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Abstract | i

Abstract
In the development of large telecommunications systems, it is imperative to
identify, report, analyze and, thereafter, resolve both software and hardware
faults. This resolution process often relies on written trouble reports
(TRs), that contain information about the observed fault and, after analysis,
information about why the fault occurred and the decision to resolve the fault.
Due to the scale and number of TRs, it is possible that a newly written fault is
very similar to previously written faults, e.g., a duplicate fault. In this scenario,
it can be beneficial to retrieve similar TRs that have been previously created
to aid the resolution process.

Previous work at Ericsson [1], introduced a multi-stage BERT-based
approach to retrieve similar TRs given a newly written fault observation. This
approach significantly outperformed simpler models like BM25, but suffered
from two major challenges: 1) it did not leverage the vast non-task-specific
telecommunications data at Ericsson, something that had seen success in other
work [2], and 2) the model did not generalize effectively to TRs outside of the
telecommunications domain it was trained on.

In this thesis, we 1) investigate three different transfer learning strategies
to attain stronger performance on a downstream TR duplicate retrieval
task, notably focusing on effectively integrating existing telecommunications-
specific language data into the model fine-tuning process, 2) investigate the
efficacy of catastrophic forgetting mitigation strategies when fine-tuning the
BERT models, and 3) identify how well the models perform on out-of-domain
TR data.

We find that integrating existing telecommunications knowledge through
the form of a pretrained telecommunications-specific language model into our
fine-tuning strategies allows us to outperform a domain adaptation fine-tuning
strategy. In addition to this, we find that Elastic Weight Consolidation (EWC)
is an effective strategy for mitigating catastrophic forgetting and attaining
strong downstream performance on the duplicate TR retrieval task. Finally, we
find that the generalizability of models is strong enough to perform reasonably
effectively on out-of-domain TR data, indicating that the approaches may be
eligible in a real-world deployment.

Keywords
information retrieval, neural ranking, trouble reports, log analysis, natural
language processing
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Sammanfattning
Vid utvecklingen av stora telekommunikationssystem är det absolut nödvän-
digt att identifiera, rapportera, analysera och därefter lösa både mjukvaru
och hårdvarufel. Denna lösningsprocess bygger ofta på noggrant skrivna
felrapporter (TRs), som innehåller information om det observerade felet och,
efter analys, information om varför felet uppstod och beslutet att åtgärda felet.
På grund av skalan och antalet TR:er är det möjligt att ett nyskrivet fel är
mycket likt tidigare skrivna fel, t.ex. ett duplikatfel. I det här scenariot kan
det vara mycket fördelaktigt att hämta tidigare skapade, liknande TR:er för att
underlätta upplösningsprocessen.

Tidigare arbete på Ericsson [1], introducerade en flerstegs BERT-baserad
metod för att hämta liknande TRs givet en nyskriven felobservation. Detta
tillvägagångssätt överträffade betydligt enklare modeller som BM-25, men led
av två stora utmaningar: 1) det utnyttjade inte den stora icke-uppgiftsspecifika
telekommunikationsdatan hos Ericsson, något som hade sett framgång i annat
arbete [2], och 2) modellen generaliserades inte effektivt till TR:er utanför den
telekommunikationsdomän som den bildades på.

I den här masteruppsatsen undersöker vi 1) tre olika strategier för
överföringsinlärning för att uppnå starkare prestanda på en nedströms TR
dubbletthämtningsuppgift, varav några fokuserar på att effektivt integrera
fintliga telekommunikationsspecifika språkdata i modellfinjusteringsproces-
sen, 2) undersöker effektiviteten av katastrofala missglömningsreducerande
strategier vid finjustering av BERT-modellerna, och 3) identifiera hur väl
modellerna presterar på TR-data utanför domänen.

Resultatet är genom att integrera befintlig telekommunikationskunskap
i form av en förtränad telekommunikationsspecifik språkmodell i våra
finjusteringsstrategier kan vi överträffa en finjusteringsstrategi för domä-
nanpassning. Utöver detta har vi fåt fram att EWC är en effektiv strategi
för att mildra katastrofal glömska och uppnå stark nedströmsprestanda på
dubbla TR hämtningsuppgiften. Slutligen finner vi att generaliserbarheten av
modeller är tillräckligt stark för att prestera någorlunda effektivt på TR-data
utanför domänen, vilket indikerar att tillvägagångssätten som beskrivs i denna
avhandling kan vara kvalificerade i en verklig implementering.

Nyckelord
informationssökning, neural rangordning, felrapporter, logganalys, naturlig
språkbehandling
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Chapter 1

Introduction

1.1 Premise and Problem Overview
In the development of large telecommunications systems, it is imperative to
identify, report, analyze and, thereafter, resolve both software and hardware
faults. Cataloguing and sharing these faults is often done through trouble
reports (TRs) [3]. At Ericsson, TRs are manually written observations of a
software or hardware fault, which after a series of analyses and corrections,
are answered and resolved. This process of reaching an answer/resolution
at Ericsson, outlined in Figure 1.1, is often tedious and time consuming. In
addition to this, as TRs are leveraged by nearly all operators, there is also
a risk that duplicate TRs emerge when several developers identify the same
fault independently. Resolving each duplicate TR independently leads to a
substantial amount of additional manual effort, which may be avoidable if a
strong duplicate detection were to be implemented. The focus of this thesis,
therefore, is to develop a duplicate TR retrieval system that, given a newly
written observation of a fault, can retrieve potential duplicates effectively.

Previous master’s thesis work at Ericsson [1] investigated approaches to
reduce the latency in the resolution process of TRs, focusing on aiding the
Analysis Phase (Step 4 in Figure 1.1) by retrieving previously resolved TRs
representing similar faults (not necessarily duplicates). The retrieval of similar
TRs could, thereafter, be used to identify if an answer associated with the fault
already exists, within which domain the problem lies (i.e., to help identify a
team to run further analysis), and generally provides additional information
which can help speed up the resolution process. Although duplicate TR
retrieval was not the central aim of this previous work, the modelling approach
has seen success in retrieving duplicates [1, 4] and acts as the foundation for
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the retrieval approach in this thesis.

Figure 1.1: Process of handling Trouble Reports at Ericsson

The TR retrieval approach in [1], outlined in Figure 1.2, leveraged two
types of BERT (Bidirectional Encoder Representations from Transformers)
[5] models to perform efficient and effective retrieval. Given a newly written
TR, a faster bi-encoder model would identify the top 20 most similar existing
TRs. After which, these TRs would be re-ranked in relevance by a slower, but
higher performance cross-encoder model. Note that BERT models and the
both bi-encoder and cross-encoder architectures will be further discussed in
section 2.2.2.

Figure 1.2: Multi-stage retrieval process of relevant TRs. Note that the Bi-
Encoder and Cross-Encoder are BERT-based models pretrained on English
data, then fine-tuned on a subset of TR data.

The BERT-based retrieval process significantly outperformed a previous
approach, which was based on BM25 [6], when retrieving similar TRs.
Although model performance on identifying duplicates was also strong, two
major drawbacks of the approach were identified:
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1. The bi-encoder and cross-encoder fine-tuning process (i.e., how the
models are trained), outlined briefly in Figure 1.3, does not effectively
leverage the vast amount of general telecommunications language data
present at Ericsson. Leveraging this domain-specific data before fine-
tuning a model on the final downstream task has shown strong results
on other tasks at Ericsson, as demonstrated in [2].

2. The models did not sufficiently generalize to TRs outside of the domain
of TRs they were trained on. i.e., Poor performance on TRs written by
different operators, which generally focus on different types of faults.

Figure 1.3: The model fine-tuning strategy in the original ranking approach
outlined by [1]. Note that only the final fine-tuning process (i.e., fine-tuning
on the TR data) is done at Ericsson. No other telecommunications data is
leveraged in this fine-tuning strategy.

To address the drawbacks of previous work, the aim of this thesis is to
identify and evaluate approaches to improve the performance of the models
on duplicate TR retrieval by leveraging telecommunications-specific language
data, focusing mainly on adapting the model fine-tuning processes. In addition
to this, we focus solely on identifying duplicate TRs using our retrieval
approach, which has implications for how the models are evaluated.

1.1.1 Prior Results
An initial attempt of integrating general telecommunications data into the
model fine-tuning process was made at Ericsson in the summer of 2021. In this
approach, the model is sequentially fine-tuned on general telecommunications
language data (i.e., same type of text as the TRs, but for a more general
task) and English document ranking data (i.e., different type of text to the
TRs, but relevant for the final TR retrieval task). The aim of the fine-tuning
approach was to encode the model with knowledge of both the relevant domain
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(telecommunications) and task (document retrieval) of the small available
dataset of TRs before it has been fine-tuned on it. This is done under the
assumption that the TR dataset is insufficient to train a strong model for TR
duplicate retrieval, in the hope that providing the model with this additional,
relevant data prior to final fine-tuning stage will lead to improved performance
on duplicate TR retrieval..

Fine-tuning was applied sequentially in three stages:

1. Build a general telecommunications language model by fine-tuning a
pretrained BERT model on telecommunications language data. This
process is referred to as domain adaptation, where a model that has been
trained to perform well on one domain (e.g., English language) is fine-
tuned on a new domain (e.g., telecommunications language data). This
process is outlined in further detail in Chapter 2.

2. Fine-tune the resultant model on English document ranking data, in the
aim of behaviorally fine-tuning the model for the eventual downstream
task.

3. Finally, fine-tune the model on a dataset of TRs. The resultant model
from this stage can be used to retrieve duplicate TRs.

The aim of the above fine-tuning strategy was to minimally change the
previous fine-tuning strategy outlined in Figure 1.3 as possible and can be
seen in Figure 1.4. Note that the only change in this approach from the work
presented in [1] is the addition of a fine-tuning step on telecommunications-
specific language data.

Figure 1.4: The fine-tuning approach in previous work. Note that we
sequentially fine-tune the model on different datasets to best prepare it for the
final downstream task.

This initial attempt found no significant difference in the final downstream
model performance between models that had been fine-tuned on additional
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telecommunications language data and models that hadn’t. At the time, the
hypothesis as to why adding telecommunications knowledge to the model fine-
tuning process did not leverage improved results centered around catastrophic
forgetting. Catastrophic forgetting refers to the phenomenon where a model
forgets previously learned information when optimizing for the new task [7,
8, 9]. Within the previously outlined fine-tuning process, after the model has
been fine-tuned on general telecommunications data and is fine-tuned on an
English document ranking dataset. In this second fine-tuning stage, there is
no incentive for the model to retain the telecommunications knowledge that it
had previously encoded.

From this prior work, two conclusions emerged: 1) further investigation
into fine-tuning processes may be necessary to attain stronger performance on
TR duplicate retrieval and 2) catastrophic forgetting may need to be mitigated
for the fine-tuning process in Figure 1.4 to be effective. These conclusions are
among the main points we wish to investigate in this thesis, as will be outlined
further in section 1.1.2 and 1.2.

1.1.2 Research Questions
There are three central questions that we aim to explore in this thesis:

Transfer Learning/Fine-Tuning Strategies

First, What transfer learning strategies for fine-tuning telecommunications-
specific language models lead to the highest performance on a down-
stream TR retrieval task?

In a taxonomy outlined in [10], the two relevant fine-tuning strategies
that could be applied in our scenario are domain adaptation and sequential
learning. In domain adaptation, we take a model that has already been
fine-tuned on the target task (i.e., document ranking/retrieval) and, with no
structural changes to the model, fine-tune it on our target domain (e.g., fine-
tune an English document ranking/retrieval model on our TR data, resulting
in a TR/Telecommunications document ranking/retrieval model). Note that
the fine-tuning approach outlined in Figure 1.3 is an example of domain
adaptation. In sequential learning, we take a model that has been fine-tuned
on the same domain as our target data, but needs to be fine-tuned to adapt to the
task. For example, fine-tuning a general telecommunications model directly
on the TR dataset is an example of sequential learning (domain remains within
telecommunications, but the task shifts to document ranking/retrieval).
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In addition to domain adaptation and sequential learning, we will also
compare these strategies with the multi-stage fine-tuning strategy outlined in
1.1.1 to provide a full comparison of different transfer learning strategies. We
hypothesize that a multi-stage fine-tuning strategy that does not suffer from
catastrophic forgetting should be the most effective strategy, as it leverages
both vast amounts of telecommunications data and document ranking data
before the final fine-tuning on the TR data.

Mitigating Catastrophic Forgetting

Second, How can we mitigate catastrophic forgetting and attain strong
performance when we fine-tune a pretrained telecommunications-specific
language model on a downstream TR retrieval task?

Previous research indicates that methods such as Elastic Weight Consol-
idation (EWC) [11] consistently mitigate catastrophic forgetting, given that
sufficient parameters are present in the model. Therefore, we hypothesize that
the application of catastrophic forgetting mitigation strategies will 1) mitigate
catastrophic forgetting and 2) improve our performance on our downstream
duplicate TR retrieval task in our multi-stage fine-tuning framework as the
model would retain relevant information from each fine-tuning stage.

Generalization to other TR Datasets

Third, and finally, Which transfer learning strategies to fine-tune
telecommunications-specific language models on a downstream TR
retrieval task see the resultant models generalize well to TR datasets in
different domains?

We aim to evaluate our different transfer learning strategies on a TR dataset
outside of the domain of TR data the models have been fine-tuned on (e.g., a
dataset with different operators writing the TRs, on different types of faults).

1.2 Goals
To further expand on the previous section, there are three key objectives in this
thesis:

1. We aim to compare domain adaptation, sequential learning, and our
multi-stage (both with and without catastrophic mitigation strategies)
fine-tuning strategies on the duplicate TR retrieval task. The aim of this
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objective is to identify the most effective fine-tuning strategy for our
task and potentially similar tasks in the future.

2. We aim to identify and evaluate catastrophic forgetting mitigation
strategies, most notable EWC [11], in our multi-stage fine-tuning
strategy for trouble report retrieval.

3. We aim to compare the performance of different fine-tuning strategies
on an out-of-domain trouble report dataset, i.e., trouble reports that
differ significantly from the reports the models were trained on. This
provides insight into the generalizability of different approaches.

1.3 Sustainability and Ethics
There are no major ethical considerations that need to be made for this project.
This thesis aims to aid the resolution of trouble reports and contribute to
research on transfer learning strategies in natural language processing (NLP).
For both these aims and the results we do not see any ethical concerns.

Regarding the impact of this thesis on sustainability, a notable concern is
the energy consumption used in training large language models. Strubell, et al.
(2019) [12] estimates that the CO2 emissions of training a large transformer-
based language model can exceed the average emissions of a car. In this thesis,
we only fine-tune transformer models (i.e., starting with a pretrained model)
as opposed to training the model from a random initialization. The emissions
in this thesis should, therefore, not be as severe as other research in NLP. In
addition to this, as the resultant work of this thesis could accelerate future fault
resolution at Ericsson, this work may potentially displace and reduce other
emissions in the fault resolution process.

1.4 Societal Impact
The results of this thesis are unlikely to have a major societal impact, as it
is only relevant in fault resolution and NLP research. However, the potential
deployment of the models outlined in this thesis would see interaction between
the models and people trying to resolve TRs. This is an example of a human-
in-the-loop model [13], in which a person uses the ML models as a tool, but all
resolutions and conclusions are made through human intelligence and insight.
Further innovation and creation of human-in-the-loop tools and models may
have significant societal impact. With human intelligence at the center of the
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usage of ML, this can be seen as a fairer paradigm [13], indicating a positive
societal impact.

1.5 Structure of the thesis
The remainder of this thesis is structured as follows. First, in Chapter 2,
we discuss background topics relevant to the thesis, such as transformer
networks, transfer learning, and catastrophic forgetting mitigation strategies.
Second, in Chapter 3, we provide further details on the modelling task, the
data, available models, and fine-tuning strategies. Third, in Chapter 4, we
outline our experimental setup, evaluate model performance on the outlined
experiments, and discuss the results in line with the goals outlined in 1.2.
Finally, in Chapter 5, we conclude the thesis and outline directions for future
work.
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Chapter 2

Background

2.1 Overview
In this chapter, we provide an overview of the existing literature and
background research relevant for this thesis. This is divided into three sections:
1) Transformer Networks & Neural Ranking, 2) Transfer Learning in NLP, and
3) Lifelong and Continuous Learning. We outline the focus/content of each
section and provide insight as to how each of these sections are tied to the
underlying goals of this thesis below.

Focus of Transformer Networks & Neural Ranking: The fundamental
task that we aim to attain strong performance on is duplicate TR retrieval.
As outlined in Chapter 1, there are two types of models used in this ranking
process, notably bi-encoders and cross-encoders, each of which are BERT-
based models. In this section, we therefore initially focus on outlining how
transformer networks work and how they relate to BERT networks. Next,
we outline how similar document retrieval can be performed using BERT
networks, the different architectures available, and the re-ranking pipeline.

Focus of Transfer Learning in NLP: In this section, we outline how
the different types of fine-tuning in NLP, we provide insight into how the
parameters or BERT models change throughout fine-tuning, and outline some
common challenges with this process.

Focus of Lifelong and Continuous Learning: In a multi-stage fine-tuning
process, such as what was outlined in subsection 1.1.1, we often run into
catastrophic forgetting, i.e., the model forgets information it learned previously
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in favor of effectively learning the current task. In this section, we provide a
brief overview of lifelong and continuous learning and outline different forms
of catastrophic forgetting mitigation strategies.

2.2 Transformer Networks & Neural Ranking

2.2.1 Transformer Networks
In recent years, the most used network architectures for language modelling
are all based on the Transformer architecture outlined by Vaswami, et al. at
NIPS 2017 [14]. Much like the earlier recurrent or convolutional sequence to
sequence based models [15], the Transformer network consists of an encoder
and decoder. An original sequence of text is fed to the encoder, which identifies
meaningful representations of that text. The representations attained by the
encoder are then fed to the decoder, which then generates text for the target task
(e.g., translation). See Figure 2.1 for a simple example of what this process
looks like.

Figure 2.1: Simple structure of a transformer network. The encoder is
provided a sequence of text and generates meaningful representations. The
decoder takes those representations to generate some new text, in this case a
French translation of the original input sequence.
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Transformer Encoder

As outlined in [14], the encoder section of the Transformer consists of N
encoder blocks, each of which is identical in structure. Each encoder block
consists of a Multi-Head Attention layer and a standard feed forward layer, as
is shown in Figure 2.2.

Figure 2.2: Visualization of the key elements in the Transformer Encoder.

Self-Attention and Multi-Head Attention The Multi-Head Attention
block, introduced in [14], consists of multiple, parallel self (or scaled Dot-
Product) Attention layers. This layer receives a matrix of non-contextualized
token embeddings as input, e.g., given the sentence ”this is a sentence”, we
have an embedding for each token [[0.991, 2.104, ..., 7.21], [...], [...], [...]] of
which the size is the sentence length (4) times the embedding dimension (e.g.,
512). Note that a token generally refers to a word or subword in the input
text (e.g., the word ”run” would be considered its own token, but the word
”running” might be split into ”run” and ”ing”).

The key purpose of the self-attention layer is to contextualize the token
embeddings [16]. In a good representation, we would expect the model to have
some meaningful encoding of the impact that each token has on every other
token (e.g., what impact does the word ”this” have on the word ”sentence” in
the previous example?). This is done in the following process:

1. Given a matrix X , which consists of our original token embeddings,
compute matrices Q (Query), K (Key), and V (Value). Where, WQX =

Q, WKX = K, W VX = V . W is the weight matrix. The dimensions
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of the Q, K, and V matrices are the sentence length (i.e., number of token
embeddings in X) by some set dimension (e.g., 64). Note that, at this
point, the query, key, and value matrices are simply a linear transform
of the original input matrix X .

2. Compute QKT , of which the result is a sentence length by sentence
length size matrix. Intuitively, for each token (more specifically the
token embedding) in the Query matrix, we compute the dot product
between that word representation and all token embeddings present
in the Key matrix. As the dot product provides us with a measure
of similarity, every index position i, j within this matrix provides an
indication of how similar the word at index i is to the word at index j.

3. Divide QKT by the square root of the second dimension of the key
vector (i.e.,

√
dk). This is used to achieve stable gradients.

4. Apply softmax to each row of QKT . This is the only non-linear
activation in the self-attention layer.

5. The final self-attention layer, Z, is attained by multiplying the resultant
array from the previous step softmax(QKT

√
dk

) by the value matrix, V .
Intuitively, this provides us with a weighted average of every word
representation in V. The output matrix is the same size as V, i.e.,
sentence length by a set dimension (e.g., 64).

The entire attention process outlined above can be expressed in the
following equation:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

We also outline the attention process in Figure 2.3.
One key drawback of the self-attention process is that the resultant

representation matrix Z may only capture one element of the sentence
structure or semantics. To account for this lack of capacity, the Multi-Head
attention layer instead consists of h self-attention layers. For each self-
attention layer, the matrices Q, K, and V are passed through linear layers
to produce Qi, Ki, and Vi. Then, we compute Zi = softmax(

QiK
T
i√

dk
)Vi for all

i in 1..h. The final representations Z1..h are concatenated and passed through
another linear layer W0.
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Figure 2.3: Outline of the self-attention mechanism

Feed Forward Network The feed forward network in the transformer
encoder is a simple 2 layer network, with ReLU activation after the first layer.
i.e., F (x) = ReLU(xW1+ b1)W2+ b2. The ReLU activation function simply
sets any negative values in xW1 + b1 to 0.

Add & Norm Although the key elements of each transformer encoder block
are the Multi-Head Attention and the Feed Forward Network, between these
layers and at the end of the encoder block there are Add & Normalization
layers. In Figure 2.4, the full structure of a transformer encoder block is shown.
The Add & Norm layers serve two purposes:

1. They serve as residual skip-connections, i.e., we skip a layer when
propagating forward and backward. This can help mitigate exploding
and vanishing gradients (e.g., [17]).

2. The normalization prevents large value changes, also mitigating
exploding and vanishing gradients.

Input to the encoder The transformer model is provided a matrix X as
input, where each row in X represents an embedding for an input token.
These embeddings can be computed with a simple embedding matrix, which
transforms a word token to a non-contextualized vector representation.

One key element of the input matrix X and the transformer model is
that the positions of each token are not considered when computing the
representations. This can be observed in the self-attention computation
described previously. This is unlike previous approaches, e.g., recurrent
neural network based sequence to sequence models where input is provided to
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Figure 2.4: Full Transformer Encoder Structure.

the model in a sequential fashion. To provide the model with some knowledge
of the position of tokens, an additional positional encoding is added to the
model before providing the input to the transformer encoder. The positional
encoding matrix, P , is the same size as the input data X , and is computed in
the following way:

P (pos, 2i) = sin

(
pos

1000
2i

dmodel

)
(2.2)

and
P (pos, 2i+ 1) = cos

(
pos

1000
2i

dmodel

)
(2.3)

Where pos refers to the position of the token in the input sentence (i.e., the
row in X), i refers to the dimension of the token embedding we are looking
at, and dmodel refers to the dimensionality of the model embedding.

When the positional encoding matrix, P , has been computed, it can be
added to the input matrix X: X + P .

With all these steps in place, the final Transformer encoder can be seen in
Figure 2.5.

Transformer Decoder

The structure of the entire transformer, including the decoder, can be found
in Figure 2.6. Whereas the encoder generates a meaningful representation
of an input sentence/document, the decoder generates the target text. For
example, to translate an English sentence to French, the encoder will generate
contextualized embeddings of the tokens in the sentence, whereas the decoder
will use those embeddings to generate the equivalent sentence in French.
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Figure 2.5: Full Transformer Encoder Structure

The decoder is used in the following way:

• Initially (at time=0), we provide the decoder with a token to indicate the
start of a sentence (i.e., ”<sos>”). The decoder then generates the next
word in the sentence.

• At time=1, we provide the decoder with the start of the sentence token
”<sos>” as well as the next token in the sentence (e.g., ”Je”). Again, the
decoder generates the next token in the sequence.

• This process continues until the decoder generates the end of sentence
token (”<eos>”).

Every decoder block is provided with the representation attained from the
encoder in its Multi-Head Attention layer. Before this, however, note that the
decoder consists of an additional type of block, referred to as a Masked Multi-
Head Attention layer. We refer to [14] for a deeper overview of the Masked
Multi-Head Attention layer.

BERT Models

The focus of this thesis is on BERT-based models, which only use the encoder
section of the transformer model outlined previously. BERT was introduced
in 2018 by Devlin, et al [5] as a simple and scalable approach to generating
meaningful token embeddings.
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Figure 2.6: Full Transformer (Encoder and Decoder) Structure

Overview of BERT

The BERT model is a variation of the transformer encoder outlined in Figure
2.5. The base BERT model uses 12 encoder blocks, a hidden layer size
of 768, and 12 attention heads per block. Rather than just using positional
embeddings, BERT uses a sum of positional, segment, and token embeddings
as input to the model.

The initial token embeddings are attained through the WordPiece tokenizer
and embeddings [18].

BERT introduces a 2-stage framework for training large language models:

1. Pretrain a model on general language data (i.e., not for a specific task)

2. Fine-tune the model on a downstream task (e.g., Question-answering)

The pretraining is performed through two general tasks, namely Masked
Language Modelling (MLM) and Next Sentence Prediction (NSP).

Training Details During pretraining, BERT is provided two concatenated
sentences as input, with a separator token placed between them. The
input to the transformer is the following, ”[CLS] sentence_A_tokens [SEP]
sentence_B_tokens [SEP]”, where [CLS] is a special starting token and [SEP]
is a separator token.

Of this input, 15% of the input tokens are randomly chosen for a masking
procedure:
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• 80% of the chosen tokens are replaced with a [MASK] token

• 10% of the chosen tokens are replaced with a random token

• 10% of the chosen tokens remain the same

In the MLM task, the model is trained to predict these true token for all
of the randomly chosen tokens. This is trained through cross-entropy loss.
i.e., Through an additional predictor layer, the network uses the contextualized
embedding of a randomly chosen token to predict the true token. In this task,
the model has to use the context in which the masked token exists to predict
the token.

In addition to the MLM task, the model is also trained on NSP (next-
sentence prediction). As outlined previously, the model is fed two sentences
simultaneously. In 50% of cases, the second sentence follows from the first
sentence, whereas otherwise it is a randomly selected sentence. In the NSP
task, the token embedding attained from the [CLS] token is used to predict
if the second sentence follows from the first. In this task, the model needs to
attend to more tokens to be able to make an accurate judgement.

By training on these tasks, the BERT model outperformed other state-of-
the-art language models at the time.

Note: As sentences will be of different length, inputs are padded to ensure
that the length of each input will be the same. This is done using an attention
mask where the value of every [PAD] token will be set to 0.

BERT Variations Since the release of the original BERT model, several
variations have emerged. The following are some examples of these models
and the differences between them:

1. ALBERT: 1) Uses cross-layer parameter sharing and 2) factorized
embedding layer parameterization. [19]

2. RoBERTa: 1) Uses dynamic masking instead of static masking in
the MLM task, 2) removes the NSP task, and 3) uses the BytePiece
tokenizer over the WordPiece tokenizer. [20]

3. ELECTRA: Is trained in a generator-discriminator setup. The
generator is fed a sentence with masked tokens and replaces them with
the most likely tokens. The discriminator tries to identify the tokens the
generator replaced. NSP is also removed. [21]
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2.2.2 Neural Ranking with BERT
In recent years, Neural Ranking approaches, which refer to a set of neural
network-based approaches to text ranking, have demonstrated significant
performance increases over simpler exact-match retrieval approaches, such as
BM-25 or TFIDF [6, 22]. The reason for this improvement in performance
is the ability for deep neural networks to encode the context of tokens and
sentences in its embeddings (i.e., a hidden layer representation of an input).
An advantage of this is that the models are not reliant on an exact match
of tokens. For example, in BM25 if two separate documents used slightly
different terminology for similar concepts (e.g., using ’dog’ or ’hound’) then
the computed similarity between those two documents may suffer as the model
is unable to identify that the terms are related (i.e., no exact match between
tokens). In a deep learning-based approach, the model may learn that the word
’dog’ and ’hound’ often appear in very similar contexts, allowing the model
to more accurately identify similar documents [23].

In this section, we will initially introduce document ranking/retrieval
and some of the key terminology used. After which, we will discuss pre-
transformer neural ranking approaches. Finally, we discuss transformer-based
neural ranking, including bi-encoders and cross-encoders.

Brief Introduction to Text Ranking

Text ranking is a common task in information retrieval. Generally, the goal of
a text ranking approach is to rank a set of documents based on their relevance
to a query document [24, 25]. For example, a search engine may compare a
user query to millions of candidate documents (e.g., websites) and return the
top documents ranked by their relevance to the query.

In text ranking, there exist three key elements, outlined both below and in
Figure 2.7:

1. Corpus: A set of textual documents. For example, a large set of TRs.

2. Query: A textual document. For example, a newly written observation
of a fault.

3. Ranking Model: A model that, given a query, returns an ordered list
of documents from the corpus. Generally, the rank of a document in the
corpus relates to the similarity between that document

In the models we discuss in this thesis, the ranking model follows a 2-
stage procedure: 1) Produce a score for each document based on its relevance
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Figure 2.7: Overview of a Text Ranking Solution

to the query, where a higher score indicates higher relevance, and 2) Sort all
documents based on their relevance scores.

Interaction and Representation-based Neural Ranking

Before transformer networks were introduced for neural ranking, most
approaches can be classified as representation-based and interaction-based
approaches [24, 26, 27, 28, 29, 30].

The Representation-Based Approach refers to approaches where the
neural model produces an (often) high-dimensional embedding of an input
text. Much like simpler approaches, similarity metrics like cosine-similarity
or dot product can be used to compare these embeddings. Say we have a query
document and a corpus of 1000 documents, we simply need to compute the
embedding for the query document and all the corpus documents, and then
check the similarity between the query and all corpus documents to rank their
relevancy. A brief overview of how this comparison takes place is outlined in
Figure 2.8.

The Interaction-Based Approach refers to approaches where the neural
model receives two sentences or documents simultaneously and produces a
score based on their similarity/relevance. In this approach, the neural model is
often trained a as a ranking function, e.g., during training the model is provided
pairs of documents that are tagged relevant or irrelevant, making it possible
to train as a binary classifier. Interaction-based approaches often outperform
representation-based approaches [24, 29, 30] as the model will be able to
directly focus on the interaction between different tokens in the input query and
corpus document. However, a caveat of this approach is that a separate forward
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Figure 2.8: Overview of the Representation-Based approach for neural
ranking.
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Figure 2.9: Overview of the Interaction-Based approach for neural ranking.

pass needs to take place for every comparison between documents. Rather
than only performing one forward pass per document and then performing
fast similarity computations on vectors, such as in the representation-based
approach, the interaction-based approach will often be far slower. A brief
overview of the interaction-based approach is outlined in Figure 2.9.

BERT-based approaches for neural ranking leverage many of the same
concepts from pre-BERT neural ranking, but are instead grouped under bi-
encoder and cross-encoder models.

Bi-Encoders

The Bi-Encoder is the BERT equivalent to a representation-based approach, in
that it produces a representations of input documents which are then compared
outside of the model (i.e., the model does not directly produce a score). One of
the earliest Bi-Encoder models is sentence-BERT [31]. The sentence-BERT
model looks very similar to Figure 2.8. By adding an additional pooling layer
on the final token representations attained by a BERT model, it produces
an embedding for an input sentence/document. Although these embeddings
could immediately be used in a representation-based ranking setup, Reimers
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and Gurevych (2019) [31] find that additional fine-tuning of the model is
beneficial.

Notably, by providing the model with examples of similar and dissimilar
document pairs, the model can be fine-tuned in a Siamese network training
structure [32], where the similarity score between similar documents is
maximized and the similarity score for dissimilar documents is minimized.

There are other Bi-Encoder models which build on or are similar to the
sentence-BERT approach, e.g., [33, 34, 35].

Cross-Encoders

Cross-Encoders can be said to be the BERT equivalent of interaction-based
approaches, in that a single model is provided two documents simultaneously
and produces a relevance score as output. These methods are provided query
and document tokens and return a similarity score. One of the earliest and most
significant cross-encoder architectures is the monoBERT model [36]. In the
monoBERT model, the query and document tokens are provided to a BERT
model by adding a separator token between them (i.e., ”[CLS], query tokens,
[SEP], document tokens, [SEP]”). The model is then trained using cross-
entropy loss to classify if a query and document are similar or not. Other than
monoBERT, there are several other cross-encoder architectures, e.g., [37].

This approach can be quite slow, especially as the number of queries and
documents increase. Therefore, monoBERT is often only used after an initial
retrieval of relevant documents using a faster model. This process is referred
to as re-ranking, and it outlined in the next subsection.

Re-Ranking

As outlined previously, cross-encoder models are often higher performing but
slower models than bi-encoders. In addition to this, BM-25 based retrieval is
generally even faster than bi-encoders. To leverage high performing models on
a large set of queries, we can leverage multi-stage ranking approaches, where
simpler, faster models retrieve an initial set of documents that can be re-ranked
by a more complex model. Say, for example, that are trying to find relevant
documents from our corpus of one hundred thousand documents. For a single
query, it would be more effective to use a BM-25 based approach to retrieve
the top 100 most relevant documents, and then use BERT-based approaches
for re-ranking those documents.

This re-ranking process can be outlined in Figure 2.10.



Background | 23

Figure 2.10: Re-Ranking process

Note that the initial ranker and re-ranker could both be BERT-based
approaches. For example, using a bi-encoder approach as the initial retriever
and the cross-encoder approach as the re-ranker has shown success [4]. In
addition to this, multiple re-ranking stages could be applied, such as outlined
by [36].

Evaluation Metrics

There are several metrics that can be used to evaluate the quality of a text
ranking pipeline. We focus on two simple metrics to evaluate model quality:
Recall@K and MRR@K:

• Recall@K: Number of Relevant Documents in the Top K Retrieved Documents
Number of Total Relevant Documents

. e.g.,
if we have 20 total relevant documents for a given query and we see 10
in the top 10 retrieved documents, then our Recall@10 is 0.5. A high
recall is a sign that the model is retrieving the necessary documents
effectively, but it does not take the rank of documents into account.

• MRR@K: The reciprocal rank (RR) is the inverse of the rank of
the highest ranked relevant document. For example, if we find that
the highest ranked relevant document occurs at position 2, then our
reciprocal rank is 1

2
= 0.5. Mean Reciprocal Rank refers to the mean

of the reciprocal rank over many queries. MRR@K only computes
the reciprocal rank for the top K documents for each query, i.e., if we
only evaluate on a single query and the first relevant document occurs
at position 4 then MRR@3 is 0, but MRR@5 is 0.25. A high MRR
indicates that the model often ranks a relevant result among the top
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answers. It does not punish or reward the model if other relevant search
results are high or low on the ranked list of documents, however.

2.3 Transfer Learning in NLP
As outlined in section 2.2, the purpose of the BERT training tasks is to produce
contextualized token embeddings which can be used for downstream tasks.
The direct application of these models to a new task or domain, however, may
not lead to strong results. In the BERT framework [5], therefore, there are two
stages for the application of a large language model:

1. Pre-training: Unlabelled model training on the base tasks.

2. Fine-tuning: Fine-tune all parameters using labelled data associated
with the downstream task.

In this framework, a pre-trained model can be fine-tuned to different tasks and
domains with minimal architectural changes.

2.3.1 Types of Fine-Tuning
In traditional machine learning, we generally assume that the domain and task
a model was trained for remains static. By domain, we refer to the distribution
of the data, e.g., although there is overlap, we consider general English a
different domain of text compared to telecommunications or medical text data
(different word usage, potentially a shift in grammatical structure). By task, we
refer to the structure of model output and its optimization criterion throughout
training, e.g., a classification model has very different output compared to a
bi-encoder model. We often expect domain and task to remain static for the
entire usage of a model. In deep learning applications, however, we often see
a shift in both the domain and task on which the model is applied.

For fine-tuning and transfer learning, Pan, et al. [38] distinguishes
between three transfer learning scenarios, notably inductive, unsupervised,
and transductive transfer learning. As can be observed in Table 2.1, inductive
transfer learning refers to when a model is fine-tuned on a new task,
transductive transfer learning refers to when a model is fine-tuned on a
new domain, and unsupervised transfer learning sees a shift in both task
and domain. Fine-tuning a model trained on document classification on a
document ranking task is an example of inductive transfer learning. On
the other hand, fine-tuning a model that has been trained on only general
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English language data to telecommunications language data is an example of
transductive transfer learning.

Table 2.1: Types of Transfer Learning according to [38]

Type of Learning Source and Target
Domains

Source and Target
Tasks

Inductive Transfer
Learning Same Different

Unsupervised
Transfer Learning Different Different

Transductive
Transfer Learning Different Same

To account for recent advancements in NLP, Ruder (2019) [10] extends
Pan’s taxonomy for types of transfer learning in NLP. Notably, within
transductive transfer learning Ruder distinguishes between domain adaptation,
where the model adapts from one domain to another (e.g., general english to
telecommunications language data), and cross-lingual learning, where a model
is fine-tuned on another language entirely. In addition to this, in inductive
transfer learning a distinction is set between multi-task learning, where a
model is fine-tuned on multiple tasks simultaneously, and sequential learning,
where a model is fine-tuned on multiple tasks sequentially.

Table 2.2: Types of Transfer Learning in NLP according to [10]

Class of Learning Subclass Description
Inductive Transfer
Learning

Multi-Task
Learning

Learn tasks simulta-
neously

Inductive Transfer
Learning

Sequential
Learning

Learn tasks in se-
quence

Transductive
Transfer Learning Domain Adaptation Adapt model

domain
Transductive
Transfer Learning

Cross-Lingual
Learning

Adapt model lan-
guage

In practice, sequential learning is the most common type of transfer
learning in NLP. This generally takes the form of training a model to a general
task (i.e., the pretrained model) and the fine-tuning it on a new task, for
example fine-tuning a pretained BERT model on a question answering task
(same domain/type of text data, but different expected output). Sequential
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learning in scenarios where we aim to learn more than one task is also referred
to as lifelong learning [39]. Lifelong learning will be discussed in further
detail in section 2.4.

Types of Transfer Learning in this Thesis

Other than our multi-stage fine-tuning strategy, in this thesis we focus mostly
on sequential learning and domain adaptation as transfer learning strategies.

In domain adaptation, we assume that our source task and our target task
are the same, but that the domain is different. To fine-tune a model for this
scenario, we can essentially just continue training the model as no structural
changes need to take place [40].

In sequential learning, we assume that there is a difference between the
source and target tasks. Because of this, there may need to be some structural
change to the model (e.g., adding a pooling layer at the end for a bi-encoder,
or a predictor layer for a classifier).

For both domain adaptation and sequential learning, choosing lower and
dynamic learning rates have shown to improve model results [41, 42, 43].

2.3.2 What happens when we fine-tune BERT mod-
els?

BERT models encode key linguistic features in their representations [44, 45].
In addition to this, different layers (encoder blocks) in the BERT model may
also contain different features. For example, word positional information is
represented in lower layers in the network [46], syntactic information is often
found to be most common in the middle layers of the network [44], and task-
specific information is generally found in higher-level layers in the network
[47].

When fine-tuning a BERT model to a new task, we would therefore expect
that the higher level layers (i.e., the task-specific layers) change the most. [48,
49, 47, 50] show that this is most likely the case.

Wallat, et al. (2021) [51] found that knowledge in the network (e.g., factual
information present in the training data) is somewhat dispersed through both
the intermediate and final layers of the model. When fine-tuning models
to different tasks and data, a loss in previously known facts was observed.
However the severity of this loss was highly dependent on the type of fine-
tuning task, with retrieval and ranking tasks leading to a model retaining more
information than when fine-tuning on question answering tasks. The results
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of this are also highly dependent on the data the model is trained on.

2.3.3 Common Challenges
When fine-tuning models to smaller, downstream domains and tasks we often
run into several challenges. Notably, overfitting on the new data is possible,
leading to poor generalizability. In addition to this, catastrophic forgetting is
a well known issue in fine-tuning language models [42].

Brief Introduction to Catastrophic Forgetting

When fine-tuning a model on a new dataset, it is possible that the parameters
which allowed the model to attain high performance on the previous task
change significantly to attain high performance on the new task. The reason
for this is simple: the performance on the previous task is no longer important,
hence all parameters should be updated to optimize for the new task. In
practice, this may not represent a major issue as we often only care about the
performance on the final task. However, it is a major challenge for building
generalizable models that can perform well across multiple tasks [10, 52].

In the next section, we will further outline the challenges associated with
catastrophic forgetting and several mitigation strategies.

2.4 Lifelong and Continuous Learning
Continual and lifelong learning refers to the scenario where we expect a model
to learn new tasks and environments in a continuous fashion, while avoiding
catastrophically forgetting previously learned information [53]. Although,
similarly to other transfer learning scenarios, we aim to build a model that
performs well on a duplicate TR retrieval task, we can still leverage lifelong
learning research to aid our multi-stage fine-tuning process. In the multi-stage
fine-tuning strategy outlined in section 1.1.1, we aim to build a model that
sequentially learns both telecommunications-relevant and document-ranking
knowledge without suffering from catastrophic forgetting. In this section,
we will discuss catastrophic forgetting in more detail, focusing strongly on
potential mitigation strategies.
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2.4.1 Catastrophic Forgetting
When deep learning models are trained on new tasks or domains sequentially,
the models have a tendency to forget information related to earlier tasks in favor
of learning new information. This phenomena is referred to as catastrophic
forgetting, which represents a major challenge in sequential and lifelong
learning [11].

Although catastrophic forgetting has been observed in neural networks
for decades [7, 54], much recent research aims to address it to counter
its consequences, especially with recent advances in transfer learning and
reinforcement learning where sequential learning of multiple tasks becomes
necessary [11].

In Natural Language Processing, catastrophic forgetting represents a major
challenge in effectively fine-tuning large, language models [43, 42, 10]. It is
undesirable for a model to lose knowledge of previous domains when fine-
tuning on a new domain. For example, a model trained on standard English
through masked language modelling should not lose that knowledge when fine-
tuning on a smaller subset of medical record data.

2.4.2 Metrics for Measuring Catastrophic Forgetting
For a set of tasks T that a model needs to learn sequentially, we construct a
matrix R which has dimensionality T × T . Upon training on task 1, t1, we
attain performance (e.g., accuracy) r1,1. When we fine-tune on task 2, not only
do we observe r2,2, but we can also observe the accuracy of the model on the
previous task r2,1. If we observe a significant decrease in performance from
r1,1 to r2,1 then we can say that the backwards transferability of the model is
poor (i.e., catastrophic forgetting is occurring).

Each index pair i, j in R contains the performance (commonly accuracy)
that the model attains on task tj after having been fine-tuned on task ti. Note
that it is possible to evaluate on, for example, task 2 while the model has only
been fine-tuned on task 1.

Given this setup, Lopez-paz, et al (2017) [55] defined three fundamental
metrics for continual learning:

1. Average Accuracy (A): 1
T

∑T
i=1 RT,i, which represents the average

accuracy across all tasks after having sequentially trained on all tasks

2. Backwards Transfer (BWT): 1
T−1

∑T−1
i=1 RT,i −Ri,i, which represents

the average difference in model performance on each task after having
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trained on all tasks sequentially compared to when it has most recently
fine-tuned on that task.

3. Forward Transfer (FWT): 1
T−1

∑T
i=2 Ri−1,i− b̄i, which represents the

performance of a model on a task it hasn’t trained on yet, compared to
the performance of a randomly initialized model (i.e., how much did
training on task 1 help my performance on task 2?). This is especially
useful in a zero-shot learning context.

Díaz-Rodríguez, et al. (2018) [56] proposed additional metrics to better
measure continual learning, such as measuring the model size, storage, and
computational efficiency of models throughout fine-tuning. In addition to
this, the authors separate the BWT metric into two separate metrics: 1)
REM, or remembering, is defined as 1 − |min(BWT, 0)| and 2) BWT+, or
positive backwards transfer, is defined as max(BWT, 0). These metrics aim
to explicitly measure how much the model retains when training on new tasks
(through REM) and if there is any improvement on previous tasks after having
trained (BWT+).

2.4.3 Catastrophic Forgetting Mitigation Strategies
There are many strategies for mitigating catastrophic forgetting in deep
learning models, both in the general case and more specifically for language
models. The aim of these methods is to find a parameterization of a model
which can attain low loss on multiple tasks. We can interpret catastrophic
forgetting as the scenario outlined in Figure 2.11. In standard fine-tuning, a
model greedily shifts from a parameterization which achieves low error on task
1 to a parameterization that achieves low error on task 2 [11].

According to Zenke, Poole, and Ganguli (2017) [57], catastrophic
forgetting mitigation strategies can be categorized as:

1. Architectural: Alter the structure of the network without altering the
objective function. Freezing network weights is an example of this, or
parameter/layer-wise learning rate reduction.

2. Functional: Adds a regularization term to the objective function, with
the aim of preserving the input-output mapping of the old task. This is
often computationally expensive, as it can require using the old network
to compute network output. An example of where this is used is in
knowledge distillation.
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Figure 2.11: Outline of what often happens during fine-tuning, where we
leave the model parameterization which achieves low error on an initial,
source task to achieve low error on the target task. Ideally, with catastrophic
forgetting mitigation strategies, we would aim to achieve low error on both
tasks simultaneously.

3. Structural regularization: Regularizes parameters such that sets of
them remain similar to the original task. An example of this is elastic
weight consolidation [11].

Elastic Weight Consolidation

Kirkpatrick, et al. (2017) [11] proposed elastic weight consolidation (EWC)
as a way to mitigate catastrophic forgetting when learning multiple tasks
sequentially. By adding a quadratic regularization penalty, EWC constrains
the parameters which were important for an initial task (e.g., task A) when
learning on a new task (e.g., task B).

EWC uses the Fisher information matrix [58], F , to estimate the
importance of each parameter in the model. As can be seen in the equation
below, the constraint on each parameter is based on the squared difference
between the parameter value on task A and its current value, multiplied by the
importance of that parameter Fi(θi − θ∗A,i)

2.

L(θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2 (2.4)

The loss, L, for the model is as described above. The additional
regularization will punish the model for significantly changing important
parameters. A practical note is that the Fisher information matrix can be
approximated by the squared first-order gradients in the model [58].
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EWC has been applied to deep language models previously, e.g., [59,
52, 60]. Although the results of this research does indicate that catastrophic
forgetting is mitigated, it does not demonstrate the level of improvement seen
in the continuous learning literature.

Gradient Episodic Memory

In Gradient Episodic Memory (GEM) [55], a memory Mt of some observed
examples of a previous task t is stored. In addition to computing the loss on
the existing task gt, the loss is also computed for all previous tasks:

l(fθ,Mk) =
1

|Mk|
∑

(xi,k,yi)∈Mk

l(fθ(xi, k), yi) (2.5)

Where k is the task, xi and yi are samples and labels from the dataset
associated with task k, and fθ is the current model. The total loss for GEM is
slightly more complicated than the approach outlined above. We refer to [55]
for a more detailed discussion.

Unlike EWC, GEM can encourage positive BWT. However, it requires a
memory of some previously seen datapoints, which is not always feasible.

Synaptic Intelligence

In the Synaptic Framework outlined by Zenke, Poole, and Ganguli (2017)
[57], each weight (synapse) is assigned a measure of importance. Much like
in EWC, Synaptic Intelligence (SI) introduces an additional term to the loss
function of a network when training on a new task:

L̃µ = Lµ + c
∑
k

Ωµ
k(θ̃k − θk)

2 (2.6)

Where Lµ refers to the loss on the original task, c is a tunable hyperparam-
eter, (θ̃k − θk)

2 refers to the difference between the parameterization of the
model on the previous task and the current parameters, and Ωµ

k refers to the
regularization strength of each parameter. Ωµ

k can be further defined as:

Ωµ
k =

∑
(v<µ)

wv
k

(∆v
k)

2 + ξ
(2.7)

Where ξ is a damping parameter, ∆v
k is the difference between the

parameter k on the task v and task v − 1, and wv
k refers to the parameter k’s
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contribution to the loss on task v. Note that Ωµ
k is summed for all tasks up to

the current task µ.
Synaptic intelligence is conceptually similar to EWC, but it often

outperforms EWC due to the changes in its loss formulation. In this thesis,
EWC is used as it is a fundamental approach in mitigating catastrophic
forgetting and is simple to implement and understand. In future work, it would
be worthwhile to experiment with multiple mitigation strategies.

ULMFiT

ULMFiT is an approach for fine-tuning language models outlined by
Howard and Ruder (2018) [43]. Although it does not directly target
mitigating catastrophic forgetting as previous approaches do, it outlines
several improvements to fine-tuning by using triangular learning rates and
gradual unfreezing of layers throughout fine-tuning. Although this research
was not performed on Transformer-based models, more recent research also
indicates that similar conclusions hold [42].
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Chapter 3

Methods

In this chapter, we will provide an overview of the data, outlining basic
dataset metrics, the structure of TRs, a brief exploration of our dataset, and
the preprocessing details involved. After this, we provide an overview of our
ranking pipeline, including details on initial retrieval and re-ranking. Finally,
we discuss the fine-tuning process of our models, outlining the base models
we have available and details regarding our implementation of all of the fine-
tuning strategies.

3.1 Data Overview

3.1.1 Trouble Report Dataset
A trouble report (TR) is either a primary TR, i.e., ideally the first instance of the
fault, or a duplicate TR, meaning that there exists some associated primary TR
that described the fault first. Within our dataset of 28.5K datapoints, we find
23K primary trouble reports and 5.5K duplicate trouble reports. The small
amount of duplicate trouble reports indicates that directly training a model to
classify if a report is a duplicate or not may not be possible.

3.1.2 TR Structure
Within a trouble report there are several key sections that describe the
identified fault. As shown in Figure 3.1, we look into four sections:

• Fault Tag: Outlines in what general region the fault occurred, e.g., it is
found to be a radio software issue.
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• Header: Outlines an initial and short description of the fault

• Observation: A much longer section that describes the fault in detail.
This often includes log output.

• Answer: After the trouble report has been answered, the answer section
will be filled with a description of what went wrong and the solution or
next steps.

In this thesis, we concatenate the Fault Tag, Header, and Observation to
construct our final observation, as this contains all meaningful observed data.

Figure 3.1: Overview of the structure of a TR. The key elements are the
observation and answer sections. We consider the fault tag and header to be
part of the observation section.

3.1.3 Data Exploration
Our dataset focuses on a subset of trouble reports collected over the last three
years. Out of the 28667 datapoints, we see a fairly even distribution over
trouble reports over the three years, as outlined in 3.2.

A key challenge when we observe our data, however, is that the length of
the observation and answer section may exceed the limit of tokens that our
models can take as input. In Figures 3.3 and 3.4, we show the number of
words in each TR’s observation and answer sections, respectively. We find an
average of approximately 700 words in the observation section and 200 in the
answer section. Although we may expect the answer section to remain within



Methods | 35

Figure 3.2: Number of TRs registered per year in our dataset

the necessary size for our models, the observation section will often need to
be truncated. This runs the risk of losing vital information in our observation
section, which may reduce model performance.

Figure 3.3: Number of words in the TR observation sections

3.1.4 Preprocessing Details
We aim to provide the model with as unprocessed data as possible, as we found
significant preprocessing (e.g., removing numbers and stop words) reduced
the model performance. The preprocessing we did perform was the following
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Figure 3.4: Number of words in the TR answer sections

(note that this process is performed separately for the observation and answer
sections):

1. Extract certain relevant sections of text to reduce the data size. This
selection was made based on an existing TR parser.

2. Concatenate the strings of relevant sections from the previous stage.

3. Remove repeating whitespace and newlines.

4. Tokenize the dataset through Spacy ∗, a powerful NLP Python library

5. For each token, identify if it matches a known abbreviation (e.g., 5G)
and replace it with the original terms.

6. Re-concatenate all tokens to create the final strings.

Due to some datapoints with missing values or too short observations/an-
swers, the total dataset size is reduced from 28.5K to 24.5K TRs, of which
3.5K are duplicate TRs.

3.2 TR Ranking Overview
As outlined in chapter 1, previous work [4] outlined a 2-stage ranking system
for duplicate TR retrieval, shown in Figure 1.2. This ranking approach uses
∗ https://spacy.io/

https://spacy.io/
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two BERT-based retrieval models: 1) A bi-encoder that efficiently retrieves
the top 20 most relevant documents and 2) a cross-encoder that re-ranks the
provided 20 documents.

3.2.1 Initial Retrieval with the Bi-Encoder
The initial retrieval process with the bi-encoder model can be seen in Figure
3.5. The bi-encoder model produces an embedding for the TR observation
and all texts (TRs) in the corpus. After the embeddings have been produced,
a nearest neighbor search is run using cosine similarity as a distance metric to
find the 20 closest TRs to the TR observation. We save the IDs of these TRs
for the re-ranker stage.

Figure 3.5: Initial Retrieval with the Bi-Encoder

3.2.2 Re-Ranking with the Cross-Encoder
The re-ranking process is outlined in Figure 3.6. Given the top 20 TRs from
the initial retrieval, the cross-encoder is used to compute a similarity score
between each TR and the TR observation query. Finally, each TR is then
ranked based on its similarity to the TR observation.

3.3 Model Fine-Tuning Process

3.3.1 Available Models
Several transfer learning strategies with different models are outlined in
throughout the remainder of this thesis. An overview of the models mentioned
are the following:
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Figure 3.6: Re-ranking with the Cross-Encoder

• RoBERTa: [20], a model trained on 160 GB of general English data
through dynamic masked language modelling. This is the base model
for TeleRoBERTa and the MS MARCO models.

• TeleRoBERTa: [2], the same as the RoBERTa model, but with
continued pretraining on 21 GB of general telecommunications data
through dynamic masked language modelling. The telecommunications
data includes TR and open 3GPP specifications data ∗. 3GPP
specifications contain specifications for global mobile broadband
standards.

• MS MARCO model: we have bi-encoder and cross-encoder versions
of MS MARCO model, both of which are based on the RoBERTa model.
The details for how these models were trained will be discussed further
in section 4.1. MS MARCO [61] is a dataset consisting of hundreds of
thousands of question answer pairs collected from search engines. It is
often used to train question-answering and document ranking models.

3.3.2 Fine-Tuning Strategies
As outlined in chapter 2, there are several approaches in the existing
transfer learning taxonomy which are relevant for our scenario. 1) Domain
Adaptation consists of fine-tuning a model that has been trained on our target
task but not on our target domain, which in our case is the MS MARCO
model, on our TR data. 2) Sequential Learning consists of a fine-tuning a
∗ https://www.3gpp.org/specifications

https://www.3gpp.org/specifications


Methods | 39

model that has been trained on our target domain but not on our target task,
e.g., TeleRoBERTa, on our TR data. These approaches are further outline in
Figures 3.7a and 3.7b.

A key challenge with domain adaption and sequential learning is that we
are unable to leverage all of available data for our task. Notably, it would be
ideal if a model could be fine-tuned on both telecommunications data and MS
MARCO data to ensure that it has been exposed to both the target domain
and task before it is applied on the TR data. For this reason, we investigate a
multi-stage fine-tuning approach, outlined in Figure 3.7c.

Note that in this approach we may observe catastrophic forgetting in the
initial fine-tuning stage, where the MS MARCO fine-tuning stage may cause
the model to forget the relevant telecommunications-specific knowledge. For
this reason, in the multi-stage fine-tuning approach we investigate both the
naive case and with a catastrophic forgetting mitigation strategy, notably using
Elastic Weight Consolidation when fine-tuning on MS MARCO data.

The purpose of using EWC in the initial fine-tuning stage is to build a
model that has both encoded the task and domain-specific information, such
that this knowledge can be leveraged to attain higher performance when fine-
tuning on the TR dataset.

In total, we train a bi-encoder and a cross-encoder model for each of the
four scenarios:

• Domain Adaptation (DA): Fine-tuning an MS MARCO model on the
TR data.

• Sequential Learning (SL): Fine-tuning TeleRoBERTa on the TR data.

• Multi-Stage Fine-Tuning (MS): Fine-tuning TeleRoBERTa on MS
MARCO, then on the TR data.

• Multi-Stage Fine-Tuning with EWC (MS w/ EWC): Fine-tuning
TeleRoBERTa on MS MARCO with EWC, then on the TR data.

Elastic Weight Consolidation Implementation

As outlined in 2.4.3, EWC requires us to compute a Fisher Information
Matrix, which stores information about the importance of each parameter.
We compute this in accordance with [58] by collecting the mean squared first
order gradients of TeleRoBERTa when we run and evaluate on 7000 randomly
selected lines of 3GPP specifications. Note that the gradients are collected
when performing the dynamic masked language modelling task.
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The selected 3GPP lines are part of the training data for TeleRoBERTa.
An example of what a sentence looks like is the following:

The IMS multimedia Telepony communication service
consists of two principal parts: a basic communication
part, and an optional supplementary services part.

(a) Domain Adaptation

(b) Sequential Learning

(c) Our multi-stage fine-tuning approach

Figure 3.7: The three possible fine-tuning approaches.

3.3.3 Fine-tuning on TR Data
Although the fine-tuning process on MS MARCO is simple due to the query,
document pairs that is provided in the dataset, there are several potential
strategies for fine-tuning the ranking models on the TR data. There are three
simple approaches we identified that could be used to fine-tune our models to
our duplicate retrieval task:

1. Strategy 1: Primary and Duplicate Observation Comparison:
The most straightforward approach would be to fine-tune our models
to produce high similarity scores when comparing a duplicate TR
observation to a primary TR observation. This allows us to directly
replicate the final task while fine-tuning. However, as the number of
duplicates in our dataset is very limited, this approach may suffer from
a lack of data both in the fine-tuning and evaluation stage.
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2. Strategy 2: Primary Observation and Primary Answer Compari-
son: To leverage the vast quantity of primary TRs present in our dataset,
another approach is to fine-tune the models to produce high similarity
scores when provided a primary observation and answer. i.e., the model
receives an observation and answer corresponding to the same TR and is
fine-tuned to return a high similarity score. To apply our task to the TR
duplicate retrieval task, a new duplicate observation is compared to all
primary TR answers. With this approach, the model can be fine-tuned
using all primary TRs. Challenges may emerge if the transferability to
duplicate observations is low.

3. Strategy 3: Hybrid Approach: In previous work [4], strategy 2 was
used. However, to ensure some transferability to duplicate TRs, a
small subset of duplicate TR observations were added in the fine-tuning
process (i.e., duplicate observation, primary answer pairs).

Although the 3rd fine-tuning strategy may ensure more transferability to
the target task, to ensure the maximal amount of duplicate TRs would be
available for evaluation we opted for Strategy 2.
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Chapter 4

Evaluation

4.1 Experimental Setup

4.1.1 Dataset Split
Our data split strategy is straightforward. Initially, we identify all primary
TRs which have no duplicates present in our dataset (i.e., they could not be
used for evaluation). We construct our training dataset from the observation
and answer sections of these primary TRs. The remaining primary TRs we
split equally into validation and testing sets. For the validation and testing
sets, we construct our corpus from the primary TR answers. As each of these
TRs have some associated duplicate TRs, we construct our set of queries from
the duplicate TR observations. The ranking task is evaluated based on if the
model can identify the primary TR answer given a duplicate TR observation.
The split metrics can be found in Table 4.1.

Table 4.1: Dataset split sizes

Dataset Number of Duplicate TRs Number of Primary TRs Total
Train 0 18.5K 18.5K

Validation 1.2K 1.2K 2.4K
Test 2.5K 1.2K 3.7K

4.1.2 Different Evaluation Scenarios
Scenario 1: To evaluate our model’s performance at identifying a duplicate
TR, we construct the following evaluation scenario: Given a duplicate TR
observation, how well can our model retrieve the primary TR answer?
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Scenario 2: Our first scenario evaluation deviates slightly from previous
work by [4], however, where the model was evaluated when using both
duplicate and primary TR observations. To ensure parity with previous work,
we investigate this scenario as well.

Scenario 3: The reason we shifted from scenario 2 to scenario 1 in this
thesis is due to it better modelling the real-world situation. In addition to this,
we hypothesized that the model would naturally perform better when retrieving
a primary TR answer using the primary TR observation, as opposed to using
a duplicate TR observation. We hypothesized this to be the case due to there
potentially being numerous artefacts (e.g., logs, similar word usage, etc...) the
are shared between the answer and observation of the same TR, hence it would
not be a good real-world measure of the model performance. To identify if we
can be confident in our hypothesis, we also investigate the scenario where we
use only the primary TR observations to retrieve the primary TR answers.

Scenario 4: Finally, we also hypothesize that duplicate and primary
observations share more information than a duplicate observation and primary
answer would. Although the models will not be trained on identifying similar
observations, we will evaluate the models at retrieving the correct TR by using
duplicate observations to retrieve primary observations (i.e., our queries are
duplicate observations and our corpus consists of primary TR observations).

4.1.3 Bi-Encoder Training Details
The MS MARCO bi-encoder model is fine-tuned for four epochs on 45k
randomly selected query, document pairs. The training is done through
MultipleNegativeRanking loss function ∗, where it is assumed that for all input
pairs [(q0. d0), (q1. d1), ..., (qi. di), ..., (qN . dN )], (qi, di) represents a query
and document which are similar (i.e., positive) and all other pairs (qi, dj) are
dissimilar (i.e., negative). The learning rate used is 10−5.

When fine-tuning the bi-encoder (TeleRoBERTa or MS MARCO) on the
TR data, the model is trained for 10 epochs with a learning rate of 10−5.
MultipleNegativeRanking loss is used as well.

4.1.4 Cross-Encoder Training Details
The MS MARCO cross-encoder model is fine-tuned for four epochs with a
learning rate of 2∗10−5 on a subset of the MS MARCO dataset. We select 20k
datapoints from MS MARCO and, for each query, we provide the model one
∗ https://www.sbert.net/docs/package_reference/losses.html

https://www.sbert.net/docs/package_reference/losses.html
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positive document example (i.e., the associated document) and three randomly
selected negative documents. The model is trained through Binary Cross
Entropy loss ∗.

When fine-tuning the cross-encoder on the TR data, we again train for
four epochs with a learning rate of 2 ∗ 10−5. Again, we employ a 1:3 ratio for
positive and negative samples.

4.1.5 EWC Hyperparameters
The standard MS w/ EWC model is fine-tuned with λ = 106 as we found the
best and most stable results under this hyperparameter value.

The remainder of this chapter is organized as follows: First, we show the
initial retrieval results attained by the different bi-encoder models. Second,
we show the re-ranker results under evaluation scenarios 1 and 4 with all bi-
encoder and cross-encoder combinations. Finally, we show the performance
of models when applied on an out-of-domain TR dataset.

Fine-Tuning Strategy Acronyms
In the following section, we will sometimes refer to the different fine-tuning
strategies with the following acronyms:

1. DA: Domain Adaptation

2. SL: Sequential Learning

3. MS: Our multi-stage fine-tuning approach

4. MS w/ EWC: Our multi-stage fine-tuning approach with EWC
(lambda=106)

4.2 Bi-Encoder (Initial Retrieval) Results

4.2.1 Transferability of TeleRoBERTa to the TR do-
main

An important step is to identify if there is relevant telecommunications
knowledge within the TeleRoBERTa model that will help us on the
∗ https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
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downstream TR task. We run three experiments where we directly compare a
TeleRoBERTa and RoBERTa model to identify if this is the case.

Experiment 1: Direct Application of Models

First, we fine-tune a TeleRoBERTa and RoBERTa model on the TR data
directly. As shown in Table 4.2, we observe a near negligible difference
between the two models when directly fine-tuned on the TR dataset. This
provides an initial indication that the transferability of TeleRoBERTa to the
TR dataset may be limited.

Table 4.2: Experiment 1: Does TeleRoBERTa transfer better to TR data than
RoBERTa, when we directly fine-tune the model on the TR data/task?

Metrics RoBERTa TeleRoBERTa
Recall@1 10.28% 10.85%
Recall@3 20.77% 19.84%
Recall@5 26.25% 25.85%
Recall@10 35.32% 34.27%
Recall@15 32.18% 41.53%
Recall@20 26.41% 45.85%
MRR@5 16.04% 15.96%
MRR@15 17.78% 17.62%

Experiment 2: Zero-shot with MS MARCO

The previous experiment indicated limited difference between RoBERTa
and TeleRoBERTa when fine-tuned on the TR data. However, this does
not necessarily indicate that there is no initial greater transferability of the
TeleRoBERTa model to the TR data compared to RoBERTa, as it is possible
that the differences between the model performances are mitigated when fine-
tuning on the TR data. To evaluate the initial transferability of the models, we
set up a zero-shot experiment (i.e., direct application on the target domain/task
with no explicit fine-tuning on it).

As RoBERTa and TeleRoBERTa are not fine-tuned to produce meaningful
sentence/document embeddings, we initially fine-tune the models on MS
MARCO data for 4 epochs. After which, we directly evaluate the model
performance on the TR evaluation data, the results of which can be seen in
Table 4.3.
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Table 4.3: Experiment 2: Does TeleRoBERTa transfer better to TR data than
RoBERTa, when we fine-tune the model on MS MARCO (i.e., fine-tune on
the target task, but not domain)?

Metrics RoBERTa TeleRoBERTa
Recall@1 1.33% 2.42%
Recall@3 2.50% 4.40%
Recall@5 3.27% 5.32%
Recall@10 5.28% 7.30%
Recall@15 6.37% 9.15%
Recall@20 7.18% 10.16%
MRR@5 1.98% 3.48%
MRR@15 2.33% 3.87%

Despite the limited transferability outlined in the first experiment, we find
that in a zero-shot context TeleRoBERTa significantly outperforms RoBERTa
when applied to the TR data.

Experiment 3: Multi-stage fine-tuning

To further investigate model transferability, we fine-tune the models from
Experiment 2 on our TR data. As can be observed in Table 4.4, we again
see that the difference between the model performances is minimal. Notably,
however, we do see a marginal improvement in both models in comparison to
experiment 1, indicating that additional fine-tuning on MS MARCO may lead
to stronger overall results.

Table 4.4: Experiment 3: Does TeleRoBERTa transfer better to TR data than
RoBERTa, when we fine-tune the model on MS MARCO (i.e., fine-tune on
the target task) and then fine-tune on TR data?

Metrics RoBERTa TeleRoBERTa
Recall@1 10.28% 11.45%
Recall@3 20.77% 21.05%
Recall@5 26.25% 26.09%
Recall@10 25.32% 34.76%
Recall@15 42.18% 41.57%
Recall@20 26.41% 46.01%
MRR@5 16.04% 16.73%
MRR@15 17.78% 18.40%
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4.2.2 Comparison of Fine-Tuning Approaches
As outlined in the Methods section, we aim to investigate the impact of several
fine-tuning strategies, notably domain adaptation, sequential learning, and our
multi-stage fine-tuning strategy.

The performance of these different fine-tuning strategies is outlined in
Table 4.5. We observe a non-negligible difference between sequential learning
and the other strategies, with sequential learning performing the worst out of
all strategies. However, there does not appear to be an immediate benefit to the
multi-stage fine-tuning strategy over the simpler domain adaptation approach.

Table 4.5: Experiment 4: How do the different fine-tuning strategies perform
on our TR data task?

Metrics Domain Adaptation Sequential Learning Multi-Stage Fine-tuning
Recall@1 10.28% 10.85% 11.45%
Recall@3 20.77% 19.84% 21.05%
Recall@5 26.25% 25.85% 26.09%
Recall@10 35.32% 34.27% 34.76%
Recall@15 42.18% 41.53% 41.57%
Recall@20 46.41% 45.85% 46.01%
MRR@5 16.04% 15.96% 16.73%
MRR@15 17.78% 17.62% 18.40%

4.2.3 Impact of Catastrophic Forgetting Mitigation
Strategies

A potential reason for why a multi-stage fine-tuning approach may not
outperform the simpler domain adaptation strategy is due to catastrophic
forgetting. i.e., As the TeleRoBERTa model fine-tunes on MS MARCO data,
it begins to forget the telecommunications-specific knowledge that may have
aided performance on the final task.

To mitigate this potential scenario, we adapt the multi-stage fine-tuning
approach to use EWC when we fine-tune TeleRoBERTa on MS MARCO. We
investigate EWC with 3 different hyperparameter setups, notably when λ is
104, 106, and 107. The results of which can be observed in Table 4.6.



Evaluation | 49

Table 4.6: Experiment 5: Does EWC improve our final performance on the
TR duplicate retrieval task? Note that the numbers next the EWC columns
indicate the lambda hyperparameter value.

Metrics No EWC EWC (104) EWC (106) EWC (107)
Recall@1 11.45% 10.73% 11.01% 10.89%
Recall@3 21.05% 19.35% 20.28% 20.52%
Recall@5 26.09% 24.52% 25.12% 26.49%
Recall@10 34.76% 33.51% 35.73% 34.44%
Recall@15 41.57% 39.84% 40.97% 40.77%
Recall@20 46.01% 44.31% 45.24% 45.16%
MRR@5 16.73% 15.62% 16.10% 16.38%
MRR@15 18.40% 17.32% 17.93% 17.91%

4.2.4 Model Performance in Different Evaluation Sce-
narios

In Table 4.7, we evaluate the bi-encoders trained through the different fine-
tuning processes on the four evaluation scenarios outlined in subsection 4.1.2.
Note the significant increase in model performance when we use primary
TR observations to retrieve the primary TR answer (Scenario 3) compared
to when we use duplicate TR observations (Scenario 1). This indicates that
there is shared information between the observation and answer section of a
TR that may not be relevant to a true fault description, indicating that Scenario
2 and 3 may be biased and non-generalizable evaluation approaches. The
most interested result can be seen in Scenario 4, however. In this case, the
model is evaluated on its ability to retrieve a primary TR observation when
given a duplicate TR observation as a query. Despite the model not having
been trained on this task directly, we find a major performance increase when
shifting to this form of data. These results indicate that there is far more useful
information shared between a duplicate and primary TRs’ observation sections
than between their observation and answer sections.

4.2.5 Does EWC mitigate catastrophic forgetting?
Although the previous experiment investigated the final, downstream
performance on the TR ranking task, it did not directly measure the impact
of mitigating catastrophic forgetting. As outlined in the background of this
thesis, there are several metrics that can be used to identify the severity of
catastrophic forgetting in a model, e.g., BWT. These metrics generally rely on
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Table 4.7: MRR@5 of each bi-encoder under the four evaluation scenarios.
Note that DA refers to domain adapation, SL to sequential learning, MS to our
multi-stage fine-tuning approach, and MS w/ EWC to our multi-stage fine-
tuning approach with EWC using a lambda of 106.

Model Scenario 1 Scenario 2 Scenario 3 Scenario 4
DA 16.04% 19.98% 27.89% 27.59%
SL 15.96% 19.91% 27.85% 26.64%
MS 16.73% 20.86% 29.14% 27.58%

MS w/ EWC 16.10% 20.86% 30.39% 26.99%

accuracy, which is not easily available for our dynamic MLM task, hence we
instead investigate the change in loss when applying TeleRoBERTa on a subset
of the data it was trained on through dynamic masked language modelling
before and after fine-tuning on MS MARCO.

Table 4.8: Average loss per batch (over 871 batches) of a model on a subset
of the original TeleRoBERTa training data. We show the loss before and after
fine-tuning TeleRoBERTa on MS MARCO, with and without EWC.

Before Fine-Tuning No EWC With EWC (106)
Average Loss per Batch 0.649 1.990 1.004

4.3 Re-Ranking Results
Similarly to the section 4.2, we fine-tune four cross-encoder models for each
of the fine-tuning strategies, i.e., domain adaption (DA), sequential learning
(SL), multi-stage fine-tuning (MS), and multi-stage fine-tuning with EWC (MS
w/ EWC).

In Tables 4.9 and 4.10, we evaluate the combination of all bi and cross-
encoder models on evaluation scenarios 1 and 4, respectively. In Table
4.9, we find that the sequential learning (SL) approach performs far better
than domain adaptation and the multi-stage fine-tuning strategies, indicating
that prior telecommunications knowledge aids the model performance. This
hypothesis is further supported by observing that the cross-encoder fine-tuned
with EWC (CE MS w/ EWC) attains similar performance to the sequential
learning model.

In Table 4.10, we again observe that the sequential learning and MS w/
EWC cross-encoders attain the highest performance. However, in this case the
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Table 4.9: Re-ranker results with MRR@5 using different bi-encoders and
cross-encoders. Evaluation is done under Scenario 1 (i.e., queries consisting of
duplicate TR observations and the corpus consisting of primary TR answers).
Note that BE stands for Bi-Encoder and CE stands for Cross-Encoder. By
Multi-Stage, we are referring to our multi-stage fine-tuning approach.

Models CE DA CE SL CE MS CE MS w/ EWC
BE DA 21.28% 22.98% 21.19% 22.78%
BE SL 21.60% 23.80% 21.54% 23.09%
BE MS 21.87% 23.65% 21.80% 23.72%

BE MS w/ EWC 21.49% 23.73% 21.77% 23.34%

MS w/ EWC cross-encoder outperforms the sequential learning cross encoder
over all bi-encoder scenarios, indicating that the integration of MS MARCO
into the fine-tuning process aided model performance. We also observe a more
significant performance increase when using a multi-stage fine-tuning strategy
over just domain adaptation.

Table 4.10: Re-ranker results with MRR@5 using different bi-encoders and
cross-encoders. Evaluation is done under Scenario 4 (i.e., queries consisting
of duplicate TR observations and the corpus consisting of primary TR
observations). Note that BE stands for Bi-Encoder and CE stands for Cross-
Encoder. By Multi-Stage, we are referring to our multi-stage fine-tuning
approach.

Models CE DA CE SL CE MS CE MS w/ EWC
BE DA 35.67% 38.81% 37.99% 39.48%
BE SL 35.43% 38.22% 37.47% 38.62%
BE MS 36.06% 38.98% 38.06% 39.21%

BE MS w/ EWC 36.04% 39.31% 38.50% 39.45%

4.4 Generalizability to other datasets
Thus far, we have evaluated our model on a single dataset in which the trouble
reports (train, validation, and test) were sourced from a single domain/group
of trouble reports. In this subsection, we aim to identify the performance drop,
if any, when evaluating the pretrained models on an out-of-domain TR dataset,
notably where we are focusing on TRs created by a different set of operators.
We evaluate over 3.4K TRs, of which 1.2K are primary TRs and 2.2K are
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duplicate TRs.
In Tables 4.11 and 4.12, the full re-ranking results are shown for evaluation

scenarios 1 and 4, respectively. Although we do observe a decrease in
performance compared to the results outlined in section 4.3, this drop is within
acceptable bounds. Especially for scenario 4, we only observe a 3.5% drop
in MRR@5 performance. Interestingly, in this scenario we observe that the
multi-stage re-ranking process (i.e., using both a bi-encoder and cross-encoder
fine-tuned in our multi-stage fine-tuning process) achieves equivalent and even
slightly better performance than the sequential learning and MS w/ EWC re-
ranking approaches under evaluation scenario 4, despite a larger gap having
been observed in Section 4.3.

Table 4.11: Results on the out-of-domain TR dataset with Scenario 1
evaluation (i.e., queries consisting of duplicate TR observations and the
corpus consisting of primary TR answers). Note that the models used are
bi-encoder/cross-encoder pairs (e.g., DA uses both the domain adaptation bi-
encoder and cross-encoder)

Metrics DA SL MS MS w/ EWC
Recall@1 10.96% 13.63% 12.53% 13.50%
Recall@3 18.70% 21.83% 22.02% 22.43%
Recall@5 23.26% 25.98% 26.02% 26.44%
Recall@10 30.17% 32.70% 31.37% 33.86%
Recall@15 35.15% 36.71% 36.11% 37.36%
Recall@20 37.54% 39.29% 40.40% 40.17%
MRR@5 15.40% 18.16% 17.64% 18.31%
MRR@15 16.69% 19.37% 18.73% 19.59%

4.5 Discussion
At the start of this thesis, we outlined three key research questions and goals.
In this section, we provide a discussion on the insight the results give to our
these questions and goals and provide any additional thoughts/insight gained
from the analyses.

4.5.1 Comparison of Transfer Learning Strategies
Somewhat surprisingly, we found virtually no major difference between the
performance of the bi-encoder models. Even though EWC clearly did mitigate



Evaluation | 53

Table 4.12: Results on the out-of-domain TR dataset with Scenario 4
evaluation (i.e., queries consisting of duplicate TR observations and the
corpus consisting of primary TR answers). Note that the models used are
bi-encoder/cross-encoder pairs (e.g., DA uses both the domain adaptation bi-
encoder and cross-encoder)

Metrics DA SL MS MS w/ EWC
Recall@1 23.35% 28.42% 28.01% 28.14%
Recall@3 37.95% 42.38% 42.84% 42.47%
Recall@5 43.85% 47.86% 48.83% 48.96%
Recall@10 50.90% 53.11% 54.31% 54.12%
Recall@15 54.72% 56.20% 57.99% 57.35%
Recall@20 56.89% 58.27% 60.29% 59.19%
MRR@5 31.18% 35.83% 36.00% 35.95%
MRR@15 32.45% 36.81% 37.03% 36.92%

catastrophic forgetting, as can be observed in Table 4.8, different values of
EWC did not have a major impact on the results. These findings are in stark
contrast to the full re-ranking performance, where we found a more substantial
difference between the models. Notably, the SL and MS w/ EWC cross-
encoders consistently outperformed the DA and MS cross-encoders, both
when evaluating under scenario 1 and scenario 4 as can be seen in Tables 4.9
and 4.10, respectively. This indicates that integrating telecommunications-
specific data in the fine-tuning process did provide a substantial benefit in
overall model performance. The results in scenario 4, in Table 4.10, show
that the MS w/ EWC cross encoder marginally attained the strongest results.
Although the margins are too small to conclude that the multi-stage fine-
tuning strategy improved over a sequential learning fine-tuning strategy, it
does provide a positive outlook over the possibilities of continuous learning
in NLP fine-tuning strategies.

4.5.2 Multi-Stage Fine-Tuning with EWC
As demonstrated in Table 4.8, we find that EWC does mitigate catastrophic
forgetting substantially. We also observe a benefit in the re-ranking results
when we use EWC in the multi-stage fine-tuning approach. The results,
however, did not indicate a significant improvement over other, simpler
transfer learning strategies. Hence further investigation will need to take place
to identify if there are benefits to a multi-stage fine-tuning strategy.
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4.5.3 Generalizability to Other Domains
Although we do see a clear drop in performance when evaluating the re-
ranking framework on an out-of-domain dataset, as can be seen when
comparing the MRR@5 values when comparing Tables 4.11 and 4.12 to
Tables 4.9 and 4.10, we still observe strong model performance overall.
All models other than the DA bi/cross-encoder pair attained near equal
performance on the new dataset, with the MS models attaining similar results
to SL and MS w/ EWC.
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Chapter 5

Conclusions and Future work

5.1 Conclusions
The trouble reporting process at Ericsson is used to identify, report, analyze,
and eventually resolve software and hardware faults. Due to the scale of
the organization, however, we often find duplicate trouble reports that, if not
identified, represent a significant amount of unnecessary additional effort to
resolve. In this thesis, we investigate and evaluated how four fine-tuning
strategies impacted the performance of RoBERTa-based models for retrieving
duplicate trouble reports.

We find that integrating existing telecommunications knowledge through
the form of a pretrained telecommunications-specific language model into
our fine-tuning strategies allows us to outperform a domain adaptation fine-
tuning strategy. In addition to this, we find that EWC is an effective
strategy for mitigating catastrophic forgetting and attaining strong downstream
performance on the duplicate TR retrieval task.

Finally, we find that the generalizability of models is strong enough to
perform reasonably effectively on out-of-domain TR data, indicating that the
approaches outlined in this thesis may be eligible in a real-world deployment.

5.2 Limitations
There are several notable limitations to this thesis, most notably in regards to
the generalizability of the insights in this study to domains other than TRs and
telecommunications. Some additional limitations we identified are as follows:

• We only applied one main catastrophic forgetting mitigation strategy in
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EWC. Hence, we cannot say that all catastrophic forgetting mitigation
strategies will lead to similar results we observed. It is possible that with
different mitigation strategies we would see higher or lower performance
for our multi-stage fine-tuning models.

• Due to computational limitations in the amount of models that could
be trained, we cannot run a statistical analysis to identify if models
consistently outperform each other in the way that we would expect them
to. For the most part, each model were trained to completion only one
or two times which may lead to some bias in the final results.

• The evaluation dataset size was somewhat limited. Evaluating on 10k+
duplicate TRs may significantly change how the results look.

• As our multi-stage fine-tuning strategy is a novel approach to fine-
tuning, our work may have implications for general transfer learning
research in large language models. However, due to the limitations in
the domain of our data (TR/telecommunications data) we cannot make
more general conclusions.

• Although it is clear that the TeleRoBERTa model had some domain
overlap with our TR data, it did not provide a major benefit in many
cases. Evaluating the same fine-tuning schema with a model that has
near perfect domain overlap with the final downstream task may be
interesting to investigate.

5.3 Future work
Due to the scale of this thesis, there are many future directions to explore.
What may be most interesting is to observe this form of fine-tuning in domains
other than telecommunications to see if similar insights hold. Thus far, transfer
learning in NLP lacks clear standards for which strategy to employ in which
scenario, especially in more complex tasks such as duplicate TR retrieval.
Additional experimental research on fine-tuning strategies over a large range
of domains and tasks could begin to lay the foundation for these sorts of
standards.

More specific to the content of this thesis, there is much to explore
in regards to the hyperparameter tuning and learning rate scheduling for
mitigating catastrophic forgetting and attaining stronger overall modelling
results [43, 42].
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In addition to this, one of the core elements of EWC lies in the Fisher
Information Matrix, where parameter-wise importance is stored. It would
be very interesting to see how computing the fisher information matrix on
different subsets of data may impact the parameter-wise importance estimates.

Finally, multi-task learning as a transfer learning strategy was, in large part,
ignored in this thesis. It may, however, be a very strong approach to building
robust models that perform well on multiple tasks simultaneously. Hence, it
would be worthwhile to evaluate multi-task learning as another fine-tuning
strategy.
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Appendix A

Additional Results

A.1 Simultaneous Learning
In this thesis we have, for the most part, focused on sequential learning of tasks
and domains. However, as outlined by [10], learning tasks simultaneously
is also a viable option for transfer learning in NLP. By learning tasks
simultaneously, catastrophic forgetting of tasks does not occur to a significant
extent, as the model is frequently provided data associated to a previous task
[11, 57].

To investigate the eligibility of this approach, we constructed the following
experiment: Fine-tune a model on 10k datapoints of MS MARCO and the TR
dataset simultaneously (all data shuffled) and evaluate how this impacts the
performance on duplicate TR retrieval.

This experiment was only performed with the bi-encoder. We evaluated
this by training for 10 epochs and using three different learning rates: 10−4,
10−5, and 10−6.

The results can be found in tables A.1 and A.2, which outline the results
for Scenario 1 and Scenario 4 evaluation. We find that a learning rate of
10−5 performs the best. The results do not outperform the models outlined
in section 4.2, however. There are several reasons for why this might be the
case: 1) Only 10k datapoints from MS MARCO are used, compared to 45k
in section 4.2, 2) we are only investigating initial retrieval, whereas we may
see more interesting results when investigating cross encoders, and 3) we do
not perform an additional fine-tuning step on only TR data to further optimize
model performance, which may be beneficial [42].
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Table A.1: Simultaneous Learning Results with a Bi-Encoder, Scenario 1
Evaluation

Metrics lr=10−4 lr=10−5 lr=10−6

Recall@1 0.00% 9.15% 8.39%
Recall@3 0.24% 16.94% 14.52%
Recall@5 0.36% 23.10% 17.94%
Recall@10 0.85% 32.58% 24.80%
Recall@15 1.05% 39.23% 29.60%
Recall@20 1.49% 44.35% 33.27%
MRR@5 0.12% 13.94% 11.83%
MRR@15 0.20% 15.71% 13.12%

Table A.2: Simultaneous Learning Results with a Bi-Encoder, Scenario 4
Evaluation

Metrics lr=10−4 lr=10−5 lr=10−6

Recall@1 0.05% 17.66% 17.18%
Recall@3 0.36% 28.02% 25.56%
Recall@5 0.44% 34.19% 30.40%
Recall@10 0.77% 43.23% 39.07%
Recall@15 1.09% 49.35% 44.80%
Recall@20 1.65% 54.56% 48.39%
MRR@5 0.19% 23.63% 21.96%
MRR@15 0.26% 25.31% 23.56%

A.2 Visualizing Model Embeddings
As the output of a bi-encoder model is an embedding (i.e., fixed length vector
output from the BERT model) of an input document, it may be interesting
to visualize how these embeddings look for different datasets and at different
stages in the fine-tuning process. To perform this visualization effectively, we
reduce the dimensionality of the embeddings to 2 dimensions using t-SNE [62]
∗.

In Figure A.1, we show how the 2D embeddings of a RoBERTa bi-encoder
fine-tuned on MS MARCO change when we fine-tune it on the TR data.
Figures A.2 demonstrates the same analysis, but for TeleRoBERTa fine-tuned
on MS MARCO and TR data. Finally, in Figure A.3 we visualize the same
analysis, but with EWC loss leveraged in the fine-tuning process.
∗ PCA was also used, but we did not find a substantial difference in results hence we only
report t-SNE
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Naturally, the 2 dimensional representation is unlikely to show all the
interesting elements of the real high dimensional embeddings, but we do see
that by fine-tuning on TR data we see greater similarity on the embeddings of
MS MARCO and TR data together.

(a) TR Observations and MS MARCO
Queries

(b) TR Answers and MS MARCO An-
swers/Documents

(c) TR Observations and MS MARCO
Queries

(d) TR Answers and MS MARCO An-
swers/Documents

Figure A.1: RoBERTa embeddings on MS MARCO and TR data. The top
row represents RoBERTa fine-tuned on 45k datapoints from MS MARCO.
The bottom row is when that model has been fine-tuned on TR data. Note that
we begin to see more overlap in the bottom row
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(a) TR Observations and MS MARCO
Queries

(b) TR Answers and MS MARCO An-
swers/Documents

(c) TR Observations and MS MARCO
Queries

(d) TR Answers and MS MARCO An-
swers/Documents

Figure A.2: TeleRoBERTa embeddings on MS MARCO and TR data. The top
row represents TeleRoBERTa fine-tuned on 45k datapoints from MS MARCO.
The bottom row is when that model has been fine-tuned on TR data. Note that
we begin to see more overlap in the bottom row
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(a) TR Observations and MS MARCO
Queries

(b) TR Answers and MS MARCO An-
swers/Documents

(c) TR Observations and MS MARCO
Queries

(d) TR Answers and MS MARCO An-
swers/Documents

Figure A.3: TeleRoBERTa embeddings on MS MARCO and TR data when
fine-tuning with EWC (lambda = 106). The top row represents TeleRoBERTa
fine-tuned on 45k datapoints from MS MARCO. The bottom row is when that
model has been fine-tuned on TR data. Note that we begin to see more overlap
in the bottom row
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