
DEGREE PROJECT IN TECHNOLOGY,
SECOND CYCLE, 30 CREDITS
STOCKHOLM, SWEDEN 2021

A deep learning based
anomaly detection pipeline for
battery fleets

Nabakumar Singh Khongbantabam

KTH ROYAL INSTITUTE OF TECHNOLOGY
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE



Author
Nabakumar Singh Khongbantabam <nskh@kth.se>
Master’s Program in ICT innovation, Autonomous Systems major
KTH Royal Institute of Technology

Place for Project
Fortum Power and Heat Oy
Keilalahdentie 2­4
Espoo 02150, Finland

Examiner
Prof. Amir H. Payberah <payberah@kth.se>
Assistant Professor
Division of Software and Computer Systems
KTH Royal Institute of Technology
Kistagången 16
Stockholm 10044 Sweden

Supervisor
Prof. Seif Haridi <haridi@kth.se>
Professor
Division of Software and Computer Systems
KTH Royal Institute of Technology
Kistagången 16
Stockholm 10044 Sweden

ii



Abstract

This thesis proposes a deep learning anomaly detection pipeline to detect possible

anomalies during the operation of a fleet of batteries and presents its development

and evaluation. The pipeline employs sensors that connect to each battery in the fleet

to remotely collect real­time measurements of their operating characteristics, such as

voltage, current, and temperature.

The deep learning based time­series anomaly detection model was developed using

Variational Autoencoder (VAE) architecture that utilizes either Long Short­Term

Memory (LSTM) or, its cousin, Gated Recurrent Unit (GRU) as the encoder and the

decoder networks (LSTM­VAE and GRU­VAE). Both variants were evaluated against

three well­known conventional anomaly detection algorithms ­ Isolation Nearest

Neighbour (iNNE), Isolation Forest (iForest), and kth Nearest Neighbour (k­NN)

algorithms.

All five models were trained using two variations in the training dataset (full­year

dataset and partial recent dataset), producing a total of 10 different model variants.

The models were trained using the unsupervised method and the results were

evaluated using a test dataset consisting of a few known anomaly days in the past

operation of the customer’s battery fleet.

The results demonstrated that k­NN and GRU­VAE performed close to each other,

outperforming the rest of the models with a notable margin. LSTM­VAE and iForest

performedmoderately, while the iNNEand iForest variant trainedwith the full dataset,

performed the worst in the evaluation. A general observation also reveals that limiting

the training dataset to only a recent period produces better results nearly consistently

across all models.
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Abstract

Detta examensarbete föreslår en pipeline för djupinlärning av avvikelser för att

upptäckamöjliga anomalier under driften av en flotta av batterier och presenterar dess

utveckling och utvärdering. Rörledningen använder sensorer som ansluter till varje

batteri i flottan för att på distans samla in realtidsmätningar av deras driftsegenskaper,

såsom spänning, ström och temperatur.

Den djupinlärningsbaserade tidsserieanomalidetekteringsmodellen utvecklades med

VAE­arkitektur som använder antingen LSTM eller, dess kusin, GRU som kodare och

avkodarnätverk (LSTM­VAE och GRU) ­VAE). Båda varianterna utvärderades mot

tre välkända konventionella anomalidetekteringsalgoritmer ­ iNNE, iForest och k­NN

algoritmer.

Alla femmodellerna tränadesmed hjälp av två varianter av träningsdatauppsättningen

(helårsdatauppsättning och delvis färsk datauppsättning), vilket producerade totalt

10 olika modellvarianter. Modellerna tränades med den oövervakade metoden och

resultaten utvärderades med hjälp av en testdatauppsättning bestående av några

kända anomalidagar under tidigare drift av kundens batteriflotta.

Resultaten visade att k­NN och GRU­VAE presterade nära varandra och överträffade

resten av modellerna med en anmärkningsvärd marginal. LSTM­VAE och iForest

presterade måttligt, medan varianten iNNE och iForest tränade med hela datasetet

presterade sämst i utvärderingen. En allmän observation avslöjar också att en

begränsning av träningsdatauppsättningen till endast en ny period ger bättre resultat

nästan konsekvent över alla modeller.
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Chapter 1

Introduction

1.1 Background

Forklifts are essential equipment used in warehouse indoor operations which are often

operated electrically using batteries. Different types of batteries exist when it comes

to powering electric forklifts in the industry. However, a big portion of the industry

currently relies on lead­acid batteries for their operation, while other types, such as

lithium­ion batteries, are growing [8].

Lead­acid batteries, unlike other maintenance­free batteries, such as lithium­ion

batteries, require significant maintenance to keep their service life intact. They are

not tolerant of usage abuses, such as overheating or deep discharges.

As a result, the maintenance cost of lead­acid batteries can be a significant part of the

customer operation. For example, a fleet of 1000 batteries can run in millions of euros

in just the cost of batteries. Hence, ensuring that the batteries are well maintained

maximizes their service life and becomes a cost­saving measure for the business.

One key aspect of maintaining lead­acid batteries is identifying maintenance issues

early to avoid failureswhich could lead to disruption in customer operation and shorter

battery lives. Predictive maintenance refers to such identification of potential issues

before they occur.

This project explores and evaluates the extent to which deep learning can be used to

help identify battery issues before they occur. The theoretical basis utilized in this

exploration and research is known as Anomaly Detection.

1



CHAPTER 1. INTRODUCTION

Anomaly Detection, also known as Outlier Detection, is a machine learning method

where a set of events are analyzed to identify events that are abnormal when compared

to the rest of the events. It assumes the system operates in a normal circumstancemost

of the time and further assumes there are rare events that represent defective or outlier

events. Anomaly Detection, therefore, identifies those outlier events by their abnormal

deviation from the norm.

The data used in this project are collected from a pilot deployment of a digital battery

maintenance service known as eFleetly1 at a warehouse of a customer belonging to the

company Logisnext FinlandOy. eFleetly is a batterymaintenance service developed by

Fortum2, in collaboration with Logisnext Finland3, TietoEvry4 and Bamomas5.

1.2 Problem and the research question

The battery data collected through the pilot consist of multi­variate time­series

readings of voltage, current, temperature, and water level from each battery, sampled

at a fixed time. When the batteries operate normally, the said variables change

consistently, depending on the usage of the forklifts. However, if a failure occurred

or is impending, the performance of a battery is expected to change in some subtle

ways and should be reflected in those variables.

In this multi­variate time­series data, an anomaly detector has the potential to identify

the aforementioned subtle changes in operating patterns. The anomaly detectors in

the project were developed using the deep­learning­based architectures described in

Chapter 4.

This project asks the research question if deep­learning models implemented

using Long Short­Term Memory Variational Autoencoder (LSTM­VAE) or Gated

Recurrent Unit Variational Autoencoder (GRU­VAE) architectures could be a viable

method of anomaly detection for a battery fleet operation.

1https://efleetly.com
2https://fortum.com
3https://rocla.com
4https://tietoevry.com
5https://bamomas.com
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CHAPTER 1. INTRODUCTION

1.3 Purpose

The purpose of the degree project was to develop and evaluate a deep­learning anomaly

detection pipeline utilizing the time­series measurements from a customer’s battery

fleet. The anomaly detection pipeline was implemented using VAE neural network

which takes either LSTM or GRU as the encoder and decoder networks.

The purpose of this thesis is to present the development and evaluation of the

said anomaly detection pipeline so that someone knowledgeable in the area can

implement a similar pipeline and further the research in predictive maintenance of

battery fleets.

Hence, the thesis documents the development process of the battery monitoring and

data collection pipeline, analysis of time­series data as a viable input for anomaly

detector, the design and development of deep­learning­based anomaly detectors based

on LSTM­VAE and GRU­VAE architectures, and the evaluation results against some

well­known anomaly detection algorithms, namely iNNE, iForest, and iNNE.

1.4 Objectives

The objectives of the degree project are as follows:

1. Initiate a pilot at the customer site to collect battery data.

2. Setup battery sensors and data collection network at a customer site, and transfer

the raw data (voltage, current, temperature, and water level) to eFleetly cloud.

3. Collect baseline data for three months.

4. Deploy eFleetly battery maintenance tools (charging room monitors and

maintenance user interface)

5. Collect post­deployment data.

6. Design, develop and train the deep­learning­based anomaly detectors using

LSTM­VAE and GRU­VAE architectures.

7. Develop the iNNE, iForest, and k­NN anomaly detection algorithms.

8. Analyse and evaluate the performance of the anomaly detectors against each

other using the evaluation metrics identified in subsection 1.6 and chapter 3.

3



CHAPTER 1. INTRODUCTION

1.5 Benefits, Ethics and Sustainability

The forklift fleet owners or rental service providers benefit the most from this project.

By extending the lives of batteries, they reduce the cost of operation, thereby increasing

their competitiveness and profits.

In the industry, forklift fleet owners are often served bymaintenance service providers.

Hence, forklift maintenance service providers can also benefit from this project by

improving their service competitiveness.

By improving the lives of operating batteries, this project reduces the number of

batteries used in a period. Thereby, reducing the environmental impact caused by the

customer’s operations.

1.6 Methodology

The project follows the engineeringmethod proposed in ”The Electrical and Computer

Engineering Design Handbook”, a book by students of Tufts University as a

collaborative effort to design and develop the anomaly detection pipeline, and follows

a quantitative experimental method to evaluate the performance of the deep learning

anomaly detection methods by answering the research question posed in the section

1.2.

The quantitative method used to evaluate the performance of the anomaly detection

methods consists of training and evaluating the GRU­VAE and LSTM­VAE models

and three other existing anomaly detection algorithms (iNNE, iForest, and k­NN) by

computing and comparing their Area Under the Curve (AUC) and Receiver Operating

Characteristic (ROC) plots when tested against a few known anomalies.

All five models were trained using two different training datasets, one utilizing the

full year’s measurements dataset and the other utilizing only a recent subset of the

measurements. Hence, a total of 10 experiments were conducted, evaluating the 10

model variants.

Chapter 3 describes the methodologies of the pipeline development, experiments, and

evaluation in full detail.

4



CHAPTER 1. INTRODUCTION

1.7 Stakeholders

Stakeholders of the project comprise battery fleet owners and rental operators,

businesses providing battery maintenance services, and businesses that develop

solutions for battery maintenance.

The aforementioned businesses which own or operate rental fleets are in general

interested in how anomaly detection could be incorporated into their overall

maintenance services and operation. Businesses which develop solutions for

battery maintenance or their technical team would be in general interested in the

implementation of the anomaly detection utilized in this project.

1.8 Delimitations

The training and evaluation data in this project were collected over only a single year

and may not represent the full distribution of the battery measurements. Ideally, the

anomaly detection system should be trained with more operational data.

The pilot with the customer consisted of three different phases, which may affect the

patterns involved in the data collected during different phases. The first phase was a

period of their old operational routines. The second phase was a period where eFleetly

tools were deployed, which affect how the batteries are used. The second phase data

may reflect a mixture of the first and the third stages. The third stage is when the

eFleetly tools have been fully deployed and the usage patterns of the batteries have,

more or less, improved.

This thesis does not distinguish between the three stages of the pilot and their

corresponding data collection. It assumes that all three phases represent the normal

behavior of the customer’s operation.

Furthermore, the said datawere collected during the global coronavirus pandemic year

(2020). This may restrict the customer’s operating patterns to only a certain subset of

its normal operating patterns.

Anomaly detection is a bit of an open task since anomalies are not explicitly defined

upfront. Hence, comprehensive labeled training data are not generally available. The

anomaly events used in the evaluation of the models are rather limited in number as

well, since anomalies, by definition do not occur very frequently. Nor is the training

5



CHAPTER 1. INTRODUCTION

dataset free of contamination. Some actual anomalies that haven’t been identified

likely got included in the training data.

As a result, the interpretation of the results should take these shortfalls into account.

The evaluation is most relevant as a relative comparison method rather than an

absolute measurement of the performance of the anomaly detection task itself.

1.9 Outline

Chapter 2 ”Background” describes the technical functioning of lead­acid batteries, how

their lifetime are affected by various factors, what are various failure modes, how

anomaly detection can be utilized to predict the failures and highlights of various

past researches performed around this area, including existing time­series anomaly

detection models and methods.

Chapter 3 ”Methods” describes the method used to acquire the battery data. The

chapter describes the format of anomaly detection suitable for this purpose. It further

describes the method of evaluation of the results.

Chapter 4 ”Work” describes the data pipeline development and the system architecture

design, development of the LSTM­VAE and GRU­VAE architectures, development of

iNNE, iForest, and k­NN algorithms, mathematical descriptions, their training, and

evaluation.

Chapter 5 ”Results” analyses the functioning of the pipeline, functioning and training

of anomaly detection methods, and their evaluation results.

Finally, Chapter 6 ”Conclusions” draws some key conclusions from the results of this

project and identifies future work.

1.10 Examples

The table 1.10 illustrates the battery measurement data acquired during the pilot. The

data are organized into different sampling locations inside the warehouse. However,

for this project, they are not distinguished.

6



CHAPTER 1. INTRODUCTION

Table 1.10.1: Sample battery measurements.

Battery ID Time Voltage Current Temp. Water level

73 1601499600 27.12 0.0 29.87 1
53 1601499600 88.35 ­0.1 27.00 1
85 1601499600 24.18 ­55.1 27.37 0
26 1601499600 77.72 ­86.4 30.12 1
110 1601499600 25.45 ­0.9 23.12 0

Data acquisition environment for the batteries

Operating environment

Warehouse, indoor

Equipment: Forklifts (small, medium and large)

Sensors

Number of battery sensors: 100

Number of charging rooms: 3

Number of batteries per forklift: about 2

Connectivity: Dedicated 4G routers and switches

7



Chapter 2

Background

This chapter presents a detailed description of the background of predictive

maintenance for batteries. It further presents related work in the development of

time­series anomaly detection systems. It also discusses what is found useful from the

prior research and what is less useful, and explains how they are utilized as supporting

research for this project.

2.1 Lead­acid battery

Gaston Planté invented the first practical lead­acid battery in 1860 [20]. Lead­

acid batteries, despite being a 150 years old technology, it is still commonly used

in many industries because of their low cost and high power­to­weight ratio. The

forklifts industry is one such industry. Although slowly transitioning to more modern

alternatives, such as lithium­ion batteries, the industry still uses lead­acid batteries in

a large portion.

2.1.1 Design and construction

A lead­acid battery is composed of multiple independent battery cells connected either

in series, parallel or mixed configuration. Each cell provides roughly 2V across its

terminals, while the energy capacity or draw current depends on the cell’s design.

For practical applications, multiple cells are combined in order to achieve the desired

voltage or draw current requirements. For example, a 12V battery would often consist

of 6 cells connected in series.
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Figure 2.1.1: Lead­acid battery construction

Source: AeroToolbox.com

Figure 2.1.1 shows the inside of a lead­acid battery. Each cell is physically isolated

and contains positive plates, negative plates, separators, and electrolytes. During a

fully discharged state or construction stage (before first charging), the positive plates

are made of lead dioxide (PbO2), but often mixed with materials known as expanders.

The negative plates are made of lead sheets. The separators, made of inert materials,

are held between the positive plates and negative plates to provide structural support

and electrical isolation. The electrolyte comprises diluted sulphuric acid (H2SO4) and

floods the inside of the cell chamber. Both the positive plates and negative plates are

therefore immersed in the electrolyte.

Lead­acid battery goes through a cycle of life when it goes from fully charged state to

about 80% discharged state and back to fully charged state. The service life of a battery

is often specified in terms of the number of such charge­discharge cycleswhenoperated

under an ideal operating condition. For example, manufacturers often specify a typical

forklift battery to constitute a lifetime of about 1500 cycles, when operated at a room

temperature of 25 deg C.
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2.1.2 Charge­discharge cycle

The positive plates, the negative plates, and the electrolyte undergo a significant

chemical change during each charge­discharge cycle. When ideally fully discharged,

both the positive plates and negative plates become lead sulfate (PbSO4) while the

electrolyte is heavily diluted sulphuric acid (H2SO4). In practice, batteries are not

allowed to discharge to such a state because heavy PbSO4 on the electrodes impede

electrical conductivity, which often results in failure to convert back all PbSO4 to PbO2

when fully charged (hence losing battery capacity).

The energy in the battery is stored during charging by splitting the water molecule

(H2O) into hydrogen ions (2H+) and oxygen ions (O2−) [35]. The hydrogen ions

(2H+), also known as hydrated protons, become part of the electrolyte (sulphuric acid,

H2SO4), and the oxygen ions (O2−) become part of the lead dioxide on the positive

plates. The stored energy is released during discharge when those ions combine back

into water molecules [35].

The r

Figure 2.1.2: Reaction inside a lead­acid battery during charging and discharging

Source: AeroToolbox.com

During discharge, the chemical reaction produces PbSO4 (on both plates) water. The

reaction on the negative plate follows:

Pb(s) +HSO−
4 (aq) → PbSO4(s) +H+(aq) + 2e−

and on the positive plate:

PbO2(s) +HSO−
4 (aq) + 3H+(aq) + 2e− → PbSO4(s) + 2H2O(l)

10



CHAPTER 2. BACKGROUND

The reaction above produces net electrical energy with a potential difference of 2.05V

[35].

The reaction is reversed during charging, which produces back the lead dioxide (PbO2)

on the positive plate, lead (Pb) on the negative plate, and sulphuric acid (H2SO4) in the

electrolyte. These reactions are illustrated in the figure 2.1.2.

2.2 Battery failure modes

Lead­acid batteries are sensitive to maintenance and operational conditions. Poor

maintenance and abuses during use can lead to a shorter life. Listed below are some

of the major degradation that occurs in a battery.

2.2.1 Capacity degradation

Capacity degradation is the most common and obvious failure mode that batteries

encounter during their daily operation. The main cause of capacity degradation in a

lead­acid battery is due to reduction in the performance of the positive plates. Repeated

cycling of the battery introduces crystallization of the active materials on the positive

plates, which introducesmorphological changes on the surface of the plates, ultimately

reducing the mechanical integrity of the plates over time. This reduced mechanical

integrity affects the performance of the active material (PbO2) on the plates causing

softening or shedding [7].

Furthermore, a process known as sulfation reduces the electrical performance of the

plates, further affecting the capacity of the lead­acid battery. During discharge of

a battery, the active material lead oxide (PbO2) converts to discharge material lead

sulfate (PbSO4). Ideally, this process is fully reversed during the charging of the

battery. However, not all discharge material necessarily convert back to PbO2, leaving

sulfate deposits on the plates which are no longer reversible. The deposits reduce the

electrical conductivity of the plates, resulting in reduced electrical performance and

reduced capacity [7].

Sulphuric acid is either consumed during the discharge process, while produced during

the charging process. This may cause a density difference of sulphuric acid in the

battery. As a result, higher density sulphuric acid can settle on the bottom, while lighter
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density sulphuric acid stays on top. Such a difference in density can cause the plates

to degrade differently along the height of the battery [7].

2.2.2 Degradation of negative plates

Negative plates have ’expander’ materials added to them to improve their performance

and life [4]. The expanders mainly consist of a mixture of barium sulfate,

lignosulfonate, and carbon black added to the paste used to create the negative

plates. The presence of expanders provides structural stability and prevents largely

localized crystallization of lead on the surface of the negative plate during charging

and discharging processes. Without the expanders, the leads crystallize with reduced

surface area, which produces reduced electrically active surface, and consequently

reduces electrical conductivity [7].

The expanders degrade over time as the plates are subject to strong electrolytes during

charging and discharging cycles. This effect is accelerated at higher temperatures. At

high temperatures, the expanders degrade much faster. For instance, at or above 60

deg C, almost all expanders degrade. As a result, batteries operating at such extreme

temperatures would lose cycle life significantly [31].

2.2.3 Degradation of separators

The separators between the positive plates and negative plates can also degrade

over time and usage. The separators provide electrical insulation between positive

and negative plates and provide structural support for holding the plates together.

Degradation to the separators can occur due tomechanical stress causedbymovements

of the plates, as well as from the lead crystals growing on the plates. High temperatures

can also create stress that can break down the separator materials [7].

2.3 Battery types

Depending on the plate separator design and the electrolyte used, the following types

of lead­acid batteries currently exist:
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2.3.1 Flooded lead­acid battery

Traditional lead­acid batteries have diluted sulfuric acid as electrolytes. This entails

needing to keep all the battery cells ventilated and upright. The liquid electrolyte also

requires constant refilling with water to maintain the electrolyte level. The biggest

advantage of flooded batteries is that they last very long when compared to sealed

batteries.

2.3.2 AGM lead­acid battery

Absorbent Glass Mat (AGM) batteries use glass fiber matt as a separator between the

electrodes. The electrolyte is just soaked in the matt rather than flooding the cell’s

inside. Since there is no free­flowing electrolyte. AGM lead­acid batteries are also

sealed, hence they are also ValveRegulated Lead–Acid (VRLA) batteries. In addition to

lowmaintenance advantage, AGMbatteries have extremely high surge current. Hence,

they are often used as automobile starter batteries.

2.3.3 Gel lead­acid battery

Instead of liquid electrolytes, gel batteries have electrolytes in the form of a gel. This

greatly reduces maintenance needs, and the batteries can freely orient in any direction

during operation. Gel batteries are VRLA batteries since they are easily sealed. Gel

batteries have similar low­maintenance advantages to AGM batteries, however, they

have lower surge current owning to slower electro­chemical process.

2.3.4 VRLA battery

Both gel battery and AGM battery are VRLA design, allowing the cells to be fully

sealed – only openings are through regulated pressure valves. As a result, the VRLA

battery requires minimal maintenance and can operate in any orientation. They

are also known as Sealed Lead–Acid (SLA) batteries. However, because of sealed

operation, VRLA batteries have shorter life compared to traditional flooded lead­acid

batteries.
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2.4 Battery abuses and degradation

As explained in previous sections, the components inside a lead­acid battery can take

degradation from various usage conditions. The following list describes various factors

leading to accelerated degradation and leads to poor performance of the battery.

2.4.1 Overheating

Overheating the battery during operation can be quite detrimental to the health of the

battery. While batteries degrade over their lifetime normally, overheating can cause to

accelerate the degradation, especially the degradation of the plates and the expanders.

For example, high­temperature operation increases gassing in the chemical process,

which carries away active materials off the plates [1]. High temperature also increases

the reaction rate, causing faster re­crystallization [1], which leads to the formation of

larger crystals. Larger crystallization results in reduced surface area of the plates for

electrical conductivity, thereby reducing the battery capacity and its usable life.

2.4.2 Deep­discharge

Figure 2.4.1: Impact of dept­of­discharge on the battery life­time.

Source: J. Badeda, J. Kabzinski, D. Schulte, H. Budde­Meiwes, J. Kowal, D.U. Sauer,
in: Advanced Battery Power ­ Kraftwerk Batterie, Aachen,Germany, February 2013.

As described in the subsection2.1.2, when a lead­acid battery is discharged, both the

plates start depositing lead sulfate (PbSO4). However, if discharged too much, the

PbSO4 can clog up the plates, reducing electrical conductivity. As a result, when the
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battery is charged back, some PbSO4 will fail to convert back into active materials.

This process is known as sulfation and reduces the available life of the battery before

its capacity reduces to an unusable level.

Depth­of­discharge (DoD) is defined as the% of capacity discharged from a full charge.

100% Depth of Discharge (DoD) would mean the battery is discharged fully. Figure

2.4.1 graphically shows the lifetime cycles reduction when DoD is increased. At very

high DoD, the cycles life can be an order of magnitude lower [1].

To avoid such loss in battery life, it is often advised to discharge the battery, not more

than 80% DoD.

2.4.3 Low electrolyte level

For flooded lead­acid batteries, maintaining the electrolyte level is also crucial. The

electrolyte is a key part of cell chemistry. If the level is not high enough, it would create

non­uniform reactions on the plates, causing them to degrade non­uniformly. The

reduced surface area available for the reaction also reduces the electrical performance

and causes reduced capacity and power.

2.5 Related work: Anomaly detection for batteries

Literature has some related research on machine learning­based anomaly detection

methods for batteries.

Garg’s master’s thesis, 2017 [11], investigated several unsupervised clustering

methods for anomaly detection, such as DBSCAN (Density­based spatial clustering of

applications with noise), k­Means, Meanshift, Agglomerative and Spectral algorithms.

The thesis draws the conclusion that DBSCAN performed the best.

Zhao et al., 2021 [37], evaluated several conventional anomaly detection algorithms

applied to aircraft lead­acid battery, including the same three algorithms evaluated in

this thesis ­ iNNE, iForest and k­NN.

Li et al., 2021 [21], propose a clustering­based anomaly detection for electric­vehicle

and storage batteries. It primarily focuses on using only their thermal performances

for the unsupervised clustering method.
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The literature appears to have sparse results when it comes to using deep learning

methods for the purpose of anomaly detection for batteries. Li et al., 2019 [22],

describe a deep learningmethod for anomaly detection for lithium­ion batteries (note:

this thesis uses lead­acid batteries). They propose a Deep Belief Network to implement

an anomaly detection for li­ion spacecraft storage batteries.

2.6 Related work: Deep neural networks

This degree project utilizes some key deep neural networks in the development

of the anomaly detection system. This section introduces those neural networks

in sufficient detail which are then utilized in the composition of various anomaly

detection architectures in the next section. The following subsections introduce the

deep neural network architectures known as Autoencoders, Variational Autoencoders

(VAE), Long Short­Term Memory (LSTM) cells, and Gated Recurrent Unit (GRU)

cells.

2.6.1 Autoencoder

Autoencoders are part of a machine learning class known as ”unsupervised learning”.

Unsupervised learning utilizes only the input data to train and learn the model that

represents the training data. The learned model is subsequently used to infer if a

given new data is part of the learned model. If not, it is typically interpreted as an

anomaly.

More precisely, an autoencoder neural network is trained to encode the measurement

data into smaller­dimension,meaningful, latent variable values. The figure 2.6.1 shows

a general architecture of an autoencoder. Thenetwork essentially learns tomaphigher­

dimensional space into a smaller dimensional space.

Mathematically, autoencoders implement the following transformation:

h = E(X)

X ′ = D(h)
(2.1)

Where,
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Figure 2.6.1: An illustration of Autoencoder architecture [27]

X is the training data,

h is (hidden) latent variable ­ usually smaller in dimension than X,

E() is the encoding function,

D() is the decoding function,

X ′ is the reconstructed data

Autoencoders are trained to minimize the reconstruction error between X ′ and the

original dataX:

min
D,E

||X ′ −X||

Sakurada and Yairi (2014) demonstrate that autoencoders are able to detect subtle

anomalies in which linear PCA fails [34]. The paper further demonstrates that

denoising autoencoders can increase accuracy. This conclusion likely comes from the

notion that denoising autoencoders would prevent encoding uncorrelated data, which

anomalies often represent.

Deep denoising autoencoders require clean training data without outliers and noise.

However, that may not be practical in real­world problems. Zhao and Paffenroth

(2017) propose a noble extension that improves the quality of anomaly detection by

a denoising autoencoder without access to any clean training data [38]. The author

names the network ”Robust Deep Autoencoder” (RDA).

17



CHAPTER 2. BACKGROUND

2.6.2 Variational Autoencoder (VAE)

Figure 2.6.2: A simple illustration of Variational Autoencoder architecture [9]. The
encoder output is a latent distribution represented by a normal distribution specified
by a mean and a variance pair.

VAE is illustrated in the figure 2.6.2. Similar to a regular autoencoder, VAE also

assumes there is a hidden and significantly lower dimension latent variable whose

distribution maps closely to the distribution of the input space. However, it does so

by learning to estimate the joint probability distribution, pθ(x, z), of the input x and

latent variable z [17]. The input variable x denotes all the input data instances, the

hidden latent variable z denotes all the latent variable instances in the latent space,

and θ denotes the learned parameters of the VAE. Both input space and latent space

are treated as probability distributions and assumed to be continuous, which is how a

VAE differs from a regular autoencoder.

Often the underlying distribution of the input data, x, is rather complex. Therefore,

like in a regular autoencoder, the encoder in a VAE also learns to map this complex

distribution to a simpler and smaller­dimensional latent space. However, the encoder

in a VAE evaluates the conditional probability distribution of z given x, i.e. pθ(z|x),
instead. This is in contrast to a regular autoencoder, where it evaluates to a discrete

value of z itself ­ see equation 2.1. As a result, the resulting encoded output is actually

an estimated probability distribution of the latent value, rather than the latent value

itself. This estimate is denoted by qθ(z|x) below:

qϕ(z|x) ≈ pθ(z|x) (2.2)

where ϕ is the learned parameters of the encoder, also known as variational
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Figure 2.6.3: Variational Autoencoder process, [17]
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parameters.

In VAE implementation, and through its learning process, this conditional distribution

qϕ(z|x) is often forced into a more manageable and simpler Gaussian distribution

N (µ, diag(Σ)), where µ denotes themean andΣ denotes the covariance of the Gaussian

distribution. Hence, the encoder evaluates:

(µ, log (diag (Σ))) = Encoderϕ(x)

qϕ(z|x) = N (z;µ, diag(Σ))
(2.3)

Notice that, in order to keep the outputs of the encoder networkwithin functional range

and to simplify loss computation, the encoder in practice evaluates (µ, log (diag (Σ)))

pair instead of (µ, diag (Σ)) pair.

The decoding, on the other hand, estimates the opposite conditional probability

distribution, pθ(x|z), from the learned joint probability distribution pθ(x, z). In

practice, however, the decoder is usually a generative process where the decoder

samples from an encoded latent probability distribution as z ∼ qϕ(z|x) and generates

reconstructed x′ samples representing the expected value of pθ(x, z) distribution

(i.e., the mean of the distribution). Unlike in the encoded representation, there is

no additional use of the variance of pθ(x, z) and, hence it is not generated by the

decoder.

z ∼ qϕ(z|x)

∼ N (z;µ, diag(Σ))

x′ = E(pθ(x|z))

= Decoderθ(z)

(2.4)

By decoding a large number of sampled z values, producing that many samples of x′,

the distribution pθ(x|z) can be approximated.

The VAE process described previously is illustrated graphically in figure 2.6.3. For

further detailed reading on VAE, see Kingma and Wellings (2014 [18] and 2019

[17]).
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VAE training and Evidence Lower Bound (ELBO) loss function

Notice from the above that the objective of a VAE is to learn the true posterior. Hence

from Bayes’s theorem, we can express:

pθ(z|x) =
∫
z

pθ(x|z)pθ(z)
pθ(x)

dz (2.5)

However, the above integral is intractable because pθ(x) is intractable. For this

reason, a VAE instead attempts to approximate the posterior pθ(x|z) by learning an

estimate qϕ(x|z). For computational convenience, qϕ(x|z) is approximated by a normal

distribution.

Hence, the training objective or the optimization objective of a VAE autoencoder is a

bit more involved compared to a non­stochastic autoencoder. We want to learn both ϕ

and θ parameters of the encoder and decoder, respectively, such that the following two

goals are achieved:

1. The encoder estimates qϕ(z|x) as close as possible to the true latent space

posterior pθ(z|x) (see equation 2.2).

2. The decoder closely reproduces the input x with the least errors.

Consequently, the backpropagation of a VAE utilizes a loss function that captures

the error specified in the previously listed two optimization goals [18]. The first

goal can be achieved by increasing the Kullback–Leibler (KL) divergence of the two

distributions, q(z|x) and p(z|x). The KL divergence of two distributions, denoted by

DKL[q(z|x)||p(z|x)] measures the similarity of the distributions q(z|x) and p(z|x), and
is given by the following identity [3]:

DKL[qϕ(z|x)||pθ(z|x)] =
∞∫

−∞

qϕ(z|x) log
(
qϕ(z|x)
pθ(z|x)

)
dz (2.6)

However, the above integral is also intractable. Instead, we notice that the log­
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likelihood of a single sample xi evaluates as follows [18]:

log(pθ(x
i)) = DKL[qϕ(z|xi)||pθ(z|xi)] + L(ϕ, θ|xi) (2.7)

Notice that the first term is theDKL term of equation 2.6 itself. Since the log­likelihood

log(pθ(x
i)) is constant for a given xi, and that KL Divergence by definition is always

>= 0, it implies that to increase DKL[qϕ(z|xi)||pθ(z|xi)], we can also simply decrease

L(ϕ, θ|xi). We also see that the term L(ϕ, θ|xi) is the lower bound in the value of

log(pθ(x
i)) (the evidence of data), and is consequently known as ”Evidence Lower

Bound” or ELBO [18]. The ELBO term can be expanded to:

L(ϕ, θ;xi) = Eqϕ(z|x)[−log(qϕ(z|x)) + log(pθ(x, z))]

= −DKL[qϕ(z|xi)||pθ(z)] + Eqϕ(z|xi)[log pθ(x
i|z)]

(2.8)

Fromequation2.3, we know qϕ(z|xi) is a normal distributionwithmeanµz and variance

vector diag(Σz), denoted further as consisting of elements σ2
j, and prior p(z) is defined

as unit normal distribution p(z) = N(0, I). Hence, the KL Divergence term in the

equation above simplifies further as [18]:

L(ϕ, θ;xi) = −1

2

J∑
l=1

[
log σ2

j + 1− σj − µ2
j

]
+

1

L

L∑
l=1

log pθ(x
i|zl) (2.9)

Where, J is the number of dimensions in z, and L is the number of z samples

drawn from q(z|xi) to approximate the decoder distribution pθ(x
i|z) to compute the

expectation using the monte­carlo method.

The equation above is the key to implementing the loss function in this project. Chapter

4 presents the implementation.
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2.6.3 Long Short­Term Memory (LSTM) cell

The VAEmodel described earlier can be designed to be temporal aware by utilizing an

Recurrent Neural Network (RNN) architecture for the encoding and decoding neural

networks. A few notable RNN architectures used in VAEs are well known by now,

namely LSTM, GRU, and their variants.

Earlier attempts at using RNN for a long sequence of temporal data faced challenges

due to a phenomenon known as vanishing gradients during backpropagation. When

the time sequence is relatively long, the recurring backpropagation through time

gradually diminishes the contributing error gradient exponentially, until there is

not much left for the network to learn at the end of the recurring sequence (Sepp

Hochreiter, 1991). This issue made it impractical to use RNN in deep neural networks

involving long time­series data.

Figure 2.6.4: Long Short­Term Memory Unit [19]

Source: The diagram is courtesy of Guillaume Chevalier, 2018

However, with the advent of LSTM (Sepp Hochreiter, Jürgen Schmidhuber, 1997

[15]), this changed completely. LSTM architecture finally enabled very long sequence

of recurring backpropagation in the network, and still be able to learn from error

gradient much further down in time sequence. Similar to traditional RNN, LSTM also

consists of feedback connections from and to itself (recurrent feedback). However, in

contrast to RNN network, LSTM uses multiple internal gates to control the level of

feedback during its recurrent steps. The gates have parameters which are part of the

learned parameters. Figure 2.6.4 shows the internal architecture of an LSTM cell, and
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the three internal gates known as input gate, output gate and forget gate (seen as σ

blocks in the figure). Through these gates, the LSTM cells learn to control the level

of feedback and can learn to hold memories from previous states. LSTM architecture

was further improved by the introduction of GRU, mainly in the network stability and

performance, owing to its fewer learned parameters. GRU was introduced in 2014 by

Kyunghyun Cho et al [6].

There are other variations to LSTM. For example, Morales­Forero1 and S. Bassetto,

2019 [28], proposes an architecture variation that enables semi­supervised learning

of an LSTM based anomaly detection. LSTM is not the only suitable architecture for

anomaly detection in temporal data. For example, Ribeiro et al, 2018 [33], proposes an

anomaly detection architecture for video surveillance purposes using an autoencoder

based on Convolutional Neural Network (CNN).

2.6.4 Gated Recurrent Unit (GRU) cell

GRU is a lot similar to LSTM in function. Cho et al., 2014 [6], originally proposed

the first variant of GRU as a simpler network with fewer parameters compared to

LSTM and additional consisting of a forget gate first proposed as an improvement to

LSTM by Gers et al., 1999 [12]. Several variations of GRU have been proposed in the

literature over time, frommore complex fully­gated unit tominimally­gated unit (Heck

and Salem, 2017 [14]). Figure 2.6.5 shows the fully gated variant of GRU, which is also

the variant used in this project.

Figure 2.6.5: Gated Recurrent Unit (GRU) network architecture

Source: The diagram is courtesy of Jeblad, Wikipedia, 2018
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2.7 Related work: Anomaly detection

This degree project developed a time­series anomaly detection system utilizing

previously described VAE, LSTM, and GRU architectures as the core components for

detecting anomalies in battery operation. To describe such a system, this section first

presents some approaches to anomaly detection, both utilizing deep neural networks

and conventional algorithms. The section then further describes the proposed

architecture that combines VAE and LSTM / GRU.

2.7.1 Prediction­based anomaly detection

Prediction­based anomaly detection works by predicting the anomaly based on past

measurements. This method requires supervised training, hence the anomalies need

to be labeled in the training data. A simple example is a feedforward neural network

trained to predict an anomaly at time t based on the past measurements from time t to

t−w, where w is the detection window of the input time­series (see figure 2.7.1).

xt−3xt−4 xt−2 xt−1 xt

pθ(anomaly|xt, xt−1, ..., xt−4)

threshold

anomaly = true | false

Figure 2.7.1: An example feedforward binary classifier neural network for anomaly
detection. The network is trained using known anomalous data and predicts the
probability of a given new input being an anomaly during inference.
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Unfortunately, in many practical applications, the anomalies are rare, expensive

to reproduce (since they are actual failures), and are not readily labeled. As a

result, unsupervised training, or semi­supervised training offers a better choice. The

following subsections explore various deep learning networks that can learn using

unsupervised training methods.

2.7.2 Reconstruction­based anomaly detection

Reconstruction­based anomaly detection relies on encoding the input measurement

into a smaller­dimension latent variable, which attempts to reconstruct back into the

original measurement. The process of reducing input to a smaller dimension variable

is known as dimensionality reduction. However, the architecture also includes a

decoding counter­part, which reconstructs the lower­dimension variable to its original

higher­dimensional measurement values. The network assumes the training would

have captured all non­anomalous data in the training set into their corresponding

latent variable representations. The latent values, in turn, could be reconstructed back

to the real measurement data (or close to them). The architecture just described is, in

fact, an autoencoder, familiar from the previous section. This is illustrated in figure

2.7.2. There exists a variety of deep neural network autoencoders which have been

adapted for anomaly detection purposes.

Input
battery

measurements

Latent
values

Reconstructed
battery

measurements

Figure 2.7.2: Reconstruction­based autoencoder.

Given the function of an autoencoder, a normal measurement should correctly encode

to an existing latent variable value, which would then be able to correctly reconstruct

back to the original measurement. An anomaly, on the other hand, would encode

to a latent variable which would fail to reconstruct to a close match of the input.

This failure, the anomaly, can then be detected as an unusually large deviation of the

reconstructed value from its original measurement.
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2.7.3 Stochastic anomaly detection

The type of anomaly detectors discussed in the previous section utilizes architectures,

such as autoencoders, that maps the input data features directly to their lateral

representation in a non­probabilistic / discrete approach. The class of anomaly

detectors that utilizes stochastic autoencoders are colloquially known as stochastic

anomaly detectors. They learn the probabilistic mapping of the input data to the latent

space representation. One example would be an anomaly detector that utilizes VAE as

the main component. Unlike a regular autoencoder, we recall from section 2.6.2 that

VAE maps the underlying probability distribution of the input data to the distribution

of the latent variable hence is quite a natural component for such type of anomaly

detector.

2.7.4 Time­series anomaly detection

We finally arrive at the architecture of interest for this degree project. The battery data

is a collection of time­series measurements of a battery’s operational parameters, such

as voltage, current, and temperature. All of them change over time, where the present

values are dependent on previous measurements. As a result, the anomaly detector

needs to take into account the time­series nature of the measurement data.

Coming back to the time­series autoencoder, it is, therefore, natural to consider LSTM

[25] [24] [32] [16], GRU [13], or a similar unit as an architecture of choice for a time­

series anomaly detector.

Malhotra et al., 2015 [25], proposed a prediction­based anomaly detector that uses

stacked LSTM units (names it LSTM Anomaly Detector or LSTM­AD). The network is

trained on non­anomalous data to enable predicting the time­series data. Based on the

deviation error of the predicted output and the actual data, the detector then identifies

an anomaly. This approach is similar to the non­time­series approach described in

section 2.7.1.

Maleki et al., 2021 [24], improves upon LSTM based autoencoder by incorporating

filtering of samples prior to feeding into the network for training. It assumes that the

input samples are drawn from a normally distributed population. Any sample that is

outside a certain threshold of deviation from themean of this population is considered

an anomalous sample (considered drawn from different distribution) and, therefore,
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is excluded from the training. This improved the performance of the network despite

the training dataset containing anomaly data [24].

2.7.5 LSTM and VAE based anomaly detection

In the previous cases, we have so far separately covered VAE based anomaly detector

(used for non­temporal data) or LSTM based anomaly detector (used for time­series

data). In this subsection, we now propose an anomaly detector for this application

that is designed using both LSTM and VAE. As noted earlier, VAE based autoencoder

architecture generalizes the encoding model better, avoiding the inherent overfitting

issue associated with a regular autoencoder. Such implementation is also known as

Sequence­to­Sequence (Seq2Seq) LSTM­VAE autoencoder.

In recent times, researchers have developed and studied LSTM­VAE architecture in

several different applications. For example, Park et al. 2018 [32] utilize it in a robot­

assisted feeding system. Hsu et al. 2017 [16] also utilize LSTM in aVAEarchitecture for

the purpose of speech recognition. Hsu et al. 2017 [16] implementation is the closest

architecture that this project would be utilizing.

Figure 2.7.3: Variational Autoencoder (VAE) using Long Short­TermMemory (LSTM)
units

Source: Hsu et al. 2017 [16]

We will have a closer look at it in the chapter 3, but briefly, it consists of an

LSTM encoder with a number of steps equaling the input time­series steps. The

encoder processes the input sequence or the time­series data and produces the latent

distribution qϕ(z|x). The decoder consists of another LSTM network with steps

equalling the sequence or time­series length. It samples z from the encoded latent

distribution and learns to reproduce x as E(pθ(x|z)). Hence, it follows the steps

described in the equation 2.4. The Sequence to Sequence (Seq2Seq) LSTM­VAE

architecture is shown in figure 2.7.3.
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2.7.6 GRU and VAE based anomaly detection

The proposed GRU­VAE anomaly detection architecture is similar to the LSTM­VAE

architecture described in the previous section, except the LSTM cells are replaced with

GRU cells. They otherwise function the same way.

2.7.7 Anomaly score from reconstruction error

Reconstruction­based anomaly detection, such as the LSTM­VAE network described

above, utilizes the reconstruction likelihood as a score to identify the probability of

the inferred input being an anomaly. Reconstruction likelihood is a measure used

to identify Out Of Distribution (OOD) inputs, which translates to Mean Squared

Error (MSE) between the reconstructed measurement and the corresponding input

measurements. In an application, a suitable threshold to the anomaly score is set to

classify the input as either normal, when the score is low, or anomaly, when the score

is above the threshold.

2.7.8 Isolation­based anomaly detection

Isolation­based anomaly detection relies on the intuition that anomalous data points

are located relatively far from the rest of the normal data points in the input space.

Several well­known isolation­based anomaly detection algorithms exist that oneway or

the other exploit this intuition. Three of the most popular ones, namely k­NN, iForest,

and iNNE are developed in this project for evaluation and comparison purposes.

kth Nearest Neighbour (k­NN)

k­NN is the simplest of all isolation­based algorithms discussed in this thesis. There

is no training involved in k­NN per se. The entire training dataset is used during

inference every time. The anomaly score of a test sample x is simply its distance from

its kth neighbor in the training dataset. The longer the distance, the higher the score.

The value of k is often found by trial­error.

The time complexity of k­NN isO(NM) in detecting N input samples using a training

dataset of size M . Despite being the simplest method of all the methods discussed

in this thesis, k­NN has the worst time complexity. As a result, it is often considered

unsuitable for use cases involving very large datasets.
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Isolation Nearest Neighbour (iNNE)

iNNE [2] method consists of an ensemble of t models. Each model consists of a set,

S, of hyperspheres, centered around n points which are randomly selected subsamples

of the training dataset. Each hypersphere centered at their corresponding data point

sample is defined as the largest hypersphere which only contains the said data point

sample. This in practice means the hypersphere has a radius exactly the distance of its

nearest neighbor in the set of subsamples.

Figure 2.7.4: Isolation Nearest Neighbour Ensemble anomaly detection algorithm

Source: Bandaragoda et al. 2018 [2]

The anomaly score in the range of 0 ­ 1 for the test sample x, roughly resembling a

probability of it being an anomaly, is taken to be the average of its isolation scores

obtained from each of the tmodels in the ensemble.

Ī(x) =
1

t

t∑
i=1

Ii(x) (2.10)

For eachmodel S in the ensemble, the isolation score I of the test sample x, in the input

space Rd, is determined by first searching for the center of the nearest hypersphere,

cnn(x), inS that fully contains the test point x and then finding the center of the nearest

hypersphere, ηcnn(x), to the previously found hypersphere center. The ratio of the radii
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of the twohyperspheres centered at τ(cnn(x)) and τ(ηcnn(x))provides the isolation score

using the equation 2.11 below. If x is not found to be part of any hypersphere in S, its

isolation score is taken to be 1 (considered to be maximally isolated). This process is

also illustrated by figure 2.7.4.

I(x) =

1− τ(ηcnn(x)

τ(cnn(x))
, if x ∈ ∪c∈SB(c)

1, Otherwise
(2.11)

Where, cnn(x) = arg minc∈S{τ(c) : x ∈ B(c)} and B(c) is the hyperspere centered at c

with radius τ(c).

The time complexity of iNNE for detecting N input samples is O(N). The time

complexity is better than that of k­NN.

Isolation Forest (iForest)

Isolation Forest (iForest) [23] is also an ensemble method consisting of a set of t

models, known as Trees (hence, the name ’Forest’ for a collection of trees). Each Tree

is a balanced binary tree associated with a set of randomly selected subsamples of the

training dataset. The nodes of the tree divide the subsamples using a randomly placed

partition value of a randomly selected input feature. Starting from the root node, each

node divides the tree into two branches. The left branch takes the samples which have

the selected feature value less than the selected partition, while the right branch takes

the samples with the feature value greater than the partition. The two branches then

continue dividing the training subsamples of the model recursively, until either a leaf

node is reached, where there is just one sample left, or a depth of log(M) is reached,

whereM is the size of the training samples. The number of trees in the forest and the

size of the subsamples are the model parameters of the iForest model. The authors

recommend 100 and 256, respectively, as reasonable parameters that would work for

a wide range of training sizes.

The isolation factor of a test sample x is closely related to its path length h(x). The path

length of a sample is the depth of traversal as it traverses a tree until it reaches a leaf

node with only one sample (the training sample closest to the test sample). The sample

begins the traversal of a tree by entering the root node. If the feature value of x at the
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Figure 2.7.5: Isolation Forest anomaly detection algorithm. xi is deemed normal due
to a long traversal path length in the tree, while x0 is deemed abnormal owing to its
short traversal path length.

Source: Liu et el. 2008 [23].

node is below the partition value at the node, the traversal continues on the left branch,

otherwise, it continues on the right branch. The traversal continues recursively until it

reaches a leaf node. If the leaf node contains only one sample, the depth of the traversal

straightforwardly represents the path length. Otherwise, the path length is the sum of

depth traversed so far and an estimated path length, c(n′) beyond the leaf node, which

is estimated from the leftover samples size n′ at the leaf node by using equation 2.12

[23]. This traversal is illustrated in figure 2.7.5

c(n) = 2H(n− 1)− (2(n− 1)/n) (2.12)

Using the path lengths determined in the manner described above, the anomaly

detection score s(x, n) for a given test sample x is given by [23]:

s(x, n) = 2−
E(h(x))

c(n) (2.13)
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Where, n is the number of the subsamples in each tree of the forest, c(n) is the average

path length of an unsuccessful binary search tree with n nodes and is given by the

equation 2.12. h(x) is the path length when traversing one tree. Expected path length

E(h(x)) is the mean of h(x) traversing all the trees in the forest.

H(i) is the harmonic number and it can be estimated by ln(i) + 0.5772156649 (Euler’s

constant) [23].

The time complexity of iForest for detecting N input samples is O(N). The time

complexity is better than that of k­NN.

2.7.9 Known issues

Recent research has shown some issues when using generative deep neural networks,

such as VAE, for anomaly detection purposes. An anomaly detection relies on

identifying inputs that are within the distribution of the normal inputs. Inputs outside

the distribution (OOD) are assumed to be an anomaly. For this reason, generative

models such as VAE are considered good in mapping the distribution of the training

data so that normal input data that have not been seen before would also correctly

map. However, this notion is challenged by Nalisnick et al. 2019 [29]. They argue

if generative models truly know the input data that have not yet been known [in the

training dataset]. According to them, not always. They illustrate this failure in their

2019 publication [29].

Xiao et al. 2020 [36] observe that the likelihood method as described in the previous

section could fail and propose an alternative measure known as ”Likelihood Regret”

and claims it to be a more efficient OOD detector for VAEs.

33



Chapter 3

Engineering Methodologies and
Method

This chapter describes the methods followed in this project to reach the objectives

described in section 1.4 and answer the research questions posed in chapter 1. The

project follows a combination of an engineering method and a scientific method

because of their suitability to the project’s goals and implementation. The engineering

method helps to streamline the heavy data acquisition process and software

development needed in the project, while the scientific method aligns well with

analyzing the results of the experiment and answering the research questions.

The engineering method follows the model proposed in ”The Electrical and Computer

Engineering Design Handbook”, a book by students of Tufts University as a

collaborative effort. Themethod described in the book aligns well with the need of this

project to develop from idea to solving the hypothesis posed in the beginning.

Idea Concept Design Develop Launch

(Question) (Background
research)

(Hypothesis) (Communicate)(Analysis)

Plan

Figure 3.0.1: The engineering method stages followed in the project.

The method consists of six stages of engineering: idea formation, concept design,
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planning, design, development, and launch. The stages are shown in figure 3.0.1.

Alongside each stage is also shown their scientific method stage that would be utilized

in combination.

The following sections describe the reasoning, methodology implementation, and

resources involved in each of these stages.

3.1 Ideation

The idea for this degree project originated from the need for Fortum’s eFleetly project.

eFleetly is a battery fleet management platform focusing on predictive maintenance.

As part of its development, it became necessary to enable the prediction of failures

beyond what may be obvious from the traditional approaches.

As a result, the study of anomaly detection for batteries has been proposed as the

topic of this degree project. Initial interviews and discussions with the eFleetly

pilot customer, Logisnext Finland, and partners provided the groundwork on the

requirements of such a system and validated the usefulness of the topic in the

development of the eFleetly platform. Furthermore, the eFleetly team and partner

provided permission and full support needed in the project.

During the evaluation of the idea of anomaly detection for batteries, it became

interesting to question the potential failure modes that could be detected by applying

state­of­the­art anomaly detection techniques on the customer’s battery measurement

data. Eventually, this curiosity sealed the research question of this project.

In order to develop the idea, an onsite co­development workshop with the potential

users (of the system) from Logisnext Finland Oy and Hartwall Oy was conducted in

the early stage of the project. The co­development workshop provided useful insights

and validation of several ideas for eFleetly, including the one implemented in this

project.

Chapter 1 details the formulation of this idea in terms of project goals and research

questions that this project aims to resolve.
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3.2 Concept development

Anomaly detection is not particularly a new topic in the literature. However, designing

one for battery monitoring hasn’t been particularly addressed widely, especially

from an engineering and product perspective. Therefore, a key part of the concept

development for this project comprised background studies and identification of prior

research in the area. Chapter 2 provided the results of the background studies and

introduced various technologies involved in this project.

The other aspect of the concept development was to design the basis of anomaly

detection as a feature for the users and address the design questions: (1) how it will

be used, (2) what are the expected interaction, and (3) what are the end benefits to the

users. The concept is tested and validated with potential users and other stakeholders

in the project before implementation.

Chapter 4, section 4.1 presents the result of this process and the final concept that was

eventually developed.

3.3 Planning

Planning was a key project management activity performed early in the project to

create a viable execution plan. In planning, I identified all the anticipated tasks

involved in the execution of the project. For all tasks identified in the plan, I also

estimated the length of the tasks, identified any dependencies between them, and

estimated their likely finishing time. Planning often involved inputs fromother experts

involved in the eFleetly project.

Chapter 4, section 4.2 presents the project plan outcome of this degree project.

3.4 Design process

The system design process involved exploring the possible approaches to implement

the battery anomaly detection system and designing the system components. It

consisted of three stages in the project. The first stage was the background research

conducted in chapter 2 to identify existing technologies and deep learning approaches

in the area. The second stage consisted of designing the data pipeline and system
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architecture, beginning from the sensors all the way to the user interface. Lastly,

the third stage consisted of designing the anomaly detection system architecture, its

training method, and analysis of the results.

Existing
technologies
selection

System
architecture

design

Anomaly
detection

architecture
design

Figure 3.4.1: The design process stages that were conducted in the project.

The three states in the design process are illustrated in figure 3.4.1. Chapter 4, section

4.2 presents resulting designs developed in this project.

3.5 Development and experiments

The development and the experiments consisted of the bulk of work in the

project, namely, the implementation of the data pipeline, the data collection, the

implementation of the anomaly detectors, training the models, and analyzing and

evaluating the results.

3.5.1 Pipeline development

The development process followed the agile software development methodology with

iterative cycles. We used the Kanban method 1 to manage the project and tracked

it using a Trello board. Trello2 is a lightweight online project management tool.

Trello was selected to manage the project because of its lightweight usability. The

software was developed using three different datasets with progressively increasing

complexity. The approach of using datasets progressively helped ensure development

and troubleshooting progressed more systematically. Figure 3.5.1 shows the three

stages corresponding to the three datasets used in the development. The final one is

the real battery dataset collected from a real customer.

1https://en.wikipedia.org/wiki/Kanban_(development)
2https://trello.com/
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Random samples dataset

Test

Develop

MNIST dataset

Test

Develop

Real battery dataset

Test

Develop

Figure 3.5.1: The iterative process and stages are used in the development of the
project. Each stage used progressively more complex data to enable progressive
development and debugging.

3.5.2 Tools and resources

The LSTM­VAE andGRU­VAE deep neural networks were developed using the python

Keras framework 3, while the conventional models, iNNE, iForest, and k­NN used

in the evaluation were developed mostly in bare python. Jupiter Notebook 4 was

used as the editing and development platform and Google Colab 5 was used as the

execution environment. Keras framework was chosen for its rich community support

in machine learning and deep learning development. Jupiter notebook enables rapid

prototyping development. And, Google Colab provides an excellent GPU­enabled

host for developing collaborative projects. It has especially been popular among the

Machine Learning (ML) development community.

3.5.3 Experiments

The project follows a quantitative experimental method to answer the research

questions specified in section 1.2. Ten anomaly detection model variants were

evaluated in 10 different experiments. Their performances were evaluated by

computing and comparing the AUC values of their respective ROC curves when

attempting to classify a set of days in a test dataset as either an anomaly or not.

3https://keras.io/
4https://jupyter.org/
5https://colab.google.com/
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Firstly, the large volume of battery measurement samples is reduced by resampling

on a day­basis for each battery by computing summary data for each day. The data

pre­processing is described in chapter 4, section 4.5.

Secondly, eachmodel is trained using two variants of the training dataset. One utilizes

the full year’s measurement data samples and the second utilizes only the recent one

week ofmeasurement data samples, just prior to the anomalous days being tested. The

five anomaly detection models and the two training dataset variants produce a total of

10 different model variants to evaluate. The training datasets are unlabeled since we

assume anomalies are rate and unknown by nature.

Thirdly, the model variants are then trained using their corresponding training

dataset.

Fourthly, a labeled test dataset is created which consists of a subset of recent days prior

to the days when some batteries failed. Since the idea is to detect such failures ahead of

time, the last 7 days of each failure day are assumed to generate anomalous data. They

formed the true positives of the test dataset. It was further assumed that there are

relatively more normal operational data at any given time. As a result, approximately

40x more samples are randomly selected from the same recent days, but excluding

the known anomalous data samples. They represent the true negatives of the test

dataset.

Lastly, the models attempt to classify each day sample in the test dataset as either an

anomaly day or not by computing a probability. The ones with the highest probabilities

are considered anomalies.

3.5.4 Model evaluation

The models were evaluated against the labeled dataset using ROC and the

corresponding AUC as a metric. The same metric is often used in binary classifier

evaluation since it is of a similar nature, except that these models were trained using

unsupervised training with no known labels, which is often the case with anomaly

detectors.

A ROC is plotted for each model variant using the predicted probabilities of each

data sample in the test dataset. The ROC visually illustrates the degree of separation

of the true positives and true negatives. The ROC is graphically plotted between
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true­positive rate (also known as sensitivity or recall) and false­positive rate (also

known as specificity, selectivity, or false alarms) at progressively increasing probability

thresholds. The more curved the ROC curve appears the more successful the classifier

is in the separation task [10].

Figure 3.5.2: Receiver Operating Characteristic, ROC.

Source: The figure is courtesy of cmglee, MartinThoma, Wikipedia, 2018.

The AUC value of a ROC curve is the literal area of the space under the curve.

This value naturally provides a quantitative measure of the curvature of the ROC.

Hence, it also represents a quantitative performance measure of the model in a

classification/detection task. The higher is the AUC value of the ROC, the higher is

the detection performance.

3.6 Launch and communication

The project does not have a Launch stage, per se, in the traditional sense of launching

a software product. However, this thesis comprises its final documentation and

communication of all the activities and results of the project. The hope is that the

outcome of this project would be available to the community and the literature so that

others can further the research and development in this domain.
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Chapter 4

Anomaly Detection in Battery
Time­Series Measurements

The concept of anomaly detection for batteries arises from the need to optimize the

maintenance of battery fleets. Customers are often blind to potential failures before it is

too late, often causing loss of productivity and sometimes, loss of equipment life.

4.1 The concept

The concept of anomaly detection for batteries arises from the need to optimize the

maintenance of battery fleets. Customers are often blind to potential failures before it is

too late, often causing potential loss of productivity, and sometimes, loss of equipment

life.

Before this project, the pilot customer used their forklift batteries without any digital

feedback or monitoring. As a result, many cases of abuse occurred to the batteries

during daily operations. Therefore, identifying anomalies during operations could

provide valuable management feedback. By acting on that feedback, management can

potentially improve their productivity.

Battery
measurements

Split
mesurements
into windows

Anomaly
detector

Notify
events

Figure 4.1.1: The high­level concept of battery anomaly detection.
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The high­level concept consists of: (i) the battery measurement, (ii) dividing them

into smaller window segments, (ii) testing each window for anomaly event, and

(iii) notifying the events to the users. Measurements samples are 17 seconds apart.

However, the size of the window is to be determined by experimentation. The last

stage of notifying the users is outside the scope of this project. However, in finality,

that is the primary purpose of this concept. Figure 4.1.1 illustrates this high­level

concept. The section 4.3 elaborates and develops this concept into the system pipeline

architecture.

4.2 The project plan

The project plan consisted of a series of major project tasks planned at the beginning

of the project. The major tasks were further broken down into minor project tasks

that formed the basis of execution during the development. Following the agile

development methodology, many project tasks were planned, broken down, and

implemented just in time on a bi­weekly sprint basis.

4.3 Pipeline and system design

The system architecture consists of communication hardware, storage databases,

and software processes configured to implement the full anomaly detection pipeline.

Figure 4.3.1 illustrates the system architecture.

The customer site consists of multiple separate locations. Each location hosts several

batteries, and each battery has a battery sensor attached to it. WiFi is the primary

communication medium for the battery sensors to connect to the nearby 4G routers.

Some site locations can be relatively large, where a single 4G router may not be enough

to cover the whole area. It is typical to add one or more WiFi repeaters in such

cases.

The measurement samples arrive at a central database where they stay until further

processing at more convenient times. Usually, the measurement samples arrive at a

much higher frequency than the actual processing. For example, in this project, they

arrive in 5 minutes batches while the anomaly detection pipeline processes them every

24 hours. Before the anomaly detection process begins, themeasurement data are pre­
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....

4G router 4G router

Repeater

....

Repeater

Location #1 Location #2

Battery sensors (1­n) Battery sensors (n­m)

1 2 n n+1 n+2 n+m

Cellular connection to server ­ 5min/buffer

WiFi

Server

DB1
Preprocess Anomaly

detection

DB2

User Interface

WiFi

Measurements

Events

Figure 4.3.1: Data pipeline and system architecture.

processed into a more suitable form for the anomaly detector to take in. The output

from the anomaly detection process is known as events. The events are stored in a

second database for processing by the user interface.

The following section walks through the various stages in the pipeline in greater detail,

describing the entire process from data collection, from the sensors to the final pre­

processing.

4.4 Data collection

The data for this project were collected from a warehouse belonging to the Finnish

company Hartwall Oy. They are a drinks manufacturing company well known in

Finland. This particular warehouse is for storing and distributing their final products.

The warehouse is located in the central Helsinki region, south of Finland.

The warehouse holds over 100 electric forklifts, all operated by lead­acid batteries.

Hundred battery sensors were installed on hundred lead­acid batteries. However, only

97 sensors worked in the end.

4.4.1 Battery sensor

The sensors installed were Bamomas lead­acid battery sensors. As shown in figure

4.4.1, the sensor has several probes connecting to the battery and is capable of
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measuring voltage, current, temperature, and water level in near real­time.

Figure 4.4.1: Bamomas lead­acid battery sensor device,

Source: Bamomas Battery Intelligence Oy

The sensor is attached to the top of the battery securely and powered by the battery

itself. The sensor’s voltage leads and current leads are connected to the battery’s supply

lines leading to the forklift. The water level sensor is inserted into one of the cells,

replacing its electrolyte filling cap. The temperature sensor is attached to the body of

one cell, ensuring good thermal contact.

The sensors connect to nearby WiFi routers and repeaters. The routers, in turn,

connect to the Internet via 4G cellular networks. The pilot data collection used

an independent local area network for isolation reasons. The local network for the

sensors consisted of several 4G/WiFi routers and WiFi repeaters strategically placed

around battery charging rooms (where most battery traffic exists). The independent

connectivity network enabled the sensors to connect to the Bamomas cloud servers

without interfering with the warehouse’s network.

The warehouse contains three charging rooms equipped with arrays of lead­acid

battery chargers. Forklifts would arrive at the charging rooms with nearly empty

batteries, and the drivers would swap them for fully charged ones. The drivers would

then put the empty batteries on the chargers. These three charging rooms were

identified as the ideal places to act as main hubs for syncing the battery sensors since

almost all batteries would arrive there at some point. As a result, theWiFi network and

the 4G routers were set up in and around these rooms. Some additionalWiFi repeaters
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were also set up in high traffic areas, linking them to the main WiFi routers.

4.4.2 Sensors deployment and data collection periods

The sensors were deployed to the forklift batteries over two months in June and July

2020. The deployment process was slow due to the corona pandemic ongoing at

the time. The customer restricted all physical access to the warehouse site due to

coronavirus pandemic restrictions. As a result, we remotely train a local technician

to install and configure the battery sensors. The setup took more time than would

typically take.

Following the setup and installation period and before some of the eFleetly

maintenance features were activated, control data were acquired for about twomonths

(July and Aug 2020). The reason was to use this data as control data for comparing

the changes in the behavior of the batteries once eFleetly maintenance features were

activated later.

Following the period of control data collection, there existed about two months

(Sept and Oct 2020), during which the eFleetly team deployed other eFleetly battery

maintenance features. Unfortunately, that activity took more time than anticipated

due to various technical issues.

Lastly, the period following, Nov 2020 ­ June 2021, was the data collection with

the eFleetly service in full operation. Figure 4.4.2 illustrates the timeline of data

collection.

eFleetly
predeployment

eFleetly
deployment

eFleetly
postdeployment

Jun 2020 Aug 2020 Oct 2020

(Start of pilot)

June 2021

Figure 4.4.2: Collection timeline of battery measurement data during eFleetly pilot.

The periods above were mostly for verifying other predictive maintenance features in

eFleetly. This thesis does not distinguish the periods when analyzing the anomaly

detection behavior. However, the periods could provide insights frequency of anomaly

incidences changes between them.
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The sensors collect measurement data every 17 seconds. However, they are

programmed to deliver the measurement data every 5 minutes in a batch. The

batch delivery reduces needless traffic between the sensors and the cloud server.

Furthermore, if some sensors are out of range from the WiFi stations, they buffer the

data until they reconnect to the server.

4.5 Data pre­processing

4.5.1 Data extraction

eFleetly stores the data in a server in a MongoDB database. There are about 50G of

data in the server, organized in MongoDB collections. It would not have been trivial

to utilize the data directly. It became necessary to extract them into simpler tabular

forms, such as flat Comma Separated Values (CSV) files, for use by the deep learning

network. The models were developed separately inside Google’s Collab environment

to avoid disruption in the production. Hence the challenge became to extract a large

amount of data from the production server into CVS files and upload it to google drive

for use by the Collab’s Jupiter notebook.

The extraction processes could disrupt the running eFleetly service. The entire eFleetly

database was copied to a local computer using backup and restore tools of MongoDB

to avoid the risk. The data was then extracted into tabular CSV files using MongoDB

queries that extracted only the relevant data, namely battery_id, timestamp, voltage,

current, and water level.

Given the size of the data, handling them in a single CSV file would be rather

challenging. As a result, they were exported separately for each month, each roughly

forming a CSV file of approximately 500MB size. They were then compressed, copied

to the Google drive, and uncompressed in the project directory.

The measurement samples were separated into individual battery time series to

accomplish pre­processing correctly.

4.5.2 Data resampling

The eFleetly battery measurements arrive in timestamped measurement samples for

each battery identified by a unique ID. Since sensors buffer the data and upload
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arbitrarily at opportunistic times, the measurements are not assumed to arrive in

sorted order. Figure 4.5.1 shows a plot of the voltage, current, and temperature

variation of a battery on a typical working day at the warehouse.

Figure 4.5.1: A plot of battery data on a typical working day)

The sensors measure the batteries every 14 seconds. Consequently, the sensors

generated a large volume of data by the 97 battery sensors operating over one year.

The data consisted of over 900 million individual measurement data points. A

resampling method reduced the data size to enable the experiments in this project

using available resources. The resampling method resamples the measurements by

computing one data point per day per battery, colloquially known as day summary.

The resampling reduced the data size to a manageable size of approximately 146,000

measurement samples. Section 4.5.4 below describes the day summary computation

by the resampling method.

4.5.3 Feature augmentation with internal resistance

Voltage, current, and temperature are observable characteristics of a battery

operation measured directly by the sensors. However, one particularly unobservable

characteristic, known as Internal Resistance, is of particular importance. Internal
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resistance is the electrical resistance imposed on the electrical circuit by the battery

during its operation. All batteries have some internal resistance. However, if high,

internal resistance causes significant loss of power and increases the thermal loss.

Internal resistance is generally considered a good indicator of the internal degradation

of the battery. Hence, an estimation of the internal resistance, computed for all the

samples, could be added as a new feature dimension to the data samples.

In practice, however, internal resistance is not a fixed characteristic. It varies

depending on the state of charge, temperature, and other operating factors. It is also

often hard to measure on a running system. Usually, dedicated equipment would run

several charging and discharging cycles to estimate the internal resistance. Such a

method is not practical since our batteries are all operating online.

Electrically, the internal resistance causes a drop in terminal voltage when a load is

applied. Hence, an estimationmethod computes it bymeasuring three parameters: (i)

the float voltage before any load is applied, (ii) the terminal voltage when a known load

is applied, and (iii) the current through by the load. Themethod computes the internal

resistance from these three parameters usingOhm’s law by dividing the drop in voltage

by the load current (equation 4.1). Note, the float voltage itself changes depending on

the state of charge.

Rinternal =
(Vfloat − Vload)

Iload
(4.1)

During a live operation, the method estimates the float voltage by taking an average

of all voltage measurements where the load current is negligible (−5A < Iload <= 0;

Note: discharge current is negative). This method approximates the estimation of the

float voltage for the day.

Once the estimation method computes the average float voltage for the day, all

significant discharge samples (Iload < −5A)) should register a voltage drop. If the

voltage drop is lower than the day’s estimated float voltage, it uses the difference

to compute the internal resistance using the equation 4.1. Since the float voltage

is an approximation, the calculated values of the internal resistance are themselves

approximate. However, the approximation is considered acceptable for using it as a
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new feature dimension for anomaly detection purposes.

4.5.4 Day summary dataset

A resampling method computes the day summary data by taking the average of

the voltage, current, temperature, and internal resistance measurements during the

discharging of the batteries. It excludes the measurement samples corresponding

to the charging of the batteries from summary computation because the chargers

overwhelm the charging characteristics in the measurements, overshadowing the ones

belonging to the battery. All samples with positive current, which correspond to

charging, are removed from the summary computation. It also excludes the data

samples without computed internal resistance. That leaves only the samples registered

during heavy load discharges as the basis of computing the day summary.

For technical reasons, if resampling method can not compute a day summary, it sets

the day summary to a vector of zeros. The day summary computation can fail for

reasons such as lack of equipment discharge during the day or inability to compute

float voltage for the day’s operation. They are still kept in the dataset to maintain the

time series positions of the samples. Figure 4.5.2 shows the heat map of the features

in the dataset.

4.5.5 Windowing

The LSTM­VAE and GRU­VAE networks training and inference require that the data

samples are windowed in time series. As a result, the day summary time­series of

each battery were segmented into 7­days time­series records. Hence, an input to the

LSTM­VAE or GRU­VAE model consisted of a windowed record of seven days times

four features. The ’zero’ days mentioned above are left in the windowed records to

maintain the time­series positions of all samples.

For othermodels, iNNE, iForest, and k­NN, there is nowindowing in the datasets since

they are not time series models. However, all zero­valued samples were removed from

their datasets.

4.5.6 Training datasets

Two variants of training datasets were prepared.
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Figure 4.5.2: Heatmaps of voltage, current, temperature, and internal resistance of the
day summary dataset. the x­axis is battery IDs (1 ­ 97) and the y­axis is day timestamps
covering ca. one year. All features are min­max normalized.
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The first one, referred to as the ’full’ dataset, consisted of nearly a year of operation of all

the 97 batteries. The dataset consisted of ca. 32980 day­samples (including the zero­

valued ones) organized into 7­day records for the LSTM­VAE andGRU­VAE networks.

The zero­valued samples were removed to leave the dataset comprising only individual

samples for the othermodels. The removal reduced the dataset to 14036 samples.

The second one, referred to as the ’recent’ dataset, consisted of only the last seven

days of operation immediately before the customer repaired the two batteries (battery

#47 and #53). The dataset consisted of 1358 day samples, again organized into 7­

day records for the LSTM­VAE and GRU­VAE networks. Similar to the previous

dataset, the zero­valued samples were removed, leading to the dataset comprising only

individual training samples for the other models. The removal reduced the dataset to

649 samples.

All four features of the dataset, namely, voltage, current, temperature, and internal

resistance, were min­max normalized, leading to their values normalizing between

0.0 and 1.0 value range. The normalization helps to account for the different ranges

caused by different types of batteries used in the fleet. Since discharges record negative

currents, the polarity of the electric current is also reversed just for computational

consistency.

4.5.7 Test dataset

The test dataset was a labeled dataset with ground truth binary labels. It was composed

of: (a) the previous seven days just before the repair of two batteries each (providing

14­day samples) as ”True” (presumed anomaly), and (b) a random 40x samples from

the normal operating days as ”False” (presumed normal).

The customer serviced battery #47 on Dec 1 and #53 on Dec 30, respectively. During

their service, the customer found and replaced one bad cell from each of the two

batteries.

We assume the previous seven days of these two repair days would represent

anomalous days. The seven days were selected for convenience since it is also the

record size of the LSTM­VAE andGRU­VAEmodels, allowing them to infer as records.

Hence, Nov 23 ­ Nov 30 for battery #47 and Dec 22 ­ Dec 29 for battery #53 are labeled

’True’. The rest of the test samples represented ’False’ samples in the test dataset.
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They were sampled from the set of all samples from the same period but excluded

the samples from the defective batteries, #47 and #53. The samples represented non­

anomalous data. The test dataset consisted of 369 samples.

Evaluation of all 10 model variants used the same test dataset. For the non­deep­

learning models, the dataset was pruned by removing the ’zero’ samples.

4.6 LSTM­VAE and GRU­VAE network architecture

Typical of a VAE autoencoder (see section 1.1), the network architecture consists of

two sections, an encoder, and a decoder. The encoder is implemented using an LSTM

or GRU layer with several time steps matching the window size of the data sample.

The LSTM /GRU layer’s output passes through two separate feed­forward networks to

produce latent variable’s mean µz vector and variance vector σ2
z (representing diag(Σ)

of the covariance discussed in chapter 2).
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Figure 4.6.1: LSTM­VAE / GRU­VAE network architecture implemented for battery
anomaly detection.

The latent variable z itself is sampled from the distribution with mean µz and variance

σ2
z . Once sampled, z is fed to the decoder network, which ideally should attempt to

reproduce the original input.

The decoder is another LSTM /GRU layer with several steps equal to the input window

size. The steps are to produce an output that has the same size as the input data sample.

The decoder LSTM / GRU network still takes input with full window size. For this

purpose, the decoder repeats the latent variable z several times equal to window size

to form the input data sample (see figure 4.6.1).
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The final output of the network is the output of the decoder LSTM/GRU layer collected

at each time step. Figure 4.6.1 illustrates the architecture.

4.6.1 Network loss

The deep neural network is trained following a loss computation described in chapter

2, section 2.6.2. It is a combination of reconstruction loss, given by cross­entropy loss

computed with MSE of the output y and the input x, and latent variable distribution

loss, given by the KL divergence value of the latent variable distribution.

Loss = Reconstruction loss+ V ariational loss

= LossMSE + LossKL

=
1

N.W

N∑
i=1

W∑
w=1

(x̂i,w − xi,w)
2 − 1

2

N∑
i=0

(1 + log σ2
zi
− µ2

zi
− σ2

zi
)

(4.2)

Where,

N is the total number of training samples,

W is sample window size,

x is the input sensor reading,

x̂ is the reproduced sensor reading,

KL Divergence loss, in particular for a VAE, was described in the section 2.6.2

above.

4.6.2 Reparameterization trick

In a Variational Autoencoder, the encoder outputs a distribution (mean µ and variance

σ2 pair) of the latent variable. Subsequently, the decoder decodes a sample from this

latent space as:

z ∼ qϕ(z|x)

The above approach is okay in theory. However, in practice, during implementation,

random sampling makes it impossible to implement backpropagation of the network
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for its training. There exists a discontinuity in gradient at the random­sampling point,

where the backpropagation can not flow back.

Figure 4.6.2: Illustration of reparameterization trick, [17]

To overcome this limitation, ”Reparameterization Trick” is introduced in the

implementation of the network [17]. Instead of dealing with a random sampling

node, Reparameterization Trick uses a deterministic node, a function taking the latent

variable’s mean, variance, and an additional input ϵ. The input ϵ is random samples

taken from a standard normal distribution N .

z = g(µ, σ2, ϵ)

ϵ ∼ N(0, I)

g = µ+ σ.ϵ

(4.3)

The node simply outputs the result of modifying the random sample input by themean

x and standard deviation σ. Figure 4.6.2 illustrates this construct.
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4.7 LSTM­VAE and GRU­VAE development

The deep neural networks were developed and trained, at the same time, in an

iterative process. The datasets used in the development were progressively increased

in complexity so that the iterative development progressed in the following order (in

the given order):

1. A small dataset of random samples: Used to develop the architecture of the

network.

2. MNIST dataset: Used to debug and troubleshoot the training. MNIST being

a known dataset, it provided a good basis to debug and troubleshoot the

implementation.

3. The ’recent’ battery measurement dataset: Used to implement the prepossessing

and validate the network operation on the real battery data.

4. The ’full’ year battery measurement dataset: Used when the network was

confirmed working.

4.8 Hyperparameters search

The LSTM­VAE / GRU­VAE networks developed above can take different model

complexities depending on various architecture design factors, such as hidden layer

dimension, latent variable dimension, dropout probability in encoder’s dense layers,

and dropout probability in decoder’s Dense layers. These design factors are known

as hyperparameters. We assume a particular combination of the hyperparameters

forms the best combination that yields the best network architecture suited for the

target application. The process of searching for the best hyperparameters combination

is known as hyperparameters search. In practice, this search is often a brute force

search, where many possible combinations are trained, evaluated for performance,

and compared. As a result of such a search method, hyperparameters search

can be resource­intensive and often requires large clusters of parallel computing

facilities.

Hyperparameters search space is a multidimensional space with each hyperparameter

representing a dimension. This space is generally quite large, often infinite. However,

in practice, the search space is reduced by quantizing and limiting the range of each
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hyperparameter dimension based on a general understanding of the application. The

search then uses the grid formed by the quantized hyperparameters to find an optimal

combination. Note that the quantization grid does not have to be linearly spaced.

Some applications can utilize logarithmic quantization. Logarithmic quantization

helps cover a wide range for a hyper­parameter without increasing the search samples

too much.

Randomly sampling the grid rather than brute­forcing all elements in the grid reduces

the number of search attempts. Random sampling works on the assumption that a

combination of hyperparameters nearby an ideal combination would still constitute

a good choice, even if not the best choice, thereby reducing the search choices

significantly.

This degree project used Keras Tuner [30] for hyperparameters search. The limited

computing resources available for this project reduced the choices of hyperparameters

search space by quantizing the choices for each hyperparameter dimension to fewer

numbers. The quantized choices are listed in table 4.8. Furthermore, the search was

limited to only 25 combinations of hyperparameters which were uniformly sampled

from the search grid. Chapter 6 addresses the possibility of increasing the search space

by adding adequate computing resources as one of the proposed future works.

Hyperparameter Choices

LSTM/GRU hidden layer size (encoder/decoder) 256, 512, 1024, 2048
Latent variable size 8, 16, 32, 64
Dropout probability (encoder dense layer) 0, 0.1, 0.2, 0.3
Dropout probability (decoder dense layer) 0, 0.1, 0.2, 0.3

Table 4.8.1: LSTM­VAE/GRU­VAE hyperparameters search space.

The network was created, trained, and evaluated for the 25 randomly selected

combinations. The next chapter presents the best hyperparameters combination and

discusses the results derived from this search.

4.9 iNNE, iForest and k­NN algorithms

iNNE and iForest algorithms both involve implementing ensembles of models. iForest

authors recommended using 100 trees of 256 subsamples each as generally suitable

model parameters [23]. For consistency, iNNE was also developed with an ensemble
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of 100 models, each consisting of 256 hyperspheres. The models were trained using

the two training dataset variants (full and recent).

For the k­NNalgorithm, a few values of kwere tried in several experiments. Eventually,

k = 10was found to be reasonable. There is no training involved in the k­NNalgorithm.

The training dataset is straight­up used as the reference dataset to find the kth nearest

neighbor data point during the inference of the test dataset.

4.10 Validation and experiments

The pipeline and the network development were verified in three iterations. The

first iteration consisted of validating the pipeline and data preprocessing. Data

visualization and validation of the results of the intermediate steps in the pipeline

validated the measurement inputs and data prepossessing. The second iteration

consisted of validating the functioning of the LSTM­VAE and the GRU­VAE networks

based on the expectation of the design.

The third iteration consisted of the experiments. Both of the deep learning models

were trained using the two variants of the training dataset previously mentioned in

section 4.5.6. Both models were trained using hyperparameters search as described

in the previous section. Each hyperparameters search consisted of training over 100

epochs with early stopping enabled within ten epochs of stalled performance. Each

training epoch used randomly selected 20% of the training dataset as a validation set.

Training with the full dataset used a batch size of 128, while training with the recent

dataset used a batch size of 5, owing to their relative size difference.

The training performances of the networks were validated from their learning curves

and the general observation of the reproduction outputs. The anomaly detection

performances of the networks were evaluated by inferring the test dataset and

computing the AUC of the ROC metric.

Finally, the last phase of the experimentation consisted of training the iNNE, iForest,

and k­NN algorithms and evaluating their performances using the same test dataset

and evaluation metric.
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Results and Analysis

5.1 Sensors deployment, data acquisition result

The sensors deployment and the resulting data acquisition were two of the key parts

of the degree project. At the end of the project, 100 battery sensors were eventually

deployed to nearly all of the batteries in the warehouse fleet. The sensors and the

accompanying networking systems streamed data to the online cloud storage for most

of the time without interruption. The original goal of the degree project was to deploy

the system in a period not taking more than a month. However, due to COVID­

19 2020 pandemic, the deployment of the sensors extended over a period of several

months.

Acquisition attribute Result

Number of sensors deployed 100 batteries.
Number of forklifts monitored 50 approx.
Measurement data per battery 1.38 million samples, 500MB+.
Measurement data for the whole fleet 138 million samples, 12GB+.

Table 5.1.1: Results of sensors deployment and data acquisition.

On the flip side, due to the same pandemic reasons, some sensors managed to acquire

data over 12 months, managing to collect over 12GB of original battery measurement

data. This provided an additional opportunity to utilize operational data for an entire

year. Considering warehouse operation is rather seasonal, having access to data from

the entire year was particularly useful during the study of anomaly detection. Table

5.1.1 describes the characteristics of the deployment and the data collected as a result
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of the deployment:

5.2 LSTM­VAE and GRU­VAE development results

The hyperparameters search resulted in the best selection of the network

hyperparameters for each variant as listed in the table 5.2. They were the best within

the search space comprising quantized and randomly selected hyperparameters. The

results show latent variable size leaned towards lower values, while the LSTM/GRU

hidden layer leaned towards larger values (if not the largest).

A large number of LSTM/GRUhidden cells can be explained by the need of the network

to learn a much more complex model than simply the chemical model of the battery

because the time series also record seemingly arbitrary forklifts operation and charging

operation by the warehouse crews. This results in different charging and discharging

sequences.

Hyperparameter GRU­
VAE
(full)

GRU­
VAE
(recent)

LSTM­
VAE
(full)

LSTM­
VAE
(recent)

LSTM/GRUHidden layer size 2048 1024 1024 2048
Latent variable size 64 64 64 8
Encoder dropout probability 0.1 0.3 0.3 0.0
Decoder dropout probability 0.2 0.1 0.1 0.2

Table 5.2.1: List of LSTM­VAE and GRU­VAE hyperparameters that were found
through random search within hyperparameters space.

5.3 Evaluation of the anomaly detection models

All the model variants were experimented using the methodology described in chapter

3, section 3.5.3 and evaluated using the method described in the same chapter, section

4.10.

Figure 5.3.1 shows ROC plots of all the model variants tested with the test dataset.

Table 5.3.1 shows the AUC of the ROC curves. The results indicate that the best

performing model is k­NN, followed by GRU­VAE.

Despite its simplicity, the classical k­NN method is seen performing rather well. It

seems in the literature, the seminal method is often found to continue performing well
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Figure 5.3.1: The ROC plots of all model variants illustrating the classification
performance of the models to detect anomalous samples.

in general. For instance, Campos et al., 2016 [5], evaluated several anomaly detection

algorithms using several anomaly datasets and reached a conclusion thatmethods such

as k­NN still performed better than the newer methods.

However, the time complexity of themethods needs to be taken into account depending

on the size of training and inference datasets. The time complexity of k­NN isO(NM),

which is higher than that of the other methods. All other methods have a time

complexity of O(N).

We further note that both the deep learningmethods, GRU­VAE andLSTM­VAE, fared

relatively better than the other methods, iForest, and iNNE. In the case of GRU­VAE

architecture, the recent dataset fared better, while it was the other way around for the

LSTM­VAE architecture. Of the two deep learning models, GRU based VAE model

trained on recent dataset performed better than LSTM based model. However, when

trained on the full dataset, the LSTM­VAE basedmodel performed better than all other

models, except k­NN.

We also note the presence of a general trend where nearly all model variants, except

LSTM­VAE, performed better with the recent dataset as opposed to the full dataset.
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Deep learning models Conventional algorithms

GRU­VAE LSTM­VAE k­NN iNNE iForest
Time complexity O(N) O(N) O(NM) O(N) O(N)

Full dataset 0.862 0.871 0.875 0.781 0.806
Recent dataset 0.877 0.836 0.882 0.772 0.862

Table 5.3.1: AUC values of ROC plots of all five models, each evaluated using two
different training dataset variants. The table also highlights the top three models and
their better­performing dataset variants.

This observation is curious. Perhaps a logical explanation is that all batteries undergo

a similar operational pattern when we observe a limited time window. Hence, the

discrimination of an anomalous battery operation is more prominent in the recent

dataset. While in the global dataset, the operational patterns are more diverse and,

therefore, create a broader generalization.

The next chapter explores the possible conclusions drawn from these results and

provides an insight into other future works.
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Conclusions

Chapter 1 described that the purpose of the degree project was to develop and evaluate

a deep learning anomaly detection pipeline utilizing the time­series measurements

from battery fleets. Reflecting on this, we see the cumulative results of the whole

project presented in the previous chapter.

The project was implemented following the engineering methodology described in

chapter 3, resulting in a successful pilot deployment for the customer, with ample

volume in data acquisition, and functional implementation of the deep neural network.

The anomaly detection models were also compared quantitatively with some well­

known anomaly detection algorithms.

In chapter 1, we also posed the research question: if a deep­learning model

implemented using LSTM­VAE or GRU­VAE architecture could be a viable method

of anomaly detection for a battery fleet operation.

Drawing from the results observed in the previous chapter, it can be concluded that

both the deep learning models appear to be viable methods of anomaly detection for

batteries, outperforming some of the existing andwell­knownmethods, such as iForest

and iNNE. k­NN method produced the best performance in this experimental setup.

However, k­NN has a higher time complexity of O(NM) compared to the rest of the

methods, which have linear time complexity of onlyO(N). Hence, on a practical note,

it may be more suitable if the application datasets are small. If the datasets are very

large, the other methods with lower time complexities may offer better scalability. In

those cases, the GRU­VAE or LSTM­VAE could be one of the better choices.
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All relevant stakeholders of the project were engaged during the development process

to ensure the smooth completion of the project goals. Looking back at those goals, they

were all accomplished and described in the previous chapter. Corresponding to each

of the objectives listed in section 1.4, we note that:

1. A customer pilot was started jointly with Hartwall Oy and collected the battery

operational data.

2. The network of sensors and communication devices were set up and deployed,

enabling the collection of the raw battery measurement data.

3. The first part of the pilot collected the baseline data.

4. eFleetly battery maintenance tool, charging room monitors, and maintenance.

5. The second part of data representing post­deployment were collected.

6. The project designed and developed a deep learning anomaly detector based on

LSTM­VAE and GRU­VAE.

7. Conventional anomaly detection algorithms, iNNE, iForest, and k­NN, were

developed.

8. The project evaluated the performances of all the models using an AUC of ROC

metric and presented the results.

6.1 Discussion

The project was planned to run for three months. However, due to the COVID­19

pandemic in 2020/2021, the project schedule stretched well beyond a year. Despite

this historical disruption, the project managed to deploy the system and evaluate

several anomaly detection methods. The data acquisition succeeded in collecting over

6GB of original battery measurement data. The deep learning network development,

training, and evaluation were successful post­data acquisition.
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6.2 Future Work

6.2.1 Internal evaluation of the models

In addition to the external evaluation of the models using known anomalies, as

performed in this project, an ”internal evaluation” can also be performed. The paper

On the Internal Evaluation of Unsupervised Outlier Detection (Marques et al. 2015

[26]) describes a well­suited method for this purpose. It relies on the intuition that

anomalies are rare and, therefore, their data separability from the rest offers ameans to

quantify the evaluation. It depends on implementing a nonlinear classier, specifically

ones that rely on maximizing margins (examples they proposed: Nonlinear Support

VectorMachine (SVM) or Kernel Logistic Regression). The paper considers classifying

the detected anomalies from the rest of the data and using the performance of the

ROC curve as the evaluation metric. The sharper the curve is, the more separated the

anomaly data points are from the rest. As a baseline, they compare the evaluation

against the NULL hypothesis.

6.2.2 Evaluating the impact of input record size

To further enhance the capability of the deep learning networks to learn better, the

record size could be increased, perhaps significantly, for example, a month.

A wider record size will increase the network complex, resulting in larger hidden layer

units and a larger latent variable size. Training such networks inevitably would require

a more powerful computing platform. Commercial computing resources developed

specifically for such heavy­duty machine­learning purposes could be a choice to

consider. Hyperparameters search can also be very resource­intensive during training.

Future experiments could use distributed computing to reduce the training time with

hyperparameters search.

6.2.3 Finer hyperparameter search space

The limited computing resource also limited the number of hyperparameters sampled

from the hyperparameters space. With the help of additional computing resources, the

hyperparameters search could increase the number of search samples to find a more

optimal combination. Luckily, individual combinations of the hyperparameters can be

evaluated independently. As a result, a distributed computing facility with more GPU­
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enabled computing nodes can facilitate efficient hyperparameters search. Keras Tuner

[30] offers the necessary means to achieve such distributed computation if a cluster of

GPU­enabled compute instances are available for such purpose.

6.2.4 Alternative deep neural network architectures

The literature proposesmany other deep learning architectures for usewith time­series

data. Chapter 2 introduced many of them. Future work can also consider evaluating

some of them and comparing their performances against each other. Some choices

of suitable architectures for further study include architectures based on CNN and

Generative Adversarial Network (GAN).

An example of a CNN­based architecture is Ribeiro et al., 2018 [33]. It proposes

an anomaly detection architecture for video surveillance purposes that uses an

autoencoder based on CNN. A video stream is a time­series input. Hence, the same

architecture, perhaps with some modifications, could also be used for battery time­

series measurements.

A GAN­based architecture, on the other hand, is also an attractive choice to evaluate. A

GANnetwork learns to generate probable outputs based on the inputs. A GAN consists

of two major components ­ a generator and a discriminator. The generator learns to

generate a realistic output similar to the input. The discriminator learns to distinguish

such generated output from the real inputs. It is the discriminator component that

is of interest for an anomaly detector. Once a GAN is trained on the input time­series

records, the discriminator could likely function as a detector of anomalous data on new

inputs.

6.3 Final Words

Referring back to the objectives of the project, this thesis presented all related

background topics, tools, methods, development processes, evaluation, analysis of the

results, and inputs to future work. It also described them in sufficient detail so that

future researchers can contribute further to the related field. With this note, the author

concludes the thesis by thanking and appreciating all the supports received during the

degree project.
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