attributes. In the neutral condition, the prompt makes no
mention of the user’s demographic background — it treats the user as
an abstract entity defined only by their past movies. In the gender_age
condition, we add a phrase stating the user’s gender and age (e.g.
“The user is a 25-year-old male.””). In the occupation condition,
we add a phrase about the user’s job (e.g. “The user works as a
software engineer.”). In the all_attributes condition, we include a fuller
description (e.g. The user is a 25-year-old male who works as a software
engineer). These injections serve to provide or withhold sensitive
attributes in the recommender’s context. By comparing outcomes
between, say, a neutral prompt and an otherwise identical prompt that
mentions gender, we can observe if recommendations shift purely due
to that attribute. Prior work suggests that RecLLM outputs can indeed
differ along sensitive user attributes, so this design allows us to measure
such biases explicitly [23].

. Bias Mitigation Instruction: Finally, we append an instruction in
the prompt to influence the popularity bias of the recommendations.
We crafted six variations: baseline, niche_genre, exclude_popular,
indie_international, temporal_diverse, and obscure_theme. The
baseline prompt has no special instruction regarding item popularity
— it simply asks for recommendations based on the profile (this
reflects the default behavior of the LLM). The other five are bias-
mitigating prompts intended to steer the LLM away from overly
popular, mainstream suggestions. Niche_genre asks the model to
focus on lesser-known genres or ‘“hidden gem” movies the user
might like. Exclude_popular explicitly instructs the model not
to recommend very popular or blockbuster movies (e.g., “avoid
mainstream blockbusters”). Indie_international prompts the model to
include independent films or international titles (which tend to be less
popular in the dataset). Temporal_diverse asks for a spread of movies
from different time periods (to prevent just recent hits from dominating,
thus implicitly reducing popularity bias which often skews toward
recent popular films). Obscure_theme encourages recommendations

30 | Method or Methods

with unconventional or niche themes. These instructions leverage
the LLM’s world knowledge about movies and their popularity — for
example, the model likely knows which movies are big Hollywood
blockbusters versus art-house films. By incorporating such language
in the prompt, we aim to debias the output via prompting. This prompt-
based mitigation approach has been noted as a convenient way to adjust
bias without retraining the model.

Each prompt fed to the LLM is thus a combination of one profile
description, one user context (fairness injection) level, and one bias
instruction. An example prompt (for illustration) in the I_Polarized_All-
attributes_Exclude_popular condition might be:

The user is an adult male clerical/admin.

Top-rated movies: One Flew Over the Cuckoo’s Nest (1975,
Genres: Drama, Rating: 5/5), My Fair Lady (1964, Genres:
Musical|Romance, Rating: 5/5), Sound of Music, The (1965,
Genres: Musical, Rating: 5/5)

Low-rated movies: Grapes of Wrath, The (1940, Genres:
Drama, Rating: 1/5), Babe: Pig in the City (1998, Genres:
Children’s|Comedy, Rating: 1/5)

Avoid recommending popular or blockbuster movies.

Suggest 10 titles the user is likely to enjoy.

In this example, the profile is polarized (mix of loved and disliked movies),
the fairness context is all attributes (gender, age, occupation given), and the
bias mitigation instruction is to avoid popular titles. The LLM’s task is to
produce 10 movie recommendations in a structured JSON list. By requesting
a JSON array of movie titles, we simplify the parsing of the LLM’s output in
the next step. This follows best practices observed in related studies, where
formatting instructions are added to ensure outputs can be programmatically
interpreted. The model might return something like:

[”Movie Title 1, "Movie Title 2”, ... ”"Movie Title 10”]

We record these titles as the recommended list for that user under the given
condition. Any additional commentary from the LLM (if present) is ignored
aside from potential debugging of the model’s reasoning.

Measurements Collected: For each recommendation list (per user x
prompt variant), we compute a set of evaluation metrics and logged whether

Method or Methods | 31

each recommended title was successfully matched to a movie in the dataset. If
a title is unrecognized (e.g., a hallucinated or extremely obscure movie not in
MovieLens), that recommendation is marked as unmatched. We also note if it
recommends movies outside the dataset’s timeframe. These measures help us
gauge the fidelity of the recommendations — in initial trials, for instance, we
found it necessary to explicitly tell the LLM not to suggest movies beyond the
dataset’s year range or already seen by the user, as otherwise it occasionally
would. By enforcing such constraints in the prompt and tracking violations,
we ensure the experiment’s outcomes remain meaningful relative to the known
dataset.

Table 3.1: Core components of the offline test bed

Component Specification / Location

Dataset MovielLens-1IM. Raw ratings.dat, movies.dat,
users.dat from https://grouplens.org/datase
ts/movielens/1m/. Stored in Dataset/. Preprocessing
outputs MovielLens_1M_clean.csv.

Profile generator =~ Three deterministic user slices: Top-Rated (5 highest),
Recent (5 newest), Polarized (3 top + 2 bottom). Code:
src/profile_builder.py.

Prompt space 4 fairness contexts x 6 bias-mitigation instructions
x 3 strategies = 72 prompts/user. Output:
{UserID}_{Strategy}_{Fairness}_{Bias}.jsonl.

Recommendation GPT-4.1-nano via /v1/chat/completions. Constraints:

engine 1919-2000 films, JSON output. Temp=0.5

Batch execution submit_batches_to_OpenAI.py handles <6000
prompts/job. Logs in batch_id.txt.

Post-processing RapidFuzz matches titles to MovieLens IDs. Metrics: HR,
Jaccard, LPD. Output: results/master_metrics.csv.

3.4.1 Hardware/Software to be used

3.4.1.1 Hardware

* Local workstation: 2023 MacBook Pro, Apple M2 Pro (10-core CPU),
16 GB unified memory, macOS 13.5. Rationale: all heavy inference
runs on OpenAl’s servers, so no local GPU is required.

» Storage: ~5 GB free disk for dataset, prompts (=450 k lines) and
results.

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/1m/

32 | Method or Methods

Network: 30 Mbps stable broadband

3.4.1.2 Software

Python 3.10 (Anaconda)
Core libraries: pandas 2.2, NumPy 1.26, SciPy 1.11, scikit-learn 1.4.

LLM access: openai 1.12, tiktoken 0.6.
String matching: RapidFuzz 3.5.
Async batch runner: aiohttp, asyncio.

Exploration / plots: seaborn , matplotlib 3.8 (default style).

Any machine supports Python > 3.9 can reproduce the pipeline; the above
machine serves as a reference configuration. Table 3.1 shows the core
components of the offline test bed.

3.5

3.5.1

Assessing reliability and validity of the
data collected

Validity of method

Internal validity. Each prompt variant differs from its counterpart in
exactly one controlled factor (profile strategy, fairness context, or bias—
mitigation cue). ldentical profile movies are used in the neutral and
demographic-infused prompts for a given user, ensuring that any change
in outcome can be attributed solely to the added attribute line.

Construct validity. The evaluation metrics Hit-Rate, Log-Popularity
Difference, and Jaccard map directly to the theoretical constructs
accuracy, popularity bias, and consumer fairness, respectively. Each
metric derives from established literature and is computed from
observable user—item relations rather than subjective judgements.

Consistency control. Attribute sentences are kept short and always
inserted at the same prompt position to avoid priming effects due to
prompt length. Temperature is fixed (0.5) to control randomness and
inconsistency of results.

Method or Methods | 33

» External validity. Although the study centres on the MovieLens-1M
corpus and a single LLM flavour (GPT-4.1-nano), both the prompt
framework and the metric suite are domain-agnostic and can be re-
deployed on datasets from music, books, or e-commerce, supporting
qualitative generalisation.

3.5.2 Reliability of method

* Deterministic generation. Fixing temperature = 0.5 and all
other OpenAl parameters yields approximately identical completions
whenever a prompt is re-issued.

* Batch-controlled execution. An asynchronous job runner logs API
calls, retries transient failures, and persists partial outputs, guaranteeing
that no prompt is skipped or duplicated.

3.5.3 Data validity

* Ground-truth alignment. Recommendations are evaluated only
against held-out positive ratings (<= 3 stars) that do not appear inside
the user prompt, so hits reflect genuine unseen relevance.

* Title matching integrity. RapidFuzz fuzzy - matching is cross-
validated: a lookup table of matching was exported and manually
analyzed, revealing < 0.5 % false matches, well within acceptable error
bounds for metric calculation.

* Metric robustness. Log-transformation in LPD compresses the heavy-
tailed popularity distribution, preventing blockbuster outliers from
distorting bias estimates. Jaccard similarity is set-based and therefore
immune to rank noise in the model’s unordered JSON output.

3.5.4 Reliability of data

* Statistical power. Over 434 k prompt—response pairs spanning 6 040
users provide ~4.3 million individual recommendation slots, reducing
the impact of any single noisy observation.

* Comprehensive logging. Raw JSON responses, matched movie IDs,
and derived metrics are stored verbatim

34 | Method or Methods

(results/master_metrics.csv)allowing third-party re-analysis
without rerunning the costly LLM queries.

* Error auditing. Unmatched or hallucinated (recommended) movie
titles are explicitly flagged and post-processed before merging to
master_metrics.csv

3.6 Planned Data Analysis

Our data analysis plan was established to compare recommendation outcomes
across the various prompt conditions and to test our key hypotheses. Since
each user is exposed to all 72 prompt variants, we plan to use within-user
comparisons extensively. This means for each user, we can examine how their
recommendation list differ when, say, demographic info is included versus
not included, or when bias mitigation instructions are applied versus not. By
doing pairwise comparisons per user, we effectively control for the user’s
inherent preferences and difficulty of recommendation, isolating the effect of
the prompt changes.

3.6.1 Data Analysis Technique

Concretely, our analysis will proceed as follows:

 Descriptive Statistics: We will first compute the mean and distribution
of each evaluation metric (HitRate, Log popularity difference, Jaccard
similarity, etc.) under each condition. This provides a high-level view
of which prompt variants tend to perform best in accuracy and how they
rank in terms of bias and fairness.

* Factor Analysis: Given the factorial design, we will analyze the
main effects of each factor (profile strategy, fairness context, bias
instruction) on the metrics, as well as any interaction effects. For
instance, we will examine if the choice of profile (fop-rated vs recent vs
polarized) significantly influences HitRate, or if the effectiveness of a
bias mitigation prompt depends on whether demographics are included
or not.

* Pairwise Comparisons: We have specific comparisons of interest
aligned with our research questions. One is neutral vs fairness-infused
prompts: for each user, subtracting their HitRate or bias metric in the

Method or Methods | 35

neutral condition from that in (say) the gender_age condition, to see the
direction and magnitude of change. A distribution of these differences
across users can tell us if adding gender_age tends to help, hurt, or have
mixed effects on accuracy and bias. Similar pairwise analyses will be
done for baseline vs each bias mitigation instruction (to see how each
strategy alters metrics relative to no mitigation).

3.6.2 Software Tools

The analysis will be carried out using Python data analysis libraries (pandas,
NumPy, SciPy, etc.), and results will be tabulated and visualized. Our focus
is on patterns that are not just statistically reliable but also meaningful in
magnitude (for example, a large reduction in popularity bias metric or a
substantial hit rate drop). By following this plan, we aim to answer: Does
prompt engineering mitigate popularity bias, and at what cost to accuracy ?
And does including sensitive user attributes in prompts lead to fairer or more
biased outcomes?

3.7 Evaluation Framework

We evaluate the LLM-based recommendation outcomes using a multi-metric
framework that captures recommendation accuracy, popularity bias, and list
diversity/fairness shifts. The primary metrics are HitRate, Log Popularity
Difference, and jaccard, each addressing a specific aspect:

3.7.1 HitRate (HR)

This is a standard accuracy metric. For each user and each prompt condition,
we inspect the LLM’s top-10 recommendation list R,,. We also have that
user’s relevant set L,—all movies they rated positively (rating > 3) in the
MovieLens-1M data. We then record:

1 ifR,NL,# 0
0 otherwise.

HR (1) = {

In other words, the hit rate equals 1 if at least one of the ten recommended
movies is something the user actually liked, and O if none of the recommended
titles appear in the user’s positive-rating history. Averaging this binary
indicator across all users yields a system-level accuracy score: a HR of 0.30

36 | Method or Methods

means that 30% of users received at least one genuinely liked film in their
top-10 list. We favour this binary formulation because the LLM returns an
unordered set of titles; the metric tests whether the recommender can hit” a
single relevant item irrespective of how many additional titles are included or
how they might be ordered.

3.7.2 Log Popularity Difference (LPD)

This metric quantifies popularity bias in the recommendations by comparing
the popularity of recommended items to the popularity of what the user
typically consumes. We adopted the log popularity difference proposed by
Lichtenberg et al in [2] as it satisfies certain desirable properties for bias
measurement.

For a given user u, the Log Popularity Difference is calculated as follows:

1
> p0p(i)) —log(lH 2 p0p<f>)

ieR, jEH,

1
LPD(u) = 10g(IR |
u

where:

* R, represents the set of recommended movies for user u.
* H,, represents the set of movies previously watched or rated by user u.

* pop(i) denotes the popularity of movie i, measured by the number of
user ratings in the dataset.

This logarithmic transformation dampens the influence of extremely
popular items, ensuring the metric is robust to the skewed distribution typically
observed in popularity data. The resulting value is centered around zero,
where a positive LPD indicates that recommendations tend toward more
popular items than the user’s usual choices, signaling potential popularity bias.
Conversely, a negative LPD suggests recommendations are less popular or
more niche than the user’s typical preferences. By design, this measure is
zero-centered and anti-symmetric, effectively capturing both under- and over-
correction biases. This nuanced measurement allows us to critically evaluate
and adjust our recommendation strategies.

3.7.3 Jaccard Similarity

This is a set similarity metric used to measure stability or divergence in the
recommended lists under different prompt conditions. Specifically, we use

Method or Methods | 37

the Jaccard similarity to compare the set of recommendations from a fairness-
augmented prompt to the set from the neutral prompt for the same user. The
Jaccard similarity is defined as:

|A N B
|A U B|

for two sets A and B; in our case, A might be the movies recommended
with demographic context, and B the top-10 without it. The jaccard thus
yields a value between 0 and 1, where 1 means the two recommendation lists
are identical, and 0 means they share no common items. We compute this
for each user and each fairness injection scenario (gender_age, occupation,
all_attributes) by comparing against that user’s neutral prompt output. This
metric serves as an indicator of how much impact the inclusion of sensitive
attributes has on the recommendations. A high Jaccard (close to 1) would
suggest that adding (for example) gender and age to the prompt did not
substantially change which movies were recommended—implying the model’s
recommendations are invariant to that attribute, which could be a sign of
fairness with respect to that attribute. Conversely, a low Jaccard (much less
overlap) means the recommendations shifted considerably when the attribute
was included, signaling a potential unfairness or stereotype effect.

The evaluation framework thus enables a multi-faceted assessment. A
»good” recommendation approach in our context would ideally achieve a
high HitRate, an approximately zero Log Popularity Difference, and a high
Jaccard similarity to the neutral profile recommendations. These metrics
will be analyzed jointly to understand trade-offs, ensuring a comprehensive
evaluation aligned with recent recommendation fairness benchmarks.

38 | Method or Methods

Implementation | 39

Chapter 4

Implementation

The study used a local MacBook Pro (M2 Pro, 16GB RAM) for pipeline
orchestration, with all LLM inference handled remotely via OpenAI’s API
(GPT-4.1 nano). The setup required standard Python data science libraries
(Pandas, NumPy, RapidFuzz) and asynchronous I/O for batch processing
(435k prompts). No local GPU was needed. API rate limits were managed
through throttled requests over multiple days. The environment replicated
offline recommender evaluation conditions.

We did not split data into training/test as in classical recommenders
because the LLM isn’t trained on MovieLens data — it’s a pre-trained model
with world knowledge. Instead, every user’s full history was used to create
prompts, and every user was “tested” in the sense that we checked if the
recommendations align with their known preferences. If we draw an analogy
to traditional eval methods, our approach aligns with “leave-one-out” style
evaluation where each known user-item interaction could be a potential target
to recommend. However, rather than a fixed target item, we looked at the set
of known liked items and checked recommendation hits among them.

One important design decision was how to define the relevant items for
computing HitRate (since we have no explicit query item). We defined the
relevant set for each user as all items they rated >3 (on a 5-star scale) in the
dataset, excluding any that were presented in the prompt. For example, if a
user’s top 3 movies were used in the profile prompt, those 3 are omitted from
evaluation because recommending them would be trivial, and they are already
known likes. The remaining high-rated movies serve as a proxy for “good
recommendations” for that user. The simulation then checks if the LLM’s
top-10 list retrieves any of those. This design was chosen because it reflects
whether the recommender can recover other items the user appreciated — a

40 | Implementation

common approach in implicit feedback evaluations.

We also established a mechanism to simulate the scenario of a cold
start vs warm start profile. The three profile strategies inherently cover
different information levels: Top-Rated might reflect a summary of long-
term preferences (as if the system knows a lot about the user’s taste), Recent
could simulate a session-based or temporal scenario (movies watched recently,
capturing the user’s current mood), and Polarized gives a quirky mixed signal
scenario (some likes and dislikes). By including all three, our simulation
doesn’t assume a single use-case but rather stresses the system under varied
conditions. The hardware was capable of storing all intermediate results; we
ensured enough disk space (the output data 434,880 recommendation lists
with 10 items each, plus metrics, took on the order of a few hundred MBs).
Regular checkpoints were saved (every few thousand API calls, the partial
results were written to disk) to prevent data loss and to allow analysis to
begin on completed portions while others were still running. In summary, the
hardware/software setup and simulation design ensured that the experiment
could be executed in a stable, repeatable manner. By using a robust compute
environment for orchestration and an external powerful LLM for inference,
we achieved a balance between practicality and scale — managing nearly half
a million recommendations in a reasonable time frame and cost. The design
choices made (e.g., profile types, how to measure hits) align with standard
evaluation practices in recommender systems, adapted appropriately for the
LLM context.

The implementation explained in the subsequent sections was guided by
the methodological design, which translated each concept into a concrete,
functioning component.

4.1 Profiling Strategies

We implemented three user profiling strategies as Python functions that take
a user’s rating history and return a list of representative movie titles.

1. Top-Rated This function sorts a user’s rated movies by the rating value
selects the top highest-rated movies. In code, we accessed the user’s
ratings from the dataset and filtered those with rating >3 (if wanting
absolute favorites) or simply took the top-N even if some are 2.0 —
depending on distribution. These selected titles are then formatted into
the prompt sentence. The assumption is that these represent the user’s
favorite movies, hence a strong signal for the recommender.

Implementation | 41

2. Recent This function sorts the user’s rated movies by the timestamp
of rating (from latest to oldest) and picks the most recent movies the
user has watched. Implementation-wise, since MovieLens 1M provides
timestamps, we converted those to datetime and did a sort. We made
sure the recent list is distinct from the top-rated — it could happen a
recent movie is also highly rated; we decided to allow overlap if naturally
occurring, as that still fits “recently liked”. The recent titles aim to
simulate the user’s current interests or context. For example, if a user
recently watched several sci-fi movies, the LLM seeing those might infer
the user is in a sci-fi mood.

3. Polarized For this strategy, we deliberately construct a “diverse” profile
to include varying tastes. The implementation picks a couple of the
user’s top-rated movies and a couple of the lowest-rated movies (or least
liked genres). The idea is to send mixed signals: e.g., “User loved Movie
A, Movie B, but disliked Movie C.” To do this, we took the top 3 movies
(highest rating) and bottom 2 movies (lowest ratings) from the user’s
history. Not all users rate movies they dislike (some only rate things
they watch fully or enjoy), so in cases where a user had no very low
ratings, we instead chose movies in a genre that wasn’t in their top-rated
list or picked some mid-rated items to represent different preferences.
The polarized profile was meant to challenge the LLM: would it focus
on the likes, avoid the dislikes, or try to average the tastes?

Rationale for Dropping Random and Adopting Polar-
ized (Profile Strategy):

Initially, the experiment design included a “Random” profile condition, where
we would sample (uniformly at random) a few movies from the user’s history
to present to the LLM. We implemented a prototype of this but encountered a
few issues:

1. High Variance: A random draw could sometimes pick movies that
were not representative of the user’s taste (e.g., a user might have a
primary interest in drama, but the random pick might grab a couple of
their lesser-liked action movies, misrepresenting them). This introduced
noise — the LLM might then give odd recommendations and it wouldn’t
clearly tell us anything systematic.

2. Irreproducibility: For fairness in evaluation, we’d need the random
selection to be the same each time for each user. While we could fix a

42 | Implementation

random seed to ensure reproducibility, the random condition still felt
less interpretable. If results from the random profile were bad, it’s
unclear if it’s because the profile was missing info or because the LLM
struggled with that specific random combo.

3. Coverage Overlap: We found that the random condition often
overlapped with either the top or recent profiles by chance (especially
for users with small histories). It wasn’t offering a distinctly new
perspective.

Given these reasons, we replaced the random condition with the Polarized
strategy. The polarized profile has a clear purpose: to stress-test the
recommender with conflicting signals. This gave us more insight — for
instance, if the LLM can still produce sensible recommendations when given
mixed likes/dislikes, it suggests robustness. If it fails or only focuses on one
side, that’s informative too. Moreover, polarized profiles are deterministic; for
each user, the same set of extremes will be used every time, which is fair for
comparisons.

4.2 Fairness Injection

We constructed prompt templates tailored to four distinct fairness contexts.
These templates were implemented in code as formatted strings, conditionally
incorporating demographic information:

* Neutral: The prompt starts with a generic introduction (e.g., "The user
has the following movie preferences...”) or directly lists movies without
any demographic context.

* Gender and Age Only: This prompt excludes the exact numerical age,
using instead a categorical age group derived from the user’s age data in
MovieLens. Ages were categorized into three groups: 7een (< 18 years),
Young (18-35 years), and Adult (> 35 years). For example, prompts
began with phrases like "The user is a Young female.” or "The user is
an Adult male.” This approach provides necessary demographic context
while preserving privacy by not revealing exact age.

* Occupation Only: This prompt begins with "The user is a occupation.”
MovieLens occupations, originally numeric codes (e.g., 15 = doctor),
were mapped to clear, natural-language job titles ensuring appropriate
grammatical articles (e.g., "an artist,” "a programmer”).

Implementation | 43

* All Attributes: In this comprehensive prompt, all demographic
attributes are integrated into one plain-language introductory sentence,
preceding the user’s polarized movie preference profile. The template
follows:

"The user is a <Age-Group> <gender> <occupation=>."

Here, Age-Group corresponds to Teen, Young, or Adult; gender is
male or female; and occupation is represented by the natural-language
job title. The demographic sentence is followed, on a new line, by
clearly delineated top-rated and low-rated films forming the polarized
preference profile, concluding with a bias-mitigation instruction such
as:

”The user is an Adult male clerical/admin.

Top-rated movies: ...

Low-rated movies: ...

Encourage recommendations that span a wider temporal
range, including older films.”

4.2.1 Bias Mitigation Strategies

Each of the six bias mitigation instructions was implemented as a phrase
appended to the prompt. We stored these instruction strings in a dictionary
keyed by strategy name for convenient integration. The instructions are:

* Baseline: An empty string with no additional text aside from the
standard request to recommend 10 movies.

* Niche_genre: "Focus on recommending movies from less common or
niche genres that the user has engaged with.” This nudges the model
gently towards the long-tail while not explicitly excluding popular
movies.

* Exclude_popular: “Avoid recommending popular or blockbuster
movies.” A clear and direct instruction to strongly steer recommenda-
tions away from popular films.

* Indie_international: ”"Recommend independent or international
movies, steering clear of major studio releases.” This positively framed
instruction encourages less mainstream selections.

44 | Implementation

* Temporal_diverse: “Encourage recommendations that span a wider
temporal range, including older films.” This instruction aims to
counteract recency bias, indirectly addressing popularity bias by
highlighting older, potentially less popular movies.

”»

* Obscure_theme: ”Recommend underrated and lesser-known films that
match the unique aspects of the user’s taste.” This directive promotes
niche or thematic depth, encouraging recommendations of cult classics
or distinctive sub-genres relevant to the user’s preferences.

These instructions were appended directly before the final prompt
component specifying the output format. We ensured that the instructions
flowed naturally within the prompts. Occasionally, the model explicitly ac-
knowledged these instructions within its response, indicating comprehension,
although our evaluation criteria strictly required only a correctly formatted
JSON list of movie titles.

4.2.2 Prompt Examples and JSON Format

To confirm that the formatting and instructions in our templates are correctly
parsed by the LLM, we ran a dry-run with an actual prompt produced by the
pipeline.

Example: 247_polarized_occupation_only_temporal_diverse.

The full request consisted of:

System message

You are a movie recommendation system trained to suggest
titles from a catalog limited to films released between 1919 and
2000. All recommended titles must exactly match those in the
MovieLens-1M dataset. Avoid duplicates and titles outside the
specified release range. Respond ONLY with a JSON object
containing a "'movies’ key with an array of movie titles (no years).
Example: {"movies”: [”"Up”]}

User message

The user is a technician/engineer.
Top-rated movies:

* Schindler’s List (1993, Genres: Drama|War, Rating: 5/5),
* To Kill a Mockingbird (1962, Genres: Drama, Rating: 5/5),

Implementation | 45

* Shawshank Redemption, The (1994, Genres: Drama,
Rating: 5/5)

Low-rated movies:

e Saving Private Ryan (1998, Genres: Action|DramalWar,
Rating: 2/5)

* Princess Bride, The (1987, Genres: Action|Comedy|Romance,
Rating: 2/5)

Encourage recommendations that span a wider temporal range,
including older films. Suggest 10 titles the user is likely to enjoy.

This successful check verified that our prompt structure reliably conveys
(i) the intended sensitive attribute, (ii) the polarized taste context, and
(iii) the specific bias-mitigation policy—all prerequisites for the large-scale
experiments reported in the thesis.

When submitted to the model, the response was a valid JSON object such
as:

{"movies”: [
"Paths of Glory”,
"Judgment at Nuremberg”,
"Bridge on the River Kwai, The”,
"12 Angry Men”,
"Great Escape, The”,
"Ben—Hur”,
"Grapes of Wrath, The”,
"On the Waterfront”,
"Dr. Zhivago”,
"All Quiet on the Western Front”

1}

This successful execution gave us confidence that the full experimental
prompt set would be parsed and executed as intended.

We enforced the JSON format by adding explicit instructions such as
“output as a JSON array of movie titles.” According to best practices, the
model tends to follow this if it’s clearly stated. In our collected results, over
99% of responses were well-formed JSON. A tiny fraction had minor issues
(like a trailing comma or an extra comment) which our parser handled. We
choose JSON because it’s machine-readable and unambiguous, as opposed to
natural language lists which could be tricky to parse.

46 | Implementation

4.2.3 Naming Convention and Prompt Combination
Count

As mentioned, each prompt variant was labelled systematically. We used
a schema {User ID}_{Profile}_{Fairness}_{Bias} for naming.
For example:

* 1_Top-rated_Neutral_Baseline

* 1_Top-rated_Neutral_Exclude_Popular

* 1_Recent_GenderAge_Temporal diverse

* 1_Polarized_All_Attributes_Obscure_Theme

In total, there are 3x4x6 = 72 possible combinations of { Profile, Fairness,
Bias}. We generated all 72 for each user. This yields 72 x 6040 = 434,880
prompts, as noted earlier. The output data (recommendations and metrics)
are indexed by these names. The naming convention proved very helpful in
analysis; for instance, we could filter results by all prompt variants containing
“Exclude_Popular” to compare their performance. It also eased debugging—
if something was off, the name indicates exactly which condition might be
responsible. We ensured the names were self-explanatory enough for anyone
reading the results to infer the prompt configuration without referring back to
the code.

4.3 Fuzzy Matching with RapidFuzz:

The LLM’s outputs were movie titles in text form, which we needed to map
to MovieLens movie IDs. We used the RapidFuzz library’s string matching
functions to achieve this. Implementation details:

» We pre-processed the movie titles from the dataset: creating a list all
movie titles (about 3706 in ML-1M) normalized to a certain format
(lowercase, alphanumeric only). We also prepared alternate versions for
titles with subtitles or alternate spellings (e.g., “The Matrix” vs “Matrix,
The”).

* When an LLM recommendation came in, we normalized it similarly
and computed a similarity score (e.g. token set ratio) between the given
title and all dataset titles. RapidFuzz is quite efficient and can do this

Implementation | 47

quickly. We set a similarity threshold (75%) above which we consider
it a match.

» If a title could not be confidently matched (which happened if the
model hallucinated a non-existent movie or gave a very vague title
[18]), we marked that recommendation as unmatched. Unmatched
recommendations were excluded from metric calculations like HitRate
(since we don’t know if an unknown title is relevant or its popularity).
However, we kept track of how many each prompt variant produced, as
a sanity check —if a certain strategy caused many hallucinations (lots of
unmatched titles), that’s a negative outcome for that strategy.

* The choice of RapidFuzz was due to its speed and ease of use. The fuzzy
matching process was vectorized for efficiency (we could batch process
the 10 outputs per prompt). After matching, we immediately looked up
each movie’s popularity (precomputed number of ratings) and whether
the user rated it, storing those for metric calculations.

4.4 Metric Interplay and Evaluation Logic

Finally, we tied together the metrics in the implementation to reflect our
evaluation framework. The code computes HitRate, Log Popularity
Difference (LPD), and Jaccard similarity for every prompt variant. In
interpreting these, our logic was:

* Accuracy first: We would look at HitRate as a primary filter. For
instance, if a certain prompt variant yields an average HR of 0.05 (5%),
whereas others yield 0.15 (15%), we consider that variant significantly
worse in serving relevant content, no matter how low its popularity bias
might be. Accuracy is critical—a recommender that doesn’t hit relevant
items is of limited use. Thus, in code and analysis, we often sorted or
highlighted results by HR as a baseline. The interplay is such that we
don’t want to sacrifice all accuracy just to fix bias.

* Popularity Bias second: Among variants that achieve comparable
accuracy, we compare their LPD. Our implementation calculated LPD
per profile strategy, per bias mitigation strategy, and per fairness
injection attributes and then averaged; we also computed a global
LPD (aggregated over all recommendations). We paid attention
to how bias mitigation prompts affected LPD. For example, if

48 | Implementation

Exclude_popular greatly lowers LPD (good for bias) but also
slightly lowers HR, we quantify that trade-off. We built analysis
scripts to plot or tabulate HR vs. LPD for each strategy to visually
inspect this trade-off. One outcome we looked for was whether any
strategy could reduce LPD without a severe hit to HR. The code also
checked for negative LPD cases (recommendations less popular than
user history). We flagged those because, as mentioned, too negative
might mean overshooting into the long-tail. Indeed, in some extreme
instructions (like obscure_theme for certain users), we observed
negative LPD—the model recommended very niche films—and as
expected, HR for those cases was often low (the user hadn’t seen
those niche films, so no hits). This aligns with known observations
that aggressively minimizing popularity bias can reduce accuracy.
Our implementation captured this phenomenon, e.g., an output log
might note "User 123: Exclude_popular prompt — HR=0, LPD=-
0.5, indicating no known relevant movies were recommended, but the
recommendations were much less popular than the user’s usual picks.

» Jaccard and Fairness: After gathering accuracy and bias results, we
computed jaccard between neutral and each other prompt for each user.
The code iterated through users, took their neutral list, and, for instance,
the gender_age list, computing the overlap. We averaged Jaccard
scores across all users and examined the distribution. In analysis, we
correlated these with accuracy changes. For example, if including
gender/age info causes a significant change in recommendations (low
Jaccard) and potentially a jump or drop in HR for certain users, that is
notable. From a fairness perspective, a low Jaccard indicates the model
is altering recommendations due to that attribute.

In sum, the implementation closely followed the plan: we realized each
prompt variant generation, executed LLM calls with necessary safeguards
(formatting, constraints), parsed and matched results, and computed all
relevant metrics. Key strategies like profiling and bias mitigation were coded
to reflect their conceptual intent, and we made pragmatic adjustments (e.g.,
polarized vs. random) to ensure experiments were informative and reliable.
The result is a rich dataset of recommendations and evaluations, prepared to
address research questions about decoupling popularity bias and fairness in
LLM-based recommender systems.

Results and Analysis |49

Chapter 5

Results and Analysis

5.1 Overview

The experimental design introduced in Chapter 3 yields six bias-oriented
prompt families (baseline, niche-genre, exclude-popular, indie-international,
temporal-diverse, and obscure-theme), three ranking strategies (top-rated,
recent, polarized), and four fairness probes (neutral, gender—age only,
occupation only, and all attributes).

Each run is assessed with three axes of quality shown in Table 5.1 that
jointly characterise the recommender’s behaviour

The results are organized to progressively reveal how strategies, bias
prompts, and fairness attributes influence recommendations accuracy(hitrate),
popularity bias (Log popularity difference), and recommendation similarity
(jaccard). We first examine each factor independently, then explore two-way
interactions, and finally the full three-way interplay. This coarse-to-fine grain
analysis reveals patterns hidden at the aggregate level: for example, certain
bias prompts only show their effect under particular strategies. Our analysis
reveals how femporal diverse debiasing and polarized recommendation
strategy emerge as optimal solutions, achieving the critical balance between
accuracy, bias mitigation, and fairness. These findings provide context for
deeper combined analyses in the following sections.

5.2 Interpreting Aggregated Metrics

Before delving into the numerical findings, it is crucial to recognise that
any metric reported as an unconditional mean (e.g., “mean Hitrate for the
Polarized strategy”) compresses a highly interactive design space into a single

50 | Results and Analysis

Table 5.1: Evaluation metrics for recommender system experiments

Symbol Meaning Desired direction

Hitrate Proportion of ground-truth 1 higher
items retrieved in the top-10.
(Higher values indicate better
accuracy)

Log-Popularity Difference Average log-difference — 0
between popularity of
recommended items
and user’s ground-truth
items. (Values closer to
0O denote weaker bias;
negative values indicate
under-recommendation,
positive values indicate over-
recommendation of popular
items)

Jaccard Similarity Set-based overlap between a 1 higher
candidate list and the neutral
baseline list for the same
user. (Higher values denote
closer alignment to the fair-
ness ground truth)

scalar. Because Hitrate, LPD, and Jaccard each respond non linearly to both
bias mitigation prompts and fairness variants, a high (or low) marginal value
may be driven by a handful of extreme cells rather than by a systematic
property of the strategy itself. For instance, the apparent advantage of the
Recent prompt over Top rated in the raw means (0.470 vs 0.455) vanishes
once we condition on the bias recipe: Temporal diverse inflates the former,
whereas Exclude popular depresses the latter. Similarly, Polarized achieves
the highest mean Hitrate partly because its rich preference signal synergises
with fairness oriented prompts; removing sensitive attributes or combining it
with an aggressive long tail bias can lower its score substantially.

Readers should therefore treat aggregated tables as heuristic overviews,
and always consult the cross factor slices and interaction plots presented
later in this chapter before drawing substantive conclusions about any single

Results and Analysis |51

strategy’s efficacy.

5.3 Isolated (Single-Factor) Effects

To expose each design lever’s pure contribution, we varied one factor at a time
while keeping the other two fixed at their reference settings. ™ For every
treatment we report:

» Absolute scores: Hit-rate (HR), Inter-group Jaccard similarity (JS),
and log-popularity-difference (LPD < 0 = popularity bias against
the head).

* A (delta) columns: the change with respect to the reference row of the
same block.

— AHR and AJS are expressed relative (percentage), because stake-
holders usually care about proportional utility/fairness changes.

— ALPD is the absolute difference, because moving LPD towards 0
directly reflects bias reduction and is already on a log scale.

5.3.1 Effects of Profiling Strategy

Table 5.2 shows the contrasts of three list-construction heuristics—top-rated,
recent, and polarized and their effect of different profiling strategies on
evaluation metrics.

* Accuracy Polarized lifts HR by 42 % over the top-rated.

* Fairness 39 % higher than the next-best strategy, denoting the largest
overlap in recommended items across demographic groups—i.e., the
most balanced option in isolation.

* Popularity Bias With an LPD of —1.02, polarized recommendations
remain much closer to popularity-neutral than either top-rated (-3.06)
or recent (—3.04), but do not fully eradicate the bias. LPD moves 2.04
log-units closer to zero—i.e., a two-order-of-magnitude push towards
popularity neutrality—without aggressive de-popularisation.

*Note that the reference setting for profiling strategy, popularity bias configurations, and
fairness configurations are polarized, baseline, and neutral settings, respectively.

52 | Results and Analysis

Table 5.2: Profiling Strategies: Impact on Recommendation (Fairness/Bias in
Reference Settings)

Strategy HR AHR JS AJS LPD ALPD
top-rated 0.455 - 0.132 - —3.06 -

recent 0.470 3.2%0.130 —1.5% —3.04 0.02
polarized 0.648 42.29%0.184 39.1%-1.02 2.04

Interpretation Combining head-and-tail items inside each list (polariza-
tion) simultaneously improves all three metrics, turning what is usually a
trade-off triangle into a synergy.

5.3.2 Effects of Bias Mitigation Configurations

Table 5.3 empirically assess five content-filtering schemes that aim to
reduce popularity bias—ranging from niche-genre promotion to temporal
diversification and their effect on evaluation metrics under consideration.

* Accuracy Figure 5.1 shows that all hard popularity filters slam accuracy
(=40 % to 65 %), whereas temporal-diverse sacrifices only 1%.

* Popularity Figure 5.2 shows that every debiaser pushes LPD more
negative (smaller absolute bias), but only temporal-diverse brings it
close to 0 (-0.54) without gutting utility. Temporal diversity trims
popularity bias by 0.61 log-units while forfeiting only 1.1 % in accuracy.

* Fairness Hard exclusion of popular items (e.g. exclude-popular) or
heavy genre constraints obliterate accuracy (—42-65 %) and still leave
substantial popularity imbalances.

Interpretation Temporal diversity offers the best cost-effective lever: it
nudges the system away from popularity bias without materially harming
user relevance. More aggressive de-popularization, while seemingly fairer in
intent, carries prohibitive effectiveness penalties

Results and Analysis |53

Table 5.3: Bias Mitigation: Impact on Recommendation (Strategy/Fairness in
Reference Settings)

Technique HR AHR JS AJS LPD ALPD
baseline (reference) 0.776 - 0497 - -=1.15 -
niche-genre 0.450 —42% 0.056 —89% —2.81 —1.66

exclude-popular 0414 —47% 0.038 —-92% —2.90 -1.75
indie-international ~ 0.271 —65% 0.013 —-97% —4.11 —-2.96
temporal-diverse 0.767 —1190.244 —-51% —0.54 0.61
obscure-theme 0.463 —40% 0.044 -919% —-2.77 —-1.62

Hit Rate across bias prompts
(averaged over every strategy & fairness)

Hit Rate
o ° o °
& o < o
1)

o
»
f

e
w
L

Bias strategy in the prompt

Figure 5.1: Hitrate Based on popularity debiasing technique

54| Results and Analysis

Log-popularity difference across bias prompts

—0.5 4

~1.04

-1.5-

—2.04

—2.5 4

=3.0 1

Log-popularity difference

-3.54

—4.04

Bias strategy in the LLM prompt

Figure 5.2: Log Popularity Difference based on popularity debiasing
technique

Results and Analysis | 55

5.3.3 Effects of Sensitive-Attribute Injections

Table 5.4 systematically evaluates how progressively richer demographic
feature sets—moving from a neutral baseline to full attribute disclosure—alter
Hit-rate performance, cross-group fairness, and popularity skew.

* Accuracy Introducing a minimal sensitive-attribute set (gender + age)
raises accuracy by +1.8 Y% relative to neutral, whereas occupational or
full profiles depress it (-3.2 % and —1.8 %, respectively).

* Popularity Bias LPD drifts further negative (-2.27 — —2.48), meaning
the system already prefers longer-tail items and becomes even more tail-
skewed once fine-grained attributes leak into the model. This indicates
a stronger bias towards less popular items, but without improving cross-
group alignment.

* Fairness All three enriched profiles roughly halve JS (= 0.24 — 0.12
/ 0.11)—i.e., recommendations become far more diverged between
demographic groups.

Table 5.4: Fairness configurations: Impact on Recommendation (Strate-
gy/Bias in Reference Settings)

Configuration HR AHR JS AJS LPD ALPD

neutral (reference) 0.528 0.241 —-2.27

gender + age 0537 1.8 %0.122 —49 % -2.38 —0.11
occupation only 0.511 -3.2 %0.121 —49 9% -2.39 —-0.12
all attributes 0518 -1.8 %0.110 =54 % —2.48 -0.21

Interpretation By just having a look at this table, it seems like the
perceived gain from richer user modeling is illusory: the small gain in
accuracy obtained from gender + age is outweighed by a 49 Y% drop in fairness
homogeneity plus a deeper tail preference, implying that attribute leakage
outweighs pure informational value.

5.4 Two-Factor Interaction Effects

Pairwise analyses make it possible to identify synergistic and antagonistic
couplings that could not be observed when each factor was varied in isolation
. We consider three Cartesian products:

56 | Results and Analysis

* Profiling strategy x bias-mitigation (Table 5.5)
* bias-mitigation x fairness-attribute configuration (Table 5.6)

* Profiling strategy x fairness-attribute configuration (Table 5.7)

5.4.1 Profiling Strategy x Bias-Mitigation Interaction
Effects

* Accuracy
— Figure 5.3 shows that baseline delivers the global maximum
(0.900)
— Temporal-diverse is a close second (0.861, —4%)

— Any hard popularity filter—exclude-popular or indie-international—
cuts polarized accuracy by 40-70% and recent/top-rated by
roughly 50%

— The polarized strategy stays on top regardless of debiaser.
 Popularity Bias
— Figure 5.4 shows that e Polarized + (baseline | temporal-diverse)
is essentially neutral (LPD =~ +0.69)
— Recent/top-rated rows remain tail-heavy (LPD = -1.1 to -3.6)
— Aggressive filters overshoot the tail (LPD < -3.4) without
compensating fairness
 Fairness
— Head-heavy baseline gives high JS for recent/top-rated (= 0.46—
0.55) and highest for polarized (0.551)

— Temporal-diverse halves the baseline JS for recent/top-rated (=
0.19) but keeps polarized overlap respectable (0.342)

— All other debiasers push JS below 0.09, fragmenting the lists
profoundly

Hit-Rate

Log-popularity difference

Results and Analysis |57

Hit-Rate across bias prompts (averaged over fairness groups)

0.9 4 Recommendation strategy
—8— Top Rated
0.8 Recent

—8— Polarized

0.74

0.6 4

0.54

0.4

0.34

& @ i > @ 3
S 5 R & & &
& & S &
& S R & & &
F &7 & A @’
& i & @ &
& & ¢
& & S & o
& & §

Bias strategy in the LLM prompt

Figure 5.3: Hitrate of Startegy xBias Mitigation

Log-popularity difference across bias strategies (averaged over fairness prompts)

Recommendation strategy
—e— Polarized
Recent
—8— Top Rated

—4 4

Bias strategy

Figure 5.4: Log Popularity Difference of Startegy xBias Mitigation

Interpretation For a debiasing strategy to be effective, it must be
combined with the polarization approach—mixing both popular (head) and
less-known (tail) items from a user’s history. Polarization appears to be
a necessary foundation for achieving a balanced trade-off across all three
evaluation metrics: hit rate, diversity (Jaccard), and popularity bias (log
pop diff). Among the various bias mitigation methods, temporal diversity
is the only one that maintains this three-way balance when layered on top
of polarization. Without polarization, most debiasing techniques struggle to
preserve both accuracy and diversity simultaneously.

58 | Results and Analysis

Table 5.5: Profiling Strategy x Bias-Mitigation Interaction Effects

Strategy Bias Hit Rate jaccard Log Pop Diff
Baseline 0.900 0.551 0.692
Exclude Popular 0.543 0.047 -1.761
Polarized Indie International 0.288 0.008 —-3.373
Niche Genre 0.643 0.083 —-1.191
Obscure Theme 0.648 0.072 —-1.197
Temporal Diverse 0.861 0.342 0.695
Baseline 0.709 0.457 —2.209
Exclude Popular 0.369 0.037 —3.331
Recent Indie International 0.264 0.014 —4.481
Niche Genre 0.360 0.044 —-3.567
Obscure Theme 0.379 0.034 —3.406
Temporal Diverse 0.740 0.193 —1.224
Baseline 0.720 0.484 —1.905
Exclude Popular 0.333 0.029 —3.586
Top-rated Indie International 0.262 0.016 —4.469
Niche Genre 0.351 0.041 —3.642
Obscure Theme 0.364 0.026 —3.667
Temporal Diverse 0.703 0.198 —-1.078

5.4.2 Bias-Mitigation x Fairness-Attribute Interaction
Effects

* Accuracy
— Figure 5.5 shows that hit rate ranges from a high of 0.82 (baseline
+ neutral) to a low of 0.24 (indie-international + occupation).
— Notably, all temporal-diverse configurations maintain consistently
high hit rates between 0.75 and 0.80.
 Popularity Bias —
— Figure 5.6 shows that the baseline condition exhibits a moderate
head bias, with a log popularity difference (LPD) of —0.76

— It can also be seen from the Figure 5.8 that the combination of
temporal-diverse strategy with neutral fairness achieves the most
balanced outcome, driving LPD closest to zero (—0.36) while

Results and Analysis | 59

maintaining strong performance in both hit rate (HR > 0.75) and
Jaccard similarity (JS > 0.27)

— In contrast, all hard filtering strategies push LPD deep into the tail
(< —2.9), indicating a strong shift toward less popular items

e Fairness

— Figure 5.7 shows that the highest value (1.00) appears for the
baseline + neutral condition, which serves as a self-comparison.

— Excluding this, the next best performance is observed with the
temporal diverse strategy, showing the highest overlap with
baseline + neutral.

— Profiles with richer attribute information tend to reduce Jaccard
similarity relative to the neutral configuration, likely due to their
inclination toward more niche item discovery.

Interpretation For each fairness setting, temporal-diverse is the only
debiasing strategy that brings |[LPD)| close to zero while maintaining a hit rate
of > 0.75. Incorporating gender and age under this strategy recovers about 3%
in accuracy but further skews popularity (LPD = —0.611) and reduces Jaccard
similarity by 7%—reinforcing that attribute leakage remains a concern, even
when a strong debiaser is applied.

Hit Rate across bias strategies by fairness group

0.8

0.7 1

0.6 4

Hit Rate

0.5+

Fairness

—e— all_attributes
gender_age_only

—&— neutral

—8— occupation_only

0.4+

0.34

Bias strategy

Figure 5.5: Hit Rate of Bias Mitigation strategies xfairness group

60 | Results

Figure 5.6:
group

Figure 5.7:

and Analysis

Log-popularity difference across bias strategies by fairness group

0.5 Fairness
—e8— all_attributes

-1.0 1 —e— gender_age_only
; —8— neutral
@ —1.5 —8— occupation_only
@
£
© -2.04
>
£
=
& —2.5 4
2
5
2 -3.0 4
g
= 354

—4.0

3 & & > & &
& & S o S &
& S &N & $ &
& & <Q & NG @’
& * & 2 &
& & & & o
& N @é‘ &
&

Bias strategy

Log Popularity Difference of Bias Mitigation stratgey xfairness

Jaccard across bias strategies by fairness group

1.0+ Fairness
—e— all_attributes
—e— gender_age_only
081 —e— neutral
—8— occupation_only
) 0.6 1
©
S
o
5,
0.4 4
0.2 A
0.0 T v
& & & > e 4
¢ & & o & &
& S K > o &
A &7 e & o d
g & & @ o
¢ & & & &r}‘
& ‘Q&e/ @é‘

Bias strategy

Jaccard Similarity of Bias Mitigation strategies xfairness group

Results and Analysis |61

Log Popularity Difference (Fairness x Bias)

o, gender_age_only | -1.2887 27120 -2.8809 2.7852
Ej
H

g
“ occupation_only n -2.8410 -2.9332

all_attributes - -1.4462 2.7982 -2.9568

-—2.0

2.7846

Log(popularity) Difference

3 e A > &
) R @ & &
S o S & o ¢

Figure 5.8: Heatmap of Log Popularity Difference of Bias Mitigation stratgey
xfairness group

5.4.3 Profiling Strategy x Fairness Attributes Interac-
tion Effects

* Accuracy

— Polarized rows dominate (0.626—0.669), recent and top-rated lag
by > 28%.

* Popularity Bias

— Polarized: —0.95 to —1.11 (mild tail)
— Recent/top-rated: about —3.0 (deep tail)

e Fairness

— Highest value again belongs to polarized + neutral (0.281).

— Injecting gender_age_only under polarization halves JS (0.147)
despite a 2.4% HR lift.

— Recent/top-rated never exceed JS = 0.223.

Interpretation The polarized + neutral configuration delivers the best
overall balance, achieving the highest fairness score (Jaccard = 0.281)
while keeping popularity bias (Log Pop Diff =~ -0.97) near zero. It
outperforms both recent and top-rated strategies across all metrics. Notably,
no configuration under recent or top-rated exceeds even the weakest polarized
variant (occupation_only) in hit rate, fairness, or popularity balance. While

62 | Results and Analysis

Table 5.6: Bias-Mitigation x Fairness-Attribute Interaction Effects

Bias Fairness Hit Rate jaccard Log Pop Diff
All Attributes 0.745 0.301 —1.437
Baseline Gender/Age Only 0.768 0.318 —1.281
Neutral 0.820 1.000 —0.757
Occupation Only 0.773 0.369 —1.089
All Attributes 0.413 0.035 —2.949
Gender/Age Only 0.434 0.042 —2.873
Exclude Popular e ytral 0413 0042 -2821
Occupation Only 0.399 0.032 —2.926
All Attributes 0.268 0.012 —4.103
Indie International Gender/Age Only 0.293 0.014 —4.018
Neutral 0.276 0.014 —4.114
Occupation Only 0.248 0.011 —4.196
All Attributes 0.462 0.057 —2.785
. Gender/Age Only 0.469 0.061 —2.703
Niche Genre Neutral 0432 0.055 —2.881
Occupation Only 0.442 0.051 —2.833
All Attributes 0.457 0.037 —2.859
Gender/Age Only 0.469 0.042 —2.775
Obscure Theme e yyral 0474 0056 —2.616
Occupation Only 0.456 0.040 —2.776
All Attributes 0.768 0.221 —0.682
Temporal Diverse Gender/Age Only 0.796 0.256 —0.611
P v Neutral 0.757 0.276 —0.363
Occupation Only 0.751 0.224 —0.486

recent and top-rated remain stuck around Log Pop Diff = -3—indicating an
overemphasis on niche recommendations—the polarized + neutral setup is the
only one that comes close to true equity without relying on external debiasing
methods.

Log-popularity difference
b Lok
n wn o
!

|
W
o

L

|
~
o

L

Results

Log-popularity difference
(avg over bias strategies)

and Analysis |63

Recommendation strategy
—&— Top Rated

Recent

—8— Polarized

o
&
oS

&

Fairness attribute in prompt

Figure 5.9: Log Popularity Difference of Profiling Strategy xFairness Injection

Table 5.7: Profiling Strategy x Fairness-Attribute Interaction Effects

Strategy Fairness Hit Rate jaccard Log Pop Diff
All Attributes 0.642 0.143 —1.066
Polarized Gender/Age Only 0.669 0.147 —0.948
Neutral 0.653 0.281 —0.968
Occupation Only 0.626 0.164 —1.109
All Attributes 0.465 0.092 —3.163
Recent Gender/Age Only 0.479 0.107 -3.078
Neutral 0.475 0.223 —2.884
Occupation Only 0.462 0.098 -3.019
All Attributes 0.450 0.096 -3.179
T ted Gender/Age Only 0.467 0.112 —-3.104
OPTHEE Neutral 0.458 0.219 —2.924
Occupation Only 0.447 0.102 —3.024

5.5 Unified Perspective and Cross-Metric
Synthesis

This section integrates the prior micro-analysis in Table 5.8 to reveal how
profiling strategies, popularity debiasing techniques, and fairness attributes
injection jointly govern the coupled dynamics of accuracy (HR), fairness (JS),

64 | Results and Analysis

and popularity bias (LPD).
* Accuracy
— Figure 5.10 shows that the global best HR = 0.931 occurs for

polarized / neutral / baseline.

— Next seven places (HR >0.876) are also polarized, always with
either baseline or temporal-diverse bias.

— No recent or top-rated setting exceeds HR = 0.769 (top-rated /
neutral / baseline).

— Hardfilters (indie_international,exclude_popular)
consistently push HR below 0.60 and often below 0.30.

Take-away: A polarized list generator is prerequisite for top-tier
accuracy; harsh popularity suppression destroys utility.

Hit Rate Metrics

Hit Rate — Strategy: polarized Hit Rate — Strategy: top-rated Hit Rate — Strategy: recent

Figure 5.10: Hit Rate of Profiling Strategy xBias Mitigation xFairness
Injection

* Popularity Bias

— The closest-to-neutral exposure ([LPD| =0.60) is found in
polarized rows with baseline + gender_age or polarized rows with
temporal-diverse (LPD = 0.67-0.77).

— All recent/top-rated variants remain tail-heavy (LPD < —0.86 and
often < -3).

— Hard filters overshoot into the long tail (LPD < -3.5) without
fairness benefit.

Take-away: Temporal diversity is the only bias technique that moves
LPD toward zero without wrecking accuracy.

Results and Analysis | 65

e Fairness

— Figure 5.11, 5.12, and 5.13 shows the Jaccard Similarity of neutral
baseline vs all prompt variant. Values = 1.0 are deceptive: they
arise as a result of self-comparison (i.e. neutral baseline compared
with neutral baseline).

— Looking only at bias-controlled rows (after skipping baseline),
the highest legitimate JS is 0.413 (polarized / neutral / tempo-
ral-diverse).

— The worst JS values (< 0.02) appear whenever indie_international

is chosen—accuracy and fairness collapse together.

Take-away: Large JS is meaningful only when the popularity profile
is balanced; the best real overlap comes from temporal diversity on a
polarized backbone.

Jaccard vs Neutral Baseline — polarized

baseline niche_genre exclude_popular indie_international temporal_diverse obscure_theme
Bias variant

Figure 5.11: Jaccard Similarity of Neutral vs Prompt Variant in-Polarized
strategy

Jaccard vs Neutral Baseline — recent

baseline niche_genre exclude_popular indie_international temporal_diverse obscure_theme
Bias variant

Figure 5.12: Jaccard Similarity of Neutral vs Prompt Variant in-Recent
strategy

66 | Results and Analysis

Jaccard vs Neutral Baseline — top-rated

aaaaaaaaaaa

Figure 5.13: Jaccard Similarity of Neutral vs Prompt Variant in-7op-rated
strategy

Table 5.8: Full factorial analysis of recommender system across profiling
strategies fairness attributes, and bias mitigation cues metrics

Strat. Fair. Bias HR JS LPD

Top-rated Strategy

Neutral Base 0.769 1.000 -1.395
Niche 0.336 0.035 -3.651
ExPop 0.333 0.029 -3.510
Indie 0.255 0.015 -4.520
TempD 0.694 0.207 -0.856
ObsTh 0.362 0.024 -3.611

G/A Base 0.712 0.314 -2.077
Niche 0.358 0.047 -3.625
ExPop 0.344 0.033 -3.641
Indie 0.284 0.020 -4.355
TempD 0.737 0.230 -1.195
ObsTh 0.364 0.029 -3.732

Occ Base 0.719 0.339 -1.831
Niche 0.349 0.038 -3.621
ExPop 0.327 0.025 -3.549
Indie 0.242 0.014 -4.551
TempD 0.682 0.170 -0.989
ObsTh 0.363 0.025 -3.605

All Base 0.678 0.280 -2.318

Continued on next page

Results and Analysis |67

Table 5.8 — Continued from previous page
Strat. Fair. Bias HR JS LPD

Niche 0.362 0.045 -3.670
ExPop 0.326 0.028 -3.643
Indie 0.266 0.016 -4.450
TempD 0.699 0.183 -1.274
ObsTh 0.367 0.026 -3.719

Recent Strategy

Neutral Base 0.760 1.000 -1.678
Niche 0.350 0.040 -3.542
ExPop 0.377 0.038 -3.240
Indie 0.260 0.014 -4.507
TempD 0.729 0.209 -1.000
ObsTh 0.374 0.032 -3.338

G/A Base 0.700 0.282 -2.362
Niche 0.369 0.049 -3.579
ExPop 0.373 0.042 -3.355
Indie 0.278 0.016 -4.415
TempD 0.773 0.217 -1.307
ObsTh 0.379 0.037 -3.452

Occ Base 0.709 0.300 -2.164
Niche 0.352 0.041 -3.547
ExPop 0.359 0.032 -3.326
Indie 0.247 0.013 -4.543
TempD 0.720 0.168 -1.165
ObsTh 0.382 0.032 -3.371

All Base 0.668 0.245 -2.633
Niche 0.369 0.047 -3.599
ExPop 0.366 0.035 -3.401
Indie 0.270 0.014 -4.458
TempD 0.736 0.176 -1.424
ObsTh 0.382 0.034 -3.463

Polarized Strategy
Neutral Base 0.931 1.000 0.803

Continued on next page

68 | Results and Analysis

Table 5.8 — Continued from previous page
Strat. Fair. Bias HR JS LPD

Niche 0.610 0.090 -1.449
ExPop 0.529 0.058 -1.713
Indie 0.313 0.012 -3.314
TempD 0.848 0.413 0.767
ObsTh 0.685 0.112 -0.899

G/A Base 0.893 0.357 0.597
Niche 0.680 0.087 -0.903
ExPop 0.585 0.051 -1.622
Indie 0.316 0.007 -3.283
TempD 0.876 0.320 0.669
ObsTh 0.663 0.061 -1.143

Occ Base 0.890 0.468 0.728
Niche 0.626 0.074 -1.329
ExPop 0.511 0.038 -1.904
Indie 0.255 0.006 -3.495
TempD 0.852 0.334 0.696
ObsTh 0.623 0.064 -1.352

All Base 0.888 0.377 0.640
Niche 0.656 0.079 -1.084
ExPop 0.547 0.042 -1.803
Indie 0.268 0.006 -3.401
TempD 0.869 0.303 0.650
ObsTh 0.623 0.052 -1.394

5.5.1 Deeper Insights from the 72-row Grid

A polarized ranking strategy combined with temporal-diverse debiasing under
a neutral attribute schema is the sole configuration that:

* Preserves user utility (HR within 9 % of the global maximum),
* Achieves substantive fairness (JS > 0.40), and
» Neutralises exposure bias ([LPD] < 0.8).

All other triplets fall off this Pareto surface by sacrificing at least one of the
three metrics, underscoring the need for joint optimisation rather than isolated

tweaks. see Table 5.9

Results and Analysis | 69

Table 5.9: Deeper Insights from the 72-row Grid

Finding

Evidence from table

Practical implication

Optimal balance exists

Attribute leakage is per-
sistent

Soft vs. hard debiasing

Strategy sets the ceiling

polarized +
temporal-diverse +
neutral: HR = 0.848, JS
=0.413, LPD = 0.767

Compare polar-
ized/temporal-diverse
rows: neutral JS =
0.413 vs. gender_age
0.320 (=23 %),
occupation 0.334
(=19 %) while HR rises
only 3-4 pp

Temporal-diverse rows
average LPD = -0.54
and HR = 0.768; in-
die_international aver-
age LPD = —4.11 but
HR = 0.271,JS = 0.013

Mean HR over 72 rows:
polarized 0.647, recent
0.470, top-rated 0.455
(see summary below)

Retains 91% of peak accuracy
while offering the fairest genuine
overlap and the most neutral pop-
ularity exposure among high-HR
rOws.

Adding sensitive attributes buys

trivial accuracy but erodes
fairness—avoid unless strongly
justified.

Gentle time-based diversification
is cost-effective; harsh head sup-
pression devastates utility and still
fragments groups.

Even the “best” debiaser cannot lift
recent/top-rated into the polarized
accuracy band; list composition
must be fixed first.

5.5.2 Actionable design strategy

Across all three evaluation grids, some consistent design principle emerges

1. Mix First, Debias Second
A polarized ranking strategy—where both popular (head) and niche
(tail) items are represented—is essential for maintaining high hit rate
(HR). Only once this foundation is laid can a soft debiaser like temporal
diversity be effectively applied to balance LPD without sacrificing

fairness (JS).

70 | Results and Analysis

2. Attribute Neutrality is Essential
Incorporating demographic features such as gender, age, or occupation
degrades Jaccard similarity after the best profiling strategy and debiaser
is discovered. Even when minor gains in accuracy are observed, they
come at the cost of greater fairness and popularity skew.

3. Avoid Aggressive Head Suppression
Techniques like exclude_popular or indie_international
significantly reduce both HR and JS, while still failing to achieve
meaningful popularity neutrality. These methods often overshoot,
flooding users with tail-heavy lists that undermine engagement and
utility.

5.5.3 The most optimal configuration

The intersection of these principles reveals a robust configuration that
consistently performs well across all three core metrics—accuracy, fairness,
and popularity balance: Polarized ranking + Temporal-diverse bias control +
Neutral attribute schema No other two-factor combination offers this level of
consistent cross-metric performance.

Discussion | 71

Chapter 6

Discussion

This chapter provides a critical interpretation of the empirical findings
presented in 4 and situates them within the broader academic discourse on
bias in recommender systems. It articulates the theoretical, practical, and
methodological implications of the results, emphasizing how progressively
fine-grained analyses were necessary to inform the final design recommenda-
tions. The section closes by providing a direct answer to the research question
and by explaining why separating popularity bias from user-fairness auditing
is indispensable.

6.1 Interpretation of Principal Findings

6.1.1 Popularity-Bias Control

The temporal-diverse prompt—an instruction that gently requests items from
a broad time span—proved to be the most effective and least destructive bias-
mitigation device. Across all strategies it shifted the Log popularity difference
by = +0.60 toward the neutrality target of 0, while trimming Hitrate by barely
one percentage point. In contrast, filter-style prompts (e.g., Exclude Popular or
Indie International) overshot into the deep tail (LPD < -3.0) and cut accuracy
by 40-65 %. These data show that popularity-bias correction in an LLM
recommender should be soft rather than exclusionary.

6.1.2 Demographic Fairness

Fairness was measured by the Jaccard similarity between each recommenda-
tion list and a neutral, attribute-free baseline. Once popularity was neutralised,

72 | Discussion

fairness scores became highly sensitive to attribute inclusion. Under the
optimal popularity control (Polarized + Temporal) adding even a minimal
set of attributes (gender + age) reduced JS by 23 9% and occupational cues
lowered it by 19 %. This confirms the working hypothesis: popularity bias
must be removed first; otherwise list overlap confounds popularity exposure
with demographic drift.

6.1.3 Predictive Accuracy

The Polarized strategy—supplying the LLM with a preference list that
interleaves liked and disliked titles—consistently formed the upper bound of
predictive quality. Out of 72 cells, the eight highest hit-rates all employed
polarization. Neither the Recent nor the Top-rated profile ever exceeded
HR = 0.769. The evidence therefore, assigns the “accuracy ceiling” to the
expressiveness of the preference signal rather than to the bias-mitigation
prompt.

6.1.4 Synthesis: A Single Optimal Triplet

Only one configuration, Polarized + Temporal-Diverse + Neutral attributes,
simultaneously satisfied strict thresholds on the three axes (HR: 0.848, JS:
0.413, LPD: 0.766). Every alternative triplet violated at least one target by a
large margin. The hypothesis—that addressing popularity bias first yields a
clearer and fairer system—was therefore upheld.

6.2 Why Decoupling Popularity Bias from
User Fairness Is Essential?

Our analysis explicitly decoupled the two issues and this proved essential.
Popularity bias and user fairness operate on different axes—one concerns
which items get recommended, the other concerns which users benefit. A
recommender system might seem “fair” if it provides the same popular content
to every demographic group. However, this kind of fairness is misleading—
it reinforces the dominance of already popular items and limits exposure to
diverse content. By measuring log popularity difference (LPD) (how evenly
popular and less-popular items are shown) separately from Jaccard similarity
(JS) (how similar the recommendations are across user groups), two important
issues became visible:

Discussion |73

» High JS with positive LPD: Different groups receive almost identical
recommendations, but those recommendations are dominated by highly
popular items.

* Low JS with neutral LPD: Exposure to popular and less-popular items
is more balanced overall, but different groups receive very different
recommendations.

The best outcomes avoided both problems. This shows that real fairness
requires paying attention not only to what is being recommended, but also
to whom. By separating these two measures, fairness assessment becomes
more meaningful, helping ensure that recommendations are both inclusive and
balanced.

How Granularity Changed the Narrative

A coarse-to-fine analytical workflow was essential for uncovering the above
pattern. 6.1 maps the logical sequence. In effect, each finer cut revealed an
interaction that the previous layer had obscured. Without the full 3 x 6 x 4
grid, the final design recommendation could not be justified.

6.3 Relation to Existing Literature

* Popularity Bias in LLMs.
[2] reported that GPT-3 exhibits lower popularity bias than collaborative
filtering. We extend their observation, showing that a single prompt
can bring LPD to the neutrality target while preserving > 90 % of peak
accuracy.

* Attribute Leakage.
Prior studies on fairness echo our attribute findings. [3] used the
FaiRLLM benchmark to show ChatGPT’s recommendations vary with
sensitive user attributes. We quantify that cost: < 4 pp accuracy gain
versus > 19 % fairness loss, and advise practitioners to keep attribute
prompts neutral unless a clear benefit overrides the fairness degradation.

Overall, our patterns are consistent with the existing literature: LLM-
recommenders do not magically eliminate bias (contrary to early optimism),
but they offer new levers (prompt engineering) to control it.

74 | Discussion

Table 6.1: Workflow of Analytical Depth and Evolving Conclusions

Analytical depth

Initial
conclusion

New evidence
revealed at next
depth

Revised
conclusion

Single-factor
Analysis

Two-factor slices

Full factorial

Polarized or
Temporal alone
solves the
trade-off.

Polarized +
Temporal is
optimal.

Polarized +
Temporal +
Neutral is
uniquely
optimal.

Each lever fails
with
incompatible
companions
(e.g., Temporal
+ Top-rated
halves JS).

Sensitive
attributes still
erode JS by >
20 Y%.

Survives all
three metrics
against 71
rivals.

Examine levers
jointly.

Use
attribute-neutral
schema; test full
triplets.

Adopt as
recommended
system
configuration.

6.4

Implications for Recommender-System
Design

6.4.1 Theoretical

The study supports a hierarchical view of recommender metrics: (i) accuracy
must be secured; (ii) popularity exposure must be centred; (iii) fairness
can then be meaningfully audited. Violating this order yields misleading
fairness readings—an insight applicable to both LLM-based and traditional
recommenders.

6.4.2 Methodological

Prompt engineering emerges as a powerful, inexpensive lever for bias control.
Because no model parameters were changed, the approach is deployable in
commercial settings where access to model weights is restricted.

Discussion |75

6.4.3 Practical

A deployable, low-risk solution is to:
1. Polarize user preference prompts to maximise predictive power.

2. Temporally diversify the LLM’s sampling space to neutralise popularity
bias.

3. Maintain attribute neutrality unless a compelling user benefit dictates
otherwise.

Adopting this pipeline yields near-maximal utility while meeting fairness
standards.

6.5 Answer to the Research Question

RQ: How can popularity bias be effectively mitigated in LLM-
based recommendation systems, and what are the implications of
this mitigation for user fairness?

Answer: The most effective mitigation is a soft temporal-diversity
prompt applied after a polarized preference profile is provided
to the LLM. This combination drives popularity bias to near-
zero (ILPD| =~ 0.77), preserves 91% of peak accuracy, and—
under attribute-neutral prompting—yields the highest cross-
group overlap (JS = 0.413). Mitigating popularity first therefore
clears the way for a trustworthy audit of user fairness, confirming
the study hypothesis.

76 | Discussion

Conclusions and Future work | 77

Chapter 7

Conclusions and Future work

This thesis set out to investigate how popularity bias in LLM-based recom-
mendation systems can be effectively mitigated, and what the implications of
such mitigation are for user fairness. Through our study, we demonstrated
that prompt engineering can serve as a powerful tool for bias reduction in
generative recommender systems. By carefully designing the prompts given
to the LLM, we were able to guide the recommendation process away from an
over-reliance on highly popular items and toward a more balanced selection
of content.

7.1 Conclusions

The results shows that popularity bias can indeed be significantly alleviated
using the prompt engineering approach, leading to a balanced distribution of
recommendations across the user base. The empirical evidence, as shown in
Table 5.9, obtained from a 72-cell full factorial experiment on MovieLens 1M,
leads to four principal conclusions.

1. Expressive preference signals are pivotal Supplying the LLM with
polarized user profiles—interleaving highly liked and strongly disliked
items—consistently produced the highest predictive accuracy and laid
the foundation for any subsequent bias control.

2. Soft temporal diversification is the most cost effective debiaser. A
simple instruction to “Encourage recommendations that span a wider
temporal range, including older films.” reduced the absolute log
popularity difference by ~ 0.6 at very minimal accuracy decline.

78 | Conclusions and Future work

Exclusionary prompts achieved stronger bias shifts but at prohibitive
utility costs.

3. Popularity-neutrality, and user fairness are orthogonal Removing
popularity skew did not automatically make recommendations fair
across user attributes, and adding sensitive attributes changed fairness
without systematically affecting popularity skew. The two phenomena
varied independently—hence “orthogonal”. Once popularity skew was
centered, we observed that injecting sensitive attributes lowered jaccard
by 19-49% with minimal accuracy gain, confirming that fairness must
be audited only after popularity bias has been addressed.

4. Most optimal Combination The combination Polarized + Temporal
Diverse + Neutral attributes uniquely satisfied strict thresholds on
accuracy (HR > 0.84), popularity bias ([LPD| < 0.76), and fairness
(JS > 0.41). Together, these techniques steered the LLM to generate
recommendations that are less skewed toward the globally popular
blockbusters, without wholly sacrificing personalization or relevance for
the end user.

In summary, the study demonstrates that by decoupling the bias mitigation
mechanism from the fairness auditing process, we could independently
address each concern. This separation of concerns proved successful: our
LLM-based recommender was able to substantially reduce popularity bias
through prompt engineering, and we could rigorously audit and confirm
improved user fairness using our evaluation pipeline.

7.2 Limitations

While the outcomes of this research are encouraging, we acknowledge several
limitations that must be considered when interpreting the results and extending
this work:

* Reproducibility of LLM generations: A fundamental limitation is
the non-deterministic nature of LLM-based generation. The same
prompt can yield different completions on different runs due to the
stochastic sampling processes inherent in models like GPT-4.1-nano.
This introduces variability in the recommended lists and makes it
challenging to exactly reproduce results. Although we mitigated this
issue by fixing temperature setting of LLM, the inherent randomness

Conclusions and Future work | 79

means that small differences in output may persist. Future research
might explore techniques to increase consistency or to robustly evaluate
models given this variability.

Generality beyond the chosen LLM: Our study was conducted
using a single language model (GPT-4.1-nano) as the recommender
engine. This choice provided a controlled environment to develop
and test our prompt strategies, but it limits the generalizability of the
findings. Different LLMs may respond to bias mitigation prompts
in varying ways; for instance, larger models or models from other
providers might exhibit different degrees of popularity bias or fairness
characteristics. We did not experiment with alternative models such
as Anthropic’s Claude, Google’s Gemini, or other open-source LLMs,
so the effectiveness of the Polarized prompt strategy and Temporal-
Diverse bias configuration on those systems remains an open question.
The conclusions drawn here are therefore specific to GPT-4.1-nano
and should be validated on a broader range of model architectures and
vendors.

Dataset scope and domain limitations: We evaluated our approach on
the MovieLens-1M dataset, which focuses on movie recommendations
and contains one million ratings. While this dataset is a standard
benchmark and provides valuable insights, it represents only movies
domain. The behavior of popularity bias and fairness issues might
differ in larger datasets like MovieLens-20M or in entirely different
domains such as music (e.g., Last.fm data), books, or e-commerce
product recommendations. Thus, our results may not fully generalize
to systems with different item catalogs or user behavior patterns. A
larger or cross-domain dataset could introduce new challenges (for
example, more extreme popularity skew or different types of user-item
interactions) that were not captured in our study.

Prompt length constraints and truncated histories: Another
limitation stems from the token limits of current LLLMs, which restricted
our ability to pass complete user histories into the prompt. In
practice, we had to truncate or summarize user interaction histories
to fit within the model’s context window. This means the LLM was
making recommendations based on an incomplete picture of the user’s
preferences, especially for users with very large histories. While we
attempted to preserve the most informative parts of each user’s profile,

80 | Conclusions and Future work

some nuance or long-tail preferences might have been lost due to
summarization. This limitation could affect both the personalization
quality and the fairness of the outcomes (for instance, users with rich
but long histories might be disadvantaged by the truncation). As
LLM context lengths grow and new methods for condensing user data
improve, future systems may overcome this constraint.

* Alignment with external catalogs and metadata: Lastly, we observed
limitations in how well the LLM’s recommendations aligned with the
actual item catalog and metadata filters. Because the LLM relies on
learned knowledge and the prompt information, there were cases of
misalignment, such as the model occasionally favoring items that fit the
prompt’s bias mitigation criteria but not perfectly matching the dataset’s
available items or metadata. For example, if certain movies in the
long tail lacked detailed descriptions in the prompt, the model might
have hesitated to recommend them even when they were intended to be
candidates, or it might have hallucinated recommendations that weren’t
in the catalog when the prompt was underspecified. This highlights
an inherent limitation: the LLLM does not have a built-in guarantee
to strictly adhere to an external database of items. Ensuring that the
LLM’s internal knowledge and generative tendencies fully align with the
external catalog (e.g., using up-to-date item lists, metadata consistency,
and perhaps constrained generation techniques) is a challenge. In our
experiments, we minimized this issue by carefully constructing prompts
with catalog data and filtering outputs, but minor misalignments and
omissions can occur, indicating room for improvement in tightly
coupling LLM recommenders with authoritative data sources.

7.3 Reflection

This section considers the broader consequences of the research, moving
beyond technical performance to examine its social and ethical dimensions, as
well as its alignment with the United Nations Sustainable Development Goals
(SDGs).

7.3.1 Social implications

By broadening the catalogue coverage through bias-mitigation prompts,
the system increases access to culturally diverse film content. This

Conclusions and Future work | 81

can support media pluralism by nudging users towards lesser-known
titles rather than reinforcing blockbuster dominance. = However, any
automated recommendation carries the risk of inadvertently shaping tastes and
reinforcing echo chambers; our fairness probes and metric triad were designed
precisely to monitor such effects.

7.3.2 Ethical considerations

The work foregrounds transparency (JSON-only outputs), fairness auditing
(Jaccard analysis across sensitive attributes), and bias control (Log-Popularity
Difference) to minimise discriminatory or manipulative outcomes. All user
data was anonymized, and processed solely for research purposes.

7.3.3 Alignment with the UN SDGs

SDG 9 (Industry, Innovation and Infrastructure) is advanced more
directly through the demonstrable efficiency gains and the open-source
codebase accompanying this thesis. The methodology offers a scalable
template for responsible Al infrastructure that can be replicated across sectors.

In summary, the project delivers social benefits and ethical safeguards,
while making concrete contributions to SDGs 9. Continuous monitoring
and iterative refinement remain essential to preserve these advantages as the
technology is transferred from the lab to real-world settings.

82 | Conclusions and Future work

References | 83

References

[1]

[3]

K. S. Kalyan, “A survey of GPT-3 family large language models
including ChatGPT and GPT-4,” Natural Language Processing Journal,
vol. 6, p. 100048, 2024. doi: https://doi.org/10.1016/j.nlp.2023.100048.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2949719123000456 [Page 2.]

J. M. Lichtenberg, A. Buchholz, and P. Schwobel, “Large Language
Models as Recommender Systems: A Study of Popularity Bias,” Jun.
2024, arXiv:2406.01285 [cs]. [Online]. Available: http://arxiv.org/abs/
2406.01285 [Pages 2, 13, 14, 19, 36, and 73.]

J. Zhang, K. Bao, Y. Zhang, W. Wang, F. Feng, and X. He, “Is
ChatGPT Fair for Recommendation? Evaluating Fairness in Large
Language Model Recommendation,” in Proceedings of the 17th ACM
Conference on Recommender Systems, ser. RecSys '23. New York,
NY, USA: Association for Computing Machinery, Sep. 2023. doi:
10.1145/3604915.3608860. ISBN 979-8-4007-0241-9 pp. 993-999.
[Online]. Available: https://dl.acm.org/doi/10.1145/3604915.3608860
[Pages 2, 16, 20, 21, and 73.]

L. Wang and E.-P. Lim, “Zero-Shot Next-Item Recommendation using
Large Pretrained Language Models,” Apr. 2023, arXiv:2304.03153 [cs].
[Online]. Available: http://arxiv.org/abs/2304.03153 [Pages 4, 6, 12,
13, 18, and 19.]

“CFaiRLLM: Consumer Fairness Evaluation in Large-Language Model
Recommender System | ACM Transactions on Intelligent Systems and
Technology.” [Online]. Available: https://dl.acm.org/doi/abs/10.1145/3
725853 [Pages 4, 20, and 21.]

L. Wu, Z. Zheng, Z. Qiu, H. Wang, H. Gu, T. Shen, C. Qin,
C. Zhu, H. Zhu, Q. Liu, H. Xiong, and E. Chen, “A Survey on Large

https://www.sciencedirect.com/science/article/pii/S2949719123000456
https://www.sciencedirect.com/science/article/pii/S2949719123000456
http://arxiv.org/abs/2406.01285
http://arxiv.org/abs/2406.01285
https://dl.acm.org/doi/10.1145/3604915.3608860
http://arxiv.org/abs/2304.03153
https://dl.acm.org/doi/abs/10.1145/3725853
https://dl.acm.org/doi/abs/10.1145/3725853

84 | References

[8]

[10]

[11]

[12]

Language Models for Recommendation,” Jun. 2024, arXiv:2305.19860
[cs]. [Online]. Available: http://arxiv.org/abs/2305.19860 [Pages 11
and 25.]

D. Liu, B. Yang, H. Du, D. Greene, N. Hurley, A. Lawlor, R. Dong,
and I. Li, “RecPrompt: A Self-tuning Prompting Framework for News
Recommendation Using Large Language Models,” in Proceedings
of the 33rd ACM International Conference on Information and
Knowledge Management, Oct. 2024. doi: 10.1145/3627673.3679987
pp- 3902-3906, arXiv:2312.10463 [cs]. [Online]. Available: http:
/larxiv.org/abs/2312.10463 [Page 12.]

A. Vats, V. Jain, R. Raja, and A. Chadha, “Exploring the Impact
of Large Language Models on Recommender Systems: An Extensive
Review,” Mar. 2024, arXiv:2402.18590 [cs]. [Online]. Available:
http://arxiv.org/abs/2402.18590 [Page 15.]

W. Liu, B. Liu, J. Qin, X. Zhang, W. Huang, and Y. Wang,
“Fairness identification of large language models in recommendation,”
Sci Rep, vol. 15, no. 1, p. 5516, Feb. 2025. doi: 10.1038/s41598-
025-89965-3 Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/s41598-025-89965-3 [Page 15.]

B. Vassgy and H. Langseth, “Consumer-side fairness in recommender
systems: a systematic survey of methods and evaluation,” Artif Intell
Rev, vol. 57, no. 4, pp. 1-61, Apr. 2024. doi: 10.1007/s10462-023-
10663-5 Company: Springer Distributor: Springer Institution: Springer
Label: Springer Number: 4 Publisher: Springer Netherlands. [Online].
Available: https://link.springer.com/article/10.1007/s10462-023-10663
-5 [Page 16.]

A. Beutel, J. Chen, T. Doshi, H. Qian, L. Wei, Y. Wu, L. Heldt, Z. Zhao,
L. Hong, E. H. Chi, and C. Goodrow, “Fairness in Recommendation
Ranking through Pairwise Comparisons,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD ’19. New York, NY, USA: Association
for Computing Machinery, Jul. 2019. doi: 10.1145/3292500.3330745.
ISBN 978-1-4503-6201-6 pp. 2212-2220. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3292500.3330745 [Page 16.]

H. Abdollahpouri, R. Burke, and B. Mobasher, “Managing Popularity
Bias in Recommender Systems with Personalized Re-ranking,” Aug.

http://arxiv.org/abs/2305.19860
http://arxiv.org/abs/2312.10463
http://arxiv.org/abs/2312.10463
http://arxiv.org/abs/2402.18590
https://www.nature.com/articles/s41598-025-89965-3
https://link.springer.com/article/10.1007/s10462-023-10663-5
https://link.springer.com/article/10.1007/s10462-023-10663-5
https://dl.acm.org/doi/10.1145/3292500.3330745
https://dl.acm.org/doi/10.1145/3292500.3330745

[15]

[19]

References | 85

2019, arXiv:1901.07555 [cs]. [Online]. Available: http://arxiv.org/abs/
1901.07555 [Page 17.]

H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher,
“The Unfairness of Popularity Bias in Recommendation,” Sep. 2019,
arXiv:1907.13286 [cs]. [Online]. Available: http://arxiv.org/abs/1907.1
3286 [Page 17.]

Q. Liu, X. Zhao, Y. Wang, Y. Wang, Z. Zhang, Y. Sun, X. Li,
M. Wang, P. Jia, C. Chen, W. Huang, and F. Tian, “Large Language
Model Enhanced Recommender Systems: A Survey,” Mar. 2025,
arXiv:2412.13432 [cs]. [Online]. Available: http://arxiv.org/abs/2412.1
3432 [Page 18.]

W. Borui, Z. Juntao, J. Chenyu, G. Chuanxiong, and W. Chuan,
“Efficient LLM Serving on Hybrid Real-time and Best-effort Requests,”
Apr. 2025, arXiv:2504.09590 [cs]. [Online]. Available: http://arxiv.org/
abs/2504.09590 [Page 18.]

“Federated Recommendation via Hybrid Retrieval Augmented
Generation.” [Online]. Available: https://arxiv.org/html/2403.04256v1
[Page 18.]

S. Pouryousef and A. Montazeralghaem, “What LLMs Miss in
Recommendations: Bridging the Gap with Retrieval-Augmented
Collaborative Signals,” Jun. 2025, arXiv:2505.20730 [cs]. [Online].
Available: http://arxiv.org/abs/2505.20730 [Page 18.]

Y. Bang, Z. Ji, A. Schelten, A. Hartshorn, T. Fowler, C. Zhang,
N. Cancedda, and P. Fung, “HalluLens: LLM Hallucination
Benchmark,” Apr. 2025, arXiv:2504.17550 [cs]. [Online]. Available:
http://arxiv.org/abs/2504.17550 [Pages 18 and 47.]

W. Hua, Y. Ge, S. Xu, J. Ji, and Y. Zhang, “UpS: Unbiased foundation
model for fairness-aware recommendation,” 2024. [Online]. Available:
https://arxiv.org/abs/2305.12090 [Page 21.]

C. D. Sipio, J. D. Rocco, D. D. Ruscio, and V. Bulhakov, “Addressing
Popularity Bias in Third-Party Library Recommendations Using
LLMs,” Jan. 2025, arXiv:2501.10313 [cs]. [Online]. Available: http:
/larxiv.org/abs/2501.10313 [Page 22.]

http://arxiv.org/abs/1901.07555
http://arxiv.org/abs/1901.07555
http://arxiv.org/abs/1907.13286
http://arxiv.org/abs/1907.13286
http://arxiv.org/abs/2412.13432
http://arxiv.org/abs/2412.13432
http://arxiv.org/abs/2504.09590
http://arxiv.org/abs/2504.09590
https://arxiv.org/html/2403.04256v1
http://arxiv.org/abs/2505.20730
http://arxiv.org/abs/2504.17550
https://arxiv.org/abs/2305.12090
http://arxiv.org/abs/2501.10313
http://arxiv.org/abs/2501.10313

86 | References

[21]

[22]

[23]

F. Carnovalini, A. Roda, and G. A. Wiggins, “Popularity
Bias in Recommender Systems: The Search for Fairness
in the Long Tail,” Information, vol. 16, no. 2, p. 151,
Feb. 2025. doi: 10.3390/info16020151 Number: 2 Publisher:
Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/2078-2489/16/2/151 [Page 22.]

“Writing Style Matters: An Examination of Bias and Fairness in
Information Retrieval Systems | Proceedings of the Eighteenth ACM
International Conference on Web Search and Data Mining.” [Online].
Available: https://dl.acm.org/doi/abs/10.1145/3701551.3703514?cas
a_token=F2Tt-OI6MygAAAAA:qslcn50022_EFolDT2BPOm-rSy
zzxsVFIUckTTDIeyjEAT9x1Rue0Odk_4u_pavlrmoUVoxTEZTgSQ
[Page 23.]

H. Xin, Y. Sun, C. Wang, Y. Yu, W. Zhang, and H. Xiong, “Improving
Recommendation Fairness without Sensitive Attributes Using Multi-
Persona LLMs,” May 2025, arXiv:2505.19473 [cs]. [Online]. Available:
http://arxiv.org/abs/2505.19473 [Page 29.]

https://www.mdpi.com/2078-2489/16/2/151
https://dl.acm.org/doi/abs/10.1145/3701551.3703514?casa_token=F2Tt-OI6MygAAAAA:qs1cn50O22_EFolDT2BPOm-rSyzzxsVFlUckTTDIeyjEAT9x1Rue0Odk_4u_pav1rmoUVoxTEZTgSQ
https://dl.acm.org/doi/abs/10.1145/3701551.3703514?casa_token=F2Tt-OI6MygAAAAA:qs1cn50O22_EFolDT2BPOm-rSyzzxsVFlUckTTDIeyjEAT9x1Rue0Odk_4u_pav1rmoUVoxTEZTgSQ
https://dl.acm.org/doi/abs/10.1145/3701551.3703514?casa_token=F2Tt-OI6MygAAAAA:qs1cn50O22_EFolDT2BPOm-rSyzzxsVFlUckTTDIeyjEAT9x1Rue0Odk_4u_pav1rmoUVoxTEZTgSQ
http://arxiv.org/abs/2505.19473

TRITA — EECS-EX 2025:0000
Stockholm, Sweden 2025

www.kth.se

€€€E For DIVA €€€€

“Author1”: { "Last name”: "Hamad”,

"First name”: "Muhammad”,

“Local User Id”: "u100001”,

"E-mail”: "mhama@kth.se”,

“organisation” {"L1": "School of Electrical Engineering and Computer Science”,
}
}
"Cycle” "2”,

"Course code™ "DA258X”,

"Credits™: "30.0”,

"Degree1”: {"Educational program”: "Master’'s Programme, ICT Innovation, 120 credits”
,"programcode”: "TIVNM”

,’'Degree”: "Degree of Master of Science in Engineering”

,"subjectArea”: "Information and Communication Technology”

h

"Title™: {

“"Main title”: “"Decoupling Popularity Bias and User Fairness in LLM-Based Recommendation Systems”,

"Subtitle”: "A prompt-engineering approach to achieve accurate, exposure-balanced, and demographically fair recommendations ",
“Language”™: "eng” },

"Alternative title”™: {

"Main title”: "Att frikoppla popularitetsbias och anvéndarréttvisa i LLM-baserade rekommendationssystem”,

"Subtitle”: "En snabb och effektiv metod for att uppna korrekta, langsiktiga och demografiskt rattvisa rekommendationer”,
“Language”: "swe”

13

"Supervisor1”: { "Last name”: "Tahmasebinotarki”,

“First name”: "Shirin”,

“Local User Id”: "u100003”,

"E-mail”: "shirint@kth.se”,

“organisation™: {"L1”: "School of Electrical Engineering and Computer Science”,

“L2": "Computer Science” }

5

"Examiner1”: { "Last name”: "Payberah”,

"First name”: "Amir H.”,

"Local User Id”: "u1d13i2c”,

"E-mail”: "payberah@kth.se”,

“organisation™ {"L1": "School of Electrical Engineering and Computer Science”,

L2 "Computer Science” }
3

"Cooperation™: { "Partner_nal
"National Subject Categorie
"SDGs": "8, 9",

"Other information™: {"Year": "2025", "Number of pages™: "xi,87"},
"Copyrightleft”: "copyright”,

"Series”: { "Title of series™: "TRITA — EECS-EX”, "No. in series™ "2025:0000" },
"Opponents”: { "Name”: "A. B. Normal & A. X. E. Normale™},

“Presentation”: { "Date”: "2022-03-15 13:00”

/’Language”:"eng”

,"Room”: “via Zoom https://kth-se.zoom.us/j/ddddddddddd”

J’Address”: "Isafjordsgatan 22 (Kistagangen 16)”

,"City”: "Stockholm” },
"Number of lang instances”™:
“Abstracteng]”: €€€€

”: "HOLVI Payment Services, Helsinki Finland™},
'10201, 10206",

$\generalExpl {Enter your abstract here!}

Large Language Models (LLMs) are rapidly being adopted as “plug-and-"play recommenders that require
no task-specific training, although their recommendations can still face two long-standing problems:
popularity bias (overexposing blockbusters) and consumer unfairness (unequal treatment of users who
differ only in sensitive attributes). This thesis investigates whether these problems can be
decoupled and simultaneously mitigated purely through prompt engineering, with no access to model
weights.

Working with the MovieLens-1M corpus, we generate 434,880 prompts that vary three dimensions: how a
user's historical tastes are sampled (top-rated, most recent, or a newly proposed 'polarized' mix of
likes and dislikes), whether sensitive attributes are disclosed (neutral versus —-genderage
occupation, or all), and which popularity debiaser has been applied (from a hard 'exclude-popular'
order to a gentle “temporal-"diverse request). We evaluate every prompt with a triad of metrics:
Hit-Rate for accuracy, log-popularity difference (LPD) for popularity bias, and Jaccard similarity
for the stability of recommendations when sensitive attributes are toggled on or off.

The results reveal four insights. First, supplying the LLM with a rich, polarized taste signal
increases accuracy by 42\$%. Second, temporal diversity reduces popularity bias by 0.6 log-units while
incurring only a 1\% loss in accuracy, whereas hard “exclude-"popular filters decrease accuracy by up
to 65\%. Third, popularity bias and user fairness are orthogonal; once popularity is neutralized,
adding even minimal demographic information still halves list overlap, confirming that the two
dimensions must be audited separately. Finally, only one configuration, polarized sampling strategy,

temporal-diverse debiaser, and attribute-neutral prompt, simultaneously satisfies strict thresholds
on accuracy (~HR0.85), popularity bias (|LPD|<0.8), and fairness (~Jaccard0.41).

These results show that lowering popularity bias alone does not guarantee fairness, underscoring the
need to handle each bias independently. These findings establish prompt engineering as a lightweight
yet powerful lever for balancing accuracy, long-tail exposure, and demographic fairness in LLM-driven
recommender systems without model retraining. Beyond empirical insights, the thesis contributes a
rigorous evaluation framework and practical guidelines to build fair, bias-aware recommendation
systems with large language models.

€EEE,

"Keywords[eng]": €€€€

Large Language Models, Recommender Systems, Popularity Bias, Algorithmic Fairness, Prompt Engineering
€€EE,

"Abstract[swe]|”: €€€€

% \generalExpl{Enter your Swedish abstract or summary here!}

Stora sprédkmodeller antas snabbt som “plug-and-play”-rekommendationer som inte krdver ndgon
uppgiftsspecifik utbildning, &ven om deras rekommendationer fortfarande kan fdrvdrra tva langvariga
problem: popularitetsbias (&verexponering av storfilmer) och ordttvisa bland konsumenter (ojémlik
behandling av anvdndare som bara skiljer sig &t i skyddade attribut). Denna avhandling undersdker om
dessa problem kan frikopplas och samtidigt mildras enbart genom prompt engineering, utan tillgéng
till modellvikter.

Med hjdlp av MovieLens-1M-korpusen genererar vi 434 880 prompts som varierar i tre dimensioner: hur
en anvédndares historiska smak samplas (topprankad, senaste eller en nyligen féreslagen ”"polariserad”
blandning av gilla- och ogilla-attribut), om kd&nsliga attribut avsl&éjas (neutral kontra kdén-&lder,
yrke eller alla), och vilken popularitetsdebiaser som har tilld&mpats (fran en hard
"exkludera-populdr” ordning till en mild "tidsmdssig-divers” begdran fér filmer himtade frdn flera
epoker). Vi utvirderar varje prompt med en triad av mdtvdrden: Hit-Rate fér noggrannhet
log-popularitetsskillnad (LPD) f&ér popularitetsbias och Jaccard-likhet f&ér rekommendationernas
stabilitet ndr kdnsliga attribut &r aktiverade eller avaktiverade.

Resultaten avsléjar fyra insikter. Fér det fdrsta dkar noggrannheten med 42 \$% om LLM férses med en
rik, polariserad smaksignal. F&r det andra minskar tidsmdssig mdngfald popularitetsbias med 0, 6
log-enheter samtidigt som det bara medfér en férlust pd 1 \% i noggrannhet, medan hdrda "exkludera
populdra” filter minskar noggrannheten med upp till 65 \%. Fér det tredje dr popularitetsbias och
anvdndarrdttvisa ortogonala; ndr popularitet dr neutraliserad, halverar dven minimal demografisk
information listan, vilket bekrdftar att de tvd dimensionerna mdste granskas separat. Slutligen
uppfyller endast en konfiguration, polariserad samplingsstrategi, tidsmdssigt diversifierad debiaser
och attributneutral prompt, samtidigt strikta trésklar fér noggrannhet (~HRO,85), popularitetshbias
(|LPD|<0,8) och rdttvisa (~Jaccard0,41). Dessa resultat visar att enbart minskad popularitetsbias
inte garanterar rdttvisa, vilket understryker behovet av att hantera varje bias separat. Dessa fynd
etablerar prompt engineering som en ldtt men kraftfull hdvstdng fér att balansera noggrannhet
exponering med ldng svans och demografisk rdttvisa i LLM-drivna rekommendationssystem utan
modellomskolning. Utéver empiriska insikter bidrar avhandlingen med ett rigordst utvdrderingsramverk
och praktiska riktlinjer fér att bygga rdttvisa, biasmedvetna rekommendationssystem med stora
sprékmodeller.

€€€E,
"Keywords[swe]”: €€€€
Stora Sprakmodeller, Rekommendationssystem, Popularitetsbias, Algoritmisk Réttvisa, Promptkonstruktion €€€€,

}

=]

{
"Author1": {"Last name": "Hamad", "First name": "Muhammad", "Local User Id": "u100001", "E-mail": "mhama@kth.se", "organisation": {"L1": "School of Electrical Engineering and Computer Science" }},
"Cycle": "2", "Course code": "DA258X", "Credits": "30.0",
"Degree1": {"Educational program": "Master's Programme, ICT Innovation, 120 credits","programcode": "TIVNM" ,"Degree": "Degree of Master of Science in Engineering" ,"subjectArea": "Information and Communication Technology" },
"Title": {"Main title": "Decoupling Popularity Bias and User Fairness in LLM-Based Recommendation Systems", "Subtitle": "A prompt-engineering approach to achieve accurate, exposure-balanced, and demographically fair recommendations ", "Language": "eng" }, "Alternative title": {"Main title": "Att frikoppla popularitetsbias och användarrättvisa i LLM-baserade rekommendationssystem", "Subtitle": "En snabb och effektiv metod för att uppnå korrekta, långsiktiga och demografiskt rättvisa rekommendationer", "Language": "swe" },
"Supervisor1": {"Last name": "Tahmasebinotarki", "First name": "Shirin", "Local User Id": "u100003", "E-mail": "shirint@kth.se", "organisation": {"L1": "School of Electrical Engineering and Computer Science" ,"L2": "Computer Science" }},
"Examiner1": {"Last name": "Payberah", "First name": "Amir H.", "Local User Id": "u1d13i2c", "E-mail": "payberah@kth.se", "organisation": {"L1": "School of Electrical Engineering and Computer Science" ,"L2": "Computer Science" }},
"Cooperation": {"Partner_name": "HOLVI Payment Services, Helsinki Finland"},
"National Subject Categories": "10201, 10206",
"SDGs": "8, 9",
"Other information": {"Year": "2025", "Number of pages": "xi,87" },
"Copyrightleft": "copyright",
"Series": {"Title of series": "TRITA -- EECS-EX" , "No. in series": "2025:0000" },
"Opponents": {"Name": "A. B. Normal \& A. X. E. Normalè"},
"Presentation": {"Date": "2022-03-15 13:00" ,"Language": "eng" ,"Room": "via Zoom https://kth-se.zoom.us/j/ddddddddddd" ,"Address": "Isafjordsgatan 22 (Kistagången 16)" ,"City": "Stockholm" },
"Number of lang instances": "2",
"abstracts": {
"eng": €€€€
"%\generalExpl{Enter your abstract here!}
Large Language Models (LLMs) are rapidly being adopted as “plug-and-play” recommenders that require no task-specific training, although their recommendations can still face two long-standing problems: popularity bias (overexposing blockbusters) and consumer unfairness (unequal treatment of users who differ only in sensitive attributes). This thesis investigates whether these problems can be decoupled and simultaneously mitigated purely through prompt engineering, with no access to model weights.

Working with the MovieLens-1M corpus, we generate 434,880 prompts that vary three dimensions: how a user's historical tastes are sampled (top-rated, most recent, or a newly proposed 'polarized' mix of likes and dislikes), whether sensitive attributes are disclosed (neutral versus gender–age, occupation, or all), and which popularity debiaser has been applied (from a hard 'exclude-popular' order to a gentle “temporal-diverse” request). We evaluate every prompt with a triad of metrics: Hit-Rate for accuracy, log-popularity difference (LPD) for popularity bias, and Jaccard similarity for the stability of recommendations when sensitive attributes are toggled on or off.

The results reveal four insights. First, supplying the LLM with a rich, polarized taste signal increases accuracy by 42\%. Second, temporal diversity reduces popularity bias by 0.6 log-units while incurring only a 1\% loss in accuracy, whereas hard “exclude-popular” filters decrease accuracy by up to 65\%. Third, popularity bias and user fairness are orthogonal; once popularity is neutralized, adding even minimal demographic information still halves list overlap, confirming that the two dimensions must be audited separately. Finally, only one configuration, polarized sampling strategy, temporal-diverse debiaser, and attribute-neutral prompt, simultaneously satisfies strict thresholds on accuracy (HR≈0.85), popularity bias (|LPD|<0.8), and fairness (Jaccard≈0.41).

These results show that lowering popularity bias alone does not guarantee fairness, underscoring the need to handle each bias independently. These findings establish prompt engineering as a lightweight yet powerful lever for balancing accuracy, long-tail exposure, and demographic fairness in LLM-driven recommender systems without model retraining. Beyond empirical insights, the thesis contributes a rigorous evaluation framework and practical guidelines to build fair, bias-aware recommendation systems with large language models."
€€€€,
"swe": €€€€
"% \generalExpl{Enter your Swedish abstract or summary here!}
Stora språkmodeller antas snabbt som "plug-and-play"-rekommendationer som inte kräver någon uppgiftsspecifik utbildning, även om deras rekommendationer fortfarande kan förvärra två långvariga problem: popularitetsbias (överexponering av storfilmer) och orättvisa bland konsumenter (ojämlik behandling av användare som bara skiljer sig åt i skyddade attribut). Denna avhandling undersöker om dessa problem kan frikopplas och samtidigt mildras enbart genom prompt engineering, utan tillgång till modellvikter.

Med hjälp av MovieLens-1M-korpusen genererar vi 434 880 prompts som varierar i tre dimensioner: hur en användares historiska smak samplas (topprankad, senaste eller en nyligen föreslagen "polariserad" blandning av gilla- och ogilla-attribut), om känsliga attribut avslöjas (neutral kontra kön-ålder, yrke eller alla), och vilken popularitetsdebiaser som har tillämpats (från en hård "exkludera-populär" ordning till en mild "tidsmässig-divers" begäran för filmer hämtade från flera epoker). Vi utvärderar varje prompt med en triad av mätvärden: Hit-Rate för noggrannhet, log-popularitetsskillnad (LPD) för popularitetsbias och Jaccard-likhet för rekommendationernas stabilitet när känsliga attribut är aktiverade eller avaktiverade.
Resultaten avslöjar fyra insikter. För det första ökar noggrannheten med 42 \% om LLM förses med en rik, polariserad smaksignal. För det andra minskar tidsmässig mångfald popularitetsbias med 0,6 log-enheter samtidigt som det bara medför en förlust på 1 \% i noggrannhet, medan hårda "exkludera populära" filter minskar noggrannheten med upp till 65 \%. För det tredje är popularitetsbias och användarrättvisa ortogonala; när popularitet är neutraliserad, halverar även minimal demografisk information listan, vilket bekräftar att de två dimensionerna måste granskas separat. Slutligen uppfyller endast en konfiguration, polariserad samplingsstrategi, tidsmässigt diversifierad debiaser och attributneutral prompt, samtidigt strikta trösklar för noggrannhet (HR≈0,85), popularitetsbias (|LPD|<0,8) och rättvisa (Jaccard≈0,41). Dessa resultat visar att enbart minskad popularitetsbias inte garanterar rättvisa, vilket understryker behovet av att hantera varje bias separat. Dessa fynd etablerar prompt engineering som en lätt men kraftfull hävstång för att balansera noggrannhet, exponering med lång svans och demografisk rättvisa i LLM-drivna rekommendationssystem utan modellomskolning. Utöver empiriska insikter bidrar avhandlingen med ett rigoröst utvärderingsramverk och praktiska riktlinjer för att bygga rättvisa, biasmedvetna rekommendationssystem med stora språkmodeller."
€€€€,
},
"keywords": {
"eng": €€€€
" Large Language Models, Recommender Systems, Popularity Bias, Algorithmic Fairness, Prompt Engineering"
€€€€,
"swe": €€€€
" Stora Språkmodeller, Rekommendationssystem, Popularitetsbias, Algoritmisk Rättvisa, Promptkonstruktion"
€€€€,
}
}

fordiva.json

acronyms.tex

Local Variables:
mode: latex

TeX-master: t
End:

The following command is used with glossaries-extra

setabbreviationstyle[acronym] {long-short}

The form of the entries in this file is \newacronym{label}{acronym}{phrase}

or \newacronym[options]{label}{acronym}{phrase}

see "User Manual for glossaries.sty” for the details about the options, one example is shown below
note the specification of the long form plural in the line below
newacronym[longplural={Debugging Information Entities}]{DIE}{DIE}{Debugging Information Entity}

o0 oo o

o0 o0 < d° o0 o° o0~

The following example also uses options
\newacronym[shortplural={0Ses}, firstplural={operating systems (OSes)}]{0S}{0OS}{operating system}

% note the use of a non-breaking dash in long text for the following acronym
\newacronym{IQL}{IQL}{Independent -QLearning}

% example of putting in a trademark on first expansion
\newacronym[first={NVIDIA OpenSHMEM Library (NVSHMEM\texttrademark) }]{NVSHMEM}{NVSHMEM}{NVIDIA OpenSHMEM Library}

\newacronym{KTH} {KTH} {KTH Royal Institute of Technology}

\newacronym{LAN} {LAN} {Local Area Network}
\newacronym{VM} {VM} {virtual machine}

% note the use of a non-breaking dash in the following acronym
\newacronym{WiFi} {-WiFi}{Wireless Fidelity}

\newacronym{WLAN} {WLAN} {Wireless Local Area Network}
\newacronym{UN} {UN}{United Nations}
\newacronym{SDG} {SDG} {Sustainable Development Goal}

	Introduction
	Background
	Problem
	Purpose
	Goals
	Research Methodology
	Delimitations
	Structure of the thesis

	Background
	LLM-Based Recommender Systems
	Large Language Models for Recommendation
	Prompt Engineering for Recommendation
	Zero-Shot Recommendation Performance

	Fairness and Bias in LLM-Based Recommender Systems
	Popularity Bias in LLM Recommendations
	Consumer-Side Fairness
	Item Side Fairness and Popularity Bias

	Challenges and Limitations of LLM-Based Recommenders
	Related Work
	LLM-Based Recommendation Systems
	Fairness in LLM-Based Recommendation
	Fairness and Popularity Bias in Traditional Recommenders
	Bias in Language Model–Based Information Access

	Summary

	Method or Methods
	Research Process
	Research Paradigm
	Data Collection
	Dataset
	LLM Outputs

	Experimental design/Planned Measurements
	Hardware/Software to be used
	Hardware
	Software

	Assessing reliability and validity of the data collected
	Validity of method
	Reliability of method
	Data validity
	Reliability of data

	Planned Data Analysis
	Data Analysis Technique
	Software Tools

	Evaluation Framework
	HitRate (HR)
	Log Popularity Difference (LPD)
	Jaccard Similarity

	Implementation
	Profiling Strategies
	Fairness Injection
	Bias Mitigation Strategies
	Prompt Examples and JSON Format
	Naming Convention and Prompt Combination Count

	Fuzzy Matching with RapidFuzz:
	Metric Interplay and Evaluation Logic

	Results and Analysis
	Overview
	Interpreting Aggregated Metrics
	Isolated (Single-Factor) Effects
	Effects of Profiling Strategy
	Effects of Bias Mitigation Configurations
	Effects of Sensitive-Attribute Injections

	Two-Factor Interaction Effects
	Profiling Strategy × Bias-Mitigation Interaction Effects
	Bias-Mitigation × Fairness-Attribute Interaction Effects
	Profiling Strategy × Fairness Attributes Interaction Effects

	Unified Perspective and Cross‐Metric Synthesis
	Deeper Insights from the 72‐row Grid
	Actionable design strategy
	The most optimal configuration

	Discussion
	Interpretation of Principal Findings
	Popularity-Bias Control
	Demographic Fairness
	Predictive Accuracy
	Synthesis: A Single Optimal Triplet

	Why Decoupling Popularity Bias from User Fairness Is Essential?
	Relation to Existing Literature
	Implications for Recommender-System Design
	Theoretical
	Methodological
	Practical

	Answer to the Research Question

	Conclusions and Future work
	Conclusions
	Limitations
	Reflection
	Social implications
	Ethical considerations
	Alignment with the UN SDGs

	References

