
IN DEGREE PROJECT INFORMATION AND COMMUNICATION 
TECHNOLOGY,
SECOND CYCLE, 30 CREDITS

,  STOCKHOLM SWEDEN 2017

BigDataCube: Distributed 
Multidimensional Data Cube Over 
Apache Spark
An OLAP framework that brings Multidimensional 
Data Analysis to modern Distributed Storage 
Systems

WEHERAGE, PRADEEP PEIRIS

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY



BigDataCube: Distributed Multidimensional Data Cube
Over Apache Spark

An OLAP framework that brings Multidimensional Data Analysis to modern Distributed Storage
Systems

Weherage, Pradeep Peiris

Master of Science Thesis

Software Engineering of Distributed Systems
School of Information and Communication Technology

KTH Royal Institute of Technology
Stockholm, Sweden

1 August 2017

Examiner: Seif Haridi
Supervisor: Amir Payberah

TRITA-ICT-EX-2017:125



c� Weherage, Pradeep Peiris, 1 August 2017



Abstract

Multidimensional Data Analysis is an important subdivision of Data Analytic
paradigm. Data Cube provides the base abstraction for Multidimensional Data
Analysis and helps in discovering useful insights of a dataset. On-Line Analytical
Processing (OLAP) enhanced it to the next level supporting online responses to
analytical queries with the underlying technique that precomputes (materializes)
the data cubes. Data Cube Materialization is significant for OLAP, but it is an
expensive task in term of data processing and storage.

Most of the early decision support system benefits the value of multidimensional
data analysis with a standard data architecture that extract, transform and load data
from multiple data sources into a centralized database called Data Warehouse, on
which OLAP engines provides the data cube abstraction. But this architecture
and traditional OLAP engines do not hold with modern intensive datasets. Today,
we have distributed data storage systems that keep data on a cluster of computer
nodes, in which distributed data processing engines like MapReduce, Spark,
Storm, etc. provide more ad-hoc style data analytical capabilities. Yet, there is no
proper distributed system approach available for multidimensional data analysis,
nor any distributed OLAP engine is available that follows distributed data cube
materialization.

It is essential to have a proper Distributed Data Cube Materialization mechanism
to support multidimensional data analysis over the present distributed storage
systems. Various research work available today which considered MapReduce
for data cube materialization. Also, Apache Spark recently enabled CUBE
operator as part of their DataFrame API. The thesis raises the problem statement,
the best-distributed system approach for Data Cube Materialization, MapReduce
or Spark? and contributes with experiments that compare the two distributed
systems in materializing data cubes over the number of records, dimensions and
cluster size. The results confirm Spark is more scalable and efficient in data
cube materialization than MapReduce. The thesis further contributed with a
novel framework, BigDataCube, which uses Spark DataFrames underneath for
materializing data cubes and fulfills the need of multidimensional data analysis
for modern distributed storage systems.
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Sammanfattning

Multidimensional Data Analysis är en viktig del av Data Analytic paradigm. Data
Cube tillhandahåller den grundläggade abstraktionen för Multidimensional Data
Analysis och hjälper till att hitta användningsbara observationer av ett dataset. On-
Line Analytical Processing (OLAP) lyfter det till nästa nivå och stödjer resultat
från analytiska frågor i realtid med en underliggande teknik som materliserar Data
Cubes. Data Cube Materialization är signifikant för OLAP, men är en kostsam
uppgift vad gäller processa och lagra datat.

De flesta av tidiga beslutssystem uppfyller Multidimensional Data Analysis
med en standarddataarkitektur som extraherar, transformerar och läser data från
flera datakällor in I en central databas, s.k. Data Warehouse, som exekveras
av OLAP och tillhandahåller en Data Cube-abstraktion. Men denna arkitektur
och tradionella OLAP-motorer klarar inte att hantera moderna högbelastade
datasets. Idag har vi system med distribuerad datalagring, som har data på
ett kluster av datornoder, med distribuerade dataprocesser, så som MapReduce,
Spark, Storm etc. Dessa tillåter en mer ad-hoc dataanalysfunktionalitet. Än så
länge så finns det ingen korrekt angreppsätt tillgänlig för Multidimensional Data
Analysis eller någon distribuerad OLAP-motor som följer Distributed Data Cube
Materialization.

Det är viktigt att ha en korrekt Distributed Data Cube Materialization-
mekanism för att stödja Multidimensional Data Analysis för dagens distribuerade
lagringssystem. Det finns många forskningarar idag som tittar på MapReduce
för Data Cube Materialization. Nyligen har även Apache Spark tillgänglitgjort
CUBE-operationer som en del av deras DataFrame API. Detta examensarbete tar
upp frågeställningen, vilket som är det bästa angrepssättet för distribuerade system
för Data Cube Materialization, MapReduce eller Spark. Arbetet bidrar dessutom
med experiment som jämför de två distribuerade systemen i materialiserande
datakubar över antalet poster, dimensioner och klusterstorlek. Examensarbetet
bidrar även med ett mindre ramverk BigDataCube, som använder Spark DataFrames
i bakgrunden för Data Cube Materialization och uppfyller behovet av Multidimensional
Data Analysis av distribuerade lagringssystem.

iii





Acknowledgements

I would like to express my sincere gratitude to Dr. Amir H. Payberah, my
supervisor, for the continuous support and guidance. His knowledge in the
area of data intensive computing and technical background in frameworks like
Apache Spark led me to narrow down the problem area and identify the possible
contributions of the thesis. Also, I am thankful to Professor Seif Haridi for his
valuable feedback to improve the thesis work.

I am deeply grateful to Magnus Danielsson giving me the work opportunity
and allowing me to carry out the thesis work at Digital River World Payment. The
business domain and its technology stack in Digital River World Payment helped
me to recognize a good project proposal for the thesis. I would like to thank
Ravinath Senevirathne for taking the time to proofread my thesis and for giving
me valuable feedback. Also Thérèse Gennow, for her help in writing Swedish
abstract for the thesis.

v





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Ethics and Sustainability . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background - Multidimensional Data Analysis 11
2.1 Multidimensional Data Analysis . . . . . . . . . . . . . . . . . . 11
2.2 Data Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Data Cube Operations . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Online Analytical Processing (OLAP) . . . . . . . . . . . . . . . 16

3 Data Cube Materialization and Related Work 19
3.1 Full Cube Materialization . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Data CUBE Operator . . . . . . . . . . . . . . . . . . . . 20
3.1.2 PipeSort and PipeHash . . . . . . . . . . . . . . . . . . . 21
3.1.3 Multidimensional Arrays . . . . . . . . . . . . . . . . . . 21

3.2 Partial Cube Materialization . . . . . . . . . . . . . . . . . . . . 21
3.2.1 The Lattice of Cuboids . . . . . . . . . . . . . . . . . . . 22
3.2.2 BPUS, PBS Algorithms . . . . . . . . . . . . . . . . . . 22
3.2.3 Iceberg Cubes . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Data Cube compression . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 QuantiCubes . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Condensed Cube . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Quotient Cube . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.4 Graph Cube . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Approximated Cube . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Quasi-Cubes . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



viii CONTENTS

3.4.2 Wavelet Decomposition . . . . . . . . . . . . . . . . . . 25

4 Distributed Data Cube Materialization 27
4.1 Data Intensive Computing . . . . . . . . . . . . . . . . . . . . . 27
4.2 Big Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Data Cube Materialization for Big Data . . . . . . . . . . . . . . 31

4.3.1 Data Cube Materialization with MapReduce . . . . . . . . 31
4.3.1.1 MapReduceMerge . . . . . . . . . . . . . . . . 32
4.3.1.2 MR-Cube . . . . . . . . . . . . . . . . . . . . 32
4.3.1.3 MRDataCube . . . . . . . . . . . . . . . . . . 32

4.3.2 Data Cube Materialization with Apache Spark . . . . . . 33
4.3.2.1 Spark DataFrame . . . . . . . . . . . . . . . . 34
4.3.2.2 DataFrame’s CUBE Operator . . . . . . . . . . 34

5 Apache Spark vs Apache Hadoop in Data Cube Materialization 39
5.1 General Comparision of Apache Spark and Hadoop . . . . . . . . 39
5.2 Performance Comparision of Apache Spark and Hadoop in Data

Cube Materialization . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.1 Testbed: Apache Spark and MapReduce implementation

for Data Cube Materialization . . . . . . . . . . . . . . . 41
5.2.2 Testbed: Synthetic Large-scale Dataset . . . . . . . . . . 42
5.2.3 Testbed: Execution Environment . . . . . . . . . . . . . . 42
5.2.4 Testbed: Depended/Independent Variables and Test Scenarios

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.4.1 Data Cube Materialization over the Number of

Data tuples . . . . . . . . . . . . . . . . . . . . 44
5.2.4.2 Data Cube Materialization over the Number of

nodes in the Cluster . . . . . . . . . . . . . . . 44
5.2.4.3 Data Cube Materialization over the Number of

Dimension . . . . . . . . . . . . . . . . . . . . 45
5.3 Result and Analysis of the Test Scenarios . . . . . . . . . . . . . 45

5.3.1 Elapsed Time over the Number of tuples . . . . . . . . . . 45
5.3.2 Elapsed Time over the Number of dimensions . . . . . . . 46
5.3.3 Elapsed Time over the Number of nodes . . . . . . . . . . 46

6 BigDataCube: A framework for Multidimensional Data Analysis with
Apache Spark 49
6.1 BigDataCube, Distributed OLAP Engine over Apache Spark . . . 49

6.1.1 Configuration Overview . . . . . . . . . . . . . . . . . . 51
6.1.2 API Overview . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.3 Design Overview . . . . . . . . . . . . . . . . . . . . . . 54



CONTENTS ix

6.2 Pivot View, Visualization of Data Cubes . . . . . . . . . . . . . . 55

7 Case Study: BigDataCube over Apache Cassandra 61
7.1 Digital River Payment Gateway . . . . . . . . . . . . . . . . . . 61
7.2 The Missing Component . . . . . . . . . . . . . . . . . . . . . . 63

7.2.1 No E-TL Data Warehouse . . . . . . . . . . . . . . . . . 64
7.2.2 Data Local Distributed Processing . . . . . . . . . . . . . 65

7.3 BigDataCube over Cassandra . . . . . . . . . . . . . . . . . . . . 65
7.3.1 Data Analytics Platform for Digital River . . . . . . . . . 65
7.3.2 Scalability of the Data Analytic Platform . . . . . . . . . 66

8 Conclusion and Future Work 69
8.1 Data Cube Materialization is Important but Challenging . . . . . . 69
8.2 Apache Spark vs Hadoop MapReduce . . . . . . . . . . . . . . . 70
8.3 BigDataCube, Distributed OLAP Engine . . . . . . . . . . . . . . 70
8.4 Use case for BigDataCube . . . . . . . . . . . . . . . . . . . . . 71
8.5 Delimitation and Limitation . . . . . . . . . . . . . . . . . . . . 71
8.6 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72





Chapter 1

Introduction

Data Analysis is a broad subject, which involves the process of collecting,
cleaning and transforming data into Analytical Models that assist discovering
useful insight and new knowledge from the data. The analytical models include
many advanced techniques such as Statistics, Data Mining, and Machine Learning.

In contrast to advanced analytical models, more straightforward but yet
powerful data analytical technique include the Relational model and its Structured
Query Language (SQL). Many useful data analytical questions can be composed
of SQL and its data aggregation functions. Most of the early enterprise
applications widely used this approach for their Decision Support Systems. But
the relational model is solely designed for highly transactional systems with
efficient data storage. The relational systems by its design are inadequate for
data analysis purposes. Multidimensional Data Modeling emerged during 1990 to
fulfill this need.

The Multidimensional Data Modeling does not originate from database
technologies. As a manual data analysis tool based on multidimensional matrix
algebra, it dates back to late 19th century [39, p.2]. The basic notion of the
multidimensional modeling is to define a data relationship model among all
possible data attributes in a data collection. For example, consider the dataset
about the number of car sales given in Table 1.1 ⇤. The possible data relationships
appear in the dataset are Number of Sales per Model, Number of Sales per Year,
Number of Sales per Model and Year, etc. Multidimensional data modeling
classifies data attributes into two main categories; Dimensions and Measures.
The measures represent quantitative attributes countable with the combination
of dimensional attributes. In the sample dataset, Number of Sales represents a
measure field, whereas Year, Model and Color stand for dimensional fields.

The multidimensional model achieves its data relationship modeling with the
⇤ It is the sample dataset that Jim Gray et al. used for describing CUBE operator in their paper
[30].
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2 CHAPTER 1. INTRODUCTION

CAR SALES
Model Year Color No. of Sales
Chevy 1990 red 5
Chevy 1990 white 87
Chevy 1990 blue 52
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 blue 49
Chevy 1992 red 31
Chevy 1992 white 54
Chevy 1992 blue 71
Ford 1990 red 64
Ford 1990 white 62
Ford 1990 blue 63
Ford 1991 red 52
Ford 1991 white 9
Ford 1991 blue 55
Ford 1992 red 27
Ford 1992 white 62
Ford 1992 blue 39

Table 1.1: Factual data collection with three dimensions and one measure

arrangement of data in a multidimensional data structure called hypercube or
commonly known Data Cube. Figure 1.1 illustrates how dataset given in Table
1.1 is organized in a 3-dimensional data cube. Each cell in the data cube holds the
measures of the dataset, which correlates with its dimensional values. Organizing
data in a multidimensional data cube provides an easily understood conceptual
view for the dataset. Also, it provides fast access to any data points; measures by
its dimensional values.

The base data cube in figure 1.1 can be further transformed into many other
useful data cubes that fulfill various data analytical questions. For example, one
might be interested in number for sales for any Models but per Year and Color.
This is simply achieved with shrinking the data cube toward the Model dimension.
Figure 1.2 illustrates the resulted cube after the data cube transformation. Another
might be interested in the number of sales per Year and Color but for a selected
Model, ford. This can be achieved with slicing out the data cube over the selected
dimensional value, Figure 1.3 shows corresponding cube transformation. In this
way, a data cube can be transformed into many other data cubes that provide
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Figure 1.1: Data Cube for the dataset given in table 1.1

Figure 1.2: Data Cube transformation: Roll-up the cube toward Model dimension

useful insight of a dataset. The data cube transformations determine a set of Cube
Operations or Cube Algebra that operates on data cubes [20, 44].

1.1 Motivation
Data cube provides the fundamental building block for multidimensional data
analysis. It allows users to build valuable insights of the data with various
data cube operations. The cube operations include slice and dice that acts on a
subset of data cube, drill down/up that navigates through dimensional hierarchies,
aggregations that summarize along dimensions, and pivot that rotates a cube to
show its different views.



4 CHAPTER 1. INTRODUCTION

Figure 1.3: Data Cube transformation: Slice the cube over a selected dimension

E. F. Codd brought multidimensional data analysis to the next level with the
idea of On-line Analytical Processing (OLAP) [24]. It considers providing online
responses to analytical queries over the multidimensional model. The primary
technique for achieving fast query response is to precompute or materialize all
possible data cubes. Hence the analytical queries can be responded instantly
without performing any data cube operations at runtime. But data cubes are
intrinsically large. In the real world, they contain many dimensions, each of
with high cardinality levels. Therefore, Data Cube Materialization involve the
challenge of precomputing all possible massively large data cubes. From the
sample dataset in Table 1.1, eight data cubes are producible with the combination
of dimensions; Model-Year-Color, Model-Year, Model-Color, Year-Color, Model,
Year, Color and None. Figure 1.4 illustrates all these data cubes. The number of
computable data cubes gets doubled if we introduce a single dimension to the
dataset. That is, the number of possible data cubes grows exponentially with
the number of dimensions. A dataset with n dimensions engenders the challenge
of constructing 2n number of data cubes. Therefore, data cube materialization is
expensive in both computation and storage, which brought a new research problem
to the community, to find efficient techniques for data cube materialization.

Most of the early research work in data cubes and OLAP methodologies
considered full cube materialization [30, 2, 80] with efficient grouping algorithms.
But later research work considered the full cube materialization is inefficient in
both computation and storage for the high-dimensional cubes. They proposed
several other approaches with the following main directions;

Partial Cubes: Only subset or part of the cubes are materialized. Iceberg Cube
[26, 13, 33, 60, 77], BPUS [34] and PBS [62, 10].

Compressed Cubes: Algorithms and models that reduce the size of the cubes.
QuantiCubes [27], Quotient Cube [47, 46], Condensed Cube [74], Closed
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Figure 1.4: All possible Data Cubes for the dataset in table 1.1

Cube [76], Dwarf Cube [64] and MDAG Cube [16].

Approximated Cubes: Provide approximate answers to OLAP queries. Quasi
Cube [23, 11], Wavelets [72, 73] and Loglinear Cube [12].

All these research directions considered efficient techniques for data cube
materialization but with the resource constrained in a capacity of single computation
node. At the same time, various parallel processing techniques were proposed [29,
41, 22, 18] that improve the data cube materialization with maximum resources
usage of single computation unit. But none of these techniques scale with modern
intensive data flows. The applications today consider Big data that spans over a
hundred of computation nodes. The data analytical capabilities are expected over
this continually growing exhaustive data loads. Therefore, the previous works
on data cube materialization should be adapted to Distributed System Models to
sustain the scalability.

Fortunately, MapReduce [37] is well established today as a distributed
computation model for various data intensive computation problems. Several
researchers have considered data cube materialization over MapReduce [1, 75,
48, 52]. It resolves two fundamental problems in data cube materialization;
Storage, over the Distributed File System, and Computation, taking it close to
the data with MapReduce. But some studies show MapReduce is inefficient
for applications that reuse intermediate results across multiple computations
(e.g., Iterative machine learning, graph processing, and interactive data mining).
Resilient Distributed Datasets (RDDs) [79] was introduced to overcome this
major issue. RDD is a distributed memory abstraction that allows in-memory
computation over a large cluster of nodes. It resolves the problem in MapReduce
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by keeping data in memory for multiple computations. Apache Spark [6] employs
RDDs providing sub-frameworks such as Streaming, MLib, GraphX and most
importantly Spark SQL [9].

Spark SQL is a new module in Apache Spark that leverage the benefits
relational processing over the Spark RDD. It offers a declarative DataFrame API
with a highly extensible optimizer called Catalyst. Apache Spark introduces
CUBE operator as a part of DataFrame API in version 1.4.0. That is, it creates all
possible data cubes for a given DataFrame. It simplifies the problem of data cube
materialization over the distributed storage systems.

1.2 Problem Description
Data cube provides a conceptual model for multidimensional data analysis. The
classical cube operations; Slice, Dice, Drill Down/Up, and Aggregation are
reasonable enough to express many useful analytical queries. OLAP brought
multidimensional data analysis to the next level supporting online responses
on analytical queries. But multidimensional data analysis or OLAP is rarely
discussed in modern Big Data Analytic paradigm.

1.2.1 Problem
There is no standard OLAP engine available today that support multidimensional
data analysis over distributed data collections. Data cube materialization is
critical for such a distributed OLAP engine that enables multidimensional data
analysis in Big Data analytic paradigm. Data cubes are large and computationally
expensive. But with the modern intensive data loads, they can be even immensely
large and expensive. It requires an efficient distributed computing approach
for materializing data cubes. Two leading directions of distributed data cube
materialization are MapReduce and CUBE operator of Spark’s DataFrame API.
There is no research study available that compares MapReduce and Spark
DataFrame CUBE operator in data cube materialization. It is important to select
the most efficient distributed data cube materialization approach for a standard
OLAP engine that enables multidimensional data analysis over distributed data
storage systems.

1.2.2 Hypothesis
MapReduce is a widely used distributed computation model for various data
intensive computation problems. RDD in Apache Spark emerged to address one
of the main issues in MapReduce, its inefficiency in data reuse for iterative data



1.3. CONTRIBUTION 7

processing algorithm. Data cube materialization formulates the lattice model
[34], a hierarchy of cubes (Lattice diagram), which states the data cubes in the
lower hierarchy can be constructed from the cubes in the previous level in the
hierarchy. Therefore, Apache Spark’s RDD would provide the best-distributed
computing model for data cube materialization. It could be even improved
with DataFrame API in Spark that uses additional optimization techniques. We
hypothesize CUBE operator of DataFrame API in Apache Spark provides the
best-distributed computing abstraction for Data Cube Materialization and it
outperforms MapReduce.

1.3 Contribution
There are three main contributions of the thesis work. Firstly, the experiments
and its results that validate the hypothesis of the thesis, that CUBE operator
of DataFrame API in Apache Spark provides the most efficient distributed
computing approach for Data Cube Materialization.

Secondly, the design and implementation of the framework BigDataCube, a
distributed On-line Analytical Processing engine with Apache Spark. It enables
multidimensional data analysis over distributed storage systems such as HDFS,
Cassandra, Hbase, etc., almost any distributed storage systems that Apache Spark
supports. Also, the framework includes with a Pivotal View, a front-end data
analysis tool that presents multidimensional data cubes in pivot tables, which
enables users (Data Analysist, Decision Makers, Managers, etc.) to aid any useful
insight of the data.

Thirdly, the utilization of BigDataCube framework on Payment Gateway
Platform in Digital River⇤. The BigDataCube framework is applicable over any
business domain. Here we consider the Payment Gateway Platform as a use-
case for applying the framework and enabling multidimensional data analysis over
Apache Cassandra. It brings a new service component to the platform in Digital
River and enables Multidimensional Data Analysis.

1.4 Ethics and Sustainability
The thesis peruses Multidimensional Data Analysis in modern distributed storage
system. As it involves data in large-scale and discloses new insights from the
data, the awareness of ethical factors of the new insights is very important. One

⇤ Digital River, the organization at which the Master’s thesis was carried out, is a service provider
for global online payments. The standardized payment gateway allows integration of many
merchants into the Payment Platform and routes their transaction over various Payment Networks.
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can simply reveal unintentional information that harms to third-party from a
multidimensional data model. For example, the thesis aims the application of
its new framework, BigDataCube in the online payment gateway at Digital River,
which receives payment transactions from merchants in diverse business domains.
Internally, it may be an important factor for Digital River to rank merchants from
their transactions count and value, but it could be a huge business impact in case
such information was disclosed to outside. Therefore, as a data analytical tool,
BigDataCube should be access granted to relevant parties in the organization.

Sustainability determines economics, social, political and technological boundaries
that make things better for more people. One of the contributions of the
thesis is to find an efficient distributed computing approach for Data Cube
Materialization. Distributed computing systems with efficient resource usage
and faster processing power always decrease the operational cost of data centers,
hence benefit the environment and society. In addition, the thesis contributes
with a framework, BigDataCube, which is reusable for any business domains
with minimum configuration changes. That is, the thesis not only contributes a
multidimensional data analysis tool with efficient distributed computing approach
but also a reusable tool for many organizations and enterprises.

1.5 Outline
The rest of the thesis report is structured as follows:

Chapter 2. Background-Multidimensional Data Analysis provides a detailed
background of Multidimensional Data Analysis and Data Cube abstraction.
Then it states how OLAP emerged in the area of multidimensional data
analysis and convenience of Data Cube concept in OLAP.

Chapter 3. Data Cube Materialization and Related Work covers the
importance of Data Cube Materialization and its challenges in multidimensional
data analysis and OLAP. It further explains and categorizes early research
works in Data Cube Materialization.

Chapter 4. Distributed Data Cube Materialization emphasizes early works
in Data Cube Materialization is inapplicable with modern large-scale data
collections and their Distributed Storage technologies. It presents the
theoretical and technical background of Data Intensive Computing and
related work in Distributed Data Cube Materialization.

Chapter 5. Apache Spark vs Hadoop in Data Cube Materialization provides
the answer to the one of problem statement in the thesis, the best-distributed
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computing approach for Data Cube Materialization, Spark DataFrame API
or MapReduce? It presents the research methodology used to conclude the
problem statement and its outcome.

Chapter 6. BigDataCube: A framework for Multidimensional Data Analysis
with Apache Spark explains the main contribution of the thesis. BigDataCube
is a framework that uses CUBE operator of DataFrame API in Apache Spark
for Data Cube Materialization. It takes a design approach to support many
distributed data storage systems and provides configuration options to select
Dimensional and Measure fields for the target data cubes. It further explains
how embedded Pivot View in the framework visualizes the selected data
cube.

Chapter 7. Case Study: Big Data Cube overApache Cassandra is another
contribution of the thesis, the usage of the framework in Digital River’s
Payment Gateway Platform. It enables Multidimensional Data Analysis
for all transactional payment data reside in Cassandra and help Business
Analysts and Decision Makers in Digital River to gain insight of the
transaction data.

Chapter 8. Conclusion and Future Works summarizes the whole work in the
thesis and its key results. It explains how BigDataCube framework can
be further improved and potential future work in the area of Data Cube
Materialization, OLAP and Multidimensional Data Analysis.





Chapter 2

Background - Multidimensional
Data Analysis

Multidimensional data analysis is one of widely used data analysis approach in
many enterprise application domains. The hypercube or more commonly known
Data Cube provides a Multidimensional Analytical Model for data analysis.
The data cube organizes factual information as Dimensions and Measures.
The Measures represent numerical properties of factual information, which
are explained and selected via associated dimensions. The high-level Cube
Operations; Roll-up, Drill-down, Drill-across, Slice, and Dice allow querying
multidimensional data for various data analysis questions. The On-Line Analytical
Processing (OLAP) led data analysis into the next level providing fast query
responses for complex data analysis questions.

2.1 Multidimensional Data Analysis
Data Analysis involves the process of collecting, cleaning and transforming data
into analytical models that assist understanding useful insight of the data or
extracting new knowledge out of the data. A typical data analysis project is built
in multiple phases, which may vary from project to project. Thomas A. Runkler
in his book [58], summarizes a typical data analysis process into four main stages;

Preparation The preparation phase mainly considers data collection, usually
from multiple data sources that may represent diverse data platforms and
systems. The data from heterogeneous systems are vast and complex.
Therefore, it is important to select only the relevant data for the problem.

Pre-possessing Data from multiple sources may follow different formats and
standardizations. The quality of the data cannot be guaranteed. In

11
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prepossessing, the data is cleaned, filtered, corrected and transformed into
the target format and standardization.

Analysis In this phase, the rectified data are applied to Analytical Data Models
that gain useful insight from the data.

Post-processing The final phase usually considers the evaluation of the result,
interpretation, and documentation.

It is the analysis phase essential in data analysis projects. It comprises
algorithms that reform data into Analytical Models, from which useful insight
of the data can be achieved. The analytical models include more advanced
techniques such as Statistical and Data mining models. The statistical models
mainly focus on discovering underlying patterns and trends of the data. There
are two main approaches to statistical modeling. One method assumes data
are generated by stochastic models (linear regression, logistic regression, etc.),
while other approach uses algorithmic models that assume data mechanism
is complex and unknown (decision trees, neural nets) [15]. Data mining is
an interdisciplinary subject, which also combines statistical models with other
techniques in discovering new knowledge from data. The popular data mining
models include Clustering, Classification, Correlation, etc.

Apart from advanced data analytical models, more straightforward and but
yet powerful data analysis approaches include simple query and aggregation
functions. The well-known example is Structured Query Language (SQL) and its
various SQL functions. Many data analytical questions can be issued with SQL
queries over a relational database model. There exist many data analytical and
visualized tools [67, 54] that provide a simplified API, which transforms analytical
requests into SQL queries to extract data from the underline relational database
model. SQL and Relational data model provide a powerful tool for analyzing
a dataset, but the relational model was solely designed for fast transactional
processing with efficient data storage. It was E.F. Codd introduced the relational
data model [19] in 1970, which provides the foundation for many Database
Management Systems exist today. As Gavin Powell explains in his book [56,
p.9], the relational database model began as a way of getting groups of data from
a larger dataset. It removes any data duplications and increases the granularity of
data elements. As further explained in the book [56, p.173], the relational model is
efficient for operational, or On-line Transaction Processing (OLTP) applications
with fast data processing requirements, which involve frequent and concurrent
data access over a small set of data by many users.

Even though the relational model was originally designed for highly transactional
systems, it is often used for various data analysis scheme. The idea of using
relational model for data analysis purposes has been further extended in the



2.2. DATA CUBE 13

Figure 2.1: Number of Sales in two dimensions; Year and Model

application area of Decision Support Systems. Many early enterprises promoted
the approach of storing data redundantly in two separate systems; one for
transactional processing systems and the other for decision support systems. As
the author of the relational data model, E.F. Codd considers these approaches are
imprecise and fuzzy that ignores the fundamental requirements of the analytical
data models in his late paper [24]. Thus, it requires another data model for
data analysis. The multidimensional data model emerged during 1990 to fulfill
this need. It considers supporting complex data analysis functions over a large
dataset.

2.2 Data Cube
The multidimensional data models do not origin from database technologies. It
originates from multidimensional matrix algebra and has been used in manual data
analysis since late 19th century [39, p.2]. Multidimensional data are more natural
to represent in a multidimensional array.

There are typically a number of different dimensions from which a given pool
of data can be analyzed. This plural perspective, or Multidimensional Conceptual
View appears to be the way most business persons naturally view their enterprise
[24].

— E.F. Codd
The Multidimensional Conceptual View, E. F. Codd mentioned here became

the core data model for multidimensional data analysis, and was commonly known
as Multidimensional Data Cubes. The arrangement of data in a cube naturally
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Figure 2.2: Number of Sales in tree dimensions; Year, Model and Color

fits how human used to analyze a dataset manually. Let us consider the sample
dataset given in table1.1. The figure 2.1 shows how the data collection is arranged
in a two-dimensional cube. The dimensions selected for the cube are Year and
Model. The cells contain the measures; Number of Sales per Year and Model.
Organizing data in this way enables a way to understand how data is distributed
over the dimensions and provides fast access to any data points (cells). And
it leads to a simplified model for any complex data analytical questions. For
example, Number of sales related to any Model can be easily filtered out with
selected dimensional value for Model. The total sales for a given Year can be
easily calculated aggregating all date indexes of the Year.

Now consider, we want to see the breakdown of the sales by Color. That is
an introduction of a new dimension. Figure 2.2 shows the tree dimensional view
of the sales. As it depicts in the diagram, each cell now represents the number
of sales per Year, Model and Color. In a similar way, the measure can be broken
down into any possible dimensions.

Dimensions: The dimensions provide a way for selecting measures. In other
words, each data point in a data cube describes a set of dimensional values.
Also, there is another important purpose and use of dimensions. That is
grouping measures into multiple levels. Take for an example the Year
dimension in the example. The Year can be further broken down into its
Quarter, Month, Week and Day. In dimension, these attributes are called
Levels. Figure 2.3 shows the different levels of the time dimensions. In a
similar way, any dimension may have one or more dimensional levels, and
it helps further aggregation of date cubes.
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Figure 2.3: Levels in Date dimension

Measures: A combination of dimensions determines a data point in the cube,
which has one or more measures. From the data cube in figure 2.2, the data
point at (1990, Chevy, Red) has the value 5, which represents the measure;
the number of sales. The measures can be in two categories. Firstly,
the numerical data aggregation functions such as Summation, Average,
Maximum, Minimum, etc. that determine measure value for the given
combination of dimensions. Secondly, any mathematical formulas that
generate new measures with a combination of other measures.

2.3 Data Cube Operations
Organizing data in a multidimensional data cube provide the base mean for data
analysis. As SQL provides a way for querying structured data in a relational
model, the Cube Operation provides a way for querying data in a cube. A set of
Cube Operations explains, which allow different views of cubes and interactive
analysis and querying. These are Roll-up, Drill-down, Drill-out, Drill-across,
Slicing and Dicing operations that can be applied on a data cube [39, pp. 18-
23]. These cube operations in general considered as closed operations, as the
application of these operations on cubes result in another new cube.

Slice and Dice: The slice operation applies on a cube with a selected single
dimensional value. It results in a subcube with one less dimension from
the original cube. Figure 2.4a shows the result of applying slice operation
on the Color dimension where the color value is ’blue’. In contrast to
slice operation, the dice operation used with two or more dimensions.
Diagram2.4b shows the further filtering on sales cube with dice operation
with dimensional value Color and Year.

Roll-Up and Drill-Down: There is two variant of Roll-Up operation; Dimensional
Level roll-up and Dimensional Reduction roll-up. As it depicts in Figure
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(a) Slice operator (b) Dice operator

Figure 2.4: Slice and Dice operators

2.5a, in Dimensional Level Roll-up, the measures are further aggregated
toward dimensional level but end up with a cube with the same number
of dimensions. In Dimensional Reduction Roll-up, the measures are
aggregated with fewer dimensions as it is in Figure 2.5b. The Drill Down
operator is the opposite of Roll-Up operator. That is, it navigates toward
down the dimension hierarchy or introduce with a new dimension.

Drill Across The Drill across operation combines two cubes over shared dimensions
and produce a new cube.

2.4 Online Analytical Processing (OLAP)
Over the time with the growth of data, many organizations recognized the business
value of the operational data for their decisions of activities. The advent of
decision support systems required data from these multiple data sources to be
captured into a centralized system to support more effective decision support
queries. Thus the concept of Data warehouse emerged. Unlike operation data
sources, the data warehouses contain an enormous amount of data, usually
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(a) Roll-Up: Dimensional Level (b) Roll-Up: Dimensional reduction

Figure 2.5: Roll-Up operator

historical data that span several years, and decision support queries commonly
considered as expensive and time-consuming. But the demand for decision
support system increased, and it was crucial to have decision support queries
with recent response time. The multidimensional data model; Data Cube was
recognized as the best data model for Decision support systems, and E.F. Codd
brought it to the next level with the newly coined term Online Analytical
Processing (OLAP) [24], which mainly considers providing timely response to
any complex decision support queries.

Figure 2.6 illustrates typical system architecure of Decision Support Systems.
As it depicts data from multiple Data Sources are extracted, transformed and
loaded (ETL) into a target Data Warehouse System. The data sources usually
include relational database management systems that follow the normalized
relational model to support online transactional systems. The data sources even
can be any file management system. The Data Warehouse is a central data
repository on which any analytical queries are issued. The Data Warehouses are
usually implemented in Relational or Multidimensional Database Management
Systems where the physical model is optimized for data reading. The ETL is
the data integration process in between Data Sources and Data Warehouse. The
standard approach in many ETL implementations is to extract source data to a
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Figure 2.6: Typical Multidimensional Data Analytics Architecure

staging area of Data Warehouse Management System. The data separation in this
way reduces any impact on the source transactional application from the ETL
processes. The data collected in staging areas come from different data sources
that may follow different data formats, type, standardization, etc. It is part of the
ETL process to transform all the data into a standardized scheme that supports the
target Data Warehouse System. Finally, the ETL process uploads all transformed
data into the target Data Warehouse System. As it depicts in the figure, OLAP is
a new architectural component stands in between Data Warehouse and Analytical
Tools, that supports merely online responses to decision support queries. Various
OLAP products [51, 42, 53] appeared during the time that fit into this architecture.

A swiftly response time for OLAP queries is achieved with pre-computation or
materialization of all possible data cubes. The Data Cubes are intrinsically large,
and materialization of all possible data cube is a nontrivial task in term of storage
and computation. This became one of focusing research problem in OLAP. Many
research and industrial communities have taken various approaches for efficient
cube materialization since the introduction of OLAP.



Chapter 3

Data Cube Materialization and
Related Work

Data Cube provides an adequate model for Multidimensional Data Analysis,
which involves decision support queries that require heavy use of data aggregations.
The OLAP brings Multidimensional Data Analysis to the next level supporting
timely response on decision support queries. Providing a swift response on OLAP
queries require precomputation or materialization of all possible data cubes. But,
Data Cubes are intrinsically large and grow exponentially with the number of
dimensions and its cardinality level. Also, computationally expensive against
the number of dimensions. These factors bring a new research problem to the
community; Data Cube Materialization with efficient storage and computation.

Most of the early research proposals considered full cube materialization
with efficient grouping algorithms [30, 2, 80]. With growing dataset and high
dimensional data domains, the full cube materialization was determined inefficient
and impractical. Therefore, several other approaches were proposed during the
time. In one research direction, data cube compression was considered with
models such as QuantiCubes [27], Quotient Cube [47, 46], Condensed Cube [74],
Closed Cube [76], Dwarf Cube [64] and MDAG Cube [16]. Another research
direction was to select part of the cube for the materialization; Iceberg Cube
[26, 13, 33, 60, 77], BPUS [34] and PBS [62, 10]. With a naive assumption
that data analysis does not require an accurate result, approximate data cube
computation was engaged in types of research; Quasi Cube [23, 11], Wavelets
[72, 73] and Loglinear Cube [12]. Also, some researchers improved previously
proposed algorithms with parallel computation models [29, 41, 22, 18].

In general, early researchers on data cubes can be categorized into 4 main
topics; Full data cube computation with efficient algorithms, Data cube compression,
Partial cubes and Approximate cubes. The Data Cube operator [30] and Lattice
framework [34] provided the base semantic in all of these research directions.
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Figure 3.1: Example of DATA CUBE Operator

3.1 Full Cube Materialization
Early research work on data cube materialization considered the calculation of
full cube. That is the materialization of all possible data cubes with efficient data
grouping methods. It is the CUBE relational operator [30] first initiate the idea of
computing of all possible data cubes.

3.1.1 Data CUBE Operator
Jim Gray et al. proposed a relational aggregation operator called CUBE,
which generalized all possible GROUP BY relational operator over n-dimensional
attributes [30]. Figure 3.1 shows an example taken from the original paper [30]
how CUBE operator is applied on a relational dataset and its result. As it can be
seen in the figure, the CUBE operator calculates GROUP BY over all possible
dimensional combinations. Each dimensional combinations produce a data cube,
which is known as cuboid [32, pp. 156-158] (From this onward, we use the term
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’cuboid’ to mean a single Data Cube). OLAP uses different cuboids for various
analytical queries. Therefore having all possible cuboids pre-computed leads for
timely query response time.

3.1.2 PipeSort and PipeHash
S. Agarwal et al. proposed two algorithms [2] to achieve CUBE operator. The
algorithms; PipeSort and PipeHash view the structure of CUBE computation as
a hierarchy of group-by operations, which improved a factor of two to eight in
computing CUBE with separate group-bys.

3.1.3 Multidimensional Arrays
In contrast to ROLAP approaches based on CUBE operator, Y. Zhao, P. M.
Deshpande, and J. F. Naughton proposed data cube computation approach for
Multidimensional OLAP systems, which store data in physical sparse arrays. The
proposed MultiWay array methods resulted in better performances than previous
ROLAP methods in term of both CPU and storage.

The multidimensional array based techniques (MOLAP systems) found efficient
in computing cuboids with the fast random accessing capability in arrays. But, it
was a limitation that the size of the arrays at each dimension required to be fixed
and need the reallocation of all elements in the arrays in case introduction of new
dimensional value. T. Tsuji, A. Hara, and K. Higuchi proposed an incremental
cube computation [69] for MOLAP by employing extendible arrays, which can
be extended dynamically in any direction without any data reallocation. D. Jin, T.
Tsuji, and K. Higuchi took it to the next level using a single extendible array to
manage full cube incrementally [40].

3.2 Partial Cube Materialization
Many researches considered full data cube materialization does not scale in term
of computation and storage space. The number of cuboids growth exponentially
against the number of dimensions in a model. For example, consider a 3
dimensional model with dimensions d1, d2, and d3. The possible combination of
group-by or cuboids are d1d2d3, d1d2, d2d3, d1d3, d1, d2, d3 and All. In this way,
the 3-dimensional model produces 8 possible dimensional combinations. That is
n-dimensional model results computation of 2n number of cuboids. But in practice
dimensions are expressed in a hierarchy of multiple levels. This even makes the
calculation of more cuboids. The following formula from paper [30] expressed
the total number of cuboids required for n-dimension model, where Li represents



22 CHAPTER 3. DATA CUBE MATERIALIZATION AND RELATED WORK

the number of levels associated with the dimension i. Also, it is expensive in term
of storage. The number of entries or tuples created from each cuboid depends on
the cardinality of the cuboid.

Total number of cuboids =
n

Â
i=1

(Li +1) (3.1)

This led to another research direction that consider the materialization of the
subset of cuboids that is relevant for OLAP queries. The lattice framework [34]
made the foundation for this research direction.

3.2.1 The Lattice of Cuboids

The calculation of cuboids is an expensive process, and it is impractical to
materialize all the possible cuboids. This led research direction to the partial
materialization of the cubes. V. Harinarayan, A. Rajaraman, and J.D. Ullman
proposed the lattice framework, which states that some cuboid can be computed
from the result of another cuboid [34]. They generalized the problem in a lattice
diagram which shows dependencies of cuboids. Figure 3.2 shows the lattice
diagram for 3 dimensional model with dimensions d1, d2, and d3. As it depicts in
the figure, cuboids d1d2, d2d3 and d1d3 can be computed from the cuboid d1d2d3.
The cuboid d1d2d3 is called based cuboid as the all other cuboids can be calculated
from it. The cuboid d1 can be computed from both d1d2 and d1d3. Finally, the
none cuboid can be computed from any of d1, d2 or d3, which is called apex cuboid
[32, pp. 157-158].

The lattice framework was attractive among many other researches, and it
became the base approach for materializing cuboids. The authors of the paper
[34] also contributed with a greedy algorithm, which selects best cuboids for
materialization from the lattice framework.

3.2.2 BPUS, PBS Algorithms

The lattice framework [34] expresses dependencies between cuboids. V. Harinarayan,
A. Rajaraman and J. D. Ullman with lattice framework, proposed a greedy
algorithm, BPUS (benefit per unit space) that attempts to maximize the benefit of
the set of cuboids selected. Later, A.Shukla, P. M. Deshpande, and J. F. Naughton
proposed PBS (Pick By Size) algorithm, which runs several orders of magnitude
faster than BPUS. It uses a chunk based precomputation, which has a benefit based
cost model for chunks.
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Figure 3.2: Lattice diagram of cuboid

3.2.3 Iceberg Cubes
Iceberg cubes is another partial materialization technique in data cubes. Min Fang
et al. first proposed the concept of Iceberg cubes in their paper [26]. The base
idea behind iceberg cube is, finding measures (aggregated values) above given
threshold value, which produce small dataset (the tip of an iceberg) relative to a
large amount of dataset (the iceberg). The following is given a typical iceberg
cube with relational CUBE operation.

SELECT d1 , d2 , d3 , SUM(M)
FROM R
GROUP BY d1 , d2 , d3 , WITH CUBE
HAVING SUM(M) >= T

The work from Min Fang et al. [26] use a top-down approach in calculating
Iceberg cubes. A bottom-up computation approached called BUC was later
proposed by K. Beyer and R. Ramakrishnan for iceberg cube [13], which construct
cube from the bottom of the lattice, and avoid calculation of large cuboids that
does not meet the threshold value. J. Han et al. further improved the iceberg cube
with H-Cubing method that uses Hypertree structure (H-Tree) [33].

Taking strengths from both BUC and H-Tree models, Dong Xin et al.
proposed a novel approach called Star-cubing, which perform simultaneous
aggregation on multiple dimensions and utilize iceberg conditions [77]. Later,
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Z. Shao, J. Han, and D. Xin highlighted that none of the previous methods
in calculating iceberg cube consider sparse cubes, and proposed MM-Cubing
approach [60]. Their result shows MM-Cubing perform equally as BUC and Start-
cubing for a uniformly distributed dataset, and outperform both when the data is
skewed.

3.3 Data Cube compression
Another research approach in data cube materialization is to find a more compressed
model for the data cube to reduce large access overhead. Most of the compressed
technique consider archiving the model, which cause data nonqueriable. The
research problem is to find techniques that compressed the data model while
keeping the full queriability and random access to the measures.

3.3.1 QuantiCubes
P. Furtado and H. Madeira proposed a data cube compression strategy [27] called
QuantiCubes, which uses a fixed-width compression coding to compress the data
cube values. The result shows the compression technique achieve 2 to 5 times
compression rate, and importantly decompression overhead is significantly low.

3.3.2 Condensed Cube
Wei Wang et al. proposed Condensed Cube [74] that reduce size of the data cubes
and hence achieve better performance. Even-though condensed cube reduces the
size, it is a fully computed cube and does not require further decompression or
aggregation to response any OLAP queries. In general, tuples from different
cuboids are shared if they are known being aggregated from the same set of tuples.

3.3.3 Quotient Cube
L. V. S. Lakshmanan, J. Pei, and J. Han proposed Quotient cube, which improves
the semantic of the cube by partitioning the cube into a set of cells with similar
behavior [47]. It is further extended in the paper [46], QC-tree, which solve most
of the issues remained in Quotient cubes.

3.3.4 Graph Cube
Yannis Sismanis et al. proposed a graph-based approach, which consider a cube
compression mechanism known as Dwarf cube [63]. It tries to solve space issue by
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identifying prefix and suffix redundancies in the structure of the cube and factoring
them out of the store. Dwarf is a directed acyclic graph (DAG) with one root,
which has levels equal to the cube’s dimensions.

J. C. Lima and C. M. Hirata proposed the Direct Acyclic Graph Cubing
(MDAG-Cubing) model, which reduces cube computation effort and cube representation
size [16].

3.4 Approximated Cube
The data cube approximation is another research direction, which builds on
naive assumption that Analysts are not interested in an accurate value of the
aggregation. Providing an approximate result is sufficient enough to make any
important decisions and to identify any useful trends. The approximated cube
find possibilities that reduce cube size and computation cost.

3.4.1 Quasi-Cubes
D. Barbara and M. Sullivan proposed Quasi-Cubes, as an approximation technique
to reduce the storage cost of the cube [11]. It doesn’t calculate cube measure’s
accurately. In this model, data cube is divided into region and use statistical model
to describe each region.

3.4.2 Wavelet Decomposition
J. S. Vitter, M. Wang, and B. R. Iyer proposed an efficient technique that
compact and accurate representation of data cube using multi-resolution wavelet
decomposition [73].





Chapter 4

Distributed Data Cube
Materialization

Early research direction in Data Cube Materialization considers data resides
in a centralized data repository and utilizes resources in a single computation
node. But, modern intensive datasets are no longer tolerate in a centralized Data
Warehouse. The conventional ETL data processors that pull data from multiple
Data Sources into target Data Warehouses do not scale with today’s intensive
data collections, Big Data. Thus, it requires a distributed computing approach for
materializing data cubes. Fortunately, there are distributed computing frameworks
like MapReduce and Resilient Distributed Datasets (RDD), which abstracts the
underlying complexities of Distributed Computing and provides simplified API to
build Distributed applications.

Several researchers have already proposed Data Cube Materialization algorithm
using MapReduce. Among them, MRDataCube [48] algorithm considers optimization
of MapReduce for Data Cube Materialization and shows better results. Apache
Spark further simplifies Data Cube Materialization with its DataFrame API. It
includes CUBE operator as part of the DataFrame API, which allows full Data
Cube Materialization for given data dimensions.

4.1 Data Intensive Computing
The computational power has continuously increased during the last two decades.
At the same time, the cost of computation and storage have decreased tremendously.
This brought the capabilities of software components beyond its limits, but with
the challenge of handling overwhelming data flows. The term Big Data was
emerged to refer these massive volumes of the data collections with the new
challenge of Data-intensive computing.
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Big data is the data characterized by 3 attributes: volume, variety and velocity.
— IBM

The Big Data implies a technical problem of processing varieties of high
volume data with different growing velocities. The Distributed Computing
paradigm addresses this problem by sharing computing and storage capacities
through a cluster of computer nodes. There are two main challenges in this
approach;

1. Maintenance of cluster of nodes is difficult and expensive.

2. The design and implementation of distributed applications are challenging.
It requires a consideration of more complex techniques in distributed system
such as parallelization, fault-tolerance, data distribution, load balancing, etc

The new computation infrastructure paradigm, Cloud Computing addresses
the first problem in distributed computing. It allows even smaller enterprises to
step into the era of Big Data applications. Cloud Computing shifts the location of
computing infrastructure to the Internet as a service, which reduces the cost and
complexity of managing hardware and software resources [8].

The second problem in Distributed Computing is also already addressed in
various Distributed System frameworks that abstract the underlying complexities
of distributed systems and let application developers focus only on the application
logic. The Distributed System frameworks such as Apache Hadoop [3], Apache
Spark [6], Apache Storm[7], etc. provides a standard distributed programming
model for applications to be executed on a cluster of computing nodes with
the guarantee of scalability and fault tolerance. These Distributed Systems
Frameworks simplify the problem of distributed computing under three main
areas; 1) Distributed Storage, 2) Distributed Processing and 3) Distributed
Resource Scheduling.

Distributed Storage Distributed Storage considers management of large-scale
data on a network of computer nodes. The main problem it addresses is that
modern intensive data outgrows the storage capacity of a single computer
node. Thus data need partitioning across a cluster of computer nodes while
ensuring the scalability and fault tolerance. Google File System (GFS)
[28] is well established distribute storage mechanism today implemented
by Google Inc. GFS is led with main design assumptions that the system is
built from multiple commodity computing nodes that fail often. The system
stores large files with large streaming reads and writes that append data to
files. Taking its design essence, Apache Hadoop Distributed File System
(HDFS) [35] publishes an open source version of Distributed File System
that follows similar design assumptions as GFS.
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Opposed to standard File Systems, Database Managment Systems (DBMS)
provides more advanced features on a collection of data across multiple
users. Relational Database Managment Systems (RDBMS) dominates the
area of structured data management with ACID properties and declarative
query language SQL. But RDBMS are not scalable over the growing
dataset. Usually, RDBMS achieves the scalability with more expensive
and complicated techniques such as Replications and Sharding. The
new DBMS stream, NoSQL simplifies the distributed design strategy for
achieving scalability by weakening some of the ACID properties. Google
Big Table [17] and Apache HBase [4] are well know Distributed Database
Management Systems today that do not guarantee high availability. The
DBMS like DynamoDb [21] and Cassandra [45] are highly available
Distributed DBMS but do not guarantee strong consistency.

Distributed Processing Distributed Data Processing involves applying data processing
logic over a large-scale data collection that resides in a distributed storage
system. Google’s MapReduce [37], a distributed programming model first
established the idea of taking data processing logic closed to the data.
MapReduce gets benefits of the underlying distributed file system, GFS
and operates parallelly over the distributed data blocks in the file system.
Hadoop MapReduce [31] brings the same Distributed Processing Model for
HDFS to the open source community.

But MapReduce has some drawbacks when it comes to iterative data
processing models as it heavily involved local files in HDFS. Spark’s RDD
[79] overcomes this central issue by its in-memory distributed computing
model. Apache Spark as a Distributed Data Processing model has various
advantages over MapReduce. It extends with more operators and supports
advanced data processing flows. Apache Spark is one of a widely attractive
open source project today with a different contribution of sub-projects from
the community. The subcomponents include Spark SQL, Machine Learning
Library, Spark Streaming and GraphX.

Distributed Resource Scheduling Having a Distributed Data Processing mechanism
operates on a Distributed Storage system solves a half of the problem
for Distributed Applications. The next primary challenge is to allocate
distributed resources (Memory, CPU) efficiently among distributed processes.
Most of the early work in Distributed Application Framework like Apache
Hadoop had its own resource scheduling mechanism but was more monolithic
as there was no clear separation of data processing with resource scheduling,
which brings a challenge of sharing resources with other Distributed
Processing framework.
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It brought the motivation for resource scheduling mechanism that allows
many Data Processing Frameworks to run on a single cluster of nodes. The
resource management system maximizes the utilization of resources among
multiple distributed processes from different frameworks. Apache Mesos
[36] and Apache YARN [71] are widely used Resource Managment systems
today.

4.2 Big Data Analytics
Data Analytics is the major demand for modern large-scale data collections. The
conventional data analytics architecture for OLAP explained in section 2.4 does
not support current intensive data collections and their technologies. The data
sources in modern online transactional systems use some NoSQL Distributes
Data Storage mechanism like Cassandra, DynamoDB, etc. The traditional ETL
processes that load data from multiple sources to a centralized Data Warehouse
is no longer fit with modern distributed technology stacks. The Data Warehouse
itself should be a distributed storage system. At the same time, the intensive data
collections do not laid-back the response time on analytical queries. The Data
Analysts and Decision Makers still expect near real-time query response time over
any intensive data collections.

There is no particular standard architecture for advanced Big Data Analytics.
But a stack of technologies exists today that define this architecture. SMACK
is well-known technology stack used for Big Data Architectures [25]. SMACK
stands for the following technologies and collectively desire functionality of each
technologies determine a Big Data Architecture;

Spark: Data Processing Engine

Mesos: Resource Scheduler or Container

Akka: Distributed model for application development.

Cassandra: Distributed Storage

Kafka : The distributed message broker

The company Mesosphere in collaboration with Cisco coined the term
SMACK and produced a product called Infinity which bundled all these technologies
together. The favorable approach for using SMACK is to adopt only relevant
technology stacks. Also, it is always convenient to replace any of the technologies
in the stack with another that covers the same purpose and best suited the solution
domain. Figure 4.1 taken from the book [25, p.12] represents SMACK at a glance.
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Figure 4.1: SMACK Overview [25, p.12]

As it depicts in figure 4.1, there is no a data Extraction or Load phase. Instead,
a distributed message broker is listen on data from diverse data sources. The
source data then stream into a Distributed Processing system and uploaded into a
Distributed storage systems.

4.3 Data Cube Materialization for Big Data

As explained in the previous chapter, Data Cube Materialization addresses two
main challenges; Efficient Storage and Computation techniques. These challenges
are even vital in modern intensive data collections. The Data Cubes would
be immensely large and computationally even expensive for modern Big Data.
Thus, Data Cube Materialization should adapt a distributed system approach.
Fortunatly, various distributed system frameworks available today, which abstract
the underlying complexities of distributed systems. Therefore, the challenges of
efficient storage mechanism for data cube materialization can be adapted with a
distributed data storage mechanism. In the same way, an efficient computation
of data cube materialization can be achieved with a distributed data processing
model.

4.3.1 Data Cube Materialization with MapReduce

MapReduce is widely used distributed programming model for various distributed
applications. It has been one of research direction using MapReduce for Data
Cube Materialization, which utilizes data resides in Distributed File System (DFS)
and apply Data Cube Materialization with some MapReduce algorithm.
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4.3.1.1 MapReduceMerge

Yuxiang W., Aibo S. and Junzhou L. proposed MapReduceMerge [75], a parallel
cube construction model based on Google MapReduce and Google File System.
They have extended standard Google MapReduce programming primitive as
the following to support multiple related heterogeneous dataset in Data Cube
materialization.

map : (k1, v1)a ! [(k2,v2)]a
reduce : (k2, [v2])a ! (k2, [v3])a
merge : ((k2, [v3])a,(k3, [v4])b)! [(k4,v5)]c

As it states above, the reduce function in MapReduceMerge produces a list
of key/values, which is the input for the additional merge function. The merge
function combines output from reduce function from different data collections
and result a list of key/values belongs to target materialized dataset.

MapReduceMerge employs GFS to segment the data vertically according to
the dimensional attributes. That is, a raw data set abcm, where a, b and c are
dimensional fields, and m is a measure field, produces three files separately on
GFS containing data as am, bm and cm. In this way, it allows to load only relevant
data for processing and ignore unnecessary data loads.

4.3.1.2 MR-Cube

Arnab Nandi et al. propose MR-Cube [1] a MapReduce model for efficient Data
Cube Materialization. As authors state, MR-Cube is the first comprehensive study
on Data Cube Materialization for holistic measures. The algorithm makes use of
the data partition based on cube lattice and divide the computation into pieces
such that reducers deal with equally distributed small data groups. Their results
shows MR-Cube algorithm efficiently distributes the computation workload and
scale perfectly.

4.3.1.3 MRDataCube

Recently Suan L., Sunhwa J., and Jinho K. developed MRDataCube [48], another
MapReduce algorithm for Data Cube Materialization. It highlights the existing
MapReduce-based algorithm for Data Cube Materialization have fundamental
problems related to the cost and limited capacity. As they argue, increasing
number of nodes can bring some computational gain but with extra cost. They
propose MRDataCube, a new MapReduce-based algorithm capable of efficient
Data Cube Materialization of large datasets over the same computing resources.

They had carried out a long series of experiments on existing MapReduce-
based data cube algorithm and found it is important for Data Cube Materialization
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Figure 4.2: A sample data flow of MRSpread phase in MRDataCube [48]

Figure 4.3: A sample data flow of MRAssemble phase in MRDataCube [48]

in MapReduce to use the distributed parallelism of MapReduce optimally. Their
result shows MRDataCube outperforms all other existing existing MapReduce-
based data cube algorithms.

MRDataCube algorithm mainly considers reducing output data collections
from Map function and hence reduce data shuffling. They introduced two phases
in MRDataCube to achieve this, MRSpread and MRAssemble. MRSpread emits
all partial cells of the target cuboids, reducing all the overlapping dimensions
with additional combiner function in MapReduce. Figure 4.2 (taken from original
paper [48])shows an example data flow of MRSpread phase.

MRSpread generates all partial cells, which is input to the MRAssemble phase
of MRDataCube. MRAssemble aggregates all the partial cells and generates all
cuboids. Figure 4.3 (taken from original paper [48]) depicts the sample data flow
for MRAssemble phase.

4.3.2 Data Cube Materialization with Apache Spark
Matei Zaharia et al. explains in their paper [79], Distributed Computing
framework like MapReduce is inefficient for iterative algorithms and interactive
data mining tools. Thus, promotes in-memory Distributed Data Abstraction,
Resilient Distributed Dataset (RDD), which improves performance by an order of
magnitude. Apache Spark [6] uses RDD as the underline distributed computing
mechanism for various Distributed Sub-components such as Spark SQL, Stream
Processing, Graph Processing and Machine Learning.
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Unlike MapReduce, there is no any research carried out with RDD in Apache
Spark on Data Cube Materialization. Instead Apache Spark introduces CUBE
operator as part of its DataFrame API.

4.3.2.1 Spark DataFrame

Spark SQL [9] is one of main sub component in Apache Spark for Structured
Data Processing. Unlike standard Spark RDD, Spark SQL allows distributed
applications to leverage the benefits of declarative queries and optimized storage.
Spark SQL enables its declarative query capabilities through its DataFrame API.
In addition, Spark SQL includes Catalyst, a a highly extensible optimizer that
perform extra optimization in data processing.

DataFrame is the central abstraction in Spark SQL, which represent a distributed
collection of data rows with a homogeneous schema. It is conceptually equal
to the Tables in relational databases and supports various relational operations
with more optimized execution. DataFrames are constructable from external
Distributed Data sources like HDFS, or from existing RDDs. Once constructed,
the data collection abstracted in DataFrames are manageable with its relational
operators.

4.3.2.2 DataFrame’s CUBE Operator

In June 2015, Apache Spark version 1.4.0 included CUBE operator as part of the
DataFrame API. It is same CUBE relational operator explained in section 3.1.1,
which was introduced by Jim Gray et al. [30] that generates all possible GROUP
BY for a given dataset. Figure 3.1 depicts the semantics usage of CUBE relational
operator with a sample dataset and its result.

As a relational operator, CUBE is more convenient to be a part of Spark
DataFrameAPI. It is just an extension to the existing GROUP BY operator from
which CUBE operator can be determined. The following lists all supported
method signatures of CUBE operator as in Spark version 2.2.0 of Java API.

public RelationalGroupedDataset
cube(Column... cols)

public RelationalGroupedDataset
cube(scala.collection.Seq<Column> cols)

public RelationalGroupedDataset
cube(java.lang.String col1,

scala.collection.Seq<java.lang.String> cols)
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public RelationalGroupedDataset
cube(java.lang.String col1,

java.lang.String... cols)

In all cases above, Spark creates a multi-dimensional cube type of RelationalGroupedDataset
for the current DataFrame using the specified columns. RelationalGroupedDataset
abstracts a set of aggregation functions, which in return a new DataFrame.

Let us consider an application of CUBE operator with a sample DataFrame as
given below. df is a DataFrame object with 4 columns year, model, color, and
sales.

scala> df.select("year", "model", "color", "sales").show()
+----+-----+-----+-----+
|year|model|color|sales|
+----+-----+-----+-----+
|1991|Chevy| blue| 49|
|1991| Ford| Red| 52|
|1990|Chevy| Red| 5|
|1990|Chevy| blue| 52|
|1991| Ford|white| 9|
|1990|Chevy|white| 87|
|1990| Ford| Red| 64|
|1992|Chevy| Red| 31|
|1990| Ford| blue| 63|
|1992|Chevy| blue| 71|
|1991|Chevy|white| 95|
|1994| Ford| blue| 39|
|1990| Ford|white| 62|
|1991|Chevy| Red| 54|
|1992|Chevy|white| 54|
+----+-----+-----+-----+

The following shows the usage of CUBE operator with two columns; year and
model. And then application of SUM aggregation function for the column; sales.

scala> val fullDataCubes = df.cube("year", "model")
.agg(Map("sales" -> "sum"))
.cache()
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scala> fullDataCubes.show()
+----+-----+----------+
|year|model|sum(sales)|
+----+-----+----------+
|1990| null| 333|
|null| null| 787|
|1991| null| 259|
|1992| Ford| 39|
|1992| null| 195|
|null|Chevy| 498|
|1990| Ford| 189|
|null| Ford| 289|
|1991|Chevy| 198|
|1992|Chevy| 156|
|1990|Chevy| 144|
|1991| Ford| 61|
+----+-----+----------+

As it can be seen in the result, CUBE operator generate the result for all
possible data cubes for specified columns. The result contains data for four data
cubes; Year-Model, Year, Model and None. The individual data cubes can be
filtered out as the following.

# Data Cube: Year-Model
scala> fullDataCubes.filter("year is not null

and model is not null")
.show()

+----+-----+----------+
|year|model|sum(sales)|
+----+-----+----------+
|1992| Ford| 39|
|1990| Ford| 189|
|1991|Chevy| 198|
|1992|Chevy| 156|
|1990|Chevy| 144|
|1991| Ford| 61|
+----+-----+----------+
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# Data Cube: Year
scala> fullDataCubes.filter("year is not null

and model is null")
.show()

+----+-----+----------+
|year|model|sum(sales)|
+----+-----+----------+
|1990| null| 333|
|1991| null| 259|
|1992| null| 195|
+----+-----+----------+

# Data Cube: Model
scala> fullDataCubes.filter("year is null

and model is not null")
.show()

+----+-----+----------+
|year|model|sum(sales)|
+----+-----+----------+
|null|Chevy| 498|
|null| Ford| 289|
+----+-----+----------+

# Data Cube: None Dimenions
scala> fullDataCubes.filter("year is null

and model is null")
.show()

+----+-----+----------+
|year|model|sum(sales)|
+----+-----+----------+
|null| null| 787|
+----+-----+----------+

In this way, CUBE operator of Spark DataFrame API provides a simplified
approach for Full Data Cube Materialization for specified dimensional and
measure fields. It hides all the data processing complexities over distributed
storage systems and produces all possible data cubes in an optimized manner.





Chapter 5

Apache Spark vs Apache Hadoop in
Data Cube Materialization

The thesis aims to contribute a standard OLAP Engine for modern Distributed
Storage Systems such as Hadoop DFS, HBase, Cassandra, etc. The main
challenge for such a framework is an efficient Distributed Data Cube Materialization
approach. There are two main directions available today for Distributed Data
Cube Materialization; MapReduce-based algorithms and CUBE operator of
DataFrame API in Apache Spark.

With theoretical background of the two systems, Apache Spark has many
advantages over MapReduce. But, their performance on Data Cube Materialization
is still important to verify with a practical experiment. A quantitative research
method with a set of experiments was designed to answer this question.

5.1 General Comparision of Apache Spark and Hadoop
We hypothesized the CUBE operator of DataFrame API in Apache Spark
outperforms any MapReduce implementation for full data cube materialization. It
is Apache Hadoop widely used distributed programming primitives for MapReduce
and Distributed File System. Before dive into the main research problem, it is
convenient to see a general comparison of Apache Spark and Hadoop.

There are various studies [59, 43, 38] available that compare Spark and
Hadoop MapReduce. Raul Estrada and Isaac Ruiz in their book [25, pp. 12-
14] provides a precise comparison of the two frameworks. Table 5.1 summarizes
their work how Spark differs from MapReduce. As authors highlight Apache
Spark includes a rich set of libraries for Machine Learning, Stream Processing,
Graph Processing, Relational Data Processing. To achieve the same in Hadoop,
it requires an integration of third party tools and libraries. The same is true with
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Table 5.1: Apache Spark and MapReduce Comparison

Apache Spark Hadoop MapReduce
Written in Scala/Akka Java
APIs in Java, Scala, Python, and R Only Java
Storage
Model In Memory In disk. Long latency in

read/write from/to disk.
I/O Model In memory without I/O A lot of I/O activity over disk

Efficiency
Abstracts all the
implementation to run it
as efficiently as possible.

Programmers write complex
code to optimize each
MapReduce job.

Libraries
Adds libraries for machine
learning, streaming, graph
manipulation, and SQL.

Required third-party tools and
libraries, which makes work
complex.

Source
Code

Scala programs have dozens of
lines of code (LOC).

Java programs have hundreds
of LOC.

materializing data cubes. DataFrame API in Apache Spark SQL already included
with CUBE operator that perform data cube materialization. To achieve the same
in MapReduce one has to implement a module from scratch or integrate such
third-party library available.

Also, there is another advantage of using Apache Spark for data cube
materialization. That is, Spark’s broad range data processing support on various
distributed storage systems such as inbuilt HDFS support, HBase connector,
Cassandra connector, etc. In this way, Apache Spark allows data cube materialization
on many distributed storage systems.

5.2 Performance Comparision of Apache Spark and
Hadoop in Data Cube Materialization

There is no any research work available today that compare Apache Spark and
MapReduce in materializing data cubes. It is one of the main contributions of this
thesis that identify the best-distributed data processing approach for data cube
materialization.

The main challenge here was to pick the best MapReduce algorithm for
data cube materialization as several algorithms available from various research
communities. Section 4.3.1 lists highly recognized MapReduce implementations
in materializing data cubes. Among them, the recent work during year 2015-
2016, MRDataCube by Suan Lee, Sunhwa Jo, and Jinho Kim states better
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Figure 5.1: Testbed - MRDataCube Design Overview

performance compare to previous work in data cube materialization in their paper
[48]. Therefore, the decision was to select MRDataCube algorithm to compare it
with Data CUBE operator of DataFrame API in Apache Spark.

5.2.1 Testbed: Apache Spark and MapReduce implementation
for Data Cube Materialization

Authors of MRDataCube do not share any implementation of the proposed
algorithm. One of the tasks in setting up the testbed for the comparison was to
implement MRDataCube algorithm. Figure 5.1 shows the design overview of the
MRDataCube implementation.

As explained in section 4.3.1 MRDataCube algorithm composed of two
phases; MRSpread and MRAssemble. The MRSpread phase determines the
partial cuboids and makes them available for the MRAssemble phase. The
MRAssemble phase calculates all the cuboids. We have further simplified the
implementation of the testbed that MRSpread and MRAssemble determine only a
single measure, COUNT. That is, for any given dataset it calculates the number of
unique combination of the dimensional values.

The implementation for data cube materialization with Spark DataFrame’s
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Figure 5.2: Testbed - Spark DataFrame’s CUBE operator Design Overview

CUBE operator is straightforward. Figure 5.2 depicts the design overview of the
implementation with Spark ’s DataFrame. It simply loads DataFrame object from
HDFS source and calls Cube methods with all columns fields and apply count
operator. Both implementations calculate the elapsed time in performing Data
Cube Materialization.

5.2.2 Testbed: Synthetic Large-scale Dataset
It states real world data are skewed and follows Zipf distributions. For example in
natural languages, the frequency of any dictionary word is inversely proportional
to its frequency rank, which is expressible in Zipf distributions [50] . The same
applies with multidimensional datasets, and real world data cubes are not dense.
Therefore, we generated a synthetic datasets according to Zipf distribution for
the experiment. The Apache Commons Mathematics Library [65] provides the
implementation for Zipf Distribution and Appendix A explains how the library
was used to generate the synthetic dataset.

5.2.3 Testbed: Execution Environment
We selected AWS Cloud Service to set up the execution environment for the
testbed as it provides excellent control and flexibility in arranging computing
resources. Apache Spark and Hadoop clusters were setup on AWS EC2 instances
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Table 5.2: Spark - Hadoop Cluster, The resource settings of t2.large EC2 instance

2 virtual CPU, 2.5 GHz, Intel Xeon Family
8 GiB Memory
200 GiB SSD

within same availability zone to minimize any network traffic. Appendix B, C, and
D provides the complete guide for setting up Apache Spark and Hadoop clusters
on AWS Environment. AWS EC2 instances were created from Amazon Linux
AMI with the instance type t2.large that holds the resource settings given in table
5.2.

Figure 5.3 depicts the execution environment on AWS for all the test scenarios.
As it illustrates in the figure all AWS EC2 instances were setup within eu-west-1
(Ireland) region and in same availability zone. In AWS, regions represent data
centers and while availablity zones are identical to network racks. Therefore, the
execution environment is equivalent to computer nodes in a single Data Center.
Table 5.3 provides the base operating systems, software and application versions
used in the Execution environment.

Table 5.3: Spark - Hadoop Cluster, OS, Software and Application versions

Amazon Linux AMI release 2017.03
Open JDK v1.8.0
Apache Hadoop 2.7.3
Apache Spark 2.1.0-bin-hadoop2.7

5.2.4 Testbed: Depended/Independent Variables and Test Scenarios
We considered the elapsed time for performing full data cube materialization as
the dependent variable for the test scenarios. The elaspsed time is measured with
the following independed variables which defined the test scenarios.

Number of Data Tuples The impact of data size on data cube materialization.

Number of Nodes in the cluster The impact of the cluster size on the performance
of data cube materialization.

Number of Dimensions The impact of the number of dimensions in a dataset on
the performance of data cube materialization.

The following test scenrios was defined according to above dependent and
intependent variables.
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Figure 5.3: Testbed - Execution Enviornment on AWS

5.2.4.1 Data Cube Materialization over the Number of Data tuples

Seven datasets were generated starting from 1 million records to 7 million records
with eight dimensions with maximum 64 cardinality level for each dimensional
values. Full data cube materialization is carried out for each dataset with
MapReduce MRDataCube algorithm and Spark CUBE operator separately on
each cluster. The Spark cluster in this scenarios contained eight nodes for Slave
processes and one separate node for the Master process. Similarly, Hadoop cluster
contained 8 nodes for the Data Nodes and one separate node for the Name Node.

5.2.4.2 Data Cube Materialization over the Number of nodes in the Cluster

In this test scenario, a dataset with 4 million records with eight dimensions was
used. And the elapsed time in data cube materialization was measured for different
cluster sizes with Spark and Hadoop. The experiment was started with five nodes
(One node for Spark Master and Hadoop Name Node, and rest of the nodes for
Spark Slaves and Hadoop Data Nodes). Then the number of Spark Slaves and
Hadoop Data Nodes were increased one by one until eight nodes.
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5.2.4.3 Data Cube Materialization over the Number of Dimension

In this test case, six different datasets were generated with a different number
of dimensions, from 3 to 8. The number of records was restricted to 1 million
tuples. The experiment was carried out for the two systems with cluster size of
five nodes; One node for Spark Master and Hadoop Name Node, and four nodes
for Spark Slaves and Hadoop Data Nodes

5.3 Result and Analysis of the Test Scenarios
The elapsed time in data cube materialization for Spark CUBE operator and
MRDataCube MapReduce implementation was collected for each test scenarios.
Appendix E provides the complete result for each test cases.

5.3.1 Elapsed Time over the Number of tuples
Figure 5.4 illustrates the outcome of the test scenario that measures elapsed time
in data cube materialization over different dataset sizes. As it clearly seen in
the chart, Spark’s CUBE operator has obtained four times lower elapsed time
compare to MapReduce’s MRDataCube for each dataset size. Also, MapReduce’s
MRDataCube shows high linear increasing trend compare to Spark’s CUBE
operator. That is, MapReduce would reach to the maximum resource level a node
can handle much earlier than Spark’s CUBE operator.

Figure 5.4: Elapsed time in Data Cube Materialization over the number of tuples
in a dataset.
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5.3.2 Elapsed Time over the Number of dimensions
Figure 5.5 illustrates the impact of number dimensions in a dataset on elapsed
time of data cube materialization. As it presents, the number of dimensions
has a significant impact on its performance for both systems. It follows the
mathematical relationship in between the number of dimensions and its expected
cuboids count. A data collection with n dimension causes a calculation of 2n

cuboids, which is exponential growth that same seen in the result.

Figure 5.5: Elapsed time in Data Cube Materialization over the number of
Dimensions

5.3.3 Elapsed Time over the Number of nodes
Figure 5.6 presents the result of the test scenario that measures elapsed time
in data cube materialization over the cluster size of two systems. In both
systems, increasing cluster size can achieve some improvement in the data cube
materialization. But the decreasing trend of elapsed time is not linear. It’s more
polynomial that at some points, the number of nodes in the cluster would have
no impact on the elapsed time. This follows distributed storage mechanism of the
two systems. Both uses the data partition of HDFS, and file size determines the
number blocks and hence the maximum number of data executors it needs.
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Figure 5.6: Elapsed time in Data Cube Materialization over the cluster size





Chapter 6

BigDataCube: A framework for
Multidimensional Data Analysis
with Apache Spark

Multidimensional Data Analysis or Online Analytical Processing (OLAP) is
not discussed accordingly in current Big Data Analytics Paradigm. The main
contribution of the thesis is BigDataCube, a framework for Online Analytical
Processing over modern Distributed Storage Systems. We concluded in the
previous chapter that Spark’s CUBE operator in DataFrame API provides the
most efficient distributed computing approach for Data Cube Materialization.
The framework leverages Multidimensional Data Analysis with Spark’s CUBE
operator in DataFrame API.

In addition, the usage of Spark for materializing data cubes in the framework
brings more additional advantages. Mainly, Spark supports data processing
over various distributed storage systems, which make the framework capable for
supporting Multidimensional Data Analysis over all Spark supported data sources.
Also, Spark comes with other distributed components, such as MLib, GraphX,
Streaming, etc., which makes the framework easily extended to provide more
advanced data analytical capabilities.

6.1 BigDataCube, Distributed OLAP Engine over
Apache Spark

BigDataCube is the main contribution of the thesis, a new framework based
on Apache Spark that enables multidimensional data analysis over modern
distributed storage systems. It is a distributed OLAP engine, which leverages
Spark’s DataFrame CUBE operator for Materizalizing data cubes. Figure 6.1
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Figure 6.1: BigDataCube, System Overview

illustrates the system overview of the framework. As it depicts in the diagram,
the framework composes of BigDataCube engine, which exposes a REST API for
the front-end Data Analysis tool, Pivot View. BigDataCube engine is a standard
Spark Application deployable on any Spark Cluster and configurable to define
required Dimensions and Measures of the target Data Cube. But unlike standard
Spark applications, once the BigDataCube engine is deployed it allows interactive
access to the Spark Context via a RESTful API. The Spark Context holds the
reference to DataFrames that represents Data Cubes. The front-end tool, Pivot
View calls RESTful services to retrieve the data cubes and visualizes on Pivot
tables.

BigDataCube engine consists of three main sub-modules; conf/cube.yaml
configuration file, Akka HTTP endpoint, and Spark Context. At the deployment of
BigDataCube engine, it first reads the configurations in cube.yaml and determine
the Spark application settings, target data source, and dimension/measure fields
of the Data Cubes. From data source configurations, it lets the relevant data
source implementation to load the data as DataFrames. Then it applies the
CUBE operator to materialize all possible Data Cubes for specified dimensional
and measure fields in cube.yaml. Finally, BigDataCube engine makes the Data
Cubes interactively accessible over the RESTful API via HTTP Akka library.
All these execution steps occurred at the submission of BigDataCube engine on
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Spark Cluster and when it completes all the generated Data Cubes are ready for
interactive data analysis with the Pivot View.

6.1.1 Configuration Overview
BigDataCube engine reads its configurations in YAML file format. YAML is a
human-readable and computationally powerful data serialization language [78].
YAML allows structured configuration level similar to XML, but it is more
lightweight and simple. BigDataCube engine expects YAML configuration file
at conf/cube.yaml. The following lists the main configurations options in the file.

# CUBE.YAML: Big Data Cube Configurations
name: SalesCube
port: 9090

# Spark Applications/Runtime/Security Properties
sparkProperties:

spark.driver.cores: 1
spark.driver.memory: 1g
spark.executor.memory: 1g

# Data Source Properties
datasource:

type: cassandra
host: 10.0.1.211
keyspace: analytics
table: sales

# Dimensions for the Data Cube
dimensions:

-
name: Model
field: model

-
name: Color
field: color

-
name: Sales Date
field: datetime
hierarchy: DateHierarchy
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# Measures for the Data Cube
measures:

-
name: Number of Sales
field: sales
aggregateType: sum

As it presents above, there are four main configuration options. Firstly, the
application name and port that BigDataCube engine accessible over the RESTful
service. Secondly, Spark application properties such as Memory, CPU, and
Security. Thirdly, Data Source settings that Spark connects over. Finally, the
Dimensions and Measures expected in the target Data Cube. A dimension
configuration holds three properties; name, field, and hierarchy. name and field
are mandatory properties in Dimension configurations. The filed represent the
actual data filed name in the target Data Source, and the name gives a label
to it, which is visible in the Pivot View. hierarchy is an optional property.
The value for hierarchy is an implementation of DimensionHierarchy type in
BigDataCube engine, which defines dimensional levels for specified field. For
example, DateHierarchy type may introduce three additional dimensional levels
as Year, Month and Data for the target cubes. In the sample configuration above,
a value 2009-05-28 for datatime field results three additional fields as year: 2009,
month: May, day: 28. BigDataCube engine allows any custom implementations
for Dimensional hierarchies. A measure configuration also holds three properties;
name, field and aggregateType. name and field properties are same as with
dimension properties. aggregateType is a mandatory property which states the
data aggregation function for the measure field. It allows all the aggregation
functions that Spark supports such as SUM, AVG, MAX, MIN, etc.

6.1.2 API Overview
BigDataCube engine exposes RESTful services that are mainly used by the Pivot
View front end tool. But the REST API is useful for any other Data Analysis tools.
The following describes the REST API of BigDataCube with RAML, a RESTful
API Modeling Language [57].

#%RAML 0.8
----------
title: BigDataCube API
baseUri:http://HOST:9090/datacube
version:v1
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/dimensions:
GET:

description: Return all dimensions
responses:

200:
body:

application/json
example:
[

{
"name" : "Model",
"field":"model",
"hierarchy":"ModelHierarchy"

}
]

/measures:
GET:

description: Return all measures
responses:

200:
body:

application/json
example:
[

{
"name" : "Sales",
"field":"sales",
"agregateType": "sum"

}

]

/cuboids/{cubeId}:
GET:

description: Return given Data Cube with id ’cubeId’
responses:

200:
body:

application/json
example:
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[
{

"model" : "Ford",
"color":"Black",
"year":"1990",
"sales": "200"

},
{

"model" : "Ford",
"color":"White",
"year":"1990",
"sales": "190"

}
]

6.1.3 Design Overview
One of the design challenges with BigDataCube engine is to provide a way for
interactive data analysis. Usually, Spark applications considered as batch data
processing jobs that read data from one data source and write back to same or
another storage. There is no a particular approach for interactive data analysis with
Spark Applications unless the Spark Shell. But it is significant for BigDataCube
engine to provide interactive access to underline Data Cubes over the RESTful
services mentiond in previous section. BigDataCube engine uses Akka Http
library [49] to achieve this feature. Akka Http provides a lightweight approach for
exposing services over Http on top of Akka actor system. BigDataCube engine
enables the Spark context for Akka actor system. That is, it allows accesses to the
Data Cubes in Spark context over a REST API.

Figure 6.2 presents detail design overview of BigDataCube engine. As
it shown in the diagram, the implementation is based on Akka HTTP and
Spark Core/SQL libraries. DataSource provides the abstraction for many Spark
supported Distributed data storage systems. DataCubeService abstracts the
implementation logic for the services that it exposes as RESTful API via
DataCubeServiceResource. DataCubeServer holds object references to DataSource,
DataCubeService, etc. and provides the entry point to the applications.

DataCubeService provides the abstraction for implementation of various Data
Cube Materialization Algorithm. As it depicts in the diagram, the main
approach is full cube materialization with Spark Data Frame CUBE operator.
But the design allow possibilities for partial cube materialization. Also,
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Figure 6.2: BigDataCube Engine, Design Overview

DataCubeService exposes several other services beneficial for the any Data
Analysis tool.

DataSource provides the abstraction for many Spark supported distributed storage
systems. For given configuration, the relevant implementation of the
DataSource is initiated. Spark takes care of reading data in a distributed way
and knows how data are partitioned across underlying distributed storage.

DataCubeServer combines all component as a Spark Application. It is the entry
point for Spark master, and with the support of Akka HTTP service, it
listens for HTTP requests defined in DataCubeServiceResource.

6.2 Pivot View, Visualization of Data Cubes
The next challenge is the visualization of the Data Cubes in a meaningful way
that important insight of a data collection can be derived. Pivot View is part of the
BigDataCube engine which brings front-end data analysis capabilities with Pivot
tables. Pivot tables are quite known in spreadsheet applications like MS Excel.
Also various other commercial and community tools available today [70, 55, 68].
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Figure 6.3: Pivot View UI Elements

Pivot View in BigDataCube engine is a static web javascript application. It
is built with well-known Javascript libraries; jQuery [66] and Bootstap [14].
The pivot table is a modification of the original source jbPivot [70]. Figure 6.3
provides an overview the Pivot View UI and its elements. As it illustrates in
the figure, Pivot View UI consists of three main UI elements; Dimensions Panel,
Measures Panel and Pivot Table Canvas.

The Dimensions Panel is filled with the response from RESTful API call;
GET/dimensions, which in returns all specified dimensions in the cube.yaml
configuration file. In same way, GET/measures RESTful API call from the Pivot
View fills the Measures Panel. Initially, the Pivot Table Canvas is empty. The
Dimension elements are drag and droppable into the Column or Row area of the
Pivot Table. And the Measure elements are allowed within the body area of the
Pivot Table. For each user actions (Drag and Drop of Dimensions and Measure
elements), Pivot View generates a cube id and calls the RESTful service;
GET/cuboids/CUBEID on BigDataCube engine. BigDataCube engine can
instantly respond to the Pivot View Request with all data cube records for given
cube id, as it had already computed all the Data Cubes for specified dimensions
and measures in cube.yaml at the startup. Upon the response from BigDataCube
engine, the Pivot View simply display the records according to the arrangement
of Dimensional elements in the Pivot Table.

Pivot View allows representation of various Cube operations within the UI.
For example, Figure 6.4 shows how the Number of Sales measure can be further
drilled down through the Sales Date’s Month dimensional level.
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Figure 6.4: Pivot View - Drill Down through Date Dimension Level
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Figure 6.5: Pivot View - Drill Down through Fuel Dimension

Figure 6.6: Pivot View with 4-Dimensions
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Figure 6.5 is an example of Drill Down with a new dimension. As it illustrates
in the figure, the Number of Sales now further breaks down with additional Fuel
dimension. Also, Pivot View support visualization of Data Cubes with any number
of dimensions. Figure 6.6 is an example of Pivot View for a 4-dimensional cube.
In this way, Pivot View provides the Data Cube visualization capabilities and helps
to gain important insight of a data collection.





Chapter 7

Case Study: BigDataCube over
Apache Cassandra

Digital River World Payment is a service provider for global online payments.
The standardized payment gateway allows integration of many merchants into the
Payment Platform and routes their transaction over various Payment Networks.
The payment platform consists of various service components, but a Data
Analytical module is not yet well defined. In the thesis, BigDataCube framework
is proposed with relevant architecture changes that bring Multidimensional Data
Analytics to the payment platform.

Cassandra is the underlying database technology that payment platform uses
to support high transactional throughput. Thus, it is the main data source for
analytics. The thesis discusses an architectural approach how distributed data in
Cassandra is used with BigDataCube framework with minimum impact on the
transactions in payment platform. The result of the simple experiment shows the
proposed architecture with BigDataCube framework is scalable in the long term.

7.1 Digital River Payment Gateway
Digital River World Payments is a service provider for global online payments.
The online payment solutions cover various payments methods, including different
card schemes and payments networks. It values integrated merchants with the
full payment transaction lifecycle while providing add-on features such as fraud
detection, consolidated reports, reconciliation, and back-office integration. The
payment gateway for supporting a significant amount of transactions with add-on
features in Digital River follows a standard product suite with well-determined
technology platform.

The technology platform identifies two primary sub-systems that build up
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Figure 7.1: Digital River Payment Gateway - System Overview

the Payment Gateway. That is Online Payment Transaction Processing Systems
and Offline Settlements Systems. Figure 7.1 depicts the overview of the system
components and their base technologies. The primary platform services include
Merchant Integration, Transaction Processing Service, Payment Connectors,
Reconciliation Service and Invoicing Service.

Merchant Integration: The Merchant Integration System enables a simplified
way to Merchants to integrate Payment Services and other facilities with
their systems. It mainly exposes REST and SOAP API, with secure tokenize
options.

Payment Transaction Processing Service: Payment Transaction Processing Service
is the heart of the Payment Gateway. It processes payment transaction
requests with various validation rules, routes over the Payment Connectors
to the right destination, and send the response back to the merchant. All
these steps are required to execute in a fraction of a second while supporting
multiple transactions for many users.

Payment Connectors: Payment Connector System is an integration hub for
connecting various payment providers, payment methods and financial
institutions like banks. It is responsible for providing Transaction Processing
System with proper payment connection to the external system.

Reconciliation System Reconciliation Systems are executed over offline payment
connectors and register all the transaction settlements in batches, usually on
a daily basis.

Invoicing System The invoicing system takes the settlements and tally with
transactions and charges Merchants with auto-generated invoices.
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All these systems are implemented on the same technology stack. As it
depicts in the diagram among other propriety technologies, the main component
is Cassandra, which provides high throughput on writing transactions. Solr
integrated with Cassandra provides multi-index search options for all the ecosystems
in the platform.

Cassandra: Cassandra is a distributed storage system for large-scale structured
data that resides on a cluster of commodity servers [45]. It provides a
distributed key-value store with eventually consistency model. It scales
incrementally with the number of nodes in the cluster, and benefit from
dynamic partitioning mechanism over consistent hashing.

Solr Solr is a distributed indexing system that provides a reliable search functionality.
The data in Cassandra is sync with Solr and provides a multi-index search
capability for data loaded from Cassandra.

7.2 The Missing Component
As it depicts in Figure 7.1, all the payment gateway services are running on top
Cassandra. One of next level service component Digital River is looking for,
Data Analytic capabilities that can synthesize Payment Transactions. Each service
components own its keyspace and tables in Cassandra from which valuable insight
of the data can be derived. For example;

1. The currency exchange rate in transactions in online flow can differ from the
rate at the settlements. With the combination of payment transactions with
their settlements details, Business Analyst can see if any potential profit/loss
makes over the exchange rate.

2. Transactions per Merchant, Business Domain, Country, etc. allows the
Business team to focus on the particular market.

The challenge in providing such analytic query capabilities is to bring another
technology component that runs on Cassandra. Cassandra is a distributed data
source. The traditional approach of extracting data into a centralized location
might not scale with the growth of the dataset. BigDataCube engine explained in
the previous chapter with Apache Cassandra would bring data analytic capabilities
to Digital River Payment Platform. Figure 7.2 shows how the new component
resides in the platform.

There are two main challenges in using BigDataCube framework in the
Payment Platform. Firstly, setup or extraction of Cassandra data into an Analytical
Data source, which minimizes the impact on online transaction system. Secondly,
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Figure 7.2: Digital River Payment Gateway - System Overview with BigDataCube
Engine

the setup of Spark cluster that takes data processing jobs close to the Cassandra
data. In other word bring computations close to the Cassandra data. The two
main challenges in taking BigDataCube framework into the Payment Platform
can be simply achieved with existing features and supported tools in Cassandra
and Spark;

7.2.1 No E-TL Data Warehouse

The well-known design strategy in Data Analytical system is to bring Data into
a separate system to minimize any impact on the transactional system upon
analytical queries. Also, especially in the relational database area, the transaction
system are optimized for the online transactions, data model and physical model
are not suitable for analytical queries. The same applies for Payment Platform
that runs on Cassandra. The analytical queries should not impact the online
transactions. Also, the data model in the transactional system would not fulfill
all analytical needs.

In the traditional approach, data is first extracted, transformed and uploaded
into a separate data warehouse. The same applies to distributed storage, but
streaming data from one cluster to another may not be practical nor scalable. The
simplest approach is to replicate entire Cassandra ring, preferably in a separate
data center (logical or physical) as depicts in figure 7.3. In this way, with minimum
effort, the source data can be replicated into a separate Cassandra Cluster. Unlike
traditional ETL procedures, the data is not pipelined through a set of procedures.
Instead, any data transformations are applied to data partitions and the result is
saved back in data partitions over a cluster of nodes.
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Figure 7.3: Cassandra Replication for Analytic Ring

7.2.2 Data Local Distributed Processing
The next challenge is how to bring computation close to Cassandra nodes.
Fortunately, Datastax’s Spark Cassandra Connector provides the abstraction for
this. Like Spark works with Hadoop Distributed File system, where Spark
executor assigned for each data node, Spark-Cassandra connector provides
the similar capabilities. Appendix G gives detail overview Spark-Cassandra
connector and how Spark brings data processing close to the data in Cassandra
cluster.

7.3 BigDataCube over Cassandra
To evaluate Spark Data Processing over Cassandra with BigDataCube framework,
a prototype of proposed Data Analytics architecture was setup on AWS. Also, a
simple experiment was carried out to check the scalability of the platform and its
performance.

7.3.1 Data Analytics Platform for Digital River
Figure 7.4 depicts a prototype of the system setup for target Data Analytical
Platform. As it represents in the diagram, it is setup on AWS, the Cassandra cluster
in a virtual private subnet, which assumes the transactional data are replicated
using replication strategies in Cassandra. Spark Master is setup on a EC2 node
in a public subnet, whereas all Spark Slaves are setup on same EC2 nodes that
Cassandra nodes are running.

As it depicts in the diagram, instance of multiple BigDataCube engines are
deployable on the Spark Cluster. Each BigDataCube engines may stand for
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Figure 7.4: A Protoype Setup - Data Analytic Paltform for Digital River

different Data Cube that works with Cassandra tables. Both Cassandra and Spark
are scalable over the number of Nodes, thus provides a scalable Data Analytical
Platform for Digital River.

7.3.2 Scalability of the Data Analytic Platform
A simple experiment was to setup to verify the scalability of the platform. Spark-
Cassandra Cluster on EC2 nodes with the settings table 7.1 - 7.2 was setup and
measured the Data Cube Materialization time while changing the cluster size. A
dataset with six dimensions and 10 million records was used on Cassandra-Spark.

Figure 7.5 represents the result of the experiment, where elapsed time of
the Data Cube Materialization was measured increasing the cluster size of
Spark-Cassandra from four to eight. From result we can conclude Data Cube
Materialization over Cassandra also shows the similar behavior as it was with
HDFS. For a larger dataset, increasing cluster size will always benifits with better
performance.
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Table 7.1: Spark - Cassandra Cluster, The resource settings of t2.large EC2
instance

2 virtual CPU, 2.5 GHz, Intel Xeon Family
8 GiB Memory
10 GiB SSD

Table 7.2: Spark - Cassandra Cluster, OS, Software and Application versions

Amazon Linux AMI release 2017.03
Open JDK v1.8.0
Apache Cassandra 3.10
Apache Spark 2.1.0-bin-hadoop2.7

Figure 7.5: Elapsed time in Data Cube Materialization over the Cassandra cluster
size





Chapter 8

Conclusion and Future Work

The thesis motivates the subject area of Multidimensional Data Analysis, which is
an important division of Data Analytic Paradigm that helps in discovering valuable
insight of data collections. Multidimensional Data Analysis considers all possible
relationships among data attributes in a dataset, and the Data Cube abstraction
provides a convenient Analytical Model to achieve it. In essence, many useful
analytical queries are signified in Data Cubes and its operations. The thesis brings
a detailed background of Data Cube notion and its importance in OLAP that
facilitates on-line responses to analytical queries.

8.1 Data Cube Materialization is Important but
Challenging

The primary possible technique for OLAP to provide online responses to analytical
queries is to materialize all possible Data Cubes for a given dataset. That is, OLAP
directs analytical queries to the relevant materialized Data Cube and response
instantly without performing any data aggregations at runtime. But Data Cube
Materialization is challenging in both storage and computation. An n dimensions
dataset courses generation of 2n number of data cubes. Also, the size of each Data
Cube depends on cardinality level of each dimension.

The thesis provides a detail theoretical study of early research works in
data cube materialization, which considers data resides in a centralized Data
Warehouse system. Two main directions of data cube materialization seen in early
research works; full and partial data cube materialization. CUBE operator initiates
the base for most of the full data cube materialization approaches, while Lattice
Framework receives the attention from partial data cube materialization direction.
Among others, Data Cube Compression, Approximate Cubes, and Parallel Data
Cube are recognizable methods in materializing data cubes.
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The thesis raises the argument that traditional data cube materialization
approaches are no longer applicable with modern intensive data collections which
usually resides in a cluster of computer nodes. Thus, it requires a distributed
data cube materialization method. With a theoretical study in Data Intensive
Computing, it is apparent that various distributed computing modules have
already abstract the complexities of Distributed Storage, Processing, and Resource
Scheduling. Two leading such distributed processing systems are MapReduce
and Spark. Both supports distributed data processing over Hadoop Distributed
File System, and resource scheduling over YARN, Mesos, etc. Various studies
already considered using MapReduce for data cube materialization. Among
them, MRDataCube provides better results. Apache Spark also recently introduce
CUBE operator as part of its DataFrame API, which performs full data cube
materialization. The thesis raises the research problem; what is best-distributed
computing approach for data cube materialization among Spark and MapReduce.

8.2 Apache Spark vs Hadoop MapReduce
RDD in Apache Spark emerged as an alternative for MapReduce, which lacks
iterative data processing. With theoretical background of Apache Spark, it is
apparent that Spark has more advantages over Hadoop MapReduce. To answer
the research problem, the best-distributed computing approach for data cube
materialization, the thesis conducts a testbed with the hypothesis that Spark
provides the best-distributed computing model for data cube materialization.
The testbed consists of two implementations, MRDataCube algorithm with
Hadoop MapReduce and Spark’s CUBE operator that both perform data cube
materialization with a simple measure COUNT for specified dimensional attributes
in a dataset. Three test cases determine elapsed time in materializing data cubes,
against the cluster size, the number of records and the number of dimensions.
The testbed is set up on AWS EC2 instances, and the results show similar trend
from both systems but Spark with comparatively low elapsed time in data cube
materialization.

8.3 BigDataCube, Distributed OLAP Engine
The next research problem the thesis addresses how OLAP allows multidimensional
data analysis for the modern distributed systems. Kylin is the only available
distributed OLAP engine today. But it does not follow data cube materialization.
Instead, cube abstraction is enabled over Hive tables, which convert analytical
queries to HQL. Therefore, an OLAP engine that employs data cube materialization
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would lead to a better OLAP engine. The main contribution of the thesis, a
distributed OLAP engine, BigDataCube, which base on Spark CUBE operator.
It is a standard Spark Application, which is deployable on Spark Cluster. Once
deployed, it performs full data cube materialization on configured distributed
storage system with specified dimensional and measures fields. The result of
the data cube materialization is a set of Data Cubes of Spark DataFrame type.
BigDataCube exposes RESTful services to access each Data Cubes. BigDataCube
has several advantages as it builds upon Spark. Mainly, Spark supports many
distributed storage systems, which enable Data Cube Materialization over these
systems. Also, the possibility to integrate it with other Spark modules, such as
Machine Learning, Graph Processing, Stream Processing, etc. and build more
advanced Data Analytics applications. In addition, BigDataCube considers the
visualization of Data Cubes in Pivot views. It provides an interactive Pivot table
(Javascript library), which calls RESTful services on BigDataCube engine and
visualizes the resulted Data Cubes.

8.4 Use case for BigDataCube
The thesis is carried out at Digital River, a service provider for online payments.
The online payment platform consists of various subsystems, each of which
implemented in the same technology stack. Cassandra is the base for all the
subsystems, which allows high write throughput on only payments transactions.
The payment platform was looking for next level Data Analytical Subsystem.

We proposed a Data Analytic Architecture for their online Payment Gateway
platform, which engages BigDataCube for Multidimensional Data Analysis. We
set up a prototype of the proposed architecture on AWS and with an experiment
that proves the scalability of the proposed solution.

8.5 Delimitation and Limitation
To answer the research problem, the best-distributed computing approach for data
cube materialization, the testbed was setup with sufficient computer resources
for both distributed systems; MapReduce and Spark. The experiments did not
consider edge cases like behavior upon limited resources. That is, MapReduce
and Spark performance in materializing data cube with limited disk and memory
spaces. Among various MapReduce models, MRDataCube algorithm was chosen
to compare with Spark DataFrame in materializing data cubes as the authors
of MRDataCube clearly states it outperforms previous works in MapReduce for
materializing data cubes. Also, the cardinality level of dimensions and data file
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size was not considered as independent variables in measuring elapsed time for
materializing data cubes. It is obvious the two cases covered in the test case with
the independent variable, Number of records.

BigDataCube is an OLAP framework in its early version. The framework
does not consider a target data source for materialized data cubes. Instead, it
keeps the result of materialized data cube in memory (Spark’s DataFrame) and
allows interactive access to RESTful services. It does not consider any persistence
storage for materialized data cubes. The application of BigDataCube for payment
gateway in Digital River was not considered security and data access level grants.
It is an important Data Privacy factor, the individuals with correct privileges have
access to right level of data over the BigDataCube.

8.6 Future Works
BigDataCube is its initial version as a Distributed OLAP engines. Various
features can be introduced to make it a complete Distributed OLAP engines.
One important feature is to make materialized cube even fast accessible. In
the current version, Materialized Cubes represents cached Spark DataFrame
collections. The Data Cube Materialization process can be further extended to
write all materialized cubes into a Distributed Multi-index model, which allows
even fast access to the Data Cubes.

Visualization of Data Cube via Pivot View does not consider as a major feature
in the thesis. But, it is a significant functionality as an analytical tool that can be
further improved with numerous front-end features such as Export Data in several
formats (e.g Excel, CSV, PDF, etc), User Profiles to share Cubes with other users,
User Profiles that grants access to different level of cubes. Pagination that views
cubes in pages, etc.

Apache kylin [5] is known as the distributed OLAP engine today. During the
thesis, they released a beta version of Apache Kylin, which extends the OLAP
engine with partial data cube materialization algorithm [61] based on Spark RDD.
It is interesting to compare the performance of Kylin’s Data Cube Materialization
with BigDataCube. As BigDataCube engine is based on Spark DataFrame, there
is a high chance our solution outperforms Spark RDD implementation of Apache
Kylin. BigDataCube can be further improved to support many Distributed Data
Storage systems, and make it a unique feature among other solutions.
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Appendix

Appendix A - Zipf Synthetic Dataset

Zipf Distribution
During 1949, the American linguist George Zipf (1902-1950) explained an
interesting feature in languages. As he described, human uses a few number of
words very often, and rarely the majority of other words. When the words were
ranked in popularity, found that the word in rank 1 was always popular twice as
the word in rank 2, and thrice as the word in rank 3. This rank vs. frequency
rule was later augmented as Zipf’s law. Zipf distribution is in a family of discrete
power law probability distributions, which follows many of the real world data
distributions.

Apache Commons Math Library
Apache Commons is a well-known open source library for various reusable
Java components. Commons Math is a part of the library that bundles with a
lightweight, self-contained mathematics and statistics functions. It provides a
simple API to generate a dataset that follows Zipf Distribution.

ZipfDistribution class abstracts the utility functions and provides the following
method signature for constructing an instance of it.

/**
* Creates a Zipf distribution.
*
*
* @param rng Random number generator.
* @param numberOfElements Number of elements.
* @param exponent Exponent.
*
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* @exception NotStrictlyPositiveException
* if {@code numberOfElements <= 0}
* or {@code exponent <= 0}.
*
*/
ZipfDistribution(RandomGenerator rng,

int numberOfElements,
double exponent)

Generation of Zipf Synthetic Dataset
Creation of sample dataset that follows Zipf distribution is a simple task with
Apache Commons Math Library. The following presents the pseudo-code for
generating such data collection.

******************************************************
Input Parameters: numDimensions, numRecords
Returns: List of DataRecord
******************************************************

ZipfDistribution zipfDist =
new ZipfDistribution(new JDKRandomGenerator(),

numRecords, 1);

List<DataRecord> dataRecords =
new ArrayList<DataRecord>()

while x <= numRecords
DataRecord record = new DataRecord()
record.id = x

while y <= numDimensions
record.values[y] = zipfDist.sample()

end while

dataRecords.add(record)

end while
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Section 5.2.2 uses an implementation of above pseudo code to generate the data
collections for the testbed with the following format.

DValue1-1 DValue1-4 DValue1-15 DValue1-18 DValue1-21
DValue1-1 DValue1-2 DValue1-13 DValue1-17 DValue1-19
DValue1-1 DValue1-2 DValue1-18 DValue1-22 DValue1-26
DValue1-2 DValue1-8 DValue1-14 DValue1-18 DValue1-30
DValue1-1 DValue1-2 DValue1-19 DValue1-18 DValue1-35
DValue1-1 DValue1-2 DValue1-16 DValue1-10 DValue1-24
DValue1-1 DValue1-3 DValue1-14 DValue1-12 DValue1-32
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Appendix B - Setting up AWS EC2 Instances
The testbed for experiments described in section 5.2.3 and 7.3.2 was setup on
AWS Cloud Environment, as it provides great flexibility in arranging computing
and networking resources. Also, their pricing principle "pay-as-you-go" is quite
convenient for experiments that require resources for a shorter period.

Amazon Elastic Compute Cloud (Amazon EC2) is the main resource used
from AWS Cloud Service for the experiments. AWS EC2 instances can be simply
setup with their Web Console in few steps. But setting up a cluster of EC2
instances for Spark, Hadoop or Cassandra require further consideration. With
default settings, EC2 instances are assigned with elastic IP addresses, that may
change if the EC2 instance was stopped and started again, which causes modifying
the configurations for Spark, Hadoop or Cassandra clusters. It can be avoided
setting up AWS EC2 instances within Amazon Virtual Private Cloud (Amazon
VPC).

AWS VPC
AWS VPC builds a virtual network where AWS EC2 instances can be launched. It
provides complete control over IP address range, subnets, route tables and network
gateways. Setting up an AWS VPC is a simple task with few steps guide on AWS
Console.

VPC with Public and Private Subnets

Log into the AWS Console and select VPC under Networking Content Delivery
category. Then select ’Start VPC Wizard’ from VPC Dashboard. In the first step,
we choose ’VPC with Public and Private Subnet’ configuration as in figure 8.1.

A VPC with Public and Private Subnets are more suitable for Spark, Cassandra
and Hadoop Cluster setup. That is, we can have entire Cassandra, Hadoop cluster
and Spark slaves nodes in Private subnets where instances are closed to a private
IP range. In the Public subnet, we can have publically accessible nodes, such as
Spark Master, Cassandra CQLSH client nodes, etc. In the next step, we provide a
name to VPC and accept default settings to generate the VPC, see figure 8.2.

AWS EC2
EC2 provides resizable compute capacity in AWS Cloud. AWS Console provides
various options for selecting Operating Systems, CPU, Memory, Storage and
Network Performance for the target EC2 instance.
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Figure 8.1: AWS VPC, select a VPC with Public and Private Subnets

Figure 8.2: AWS VPC, settings for a VPC with Public and Private Subnets
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EC2 Instances on VPC

Setting up EC2 instances on VPC is same as following the EC2 wizard on AWS
Console. The only difference is, at Step 3 we select the previously created VPC
and subnet, see figure 8.3.

Figure 8.3: AWS EC2, configuration detail
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Appendix C - Hadoop Cluster
The execution environment for testbed explained in section 5.2.3 consist of
Hadoop Cluster, which was launched on AWS EC2 instances. This guide provides
a quick reference for the setup.

Pre-requisites
Create EC2 instances for separate NameNode and DataNodes. In the testbed
t2.large instances with Amazon Linux AMI was used. Amazon Linux AMI has
already bundled with Open JDK v1.7.0, or we may upgrade it to v1.8.0 with the
following command.

# Install OpenJdk v1.8.0
sudo yum install java-1.8.0

# Remove existing version 1.7.0
sudo yum remove java-1.7.0-openjdk

Download Apache Hadoop version 2.7.3 and extract the bundle in all cluster
nodes.

# Download Apache Hadoop v2.7.3
wget http://<DownloadMirror>/dist/hadoop/common

/hadoop-2.7.3/hadoop-2.7.3.tar.gz

# Extract the bundle.
# This will create Hadoop Distribution
# at /home/ec2-user/hadoop-2.7.3
tar -xvf hadoop-2.7.3.tar.gz

Setting up Data Nodes
Apply the following configuration file changes in all dedicated Data Nodes.

core-site.xml

<!-- Replace ’namenode’ with public DNS of Name Node -->
<property>

<name>fs.defaultFS</name>
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<value>hdfs://namenode:9000/</value>
</property>

hdfs-site.xml

<property>
<name>dfs.replication</name>
<value>2</value>

</property>
<property>

<name>dfs.datanode.name.dir</name>
<value>file:///home/ec2-user/hadoop-2.7.3/data</value>

</property>

mapred-site.xml

<!-- Replace ’namenode’ with public DNS of Name Node -->
<property>

<name>mapreduce.jobtracker.address</name>
<value>namenode:54311</value>

</property>
<property>

<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>

yarn-site.xml

<!-- Replace ’namenode’ with public DNS of Name Node -->
<property>

<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

</property>
<property>

<name>yarn.nodemanager.aux-services
... .mapreduce.shuffle.class</name>

<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
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<property>
<name>yarn.resourcemanager.hostname</name>
<value>namenode</value>

</property>

Setting up Name Node

Apply all above configuration file changes as it is in Data Nodes, except the
following Name Node-specific configurations files in etc/hadoop/.

hdfs-site.xml

<!-- Replace ’namenode’ with public DNS of Name Node -->
<property>

<name>dfs.replication</name>
<value>2</value>

</property>
<property>

<name>dfs.namenode.name.dir</name>
<value>file:///home/ec2-user/hadoop-2.7.3/data</value>

</property>

hadoop-2.7.3/etc/hadoop/masters

# Replace ’namenode’ with public DNS of Name Node
namenode

hadoop-2.7.3/etc/hadoop/slaves

# Replace ’datanodeX’ with public DNS of each Data Nodes
datanode1
datanode2
.
.
datanodeN
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Password free SSH

It is important Name Node could access all Data Nodes over SSH without the
password. It can be achieved with the following steps.

# Create public-private key pair on Name Node
# with empty password
namenode:~ ssh-keygen

# This will generate public key at
# /home/ec2-user/.ssh/id_rsa.pub
#
# Copy this file on all Data Nodes
# and append the file content
# to /home/ec2-user/.ssh/authorized_keys

namenode:~ scp .ssh/id_rsa.pub datanode_ip:.
datanode:~ cat id_rsa.pub >> ~/.ssh/authorized_keys

Start Hadoop Cluster
When all configurations are in place, we can start Hadoop cluster from the Name
Node with following commands.

namenode:~ cd ~
namenode:~ cd hadoop-2.7.3
namenode:~ sbin/start-dfs.sh
namenode:~ sbin/start-yarn.sh
namenode:~ sbin/mr-jobhistory-daemon.sh start historyserver
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Appendix D - Spark Cluster
The execution environment for testbed explained in section 5.2.3 consist of Spark
Cluster in standalone mode, which was launched on AWS EC2 instances. This
guide provides a quick reference for the setup.

Pre-requisites
Create EC2 instances for separate Master Node and Slave Nodes. In the testbed
t2.large instances with Amazon Linux AMI was used. Amazon Linux AMI has
already bundled with Open JDK v1.7.0, or we may upgrade it to v1.8.0 with the
following command.

# Install OpenJdk v1.8.0
sudo yum install java-1.8.0

# Remove existing version 1.7.0
sudo yum remove java-1.7.0-openjdk

Download Apache Spark version 2.1.0 and extract the bundle in all cluster nodes.

# Download Apache Spark v2.1.0
wget http://<DownloadMirror>/spark-2.1.0-bin-hadoop2.7.tgz

# Extract the bundle.
# This will create Spark Distribution
# at /home/ec2-user/spark-2.1.0-bin-hadoop2.7
tar -xvf spark-2.1.0-bin-hadoop2.7.taz

Setting up Master Node
Setting up Master Node with default setting is straightforward. With default
configurations, Spark Master nodes can be started with the following command.
Upon successful setup, Spark Master Web UI is accessible over http://MasterNodeIP:8080.

masternode:~ cd ~
masternode:~ cd spark-2.1.0-bin-hadoop2.7
masternode:~ sbin/start-master.sh
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Setting up Slave Nodes
Setting up Slaves node is also more straightforward as Master node with a single
start up script as the following.

slavenode:~ cd ~
slavenode:~ cd spark-2.1.0-bin-hadoop2.7
slavenode:~ sbin/start-slave.sh

... --master spark://MasterNodeIP:7077
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Appendix E - Spark vs Hadoop

Result - Data Cube Materialization over Number of Tuples

Table 8.1: Data Cube Materialization over Number of Tuples

Hadoop MRDataCube Spark DataFrame

1 Million 573 sec 120 sec

2 Millioin 1114 sec 218 sec

3 Millioin 1581 sec 321 sec

4 Millioin 1960 sec 418 sec

5 Millioin 2350 sec 533 sec

6 Millioin 2727 sec 649 sec

7 Millioin 3184 sec 758 sec

Result - Data Cube Materialization over Number of Dimensions

Table 8.2: Data Cube Materialization over Number of Dimensions

Hadoop MRDataCube Spark DataFrame

3 Dimensions 35 sec 16 sec

4 Dimensions 37 sec 15 sec

5 Dimensions 47 sec 17 sec

6 Dimensions 88 sec 28 sec

7 Dimensions 183 sec 83 sec

8 Dimensions 626 sec 215 sec
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Result - Data Cube Materialization over Cluster Size

Table 8.3: Data Cube Materialization over Cluster Size

Hadoop MRDataCube Spark DataFrame

4 Nodes 2168 sec 828 sec

5 Nodes 2037 sec 665 sec

6 Nodes 2017 sec 554 sec

7 Nodes 1920 sec 485 sec

8 Nodes 1973 sec 416 sec
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Appendix F - Spark over Cassandra

Cassandra - Data Cube Materialization over Cluster Size

Table 8.4: Data Cube Materialization over Cassandra Cluster Size

Spark DataFrame

2 Nodes 169 sec

3 Nodes 135 sec

4 Nodes 112 sec

5 Nodes 110 sec
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Appendix G - Spark Cassandra Connector

Bring computation close to the data, is the well-noted phrase in MapReduce. It
is achieved with Distributed File System, which partitions large data file across
a cluster of computer nodes. Thus, data processing logics in MapReduce model
allows distributed data processing close to each data partitions parallelly on a
cluster of nodes. Apache Spark brings the same capabilities with more additional
features and supports distributed data processing over various Distributed Storage
Systems. This guide provides a technical background of Spark-Cassandra
connector, how Spark enables distributed data processing over Cassandra.

Cassandra

Figure 8.4 depicts how Cassandra partitions data over the consistent hashing
function. The output range of the consistent hashing function is a "ring" or a
fixed circular space. Each Node in the Cassandra Cluster is assigned with the key
range. In this way, Cassandra allows departure or arrival of new nodes with a
minimal impact of data redistribution. Besides, it provides a Data Replication and
Membership model to provide an efficient and reliable distributed storage.

Figure 8.4: Cassandra Token Range



BIBLIOGRAPHY 103

Spark-Cassandra Connector

Figure 8.5: Spark Cassandra Partitions

Spark-Cassandra connector provides the RDD implementation for Cassandra
distributed storage system. Figure 8.5 illustrates how Spark in-memory data
partitions (RDD) are mapped to Cassandra Data partitions. Once the connection
to Cassandra is defined, Spark knows the entire token range of the given table and
know which node is responsible which token range, and uses that knowledge in
assigning executers for Spark jobs.
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