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Abstract

In the telecommunications industry, one of the most time-consuming tasks
is troubleshooting and the resolution of Trouble Report (TR) tickets. This
task involves the understanding of textual data which can be challenging
due to its domain- and company-specific features. The text contains many
abbreviations, typos, tables as well as numerical information. This work tries
to solve the issue of retrieving solutions for new troubleshooting reports in
an automated way by using a Natural Language Processing (NLP) model, in
particular Bidirectional Encoder Representations from Transformers (BERT)-
based approaches. It proposes a text ranking model that, given a description of
a fault, can rank the best possible solutions to that problem using answers from
past TRs. The model tackles the trade-o� between accuracy and latency by
implementing a multi-stage BERT-based architecture with an initial retrieval
stage and a re-ranker stage. Having a model that achieves a desired accuracy
under a latency constraint allows it to be suited for industry applications.
The experiments to evaluate the latency and the accuracy of the model have
been performed on Ericsson’s troubleshooting dataset. The evaluation of the
proposed model suggest that it is able to retrieve and re-rank solution for TRs
with a significant improvement compared to a non-BERT model.

Keywords

Trouble Report, Recommender System, BERT, Information Retrieval, Natural
Language Processing, Multi-Stage Ranking



ii | Sammanfattning

Sammanfattning

En av de mest tidskrävande uppgifterna inom telekommunikationsindustrin
är att felsöka och hitta lösningar till felrapporter (TR). Denna uppgift kräver
förståelse av textdata, som försvåras as att texten innehåller företags- och
domänspecifika attribut. Texten innehåller typiskt sett många förkortningar,
felskrivningar och tabeller blandat med numerisk information. Detta examens-
arbete ämnar att förenkla inhämtningen av lösningar av nya felsökningar på ett
automatiserat sätt med hjälp av av naturlig språkbehandling (NLP), specifikt
modeller baserade på dubbelriktad kodrepresentation (BERT). Examensarbetet
föreslår en textrankningsmodell som, givet en felbeskrivning, kan rangordna
de bästa möjliga lösningarna till felet baserat på tidigare felsökningar. Modellen
hanterar avvägningen mellan noggrannhet och fördröjning genom att imple-
mentera den dubbelriktade kodrepresentationen i två faser: en initial inhämtn-
ingsfas och en omordningsfas. För industrianvändning krävs att modellen
uppnår en given noggrannhet med en viss tidsbegränsning. Experimenten
för att utvärdera noggrannheten och fördröjningen har utförts på Ericssons
felsökningsdata. Utvärderingen visar att den föreslagna modellen kan hämta
och omordna data för felsökningar med signifikanta förbättringar gentemot
modeller utan dubbelriktad kodrepresentation.

Nyckelord

Felrapporter, Rekommendatorsystem, BERT, Informationsinhämtning, Naturlig
Språkbehandling, Dubbelriktade Ranking
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Chapter 1

Introduction

Handling di�erent types of issues that occur in the complex software and
hardware infrastructure in modern telecommunication systems is a slow task.
As most of these issues lead to service down time or other forms of harm to the
customer experience, they must be quickly detected, identified and resolved,
which is often done by engineers in network operation centers.

When the engineers observe a problem related to the hardware or software
of the running system that they cannot solve on site, they create a TR (also
called trouble ticket or commonly, Bug Report) to track information regarding
the detection, characteristics and hopefully an eventual resolution of the
problem [2]. According to [3], fault localization “is widely recognized to be
one of the most tedious, time consuming, and expensive yet equally critical
activities in program debugging”.

TR routing and analysis is a labor-intensive process in which engineers
analyze characteristics of the problems to find possible solutions, and it opens
up the question whether this can be e�ectively automated. The complexity of
the problem and the type of data makes it hard to automate using any hard-
coded rules. With today’s huge development in the field of Machine Learning
(ML), specifically in NLP and Information Retrieval (IR), we can benefit from
historical data by analyzing previous trouble tickets using ML and infer a
solution to a new problem. The aim is finding a resolution to a TR ticket
in an automated way thus substantially shortening the lead time to solve TRs.

One of the most important techniques that have appeared recently in the
literature is BERT [4], that is a new language representation model based
on the transformers architecture [5]. It uses the attention mechanism that
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allows the model to process sentences as a whole unlike other techniques
where sentences are processed sequentially. As this technique outperforms
the state-of-the-art results in many tasks, we use it as the main component of
our architecture.

1.1 Problem Statement

The problem that this master thesis will try to tackle is the issue of retrieving
solutions for troubleshooting processes in an automated way by using a NLP
model.

Figure 1.1: Diagram of the the steps in the troubleshooting process.

Figure 1.1 shows the six steps and the complexity of the process of
troubleshooting. It starts by detecting a problem in step 1, for example crash
in the network. Then, the observations of the problem are reported in a TR in
steps 2 and 3. This trouble report will be analyzed and corrected in steps 4 and
5 by engineers that will verify the solution in step 6. This is a time-consuming
process, and it requires many steps even to solve minor faults.

To overcome that, this master thesis will design and implement a text
ranking model focused on helping automate the steps 4 and 5 of the trouble-
shooting process. The aim of the model will be to retrieve the most relevant
documents with respect to a given query. Particularly, in this master thesis,
the query will correspond to an observation of a problem from a TR and the
documents to be ranked will be answers from past TRs.
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1.2 Research Question and Goals

The research question that the project will tackle is: How can we use BERT-
based approaches to find solutions for error reports in the Ericsson logs that
improve BM25, the existing non-BERT baseline model at Ericsson? And can
this model have a low latency?

Therefore, the goal of this project is to develop a model for text ranking,
which aims at retrieving the most relevant answers with regards to a given
observation of a trouble report. It will also investigate the trade-o� between
the computational complexity and latency versus the accuracy of the model.
This work has been divided into the following three sub-goals:

1. Analyze the data in which the experiments will be performed using
visualization techniques.

2. Study di�erent BERT-based architectures for text ranking and choose
the best suited one for our application.

3. Implement the BERT-based chosen architectures and evaluate their
accuracy and latency.

1.3 Scope and Delimitations

The master thesis project will have some delimitations that will determine the
scope of the project.

As stated, the data from TRs is very complex and di�cult to process as
it contains specific language and non-textual information. Moreover, all the
TR data from Ericsson concerns many di�erent issues and areas, so we expect
each TR to explain very distinct problems. As it is easier to build a model
for faults from the same area, we have decided to focus on a particular class
of TRs: the 4G and 5G troubleshooting data. This data follows a well known
structure and can be parsed easily. Also, we will delimit the processing of the
data to 4G and 5G telecom-specific text data. This specific dataset contains
TRs related to 4G and 5G radio networks faults from an specific period of time
of one year.

Another limitation that we have is the computational resources. For that
reason, the training that our method will undergo is only a fine-tuning on a
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domain-specific task, as the training of large NLP models is a slow task and
needs many computational resources. The fine-tuning task consist of taking
the weights of a pre-trained model and use them as the initialization of your
model to train it further in a domain-specific task. Therefore, the NLP heavy
models like BERT used in this master thesis will already be pre-trained on
general-domain data, and will be extracted from open-source platforms such
as the Hugging Face Library [6], afterwords they will be fine-tuned on the
troubleshooting data.

1.4 Outline of the thesis

This thesis is structured as follows:

• Chapter 1: Introduction where a brief overview is given and the research
question is stated.

• Chapter 2: Background explains basics of the text ranking problem as
well as the related work.

• Chapter 3: Methods formulates the problem, explains the proposed
approaches for each module of the text ranking system.

• Chapter 4: Implementation illustrates the implementation details of the
experiments.

• Chapter 5: Results and Discussion focus on analyzing the results of the
experiments.

• Chapter 6: Conclusions and Future Work provides the conclusion of this
thesis work and discussion for further work.
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Chapter 2

Background

This chapter will focus on the technical background of the thesis as well as the
existing solutions and related work for the problem stated in Section 1.1.

2.1 The Text Ranking Problem

The text ranking problem can be summarized as generating an ordered set
of texts retrieved from a corpus of documents in response to a query for a
particular task. There are three main elements that compose this problem:

(i) The query that expresses a need of information.

(ii) The corpus of documents where this information will be retrieved.

(iii) The text ranking model that receives as an input the corpus and the query,
and outputs the ordered set of documents.

Figure 2.1 shows a diagram of all the elements that compose the text
ranking problem. The most common form of text ranking is search [7].
Other forms of text ranking are: question answering [8], community question
answering [9], information filtering [10] or text recommendation [11].

Generally, text ranking is not a trivial problem as the system needs to be
able to understand the query and find the relevant results in a large set of
documents. Some of the first techniques used for this matter were Exact Term
Matching techniques [12]. They rely on two main measures: term frequency
and document frequency, the former refers to how many times a term occurs
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Figure 2.1: Diagram of the text ranking problem.

and the latter shows in how many documents it appears. A query and a
document will have a high score if the text from the document and text from the
query use the same terms. Indeed, this limits the applicability of the algorithm
and its performance when the query and the documents use di�erent words to
refer to equivalent things, then there is no exact match. This is referred as the
vocabulary mismatch problem [13].

With the revolution of deep learning, the fields of NLP and IR were
able to rely less on Exact Term Matching techniques and started using deep
neural network models to develop better architectures for text ranking models
that focused on semantic matching. In the next sub-sections some of this
approaches, relevant to the master thesis, will be presented. First, the main
architectures that appeared before BERT will be explained. Then, the BERT
methods will be introduced. After that, the state-of-the-art architectures will
be commented. Finally, the metrics to evaluate the success of the text ranking
model will be stated.

2.1.1 Pre-BERT Methods

Before the appearance of BERT in 2018 [4] the main methods used for text
ranking were Exact Matching techniques, as explained in Section 2.1, and
neural IR. Neural IR represented the state-of-the-art methods before the BERT
model and their main architectures will be explained hereafter.

The pre-BERT neural IR methods can be divided into two main architectures:
representation-based approaches and interaction-based approaches.
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• A representation-based architecture, shown in Figure 2.2a, learns a
dense vector representation of the query and the documents independently.
Then it computes the similarity between the representations with cosine
similarity or inner product. The similarity measure is used as the
relevant score to rank the di�erent documents with respect to the query.
Some example of this approach are Deep Structured Semantic Model
(DSSM) in 2013 [14] and Dual Embeddig Space Model (DESM) in
2016 [15].

• An interaction-based architecture, shown in Figure 2.2b, focuses on
the interaction between each term of the query with each term of the
document and a similarity matrix is created. This matrix undergoes
further processing to extract a similarity value. Some examples of this
approach are Deep Relevance Matching Model (DRMM) in 2016 [16]
and Kernel Neural Relevance Model (KNRM) in 2017 [17].

(a): A generic representation-based neural
architecture.

(b): A generic interaction-based
neural architecture.

Figure 2.2: Pre-BERT common architectures.

Usually both approaches include neural networks in some of its components.
Representation-based approaches use neural models for creating the dense
vectors that represent the texts, and interaction-based approaches use neural
models to process the similarity matrix and output the similarity value. Each of
these approaches has pros and cons, generally studies have shown interaction-
based architectures to be more e�ective but slower than representation-based
architectures [18].
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2.1.2 BERT Methods

In 2017 transformers were presented by Vaswani et al [5]. A transformer is a
sequence to sequence model: it receives a sequence as its input and outputs
another sequence. One example of its usage would be machine translation.
Before the transformer, those tasks were preformed by Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM) networks where long-
term dependencies were not captured. The transformer was able to solve this
issue thanks to its attention mechanism. The attention mechanism is built
inside the transformer models with a self-attention module. It is a module that
receives a sequence of N inputs and returns N outputs. The inputs interact
with each other and as an output we get an aggregate of these interactions.

The transformer is composed by a stack of N encoders and a stack of
N decoders. The encoders are focused on building a representation of the
input sequence and the decoders are focused on decoding the representation
into a sequence of text. The BERT model can be defined as the encoder part
of the transformer. BERT was presented in 2018 by Devlin et al [4], and it
has revolutionized the NLP and IR fields. It is an architecture built on top
of transformers (as explained, it uses the encoder part of the transformer),
Embeddings from Language Models (ELMo) [19] as it takes the idea of
contextual embeddings and ULMFiT [20] as it uses the proposed pre-training.

Contextual embeddings was an idea introduced by some researchers and it
was a step forward of the word embedding used since then. Word embeddings
produced the same values independently of the context of the word. For
instance, the word bank in this sentence: There is a bank to sit down outside

the bank where I opened my account., would be expressed with the same values
using word embedding but with di�erent values using contextual embeddings
as it represents di�erent meanings. This idea was taken by BERT from ELMo
and it is one of its main characteristics.

The input of a BERT model usually is a sequence tokenized by the BERT
tokenizer. Its aim is to reduce the vocabulary space by splitting words, that way
large texts can be modeled by using a small vocabulary (30000 word pieces).
The input is divided into two main components: the token embedding done
by WordPiece [21] and the position embedding that captures the position of
the token in the sequence. The final input is an element-wise summation of all
the embeddings. Next, the input is passed through a stack of encoders. Some
hyper-parameters that can be fine-tuned are the number of hidden layers, its
dimension and the number of attention heads. Finally, the output consist on a
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sequence of fixed-size contextual embeddings, one for every token.

The objective used when training a BERT model is Masked Language
Model (MLM) and Next Sentence Prediction (NSP). MLM consists of masking
a token from the input sequence and asking the model to predict it. NSP
consists of giving the model two sentences A and B, and asking the model
to determine if sentence B is the follow-up sentence to sentence A.

Variations of the simple BERT model have appeared recently as the field
is developing very fast. Some of the new models are:

• RoBERTa: It looses the NSP training and, increases the batches of data
in the pre-training and pre-trains the model for more epochs [22].

• AlBERT: It reduces the number of parameters of the original BERT
model by implementing the cross-layer parameter sharing. This allows
low memory consumption and limits the overfitting [23].

• DistilBERT: It uses distillation to pre-train a general-purpose BERT
model that maintains the performance but it is faster and uses less
parameters [24].

• ELECTRA: It is pre-trained as a discriminator that has to distinguish if
the sentences forwarded to the model have a replaced token or not. This
model performs better with the minimum amount of pre-training [25].

The first usage of BERT for text ranking was done by Nogueira and Cho in
2019 [26]. They adapted the BERT architecture to be able to ouput a relevance
score between the query and a document. As it can be seen in Figure 2.3,
the input is the query and the document separated by special tokens: [CLS]
and [SEP ]. The sequence is tokenized using the BERT tokenizer and then is
forwarded to the model that outputs a contextual embedding for each of the
tokens. Nogueira and Cho [26] used the contextual embedding of the first
token [CLS] to derive a similarity score between the query and the document
using a linear layer.

BERT-based models present some limitations, as they only accept sequences
of less that 512 tokens in the case of BERT base, which limits the length of
the text we can input to it. They also present a high complexity and are slow
in text ranking tasks.
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Figure 2.3: BERT architecture used for text ranking. It includes the special
[CLS] and [SEP] tokens to distinguish between the query and the document.

2.1.3 Multi-Stage Architectures

Traditionally proposed approaches to the text ranking problem are one-
stage architectures. However, state-of-the-art models follow a multi-stage
architecture. These type of models are formed by two main stages, a first stage
or initial retrieval phase where a candidate set of text is output, and a second
stage or a re-ranker stage where the output is a ranked list of the candidate set.

These type of architectures were developed to tackle the trade-o� between
e�ectiveness and e�ciency. E�ectiveness is how accurate the model is and
e�ciency is how fast it can output the results. Figure 2.4 shows a diagram
of the architecture. The designs of the architectures vary in many di�erent
applications as one can decide to completely ignore the ranking scores of the
previous stage or add them at every stage, for example. The advantage of
having two main stages is that the first stage (initial retrieval) allows the model
to discard easy candidates. It is a fast stage where the most obvious non-
relevant documents are discarded and a smaller set of documents is passed to
the re-ranker stage.

The re-ranker stage can have many di�erent designs: cascade of rankers,
ensemble of di�erent models or one large and powerful BERT model above
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Figure 2.4: General multi-stage architecture.

others. It is a slow stage but as the input of documents is significantly smaller
it still maintains the low latency.

The number of document that passes from initial retrieval to the next stage
can be computed in di�erent ways. One solution is to keep a certain amount of
documents with the highest scores, the second one is to keep a fixed percentage
of all document, and the third option is to use a score threshold.

2.1.4 Ranking Metrics

One important aspect of the text ranking models is being able to compare
between them to assert which ones works better. In this section some ranking
metrics used in the literature will be presented.

To understand the evaluation of text ranking systems better, we need to
mathematically define the problem. Given a query q that expresses a need of
information and corpus of documents C, the text ranking system purpose is
to return a ranked list of K texts from the corpus collection that maximises a
particular metric of interest. The parameter K is the retrieval depth.

Some of the most used ranking metrics are:

• Precision: given a ranked list of documents R, it is the fraction of
documents in R that are relevant. It can be expressed as shown in
Equation 2.1:

Precision(R, q) =

P
(i,d)2R rel(q, d)

|R| (2.1)
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where rel(q, d) is the binary relevance of document d to query q.
Precision@K would be the cuto� precision, it can be understood as the
fraction of relevant documents from the top-K results. This metric is
easy to interpret but only takes into account binary relevance and not
the position of the documents in the ranking. For instance, you will get
the same Precision@5 if the relevant documents are the number 1 and
2 or if the relevant documents are the number 4 and 5. In both cases
Precision@5 = 0.4, but we as users would prefer the first ranked list.

• Recall: is fraction of relevant documents for q in the entire corpus C
that are retrieved in the ranked list R. It can be expressed as shown in
Equation 2.2:

Recall(R, q) =

P
(i,d)2R rel(q, d)
P

d2C rel(q, d)
(2.2)

It also assumes binary relevance. Recall@K is the measure used if we
evaluate the recall at a cuto� K. It doesn’t take into account graded
relevance (when relevance has more than two values, for example a value
between 1 and 5) or the positions in the ranking.

• Reciprocal Rank (RR): can be defined as shown in Equation 2.3:

RR(R, q) =
1

ranki
(2.3)

where ranki is the smallest rank number of a relevant document. If
the first relevant document appears at position 1 then the RR is 1, if
it appears at position 3 then RR is 1/3. However, it only captures the
appearance of the first relevant results, hence it would be a good metric
for question answering problems.

• Average Precision (AP): is a measure that averages the precision scores
at di�erent cuto� corresponding to the appearance of the relevant
documents. It can be expressed as shown in Equation 2.4:

AP(R, q) =

P
(i,d)2R Precision@i(R, q) · rel(q, d)

P
d2C rel(q, d)

(2.4)

where Precision@i is defined in Equation 2.1. This measure captures
both precision and recall and favours relevant document appearing at
the top of the ranked list.
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• Normalised Discounted Cumulative Gain (nDCG): it is a measure
designed for graded relevance measures and usually used for web search.
It can be expressed as shown in Equation 2.5:

DCG(R, q) =
X

(i,d)2R

2rel(q,d) � 1

log2(i+ 1)
nDCG(R, q) =

DCG(R, q)

IDCG(R, q)

(2.5)
where IDCG represents the ideal ranked list.

Some of this statistics can be summarized for many di�erent queries using
a simple arithmetic mean. It would consist on adding the values of some of
this measures like RR or Precision and dividing it by the number of queries
in the test set. The most popular measures used are Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR).

2.2 Related Work

Many BERT-based text ranking models have been developed over the past
years. Some examples are: the EPIC model [27], ColBERT [28] or ANCE
[29]. They all use the BERT model in diverse ways in order to rank documents
with respect to a query and present their results with general-domain data.

Bug analysis and resolution is a topic that the researchers have been
interested for a long time. In the literature, there are many papers that
propose recommender systems for ticket analysis or bug analysis. The more
complex ones use Convolutional Neural Networks (CNNs) or LSTMs like the
architecture proposed by [30] but not any BERT-based techniques.

Companies like Ericsson have tried to automate the resolution of faults
by using an ensemble of di�erent pre-BERT techniques. Ferland et al. [31]
proposed a method for automatically resolving trouble tickets with a hybrid
NLP model. They use an ensemble of pre-BERT like LSTM and Latent
Dirichlet Allocation (LDA) where the results from each individual model
were handled with a stacked ensemble layer. However, the authors of these
papers do not consider the latency of the process as part of their performance
metric. Another example of an ensemble of pre-BERT techniques is discussed
in [32] as well, in their approach they formulate the problem as a non-convex
optimization problem which is solved with a heuristic solution for a simplified
scenario with focus on accuracy. Consequently, their approach leads to a sub-
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optimal solution.

There are many multi-stage BERT-based approaches for text ranking as
explained in Section 2.1.3. Some examples are duoBERT [1] or DeeBERT
[33], they present their results using general-domain data. However, we are
not aware of any that is focused on a domain-specific task like automating the
resolution of telecom TRs.
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Chapter 3

Methods

In this chapter, the methods used for solving the research question will be
explained. First, the general overview of the architecture will be introduced
and next, each of the modules of the architecture will be presented.

3.1 Overview of the architecture

The model we use has to be able to:

• Perform text ranking using domain-specific data.

• Output an accurate ranked list of documents with low latency.

• Perform better than a baseline model that does not use BERT.

To fulfill all this characteristics, the proposed model is based on the multi-
stage architectures presented in Section 2.1.3, particularly it will be divided
into three main stages. It is aimed at retrieving the best possible answers to an
observation from a telecom-domain troubleshooting report.

The method processes the data from past trouble reports in order to retrieve
and re-rank the best possible solutions from a corpus of past answers, given
a new observation of a fault. It achieves a high accuracy while keeping
the computational complexity and latency low. As seen in Figure 3.1, it is
composed by three main stages: a pre-processing stage, an initial retrieval
stage and a re-ranker stage. Each stage has a di�erent purpose, which is
explained bellow:
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Figure 3.1: Diagram of the proposed solution architecture.

• The pre-processing stage is in charge of cleaning the data and prepare
it for the next stage. The input of this stage is the query and the corpus of
documents, and the output is the pre-processed and cleaned query and
documents.

• The initial retrieval stage has the purpose of retrieving a candidate
list of documents that are relevant to our query from all the corpus
of documents. The input to this stage is the pre-processed query and
documents, and the output is a top-K candidate list of documents.

• The re-ranker stage is in charge of ranking the candidate list provided
by the retriever, and output a final list of ranked documents. The input
to this stage is the top-K candidate list of documents and the query, and
the output is a final top-N list of ranked documents.

The next sections will analyze the three stages in depth, explaining the
characteristics and models chosen for each part.

3.2 Query and Document Pre-Processing Stage

The pre-processing stage is focused on preparing the data for the retrieval and
re-ranking stages. As explained, the data we will be working with is telecom-
specific data and contains company-specific language. Therefore, it needs
some specific pre-processing steps.

Figure 3.2 shows the di�erent steps that the query and the documents will
go through to prepare them for the next stages. This module is composed by
a Spacy Language Processing pipeline [34] where we add custom cleaning
modules. The custom cleaning modules are divided into five steps:
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Figure 3.2: Diagram of the the steps in the pre-processing module.

• Step 1, Text tokenization: all texts are tokenized with a custom
tokenizer that recognizes company- and domain-specific language. For
example, it will recognize any name of a company product.

• Step 2, Detection of abbreviations: it detects, and tags abbreviations
and acronyms with a customized Name Entity Recognition (NER).

• Step 3, Replacement of abbreviations: it replaces the detected and
tagged telecom abbreviations and acronyms by the complete words.
In case of multiple suggestions for a given abbreviation, it picks the
suggestion which is most related to radio networks. For example, if
one of the acronyms detected is CCS, this module will substitute it for
Common Channel Signaling.

• Step 4, Removing numerical data: any numerical tokens are removed
as they do not provide any useful information to an NLP model. Usually
they are part of tables included in the TRs.

• Step 5, Handling special tokens: it removes extra spaces, new lines and
gaps between words as well as any punctuation signs.

The output of this stage is the pre-processed query and the pre-processed
documents ready to be analyzed by the next stages.

3.3 Initial Retrieval Stage

The initial retrieval stage is in charge of receiving the pre-processed query
and the pre-processed documents, analyzing them and outputting a top-K
candidate list of the most relevant documents to the query.

The characteristics that this stage should fulfill are:

• It needs to have low latency and be able to manage a large amount of
data points.
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• It needs to output a candidate list of documents that are relevant to the
query.

• The list of documents needs to contain all relevant documents, if
possible. The documents don’t need to be at the first positions but they
need to be included in the list.

We will compare two approaches: a BERT-based model and a non BERT-
based model that will serve as a baseline model. The BERT-based model is
Sentence-BERT [35] and the baseline model is BM25 [36].

3.3.1 Sentence-BERT

A model that fulfills all the characteristics of the initial retrieval is Sentence-
BERT [35]. It is a representation-based architecture (explained on Section
2.1.1), which can be seen in Figure 3.3a. It creates a dense vector representation
for the query and a dense vector representation for the documents. These
two vector representations are used to compute the similarity value using a
similarity measure such as cosine similarity, explained in Equation 3.1. Given
two vectors Q and D, the cosine similarity between them is expressed as:

sim(Q,D) =
Q · D

kQk · kDk =

P
i QiDipP

i Q
2
i

pP
i D

2
i

(3.1)

Specifically, Sentence-BERT uses a Siamese Network structure. A Siamese
Network is a type of Artificial Neural Network (ANN) conformed by two
neural networks that share its weights [37]. Each of this two branches is
composed by two main layers: first a BERT model, then a mean pooling layer.
The mean pooling is performed on the output of the BERT by doing a mean
operation of each of the dimensions of the contextual embeddings output by
the BERT model. The final output is a fixed-size vector used to compute the
cosine similarity. Figure 3.3b shows a detailed diagram of the architecture.

For example, if Sentence-BERT receives two sentences it will first tokenize
them, it will forward them to a BERT model that will create a contextual
embeding for each of the tokens, and finally a mean pooling will be performed
to create the representation of the sentence, which is a fixed-size vector. Once
we have the representations of sentence 1 and sentence 2, they will be used to
compute the cosine similarity between them using Equation 3.1. The result
will be the similarity value between sentence 1 and 2. In the case of text
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(a): General architecture of the initial
retrieval stage.

(b): Specific architecture of Sentence-
BERT.

Figure 3.3: Diagram of the initial retrieval stage.

ranking, sentence 1 will always be the query and sentence 2 will be each of the
documents in the corpus. The similarity value will correspond to the ranking
score and will be used to create the top-K candidate list.

As explained, Sentence-BERT has a BERT-model inside its architecture.
There exist di�erent BERT models, listed in Section 2.1.2, the one used in
this approach will be DistilRoBERTa [24]. The main reason is that is has a
low complexity as it is a distilled model, and also has the high accuracy of a
RoBERTa model [22].

Sentence-BERT behaves di�erently in the training stages and the inference
stages. During the training phase, it receives a batch of pairs of queries and
documents relevant to each other. It adjusts its weight in order to make the
representations of queries and documents similar if they are relevant to each
other. This is a time consuming stage that requires a lot of computational
resources. On the other hand, at inference time the model computes the
representation of one query and compares it with the representation of all the
documents. It is a fast stage. These phases will be explained in more detail in
Sections 4.4 and 4.5.

The advantages of this approach are as follows: first it mixes a very
fast architecture: representation-based models, with the use of the contextual
embeddings from BERT. It is a low latency model that takes advantage of
the accuracy of models that use the attention mechanism. Second, Sentence-
BERT can be adapted to many di�erent tasks like semantic similarity or
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computing sentence embeddings. The idea is to take a pre-trained Sentence-
BERT model and fine-tune it on a downstream task. In our case, we will fine-
tune it for a text retrieval task.

3.3.2 Baseline: BM25

To compare the results of our proposed solution for initial retrieval (Sentence-
BERT [35]), a commonly used baseline model will be implemented: BM25
[36]. It is an Exact Matching technique that ranks the documents based on the
query terms that appear in them.

The BM25 score can be computed as stated in Equation 3.2. The term
tf(t, d) represents the term t frequency in document d, df(t) is the number
of documents that t appears in, N is the total number of documents, ld is the
length of document d and L is the average document length in the corpus. k1
and b are free parameters.

BM25(q, d) =
X

t2q\d

log
N � df(t) + 0.5

df(t) + 0.5

tf(t, d) · (k1 + 1)

tf(t, d) + k1 ·
�
1� b+ b( ldL )

�

(3.2)

BM25 is a method that does not include a BERT model and will serve as
a baseline to compare the two approaches.

One example of this method can be shown by analyzing the BM25 scores
of a query and three documents. The query is: "What do you enjoy to do?"
and the three documents are: ["I really enjoy eating outside with my friends.",
"I am a student of the Machine Learning master in KTH.", "The Covid-19
vaccinations have started."]. If we compute the BM25 score for each of the
documents it will be 0 for the second and third documents as they do not share
any terms with the query. And it would be 0.51 for the first one as they share
the term "enjoy". In this last case the tf(0enjoy0, d1) = 1 as it appears one time
in the document, and the df(0enjoy0) = 1 as it only appears in one document
from the corpus. The free parameters used in this example have been k1 = 1.5
and b = 0.75.
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3.4 Re-Ranker Stage

The re-ranker stage will be in charge of receiving the top-K candidate list
of documents, analyzing the K candidate documents and the query, and
outputting a final list of top-N ranked documents. The length of the final
list of documents will be smaller or equal to the length of the candidate list:
N  K.

The characteristics that this stage should fulfill are:

• It can be a slower or more complex method as it will only need to focus
on the candidate list of documents and not the whole corpus.

• It should produce a more accurate ranking score for each document in
the candidate list.

• It has to be a high accuracy BERT-based method.

The model chosen for this task is monoBERT [1]. It is a two-input
classification BERT model with a linear layer on top. The input of this model
is composed by the query, a document and the special tokens: [SEP] and
[CLS]. [CLS] refers to classification and [SEP] refers to separation. In the
input, first there is the [CLS] token, then the query, then the [SEP] token, then
the document, and finally a [SEP] token again. This input sequence can be
seen in Figure 3.4. For example, if the query is "What do you enjoy to do?"
and the document is "I really enjoy eating outside with my friends", the input
to the monoBERT would be: "[CLS] What do you enjoy to do? [SEP] I really
enjoy eating outside with my friends [SEP]".

Once the input sequence is tokenized (using the BERT tokenizer explained
in Section 2.1.2), it is forwarded to a BERT model, which creates contextual
embeddings for all the tokens. Next, the model takes the contextual embedding
of the [CLS] token and forwards it to a single linear layer that outputs a scalar
value indicating the probability of the document being relevant to the query.
These probabilities are used as the similarity score to re-rank the documents
in the candidate list and output the top-N final list of ranked documents. After
this final stage, the results of the top-N final ranked list will be presented to
the engineers in charge of solving the specific TR that the query is about.

The monoBERT model is chosen as it provides a high accuracy as a re-
ranker. The main drawback of monoBERT is latency, as explained before.
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Our proposed method will be able to handle this by the limiting the length
of the candidate list. Figure 3.4 shows a diagram of the re-ranker with
each of its parts. Moreover, the monoBERT includes a BERT model in its
architecture. The specific BERT model used will be ELECTRA [25] in most
of the experiments, as this model provides a high accuracy.

Figure 3.4: Diagram of the monoBERT model.

The monoBERT model also behaves di�erently in the training and inference
stages. The training phase is a time-consuming stage that receives pairs of
queries and documents and modifies its weights to classify correctly relevant
pairs and non-relevant pairs. In the inference stage it receives a limited set of
documents and a query and classifies the pairs formed by the query and each
document in the set. This stage is less time-consuming than the training stage.
More details on the training and inference will be given in Sections 4.4 and
4.5.
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Chapter 4

Implementation

In this chapter the details of the implementation of the method are presented.
First the data specifics will be explained. Then, the input and outputs of the
methods will be specified. And finally, the training and inference phases will
be discussed.

4.1 Data

The data used to train and test the method proposed will be Ericsson trouble-
shooting data. It consist of finished TRs from the past year that are from the
area of 4G and 5G radio networks. The language of these TRs is telecom-
specific as well as company-specific and very di�erent from a normal general-
domain text such as Wikipedia. That is why it presents some challenges.

The general layout of a TR (as well as of bug reports in general) is that it
has some structured fields. The main fields are:

• Heading/Subject: A short sentence that gives a summary overview
description of the problem.

• Observation: A longer text describing the observed behavior of a
probelm. Any useful information for its solution is provided (logs,
configuration, Hardware (HW) versions, etc...). The observation text
is typically guided by a template that divides the observation text in
sections.

• Answer: A longer text that is filled in when the TR is solved, and the
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solution is known. The answer contains the resolution given to the fault
as well as the reason for the fault. The answer section is also guided by
a template that divides the answer text in sections.

• Faulty Product: It is the specific code of the product on which the fault
is reported. We propose creating a derived field from the product names
which we call "Faulty Area". The "Faulty Products" will be mapped to
a "Faulty Are"a which we will use in the input as it will be explained in
Section 4.2.

All these sections will be extracted from the TRs and used in the input of
our method.

Furthermore, there are many challenges with the data, for example:

• Not all sections follow the same template, and not all organizations use
the same templates (even within the same company).

• The length of each TR can di�er, this means that the system must be able
to cope with variable length input. As explained in Section 2.1.2, BERT
models have a limitation in the length of the input of 512 tokens. The
length of the two main sections in the dataset (observation and answer)
after being tokenized can be seen in Figure 4.1. As shown, most of the
TRs have an observation and an answer length of less that 512 tokens.
The ones that are longer will be truncated.

• The TRs might have lots of non-textual data such as punctuation, links,
software code, configuration information, machine generated logging
information in various non-standardized formats. This information will
need to be removed in the pre-processing stage.

• The language is not only domain-specific, but also company-specific,
containing:

– Company-specific product names.
– Variable names specific to company products.
– Company-specific nomenclature and abbreviations.
– Adresses.

To emphasize the challenges that the data presents, an example of an
observation of a TR can be seen bellow in Listing 4.1. It contains, acronyms,
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(a): Length in BERT tokens of the observation section of
the TRs.

(b): Length in BERT tokens of the answer section of the
TRs.

Figure 4.1: Length of the TRs.

numerical data and punctuation signs, as well as company-specific language.
This type of data will be pre-processed in the first stage of the method, as
explained in Section 3.2.
1.1 Summary of the trouble

-----------------------------------------------

A crash in a node has been detected during a

RCC test .

1.2 Observations of the impact

-----------------------------------------------

The crashes was produced during a process

related to

RCC : 0 x20050482

Time : 17 -03 -20 13:49:02

Listing 4.1: Example of an observation section of a TR.
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4.2 Input and Output

The inputs of the text ranking system are the query and the corpus of
documents as showed in Figure 3.1.

In this implementation, the corpus of documents will correspond to the
corpus of past answers from finished TRs. The query will be formed by
concatenating di�erent sections of the TRs presented in Section 4.1. The
main one will be the observation section of the TR, the other will be the
Heading/Subject and the last one will be the Faulty Area, which is a synthetic
field. A diagram of the input can be seen in Figure 4.2.

Figure 4.2: Diagram of the input to the text ranking system.

The Faulty Area is a synthetization of the Faulty Product which includes
di�erent products. By studying historical TRs, we can create a set of Faulty
Areas, then we can map the products to these Faulty Areas. That way, the
hundreds of products are reduced to a few areas which can add extra valuable
information to the query. They can be viewed as an error area tag.

Specifically, the query will be a concatenation of di�erent fields. Two
di�erent ways of forming the query will be compared in the experiments:

(i) We will concatenate the Heading and the Observation.

(ii) We will concatenate the Faulty Area, the Heading and the Observation.

By comparing these two approaches we will be able to see the added value of
the Faulty Area in the performance.

Given a new TR that is input into the system, the output is a top-N ranked
list of answers relevant to the TR. The list will be given to the support engineers
in charge of solving the TR.
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4.3 Candidate list

As explained in Section 3.3, the output of the initial retrieval stage is the top-
K candidate list of documents. This list can be created in di�erent ways.
For example, one could use a threshold score and include in the list all the
answers that had a score above this threshold. In this implementation we will
use a candidate list with a fixed size of K. This parameter will be tuned by
performing experiments with di�erent values of K and comparing the latency
of the method with the accuracy.

State-of-the-art multi-stage methods, explained in Section 2.1.3, usually
use a candidate list of 100 to 1000 documents but this amount of documents
increases the latency of the method a lot. Our aim is to reduce it as much
as possible while keeping the performance acceptable and that is why the
candidate list will be formed by less than 100 documents.

4.4 Training

Both the initial retriever and the re-ranker need training to achieve good
performance on domain- and company-specific data. Each stage is trained
separately as each model requires a di�erent type of training.

Both stages contain a BERT model in their structure. Sentence-BERT [35]
is composed by a BERT model and a pooling layer (as seen in Figure 3.3b) and
monoBERT is composed by a BERT model and a linear layer (as seen in Figure
3.4). The BERT models inside those architectures have been pre-trained. The
pre-training is done with general-domain data using the objectives explained
in Section 2.1.2.

Then, the full structures of the Sentence-BERT and monoBERT are
trained. The training is done in a similar task to ours (text ranking) but
using general-domain data: the Microsoft Machine Reading Comprehension
(MSMARCO) dataset [38]. This dataset includes search queries and passages
from a search engine. Finally, both models are fine-tuned for our task (domain-
specific text ranking) and each stage is be trained separately.

In the first stage (Sentence-BERT [35]) we take a model that has already
been trained using the MSMARCO dataset [38] and can be found in the
Hugging Face open-source transformers library [6]. Then, we fine-tuned it to
work with telecom domain-specific data using our training set of troubleshooting
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data. We have used a training set composed of queries and answer pairs, which
are input into the model in batches. The loss used is the Multiple Negative
Ranking Loss [39]. The model is trained for eight epochs, using a learning
rate of 6 · 10�5 with a linear warm up as shown in Table 4.1.

In the second stage (monoBERT [1]), we take a model that has been trained
using the MSMARCO dataset [38] and can be found in the Hugging Face open-
source transformers library [6]. It is fine-tuned using the training set of our
troubleshooting data with negative samples. It is composed queries and answer
pairs, as well as queries and non-relevant answer pairs, which are input into
the model in batches. The loss used is the Cross-Entropy Loss. The model is
trained for four epochs using a learning rate of 2 · 10�5 and a linear warm up
as shown in Table 4.1.

Loss L. Rate Epochs Warm-up

Initial Retrieval Multiple Negative Ranking 6 · 10�5 8 Linear

Re-Ranking Cross-Entropy 2 · 10�5 4 Linear

Table 4.1: Parameters of the training.

A validation set composed by 15% of the data points has been used in
order to do hyper-parameter tuning to find the configuration with the highest
accuracy.

4.5 Inference

Inference time corresponds to the time when the model receives a query and
needs to output a ranked list of documents. The model needs to already be
trained in this stage.

The proposed method at inference time is as follows: a fault is detected
by a customer or during internal testing and a TR is submitted. From the
TR, the observation, the heading and the Faulty Product are extracted. The
Faulty Product is then mapped to the corresponding Faulty Area. Then, we
then concatenate these fields to form the query.

In order to reduce the latency of the process, in the initial retrieval an
already pre-computed representation of the answers in the corpus is used.
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That way, at inference time the only representation needed to compute is the
representation of the new query.

Once the representation of the new query is computed, the initial retriever
computes its similarity with the di�erent answers, and a candidate list of top-
K answers is generated for the next phase.

In the re-ranker stage, the top-K candidate list is received. The re-ranker
processes the query and the K answers and outputs a final ranked list. This
list is used to recommend N possible answers to an engineer that has received
a new TR. The number of proposed solutions at the end of the system is a
design parameter that is equal or smaller to the candidate list length N  K.
This number needs to be a reasonable number of answers to show to a support
engineer, one example is N = 5.

At inference time, it is important that we limit the computations of the re-
ranker as much as possible, as it is a time-consuming stage. Having an initial
retrieval that outputs a candidate list allows this to happen, as the re-ranker
only processes K answers instead of whole corpus.

If M is the total size of the corpus of answers then we need a candidate list
that has a length K ⌧ M . That way, by having the two stages and pre-saved
representations of the M answers, we only need to do a forward pass through
a BERT model one time (at initial retrieval for the query) and K times (at re-
ranker for each candidate), a total of 1+K. If we did not use an initial retrieval
stage the number of forward passes through BERT would be M which is much
greater than 1 +K.

We cannot pre-save the calculations of the second stage as the input for a
two-input classification BERT model is: query + answer1, query + answer2,
. . . , query + answerK as shown in Figure 3.4. While at initial retrieval the
query and answers are input separately.
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Chapter 5

Results and Discussion

In this chapter, the experiments and results of each of the stages and the whole
model will be explained.

The proposed method has been tested using the dataset of troubleshooting
reports. Therefore, for each query in the dataset, we know the correct answer
and we can check if this answer is placed in a high position in the resulting
recommended list. The metrics used to evaluate the method are the Recall@K,
the MRR and the nDCG. In our setup Precision@K is not a valid metric for
performance evaluation as we have only one correct answer for each query.
All of those metrics are presented in Section 2.1.4.

We will present the results of each of the stages, the results of the latency
measures, and finally we will evaluate how well our model can recognize
similar TRs. The experiments will be performed on the test set of the
troubleshooting data, which contains 15% of all data points.

5.1 Initial Retrieval Results

As explained in Section 3.3, for the initial retrieval stage the BERT-based
model used has been Sentence-BERT [35]. It is composed by a BERT model
and a pooling layer.

Three main experiments have been performed in this stage: the first one
compares three BERT models in Sentence-BERT: DistilBERT [24], RoBERTa
[22] and DistilRoBERTa [24]. The second one evaluates the how much value
the Faulty Area adds to the query. And the third one compares the BERT-
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based model with a baseline approach: BM25 [36]. To evaluate them we will
use the measure of Recall@K, explained in Section 2.1.4.

Comparison of di�erent BERT models in Sentence-BERT

The first experiment is a comparison between three di�erent BERT models.
As explained in Section 3.3, Sentence-BERT is composed by a BERT model
and a pooling layer. This experiment shows the di�erences in performance if
we use di�erent types of BERT models: DistilBERT [24], RoBERTa [22] and
DistilRoBERTa [24]. The di�erence between this models is stated in Section
2.1.2. The results of the experiment can be seen in Table 5.1. The di�erence
in performance is minor but the model that performs best is DistilRoBERTa.
For that reason it has been the preferred model for all the experiments.

BERT model DistilBERT RoBERTa DistilRoBERTa

Recall@1 27.2% 26.5% 28.3%

Recall@3 39.3% 37.8% 39.7%

Recall@5 45.8% 44.0% 46.2%

Recall@10 54.4% 53.6% 55.2%

Recall@15 59.4% 58.8% 60.5%

Table 5.1: Comparison of di�erent BERT models in Sentence-BERT.

Added value of the Faulty Area to the query

The second experiment performed in the initial retrieval is about the input of
the model. As explained in Section 4.2, we want to see the added value of the
Faulty Area to the query. For that, we want to investigate the performance of
our first stage in case of whether we use the Faulty Area in the query or not.
By seeing the di�erence in the results we will determine if value is added or
not.

The results of this experiment can be seen in Table 5.2. To evaluate
performance of the initial retrieval stage the metric used has been Recall@K.
Depending on what information we input the model as the query, two results
are stated. The first approach uses the heading and the observation as the
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query, and the second approach uses the same fields as the first one but also
uses the Faulty Area at the beginning. As it can be seen, the results of adding
the Faulty Area in the query are significantly better.

Query Heading + Observation
Faulty Area + Heading

+ Observation

Recall@1 28.3% 30.2%

Recall@3 39.7% 43.1%

Recall@5 46.2% 49.0%

Recall@10 55.2% 58.2%

Recall@15 60.5% 64.0%

Table 5.2: Results of Sentence-BERT using di�erent information in the query.

Comparison of Sentence-BERT with a baseline model

We have also compared the results of our proposed solution (Sentence-BERT
[35]) with a baseline model commonly used in initial retrieval tasks: BM25
[36]. With this comparison we can evaluate the di�erence of a BERT-based
approach with an Exact Term approach.

The results of this comparison can be seen in Table 5.3. The score of
each document has been computed using the Equation 3.2 presented in Section
3.3.2. The values of the free parameters used are k1 = 1.5 and b = 0.75. As
showed in the table, there is a big di�erence between using an Exact Matching
technique compared to a BERT-based technique.

5.2 Re-Ranker Results

As explained in Section 3.4, for the re-ranker stage, the model used has been
monoBERT [1]. It is a a two-input classification BERT model with a linear
layer on top.

Four experiments have been performed in this stage: the first experiment
compares di�erent BERT models in the monoBERT to see which one performs
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Initial Retriever BM25 Sentence-BERT

Recall@1 18.2% 30.2%

Recall@3 23.7% 43.1%

Recall@5 26.6% 49.0%

Recall@10 31.0% 58.2%

Recall@15 33.3% 64.0%

Table 5.3: Comparison of the results of an Exact Matching technique (BM25)
and a BERT-based technique (Sentence-BERT) for the initial retrieval.

better. The second experiment compares the results of the initial retrieval
with the results of the multi stage model (initial retrieval and re-ranker) to see
how much the performance improves by using a re-ranker stage. The third
experiment shows an example of an ensemble of two monoBERT models.
These experiments have been performed on the test set of the troubleshooting
data. And the forth experiment is a cross-validation of the results of the initial
retrieval and the whole model to check the generalization of our model. To
evaluate them we will use the Recall@K measure as well as the MRR and the
nDCG, all explained in Section 2.1.4.

Comparison between di�erent BERT models

In the first experiment there is a comparison between two di�erent BERT
models: ELECTRA [25] and DistilRoBERTa [24]. As explained in Section
3.4, monoBERT [1] is composed by a BERT model and a linear layer on top.
This experiment shows the di�erences in performance if we use di�erent types
of BERT models inside the monoBERT. The results can be seen in Table 5.4.
It is very clear that ELECTRA has a better performance than DistilRoBERTa
and that is why, for the following experiments, the preferred model in this
method is ELECTRA. DistilRoBERTa is a less complex model (as explained
in Section 2.1.2), but in this stage we are more interested in e�ectiveness rather
than in e�ciency.
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BERT models ELECTRA DistilRoBERTa

Recall@1 36.6% 34.1%

Recall@3 48.5% 47.3%

Recall@5 53.5% 52.3%

Recall@10 59.8% 59.6%

Recall@15 64.0% 64.0%

MRR 0.44 0.42

Table 5.4: Comparison between di�erent BERT models in monoBERT [1].

Comparison of the initial retrieval and the multi stage model

This experiment compares the performance of a single-stage model (only using
the initial retriever) and a multi-satge model (using the initial retriever and re-
ranker). The results of this experiment can be seen in Table 5.5. As explained,
the re-ranker receives a candidate list of K documents (for this experiments
K = 15), then it will re-rank those candidates more accurately so the correct
answer climbs to the top of the list. This improvement can be seen in the Table
5.5 as the MRR and nDCG get higher, and the recall at smallK improves. This
means that we are retrieving the correct answer with the initial retriever and
that the re-ranker is placing it at top positions.

Initial Retrieval In. Ret. + Re-Ranker

Recall@1 30.2% 36.6%

Recall@3 43.1% 48.5%

Recall@5 49.0% 53.5%

Recall@10 58.2% 59.8%

Recall@15 64.0% 64.0%

MRR 0.39 0.44

nDCG 0.44 0.48

Table 5.5: Results of the re-ranker compared to the initial retrieval.
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Combination of two monoBERT models

In this experiment, two monoBERT [1] models are combined in an ensemble
in order to see if together they improve the performance of the text ranking
system. The first monoBERT model uses ELECTRA [25] as its BERT model,
and the second monoBERT model uses DistilRoBERTa [24] as the BERT
model. The scores that each model outputs are combined linearly by doing
an mean operation, so the score of each monoBERT in the ensemble has the
same importance. The results can be seen in Table 5.6, if we compare these
results with Table 5.4 (using a single monoBERT model) we can see that the
improvement is not significant enough while requiring more computational
resources.

Ensemble of two monoBERT models

Recall@1 37.1%

Recall@3 48.6%

Recall@5 54.0%

Recall@10 60.3%

Recall@15 64.0%

MRR 0.45

Table 5.6: Results of an ensemble of two monoBERT models [1].

Cross-validation of the results of initial retrieval and the multi stage model

This experiment is done in order to see if the results are generalizable. For
that, a cross-validation is performed, in particular, a k-fold cross-validation.
A k-fold cross-validation consists of dividing the dataset into k equal parts.
Then, the training and testing is repeated k times, and each time one of the
parts is used as the test set and the remaining are used as the training set. The
results of each of the testings are averaged.

For this implementation we have used k = 5, and the results can be
seen in Table 5.7. We can see that the results after the cross-validation are
similar to the ones in Table 5.5. The performance is mantained and the
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improvements between using only an initial retrieval stage and using a multi-
stage architecture (initial retrieval and re-ranker) are also asserted.

Initial Retrieval In. Ret. + Re-Ranker

Recall@1 28.5% 32.6%

Recall@3 40.9% 46.2%

Recall@5 46.9% 51.1%

Recall@10 55.6% 57.5%

Recall@15 61.4% 61.4%

MRR 0.37 0.41

nDCG 0.42 0.46

Table 5.7: Results of the re-ranker compared to the initial retrieval.

5.3 Latency Results

We are interested in the latency of the model, for that, some experiments will
be performed. The first one will be a comparison between the latency of the
the two stages (initial retrieval and re-ranker). The second one will compare
the latency of the model with the accuracy when using di�erent lengths in the
candidate list of documents. All the results have been performed on the test
set of the troubleshooting dataset and using an NVIDIA Tesla T4.

Latency between the two stages

The latency of the di�erent stages is analyzed by computing the average time
it takes the system to find the top relevant answers to a query in each of the
stages. We have used a candidate list in-between stages was of 15 documents.
The representations of the corpus of answers have been pre-computed so that
at initial retrieval the only representation needed to compute is the one from
the query.

Table 5.8 shows the results of this experiment. As we can see, it takes 28
ms on average for the model to output a candidate list and 550 ms on average
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for the re-ranker to output the final list of ranked answers. As explained in
Section 4.5, if we just used the re-ranker without the initial retrieval (the re-
ranker needs to process all documents instead of just the top K), the latency of
the model would increase to minutes just for one query. The latency of the re-
ranker increases proportionally to the length of the candidate list. By keeping
the candidate list small, we are able to maintain this low latency.

Also, if we compare the two initial retrieval approaches we can see that
using a non BERT-based approach does not contribute to less latency.

Stage Initial Retrieval Re-Ranker

Model Sentence-BERT BM25 monoBERT

milliseconds/query 28 125 550

Table 5.8: Latency of the two stages. The candidate list was of 15 documents.

Latency vs Accuracy using di�erent length in the candidate list

In this experiment, the latency results have been compared using a di�erent
number of documents in the candidate list. We will compare a measure of
accuracy like MRR with the latency of the whole model (initial retrieval and
re-ranking) to see how much those values change if we use a di�erent length
of documents in the candidate list.

The results of this experiment can be seen in Table 5.9. As stated, the
value K = 15 is optimal as it keeps the latency low while maintaining a
good performance. For larger values, the increase in accuracy is very minor
compared to the increase in latency, which goes from 0.6 seconds withK = 15
to 4 seconds with K = 100.

Candidate list length K = 15 K = 50 K = 100

milliseconds/query 578 1940 3820

MRR 0.44 0.455 0.46

Table 5.9: Latency and accuracy of the method by using di�erent length of
candidate lists.
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5.4 Consistency of Similar TRs

The last experiment consist of evaluating if our model is able to produce
similar ranking lists for similar TRs.

There is a high probability that di�erent customers individually raise
di�erent TRs for the same underlying problem. The problems are written in
di�erent words and length but talk about a similar or equal problem. If it is not
identified early, di�erent teams might work on the same underlying issue but
on di�erent TRs. As said, we want to check if the proposed method is able to
recommend the same answers to similar TR even though they might be written
using di�erent words or described in other ways.

Of all the TRs, some engineers have identified TRs that could be considered
similar. As we have the information of which TRs are similar to each other,
we can produce the ranked lists of each TR and compare them in order to see
if they are similar.

In the first experiment, we have computed the ranked lists for all the TRs
that have "duplicates" and we have divide them between the ones were we
perform well (the correct answer is retrieved in the top-15 list) and the once
where the model fails. If we only pick the TRs where the model performs well
and we analyze their ranking lists we can see that the correct answer is ranked
at a similar position in 70% of them.

Another experiment performed has been to identify duplicates by checking
which answer they rank at the top of the list regardless if it is the correct one
or not. If we take all TRs that have one or more similar TRs in our test set,
we can check if the answer they rank on top is the same as their "duplicates".
This strategy is a possible method to detect similar TRs. Of all the TRs that
have similar TRs in the test set we are able to identify at least one duplicate in
40% of the samples.

We have to keep in mind that we have not given the model any indication
that there might be similar TRs. So, if the model can find similar TRs without
the explicit training, it means that it has learned the domain-specific company
language and can make inferences about it.
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5.5 Discussion

The results presented suggest that we are able to recommend correct solutions
to TRs. To show that, in this section, the results of all the experiments will be
discussed.

In Section 5.1 we present the results of the initial retrieval using di�erent
fields in the query, comparing a baseline approach with a BERT-based aproach
and using di�erent BERT models. To evaluate those, we are interested in the
recall. The measure of Recall@K indicates in which percentage of the queries
from the test set we are able to retrieve the correct answer. Therefore, with a
candidate list of 15 documents we are retrieving the correct answer in 64.0%
of the queries using Sentence-BERT (Table 5.3).

The results in Table 5.2 suggest that as more information is added to the
query, the best it can retrieve the solution. This e�ect can be seen in the
di�erence between Recall@15, where if the Faulty Area is not used the value
drops four points. By adding a word in the beginning of the query, Sentence-
BERT is able to understand the information and use it to better find a correct
solution. An interesting extra analysis of the system could be to remove the
observation from the query and see if, by only using the Faulty Area and the
Heading, the model performs better. However, the TRs not always contain a
heading or a faulty product but they always contain the observation and that is
why this experiment has not been done.

Furthermore, the results of Sentence-BERT are compared with BM25 to
emphasize the di�erence in results of using an Exact Matching technique
compared to a BERT-based technique. The BERT-based technique is able to
understand semantically the queries and the answers while an Exact Matching
technique has the problem of the vocabulary mismatch explained in Section
2.1. This can be seen in Table 5.3 and it suggests that using a BERT-based
model in initial stages of a ranking system improves the quality of results and
enables us to forward less documents to the next (more complex) stage. This
e�ect maintains the latency of the process low at inference time.

Moreover, the results in Table 5.1 show how the DistilRoBERTa [24]
model achieves a better performance compared to other BERT models and
why it is the preferred model for this method.

In Section 5.2 we are interested in seeing an improvement in the results
from the first stage to the second. This is demonstrated by the change in the
MRR from 0.39 to 0.44 in Table 5.5, it means that the correct answer has
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climbed-up the ranking thanks to the second stage. We can say that the re-
ranker fulfills its purpose of improving the candidate list. This e�ect can also
be seen if we compare the values of Recall@1 between the two stages. In this
section we also compare the results of di�erent BERT models and an ensemble
and show that the model with the highest performance is ELECTRA [25].

In addition, one of the metrics most interesting for the research question
is the latency of the method. We want to keep it as low as possible, while
maintaining a reasonable accuracy. With the results from Table 5.8, we can
demonstrate that by using a candidate list of 15 answers we are able to keep
the time it takes to the system to recommend answers to less that 1 second.

Also, by analyzing the performance of using di�erent candidate list lengths
(Table 5.9) we are able to demonstrate that using more documents in the
candidate list does not improve the accuracy as much. However, the latency
is incremented a lot. This is the main reason the choice of length K = 15 is
made. A visualization of how the similarity scores change along the corpus
could be useful as well for determining how long this list should be.

An interesting point to add to the discussion is to evaluate the strategy
of truncation of the texts when they are longer than 512 tokens, which is the
BERT limit explained in Section 2.1.2. By looking at Figures 4.1 we can see
that approximately 20% of TRs will be truncated. An interesting analysis to do
here as future work would be to compute the percentage of text that is truncate
from the TRs on average to see if we are loosing a lot or few information and
how much it a�ects the performance.

Finally, an important result is the consistency similar the duplicates.
Section 5.4 suggest that we are recommending the same answers to similar
queries. The information that there are similar queries has not been used to
train the model so this is a consequence of using BERT-based approach and
its contextual embeddings.



Conclusions and Future work | 41

Chapter 6

Conclusions and Future work

In this chapter the conclusions of the master thesis will be presented, as well
as the future work.

6.1 Conclusions

In this master thesis, an NLP method for log analysis to retrieve solutions for
troubleshooting processes has been presented, developed and tested.

First, we have introduced the problem of the troubleshooting process and
the need for automation of the analysis and correction phase to improve
the customer experience. We have also covered the background and the
exiting solutions. Next, the a multi-satge BERT-based text ranking model for
retrieving solutions to TRs has been proposed. Finally, the model has been
tested and its results have been discussed.

We have been able answer the research question of: How can we use BERT-

based approaches to find solutions for error reports in the Ericsson logs that

improve BM25, the existing non-BERT baseline model at Ericsson? And can

this model have a low latency? The model proposed is able to recommend
the best possible solutions to a new error report from Ericsson with a high
accuracy. It is composed by a pre-processing stage and two main stages, both
being BERT-based. It has majorly increased the performance of a baseline
non-BERT model like BM25.

The main conclusion drawn from this work are:
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• Using a BERT-based approach instead of simpler techniques like BM25
in the first stage of initial retrieval improves the performance of the text
ranking system.

• Creating a very good small candidate list (such as top-15) is the key
to reducing the latency of the model, as the time-consuming stage (re-
ranker) only need to process and re-rank this small list.

• Including a re-ranker in the architecture allows us to improve the list and
increase the accuracy from the first stage to the second. We are able to
recommend the best quality ranked lists to the support engineers.

• Using as much information as possible in the query helps the method
produce a better list of recommended solutions. When we use the Faulty
Area in the query the results are significantly better and we can say that
it adds a lot of value.

• The model is consistent as it is able to recommend the same answers to
similar TRs written in di�erent words.

To sum up, the work of the master thesis has been able to investigate a
problem, propose a solution that answers the research question, and provide
the experiments and results needed to validate the solution.

6.2 Sustainability and ethics

Many NLP models raise ethical and sustainability questions. One of the main
examples is the GPT-3 OpenAI model [40], a generative model that uses
the transformers architecture [5]. However, the project has used text ranking
BERT-based models, which do not raise the same amount of ethical concerns.
However, they may still have biases that need to be accounted.

Also, it is important to add that the training of large models can be
considered as not sustainable, that is why for this project only a fine-tuning
of the models has been done and already pre-trained models have been taken
from open-source repositories.
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6.3 Future Work

The work developed in this master thesis is a good baseline for a BERT-based
system for retrieving solutions for an error report. Some future work can be
done in order to build upon the proposed method.

One possible track to take would be to improve the training of the BERT
models. As explained in Section 2.1.2, the BERT models go through an
extensive pre-training with general-domain data. Afterwards, they can be
trained and fine-tuned for a specific task, like text ranking. One possibility
to improve the results of the model would be to pre-train from scratch a BERT
model using telecom-domain data instead of the general-domain data. This
could improve the understanding of the TRs which usually contain a lot of
telecom language.

Another possible improvement is the refining of the pre-processing. Even
though the architecture has a pre-processing stage with many components, this
step could be expanded to try to remove any non-textual information that may
have not been removed by our cleaning modules. The observation text of TRs,
usually contains many tables and code text that, sometimes, avoids the cleaning
and introduces noise to the data. A better and meticulous treatment of this text
is a possible future track.

Finally, a possible improvement of the architecture would be to re-think
the re-ranker in terms of the latency. The proposed design is composed only
by one model (monoBERT [1]), this choice has been made trying to reduce
the latency at the inference time as much as possible. If we could be more
flexible with the latency constrains, we could rethink the second stage and
use an ensemble of di�erent re-rankers in order to improve the accuracy and
performance of the method.
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