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Abstract

Recent advances in vision and language models have taken inspiration from the

language transformer network BERT, with promising results on visual and language

tasks. In parallel, studies show that learning from the joint vision and language

embeddings is effective in learning clinical tasks, especially learning from radio-graph

and radiology reports. However, there is a constant need for model transparency

in the healthcare field, and state-of-the-art vision and language models struggle to

explain made predictions. One prominent technique to explain predictions of deep

learningmodels is using a local surrogatemodel, which separates themachine learning

explanations from the machine learning model. In addition, the inclusion of domain

expertise has been shown to be an essential success factor formachine learningmodels

to make an entrance into the medical field. This thesis work explores the feasibility of

resembling domain expertise when using the local surrogate explainability technique

in combination with an underlying vision and language model to generate multi-

modal visual and language explanations. A case study has been carried out to explain

vision and language models trained to predict thoracic findings from radio-graphs

and radiology reports. More specifically, we trained an UNITER and a VisualBERT

network on themachine learning task and then trained explainablemodels to generate

explanations for model predictions. Next, we collected explanations from domain

experts and finally compared those with explanations from the explainable model.

The results show low similarity compared to domain expertise. Nevertheless, the

results also suggest that the particular case study task of explaining thoracic findings

is challenging as annotations from domain experts indicate that there is ambiguity

on what is the ground truth in terms of explanations. Furthermore, despite the low

similarity scores, the explainable models seem to some extent have captured signals in

explaining predictions, and generated explanations can serve as helpful feedback for

data scientists and machine learning engineers in the field.
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Sammanfattning

De senaste framstegen inom syn- och språkmodeller har hämtat inspiration från

språktransformatornätverket BERT och utvisar lovande resultat på visuella och

språkliga uppgifter. Parallellt visar studier att lärande från den gemensamma

inbäddningen av syn och språk är effektivt för att lära sig kliniska uppgifter, särskilt

lärande från röntgenbilder och röntgenrapporter. Det finns dock ett ständigt

behov av modelltransparens inom vård och medicin, och state-of-the-art syn- och

språkmodeller har svårt att förklara sina prediktioner. En framträdande teknik för att

förklara prediktioner inom djupinlärning är att använda en lokal surrogatmodell, som

särskiljer maskininlärningsförklaringar från maskininlärningsmodellen. Dessutom

har inkluderingen av domänexpertis visat sig vara en viktig framgångsfaktor för

maskininlärningsmodeller inom medicinska fältet. Detta examensarbete undersöker

möjligheten att efterlikna domänexpertis vid användet av den lokala surrogattekniken

i kombination med en underliggande syn- och språkmodeller för att generera

multimodala syn- och språkförklaringar. En fallstudie har genomförts för att

förklara syn- och språkmodeller som tränats för att prediktera thoraxfynd från

röntgenbilder och röntgenrapporter. Mer specifikt tränade vi ett UNITER- och ett

VisualBERT-nätverk på maskininlärnings-uppgiften och tränade sedan förklarande

modeller för att generera förklaringar till modell-prediktioner. Därefter samlade vi

in motsvarande förklaringar från domänexperter och jämförde dem med förklaringar

från förklaringsmodellen. Resultaten visar låg likhet jämfört med domänexpertis.

Däremot tyder resultaten också på att för den specifika fallstudie-uppgiften av

att förklara thorax-fynd är utmanande eftersom annoteringar från domänexperter

indikerar på tvetydighet gällande vad som är sanna förklaringar. Vidare, även om

resultaten visar låga likhetsvärden, så verkar förklaringarnsmodellerna ha upptagit en

viss signal till att förklara prediktioner, och genererade förklaringar kan fungera som

användbar feedback för data scientists och maskininlärningsingenjörer i fältet.
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Chapter 1

Introduction

This chapter introduces the thesis study by describing the context, motivation, and

positioning of the work. In addition, the chapter gives an overview of themethodology,

describes the delimitations, and outlines the content of the remaining chapters.

1.1 Background

Multi-modal Machine Learning (ML) refers to training on several input sources that

have different representations and contain complementary information in relation to

the ML task [43]. Moreover, studies show that ML models trained on multi-modal

inputs outperform models that learn from one modality alone [43] [42] [17] [39]. For

instance, AWS has performed a study on multi-modal ML models trained on health

data [42] [41]. The study compares the performance of multi-modal versus unimodal

models to predict the survival outcome of patients diagnosed with non-small cell lung

cancer. The results shows that the multi-modal healthcare model outperforms the

models trained on singular data modalities alone.

Applyingmulti-modalML in the healthcare field is an active area of research and looks

to have a promising impact on patient care [38]. In practice, medical practitioners

consider multiple sources of information for patient diagnosis [20] and, intuitively,

healthcareMLmodels should also benefit from learning frommultiplemodalities. One

up-and-coming area of multi-modal ML in the medical field is to learn from the joint

input space of vision and language. In fact, several studies in the healthcare domain

have confirmed the potential of learning from the joint vision and language embedding
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CHAPTER 1. INTRODUCTION

for clinical tasks, and especially the combination of radio-graphs and radiology reports

[7] [29] [30].

Besides that, multi-modal and languagemodels havemade some recent advancements

in the ML research field. Traditionally, multi-modal vision and language architectures

have learned the image representation by using convolutional neural networks and

have learned the text embedding via recurrent neural networks [53]. After that, the

architectures have performed multi-modal fusion to achieve a joint representation

[53]. However, lately, multi-modal and language models have taken inspiration from

the Bidirectional Encoder Representations from Transformers (BERT) architecture

[27]. BERT is a transformer language model and adopts a pre-training transfer

learning approach [12]. Researchers have been extending this architecture by adopting

the pre-train transfer learning approach to a multi-modal setting [9] [52] [31] [26].

Recent vision and language models learn a joint image-text embedding by first

performing pre-training onmultiple large-scale vision and language data sets and then

fine-tuning this on downstream tasks [9] [52] [31] [26]. Some of the most prominent

architectures with this approach are UNITER [9], LXMERT [52], VisualBERT [26]

that have shown state-of-the-art performance on several vision and language tasks [9]

[52] [31] [26].

1.2 Problem

Even if recent vision and languagemodels have a promising impact in themedical field,

just like many other state-of-the-art deep learning models, they cannot manifest how

and why amodel has made a certain decision. As a result, suchmodels appear as black

boxes [2]. Due to the lack of transparency, such models commonly struggle to enter

the medical field as the ability to reason and explain is critical to earning clinicians’

trust [10] [37] [5]. In addition, compliance and regulations make the transparency

of ML models utterly important in the field [15] [37]. For instance, the General

Data Protection Regulations (GDPR) regulations state the right to receive ”meaningful

information about the logic involved” for automated decision-making [15].

However, even unimodal models suffer from a lack of transparency [51]. Furthermore,

for a multi-modal setting, the complexity of understanding what information and

factors a model has based a decision on increases as the diversity of the input data

increases [23].
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CHAPTER 1. INTRODUCTION

Explainable ML is an active area of research and refers to answering what a model

has learned as well as how and why a model made a prediction [35]. The purpose is

to increase model transparency and detect eventual biases that a model has learned

[35]. One prominent technique to overcome the problem of deep learning models

manifesting as black boxes is to separate the ML model and ML explanations [16].

Local surrogate explainable models generate explanations to model predictions by

training an inherently interpretable model on the underlying model’s outputs. The

explanations are specific around an instance, i.e., a local prediction, and the technique

allows ML practitioners to separate the ML explanations from the model architecture

[16].

In addition, as the field of explainable ML has evolved, there is limited work on how

to evaluate ML explanations [35] [6]. Yet, Doshi-Velex and Kim suggest that for

applications that requires extensive human domain expertise, the evaluation of ML

explanations should also involve domain expertise [13]. In addition, the inclusion of

domain expertise has shown to be an important success factor for ML systems to earn

trust in the medical field [40] [8].

While there is limitedwork onmulti-modal visual and language explanations, previous

work has been carried out on comparing explainability across different types of

modality fusion for vision and language learning [3]. However, to the best of

our knowledge, there is no previous work done on evaluating visual and language

explanations in relation to domain expertise.

1.3 Purpose

Recent advances in vision and language learning look to have a promising impact in

the medical field [7] [29] [30]. However, in an industry with a constant need for

transparency, such models commonly struggle to explain predictions [10] [37] [5] [15]

[37]. Nevertheless, one prominent technique to overcome the problem of black-box

deep learning models is to use the local surrogate explainability technique to explain a

made prediction [16]. In addition, the inclusion of domain expertise is both suggested

to be used to evaluate ML explanations on advanced clinical tasks [35] [6], and have

shown to be a critical success factor for ML system to enter into the medical field [40]

[8]. Propelled by these factors, the research question addressed in this thesis work

is:

3



CHAPTER 1. INTRODUCTION

Considering the combination of an underlying ML model and an explainability

technique, can the local surrogate explainability technique be used to resemble

domain expertise for explaining multi-modal vision and language predictions?

1.4 Goal

The goal of this work is to create an understanding of the feasibility of using the local

surrogate explainability technique to generate multi-modal explanations in terms of

both image and text explanations that resemble domain expertise. In doing so, the

work aims to evaluate an ML system as a whole, meaning the combination of an

underlying vision and languagemodel and the local surrogate explainability technique

and its ability to resemble domain expertise. To achieve this goal, the following steps

are carried out:

1. Train vision and language models on the task of predicting thoracic findings,

namely a VisualBERT and an UNITER model [26] [9].

2. Build explainable models using the local surrogate technique to explain

predictionsmade by the vision and languagemodels. More specifically, build two

types of explainable models: one that is trained by perturbing both modalities

simultaneously and one that combines the output of two models that have been

trained separately on the vision contra the language modalities.

3. Collect annotations of the text and image modalities from domain experts that

represent their explanations for identifying thoracic findings.

4. Compare and evaluate explanations from the explainable models with that of

domain experts.

1.4.1 Benefits, Ethics, and Sustainability

ML practitioners may advantageously use the multi-modal vision-and-language

explainable model described in our work in the medical field to explain predictions

of vision and language models. Such explanations provide insights and serve as an

interactive feedback loop for learning by highlighting decisive parts of the radiology

and image modality. In addition, explanations can be used to provide explanations

of made predictions to medical practitioners, ultimately helping to increase the

4



CHAPTER 1. INTRODUCTION

transparency of vision and language models. Generally speaking, as ML models

become more transparent, the likelihood of detecting eventual biases increases [35].

For example, the model could have possibly learned ethical and gender biases that

would have served unfairly in patient care. Moreover, the reports and X-ray images

used in the studies are anonymized [11]. Nevertheless, such patient data is potential

sensitive information and should be treated accordingly. Therefore the study will not

try to uncover or discuss any unethical or sensitive information or parts of the patient

data. To be added is that the data set used in the study is publicly available [11]. More

details of the data set is given in Section 3.2.2.

1.5 Methodology

For a detailed explanation of the choice of research methodology as well as the

application of the research methodology, please advise Chapter 3. However, this

is a qualitative and abductive study with an applied research methodology [18].

Moreover, the research strategy adopted is a case study approach[18] where we

explain predictions made by vision and language models trained on the clinical task

of predicting thoracic findings. First, we specifically train vision and language models

on the multi-label classification task of predicting thoracic findings from a multi-

modal input consisting of radio-graphs and radiology reports. After that, we build

explainable models to generate a multi-modal explanation of predictions made by

these models. Lastly, we compare these explanations with explanations collected from

domain experts.

1.6 Delimitations

The thesis work does not aim to train state-of-the-art performingmodels on the issued

ML task, but instead, the focus is on explainable models. If the underlying models

happen to generalize poorly and have learned in-significant patterns, explanations

should indicate such behavior. The explainablemodels used in this study will highlight

what seem to be decisive parts of the text and imagemodality. However, if this does not

resemble domain expertise, this could indicate that the model, for instance, contains

biases, which can still be an insightful result.

Moreover, the size of the issued data set serves as a limitation in our study. Suppose
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CHAPTER 1. INTRODUCTION

that the models could train on a larger corpus of radiology reports and X-ray images.

In that case, they could likely better learn the ML problem and likely learn patterns

that better resemble domain expertise. However, given the project scope, we could

only use the OpenI data set[11] which is limited in size. Please advise Section 3.2.2 for

more details on the OpenI data set.

In addition, the study have trained two types of vision and language models, namely

VisualBERT[26] and UNITER[9], and will perform experiments with explainable

models on these two models only. However, we also considered training an LXMERT

model [52], which has a dual-stream architecture, as opposed to VisualBERT and

UNITER, which both have a single-stream architecture. It would have been interesting

to compare the explanations of the LXMERT model to that of the other two, but we

struggled to download the pre-trained weights of the LXMERT model, and given the

project timeline, we did not include this model in the study.

Furthermore, for the choice of explainability techniques to explain predictions made

by the vision and language models, we also considered using SHAP [32]. However, we

ended up building on the Local Interpretable Model-Agnositc Explanations (LIME)

technique to generate our multi-modal vision and language explanations. We could

not include the SHAP technique in our experiments, given the project scope. Still, the

reason for prioritizing to build on the LIME technique is that arguably the explanations

generated by this technique are intuitive for an audience. The simple method of

perturbing the input data and measuring its impact on the model outputs is often

described as one of the major advantages of the LIME technique [35]. Please advise

Section 2.2.3 for a further description of the LIME explainability technique.

Lastly, important to note is that in this work we do not distinguish between

interpretable and explainable ML. While some previous work do distinguish between

these two terms [49], there is arguably no consensus on the distinction between

explainable and interpretableML [34]. For simplicity, we chose tomake no distinction

between the two terms and use them interchangeably. Important to note, however,

is that this works aims to explain prediction made by seemingly black-box models

rather than trying to completely abandon the underlying model and directly train an

interpretable ML model instead.

6



CHAPTER 1. INTRODUCTION

1.7 Outline

Chapter 2 gives an extended background by diving deep into related work and topics

in vision and language learning and explainable ML.

Chapter 3 describes the choice of research method and the application of the research

method with an in-depth description of the carried out experiments.

Chapter 4 gives a detailed description of the visual and language models.

Chapter 5 showcases and discusses the results.

Chapter 6 concludes the work and opens up for future work.

7



Chapter 2

Extended Background

This chapter describes the previous work that this thesis builds on, and provides the

reader with the necessary background knowledge for the remaining parts of the report.

Section 2.1 provides background on vision and language learning, while Section 2.2

helps the reader to understand the necessary components of explainable ML.

2.1 Vision and Language Learning

2.1.1 Introduction to Vision and Language Models

With inspiration from the masked language modeling and next sentence prediction

that occur in the BERT transformer network [12], vision and language transformer

networks such as VisualBERT, UNITER, and LXMERT have been developed [31] [9]

[52]. These models all take on the masked language modeling approach to learn

a joint image-text embedding and perform large-scale pre-training on vision and

language data sets. The pre-trained weights can then fine-tune on specific vision

and language tasks and such vision and language models have domonstrated state-

of-the-art performance [31] [9] [52]. The transformer module of these vision and

language models inputs pre-processed representations of the text and image modality

that involves processing the text through a language encoder and extracting the visual

feature representation with a visual encoder network [9] [26].

8



CHAPTER 2. EXTENDED BACKGROUND

VisualBERT Network

VisualBERT is a pre-trained model for joint vision and language representations

[26]. The model’s architecture is an extension to the prominent Natural Language

Processing (NLP) model BERT [12]. Just like BERT, the model consists of a stack

of attention layers. However, VisualBERT also integrates object detection models

such as Fast Region-based Convolutional Neural Network (R-CNN) in addition to

the transformer layers [26]. The object detection model extracts visual features, and

together with the text input, they serve as input to the VisualBERT model and are

jointly processed throughout the transformers. As in the BERT network, the model

uses self-attention mechanisms to align visual features with elements of the text [26].

The architecture allows a rich interaction between words and visual features such that

the model can capture the intrinsic association between text and images. All in all, the

model learns to capture a joint image and text representation tasks [26].

Moreover, the training approach that theVisualBERTmodel adopts is twofold: 1) First,

parts of the text input are masked and the model learns to predict these by considering

the remaining text and visual inputs. 2) Second, the model learns to match text and

image inputs [26]. By applying this training procedure, the model learns transferable

text and visual representations, which beneficiallymay be used for vision and language

downstream tasks [26].

UNITER Network

The UNITER model is another large-scale pre-trained model for joint vision and

language embedding. It also adopts a transformer architecture and makes use of the

self-attention mechanism. With inspiration from BERT [12], the UNITER model is

pre-trained on four tasks: Masked Language Modelling, Masked Region Modelling,

Image-Text Matching, and Word Region Alignment [9]. With a visual embedding in

the form of visual feature vectors and boxes and language encoding as text tokens,

the transformer architecture learns a joint image and text embedding. Moreover,

the UNITER model applies a masked language modeling conditioned on the entire

image and text input instead of randomly masking joint image and text pieces.

Furthermore, the architecture uses Optimal Transport for theWord Region Alignment

pre-training task. The Optimal Transportmechanism optimizes distributionmatching

by minimizing the cost of transporting the image regions to word regions (and

9



CHAPTER 2. EXTENDED BACKGROUND

vice versa) which aims for more fine-grained image-word alignments. The Optimal

Transport is one of the key enablers for this network to produce a fine-grained joint

embedding of the modalities [9].

LXMERT Network

Both VisualBERT and UNITER apply a single-stream architecture, where a single

transformer is used to learn the joint image and text embeddings [26] [9]. However,

LXMERT (Learning Cross-Modality Encoder Representations fromTransformers) has

a dual-stream architecture, where the architecture has two transformer streams that

learn to encode each of the modalities separately and then use a cross-attention

layer to achieve a joint the embedding [52]. Moreover, as for VisualBERT and

UNITER, LXMERT also performs large-scale pre-training on data sets of image-and-

text with inspiration from BERT, and the model may advantageously be used for

several transfer-learning vision and language tasks.

2.1.2 Related Work on Vision and Language Learning

Li et al. have performed a study on using X-ray images and radiology reports to

train vision and language models on the task of predicting thoracic findings in their

work ”A comparison of pre-trained vision-and-language models for multi-modal

representation learning across medical images and reports [27]. The study uses

four pre-trained vision and language models: LXMERT, VisualBERT, UNITER, and

PixelBERT, and trains on a downstream task of classifying thoracic findings. Their

models train and evaluate using the Medical Information Mart for Intensive Care

- Chest X-ray (MIMIC-CXR) data set [22] and test generalization capabilities on

the OpenI data set [11]. The authors show that the use of pre-trained vision and

language models increases the performance on the particular ML task. In addition,

the study confirms that models that learn from the joint embedding of X-ray images

and text from radiology reports outperform models that only train on one of the

modalities. Further, the result demonstrates that the VisualBERT model has the best

generalization capability with the highest Area Under the Curve (AUC) score across

11 out of 13 thoracic findings. After that, UNITER and LXMERT perform second and

third best in terms of average AUC across the classes.

10



CHAPTER 2. EXTENDED BACKGROUND

2.2 Explainable Machine Learning

2.2.1 Introduction to Explainable Machine Learning

ML models, especially deep learning networks, often cannot manifest how and

why a model made a prediction and therefore commonly appear as black-boxes

[2]. Explainable ML helps to make models more transparent by answering what

a model has learned as well as how and why a model has made a prediction

[35]. Explainability techniques may be segmented across three major splits: local

or global, model-specific or model-agnostic, and intrinsic or post-hoc [35]. Local

explainability techniques explain individual predictions, while global techniques

explain entire model behaviors. Moreover, model-specific techniques refer to when

the explanations derived are specific to themodel’s architecture, such as the weights of

a regression model. Model-agnostic methods, on the other hand, work across models

independently of the model-architecture [35]. Moreover, an intrinsic technique refers

to when the model itself is explainable, and as a consequence, the technique is also

model-specific. Finally, a post-hoc method is an external method that is most often

used after training to generate explanations [35]. Post-hoc methods are often also

model-agnostic since the method is applied after training and are therefore often

independent of the model in use.

Furthermore, explanations for unimodal vision or languge models can be either based

on visualizations showing important parts of the image input or language-based

displaying what pieces of the text are more decisive for the prediction [19]. Multi-

modal vision and language models need explanations from both modalities, namely

images and text explanations [23].

2.2.2 Evaluation of Explainable Machine Learning

Driven by the lack of unity on how to evaluate explainable ML, Doshi-Velex and

Kim [13] suggest three approaches on how to evaluate explainable ML: application-

grounded, human-grounded, and functionally-grounded. Below follows a short

description of each approach [13]:

1. Application grounded evaluation refers to evaluating by conducting experiments

involving human domain expertise within a real applications. The idea is to

evaluate the quality of explanations in relation to its context. The authors gives
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the example that assume there is a special application in mind such as working

with doctors to diagnose patients for a certain disease - the best way to evaluate

explanations is to evaluate it with respect to the task: doctors performing

diagnosis [13]. The application-grounded evaluation approach requires domain

experts within the application task. Such evaluations can be costly and difficult to

set up. In addition, when evaluating ML explanations against human expertise,

one should also consider how well human produced explanations assist other

humans in performing on the same task [13].

2. Human grounded evaluation is an approach that involves simpler human-

subject experiments that still maintain the essence of the application task. The

idea is to simplify the application task in such a way that it still captures the

quality of an explanation. For instance, a human subject might be presented

with pairs of explanations and asked to chose the best quality as opposed to

explaining from scratch without any guidance [13]. Since this approach does not

require highly trained domain experts, it is generally simpler and cheaper than

application-grounded evaluation.

3. Functionally grounded evaluation refers to an approach where no human

expertise is involved. Instead, a proxy is used to evaluate the quality of

explanations. The main challenge of this approach is how to define a proxy

that well assesses the explanation quality in relation to the application task [13].

However, once a good proxy is defined, it can be advantageously used to optimise

an explainable model.

2.2.3 Surrogate Explainable Models

Figure 2.2.1: Illustrating the surrogate explainable technique.

The technique of using an explainable surrogate model refers to replacing a black-box
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model with a simpler interpretative model such as linear regression or decision tree

models [35]. The surrogate model’s training can be thought of as learning to predict

the ouptuts of the original model. The goal is to mimic the behavior of the black-box

model and make use of the explainable architecture to generate explanations.

Moreover, global surrogate models refer to explaining all model predictions, i.e.,

generating explanations for general model behavior. Local surrogate models, on the

other hand, refer to explaining individual-made prediction by the black-box model

[35]. The authors of the LIME explainability technique, suggest that it may be too

complex to approximate global behaviour of an advanced underlying ML model, but

for a local neighborhood, it is more reasonable to expect an interpretable surrogate

model to capture local fidelity, or mimic the behaviour of the underlying model, for a

single made prediction [47].

LIME

Local Interpretable Model-agnostic Explanations (LIME)

is an explainability technique that provides explanations by learning an interpretable

model locally around a single prediction [47]. The goal is to train an explainable

model over an interpretable representation, typically a coalition vector, that mimics

the behavior of the underlying black-box model. A coalition vector is a binary vector

with 1 representing that a feature is present and 0 representing that a feature is absent.

The technique is model-agnostic, so it can be applied to understand predictions of any

black-box model. LIME explanations are generated under the following optimization

problem [35]:

g(x) = argming∈GL(f, g, πx) + Ω(g) (2.1)

Given Equation 2.1, an explanation model, g(x), is produced to the input data x

while minimizing the loss L and keeping the regularization term Ω(g) low. The loss

L measures the closeness of the explanation to the original prediction, and Ω(g)

represents model complexity. G is a set of interpretable models such as decision trees,

linear models, or rule lists. For instance, for a decision tree choice of explainable

models, the Ω(g) might be represented by the depth of the tree, while for a linear

regression model, it could be the L1 or L2 penalty on the weights. πx measures

proximity by defining the size of the neighborhood around the instance x.
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Furthermore, the steps to train an explainable model with LIME can briefly be

summarized as:

1. Define an interpretable representation of features presence or absence, typically

a binary vector with the size of the number of features.

2. Perform perturbations to generate samples around the instance x by randomly

inactivating features from the interpretable representation of x.

3. Compute the distance of the each perturbation to x using the proximity function

πx for each perturbationwhere each sample is weightedwith a proximity function

measuring the closeness to the original instance x.

4. Compute the model’s output for x and all perturbations.

5. Train a simple interpretable model under the constraint given in Equation 2.1.

6. Use the interpretable architecture of the simple model, g(x), to generate

explanations. For instance, explanations can be adhered from the coefficients

of a linear model.

SHAP

SHapley Additive exPlanations (SHAP) is yet another commonly used local surrogate

explainability technique. SHAP computes the impact of each feature for a particular

prediction similar to LIME [32]. More specifically, themethod adopts a game theoretic

approach which computes shapley values from coalitional game theory [35]. This

method aims to fairly assess how to distribute the credits for a prediction. In the

context of game theory, the feature values represent players in a coalition. Further,

SHAP generate explanations with an additive feature attribution method [35]:

g(x) = ϕ0 +
M∑
j=1

ϕjxj (2.2)

In Equation 2.2, g represents the explainable model with a coalition vector, x. ϕj

represents the feature attribution for a feature j as the feature’s shapley value.

In addition, the authors of SHAP give theoretical justifications that the class of

additive feature importance measures has a single unique solution [32]. Furthermore,

SHAP proposes different ways to approximate the Shapley values. One of them
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is KernalSHAP that is shown to be a special case of LIME for a certain choice of

parameters [35].

2.2.4 Related Work on Local Surrogate Explainable Models

Alvi has carried out related work in the space of explaining multi-modal vision and

language models in the work Explainable Multimodal Fusion [3] that serves as an

important source of inspiration for this study. Alvi first compares single versus dual

stream vision and language models on the visual entailment task. A visual entailment

task consists of image-sentence pairs, and the task is to predict whether an image

semantically entails the text in a sentence [55]. In addition, the study explores which

architecture of single versus dual stream performs better in terms of explainability.

For this, the author uses the local surrogate explainability technique to generatemulti-

modal vision and language explanations for the visual entailment task.

More specifically, the authormakes use of LIME to train the local surrogate explainable

models. Next, perform text and image perturbations and then train an inherently

interpretative model to generate explanations. Further, the author makes the image

perturbations by using the LIME feature of extracting superpixels from an image,

referring to a group of pixels in the image used to represent different features in the

image [3]. The author inactivates features by transforming superpixels into black

pixels.

Furthermore, new visual features are extracted, and together with the language

embedding, these are fed to the vision and language model for prediction. By doing

so many times, a local surrogate model train on the data points to eventually generate

explanations [3]. It is important to note that Alvi highlights a significant limitation

to her work: the computationally cost of re-extracting visual features for every new

image perturbation. The computational burden of this action limited the number of

explanation experiments and the number of perturbations for each experiment she

could carry out [3].
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Chapter 3

Methods

This chapter describes the choice of research method and application of the research

method. Section 3.1 elaborates on method choices, while Section 3.2 gives details

on the implementation workflow with descriptions of the data set, training of vision

and language models, training of the explainable models, as well as the evaluation of

generated explanations.

3.1 Choice of Research Method

In order to decide on the most suitable research methods for our study, we advised

Anne Håkansson’s work Portal of ResearchMethods andMethodologies for Research

Projects and Degree Projects which provides a portal of research methods and

methodologies aimed at helping students in their degree project [18].

Håkansson states that the first overarching research methodology choice is to decide

between a quantitative or qualitative method. Quantitative studies are numerical and

aim to explore and test a hypothesis by measuring and quantifying variables. On the

other hand, qualitative studies are non-numerical and aim to understand contexts,

viewpoints, and behaviors to form a hypothesis, theories, or develop inventions

and artifacts. The data sets for qualitative studies are generally smaller than for

quantitative ones [18]. In our study, wewant to formanunderstanding of the feasibility

of creating image and text explanations that resembles domain expertise by using the

local surrogate explainable technique in combination with an underlying vision and

language model. Inherently, the intuitiveness of explanations are rather subjective
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and difficult to formalize [56]. Since we want to build an understanding and reach

a tentative hypothesis on the feasibility of creating vision and language explanations

with the help of local surrogate models, we concluded that a qualitative research

methodology is the most suitable.

Moreover, this is an applied research study, a method that refers to trying to

solve specific practical problems. We considered other research methods such as

experimental research, non-experimental research, descriptive research, analytical

research, and fundamental research [18]. However, we concluded that the applied

research method is the most suitable as we want to address the specific problem

of the lack of transparency of promising vision and language models in the medical

field.

Håkansson also describes that authors must choose between an inductive, deductive,

and abductive research approach. An inductive approach seeks to, from observations,

formulate a general conclusion that is likely but not necessarily certain. In contrast, a

deductive approach makes certain conclusions by verifying or falsifying a hypothesis.

The deductive approach is quantitative by nature and requires a large enough data set

to make a conclusion. An abductive approach uses both the inductive and deductive

approaches. From an incomplete data set and set of observations, the abductive

research approach seeks to find the hypothesis thatmost likely serves as an explanation

for the set. We choose to adopt the abductive research approach as we, from the

limited case study observations, form themost likely conclusion to our issued research

question.

Next, with the motivation to address the lack of transparency of promising vision

and language models, yet the constant need for explainability in the medical field, we

choose to adopt a case study strategy. A case study refers to an empirical study on a

practical phenomenon [18]. Our case study explains predictions made by vision and

language model trained on the task to predict thoracic findings from radio-graphs and

radiology reports. By evaluating the generated explanations, we will then formulate an

answer to our research question.

Moreover, since we adopt a case study strategy, a suitable data collection method is a

case study methodology [18]. We have made an explicit study on a thoracic findings

data set, namely the OpenI data set [11]. Please advise Section 3.2.2 from an in-depth

description of the data set used in the study. From this data set, we have trained
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the vision and language models and used the input data to generate explanations.

However, in addition to applying a case study data collection methodology, we also

use questionnaires [18] to collect annotations of explanations by domain experts. For

this, we design a labeling environment that Section 3.2.5 describes.

3.2 Application of Research Method

3.2.1 Workflow Overview

Figure 3.2.1: Schematic figure illustrating the training of the vision and language
models.

Figure 3.2.1 illustrates the workflow of training the vision and language models. First

of all, we have carried out pre-processing steps on the OpenI data set. The major

steps are tokenization of the text modality and visual feature extraction of the images.

Please advise Section 3.2.2 for more details on the data set and pre-processing steps.

The tokens and visual features together make up the input space for the vision and

language models used in the study. The vision and language models are fine-tuned on

the downstream task of classifying three thoracic findings: Atelectasis, Cardiomegaly,

and Nodule. The models learn to project the text and visual features to a latent

space with the same dimensions [9] [26]. Finally, a classification head is added to

the joint image and text embedding to perform the multi-class classification task.

The classification head generates a probability matrix across the classes of thoracic

findings, and with that, we generate the predictions. Please advise Section 3.2.3 for

further details on model training and evaluation. We downloaded the pre-trained

weights for the two architectures used, namelyUNITERandVisualBERT. Both of these

models have in previous studies demonstrated state-of-the-art performance on vision

and language tasks [9] [26]. The transformermodule of bothmodels inputs text tokens

and visual features in terms of box positions and associated visual embedding vectors.
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Therefore, these models were considered suitable for our explainability experiments

that specifically aim to perturb those features. Please advise 3.2.4 for more details on

the perturbations.

Figure 3.2.2: Schematic figure illustrating the training of a local surrogate explainable
model.

Once the training was completed, we built explainable models to explain the

predictions by the vision and language models. Figure 3.2.2 illustrates the workflow

of training an explainable model. In essence, visual features and tokens are perturbed,

and proximity to the original vector is computed for each perturbation. After that, new

model outputs are generated by feeding the underlying vision and languagemodel with

the perturbed input vectors. Next, we compute the prediction loss between the new

model outputs in relation to the original model output. The original model output

refers to the output from feeding the model with the original input vector. Finally,

we fit a linear regression model and use the interpretable architecture to generate

explanations by using the weights of the linear surrogate model.

The reason for perturbing specifically pre-processed tokens and visual features as

oppose to raw data is twofold: First, it explores an alternative pathway targeting the

limitation in Alvi’s work of having to re-extract visual features for every new image

perturbation [3]. Second, it could serve as an interactive feedback loop by perturbing

the direct inputs to the transformer modules of the VisualBERT and UNITER model

and generating explanations considering specifically those features. Highlighting of

important features in explanations could serve as helpful feedback for data scientist

and ML engineers by giving guidance for model training. For instance, explanations

could indicate that the model puts attention on irrelevant features which could give

guidance on the pre-processing steps of generating tokens and visual features from

the radiology reports and X-ray images.

Moreover, our implementation is inspired by how LIME generates explanations [47],

butwe havemade extensions to amulti-modal case aswell as perturbing visual features
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as opposed to perturbing pixel regions of an image.

3.2.2 Data Set and Pre-Processing

We used the publicly available OpenI data set for model training and evaluation. The

OpenI data set, created by the Indiana University, contains 3851 matching data points

with radiology reports and chest X-ray images, with labels of 14 thoracic findings from

unique patients. Radiologists have manually performed the labelling of the thoracic

findings [11]. We also considered using the MIMIC-CXR data set, which also contains

radiology reports and chest X-ray images as well as similar labels [22]. In fact, after

exploring the MIMIC-CXR data set and performing our pre-processing steps, the data

set had 150 000 data instances, so significantly larger than the OpenI data set. Yet,

the labels MIMIC-CXR data set are generated automatically from images and reports

using ChexPert [21] and NegBio [44]. In contrast, the labels from the OpenI data set

are produced by professional annotators and can therefore be viewed as more reliable.

In addition, we had the visual features of the X-ray images in the OpenI data set readily

available for training [27], while for theMIMIC-CXRwe would have had to implement

a visual feature extractor object network to extract the features ourselves. Extracting

the visual features of the MIMIC-CXR data set turned out to involve several technical

challenges. Given the project timeline and the more reliable labels, we chose to build

our study using only the OpenI data set.

Both of the transformer modules of UNITER and VisualBERT inputs text tokens and

visual features [26] [9]. We pre-process the text from the radiology reports through a

BERT encoder network to produce text tokens [12]. The visual features were extracted

using the bottom up top down attention network Detectron2 [54]. The resulting visual

features contains visual boxes paired with visual embedding vectors. In total, each

image is representedwith<36 x 4>box position vectors and<36 x 2048> visual feature

embedding vectors.
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Figure 3.2.3: Displays data distribution across the classes of thoracic findings before
down-sampling.

Figure 3.2.4: Displays data distribution across classes of thoracic finding post down-
sampling.

Moreover, given the relatively unbalanced class distribution of the OpenI data set,

as can be seen in Figure 3.2.3, the following three labels were selected out of the 14

thoracic findings: Atelectasis, Cardiomegaly, and Nodule. These labels were among

the most dominant ones in the data set and helped to balance the class distribution

and simplified model training as can be seen in Figure 3.2.4. The down-sampling, i.e.,

transforming the data set down to three classes, reduced the data set to a total of 786

data points (where 139were negative, i.e., none of the three findings). Further, the data

set was divided into a train set of 594 data points and a test set with 192 instances. The

split into train and test was done to preserve the same class distribution to the largest

extent possible.

3.2.3 Train and Evaluate Vision and Language Models

For training, we load pre-trained weights of the VisualBERT and UNITER networks

which both have been trained mainly on the COCO data set [28] as well as the VQA
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2.0 [1] and Visual Genome [24] data sets. For both models, we use the visual question

answering architecture [26][9] and set the number of questions equal to the number of

classes, which enables us to treat it as a multi-label classification task. This approach

has been adopted in previous work of predicting thoracic findings from the OpenI data

set [27]. Moreover, we fine-tune with seven epochs on the VisualBERT model and use

eight epochs for the UNITERmodel chosen tominimize the training loss. As a result of

the fine-tuning, the models learn a joint image-and-text representation. Moreover, we

use a classification head with a linear network to generate a probability matrix across

the thoracic findings. For both models, we use a weight decay of 5e-4 and a learning

rate of 1e-5. In addition, both of the transformers optimize with the Adam optimizer,

andwe use cross entropy as the loss function. Finally, we report a confusionmatrix and

AUC score on the test data set. We train using PyTorch inside the Amazon SageMaker

ML platformwith a GPU acceleratedml.g4dn.xlarge instance powered by oneNVIDIA

T4 GPU.

3.2.4 Build Explainable Models

Explainable model: Approach: Description:

Separate Perturbations
Perturb only Text Tokens while keeping Visual Features Fixed

+
Perturb only Visual Features while keeping Text Tokens Fixed

Finds text and image explanation by combining the outcome
of one explainable model that perturbs only the visual
embedding and one that perturbs only the tokens.

Simultaneous perturbations Perturb both Modalities Simultaneously
Finds text and image explanations by training an explainable
model that perturbs both modalities simultaneously.

Table 3.2.1: Describes the two explainable models of simultaneous and separate
perturbations.

As aforementioned, we fit a simplemodel to explain individual predictionsmade by the

vision and languagemodels by perturbing the input data. Our goal is to generatemulti-

modal explanations, i.e., text and image explanations. To do so, we need to perturb

bothmodalities to fit a simple model that can generate explanations for eachmodality.

Intuitively, there are two ways of achieving this goal, either we perturb the vision and

language modality separately and combine the generated explanations afterward, or

we perturb both modalities simultaneously and build an explainable model for that.

With this motivation, we carried out three types of perturbations:

• First, we perturb only the tokens while keeping the visual features fixed.

• Next, we perturb the visual features while keeping the tokens fixed.

• Lastly, we perturb both modalities simultaneously.
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The outcomes of the first two together serve as a multi-modal explanation, while the

latter one does so on its own. For more details on the visual and language explainable

models, please visit Chapter 4.

3.2.5 Evaluate Explainable Models

To evaluate generated explanations from the explainable models, we let radiology

domain experts highlight important words and important parts of the images [14]

[4] [33]. Referring to the three evaluation approaches of explainable ML by Doshi-

Velex andKim[13] presented in Section 2.2.2, wemakeuse of the application-grounded

evaluation approach. In our case study, we have a special application in mind, namely

to explain model predictions of thoracic findings. Moreover, the identification of

explainable features for this ML task requires domain expertise. Accordingly, to

evaluate the explanations from the explainable model, it should be logical to evaluate

against human-subject domain experts performing on the same task.

For this, we collected annotations from radiology domain experts on 46 sample data

points. The sample data points were extracted from the test set to mimic the class

distribution of the test data set. We created an annotation environment for domain

experts to highlight the X-ray images and radiology reports. In total, we managed to

collect explanations from three domain experts [14] [4] [33].

Figure 3.2.5: Displays an example of a text annotation job from the annotation tool.
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Figure 3.2.6: Displays an example of an image annotation job from the annotation
tool.

Figure 3.2.5 and 3.2.5 shows an example of both a text and image labelling job from the

created annotation environment. The labeling jobs were created using the serverless

cloud tool Amazon SageMaker Ground Truth [50]. We launched one labeling job for

the image modality and one for the text modality and sent a link to the domain experts

leading to a web application to perform the annotations. Before the domain experts

made their annotations, we organized a meeting to demonstrate with examples how

to annotate both the X-ray images and radiology reports. Specifically, we asked the

domain experts to, given the presence of thoracic findings in a sample, draw bounding

boxes around themost decisive or pathological regions in the image, aswell as highlight

the set of most important words for identifying the specified thoracic findings.

To evaluate the success of our explanations generated by the explainable models,

we compared them with the annotations made by the domain experts. We measure

the degree of overlap for the text modality by computing the Jaccard similarity [25]

between identified decisive words of the explainable models compared to words

highlighted by the domain experts as in Equation 3.1. For the image modality, we

compute the intersection of the union [46] of identified regions of the explainable

model and regions annotated by the domain experts as described in Equation 3.2.

SimText(Dw, Ew) =
Dw ∩ Ew

Dw ∪ Ew

(3.1)
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In Equation 3.1, Dw represents the identified set of explainable words for the domain

expert, while Ew refers to the set of important words highlighted by the explainable

models.

SimImage(Db, Eb) =
Db ∩ Eb

Db ∪ Eb

(3.2)

In Equation 3.2, Db refers to drawn boxes by the domain expert, while Eb represents

boxes identified by the explainable model.

Except for comparing the similarity of the explanations from the explainable model

and the domain experts, wemade two additional comparisons to serve as benchmarks.

The first one was a comparison between the domain experts. To better understand the

degree of similarity of the explainable model results to annotations of domain experts,

it should be helpful to measure the similarity between domain experts [13]. Therefore,

we computed the text and image similarity between the domain experts as an additional

benchmark. The other additional comparison was to produce a random baseline by

randomly picking a language and image explanations. We randomly choose decisive

words and visual boxes to represent random explanations. Next, we compared the

similarity of those random explanations to that of domain experts.
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Visual and Language Explainable
Models

This part gives a more detailed description on the visual and language explainable

models. The Section 4.1 is more elaborate, while the Sections 4.2 and 4.3 extends the

first description.

4.1 Perturb only Text Tokens while keeping Visual

Features Fixed

Figure 4.1.1: Schematic figure illustrating the training of an explainable model
perturbing only the text modality while keeping the image modality fixed.

Figure 4.1.1 illustrates the implementation workflow of training an explainable model
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from only perturbing the text modality. Our implementation is inspired by the python

LIME implementation [48]. The explainable model takes as input:

• Original prediction - The probability matrix generated from the original inputs.

• Model - The model used to generate the original prediction.

• Text - The radiology report.

• Text tokens - The original pre-processed tokens.

• Visual feature boxes - The positions of visual feature boxes in the input image.

• Visual feature embedding vectors - The original feature vectors associated with

each box.

In addition, the model has a number of hyperparameters:

• Number of samples - The number of perturbations for a single prediction to be

explained.

• Number of important words - The number of important words to highlight in

the explanation output.

• Number of features - The number of top-ranked perturbation vectors to extract

important words from.

• Distance metric - The distance metric used to compute distance of a perturbed

vector to the original vector.

• Kernel width - A float value between 0 and 1 that impacts the weights assigned to

a perturbation vector where a smaller number will givemore weight to perturbed

vectors that are closer to the original input vector.

Moreover, the model generates text explanations by performing the following training

steps:

• First, the model generates perturbations of the original text token vector by

randomly turning on and off tokens and stores the associated words that have

been inactivated. We represent each perturbation as a binary vector where each

vector position represent whether a token is active or not. Further, we compute

the pairwise distance between perturbation vectors and the original vector. Note

that the original input vector is represented by an array where all positions are
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set to one as this refers to all features being active.

• Moreover, we assign a weight to each perturbation sample by feeding the

computed distances into a kernel function as in the LIME implementation [47].

The kernel functions assignsmoreweight on samples closer to the original vector.

The logic behind givingmoreweights to closer vectors is that if such a vector ends

up having a large impact on the model output, then those few tokens that have

been inactivated in the sample are likely to be decisive ones [47].

• Next, we feed the perturbed vectors to the model. For this, we use a wrapper

function that inputs the text tokens while constantly keeping the visual features

fixed, and use these inputs to make model inference. Finally, we compute the

cross entropy loss between the outputted probabilitymatrix to that of the original

prediction.

• Finally, we fit a linear model on the perturbed feature vectors, using the

computed weights, and the prediction losses. Then we take out the vectors

associated with the top-ranked coefficients. From these perturbed vectors, we

collect the inactivated words, and extracts the most frequent ones to serve as the

text explanation.

4.2 Perturb only Visual Features while keeping Text

Tokens Fixed

Figure 4.2.1: Schematic figure illustrating the training of an explainable model
perturbing only the image modality while keeping the text modality fixed.

Figure 4.2.1 illustrates the training of the explainable model that only perturbs the
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image modality. The implementation is similar as described in Section Perturb only

Text Tokens while keeping Visual Features Fixed. However, this time we keep the text

tokens fixed and only perturb the visual features. The model takes the same inputs

as previously described except that the hyperparameters differ slightly: Number of

important words is removed, but another parameter is added, Probability p, which

is the probability parameter used in a binomial function to generate perturbed visual

features.

The visual features consist of box positions and visual embedding vectors mapped

together. Important to note is that there is a fixed size of 36 visual boxes and visual

embedding vectors for each image. More specifically, the choice of possible image

explanations is limited to the set of 36 boxes to choose from.

Furthermore, we use a binomial distribution function to generate perturbations of

the original visual features where all ones represent the original input vector while

the perturbations also contain zeros representing inactivated visual features. The

Probability p hyperparameter determines the probability of inactivating a feature. The

inactivation of a feature means that the associated visual feature vector’s elements are

all set to zeros.

To the best of our knowledge there is no previous work that uses the approach of

perturbing the visual features as a mean to generate visual explanations using a local

surrogate explainable model. The logic is similar to how LIME generates image

perturbations, but LIME perturbs pixel regions instead of visual boxes [47].

Furthermore, as described in Section Perturb only Text Tokens while keeping Visual

Features Fixed, we assign a weighted score to each perturbation. The wrapper

function keeps the text tokens fixed this time, while varying the visual features, and

performs model inferences accordingly. Finally, we fit a linear model and, this time,

use the coefficients to find the top most decisive perturbations of visual features and

collect the inactivated boxes for those perturbations. As an output, themodel draws the

most decisive boxes onto the input image, which serves as the image explanation.
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4.3 Perturb both Modalities Simultaneously

Figure 4.3.1: Schematic figure illustrating the training of an explainable model
perturbing both modalities simultaneously.

Figure 4.3.1 illustrates our implementation of an explainable model that perturbs

both the vision and language modality simultaneously. The implementation is a

combination of the ones described in the Sections Perturb only Text Tokens while

keeping Visual Features Fixed and Perturb only Visual Features while keeping Text

Tokens Fixed. The inputs of this model are the union of the two input sets of the

two previously described models. In addition, the multi-modal explainable model

has hyperparameters specifying the number of important perturbed feature vectors

to consider for the text explanation, as well as for the image explanation. Additionally,

the hyperparameters of themulti-modal explainablemodel allow to specifywhat kernel

width andwhat distancemetric to usewith dedicated parameters targeting the text and

image modality separately.

First, the same number of perturbations are generated for the tokens and the visual

features, and weights are computed for each sample of each modality. Next, the

weights from each modality are first normalized and then summed up, and then the

resulting weight vector after the summation is also normalized. Next, the token- and

visual perturbations are concatenated, each sample is fed for model inference, and

prediction loss is computed. Finally, we fit a linear model and extract the top ranked

vectors with regards to associated coefficients. Similar to the two previously described

models, we then output the most decisive words and visual boxes, and, together, they

serve as a multi-modal explanation.
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CHAPTER 4. VISUAL AND LANGUAGE EXPLAINABLE MODELS

4.4 Training Details

We train the explainable models using PyTorch inside the Amazon SageMaker with

a GPU accelerated ml.g4dn.xlarge instance as model inference of the vision and

language models requires CUDA.
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Chapter 5

Results and Discussion

This chapter presents and discusses the results. The first part reports the underlying

model performance on the test data set, while the second part presents and discusses

the evaluation of the explainable models.

5.1 Underlying Model Performance

Even if the focus of our work is on explainable models, a necessary pre-requisite for

the case study was to train vision and languagemodels on the clinical task of predicting

thoracic findings. As aforementioned, two vision and languagemodels were trained on

this task, onewith theVisualBERTarchitecture and onewith theUNITERarchitecture.

Figure 5.1.1 displays the ROC curves for the models across the findings. Both of these

figures report performance on the test set. To be noted is that this is a multi-label

classification task, so a particular instance may contain one or more thoracic findings.

The negative examples, i.e., the samples with none of the three findings, were handled

as negative classes in the evaluation.

As can bee seen in Figure 5.1.1, the VisualBERT and UNITER report AUC scores above

0.97 for all three thoracic findings. Yet, as described in Section 3.2.2, the data set is

relatively small, so there is a risk of learnt biases which is further discussed in Section

5.2.
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Figure 5.1.1: ROC curve for VisualBERT and UNITER models across findings.

5.2 Evaluation of Explainable Models

To evaluate the results of the explainable models, explanations from domain experts

were collected and used as a benchmark. Table 5.2.1 presents the similarity of the text

respectively the image explanations for each underlying model and for each type of

explainable model. In addition, Table 5.2.4 shows average similarity scores across the

variety of underlying models, perturbation types, and domain experts.

Text explanations refer to identified important words given a prediction of a thoracic

finding, and the similarity is computed as in Equation 3.1, i.e., the intersection

over the union of identified words from the explainable model and domain experts.

Image explanations refer to identified important regions of the X-ray images and the

similarity is the intersection of union between the explainable model explanations and

that of domain experts as described in Equation 3.2. However, please advise Section

3.2.4 for a more detailed description on these metrics and the evaluation approach of

explanations.

Table 5.2.1: Displays similarity of text explanations and image explanations between
explainable model and domain experts across experiments and type of underlying
models.

Domain expert 1 Domain Expert 2 Domain Expert 3

Underlying Model: Experiment:
Text
similarity:

Image
similarity:

Text
similarity:

Image
similarity:

Text
similarity

Image
similarity

UNITER Simultaneous Perturbations 0.083 0.119 0.085 0.156 0.096 0.238
UNITER Separate Perturbations 0.103 0.102 0.122 0.172 0.138 0.261
VisualBERT Simultaneous Perturbations 0.073 0.091 0.079 0.016 0.100 0.261
VisualBERT Separate Perturbations 0.128 0.102 0.171 0.172 0.117 0.302

Average: 0.097 0.104 0.114 0.165 0.113 0.270

Average text similarity
across domain experts:

0.108

Average image similarity
across domain experts:

0.178
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As can be seen in Table 5.2.1, the similarity scores indicate that the explanations from

the explainable model and domain experts are far from identical. The text similarity is

rather low, close to 11%, while the image similarity on average is higher, yet only around

18%. However, in discussion with radiology domain experts [14] [33] [4], the experts

independently mentioned that reasoning and explanations vary from one domain

expert to another for this particular task. To measure the level of variation between

annotations gathered from the experts, text and image similarity were computed

between the domain experts. The results can be seen in Table 5.2.2. While these

comparisons received higher similarity scores compared to those in 5.2.1, the scores are

still far from an identical score, i.e., a similarity score of 100%. Rather, the similarity

scores support notable variations between domain experts’ explanations.

Table 5.2.2: Displays the similarity of text explanations and image explanations
between domain experts.

Text Similarity: Image Similarity:
Domain Expert 1 and 2 0.62 0.38
Domain Expert 1 and 3 0.36 0.32
Domain Expert 2 and 3 0.40 0.34

Moreover, suppose the outcomes of the explainable models turned out to be very

close to explanations from domain experts. In that case, we might conclude that the

explanations well resemble that of domain expertise. Yet, given the notable differences

between domain experts, as can be seen in Table 5.2.2, such a result seems difficult to

reach. Rather, these results indicate that this is a difficult task to explain and that

the ground truth is ambiguous in terms of true explanations. More specifically, the

results suggest that there is ambiguity among domain experts on what are contributing

features from radio-graphs and radiology reports to explain thoracic findings. With

this motivation, the similarity scores between the domain experts could represent an

upper bound for the explainable model rather than a perfect match of 100% similarity.

So, if themodel would reach the same level of similarity as between the domain expert,

we might conclude that explanations resemble domain expertise. However, to make

further conclusions on our explanations, it could be beneficial to compare with a

lower bound as well. Instead of generating explanations via our explainable model,

we randomly picked words from the radiology reports and visual boxes extracted

from the X-ray images to represent random explanations. Then, computing similarity

scores between random explanations and explanations from domain experts serve as a

baseline or a lower bound. Table 5.2.3 showcases the similarity scores for the resulting
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random baseline.

Table 5.2.3: Displays the random baseline showing text and image similarity domain
experts for randomly choosing words and visual boxes.

Domain Expert: Text Similarity: Image Similarity:
Domain Expert 1 0.038 0.059
Domain Expert 2 0.051 0.107
Domain Expert 3 0.041 0.130

Average: 0.043 0.099

As can be seen in Table 5.2.3when randomly choosing explanations ofwords and visual

boxes, the similarity scores are lower than those of the explainablemodel. Even though

the difference between the similarity scores of the randombaseline and the explainable

model is not massive, one can distinguish a general trend. The results indicate that

although there is a difference between the similarity scores of the explainable model

and the similarity scores between domain experts, it is still better than the random

baseline. Hence, although the generated explanations had relatively low similarity

scores to domain experts, the explainable model seems to some extent have captured

signal in explaining the predictions.

Even though the similarity scores measure the similarity to domain experts, to learn

more about the explanations of the explainablemodels, it should be helpful to examine

some examples of image and text explanations. Figure 5.2.1 and 5.2.2 showcases three

examples each of image explanations and Figure 5.2.3 and Figure 5.2.4 display three

example each of text explanations.

Figure 5.2.1: Displays three examples of explanations from explainable models (blue
boxes) and explanations from domain expert (green boxes).
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Figure 5.2.2: Displays three examples of explanations from explainable models (blue
boxes) and explanations from domain expert (green boxes).

When studying Figure 5.2.1, it seems that even though the model somewhat matches

domain expertise, the boxes look too large and rigid compared to those of the domain

experts. There is a limited set of visual boxes that the explainable model could choose

from in our experiments. The fixed amount of visual boxes likely limits how well the

generated explanations could resemble that of domain expertise. Moreover, example

A in Figure 5.2.2 is a particularly interesting one to study. For this example, the

underlying UNITER model predicted only atelectasis, but in reality, the ground truth

says both atelactasis and cardiomegaly. The domain experts were given the ground

truth and drew their boxes accordingly, represented by the green boxes in the image.

As can be seen, the domain expert highlighted the heart region, the horizontal space

between the ribs, as well as a region at the mid-left where the latter contains the

atelectasis region [33]. Now, looking at the blue box drawn by the explainable model,

this one seems to more or less also capture the atelectasis region. However, the

explainable model did not highlight the heart region, which typically is associated with

cardiomegaly [14]. In this example, it seems that the explanations from the explainable

model compared to domain expertise could explain why the model only predicted

atelectasis but missed to include cardiomegaly.

Moreover, when studying example B and C in Figure 5.2.2, one can see that the model

seems to focus on the outer parts of the image as these were highlighted as the most

contributing region to the made prediction. Also, these examples highlight letters and

numbers in the corner of the images. Such explanations could suggest that the model

has captured some signal in these letters and numbers, which generally should be

irrelevant for the ML task. Potentially, the model has learned bias in this case. Our

data set is relatively small, and we cannot disregard learned biases. One natural way

to overcome this is to train the models on a more extensive data set, and it should be a
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natural next step for future work. Nevertheless, another hypothesis to deal with what

looks to be learned biases in detecting the letters and numbers could be to add pre-

processing steps to the X-ray images. From looking at the explanations provided by

the domain experts, we noticed that they consistently are centered around the thorax

region. Hence, the outer part of the images seems to be less relevant for predicting

the thoracic findings. We hypothesize that by helping the underlying model as well as

the explainable model to focus on the thoracic regions of the images, the explainable

models could better resemble explanations of explainable models. Unfortunately, we

could not explore such guidance in this work. However, future work could explore

eventual improvements by, for instance, blurring outer regions of the X-ray images or

applying other denoising pre-processing techniques. Such pre-processing techniques

would typically mean that new visual features need to be extracted from the images,

and the underlying models and explainable models should retrain accordingly.

Figure 5.2.3: Displays three examples of words from domain experts and from the
explainable models.

Figure 5.2.4: Displays three examples of words from domain experts and from the
explainable models.
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Furthermore, Figure 5.2.3 and 5.2.4 display three examples of text explanation each.

For examples A and B in Figure 5.2.3 the explainable model manages to capture a

majority of the words that the domain expert highlighted, and also the underlying

model predicted the correct findings. However, the model predicted atelectasis for

example C but failed to predict the thoracic finding nodule. Interestingly enough,

the explainable words from the explainable model missed to include nodule that the

domain expert had highlighted in the radiology report.

While studying the examples in Figure 5.2.4, it is notable that the length of the domain

experts’ explanation words varies. However, the size of the explainable model remains

the same. One major limitation of the text explanations is that the number of words

to output is a pre-defined hyperparameter of the explainable model. However, when

collecting the language explanations from domain experts, they were allowed to vary

the number of words that represent an explanation. In practice, this means that the

explainable model always generates a fixed number of words, in this case, five words,

while the domain experts’ explanations may vary in size from one to eight words.

Likely, the fixed size of outputted words harms the text similarity score. Therefore,

we considered using the coefficients associated with each of the important vectors to

aggregate the importance score of eachword and rank the outputtedwords. Following,

one can use this ranking to match the same number of words as the domain experts

before computing the similarity. We hypothesize that this would improve our scores

but choose not to follow this path. The reason for not doing so is that the information

on the size of domain experts’ important words would not be available in practice and

would serve unfairly in the evaluations. Nevertheless, this is a limitation to our work,

and future work is encouraged to study how to fairly vary the size of outputted words

of the explainable models. Possibly, introducing a threshold on what words to output

could help, but future work needs to explore how to determine such a threshold. In

addition, it is worth noting that even the LIMEpython implementation takes the size of

the number of explainablewords to output as a pre-defined input parameter [48].
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Table 5.2.4: Displays average text and image similarity for both underlying vision and
language model, as well as for each type of perturbation. The averages derives from
the similarity scores presented in 5.2.1.

Average Text Similarity Average Image Similarity
UNITER 0,101 0,173
VisualBERT 0,109 0,173
Simultaneous Perturbations 0,088 0,122
Separate Perturbations 0,104 0,192

Moreover, one interesting take from the experiments presented in Table 5.2.1 is

the comparison between separate and simultaneous perturbations for training the

explainable models. One of the main questions that arose when we designed the

explainablemodelwas how to generate themulti-modal explanations. Either one could

train separate simple models with their perturbations and then combine the output

explanations of the two, or one could train a joint explainable model that trains on

perturbations from both modalities. Taking a closer look at the similarity scores in

Table 5.2.4, one can distinguish that there seems to be a trend that the explainable

models with separate perturbations generally receive higher similarity scores than

simultaneous perturbation models. For the models with separate perturbations, each

surrogate model for the image and text modality could be tuned independently. In

contrast, there is an interaction between the hyperparameters from each modality

for the explainable model with simultaneous perturbations. Please advise Section

3.2.4 for more details on hyperparameters. We hypothesize that the interaction of

hyperparameters of perturbing both modalities simultaneously makes the fine-tuning

more complex and challenging to optimize. In addition, it can also be that one of

the modalities contains more signal than the other making the dynamics between

the simultaneous perturbation more complex, while the annotation from the domain

experts does not capture such relationships. The domain experts annotated the

modalities separately, whichmight also favor the separate perturbation technique. For

future work, it would be interesting to investigate the strength of the signal from each

modality for explaining a prediction.

In contrast, when studying the similarity scores in Table 5.2.1 between the UNITER

and the VisualBERT model, we could not distinguish any general trend. Instead, the

similarity scores from explaining predictions across the two underlying vision and

languagemodels seem indifferent. Hence, the results suggest that there is nodifference

between the success of explanations between using an UNITER or a VisualBERT
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underlying vision and language model for this particular case study.

Similarly, another interesting discussion is on ways to perturb features in the input

data. Local surrogate explainability techniques like LIME and SHAP build one central

assumption: it is possible to turn on and off features for model predictions [47] [32].

While this is an effective way to evaluate feature contributions, it could be worth

considering whether such inactivation of features is logical for the ML task. While

turning on and off the absence of words and measuring their impact is a common

application, there is limited work on how to inactivate the visual boxes. Our approach

is to inactivate a visual box by replacing all the elements in the associated visual

embedding vector with zeros. As for now, it is difficult to distinguish how this choice

impacts the explainable models. Nevertheless, it is worth questioning whether the

vision and languagemodels are designed to input a visual embedding vector consisting

of all zeros. Ifwewereworkingwith pixels, replacing valueswith zeroswouldmean that

wewould get black-colored regions, but for visual embedding, the representation is less

intuitive. One other approach could be to compute the mean and standard deviations

of values in a visual embedding vector and then distort the elements a multiple of

standard deviations away from the mean. Another approach could be to randomize

the elements of a visual embedding vector. However, future work is encouraged to

explore different ways to represent the inactivation of features for explaining vision

and language predictions.

Furthermore, a limitation to be recognized is the visual feature extraction network

used in the study. The visual features consist, for every image, of 36 bounding boxes

with an associated visual embedding vector for each box. These visual features were

extracted using the bottom up and top down attention network Detectron2 [54]. The

feature extraction network is pre-trained on the visual genome data set, a general non-

medical specific data set [54]. Since the extracted bounding boxes directly impact the

choice of possible explanations to choose from, it should be fair to assume that this

impacts the success of the explainable model. Namely, the explainable model perturbs

the extracted boxes, and from that, it finds what bonding box seems to best explain a

prediction. Therefore, we hypothesize that if a medical pre-trained, or even better, a

chestX-ray pre-trainednetworkwould have beenused for the visual box extraction, the

explanations would better resemble domain expertise. Such a network could extract

boxes that better represent relevant image features. For instance, if such a network

could detect an area with high opacity, that could be a reasonable explanation for the
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thoracic finding of atelectasis [14].

However, to the best of our knowledge, such a network does not yet seem to have been

developed. Nevertheless, for instance, there is one chest X-ray pre-trained network,

ChexNet [45]. The problem is that the visual features produced by this network do not

have meaningfully associated locations in the radio-graph image [45]. The network

does extract visual embeddings that could be used for training and inference for vision

and language models [36]. However, our explainable model requires that the visual

features have a location attached to it. Otherwise, if a visual feature turned out to

be especially important for a prediction, the model could not meaningfully show the

explanation in the image. We hypothesize that the absence of a medical pre-train

network with logical positions associated is due to a lack of data in the field [36].

However, given a large enough corpus of annotated objects in chest X-ray images with

positions, such a visual extraction network could be trained and further be used to

improve our explainable model.

In general, it is interesting to note that even if the explainable model does not

successfully match domain expertise, it can still be helpful for data scientists and ML

engineers to improve their models. For instance, if annotations from domain experts

suggest that the signal is centered around the chest area for predicting these findings,

while the explainable model suggests that the model finds the signal in the corners

of the image, this can be helpful feedback. If this is the case, possibly guiding the

model towards decisive regions could help to improve model generalization. Overall,

comparing the explainable model outcome with domain expertise helps to get insights

into whether what the model seems to think are contributing features, do match with

what domain expertise view as contributing features. For instance, such insights could

suggest to denoise training and inference data for better generalization capabilities or

give guidance on hyperparameter-tuning.
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Concluding Remarks

This thesis work has explored the feasibility of resembling domain expertise when

using the local surrogate explainability technique in combination with an underlying

vision and language model to generate multi-modal vision and language explanations.

A case studywas carried out to explain predictionsmade by vision and languagemodels

trained to predict thoracic findings from radio-graphs and radiology reports. The

results indicate that the particular case study task of explaining thoracic findings is

challenging as annotations from domain experts suggest that there is ambiguity on

what is the ground truth in terms of explanations. Nevertheless, the results indicate

that the explainable model has to some extent, captured signals in explaining the

predictions. The resulting similarity scores were relatively far from the similarity

levels between domain experts, yet above a random baseline representing the lower

bound. In addition, the explainable model looks to capture some useful feedback

for model improvement. For instance, explanations could suggest pre-processing

data and retraining to better guide the model toward thoracic regions. In addition,

miss-matches of explanations from the explainable model and domain expertise could

potentially serve as an explanation for false negatives. Additionally, the results

suggests that the experiments with separate perturbations technique outperform

that of simultaneous perturbations in terms of similarity to domain experts. More

importantly, the thesiswork has identified opportunities forways to improve themulti-

modal vision and language explainable model presented below:

• Perform a similar study, but on another clinical task where there is more unity

on the ground truth in terms of explanations. Our results suggest that there is
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ambiguity on what the ground truth is in terms of explanations of contributing

features for predicting thoracic findings. As a result, this seems to be a difficult

problem for an explainable model to learn. Future work is encouraged to study

other clinical ML tasks or in other fields that have a more precise definition of

the most explainable features.

• Replace the feature extraction network with a medical pre-trained network.

However, there are also two other opportunities for future work before that.

Firstly, collect a large enough medical data set with annotated objects. Then,

together with domain expertise, set up a data collection process to perform

annotations of medical objects from radio-graph images. Secondly, use such a

data set to train a feature extraction network with meaningful image locations

associated with each embedding. For instance, one could train a bottom-up

attention top-down network like Detectron2 [54] to produce visual boxes with

visual embeddings and then use it to train a vision and language model. Given

the use of such a network to extract visual features of the radio-graphs, we

hypothesize that it can help to generate more relevant explanations for the ML

task.

• Explore ways to fairly vary the number of important words generated by the

explainable model. We hypothesize that if the number of outputted words could

vary in size to bettermatch the number ofwords fromdomain experts, that would

improve the text similarity scores. However, our study left out this as we could

not conclude a fair way of achieving this. Therefore, we suggest future work

exploring ways to fairly vary the output size of important words.

• Investigate the strength of different modalities when explaining predictions.

Our results indicate that separate perturbations outperform simultaneous with

regard to resembling domain expertise. However, we conclude that the

hyperparameter tuning of the simultaneous perturbations was more challenging

to optimize and that there can be a different amount of signal between the

two modalities. In future work, it would be highly interesting to explore ways

to capture the strength of each modality when creating vision and language

explanations from each modality.

• Finally, study ways to inactivate features and the impact on explanations.

Prominent techniques like LIME and SHAP builds on one central premise: it
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is possible to inactivate features for making predictions [47] [32]. However,

especially for the visual boxes, it is non-intuitive how to logically inactive the

visual embedding. Our work did so by replacing the elements in the visual

embedding with zeros. However, future work is encouraged to investigate other

ways to inactivate features and measure their impact on resulting explanations.
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