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Abstract

The overprescription of antibiotics has resulted in bacteria resistance, which is
considered a global threat to global health. Deciding if antibiotics should be prescribed
or not from individual visits of patients’ medical records in Swedish can be considered
a text classification task, one of the applications of Natural Language Processing
(NLP). However, medical experts and patients can not trust a model if explanations
for its decision are not provided. In this work, multilingual and monolingual
Transformer models are evaluated for the medical classification task. Furthermore,
local explanations are obtained with SHapley Additive exPlanations and Integrated
Gradients to compare themodels’ predictions and evaluate the explainabilitymethods.
Finally, the local explanations are also aggregated to obtain global explanations and
understand the features that contributed themost to the prediction of each class.
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Abstract

Felaktig
utskrivning av antibiotika har resulterat i ökad antibiotikaresistens, vilket anses vara
ett globalt hot mot global hälsa. Att avgöra om antibiotika ska ordineras eller inte
från patientjournaler på svenska kan betraktas som ett textklassificeringproblem, en
av tillämpningarna av Natural Language Processing (NLP). Men medicinska experter
och patienter kan inte lita på en modell om förklaringar till modellens beslut inte
ges. I detta arbete utvärderades flerspråkiga och enspråkiga Transformersmodeller
för medisinska textklassificeringproblemet. Dessutom erhölls lokala förklaringar med
SHapley Additive exPlanations och Integrated gradients för att jämföra modellernas
förutsägelser och utvärdera metodernas förklarbarhet. Slutligen aggregerades de
lokala förklaringarna för att få globala förklaringar och förstå de ord som bidrog mest
till modellens förutsägelse för varje klass.

Nyckelord
Transformatormodeller, NLP, förklarbar AI, medicinsk domän, antibiotikarecept, ,
SHAP, Integrated Gradients
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Chapter 1

Introduction

The treatment for bacterial infections is usually antibiotics. Nevertheless, bacteria can
become resistant to antibiotics, which makes infections harder to treat. This problem
is considered a threat to global health since common infections could lead to death. To
prevent antibiotics resistance, healthcare professionals have to follow the WHO [32]
guidelines to avoid prescribing antibiotics when they are not needed [32].

Dental care accounts for around 711% of antibiotics prescribed internationally,
whereas, in Sweden, the percentage is approximately 7% of outpatient care (care
that does not involve overnight stay in the hospital). Moreover, there exist regional
differences in the number of antibiotics prescribed in Sweden, highlighting the
importance of thoroughly evaluating the correctness of antibiotics prescription for
specific dental visits [24]. As a consequence, in articles like [2], prescription
of antibiotics is evaluated, suggesting some criteria for correctly prescribing
antibiotics.

Predicting if a patient should be prescribed antibiotics from medical records can
be considered a text classification task, one of the popular applications of Natural
Language Processing (NLP). In recent years, different Transformer models have
demonstrated stateoftheart results in multiple tasks [3, 6, 21] outperforming
previous NLP models. However, these models are pretrained to be used in English
language, to use NLP models for other languages, multilingual models (models pre
trained in multiple languages) have been proposed [7, 23, 45]. Another approach,
offering more particular solutions by training nonEnglish models (monolingual
models) are presented in [26, 27, 42].

Obtaining a prediction from an NLP model of whether to prescribe antibiotics or
not could be helpful to the medical field to reduce unnecessary use of antibiotics.
For this work, the dental records used consist of all the information needed to
decide if antibiotics should be prescribed or not and individual visits are considered
to make an individual decision. Although, medical tasks are hard to approve
in realworld scenarios with actual patients if the model is unable to explain the
reasoning behind its prediction. In [9] they stress the importance of explanations to
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CHAPTER 1. INTRODUCTION

enable trust and acceptance of automated systems and [12] mentions interpretation
of predictions as an issue to implement Artificial Intelligence (AI) technologies in
medicine applications. Different explainability methods [25, 39], have been proposed
to understand the decisions of deep learning models and build trust for domain
experts. The explainability methods that this work employs are posthoc methods,
i.e., the explanations are obtained after the model is trained and the decision is
taken. Moreover, additional operations to the model are required. Additionally,
these methods are also feature attribution methods, they assign a score to each input
feature.

This thesis examines the process of using NLP models for a medical text classification
task and at the same time, provides explanations of the models’ decisions. The goal
is to understand their rationales and compare the results with the correct criteria
for prescribing antibiotics. If the model is capable of learning the correct criteria, it
could be used by medical experts to avoid prescribing antibiotics when they are not
needed.

1.1 Research Questions
The research questions are divided into two main subjects: Text classification in the
medical domain and explainable predictions for text classification. Each section has
its main research question and at least one subquestion.

Text classification in the medical domain

How can an NLP model predict if a patient should be prescribed antibiotics or not
from individual visits of patients’ dental records using a lowresource language, such
as Swedish?

1. How do multilingual and monolingual models’ performance compare in
predicting if antibiotics should be prescribed?

Explainable predictions for text classification

How can a posthocmethod provide highquality explanations of an NLPmodel?

2. What attribution method is better for a medical classification task?

3. How can local explanations be used to obtain global explanations?

1.2 Contribution
The contribution of this work is divided into two sections. Text classification in the
medical domain:

1. Evaluation of the performance of monolingual and multilingual models in a
medical classification task.
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CHAPTER 1. INTRODUCTION

2. In this work, it is demonstrated that Transformermodels can be used for a binary
classification task using a Swedish medical dataset.

3. Evaluation and analysis of monolingual and multilingual models resulting in a
better performance with monolingual models.

Explainable predictions for text classification:

1. It is demonstrated that attributionmethods are capable of explaining predictions
from NLP models trained with a Swedish medical dataset.

2. Both explainability methods are compared showing that it is easier to interpret
SHAP since themethod has a sparser explanation, although, IG or SHAPwithout
regularization are more mathematically correct .

3. It is demonstrated that explanations can be used as guidance for data cleaning.

1.3 Thesis structure
The structure of the thesis is the following: In Chapter 2, the background needed for
thiswork is introduced, describing theNLPmodels and the explainabilitymethods that
were employed. Moreover, the related work that other people have done in domain
specific NLP and Explainable AI (XAI) applications is presented, additionally, what
the Machine Learning (ML) field has done regarding antibiotics prescription will be
mentioned. In chapter 3, the dataset is described; the processes of data cleaning
and training the NLP models are specified, furthermore, how the explanations were
obtained are detailed. Chapter 4 presents the results obtained from the medical
classification task and the local and global explanations and the analysis of those
results. Finally, Chapter 5 presents the conclusions from this thesis and some future
work is proposed.
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Chapter 2

Background

This chapter provides the theory necessary to understand this thesis. First, the NLP
models are introduced and then, the explainability methods are presented. The NLP
models are selected for being themodels with better stateoftheart results in Swedish
or multiple languages. Similarly, Integrated Gradients (IG) and SHapley Additive
exPlanations (SHAP) are the two explainability methods selected since they have
become very popular for the explanations they obtain. Furthermore, some approaches
that the field of NLP and XAI have applied to a particular domain are also presented.
Finally, the relevant work where ML has been applied for antibiotics prescription is
discussed.

2.1 Transformer models

Up until 2017, the stateoftheart models for NLP were based on Recurrent Neural
Networks (RNN) and Convolutional Neural Networks (CNN), both methods use an
encoderdecoder architecture. A problem with RNNs and CNNs is that they are
sequential models, thus, it is impossible to use parallelization and the computation
time is significant [41]. The best models used for Neural Machine Translation (NMT)
task, before the Transformers, connected the encoder and decoder by an attention
mechanism, helping the model focus on different words of a sentence despite the
distance between them [41].

In ”Attention is all you need” [41], the first Transformer model proposed. The model
takes the attention mechanism used before and instead of employing it to connect the
encoder and decoder parts, it solely relies on it without using conventional networks
like CNNs or RNNs, which allowed parallelization and improved the performance on
different NLP tasks. This model is trained to perform translation tasks, achieving
better results than previous NLP models.
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CHAPTER 2. BACKGROUND

2.1.1 Transformer model architecture
The Transformer model consists of an encoderdecoder architecture that uses a multi
head attention mechanism, the full architecture is shown in Figure 2.1.1 and an
explanation of each part comes afterward.

Figure 2.1.1: Architecture of Transformer model [41].

Encoder

The encoder proposed in [41] has six stacked identical encoding layers; each layer
consists of two parts, the first one is a multihead attention and the second one, a
Fully Connected (FC) Feed Forward Network (FFN). These two parts use a residual
connection followed by a normalization layer.

Decoder

The decoder also has six stacked identical layers; each layer consists of three parts, two
of themare exactly the same as the encoders’ layerswhile themiddle part of the decoder
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CHAPTER 2. BACKGROUND

(see Figure 2.1.1), is different, it is another multihead attention over the encoder’s
output.

Figure 2.1.2: Attention and multihead attention functions [41] .

Attention

The attention mechanism is a method that Transformer models use to understand
better the input by allowing the model to look at multiple words at the same time
resulting in an encoding of words that has a better context. During the training phase,
the model learns three matrices WQ, WK and W V that try to find similar words in
the input. By multiplying these three matrices with the input embedding, we obtain
Queries (Q), Keys (K) and Values (V ) respectively which are abstractions of the input
text. The scaled dotproduct attention, involves these Queries, Keys and Values (see
Figure 2.1.2) and its computation is shown in Equation 2.1.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

Multihead Attention

Multihead attention is the computation of multiple attention functions in parallel, the
results of each attention function are concatenated and multiplied by the W matrix
(a matrix also learned during training), as depicted in Figure 2.1.2 and Equation 2.2.
In the architecture shown in Figure 2.1.1, when there’s a multihead attention, eight
different attention mechanism are used in parallel.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (2.2)
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CHAPTER 2. BACKGROUND

where
headi = Attention(XWQ

i , XWK
i , XW V

i )

Where WQ, WK and W V are the learned matrices. X is the input embedding vector
andXWQ

i ,XWK
i ,XW V

i are Queries (Q), Keys (K) and Values (V ) respectively.

2.1.2 BERT based architectures
In this subsection, the Transformer models Bidirectional Encoder Representation
from Transformers (BERT) [6], Efficiently Learning an Encoder that Classifies Token
Replacements Accurately (ELECTRA) [3] and A Lite BERT (ALBERT) [21] are
explained. All of these models are based on the same architecture (BERT), which is
detailed first.

BERT

BERT (Bidirectional Encoder Representation from Transformer) [6] is a model that is
designed to be used for different tasks, unlike the model proposed in [41]. The BERT
model is amultilayer bidirectional Transformer that stacks several encoders from [41]
together. It has achieved stateoftheart results by just adding an output layer to the
encoder by pretraining on deep bidirectional representations from unlabeled text and
allowing it to learn contextualized word embeddings.

BERT consists of two phases:

1. Pretraining. The model is trained on unlabeled text where it learns language
and context from it. A representation of pretraining is shown in the left side of
Figure 2.1.3.

2. Finetuning. Finetuning starts with the pretrained parameters and they are
updated to best fit the downsteam task of choice. The model is capable of
performing different tasks by feeding the specific input and output of the
downstream task into the model, as shown in the right side of Figure 2.1.3.

The pretraining is subdivided into two parts:

1. Masked Language Model (MLM). MLM task is used to train a deep bidirectional
representation, 15% of the tokens are masked (hidden from the model using a
mask token) and themodel tries to predict themasked word with the context of it
(words around the masked token). Nevertheless, since mask tokens would only
appear during pretraining, this generates a discrepancy between pretraining
and finetuning. As a result, from all masked words, 80% of them are indeed
replaced with themask token, 10% of them are replaced with a randomword and
another 10% of them are not changed, the original word is not masked.

2. Next Sentence Prediction (NSP). NSP task predicts whether a sentence is
followed by another sentence or not. 50% of the time, the sentence is indeed the
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CHAPTER 2. BACKGROUND

next one and 50% of the time the sentence is a random one from the corpus. This
helps themodel understand context and relationships across different sentences.

Figure 2.1.3: BERT’s pretraining and finetuning phases [6].

The input embeddings are a continuous representation of the input where words with
similar meaning have a similar representation. The embeddings of the model are a
result of:

1. WordPiece embedddings [37]. Tokenizing a text is splitting it into words or
subwords. WordPiece is a subword tokenization (splitting thewords into a bunch
of characters), it starts with every character present in the training data and
merges them to maximize the likelihood of the subword tokens in the training
data.

2. Position embeddings. Since the attention mechanism does not maintain the
order of words in a sentence, the position embeddings incorporate positional
information into the model.

3. Segment embeddings. Indicates if the token belongs to the first or second input
sentence.

ELECTRA

ELECTRA [3] has the same architecture as BERT and the same tokenizer (WordPiece
[37]), the modification lies in the way each model learns. Specifically, the pre
training, where BERT seeks to learn bidirectional representations with the task of
MLM, masking 15% of the tokens, making the model learn only from those mask
tokens. While ELECTRA, proposes the Replaced Token Detection (RTD) task, which
requires two models, a generator and a discriminator.

1. Generator. The generator performs the MLM task like BERT, some words are
replaced with the mask token and the generator learns to predict the masked
word as depicted in the left side of Figure 2.1.4.
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CHAPTER 2. BACKGROUND

2. Discriminator. The discriminator learns to predict if each word in the input is
the original one or if it is replaced by the generator as shown in the right side of
Figure 2.1.4.

According to [3], instead of just learning from a small sample, ELECTRA’s pretraining
allows it to learn from all words making training faster than BERT’s and achieving
better results than BERT in many downstream tasks.

Another difference between BERT and ELECTRA is that ELECTRA does not perform
NSP task during the pretraining phase.

Figure 2.1.4: Replaced token detection. Electra’s pretraining task [3].

ALBERT

The ALBERT [21] model uses the same architecture as BERT although the activation
function has been replaced by a Gaussian Error Linear Unit (GELU) function [14] on
the FFNs. Moreover, the tokenization it uses is SentencePiece [20], a tokenizer that
does not assume that words are separated by spaces and includes spaces in its set of
characters.

The improvements proposed by [21] are:

1. Hidden layer size. The size of the hidden layers usually is the same as the size
of the vocabulary embeddings. For ALBERT though, they isolated the size of
the hidden layers from the size of the vocabulary embeddings by projecting one
hot vectors into a lowerdimensional embedding space and then to the hidden
space. As a result, this modification made it easier to increase the hidden
layer size without significantly increasing the parameter size of the vocabulary
embeddings.

2. Shared parameters. ALBERT shares parameters for the FFNs and the attention
mechanisms (see Figure 2.1.1).

3. SentenceOrder Prediction (SOP). Instead of using NSP, during pretraining
ALBERT performs SOP, where the model learns if every pair of sentences is
consecutive or not, forcing the model to learn coherence properties.

9



CHAPTER 2. BACKGROUND

With these changes, ALBERT has fewer parameters than BERT, achieving better
results on different tasks.

2.1.3 Monolingual models
The first methods proposed in NLP for Transformer models with nonEnglish
datasetsweremultilingualmodels. Afterwards,monolingualmodels likeCamemBERT
[27] (French BERT model) and FinBERT [42] (Finnish BERT model) offered a
more particular solution for lowresource languages outperforming multilingual
models.

KBBERT (Swedish BERT) [26], a model trained by the National Library of Sweden
(KB), is trained using the code and instructions proposed in [6]. The Swedish model
outperformed the existing multilingual model Multilingual BERT (mBERT) [7] at the
time of publication, but it also outperformed the previous Swedish models by using
more data from KB’s resources.

The dataset included resources from 1940’s to 2019, they were digitized newspapers,
official government publications, legal edeposits, socialmedia andWikipedia Swedish
articles. After KBBERT, the National Library of Sweden also released KBELECTRA
and KBALBERT, the pretraining of those models is done according to the code and
instructions of the original English model, similar to KBBERT.

2.1.4 Multilingual models
Transformer models achieve stateoftheart results in many tasks, nevertheless,
before multilingual models, every NLP model is pretrained on English datasets,
limiting their use since 80% of the population does not speak English [45]. A general
solution offer to that problem, as mentioned in Section 2.1.3, is to pretrain models
withmultiple languagesmaking themodel capable of performing downstream tasks in
many languages.

mBERT

mBERT[7] has the same architecture as BERT, the difference is that mBERT is pre
trained with the top 100 languages fromWikipedia dataset [28]. Since the size of each
language in the Wikipedia dataset varies, they used techniques to sample more text
from lowresource languages and less from highresource language, learning almost
equally from all of them and preventing the model from overfitting or underfitting any
language.

XLMR

XLMRoBERTa (XLMR) [4] is a multilingual Transformer model based on Robustly
Optimized BERT Pretraining Approach (RoBERTa) [23]. RoBERTa has the same
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CHAPTER 2. BACKGROUND

architecture as BERT but it has different hyperparameters, it does not perform the
NSP task during pretraining, only the MLM task and it is pretrained on larger mini
batches and learning rates, that is why part of the name of the model is optimized
BERT. XLMR is trained with a filtered version of CommonCrawl data with 100
languages and it uses a subword tokenization, SentencePiece [20] with a unigram
language model [19].

mT5

Multilingual TexttoText Transfer Transformer (mT5) [45] is themultilingual version
of TexttoText Transfer Transformer (T5) [33], a model whose main feature is
converting all NLP problems to a sequencetosequence format, it is fed with text as
input as every other Transformer model with the difference that it also generates text
as output. mT5 uses the full architecture proposed in [41], not only the encoder part
of the architecture as most of the other models and is pretrained with the MLM task.
mT5 is pretrained using the mC4 dataset, which contains 101 languages and they are
sampled with a similar approach to mBERT’s [7].

Sentence Transformers XLMR

Sentence transformers were presented in [35], it is a solution that uses siamese
and triplet network structures. These type of networks use the same architecture
and are fed with two different input vectors to compute comparable output vectors.
These networks find sentence embeddings that are easy to compare making tasks like
sentence similarity faster to perform and with better results [35].

The sentence transformers version of multilingual models like XLMR [34], because of
being pretrained similarly to the monolingual model, has the embeddings of multiple
languages aligned, thanks to the siamese and triplet networks. Which makes it easier
to train a model using a highresource language and then extending its results to a
lowerresource language with a similar performance.

2.1.5 Transformer models for the medical classification task
A comparison of the size of the Transformer models is shown in Table 2.1.1, where
we can see listed each model with its number of parameters (obtained from the model
used in code, not from the paper of eachmodel since there is somediscrepancy between
them despite using the original code implementation).

2.2 Explainability
Deep learning has been responsible for great technological advances in a variety of
tasks like NLP, obtaining stateoftheart results and in some cases even improving
human’s performance [13, 44]. However, the benefits have come at the expense of
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CHAPTER 2. BACKGROUND

Table 2.1.1: NLP models and the number of parameters they use.

Model Parameters (M)

Swedish
models

KBBERT 124
KBELECTRA 124
KBALBERT 14

Multilingual
models

mBERT 177
XLMR 278
mT5 300

models being less interpretable [29], which lead to being untrusted [9, 12]. Therefore,
a field has been growing to offer a solution to this problem, XAI. Explainability tries to
help the enduser understand why themodel came to a decision, increasing the trust in
themodel and allowing to improve themodel with the explanations provided [5].

Explanations can be divided into different categories:

• Local and global explanations. Local explanation concern a specific prediction
from themodel, e.g., explaining why amodel labeled amovie review as a positive
or negative comment. On the other hand, global explanations tries to find an
understanding of the model’s behavior, e.g., finding gender bias in a credit risk
prediction model [5].

• Selfexplaining and posthoc methods. Selfexplaining methods provide
explanations inherently at the same time as the prediction, e.g., decision trees.
On the contrary, posthoc methods require additional operations since the
explanations are created after the model is trained, e.g., SHAP, IG [5].

Explainability methods use different techniques to obtain such explanations, some
methods use more than one technique, two of the most popular techniques are:

• Feature importance. Also called attribution importance, investigates the
importance scores of different features. Attention mechanism and first
derivative saliency are two common operations for feature importance methods
[5].

• Surrogatemodel. Predictions are explained by learning a secondmodel, an easier
model to interpret, such as decision trees or linear regression. Thus, this method
is model agnostic.

In this thesis, two feature attribution methods (based on feature importance) were
used, IG and SHAP. Although SHAP also uses a surrogate model technique. These
methods are posthoc since the NLP model itself can not output those type of
explanations and additional operations are needed. Moreover, the type of explanation
obtained by both methods is local.
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CHAPTER 2. BACKGROUND

2.2.1 Integrated Gradients
IG is a feature attribution method that aims to compute the importance of each input
feature that contributes to the model’s predictions. This posthoc attribution method
does not modify the network to obtain explanations [39]. The model requires a
baseline, which is supposed to be an input that results in a neutral prediction. The
method considers a straight line path from the baseline x′ to the specific input x
that will be explained and computes the gradients at small steps α along the path,
as depicted in Figure 2.2.1 and integrates those gradients along the line, shown in
Equation 2.3 [39].

IntegratedGradsi(x) ::= (xi − x′
i)×

∫ 1

α=0

∂F (x′ + α× (x− x′))

∂xi

dα (2.3)

Figure 2.2.1: The images show the steps α between the baseline (leftmost image) and
the original image (rightmost image) along a straight line path between them [17].

The baseline can be a black image for computer vision tasks or zero embedding vector
for NLP problems. Equation 2.3 is the only attribution method that satisfies a set
of desirable axioms for explanations. The desirable explanations suggested by IG
are:

• Sensitivity. If a model predicts different classes for a baseline and an input that
have the same features but one, that feature can not have a zero attribution value.

• Implementation invariance. The attribution does not depend on the model, if
twomodels output the same predictions from the same inputs, they will have the
same attributions because the method depends on the outputs and inputs only.

• Completeness. The sum of the attributions are equal to F (x) − F (x′), the
difference between the prediction of themodel with input x and the baseline (x′).

• Linearity. If a deep network is a linear combination of two different networks,
e.g., axf1+bxf2, the attributions have to preserve the linearitywithin the network.

2.2.2 SHapley Additive exPlanations
Similarly to IG, SHAP, tries to explain a prediction by computing the importance of
each input feature. It uses a game theoretic approach [38], i.e., the features of the
data act as players and Shapley values are a distribution of the prediction among its
features [25]. SHAP, like IG also uses baselines (explained in Section 2.2.1), if a feature
pushes the prediction to a specific classmore than the baseline, this feature gets a larger
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attribution value. SHAP represents the explanations as an additive feature attribution
by using a linear model as shown in Equation 2.4.

f(x) = g (x̂) = ϕ0 +
M∑
i=1

ϕix̂i (2.4)

where f(x) is the original model with input x. g(x̂) is the explanation model and x̂

is a simplified feature vector (where some of the features are set to zero, meaning
that feature is absent). M is the maximum size of the features and ϕi is the feature
attribution of feature i, the SHAP values.

SHAP satisfies the following properties:

• Local accuracy. The explanation model and the original model’s outputs have to
be the same.

• Missingness. An absent feature gets a zero attribution.

• Consistency. If there is a change in amodel,making the value of a feature increase
or decrease, the Shapley value has to change in the same way.

These properties have a unique solution, however, an approximation is needed to
be computationally tractable. One of the approximation methods is Kernel SHAP.
Kernel SHAP is a model agnostic method, it obtains explanations using the following
algorithm:

1. Samples simplified feature vectors x̂ and sets some features randomly to zero,
which means absent.

2. Obtains predictions of the simplified features vectors x̂ by feeding the simplified
feature vectors to the model.

3. Computes a weight for each x̂ depending on how close a sample is to the original
x.

4. Fits a weighted linear model to x̂ and the predictions made by the model.

5. Returns the SHAP values ϕ (coefficients of linear model in Equation 2.4).

2.3 Domain specific NLP
Researchers have demonstrated in different publications that NLPmodels are capable
of performing domainspecific tasks, applications where the language used is not
common and it is unlikely that the pretraining dataset used for the models contained
the same vocabulary as the domainspecific data. In [1], they use the MIMIC
dataset [16] a digital health record dataset for text classification with the BERT
model. Moreover, [11] uses RoBERTa [23] for four domainspecific areas; biomedical,
computer science publications, reviews and news. Furthermore, BioBERT [22] is a
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BERT model used for the biomedical text mining. These publications are focused
on showing how by further pretraining with unlabeled domain data, the NLP model
performs better than using the model with its regular pretraining.

2.4 XAI for NLP
As mentioned in Section 1, building trust from users for AI techniques is crucial
to many specialized fields like medicine. A survey of explainability methods for
NLP models have been explored in [5]. Publications like [43], have worked to
support or refute scientific arguments and provide rationales to justify the model’s
decision. In the medical domain, [30] presents a CNN with an attention mechanism
that predicts medical codes from clinical text and also provides explanations for the
model’s predictions. Finally, in [15], they use different models with an attention
mechanism, the models are fed with electronic medical records (one of the datasets
is the MIMIC dataset) and from those records, the model predicts different outcomes
with explanations from the attention mechanism, although, the rationales obtained
from this mechanism are questioned and the authors claim that sometimes they are
misleading [10].

2.5 Antibiotics prescription
For the task of antibiotics prescription, [36] uses random forests with laboratory and
administrative data to predict urinary tract infections, based on their results, they
created policies that decide if the patient should be immediately prescribed antibiotics
or if they should delay the prescription. Moreover, [8] uses decision trees to select
the best antibiotic to be prescribed which can effectively cure the disease avoiding
bacteria resistance, the data they use consists of patient demographic, clinical history
and previous antibiotic use.
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Methodology

In this chapter, the overall work process is explained starting with a description of the
dataset, followedby themodifications done to be used for themedical text classification
task. Furthermore, the way the NLP models were trained is explained and how the
explainability methods were used to obtain individual and global explanations.

3.1 Dataset
The antibiotics dataset was provided by Folktandvården Västra Götaland, the largest
dental care organization in Sweden. They collected data from the years 2012, 2014,
2017 and 2018, with pseudo anonymized patients information from all ages, the data
collected consists of daily notes from patients medical records and recipe texts [2].
The dataset was handled with care to avoid leaking or sending it outside the Peltarion
servers and any identifiable characteristic was removed from it to protect sensitive
information. It contains four columns: Klinik, Personnr, Datum, Anteckning. Klinik
states the name of the clinic visited, Personnr contains a unique pseudo anonymized
number for each patient, Datum is the date of the visit and Anteckning is free
text, it is where the medical record is, what was found by the dentist, procedures
performed, information about the patient, etc. The last version of the dataset has
10,203 samples and it is almost balanced, 56% of the samples were from class 1
(antibiotics were prescribed) and 44% of the samples were from class 0 (no antibiotics
were prescribed).

Patients’ information is spread along many rows. To prepare the dataset for
classification, the text of Anteckning of patients with the same patient number and
same date were joined into one cell so that it contained all the information of the
patients per visit. Moreover, the rest of the columns were removed and a ”Label”
column was added. The ”Label” column has a value of 1 if antibiotics were prescribed
and a value of 0 if theywere not prescribed. FormT5, since it is a sequencetosequence
model, the labels are instead ”Positive” and ”Negative”.

The labels used are the decisions that dentists took with the medical record of each
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patient, nevertheless, not all of those decisions were correct, there were mistakes
when prescribing antibiotics. In [2], the antibiotics prescriptions of Folktandvården
Västra Götaland were evaluated in three occasions; during the month of September
of years 2012, 2015 and 2018 and the results obtained are displayed in Table 3.1.1.
There is no information about years 2014 and 2017. However they state that
antibiotics prescription was reduced after 2012 and correct prescriptions increased as
a consequence of conducting dental training on antibiotics treatment.

Table 3.1.1: Evaluation of antibiotics prescription in the dataset of this thesis. [2]

2012 2015 2018
Share(%) Share(%) Share(%)

Correct 87.6 85.1 89.3
Inaccurate 12.4 14.9 10.7

The antibiotics dataset was not ready for ML tasks, it included different automatically
generated messages, html tags, Not a Number (NaN) cells and data leakage was
occurring in it. For example, the antibiotics prescribed were written in the medical
records and it was easy for the models to ”take a shortcut” and focus on them instead
of focusing on the patient’s condition. Thus, some modifications had to be done to be
able to use the data for classification and train an NLP model to predict if antibiotics
should be prescribed or not from the patients’ medical records.

Data cleaning
The process of cleaning the data was iterative as depicted in Figure 3.1.1. First, the NLP
models were trained with the dataset without any modifications. Then, explanations
were obtained using IG and SHAP from individual samples and depending on
those results (what the models were focusing on), if the models were not focusing
on the relevant information (medical condition of the patient), the dataset was
modified.

Figure 3.1.1: Data cleaning process.
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The initial significant modifications to the dataset were:

• Html tags removal. Html tags were not important features that the models were
focusing on to make predictions. Although the tags significantly increased the
size of the input, as depicted in Figure 3.1.2 and given that the NLP models have
a size limit of 512 tokens, the input was truncated, probably leaving out some
important information.

• Electronic recipe. These are some of the automatically generated messages
included in the medical record of the dataset and contained the antibiotics
prescribed and the doses of it. The models were focusing on the prescribed
medicine to make a prediction, so this was a source of data leakage. After
removing these messages, the accuracy of the NLP models decreased by
approximately 6%, these type of messages were found more than 5000 times
inside the data. An example of this message is shown in Figure 3.1.4.

Figure 3.1.2: Examples of the Html tags inside patients’ medical records are shown.

Usually a drop in accuracy is undesirable, however, in this case, since the electronic
recipe was a source of data leakage, it means that the problem was removed and
the underlying task (predicting if antibiotics should be prescribed from the medical
condition of the patient) becomes harder.

Replacing words

A set of words were occluded from the NLP models because, with the help of the
explanations obtained it was possible to see that they were other sources of data
leakage. These words were from different categories; antibiotics, years and names, all
of them were replaced by PAD tokens (a token used in NLP to fill small text inputs so
that every sample in the dataset has the same size). By being replaced by PAD tokens,
the models no longer learned them during training so they could focus on the patients’
conditions.

• Antibiotics. The antibiotics prescribed not only appeared in the Electronic recipe
messages but sometimes inside the medical notes. Removing the ”antibiotics”
resulted in a decrease in accuracy of approximately 3% for every NLP model.
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• Years. The antibiotics class (antibiotics were prescribed), consists of data
collected in years 2012, 2014, 2017 and 2018 whereas the no antibiotics class
(antibiotics were not prescribed), consists of data collected from the year 2018.
The explainability methods showed that the models were focusing on the year
that appeared in the medical notes to make predictions. Since there is a
correlation between the years and the class of the dataset, years were also
replaced by PAD tokens. After replacing the years, themodels had approximately
a 2% decrease in accuracy. Again, this decrease in this case is not negative, since
it means that the source of data leakage has been removed.

• Names. Inside the dataset, some names were found, by manually inspecting
the data. After discussing this with the dataset owners, we concluded that
those names were dentist’s names, usually specialists and when the names of
the doctors were in the text, most of the time antibiotics were prescribed. The
accuracy of the models decreased around 2% without names.

The dataset owners provided a list of antibiotics to remove them from the data. Despite
having the list, it was challenging to get rid of all the antibiotics, since somemedications
were misspelled. In Figure 3.1.3, the antibiotic ”klindamycin” is written, despite
also being written sometimes as ”clindamycin”. Furthermore, some antibiotics were
abbreviated, for example, penicillinwaswritten as pc sometimes in the dataset, making
the task of removing them more complex.

Figure 3.1.3: Antibiotics prescribed inside the medical records.

The years inside the data were detected by searching for number patterns similar to
dates, e.g., 20120811, as in the bottom right of Figure 3.1.4. Nonetheless, sometimes
dates included only themonth and the year. Moreover, the years consisted of two digits
and other times they consisted of four digits so different patterns had to be used to
replace all years from the dataset.

Figure 3.1.4: Automatically generated message: Electronic recipes.

Finally, detecting names was the most difficult task, to do it, a BERT Name Entity
Recognition (NER) model [26] was used, which is a pretrained version of BERT that
recognizes entities in the Swedish language such as persons (e.g., Engelbert), objects
(e.g., Volvo), time (e.g., today), location (e.g., Djurgården), etc. The model was trained
for NER using the SUC dataset [40]. The output of the model is the word detected
with the category predicted and a score. The BERTNER model detected many words
as names and not all of them were actual names, however, by setting a threshold
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of .95, most of the names were found and the number of falsepositive names was
reduced.

Visits

In the dataset, 23.55%of the patients that were prescribed antibiotics visited the dentist
just once, as depicted in Figure 3.1.5. Out of all the patients that were prescribed
antibiotics, 15.58% had their second visit within the next 14 days after the first visit,
shown in Figure 3.1.6. After talking to the domain experts (owners of the dataset),
since a patient that was prescribed antibiotics seldom comes back a few days later, we
concluded that the reason for this is that sometimes if a patient goes to the doctor his or
her medical notes start that day but if the dentist did some examination or procedure,
comments could be added in the coming days to the dataset, making it look as if the
patient had two visits when it was only one. To address this, the visits for each patient
were joined when their second visit was within the next 14 days to count them as only
one visit. By joining the visits within 14 days, the accuracy of the models improved
around 3%.

Figure 3.1.5: Number of visits of patients that were prescribed antibiotics.

Other changes that modified the accuracy of the NLP models were: using only lower
cases for the medical notes and removing other automatically generated messages.
Although, these changes did not impact the model performance significantly as
previously mentioned.

3.2 Evaluation of Transformer models
The models were trained with the patients’ dental records to predict if antibiotics
should be prescribed or not. First, the input text was tokenized, an example of
tokenization is:

In tokenization, text is splitted.
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Figure 3.1.6: Number of days between first and second visits out of the patients that
were prescribed antibiotics.

in token ##ization , text is split ##ted .

Then, the tokens are fed into the models and are transformed to word embeddings
and finetuned to perform a binary classification task, predict whether or not to
prescribe antibiotics. From the results, monolingual and multilingual models were
evaluated.

Themonolingual models selected were themodels trained with data from the National
Library of Sweden (KB), obtaining better performance than previous Swedish models
with a larger amount of text [26]. The multilingual models were chosen because they
obtained stateoftheart results in multiple tasks. The smaller version of XLMR and
mT5 were used due to computational resources. Two different models of XLMR were
used, the original and the model with sentence transformers presented in [34]. The
sentence transformers XLMR was used since the embeddings of all languages are
aligned and we thought it could obtain better results than the common version of the
model.

The models were finetuned starting with the parameters obtained from their
respective pretraining, moreover, the original word embeddings for each model were
used. During training, each NLP model was trained with 80% of the dataset and the
rest was used for validation.

For every model, some coarse hyperparameter search was performed to find a good
learning rate by choosing the model with the highest accuracy in the validation set.
Four different learning rates were tested starting with the learning rate proposed in
each of the models’ publications and then testing smaller and larger values.

The optimizer used was Adam and the metrics used to compare models were accuracy
and F1. To define the F1 score, two other metrics have to be explained first, precision
and then recall. Precision is a measure of how many positives were correct out of all
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the predicted, i.e.,

Precision =
True Positive

True Positive +False Positive
(3.1)

On the other hand, recall measures how many positives were predicted out of all the
actual positives.

Recall =
True Positive

True Positive +False Negative
(3.2)

F1 score then, is a metric often used to take into account missclassifications even when
classes are not balanced.

F1 = 2× Precision ∗ Recall
Precision + Recall

(3.3)

3.3 Explanations
IG and SHAPwere used to obtain explanations to understand the Transformer models
predictions and see what the models were focusing on. Additionally, a comparison
between the individual explanations of both explainability methods was done and
finally, the individual explanations were used to obtain global explanations from each
NLP model to have a sense of what words were contributing the most to each class in
the dataset.

• Individual explanations. These explanations consisted of only one patient’s visit,
the explanations showed thewords that contributedmost to predicting each class
in one sample.

• Global explanations. The explanations consisted of multiple patients’ visits, the
explanations showed which words had a higher weight when predicting each of
the classes in all samples.

The only model that was not used to obtain explanations is mT5, because its nature
(sequence to sequence model) complicates the computation of the explanations.
However, other work such as the model Why T5? (WT5) [31] is capable of explaining
the predictions of T5 but those generative explanations are out of the scope of this
thesis.

3.3.1 Local explanations
To obtain explanations, the input text was tokenized with a maximum length of 512
tokens (the input was truncated if it required more than 512 tokens), however, if
the inputs were smaller, they were not filled with PAD tokens to fit the maximum
length.
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The baselines, as explained in Section 2.2.1, are inputs that result in a neutral
prediction. The baselines x

′
were different for each sample because their size has to

be the same as the input sample. For both explainability methods, x
′
was the same,

starting with a CLS token, ending with a SEP token and in the middle, having PAD
tokens to fit the size of the input sample, as suggested by [18]. Following the example
of Section 3.2, the format of the the baseline x

′
thus becomes:

In tokenization, text is splitted.

in token ##ization , text is split ##ted .

x
′
= [CLS] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [SEP]

As observed, the number of PAD tokens are the same as the number of elements after
text is tokenized (splitted).

Local explanations of IG are obtained from computing the gradients of the output with
respect to the input, for NLP problems, IG uses the embeddings space, where inputs
have a continuous representation. The IG method is illustrated in Figure 3.3.1, the
steps for this method are:

1. The input text is tokenized (the text is splitted according to the tokenization
method used).

2. The tokens are mapped into the embeddings space (word representation that
allows words with similar meaning to have a similar representation).

3. With these word embeddings x and the baseline x′, the path between them is
computed as shown in Equation 3.4 where α are the number of steps taken.

4. The Transformer models make predictions with Equation 3.4 as their input.

5. Gradients from the output of the model are obtained from each step along the
path.

6. All the gradients are integrated along the path between input and baseline.

7. With the integrated gradients the attribution values are obtained in the
embeddings space.

8. Attributions in the token space are computed by performing a summation along
the embeddings dimension.

x′ + α× (x− x′) (3.4)

On the other hand, SHAP method is illustrated in Figure 3.3.2, the steps it takes
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Figure 3.3.1: Diagram of IG explanations.

are:

1. The text is tokenized like in IG.

2. The tokens are perturbed (some parts of the tokens are set to abscent randomly)
those perturbed tokens are the simplified feature vectors x̂.

3. The x̂ are the input of the Transformer models.

4. Using the resulting output of the model and the simplified feature vectors, an
explainable model is trained to fit them.
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5. Finally, the attributions are the coefficients of the weighted linear model used.

As opposed to IG, SHAP works with the tokens while IG needs the embeddings.

Figure 3.3.2: Diagram of SHAP explanations.

The number of steps α along the straight line between the input x and the baseline x
′
,

from Equation 2.3 was chosen to 500 for IG. The number of samples of feature vectors
x̂ to calculate their feature importance with SHAP was 500 as well.

The explainability methods assign a weight to each feature, in this case, the features
most of the time are not words, they are parts of words (tokens). To improve the clarity
of explanations, the tokens were joined to form the original words and the weights of
each of their tokens were added. As a result, each word had a weight which is easier to
interpret than having weights assigned to each token. For Transformer models using
SentencePiece embedding, as explained in Section 2.1.2, the same process was also
done but slightly different since SentencePiece embedding considers spaces between
words a character too.

Local explanations were used to compare both explainability methods and analyze
their results. Furthermore, they were also used to understand better what each model
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is focusing on to make individual predictions.

3.3.2 Global explanations
To obtain global explanations, local explanations of every sample in the validation set
were obtained. Thus, these were samples that were not seen before by the Transformer
models. With the attribution values of each input sample, a dictionary was created,
the keys were all the words inside the validation set and the keys are the attribution
values aggregated. A toy example taken from Captum’s tutorials [18] of individual
explanations frommovie reviews is shown in Table 3.3.1 and the dictionary of this local
explanations is shown in Table 3.3.2.

Table 3.3.1: Example of attributions of individual explanations using movie reviews.

it was the best film ever
0.12 0.05 0.15 0.25 0.04 0.04

it was a fantastic film !
0.15 0.01 0.29 0.33 0.20 0.02

Table 3.3.2: Example of global explanations using movie reviews.

it 0.27
was 0.04
a 0.29
the 0.15
best 0.25

fantastic 0.33
film 0.16
ever 0.04
! 0.02

For the value aggregation, two ways of computing the global attributions values were
tried:

• Absolute values of each word, an example is shown in Table 3.3.2.

• Normalized values for each word (normalized by all the attribution values of the
sample they belong to).

The absolute values of each word were used, since normalized values reduces the
attribution values of each feature and the most frequent words become the top words
without taking into account their importance.

With this procedure, the top words contributing to each class (from both explainability
methods) were obtained. The global explanations were used to see what are the most
important words in a set of samples. The top words found for prescribing antibiotics
were compared to the correct guidelines of prescription presented in [2].
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Results

In this Chapter, the results obtained in the medical classification task from the
Transformer models are presented and analyzed. Additionally, local explanations are
used to compare the results of both explainability methods, the explanations of the
Transformer models and to compare the explanations of cleaned dataset against an
uncleaned version of it. Moreover, the correct criteria for prescribing antibiotics is
presented and the top words obtained from both models are compared between them
and against the correct guidelines. Finally, the global words obtained from different
Transformer models are evaluated and the global explanations obtained with different
versions of the dataset are analyzed.

4.1 Classification task
The classification task consisted of a binary classification where the model had to
decide if antibiotics should be prescribed or not from individual visits of patients’
medical records. The accuracy and F1 score results of the medical classification task
are shown in Table 4.1.1. These metrics were calculated by training and evaluating the
models multiple times (10) with random partition of the data, the standard deviation
is included in the results.

Table 4.1.1: Results of the NLP models.

Model Accuracy (%) F1 (%)

KBBERT 91.35± 0.27 92.05± 0.19
KBELECTRA 90.30± 1.54 90.82± 1.17
KBALBERT 88.09± 0.68 88.49± 1.10
mBERT 90.72± 0.43 91.35± 0.79
XLMR 90.52± 0.57 91.61± 0.51
stXLMR 89.89± 0.47 91.08± 0.48
mT5 88.75± 0.80 89.93± 0.70

As observed in Table 4.1.1, the best model was KBBERT, it had the highest accuracy
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and F1 score. AlthoughKBELECTRAhas the samenumber of parameters (Table 2.1.1)
and it is supposed to have a better pretraining algorithm that allows ELECTRA to
improve BERT’s results in other downstream tasks [3], this did not show any improved
performance on our medical classification task.

The bestmultilingualmodelsweremBERTand the original version of XLMR. mBERT
has higher accuracy, meaning that it mademore correct predictions than XLMR, even
though, XLMR has a better F1 score, so it accounts better the slight imbalance of the
dataset.

The worst model was KBALBERT, however, the results were pretty close to the rest of
themodels considering that themodel has significantly fewer parameters (Table 2.1.1).
Furthermore, the worst multilingual model wasmT5, a possible explanation is that the
best performance from mT5 is obtained with the largest version of the model and for
this work, the smallest version was used.

The original version of XLMR had better results than the sentence Transformers
XLMR. However, we hypothesise that this model capabilities could be better
exploited by further pretraining with English domainspecific data and then fine
tuning to perform the medical classification task making use of its aligned language
embeddings.

In general, the monolingual models had a better performance than the multilingual
models. A direct comparison could be done between KBBERT and mBERT since
they have similar number of parameters and same architectures and pretraining
procedures. Their results are very close, the difference could be attributed to the extra
Swedish data KBBERT had for pretraining.

Overall the results were very accurate, especially taking into account that the dataset
is not perfect and it is estimated that around 1015% of the data was misclassified [2]
which is almost the same error the Transformer models had. Moreover, there is still
room for improving since most publications from domainspecific fields [11, 22] like
themedical [1], suggest that great gains in performance are obtained when further pre
training the models.

4.2 Explanations

Random samples were obtained to compare explanations between Transformer
models and to compare the explainability methods. Moreover, some explanations,
local and global are shown to demonstrate the differences between using a model
trained on a dataset without removing names, years and antibiotics as described in
Section 3.1.
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4.2.1 Local explanations
To visualize each method’s explanation, Captum’s text visualization functionality [18]
was used. For this thesis report, the visualization highlights in green the words that
positively contributed towards prescribing antibiotics, the more intense the color is,
the more important that feature was for the classification. On the contrary, the words
highlighted in red are the features that were contributing against the prescribing
antibiotics class (negative attribution values).

Comparison between IG and SHAP

Figures 4.2.1 and 4.2.2 are explaining the same sample but in Figure 4.2.1 SHAP was
used and in Figure 4.2.2 IG was used. As observed, both explanations have many
words in common but the biggest difference is that SHAP highlights words like ”akut”
(acute), ”svullnad” (swelling), ”pcv” (Phenoxymethylpenicillin) and ”infektion” with
larger attribution values (the words have a more intense color). On the contrary,
the explanation from IG, highlights multiple words but most of them have a similar
attribution value, except only for ”25”.

Furthermore, IG highlights ”ej allmänpåverkan” (”not general impact”) as reason for
not prescribing antibiotics which, is in alignment with the guidelines in [2] for not
prescribing antibiotics.

The code for SHAP uses an L1 regularization, as a result, the attribution values are
sparser since it sets some of the variables to zero resulting in larger and usually fewer
nonzero attribution values. On the other hand, IG does not use regularizationwhich is
more mathematically correct but the interpretation of the explanations is harder since
many words have similar attribution values.

”PCV” should no longer be inside the dataset since it is an antibiotic but this
demonstrates that there are still some medicines inside the dataset. Nevertheless,
since there are very few antibiotics remaining, the model does not consider them as
important as before.
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Figure 4.2.1: Local explanation of KBBERT using SHAP.

Figure 4.2.2: Local explanation of KBBERT using IG.

Comparison between Transformer models

The comparison between explanation of different models using SHAP is shown in
Figure 4.2.3. As observed there are similar words highlighted in the three models.
First, KBBERT (Figure 4.2.3, Subfigure a) has a large attribution value for words
like ”akut” (acute), ”symtomfri” (symptom free), ”symtom” (symptom), ”svullnad”
(swelling) and ”utförd” (performed). Which intuitively, just ”symtomfri” (symptom
free) would be amistake, however, since this method is using aWordPiece embedding,
it is likely that it learned that the subword ”symtom” (symptom) contributes toward
prescribing antibiotics despite having a postfix in this input text.

Secondly, according to SHAP, mBERT is focusing on words like ”akut” (acute),
”trauma” (trauma), ”svullnad” (swelling) and the numbers ”41” and ”1001” which
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could be medical codes correlated with prescribing antibiotics (Figure 4.2.3, Subfigure
b).

Lastly, for the XLMR model (Figure 4.2.3, Subfigure c), a model that has a different
embedding (SentencePiece), gives high importance to words like ”efter” (after),
”symtomfri” (symptom free), ”åker” (goes), ”smärta” (pain), ”svullnad” (swelling) and
”enstaka” (single). Most words make sense probably except for ”efter” (after) and
”enstaka” (single). However, the difference might be due to the embedding used.

These local explanations show what each of the top three models are focusing on to
make predictions. The explanations have somedifferences but overall themodels focus
on similar words. In most cases evaluated, all the Transformer models have words in
common to make predictions of individual samples.
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(a) Explanation using KBBERT.

(b) Explanation using mBERT.

(c) Explanation using XLMR.

Figure 4.2.3: Comparison of the local explanations of different Transformer models
using SHAP.

Explanations for data cleaning

In this sections, we compare explanations of a Transformer model trained on the
dataset with names, years and antibiotics still in it against a model trained on the
cleaned data. The explanations are obtained using IG and SHAP.
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In the explanations obtained with IG themodels were heavily relying in antibiotics and
years tomake predictions. In Figure 4.2.4, thewordwith the largest attribution value is
”pc” (penicillin), as mentioned in Section 3.1, this is not desirable. In addition, ”2017”
is also highlighted in this explanation.

Figure 4.2.4: Local explanation of KBBERT and IG using a dataset with antibiotics,
years and names in it.

After padding the antibiotics, years and names, the explanation shown in Figure 4.2.5
was obtained. As observed, the model shifts its focus to words like ”svullen” (swollen)
or ”svulland” (swelling) which is something the model should focus on since those
words describe the condition of the patient.

Figure 4.2.6, shows an explanation of KBBERT using SHAP with the dataset that still
has names, years and antibiotics in it. As observed, the word with the most intense
color is ”kåvepenin” (antibiotic) so it is the word with largest attribution value of the
input text. Since the model should focus on the patients’ condition to predict a class,
antibiotics had to be removed from the dataset.
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Figure 4.2.5: Local explanation of KBBERT and IG using a dataset without antibiotics,
years and names in it.

Figure 4.2.6: Local explanation ofKBBERTandSHAPusing a datasetwith antibiotics,
years and names in it.

4.2.2 Global explanations

In this subsection, the criteria for prescribing antibiotics is introduced. Additionally,
the top words found with the explainability methods are shown. In the graphs, the
top words are displayed in the yaxis; the xaxis, represents the summation of the
absolute attribution values of each word. When the bars are in green, the words
contributed towards prescribing antibiotics and when the bars are in red, the words
contributed to the opposite class (not prescribing antibiotics), same convention used
for local explanations.
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The correct criteria for prescribing antibiotics is shown in Table 4.2.1, on the other
hand, the incorrect criteria is shown in Table 4.2.2.

Table 4.2.1: Description of criteria for correct indications when prescribing
antiobiotics [2].

Subgroups Criteria

Affected general condition General impact with feeling sick
Fever

Increased risk of spreading Trismus
Extensive swelling submandibular up towards the eye

or backwards in the pharynx
Swollen, sore local lymph nodes

Other Acute Necrotizing Ulcerative Gingivitis (ANUG)
Prescription after specialist consultation

Extensive trauma
Dental sinusitis

Table 4.2.2: Description of criteria for incorrect indications when prescribing
antiobiotics [2].

Subgroups Criteria

Local infection Limited swelling / abscess, for example in
connection with periapical periodontitis

In connection with endodontis Where endodontic causal therapy has been
initiated, but that it has been supplemented

with antibiotics
Pain Pulpit

Pain in postoperative inflammation
(eg after extraction, alveolitis)

Apical periodontitis where the primary cause of
antibiotic treatment has been described as pain

In connection with extraction Antibiotic treatment after complicated
extraction or extraction of several teeth

Other Prescription in connection with
nonspecific mucosal infection / inflammation

In connection with anesthesia

Top words from SHAP and IG

Figure 4.2.7 shows the global explanations obtained by SHAP using KBBERT,
comparing the results obtained with Table 4.2.1. Words like ”svullnad” (swelling) and
”svullen” (swollen), depending on the dentists’ criteria (if the swelling is considered
limited or extensive), could fall in the subgroup of ”Increased risk of spreading”; ”akut”
(acute) and ”värk” (pain) would also require the dentist judgement (acute pain by
infection or from postoperative inflammation) but they could belong to the subgroup
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”Other” and finally, ”feber” (fever), is part of the ”Affected general condition” subgroup.
Regardless of the dentists’ judgement, these words describe the medical condition of
the patient, they are features that should be considered to make a prediction.

These results are very interesting since it appears that the model is focusing on some
of the right words to predict that antibiotics should be prescribed. Nonetheless, words
like utförandedatum (execution date) and utförd (performed) suggest that there are
still some automatically generated messages that could have a strong correlation with
the prediction of the model which is something undesirable since it would be another
source of data leakage remaining in the dataset. Most of the rest of the words would
require context to properly analyze their large aggregated attribution value but it is
very difficult to analyze every sample they appeared on.

Figure 4.2.7: Global explanations for prescribing antibiotics using SHAP and KB
BERT.

In Figure 4.2.8, the top words for not prescribing antibiotics with SHAP and KBBERT
are shown, the aggregated attribution values are negative, not positive as shown in the
graph, nevertheless, the absolute value is displayed to compare them with the words
obtained for the antibiotics class. These words show thatmost of the patients that were
not prescribed antibiotics went to the dentist for hygiene reasons; words like ”karies”
(caries), ”fluorbehandling” (fluoride treatment), ”fluor” (fluorine), ”tandhygienist”
(dental hygienist) and ”tandkräm” (toothpaste) belong to that category.
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Figure 4.2.8: Global explanations for not prescribing antibiotics using SHAP and KB
BERT.

In Figure 4.2.9, the top words for prescribing antibiotics found with IG and KBBERT
are shown. Some of the top words are similar to the words found by SHAP. A list of the
common top words found by both explainability methods for prescribing antibiotics
are shown in Table 4.2.3.

Figure 4.2.9: Global explanations for prescribing antibiotics using IG and KBBERT.
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Table 4.2.3: Common top words found by SHAP and IG with KBBERT to prescribe
antibiotics. The bold words describe the medical condition of the patient.

Common top words

svullnad (swelling)
akut (acute)

diagnos (diagnosis)
eller (or)

tand (tooth)
svullen (swollen)

har (has)
feber (fever)

Many of the words for prescribing antibiotics obtained by IG do not seem as important,
at least intuitively, as the words obtained by SHAP. The reason could be, as mentioned
in Section 4.2.1, the regularization used by SHAP. When calculating the attributions
SHAP has sparser values, unlike IG that gives similar attribution values to multiple
words. Since some of these words probably appear frequently in the data, they end
being selected in this global explanations.

The top words for not predicting antibiotics of Figure 4.2.10 were very similar to the
words obtained by SHAP in Figure 4.2.8. The most interesting feature in this list
is the word utförd (performed), that for SHAP was contributing towards predicting
antibiotics and for IG that word contributed to the opposite class.

Figure 4.2.10: Global explanations for not prescribing antibiotics using IG and KB
BERT.
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Comparison between Transformer models

Figures 4.2.11, 4.2.12 and 4.2.7 are compared in this section to see the different global
explanations of different models. Table 4.2.4 shows the common words between
models, however, in most cases if we see a bigger picture, e.g., top 100 words, most
of the highest words are similar but in different places of importance. Moreover,
KBBERT and KBELECTRA have more words in common. This is expected since
their architectures and embeddings are similar and both models are monolingual pre
trained with the same data. On the other hand, XLMR since it is a SentencePiece
model, considers spaces and punctuation marks as part of the characters, for example,
Figure 4.2.12 has words ”akut” and ”akut.” in the list as two different features. For
WordPiece embeddings, on the contrary, punctuation marks are individual features,
they are not joined with words.

Figure 4.2.11: Global explanations for prescribing antibiotics using SHAP and KB
ELECTRA.

Table 4.2.4: Common top words found by SHAP with KBBERT, KBELECTRA and
XLMR to prescribe antibiotics. The bold words describe the medical condition of the
patient.

Common top words

svullnad (swelling)
akut (acute)

diagnos (diagnosis)
svullen (swollen)
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Figure 4.2.12: Global explanations for not prescribing antibiotics using SHAP and
XLMR.

Validation of data cleaning process

To further validate the process of data cleaning, the KBBERT model was trained
with the last version of the dataset without removing names, antibiotics and years.
The global explanation for prescribing antibiotics with this dataset and using SHAP is
shown in Figure 4.2.13.

The top words in this version of the dataset consist mainly of antibiotics which have
a very large aggregated attribution value. The words ”pc” (penicillin abbreviated),
”kåvepenin”, ”antibiotika” (antibiotics), ”dalacin”, ”ab” (antibiotics abbreviated),
”amimox”, ”amimoxicillin”, ”penicillin”, ”pcv” (Phenoxymethylpenicillin) are all
antibiotics related, i.e., the model was indeed heavily relying on them to predict a
class.

After inspecting the effect of names and years that were also present in this version of
the dataset, despite they contributed towards prescribing antibiotics, they were not as
frequent inside the dataset as the antibiotics. As a result, names and years did not reach
the top 25most influential words. Year 2014was the yearwith highest attribution value
(.3046) for prescribing antibiotics.

Figure 4.2.14, shows the top words that contributed most towards not prescribing
antibiotics with KBBERT and SHAP. Those words are similar to the words of Figure
4.2.8 (the final version of the dataset). Some of the differences arewords like ”citodon”,
”ibumetin” and ”duraphat”, where the first two are pain killers and the last is a fluoride
treatment and with the last version of the dataset, the Transformer models do not
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Figure 4.2.13: Global explanations for prescribing antibiotics using SHAP and KB
BERT without removing antibiotics from the dataset.

consider them as important.

Figure 4.2.14: Global explanations for not prescribing antibiotics using SHAP and KB
BERT without removing antibiotics from the dataset.

Inmost local and global explanations, the explainability methods highlight words that,
at least instinctively, seem like something the models should be focusing, however,
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there are also cases were words are highlighted and they do not seem as relevant. XAI
is still a research area in progress but the results presented have some positives that
encourage further work in this area to keep improving explanations.
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Conclusions

In thiswork, wedemonstrate thatNLPmodels are capable of performing adownstream
classification task with a medical domain dataset in Swedish even without further pre
training with unlabeled domainspecific data. Monolingual models prove to obtain
better performance in accuracy and F1 score for this task using fewer parameters than
the multilingual models.

The local explanations that IG and SHAP produce, show that attribution methods
are capable of explaining predictions from NLP models trained with a medical
dataset. Moreover, the explanations can be easier to interpret and understand
by visualizing words instead of features (tokens). By comparing the attribution
methods, the conclusion is that SHAP is easier to interpret since it has a sparser
explanation, although, IG or SHAP without regularization are more mathematically
correct. Nevertheless, it is important to stress that both methods output similar
explanations. Furthermore, by aggregating the weights of individual explanations,
global explanations can be obtained, resulting in the words that contributed the most
to each class.

It is encouraging for research in the medical domain that global explanations, allow
us to observe that NLP models are capable of learning from data some of the correct
criteria for prescribing antibiotics. Additionally, it is interesting that the Transformer
models tend to focus on similar words to make individual predictions and that the
global explanations are also similar between models. Finally, it is demonstrated that
explanations can not only be used to improvemodels by having a better understanding
of them, they can be used as guidance for data cleaning as well.

Future Work
This thesis work classifies from patients’ medical records if antibiotics should be
prescribed or not and explains the reasons behind those decisions. Nevertheless, the
classifier (model) is forced to decide between a predefined set of possible outcomes
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even though it might have no clue or it could be very uncertain. Therefore, it is crucial
to quantify the uncertainty in the models’ predictions.

Moreover, as mentioned in Chapter 2.3, NLP models improve significantly when they
are pretrained with unlabeled domainspecific data. Although, medical datasets in
Swedish are not common, multilingual models could be pretrained with a medical
English dataset to potentially improve the downstream task in Swedish despite it being
a zeroshot learning task.

Another interesting thing to do in the future would be to train a Why mT5? (WmT5)
model [31] to obtain generative explanations and compare them with the explanations
of the posthoc feature attribution methods. Additionally, further exploring the
effects of the parameters of each explainability method would be interesting and
could improve the quality of explanations. In addition, having domain experts
(dentists) evaluating the explanations would also be very helpful to improve the model
accordingly to their needs.

Finally, a more thorough hyperparameter search could be performed and the larger
versions of models like mT5 and XLMR could be trained to compare their prediction
results with the metrics presented in Table 2.1.1.
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