
IN DEGREE PROJECT INFORMATION AND COMMUNICATION
TECHNOLOGY,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2020

Project-based Multi-tenant
Container Registry For
Hopsworks

PRADYUMNA KRISHNA KASHYAP

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Project-based Multi-tenant
Container Registry For
Hopsworks

PRADYUMNA KRISHNA KASHYAP

Master in ICT Innovation - Cloud Computing and Services
Date: September 25, 2020
Supervisor: Dr. Jim Dowling
Examiner: Dr. Amir H. Payberah
School of Electrical Engineering and Computer Science
Host company: Logical Clocks AB
Swedish title: Projekt baserad Multi-tenant Container Registry För
Hopsworks

iii

Abstract
There has been a substantial growth in the usage of data in the past decade,
cloud technologies and big data platforms have gained popularity as they help
in processing such data on a large scale. Hopsworks is such a managed plat-
form for scale out data science. It is an open-source platform for the develop-
ment and operation of Machine Learning models, available on-premise and as
a managed platform in the cloud. As most of these platforms provide data sci-
ence environments to collate the required libraries to work with, Hopsworks
provides users with Anaconda environments.
Hopsworks provides multi-tenancy, ensuring a secure model to manage sen-
sitive data in the shared platform. Most of the Hopsworks features are built
around projects, each project includes an Anaconda environment that provides
users with a number of libraries capable of processing data. Each project cre-
ation triggers a creation of a base Anaconda environment and each added li-
brary updates this environment. For an on-premise application, as data science
teams are diverse and work towards building repeatable and scalable models,
it becomes increasingly important to manage these environments in a central
location locally.
The purpose of the thesis is to provide a secure storage for these Anaconda en-
vironments. As Hopsworks uses a Kubernetes cluster to serve models, these
environments can be containerized and stored on a secure container registry on
the Kubernetes Cluster. The provided solution also aims to extend the multi-
tenancy feature of Hopsworks onto the hosted local storage. The implemen-
tation comprises of two parts; First one, is to host a compatible open source
container registry to store the container images on a local Kubernetes cluster
with fault tolerance and by avoiding a single point of failure. Second one, is
to leverage the multi-tenancy feature in Hopsworks by storing the images on
the self sufficient secure registry with project level isolation.

Keywords: Cloud, BigData, Hopsworks, Data Science, On-premise,Multi-
tenancy, Container, Registry, Kubernetes.

iv

Sammanfattning
Det har skett en betydande tillväxt i dataanvändningen under det senaste decen-
niet, molnteknologier och big data-plattformar har vunnit popularitet eftersom
de hjälper till att bearbeta sådan data i stor skala. Hopsworks är en sådan hante-
rad plattform för att skala ut datavetenskap. Det är en öppen källkodsplattform
för utveckling och drift avMachine Learning-modeller, tillgänglig på plats och
som en hanterad plattform i molnet. Eftersom de flesta av dessa plattformar
tillhandahåller datavetenskapsmiljöer för att samla in de bibliotek som krävs
för att arbeta med, ger Hopsworks användare Anaconda-miljöer.
Hopsworks tillhandahåller multi-tenancy, vilket säkerställer en säker modell
för att hantera känslig data i den delade plattformen. De flesta av Hopsworks-
funktionerna är uppbyggda kring projekt, varje projekt innehåller enAnaconda-
miljö som ger användarna ett antal bibliotek som kan bearbeta data. Varje
projektskapning utlöser skapandet av en basanacondamiljö och varje tillagt
bibliotek uppdaterar denna miljö. För en lokal applikation, eftersom datave-
tenskapsteam är olika och arbetar för att bygga repeterbara och skalbara mo-
deller, blir det allt viktigare att hantera dessa miljöer på en central plats lokalt.
Syftet med avhandlingen är att tillhandahålla en säker lagring för dessaAnaconda-
miljöer. Eftersom Hopsworks använder ett Kubernetes-kluster för att betjäna
modeller kan dessa miljöer containeriseras och lagras i ett säkert container-
register i Kubernetes-klustret. Den medföljande lösningen syftar också till att
utvidga Hopsworks-funktionen för flera hyresgäster till det lokala lagrade vär-
det. Implementeringen består av två delar; Den första är att vara värd för ett
kompatibelt register med öppen källkod för att lagra behållaravbildningarna i
ett lokalt Kubernetes-kluster med feltolerans och genom att undvika en enda
felpunkt. Den andra är att utnyttja multihyresfunktionen i Hopsworks genom
att lagra bilderna i det självförsörjande säkra registret med projektnivåisole-
ring.

Keywords:Cloud, BigData, Hopsworks, On-premise,Multi-tenancy, Con-
tainer, Registry, Kubernetes.

Acknowledgements

This thesis marks the end of my degree programme as master in ICT innova-
tion with a focus on Cloud computing and services at KTH, Royal Institute
of Technology in Stockholm, Sweden and Technische Universität Berlin in
Berlin, Germany. I would like to thank KTH and Logical Clocks AB for pro-
viding me with an opportunity to learn and conduct this research.

I would like to thank my supervisor at KTH, Jim Dowling (CEO and co-
founder of Logical Clocks AB) for providing me with an opportunity to work
with Logical Clocks and for all of his support, Antonios Kouzoupis (Software
Engineer Logical Clocks AB) for his valuable guidance. I would especially
like to thank my supervisor in the company, Theofilos Kakantousis (COO and
co-founder of Logical Clocks AB) for providing advice and support all along
my master thesis. This thesis work could not have been conducted without his
valuable guidance.

Finally, I would like to express special gratitude to my family and friends
for motivating me and supporting me throughout this thesis.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Description . 2
1.3 Goals . 3
1.4 Methodology . 3
1.5 Ethics and Sustainability . 4
1.6 Delimitation . 5
1.7 Outline . 5

2 Theoretical Background 6
2.1 Data Science . 6
2.2 Big Data . 8

2.2.1 Challenges Of Big Data 9
2.2.2 Apache Hadoop . 9
2.2.3 Hops . 11
2.2.4 Ceph . 11

2.3 Virtualization . 13
2.3.1 Hypervisor . 13
2.3.2 Virtual Machines . 14
2.3.3 Containerization . 14

2.4 Docker . 14
2.4.1 Docker Engine . 15
2.4.2 Docker Architecture 16

2.5 Kubernetes . 18
2.5.1 Kubernetes Architecture 18
2.5.2 Persistent Volumes and Claims 21
2.5.3 Helm . 22

2.6 Hopsworks . 23
2.6.1 Projects, Users and Datasets 24

vi

CONTENTS vii

2.6.2 Data Sharing Without Replication 24
2.6.3 Security . 25
2.6.4 Conda Environments 25

3 Implementation 26
3.1 Container Registry . 26

3.1.1 Test Environment Setup 27
3.1.2 Trow . 27
3.1.3 Harbor . 28
3.1.4 Summary . 28

3.2 System Architecture . 29
3.3 Infrastructure Design . 31

3.3.1 Persistent Storage with Local File-system 31
3.3.2 Persistent Storage with a Ceph Cluster 32
3.3.3 Testing scenarios for the implemented Infrastructures . 34

3.4 Hopsworks Integration . 37
3.4.1 LDAP Authentication 39
3.4.2 Database Authentication 40
3.4.3 Authorization . 41
3.4.4 Synchronization and Reconciliation 42
3.4.5 Testing scenarios for Hopsworks Integration 42

4 Results and Discussion 44
4.1 Quantitative Results . 44
4.2 Qualitative Results . 48
4.3 Future Work . 49

5 Conclusion 51

Bibliography 53

A Additional Infrastructure Design 57
A.1 Persistent Storage with HopsFS 57

B Dockerfile for Infrastructure Test 59

C Integration Test-case Examples 60

List of Tables

3.1 Kubernetes cluster specification for test environment 27
3.2 Feature comparison Trow vs Harbor 29
3.3 Kubernetes cluster specification for test environment on GKE . 35

4.1 Pull performances for Ceph cluster infrastructure in seconds . 45
4.2 Push performances for Ceph cluster infrastructure in seconds . 45
4.3 Pull performances for local file-system infrastructure in seconds 45
4.4 Push performances for local file-system infrastructure in seconds 46
4.5 Test cases passed vs failed 48

viii

List of Figures

2.1 Anaconda scaled-out architecture from the Continuum Ana-
lytics 2016 [13] . 8

2.2 Characteristics of big data [15] 9
2.3 Classification of big data challenges [16] 10
2.4 HopsFS Architeture [18] . 12
2.5 Hypervisor Bare-metal vs Hosted [22] 14
2.6 Docker engine components [26] 15
2.7 Docker architecture [26] . 16
2.8 Kubernetes Architecture [28] 19
2.9 Kubernetes persistent volumes and claims [31] 21
2.10 Helm Architecture [32] . 22
2.11 Hopsworks Architecture [34] 23
2.12 Hopsworks project structure [34] 24

3.1 System Architecture . 30
3.2 Local File-system Storage Architecture 32
3.3 Ceph Storage Architecture 33
3.4 Ceph Storage Architecture with Rook Operator [39] 34
3.5 Integration of Hopsworks Multi-tenancy features into Harbor

using scripts . 38
3.6 LDAP Server Architecture 40

4.2 Push performances (concurrency=1) 47
4.3 Pull performances (concurrency=1) 48
4.4 Snapshot from the TestLodge tool 49

A.1 HopsFS Storage Architecture 57

C.1 User creation test case result from the Test Lodge platform . . 60
C.2 Project creation test case result from the Test Lodge platform . 61

ix

x LIST OF FIGURES

C.3 Member addition test case result from the Test Lodge platform 61
C.4 Docker image push test case result from the Test Lodge platform 62
C.5 Member deletion test case result from the Test Lodge platform 62
C.6 Project deletion test case result from the Test Lodge platform . 63

Chapter 1

Introduction

Data is ruling the Globe with its utmost capacity, from anything we use daily
to the things we use rarely, everything is measured, analyzed and capacitated
by processing certain data. Hence the recent years has witnessed a huge ex-
plosion in the availability of data. The traditional database methods and tools
with non-distributed centralized storage is not an option to process such large
volumes of data due to low speed and efficiency. Not only does the methods
and tools prove to be ineffective, sometimes the hardware availability in terms
of memory or storage can be lacking, posing bigger challenges to process such
data. Big data frameworks were hence introduced to deal with large or com-
plex data that the traditional data-processing application software could not
deal with.Big data has been in the intersection of business strategies and data
science, it allows to use data as a strategic asset, equipping it with pertinent
real-time information [1].

Apache Hadoop is an open source big data framework that allows for the dis-
tributed processing of large data sets across clusters of computers using simple
programming models. It’s design is very efficient with capabilities to scale up
from single servers to thousands of machines, each offering local computation
and storage [2]. Although Apache Hadoop provides huge benefits, usage of
such frameworks requires much knowledge.

Most data-driven organisations and enterprises need solutions to improve the
stages of their data life cycle. Over the past few years, there has been differ-
ent solutions to improve the data life cycle provided in the form of platforms
having big data frameworks as a service. Such platforms hide the underlying
complexity of these frameworks and help users, administrators and data sci-
entists work together in unison providing a centralized structure. This thesis
describes one such platform called Hopsworks, which aims to provide popu-

1

2 CHAPTER 1. INTRODUCTION

lar big data frameworks as a service. It is a managed platform for scale out
data science available on-premise and on Amazon Web Services. Hopsworks
is also capable of providing multi-tenancy feature to users with various user
privileges to access data across different applications [3].

1.1 Motivation
For any data science experiments, there are always new libraries or new ver-
sions of these libraries required to build models. Teams, often use intermedi-
ate deployments and modular, layered development approaches for data ingest,
data cleaning, computation, machine learning and visualization. Hence, they
are most likely juggling with a lot of libraries with specific versions. These are
managed efficiently by creating data science environments with the required
libraries collated in them [4]. In Hopsworks, these environments are project
based and provide multi-tenancy for users, but libraries and environments are
usually available centrally on cloud platforms [5]. It is acceptable for an appli-
cation running on a managed cloud service but for on-premise applications, as
multiple teams need to have access to these environments, it becomes increas-
ingly important to manage these environments in a central location locally.
The focus of this thesis is to determine the best fit storage architecture for
these environments.

1.2 Problem Description
Hopsworks comes with two flavours, an on-premise platform with a cluster ar-
chitecture on top of the existing host machines and as a managed cloud service
in the cloud. The Anaconda base environments are created with a trigger on
project creation on both platforms and is updated with libraries by importing
them into the environments. These environments are currently project specific
and is created upon project creation. These environments are not light weight
and are currently persisted on the file system in the pipeline work directory on
the storage device. An efficient way to store these can be on a cloud storage
centrally that simplifies sharing between the team members and across com-
pute nodes or Graphical Processing Unit (GPU) servers. This might lead to
latency issues as it needs to be accessed over networks. As a possible solution,
these environments can be containerized and storing images of these contain-
ers can be an efficient way of storing them. However, this is not feasible as
the number of images owned by the team or users can balloon up very quickly

CHAPTER 1. INTRODUCTION 3

in an organisation. The most efficient way to provide a storage for these con-
tainer images is using a container registry. With managed services, a container
registry is readily available and hence is feasible to use it. Environments can
be huge in size and can go up to 20 gigabytes, storing and handling these can
become a liability in terms of network latency and storage. An efficient way
to store and manage these environments needs to be setup as an alternative for
the managed cloud registry services.

1.3 Goals
The goal of this thesis work is to determine the best-fit open source secure con-
tainer registry, compatible with Hopsworks and design a suitable storage ar-
chitecture to host this registry on the platform. AsHopsworks aims tomaintain
the multi-tenancy features, develop integration scripts to extend this features
onto the container registry to store the images with project based isolation.

1.4 Methodology
This thesis work although consists of some application integration, overall falls
into the category of System Design and follows the Design Science paradigm
as described by Hevner, March, Park and Ram [6]. Hence, the methodology
selected for this thesis is Design Science Research Methodology as proposed
by Ken Peffers et al [7].

This methodology is composed of the following six activities:

1. Problem identification and motivation: Define the main research prob-
lem and the motivation behind the research. Atomize the research prob-
lem into parts and justify the need for a solution.

2. Define the objectives for a solution: Discuss the qualitative and quantita-
tive objectives of the solution proposed in the previous step and compare
them with alternative solutions previously opted in the field.

3. Design and development: Creation of artifacts to solve the defined prob-
lem with a proof-of-concept system by, for instance, determining the
architecture, infrastructure model or the functionalities proposed in the
solution.

4 CHAPTER 1. INTRODUCTION

4. Demonstration: Demonstrates as to how the artifacts built as part of the
solution solves the problem through experimentation or other meaning-
ful methods. As this thesis deals with several theoretical architectures
the experimentation for these are limited.

5. Evaluation: Determine the extent to which the system addresses the re-
search problem. This is done through measurements or other suitable
means.

6. Communication: Reiterate the problem, the systems design and the con-
clusions to the relevant audience. Provides scope for future work with
respect to the existing system.

1.5 Ethics and Sustainability
Ethical issues arise with collection of data for the purpose of processing, and
most of these issues are centered around privacy. This thesis bases it’s work on
the Hopsworks platform that provides users a General Data Protection Regula-
tion (GDPR) compliant security model to manage sensitive data. Further, this
thesis does not possess any direct or indirect ethical concerns and complies
with the code of ethics of the host company and with the IEEE code of ethics
[8]. No sensitive personal data is being obtained or used in the process. All
data produced during implementation and testing phases do not contain any
sensitive information that poses any security risks to individuals or organisa-
tions. Adequate references have been provided to any previous work utilized
in this work.

This thesis does not have a direct impact on sustainability, but usage of micro-
service architecture and using Kubernetes to orchestrate these architectures
provides proven ways to improve the performance of software systems. This
can indirectly result in cost efficient and energy efficient software systems.
This platform also provides a multi-tenant self security model, which allows
efficient ways to use shared data leading to less redundancy of data in turn
reducing storage. An addition to this platform in-terms of an efficient storage
also providing multi-tenancy also leads to reduction of storage indirectly leads
to less consumption of energy, reduction in electronic wastes and also reduces
the carbon footprint.

CHAPTER 1. INTRODUCTION 5

1.6 Delimitation
The scope of this thesis is limited to building compatible architectures for
Hopsworks on-premise platform to store the data science environments. The
current architectural design does not support the managed cloud platform. The
multi-tenancy feature integration is based on specific versions of the API used
in developing the integration scripts and this thesis does not intend to provide
support for future versions of these applications.

Hopsworks currently uses Docker version 19.03.8 and Kubernetes version
v1.18.0, any adverse effects due to up-gradations are out of the scope of this
thesis.

1.7 Outline
This thesis is organized inline with the methodology opted for the research. It
comprises of five chapters

• Chapter 1 - This chapter looks into the problem description and motiva-
tion behind the research with an introduction to the topic. It also com-
prises of ethics and sustainability aspects of the thesis and concludes
with the delimitation of the thesis.

• Chapter 2 - This chapter aims to provide the necessary theoretical back-
ground for the implementation.

• Chapter 3 - This chapter describes the implementation choices made,
overview of the system architecture, infrastructure designs implemented
as part of the thesis , integration methods and concludes with a descrip-
tion of the test environment setup to obtain the results of the imple-
mented solutions.

• Chapter 4 - This chapter discusses the outcome and evaluates the value
the solution provides to the system. It also provides an aspect of future
work that could be performed around this work.

• Chapter 5 - This chapter reiterates the problem, the provided solution.

Chapter 2

Theoretical Background

This chapter aims to provide the necessary background towards data science,
big data, virtualization and Kubernetes orchestration followed by a brief intro-
duction to the Hopsworks platform and the necessary topics with regards to
the Hopsworks platform that are relevant to this thesis.

2.1 Data Science
There are a plethora of definitions to data science due to its immense popular-
ity. A few examples for the definitions are as follows.

Data Science is concerned with analyzing data and extracting
useful knowledge from it.Building predictive models is usually the
most important activity for a Data Scientist [9].

Data science is an emerging discipline that draws upon knowl-
edge in statistical methodology and computer science to create
impactful predictions and insights for a wide range of traditional
scholarly fields [10].

But these definitions are contextual and reflect only some of the many use
cases or contexts of data science as a discipline. But one of the better defini-
tions basing it from over a hundred and fifty data science use cases and over
three years of research was from Michael L. Brodie.

Data Science is a body of principles and techniques for applying
data analytic methods to data at scale, including volume, velocity,

6

CHAPTER 2. THEORETICAL BACKGROUND 7

and variety, to accelerate the investigation of phenomena repre-
sented by the data, by acquiring data, preparing and integrating
it, possibly integrated with existing data, to discover correlations
in the data, with measures of likelihood and within error bounds.
Results are interpreted with respect to some predefined (theoreti-
cal, deductive, top-down) or emergent (fact-based,inductive, bottom-
up) specification of the properties of the phenomena being inves-
tigated [11].

Although the definition is quite compact and resourceful, like the other
definitions, it will also mature over the next decade to be a better and distinct
paradigm. The goal of data science, irrespective of its definition is focused on
extracting valuable insights from the available data. For this, one should un-
derstand the key data assets that can be turned into pipelines that can produce
maintainable tools and solutions. It is generally a team discipline, comprising
of data scientists, who overlook the core functionality of projects, where as
the analysts have a key role in transforming data into analysis and further into
production grade values. The team also consists of Data engineers who help
build pipelines to enrich these data sets and make available to the entire team
[12].

Traditionally, data science project deployments involve complex and time-
consuming tasks such as maintaining the libraries or packages and their de-
pendencies or even specific versions of them. This could deviate the teams
from its main objective to explore and analyze data. Environments provide
an efficient way to handle these aspects, by providing package managers and
other libraries built-in with their base versions. These are easy to manage and
provides a modular approach to have intermediate deployments and layered
development approaches for data ingest, data cleaning, computations and vi-
sualisation.

Anaconda distribution is one of the most widely used distributions across
data science applications. It comes with over three hundred libraries that in-
clude Math, scientific analysis and visualization libraries built-in to its base
environment. It can also harbour extra libraries, layer-wise into the environ-
ment on-demand. The distribution includes Conda, which is a package and
environment manager that helps maintain multiple such environments. A ba-
sic scale-out architecture for an Anaconda environment is denoted in the Fig-
ure 2.1. The environment is hosted on either a bare-metal or a cloud-based
cluster on a number of compute nodes with a distributed file system as part of
the distributed storage. The other layers can be managed using the Anaconda
environment [13].

8 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Anaconda scaled-out architecture from the Continuum Analytics
2016 [13]

2.2 Big Data
The Gartner’s definition,circa 2001 of big data is still the go-to definition to
describe dig data.

Big data is data that contains greater variety arriving in increas-
ing volumes and with ever-higher velocity. This is known as the
three Vs [14].

Formally, big data is defined from 3Vs to 4Vs, with the forth referring to
the veracity of data.

• Variety: It refers to the different types of data available. Traditionally,
structured data was considered to be conventional as it would fit neatly
into a relational database. With the rise of big data came along unstruc-
tured data or even semi-structured data in the form of texts, audio or
videos, which additionally requires some metadata.

• Volume: Simply describes the amount of data that is relevant. It can
be in terms of terabytes or even tens of petabytes of data for some data-
driven organisations.

• Velocity: It denotes the rate at which the data is generated or received
or perhaps even acted upon.

• Veracity: Accountability is an important aspect of data accumulation
and this signifies the availability and aims to provide meaningful gover-
nance of data [15].

CHAPTER 2. THEORETICAL BACKGROUND 9

Figure 2.2: Characteristics of big data [15]

2.2.1 Challenges Of Big Data
The challenges of big data can be broadly classified into three main categories
based on the data life-cycle.

1. Data challenges constitutes the problems that arise due to the 4Vs de-
scribed in the definition. Volume can be problematic in terms of conven-
tional storage, velocity in terms of streaming data, might require addi-
tional infrastructure set-up, veracity leading to complexity with respect
to lack of accuracy or quality and finally, multiplicity of varieties of data
leads to complexity in handling.

2. Processing challenges include collection, modification and representa-
tion of data, that is acceptable to visualize and analyze data in a way that
is useful to the user.

3. Data management challenges refer to secured collection and storage of
data. Focus revolves around privacy, ownership and governance issues
that exist with data, these are usually policy based or even rules defined
to govern the management of data on a state or even an International
level [16].

2.2.2 Apache Hadoop
It is quite clear from the discussion above that traditional processing and stor-
age systems are not sufficient to handle big data. Distributed processing is the

10 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: Classification of big data challenges [16]

key to solve these challenges at hand with regards to big data and Hadoop is an
open-source framework which allows distributed processing of such large data
sets across clusters of computers using simple programming models [2].The
below points provide insights as to how Apache Hadoop mitigates some of
these challenges.

• Hadoop is built to run on distributed systems or a cluster of computers.
A simple problem could be limited Central Processing Unit (CPU) re-
sources on a single compute node to perform a task. Solving this with
a simple approach is to add more resources and Hadoop from the get-
go is designed to run on a bunch of machines and utilize its resources
collectively.

• Essentially, addition of resources to scale vertically with more powerful
hardware is quite expensive. Hadoop provides more storage and com-
pute power by addingmore compute nodes to its cluster allowing to scale
horizontally eliminating the need for expensive hardware.

• It also handles a variety of data from semi-structured to unstructured
data as it does not enforce a schema on the data it stores.

CHAPTER 2. THEORETICAL BACKGROUND 11

• Finally, Hadoop provides an efficient solution to manage storage and
computing on the same set of resources [17].

By addressing some important challenges, Apache Hadoop has now be-
come the defacto standard for data-driven organization to have as part of their
big data solutions.

2.2.3 Hops
Hops, short for Hadoop Open Platform-as-a-service is a next-generation dis-
tribution of Apache Hadoop that is highly available, scalable and provides
features to customize metadata. Hops has mainly two sub projects, Hops File-
system (HopsFS) and Hops YARN. We will focus on HopsFS as Hops YARN
is not relevant to this thesis. Hops consists of a heavily adapted implemen-
tation of Hadoop Filesystem (HDFS) based on Apache Hadoop version 2.8
called HopsFS. It is a hierarchical file-system that manages the metadata us-
ing commodity databases.

Figure 2.3 denotes the architecture of HopsFS, It mainly consists of a Net-
work Database (NDB) cluster and a Data Access Layer Application Program-
ming Interface (DAL-API) constituting the metadata management layer with
a block storage used for storing the data. It replaces the active-standby repli-
cation architecture in HDFS by providing stateless redundant Name-Nodes
backed by an in-memory distributed database in the form of NDB. The DAL-
API provides an abstraction over the storage and implements a leader election
protocol using the database. The HopsFS / HDFS clients interact with the
DAL-API and the Data Nodes for fetching or storing the data into the Data
Nodes with the help of metadata stored in the NDB cluster.

This architecture allows HopsFS to omit the quorum journal nodes, the
snapshot server and the Zookeeper services that are additionally required in
Apache HDFS allowing it to store small files very efficiently making it the
World’s most scalable HDFS-compatible distributed file system [18]. It can
be used as a standalone file system for various applications requiring high per-
formance storage with smaller files in use. It is mainly used for storage of
metadata and small files on the Hopsworks platform acting as a drop-in re-
placement for HDFS in the Hopsworks platform.

2.2.4 Ceph
Ceph is an open-source software storage platform that implements on a single
distributed computer cluster. It readily provides three different interfaces for

12 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.4: HopsFS Architeture [18]

storage, block storage, object storage and file-level storage. It aims to distribute
operations without a single point of failure, scalable and freely available [19].
Ceph clusters usually involve setting up Ceph nodes, a network for their com-
munication and the storage cluster. The Ceph storage cluster essentially needs
a Ceph monitor, Ceph manager and Ceph object storage daemon (OSD). Ad-
ditionally, a metadata server is required if we are running a Ceph file-system.

• Monitors: A Ceph monitor also referred to as ’ceph-mon’ maintains
maps of the cluster state, this includes the monitor map, manager map,
OSD map and the Controlled Replication Under Scalable Hashing
(CRUSH) map. CRUSH is an algorithm used by Ceph to place data
on specific placement groups on then cluster. These maps stored by the
monitors are vital for the daemons to coordinate with each other. These
are also responsible to manage authentication between the daemons and
the clients.

• Managers: ACephmanager also referred to as ’ceph-mgr’ is responsible
to keep a track of the metrics and the state of the entire cluster. The state
includes, storage utilization, performance metrics and the system load
at a given point of time. These managers are also responsible to run
Python based modules on them to provide web based Ceph dashboard
and Representational State Transfer (REST) API for the cluster.

• Ceph OSDs: A Ceph OSD referred to as the ’ceph-osd’ stores and han-
dles the data replication, recovery, rebalancing and proovides the mon-
itors some monitoring information.

CHAPTER 2. THEORETICAL BACKGROUND 13

• MDSs: ACephmetadata server is only used in combination with a Ceph
file-system implementation. It is used to store the metadata on behalf of
the Ceph file-system. it allows a Portable Operating System Interface
(POSIX) file-system user to perform basic commands like ls, find etc.
on the cluster.

These Ceph clusters can be made highly available by making sure that a
minimum number of instances of each of these components run on the system.
These highly available clusters make use of CRUSH algorithm to scale, re-
balance and recover dynamically based on requirement [20].

2.3 Virtualization
Virtualization is a process of running a virtual instance of a computer system
with a layer of abstraction from the existing hardware. This abstraction helps
host multiple operating systems on the same hardware. For any applications
running on top these operating systems, it appears to the application as if they
have their own resources with a dedicated machine [21].

2.3.1 Hypervisor
A hypervisor is a program that helps create and run virtual machines on the
existing hardware. There are two types of hypervisors

• Type 1: Native or bare-metal hypervisors run guest virtual machines di-
rectly on the system’s hardware. It behaves essentially like an operating
system.

• Type 2: Hosted hypervisors are much similar to traditional applications
that run on top of a host operating system, that can be started or stopped
normally.

Figure 2.5 denotes a layer-wise comparison of the two types of hypervisors.
The VM that runs on the bare-metal can utilize the computational resources
better as they do not depend on the operating system for the same. This makes
them more useful for enterprises in the Information Technology (IT) field. On
the other hand, hosted hypervisors are better for personalizing as they allow
multiple VMs to run on the same host operating system with the help of a
virtualization software.

14 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.5: Hypervisor Bare-metal vs Hosted [22]

2.3.2 Virtual Machines
Virtual machines are emulated computer systems with operating systems that
run on top of a host machine or another system. These virtual machines make
use of hypervisors to access the resources or hardware to run on top of them.
Although they can have any number resources attached to them at their dis-
posal, they have very limited access to the host machines CPU and memory as
they are sand boxed from the rest of the system. They are generally responsi-
ble to perform a specific set of tasks on the host machine that are risky to be
performed on an actual physical machine [21].

2.3.3 Containerization
Containerization, also known as OS-level virtualization is a technique where
the OS kernel supports multiple isolated user-space environments [23]. These
isolated environments are called containers. The de-facto containerization
software used in the modern day is Docker, which has its own containerization
engine called libcontainer, that is used to create containers [24]. Also, there
exists a standard format for these containers in order to maintain a generic for-
mat, the Open Container Initiative (OCI), which was formed by Docker and
others to provide a standard specification on important features such as the
container run time [25].

2.4 Docker
Docker is an open platform for development, shipment and running applica-
tions in an isolated environment. It helps developers easily maintain infras-

CHAPTER 2. THEORETICAL BACKGROUND 15

tructure the same way an application is maintained. Hence deployment of
applications into production systems can be done with significantly less time.
The Docker platform allows application to be loosely coupled in an isolated
environment also called containers. These containers are very light-weight as
they do not need a hypervisor, meaning they can run with the help of the host
machine kernel and resources. This helps increase the number of container-
ized applications that can be run on a given hardware combination.

2.4.1 Docker Engine
The Docker engine is basically a client-server application which supports a set
of tasks, workflows that are required to build, ship and run some containerized
applications. The Docker engine consists of a set of components as shown in
the figure 2.6.

Figure 2.6: Docker engine components [26]

• The server itself is a process also called as the daemon process which is
responsible for creation andmaintenance of Docker objects, like images,
containers, networks and volumes.

• The REST API is a means of communication medium for the programs
which are running externally to interact with the Docker daemon to in-
struct some tasks to be done.

16 CHAPTER 2. THEORETICAL BACKGROUND

• The command Line Interface (CLI) acts as a client which uses the REST
API to control and interact with the Docker daemon from client ma-
chines through some scripts or direct CLI commands [26].

2.4.2 Docker Architecture
Docker is built to have a client-server architecture. The client is responsible
to interact with the Docker daemon which sits on a Docker host, to perform
some tasks. As in any other client-server application, the client can either run
on the same system or on a remote system. The communication between the
client and the daemon is done using a REST API, over Uniplexed Information
and Computing System (UNIX) sockets or some network interfaces.

Figure 2.7: Docker architecture [26]

• Docker daemon: The Docker daemon or referred to as dockerd responds
to Docker API requests and is responsible to maintain the Docker ob-
jects. It is also possible to communicate with other daemons using a
Docker daemon to manage some Docker services.

• Docker client: The Docker client also referred to as just docker is a way
for the users to communicate with Docker. When anyDocker commands
are sent from a client, the Docker daemon responds to them by carrying
out the mentioned functionalities. These commands are usually com-
municated to the daemon through the Docker API. Also these clients
can communicate with one or more daemons that are either present on
the same server or remotely located.

CHAPTER 2. THEORETICAL BACKGROUND 17

• Docker registries: The registry is the prime location for storing the
Docker images. These registries can be public or private self hosted
registries. The public registries are open for anyone to use and the most
used Docker registry is the Docker Hub. Docker is configured to always
look for images on the Docker Hub by default on the use of Docker com-
mands. Usually when the Docker daemon is asked to run a container in
the environment, it primarily looks for the image on the local repository,
if not present, then looks for the image of the specified name on Docker
Hub. Docker can also be configured to retrieve or store images on a
private registry.

• Docker objects: When the command Docker is used, it usually refers to
creating an object. Objects can be of different types, images, containers,
networks, volumes or other objects. The two objects most commonly
used are the images and containers.

– Images are read-only templates with instructions for Docker to cre-
ate a container in accordance to the template. An image can be
based on another image with some add-on or customization. In
this case, the image used to build on is called the base image. Usu-
ally, base images are made up of operating system images with
some custom environment or configuration set up for the applica-
tion to run on inside the container. These images can be either be
self built or used from a public repository. To build custom images
from scratch, a Dockerfile needs to be created with simple syntax
defining steps to create the image and run it. The important fea-
ture that makes this efficient is that, every time the Dockerfile is
altered and re built, only the layers which are changed in the file
are re-built and others are re-used. This makes these images very
light-weight, small and fast to use and deploy.

– Container is a runnable instance of an image. The containers are
usually defined by its image or some user configurations that are
passed while creating the containers. By default, all containers are
isolated from other containers and the host machines, but it is con-
figurable to define how isolated a network or subsystems should
be from other containers. These containers can be created, started,
stopped, moved or deleted with the Docker API using the Docker
CLI commands through the client. These containers usually do not
have persistent storage built but that can be configured by attaching

18 CHAPTER 2. THEORETICAL BACKGROUND

some storage to these containers which makes them save the state
even after completing the container life-cycle.

Namespaces and Control Groups

Docker uses a technology called namespaces to provide such isolation for the
containers, each container has a set of namespaces for different aspects of the
container and each aspect is further bound to its namespace. For example,
a process id or pid has its own namespace called the pid namespace and is
completely seperated from the network interfaces, which in turn have their
own namespace.

Control groups or cgroups on Linux is used by the Docker engine to re-
strict the application to a set of resources. These cgroups are used to share the
available resources on the hardware among the set of containers running on
them. For example, Docker engines can be used to limit the memory that a
specific container can use from the available memory [26].

2.5 Kubernetes
Kubernetes is a container orchestration solution which helps in deploying,
scaling andmanaging containers acrossmultiple physical and virtualmachines.
The first unified container management system was developed at Google and
was internally called Borg. It was primarily used to manage long-running
services and batch jobs on shared machines primarily to increase the resource
utilization and thereby reducing costs. Omegawas an off-spring of Borgwhich
was developed once again as an internal project at Google but with improved
architecture and by storing the state of the cluster on a centralized transaction
oriented store.Then came the third container management system called Ku-
bernetes which on contrary to the first two was made as an open source product
with increasing interests for developers in Linux systems [27].

2.5.1 Kubernetes Architecture
Kubernetes uses the master-slave architecture where the master and slaves are
hosts in a selected network. When we deploy Kubernetes, we get a cluster,
the cluster consists of a set of worker machines called nodes. These nodes
are responsible for running containerized applications on them. Every cluster
consists a minimum of one node. The node responsible to manage the worker
nodes in the cluster earlier referred to as the Master node is now simply called

CHAPTER 2. THEORETICAL BACKGROUND 19

a control plane. Any node can be a control plane in the cluster, but as default,
the node on which the cluster is deployed becomes the control plane unless
specified otherwise.

Figure 2.8: Kubernetes Architecture [28]

Control Plane and it’s Components

The control plane is responsible for most of the global decisions taken in the
Kubernetes cluster. The control plane is responsible for main tasks like dis-
tribution and scheduling of application containers on the nodes in the clus-
ter. They are also responsible for maintaining the application state, scaling or
rolling out updates of the applications. The control planes schedule containers
inside units called pods on the nodes available in the cluster.

The Pod constitutes the atomic unit of a Kubernetes cluster which is ca-
pable of running one or more containers in them and communicate with the
control plane through the API. These pods ideally do not run on the same node
as the control plane, exceptions being test clusters having single node in the
cluster.

• Kube-apiserver: The API server acts as the communication gateway for
the other components of the cluster and external applications to com-
municate with the cluster. It is responsible to expose the Kubernetes
API and acts as the front-end to the Kubernetes Control plane. It also
deals with hosting API’s for applications deployed inside the cluster to
be reachable for the external applications. Kube-apiserver is also de-
signed to scale and can run multiple instances as required to balance the
traffic between these instances.

20 CHAPTER 2. THEORETICAL BACKGROUND

• Etcd: It is a consistent and highly available key-value store that is re-
sponsible to store all of the cluster data. It generally stores all data re-
lated to nodes, containers and other components which are part of the
cluster, hence on any highly available cluster, it is replicated to have a
backup on a different node.

• Kube-scheduler: It maintains the scheduling of pods and other resources
in the cluster. When a pod is created, it generally is not assigned to a
node, the kube-scheduler checks for such newly created pods and selects
a node for them to run on. Scheduling of resources are done based on
several factors like policies, hardware and software requirements of the
application being deployed in the pod, affinity or anti-affinity to a certain
node, inter-workload interference and deadlines.

• Kube-controller-manager: It is responsible to run all the controller pro-
cesses. Controllers are separate processes but are compiled as part of a
single binary and run as a single process.

– Node controller: Takes care of the nodes health and responds when
a node goes down.

– Replication controller: Makes sure the replication controller ob-
jects matches the relevant pods for each replication.

– Endpoints controller: Responsible to join the services with the
pods.

– Service account and token controllers: It creates default tokens and
accounts to access the namespaces created.

• Cloud-controller-manager: It is similar to a kube-controller manager but
is used to embed the cloud specific control logic. It is usually present in
a cluster run on cloud and a cluster run on own premises or a test cluster
will not possess it. Like the kube-controller-manager, cloud-controller-
manager also logically has a number of processes but is compiled into
a single process.

– Node controller: Takes care of the node’s deletion in the cloud post
stopping the node based on instructions.

– Route controller: Makes sure to setup routes in the cloud infras-
tructure.

– Service controller: It is responsible to create, update or delete the
load balancers provided by the cloud provider.

CHAPTER 2. THEORETICAL BACKGROUND 21

• Domain Name System (DNS): Although it is part of the addons in a ku-
bernetes cluster, most clusters should possess a cluster DNS. It is like
any other DNS server but is responsible to serve DNS records for Ku-
bernetes services [28].

• Kubectl: The kubectl or Kubernetes control is a command line tool that
lets users control the Kubernetes cluster. It uses the Kubernetes config-
uration file in the host system to set up it’s configuration [29].

2.5.2 Persistent Volumes and Claims
Kubernetes clusters have a distinct storage mechanism to persist data of the
applications that run inside the pods. By default, all data is lost once the pod
is killed or data only persistent until the life-cycle of the pods last. But for most
of the modern day applications, this is a bad trait to have. Hence, Kubernetes
persistent volumes provide an abstract layer that makes sure the applications
running on the cluster do not have to take care of the storage or persistence,
instead the Kubernetes administrator with the help of API resources, persis-
tent volumes and persistent volume claims, takes care of it. The persistent
volume is a piece of storage that has been provisioned by the administrator
or dynamically provided using a storage class. They are volume plugins that
can be attached to pods for the applications to make use of but have life-cycle
independent of the pod using the volume. These volumes are API’s that are
capable of capturing the details of the implementation of storage, be it a net-
work file system, Internet Small Computer System Interface (ISCSI) or even
a cloud provided storage system like an S3, Block devices or disks [30].

Figure 2.9: Kubernetes persistent volumes and claims [31]

22 CHAPTER 2. THEORETICAL BACKGROUND

The persistent volume claims are requests that link the applications running
inside the pods with the available persistent volumes. As these storage classes
and volumes are provisioned by administrators, these are abstracted for users.
Users can request specific levels of resources in the form of CPU and memory
through pods and specific size of storage or access modes using these claims.
when a claim is specified by the user for an application, Kubernetes makes sure
to search a relevant provisioned persistent volume or Storage class available
in the cluster and provisions the same dynamically when the pods are created
in the cluster. Figure 2.9 denotes a simple structure portraying an application
claiming a persistent volumewhich in turn consumes storage from the physical
storage to provision the same to the application inside the cluster [31].

2.5.3 Helm
Helm is a package manager for Kubernetes. Helm has a client only architec-
ture with the client itself called helm. Figure 2.10 indicates the client only
architecture in Helm, where it directly interacts with Kubernetes API server
to create, modify or delete the Kubernetes resources [32].

Figure 2.10: Helm Architecture [32]

Helm uses packaging formats called charts. These are a collection of files
describing a related Kubernetes resource. A simple chart is capable of do-
ing things like setting up a memory-cached pod to a complex web application
deployment. These charts have a public repository where they are stored for
usage of the public users and by default, Helm looks for the chart defined in
the commands in the local repository and if not found, then points towards the
Helm chart repository. These charts can be created as files and laid out in the

CHAPTER 2. THEORETICAL BACKGROUND 23

form of a particular directory tree, further packaged into versioned archives to
be deployed [33].

2.6 Hopsworks
Hopsworks is a managed platform for scale-out data science, with support for
GPU integration and big data frameworks. It manages to unite a number of
open-source analytic and machine learning frameworks with a unified REST
API. It is a platform which allows design and operation of data analytic and
machine learning applications.

Figure 2.11: Hopsworks Architecture [34]

Figure 2.11 denotes the architecture of Hopsworks platform, it consists
of the data preparation and ingestion layer that provide features with support
for batch and streaming data in terms of Apache Beam, Apache Spark and
Apache Flink. As part of experimentation and model training, it provides
Jupyter notebooks in Python which can be used to leverage several popular
interfaces like Tensorflow, PyTorch and Scikit-learn. For deployment of these
models, Hopsworks provides model-serving options on Kubernetes and mon-
itoring with Apache Kafka and Apache Spark. The feature store is a one of
a kind, World’s first open-source feature store that provides an organised way
to store the features of data sets on a central location to ease access. These

24 CHAPTER 2. THEORETICAL BACKGROUND

workflows can be orchestrated by Airflow while running on HopsFS which
provides the file system and a meta data storage layer for the platform [34].

2.6.1 Projects, Users and Datasets
There are mainly three major concepts in the Hopsworks platform, projects,
users and data sets. As Hopsworks aims to provide a GDPR complaint security
model for managing sensitive data across a shared platform, its security model
is built around projects. Figure 2.12 provides an overall structure of projects in
Hopsworks with isolation options based on data sets, codes and users. Project
contains three major entities, data sets, users and programs. They can also
encapsulate sensitive data sets inside of each project which can be prevented
from being exported by the users or even cross-linking them with other data in
other projects. So, as depicted in the figure 2.12, each project will have isolated
data sets, its own programs and associated users with privileges. These can
be shared among projects or even exported only upon approval from the data
owners. Data owners and data scientists are the predefined roles that is part
of the role based access control within the project that is implemented on the
Hopsworks platform. Data owners as described previously are primary access
holders responsible for the data and to decide upon who can access it, where
as the data scientists are the processors of data in the system.

Figure 2.12: Hopsworks project structure [34]

2.6.2 Data Sharing Without Replication
As part of the GDPR compliance, Hopsworks enables its users to share the
data among different projects without actually replicating the data into differ-
ent clusters. Most of the competitors providing similar functionality by cre-
ating a whole new cluster for the sensitive data sets by replicating them, but
in Hopsworks, it can be shared securely among projects without copying data.

CHAPTER 2. THEORETICAL BACKGROUND 25

These features can be used for data in the form of Apache Hive databases,
Apache Kafka topics or in the form of sub trees in HopsFS.

2.6.3 Security
Hopsworks implements a project based multi-tenancy security model with the
use of Transport Layer Security (TLS) certificates in place of Kerberos for
user authentication with new certificates generated for use in every project.
To realize such a security model, Hopsworks has a dynamic role based access
which makes sure the users are not provided with a static global role, but the
roles for users can differ dynamically with the project they are working on.
This means, a data owner of a project can have a role of a data scientist in
another project or vice versa. This dynamic roles ensure a strong and unique
multi-tenancy between projects in Hopsworks [34].

2.6.4 Conda Environments
In Hopsworks, each project is equipped with a Conda environment. The user
of the project with the right access can install or update libraries to the environ-
ment without interfering with the projects. These environments are replicated
across all machines of the cluster by recording the command used to update the
environment in the database and then sending an update through the Kagent
process to get the same updated across nodes in the cluster. This can either be
done through the command line or with the user interface. An efficient way to
store different versions of these environments with project based isolation is
sought for in this thesis [5].

Chapter 3

Implementation

This chapter aims to present the implementations and experimental methods
used to finalize on the most feasible frameworks and its integration with the
Hopsworks platform. This chapter focuses on implementations of different
architectures in the preliminary sections and further discusses integration of
these frameworks with the Hopsworks platform. The implementation was per-
formed in order, with a test setup developed to check the feasibility of the open-
source registries that were selected to be hosted on the Hopsworks platform.
As a result of the tests conducted, Harbor was chosen to be implemented as
the container registry on Hopsworks. Specific architecture for the system to be
built was then defined providing the overall functionalities of the system. This
architecture was then realised by splitting the implementation into two major
parts. The first part involved setting up the required storage infrastructure for
the registry to store its images and metadata. This involved setting up multi-
ple storage infrastructures that were later evaluated based on tests performed
against them. The second part was to integrate the hosted registry with the
Hopsworks platform to extend the project based multi-tenancy feature from
Hopsworks while storing the images on the registry. This was done using in-
tegration scripts automatically triggered from the Hopsworks platform based
on the functionality. As part of the integration, different authentication tech-
niques were also implemented to determine the best fit. This integration was
then evaluated by setting up tests to check the behaviour of the entire system.

3.1 Container Registry
This section aims to explain the proposed open-source registry options and fur-
ther discusses the short-comings of these registries against implementations

26

CHAPTER 3. IMPLEMENTATION 27

on a test environment with a simple comparison of their features. Hopsworks
itself being an open-source platform, the proposed container registries were
also from the open-source community. Trow and Harbor were the two self
hosted container registries proposed and both of these were setup on a test en-
vironment with a single node Kubernetes cluster before finalizing one among
them to be deployed on Hopsworks.

3.1.1 Test Environment Setup
As part of the test environment setup, as Hopsworks uses a Kubernetes cluster
for model serving, we try and utilize this setup to host a container registry on
top of the Kubernetes cluster. This makes the registry local to the cluster and
reduces the latency of having to pull images from public repositories.

To realize this test setup, an instance of Minikube was setup locally with a
single node cluster. Minikube runs the cluster inside a virtual machine on the
server. Table 3.1 represents the Kubernetes cluster specifications. This setup
was built individually for both Trow and Harbor registries to be tested upon.

Instance Type Minikube (single-node)
CPU 2

Memory 4GiB
Storage 10GiB

Kubernetes Version v1.18

Table 3.1: Kubernetes cluster specification for test environment

3.1.2 Trow
Trow is an open-source self hosted registry which aims to provide a secure and
fast way to distribute the images on a Kubernetes cluster. It can also prevent
unauthorized or potentially insecure images from being pulled into the cluster
using a deny/allow list [35].

Trow was setup on a Minikube cluster following the standard instructions
1. As part of the installation, Trow required a volume on Kubernetes to persist
the images stored in the registry. No attached storage options were available
as part of direct storage in Trow for the alpha release [36]. Although Trow
consisted of a front-end and a back-end, both were combined into a single

1Trow-setup - https://github.com/ContainerSolutions/trow/blob/master/install/INSTALL.md

28 CHAPTER 3. IMPLEMENTATION

executable and the front-end was just capacitated to receive Hypertext Transfer
Protocol (HTTP) requests and further communicate with the back-end with
informationwith respect to file handlers. The registry does not come originally
with a user interface. Security in Trow consists of signed TLS certificates
obtained from the Kubernetes certificate authority and is made available on the
hostedmachine. Routing in this case is achieved only through editingmanually
the /etc/hosts on each of the nodes and further adding the Trow certificates to
the appropriate stores on each of the cluster nodes. This is acceptable for a
testing environment but not a feasible solution for large cluster in production
environments.

3.1.3 Harbor
Harbor is an open-source registry that secures the artifacts with policies and
a role-based access control system. It also provides features to test for vul-
nerabilities in images. It is a Cloud Native Computing Foundation (CNCF)
graduated project [37].

For installing harbor on the test Kubernetes cluster, the package manager
Helm was installed and the required Helm charts to run the registry was to
be fetched to the local chart repository. The installation was done based on
the standard instructions provided for Harbor Helm 2. With a default installa-
tion with no changes done to the charts in terms of configuration provides an
ingress controller automatically updated in the Kubernetes cluster with an Ng-
inx resource acting as a front-end to capture the HTTP and Hypertext Transfer
Protocol Secure (HTTPS) requests. Harbor also provides a user interface for
user login and provides role-based access control to monitor or access images
based on projects and authorizations with differing access to create, push or
pull images to and from the repository can also be granted to users with an
administrative access. In terms of security, Harbor provides an option to use
existing TLS certificates in the form of Kubernetes secrets to be inserted into
the registry or if not provided, generates a certificates to be injected into the
cluster in the form of a secret.

3.1.4 Summary
As a result of the basic test environment setup and hosting both the registries
on the test cluster, Harbor proved to be a better choice with mature community

2Harbor HA - https://goharbor.io/docs/2.0.0/install-config/harbor-ha-helm/

CHAPTER 3. IMPLEMENTATION 29

support, high availability of feature selections and enhanced security capabili-
ties. As both registries are built on top of the Docker registry, the performance
in terms of pushing or pulling images are very similar. Hence, with a simple
comparison of the features it was deemed fit to chose Harbor without exten-
sive tests performed against the registries. Also, with Trow still being an alpha
release, Harbor was the right choice to be implemented on the Hopsworks plat-
form.

Feature Trow Harbor
Multi-tenancy No Yes
User Interface No Yes

Self-service Security Yes Yes
Chart Repository No Yes

Vulnerability Scanning No Yes

Table 3.2: Feature comparison Trow vs Harbor

3.2 System Architecture
Hopsworks platform uses Kubernetes architecture to provide users with model
serving capabilities. One other major service that runs on the Kubernetes in-
frastructure are the Jupyter servers which are triggered with the creation of
Jupyter Notebooks in the Hopsworks Platform. The proposed architecture
aims to utilize the existing Kubernetes infrastructure to provide secure con-
tainer image storage for Hopsworks.

In the existing architecture, each project inside of Hopsworks that provides
users with a unique Conda environment is currently Dockerized into images
and stored on public repository as base image with a copy in the local reposi-
tory. These are pulled to the local repository on need basis, ideally on project
creation and provisioned in the Hopsworks platform. Further these images
are pushed to a local self hosted Docker registry. To reduce latency and to
secure these Conda images, a secure Harbor registry is hosted on the Kuber-
netes infrastructure. The base image is then pushed into the Harbor registry
as a one time process. Henceforth, on trigger of each project creation, the
base image is pulled from the Harbor registry and provisioned to the user in
the Hopsworks Platform. Further, the users in the Hopsworks platform are al-
lowed to customize their environment by adding custom libraries or packages

30 CHAPTER 3. IMPLEMENTATION

Figure 3.1: System Architecture

into these Conda environments. As part of the proposed architecture, on each
update of the Conda environment, a new Docker image is built with the up-
dated Conda environment and pushed to the Harbor registry. As denoted in
the Figure 3.1, each time a project is created on the Hopsworks platform by
the user through the API gateway, a subsequent project with the same meta
data is created in the Harbor registry with a trigger from the Hopsworks sys-
tem. Upon project creation in the Registry, a base image used to populate the
project’s Conda environment is pushed to the relevant project in the Registry.
Ideally on project creation, the base image is pushed to theHarbor registry with
a relevant tag. Upon updating the Conda environment on an existing project,
Hopsworks triggers a subsequent Docker image build with the updated envi-
ronment and pushes the updated Conda image to the Registry with a relevant
tag. Also the Harbor user interface is planned to be made available for the
Hopsworks users, thereby, allowing the users to access their Conda environ-
ment images in their relevant projects with appropriate versioning.

CHAPTER 3. IMPLEMENTATION 31

This architecture was implemented in two parts, the first was storage in-
frastructure. The second, involved the integration of the hosted registry with
the Hopsworks platform with automated triggers.

3.3 Infrastructure Design
Harbor registry images need to be persistent and needs to last post the life-
cycle of the pod or the registry itself. For this to be achieved, Harbor registry
provides a variety of storage options. Most of these storage options involve
setting up managed storage infrastructure with AmazonWeb Services, Google
cloud platform, Microsoft Azure or Swift. These infrastructures are not feasi-
ble options as they are managed paid services, hence a basic file-system option
available with Harbor was chosen to store the image in the pods, but this does
not guarantee persistence.

As part of the file-system storage, Docker manifest files created as part of
the images creation, are stored in a particular path in the file-system of the
registry pod. In Addition to this, Harbor uses a PostgreSQL to store the meta
data of the registry and a Redis storage for caching. Hence these storage units
have to be made highly available on the cluster to achieve a highly available
architecture.

3.3.1 Persistent Storage with Local File-system
Harbor registry images as discussed in the aforementioned section, stores the
images on the Kubernetes pods in the local file-system of the container running
inside the pod. To persist this data on the pod, post completion of the pod
life-cycle, Kubernetes allows the use of persistent volumes to retain the data
populated on the pod.

This infrastructure was designed to leverage the persistent volume option
available in Kubernetes to store data on the local file-system. It involves cre-
ation of a storage class with dynamic storage allocation capabilities on a pro-
vided mount path in the local file-system of the node that is part of the Kuber-
netes cluster. Persistent volumes created in the Kubernetes clusters denotes
the specification of the volume size to be utilized in the storage class, which it-
self provides the required storage dynamically. Persistent volume claims made
with the pods that run the Harbor application to access the persistent volumes
were created. These persistent volumes were utilized by the pods with the
help of persistent volume claims to store the pod data on the specified path on

32 CHAPTER 3. IMPLEMENTATION

the cluster node. Although this provided a simple persistent storage mecha-
nism, the data was stored on a single location on a cluster node, making the
data vulnerable as it had no replications. To avoid this, the Harbor registry
was mirrored on another node in the cluster, with the exact same local-storage
mechanism pointing to its local storage.

Figure 3.2: Local File-system Storage Architecture

Figure 3.2 represents a simple architecture denoting the Harbor instance-1
utilizing the persistent volume that stores on node-1 and the mirrored Harbor
instance utilizing a persistent volume that stores on node-3. This mirroring
mechanism ensured duplication of the images and upon failure of a node, the
Docker images were still available on the cluster on another node.

3.3.2 Persistent Storage with a Ceph Cluster
This implementation involved setting up aCeph cluster on the existingHopsworks
platform, for the Harbor registry to make use of in the form of Kubernetes per-
sistent volumes. This made sure that all the data on the pod to be persisted,
was stored on a highly available Ceph cluster.

Figure 3.4 represents the overall architecture of the Ceph cluster infrastruc-
ture. In this architecture, the Harbor registry is highly available itself as part
of the Kubernetes deployment and further the data is also stored on a highly
available distributed storage unit in the form of Ceph. This approach makes
sure there is no single point of failure for the Harbor registry in the existing sys-
tem and makes it highly available. There are a number approaches to deploy a

CHAPTER 3. IMPLEMENTATION 33

Figure 3.3: Ceph Storage Architecture

Ceph cluster, in this thesis, the state-of-the-art Kubernetes operator Rook was
used to deploy the Ceph cluster on the Hopsworks system.

Rook Operator

Rook is an open-source cloud-native storage operator for Kubernetes. It is
a self sufficient, self-managing, self-scaling and self-healing storage service
designed for Kubernetes. It also supports a number of other distributed stor-
age deployments on the Kubernetes cluster apart from the Ceph storage clus-
ter, but Ceph is the most stable of them all. Rook uses the power of Kuber-
netes to deliver its services via the Kubernetes operator for each of its storage
provider[38]. The architecture of rook heavily leverages the Kubernetes ap-
proach to deploy the Ceph storage cluster on it.

Figure 3.4 portrays the role Rook operator plays in integrating the Ceph
storage with the Kubernetes Cluster. With a Kubernetes cluster having Ceph
running on it, makes sure that the Kubernetes applications canmount block de-
vices or file-systems managed by rook into them. Rook is a simple container
that has everything needed to bootstrap and monitor a Ceph storage cluster.
The operator itself runs on Kubernetes as a pod and deploys the components
of the Ceph cluster on Kubernetes. It creates the monitors, OSDs and man-
agers on the cluster in the form of pods and further monitors the components to
provide the storage. It makes sure that the Ceph OSD daemons provide a Reli-
able Autonomic Distributed Object Store (RADOS) storage as well as manage
other daemons. The Rook operator also manages the overall Custom Resource

34 CHAPTER 3. IMPLEMENTATION

Figure 3.4: Ceph Storage Architecture with Rook Operator [39]

Definitions (CRDs) for pools, objects, stores and file-systems by creating them
and other necessary artifacts to run these services. It ensures the cluster health,
improvises on the cluster expansion and shrinking based on the requirements
and watches the desired state change through the API service continuously and
applies those changes. The operator also configures a Ceph-Container Stor-
age Interface (Ceph-CSI) driver automatically to mount the storage onto the
Kubernetes pods.

Rook basically provided a simpler user experience for the admin to create
and manage the physical resources, at the same time provide configuration
options to perform advanced configurations changes. [39].

This operator was made use of to implement the Ceph cluster on Kuber-
netes for the Harbor repository to further leverage as a storage system. Block
storage approach was set up with the Ceph cluster and the Ceph-CSI driver au-
tomatically configured to be used with Rook was utilized to mount the storage
onto the pods. Necessary persistent volume claims, persistent volumes and
storage classes were deployed in the form of additional CRDs on the Kuber-
netes cluster to make use of the available Ceph cluster.

3.3.3 Testing scenarios for the implemented Infras-
tructures

The infrastructures described have different mechanisms for storage. Perfor-
mances vary with type of storage mechanisms. The tests conducted were in-
tended to determine these performance differences. The test were performed
on a Kubernetes cluster running on the Google cloud platform. The integrated
Google Kubernetes Engine (GKE) was used to quickly deploy the clusters on

CHAPTER 3. IMPLEMENTATION 35

the go and the above infrastructures were setup on them. Further, Harbor reg-
istries with the exact same configuration and version was hosted on each of
these Google Kubernetes clusters to test the performances of the Registry on
different storage infrastructures. The below table represents the specifications
of the Google Kubernetes cluster.

Cluster Type v1.15.12-gke.2 (default)
Instance Type Ubuntu

vCPU 2 per node
Memory 7.5GiB per node
Storage 100GiB per node

Node Count 3

Table 3.3: Kubernetes cluster specification for test environment on GKE

A 3-node default GKE cluster was hosted which made use of the latest
v1.18 Kubernetes version, 2 vCPU’s per node and 100 GiB storage per node
were provisioned. Ubuntu was used as the instance type for the node pool
as the default Container-optimized Operating System (COS) does not come
with the Rados Block Device (RBD) module which was required for the Rook
operator3. The tests were performed by hosting a Harbor registry having each
of the storage infrastructures to store the images and metadata on them. An
iterative approach was used to build the cluster and test each infrastructure one
at a time, to make sure the performances were measured accurately.

The test script was developed in Python, It was designed to measure the
performance metrics of the container registry.The overall criteria considered
for the tests were the push and pull performances of the Harbor Registry on
different storage infrastructures. The values in the script that could be cus-
tomized using parameters were iterations, concurrency and repository address.
Iterations referred to the number of images that needed to be created from the
Dockerfile as it in turn determined the iterations of the pull and push com-
mands executed against them. Concurrency referred to the number of threads
made available to the script to conduct the test. Repository address determined
the address of the registry that was intended to be tested.

3https://github.com/rook/rook/pull/2456

36 CHAPTER 3. IMPLEMENTATION

Push Concurrency

This functionality in the test script determined the response time to a push
command by the client to the registry by logging the result into an output file.
Functionalities of the script are listed below.

• The script was designed to first build 100 images based on the Dockerfile
that was provided to it. This number was provided as part of the iteration
count parameter to the test script.

• It then ran a client with the provided iteration count and concurrency
value, where the client was able to push the images created in the previ-
ous step and write a response time to a log while doing so.

• Tests were provided with manual concurrency values from the user in
the form of cycles. The values provided in this test for the concurrency
were 1, 3 and 6. As the concurrency value was limited to the number
of threads that are made available to the cluster, it was only feasible to
limit the maximum value to 6.

• Post completion of the tests against the provided concurrency value, the
obtained logs in the comma separated value (CSV) format was then con-
verted into graphs and tabular formats to evaluate the results.

Pull Concurrency

This functionality in the test script was aimed to provide the response time for
a pull command by the client from the registry by logging the result on to an
output file. Functionalities of the script are listed below.

• Similar to the push approach, the script was designed to build images
based on the Dockerfile and the iteration count values provided to it.
The iteration count provided was 100 to maintain consistency through
out the tests.

• The second step involved pushing of these images to the registry and
upon completion, deleting the builds from the local Docker repository.

• It then ran a client with the provided concurrency value, where the client
was able to pull the images uploaded to the registry previously, onto the
local Docker repository and log the response times while doing so.

CHAPTER 3. IMPLEMENTATION 37

• Concurrency values were provided manually in the form of cycles with
the values 1, 3 and 6.

• The log files in the CSV format were then converted into graphs and
tabular formats to evaluate the results obtained.

3.4 Hopsworks Integration
This thesis was intended to provide a highly available container registry on the
Hopsworks platform that would also extend the multi-tenancy feature across to
the registry. The Harbor registry has multi-tenancy features itself, which was
integrated with Hopsworks to extend the feature with respect to Docker images
stored on them. The idea behind the integration was to create a project, create
a user and add the user to the relevant project automatically on Harbor when
the same was done on the Hopsworks platform. The Docker image genera-
tion and storage was triggered every time the user changed the built-in project
environment.

Figure 3.5 demonstrates integration of the Harbor and the Hopsworks plat-
form using Python scripts. Working of the integration scripts are described
below.

• User creation on the Hopsworks platform creates a trigger to the inte-
gration script that is responsible to create a user on the Harbor registry.
Although Hopsworks has an extensive user creation approach with mul-
tiple steps involving creation, confirmation and activation of a user ac-
count before it is made available on the platform, the integration script
is designed to create a user on Harbor aligned to the creation phase of
the Hopsworks user creation, by using the same metadata that is used in
Hopsworks.

• Project creation by a user on Hopsworks nominates the user to be the
owner of the project and triggers an integration script that creates a
project on Harbor with the same metadata and marks the user to be
the owner of the project on Harbor. In Hopsworks, projects have quota
and storage limitations that can be configured, these features are not ex-
tended onto Harbor and an unlimited quota is provided to projects on
Harbor.

• Member addition feature in Hopsworks allows the project owner to add
existingmembers already present in theHopsworks platform to be added

38 CHAPTER 3. IMPLEMENTATION

Figure 3.5: Integration of Hopsworks Multi-tenancy features into Harbor us-
ing scripts

onto a specific project with a desired role. Upon addition of a member
to a project, an integration script is invoked that adds the specific user on
Harbor into the selected project with an equivalent access in the project.

• Push image is a background process that pushes an image into the reg-
istry, every time a user updates the project environment in Hopsworks.
The process involves updating of an existing environment, building a
new Docker image of the newly built environment and further pushing
it to the local repository. In this case, an integration script is invoked
upon detection of a environment change, after completion of the docker
image build, the image push is redirected to the Harbor registry by spec-
ifying the user that has updated the specific project on Hopsworks, this
data is used to push the image onto a project on Harbor where the im-
age needs to be stored. It also involves creation of a repository inside
the project and pushes the image with a tag consisting of the current

CHAPTER 3. IMPLEMENTATION 39

timestamp.

• Member deletion functionality on Hopsworks allows the project owners
to remove a member already existing in a project and revoke all access
to the member. This triggers an integration script which removes the
specified user on Harbor from the specified project. This feature just
refrains the member to access the projects on both platforms and does
not delete the member metadata entirely.

• Project deletion functionality on Hopsworks allows the owners to delete
unwanted projects on Hopsworks. This functionality triggers a deletion
of the entire project on Harbor, including all the repositories and images
with all tags present in the project.

Harbor is equipped with three authentication methods. Database authen-
tication, that stores the user information in the Harbor database with a sim-
ple salting of the password. This method is the default authentication made
available on Harbor upon installation. Lightweight Directory Access Proto-
col (LDAP)/Active Directory (AD) authentication, where the Harbor instance
is connected to an external LDAP directory server and the user accounts are
allowed to be created and maintained by the LDAP provider.OpenID Con-
nect (OIDC) provider authentication, where an external OIDC provider is con-
nected to the Harbor instance and the user creation, maintenance is managed
by the OIDC provider [40].

On the other hand, Hopsworks also allows multiple authentication meth-
ods, but the default authentication technique and the LDAP authentication
methods offered by Hopsworks were chosen to maintain consistency with the
Harbor authentication methods.

3.4.1 LDAP Authentication
The LDAP authentication involved building a stand-alone LDAP server on the
Hopsworks cluster for both Hopsworks and the Harbor registry to authenticate
against. Open LDAP is an open-source implementation of the LDAP server
that is most preferred in open source applications. An Open LDAP server ar-
chitecture was set up with an LDAP server and the applications were authen-
ticated against them 4. Figure 3.6 demonstrates the architecture of the system
with the LDAP server. Steps to authenticate a user with the LDAP mechanism
in the implemented architecture are listed below.

4OpenLDAP setup - https://www.openldap.org/

40 CHAPTER 3. IMPLEMENTATION

1. User attempts to login through the Harbor or Hopsworks user interface.

2. The LDAP authentication method enabled on both platforms prompts
the credentials provided by the user to be authenticated against the LDAP
server integrated with the system.

3. LDAP responds with a failure or a success, where a failure leads to step
6, a success leads to step 4.

4. The applications request for the required Access Control List (ACL),
Roles from the database.

5. The database responds with the required data.

6. Response to the users, if authentication fails, login fails. If authentica-
tion succeeds, login is successful and tokens are generated further as
part of the application feature.

Figure 3.6: LDAP Server Architecture

3.4.2 Database Authentication
Database authentication is a method where a simple hashing technique is used
to store the metadata including the password in the application database. On
provision of the password by the user at the stage of account creation, the
password is hashed and stored in the local database. Steps involved in this
authentication mechanism are listed below.

1. User attempts to login through the Harbor or the Hopsworks user inter-
face.

CHAPTER 3. IMPLEMENTATION 41

2. User name and password provided at the user interface is authenticated
against the credentials stored in the local database.

3. Upon successful authentication against the credentials stored in the database,
login is successful and relevant token is generated as part of the feature
in the respective applications. On failure, login fails and user is denied
access to the application.

3.4.3 Authorization
Both Hopsworks and Harbor provide Role-based access control as part of the
authorization mechanisms to provide multi-tenancy. Hopsworks provides an
admin role that has super user privileges of the application, with a project
owner role that provides the user with full read and write permissions to a
project with a possibility of zero or more users in it. A project owner is capable
of inviting or adding users with two possible roles, data scientist, where the
user has read-only privileges and is able to run jobs on the data, on the other
hand, a data owner role has complete access to the data and the functionality
in the project [41].

Harbor provides a similar role-based access control, where an administra-
tor role has super user privileges of the Harbor application. A project admin
is the owner of the project with complete access to a project. Project admin
has the privilege of adding existing members to the project with a master role,
developer role or a guest role. The master role provides users with the ability
to scan images, create replication jobs or delete the images. The developer
role allows users the read and write privileges in the project. The guest role
allows the users to read from the specified projects and are also able to pull
and re-tag images in the project [42].

The integration scripts use these roles provided by both applications and
maps each of roles in Hopsworks with a role in Harbor, upon user creation and
member addition into the projects. The admin user in Hopsworks has admin
privileges in the Harbor platform as well, a project owner in Hopsworks is
mapped to a Project admin in Harbor. At the time of member addition into the
project, a user with a role data scientist on Hopsworks receives a developer
role on the Harbor platform and a user with role data owner is provided with
a master role in the Harbor platform. The other roles provided in the Harbor
registry was neglected as part of this implementation.

42 CHAPTER 3. IMPLEMENTATION

3.4.4 Synchronization and Reconciliation
Hopsworks integration with Harbor extended the multi-tenant features of the
Hopsworks platform onto theHarbor registry using intermediate Python scripts.
These scripts were called upon from the Hopsworks platform to update the
metadata on the Harbor registry with its relevant functionality being used in
the Hopsworks platform. Although these Python scripts are called internally
by the Hopsworks code, as the two entities are independent applications them-
selves, there are chances of a functionality to have not completed successfully
on either platforms due to external factors. An update on Hopsworks not being
successful could have already triggered for an update on the Harbor registry
which might be successful. On the other hand, sometimes a successful update
on Hopsworks leading to a trigger call to update the relevant metadata on Har-
bor registry, might fail to update the metadata on the Harbor registry due to
some external factors. These incidents lead to a mismatch in the metadata on
both the platforms leading to inconsistency.

Reconciliation jobs comparable to cron jobs were created to handle such
incidents, where jobs run periodically to check for inconsistencies in the meta-
data present on the Hopsworks platform to that of the Harbor registry. It was
designed to give precedence to the Hopsworks platform and synchronize the
data on the Harbor registry and correct the inconsistencies identified by clean-
ing up the data. These jobs are configurable and can read the required infor-
mation from the Hopsworks platform periodically and update accordingly on
the Harbor registry, this helped maintain consistency on both the platforms.
To monitor these jobs, logs were created for the jobs and saved on to output
files which provided the status of the job. This way a more consistent system
can be guaranteed, post completion of the integration.

3.4.5 Testing scenarios for Hopsworks Integration
The integration as discussed in the aforementioned sections, involved calling
of Python scripts at certain parts of the Hopsworks modules, with an indif-
ference in the programming languages. Hence, after an elaborate research on
the possible test methods that could be chosen to test the implementation in
this thesis, the manual testing approach to test the desired functionalities was
chosen.

TestLodge is an online, cloud based test management tool that is useful
to create and manage test plans, test requirements, test suites, test cases with

CHAPTER 3. IMPLEMENTATION 43

ease 5. The manual tests against the integrated platform were performed with
the use of this tool. It provided an organised approach to build the test cases
and document the test results upon completion of the tests. The tests involved
building six test suites, one for each multi-tenant functionality integrated be-
tween the Hopsworks and the Harbor platforms. For ease of usage, the test
suites were created with the same names as that of the features mentioned in
the aforementioned section. Each test suite consisted of various test cases cre-
ated to test the functionality upon integration. Examples of test cases used to
perform the tests is presented in the Appendix chapter at the end of the thesis.

5TestLodge - https://www.testlodge.com/

Chapter 4

Results and Discussion

This chapter presents the quantitative data obtained through executing per-
formance tests against the infrastructure that was developed for this research,
while the latter section discusses about the qualitative data obtained for the
tests performed against the proof-of-concept system that was built as part of
this thesis. The results obtained through the experiments aims to answer ques-
tions related to performance efficiency, and availability while the latter aims
to provide explanations related to the desired system behaviour with the actual
behaviour of the system upon integrating the registry with the Hopsworks plat-
form. At the end of the chapter, It also describes some possible future work
that can be incorporated taking this thesis as the basis for the work.

4.1 Quantitative Results
Three test cases with indifferent concurrencies were executed as part of the
tests for each infrastructure. The Docker images were first built using a Dock-
erfile, then pushed into the registry whilst recording the push performances
for a hundred iterations. The tables below denote the maximum, minimum ,
average and 90th percentile values of push/pull times in seconds for different
concurrencies for each of the infrastructures implemented. The percentile is
taken into consideration as there was an indifferent spike in values for a few
iterations with a huge difference between the average and the maximum/min-
imum values.

Table 4.1 and Table 4.2 specify the push and pull performances for the
Ceph cluster infrastructure setup. Docker daemon does not perform better
with higher concurrencies for push or pull commands, they tend to deplete
drastically in terms of performance with increase in concurrency. The best

44

CHAPTER 4. RESULTS AND DISCUSSION 45

performances are recorded with concurrency 1 where the Docker daemon is
given one thread to perform push and pull operations to the registry.

Concurrency Maximum Minimum Average Percentile 90%
1 10.3568 1.8042 2.1560 2.4606
3 28.7090 16.2563 23.5303 25.9974
6 34.2733 12.2557 28.8011 31.9492

Table 4.1: Pull performances for Ceph cluster infrastructure in seconds

Concurrency Maximum Minimum Average Percentile 90%
1 5.9563 2.9114 3.02223 3.0662
3 273.1366 7.8121 47.5520 57.9080
6 97.0058 46.0710 67.4251 74.4499

Table 4.2: Push performances for Ceph cluster infrastructure in seconds

Table 4.3 and Table 4.4 provides results of the performances of push and
pull commands by a Docker daemon for a local file-system storage infrastruc-
ture. The trend with lower performances with higher concurrencies can be
deduced with the results even for local file-system storage infrastructure. The
best performances, similar to the Ceph cluster architecture, can be deduced to
be obtained with concurrency 1 in terms of push and pull commands trying to
manage the images in the registry.

Concurrency Maximum Minimum Average Percentile 90%
1 2.7064 1.6566 1.8756 2.2170
3 21.9744 9.2732 15.4830 17.7900
6 35.7457 17.5459 30.4995 33.9605

Table 4.3: Pull performances for local file-system infrastructure in seconds

The pull and push performances for concurrencies 3 and 6 are graphically
represented below, it is evident that the overall performances of the local stor-
age when compared to that of a Ceph cluster storage are lower for these concur-
rencies. The pull performances with concurrency 6 and concurrency 3 for lo-
cal storage is consistently lower than that of the Ceph cluster storage, although,

46 CHAPTER 4. RESULTS AND DISCUSSION

Concurrency Maximum Minimum Average Percentile 90%
1 10.4080 4.6826 4.9934 5.0840
3 321.1059 11.7018 43.7488 41.0400
6 574.6916 56.3650 101.4719 86.9933

Table 4.4: Push performances for local file-system infrastructure in seconds

there were a few iterations, where the performances were similar for both as
seen with the spikes in the graph. However, the push performances were ob-
served to be very consistent and similar for both storage infrastructures apart
from a drastic spike with the first iteration in the local storage infrastructure.
Although, there exists a difference in the average push performances, a 90th
percentile would bare more relevant observations for these results.

(a) Pull performances (concurrency=6) (b) Push performances (concurrency=6)

(c) Pull performances (concurrency=3) (d) Push performances (concurrency=3)

As part of the performance tests, different concurrencies were chosen. But
in a production system, the Docker daemon is ideally provided a single thread

CHAPTER 4. RESULTS AND DISCUSSION 47

to perform its tasks which ideally workswith concurrency 1. Hence, the results
of concurrency 1 are considered to be evaluated and discussed further.

When Docker daemon was run with single concurrency, the system ini-
tially took more time to push the artifacts of the Docker image into the Harbor
registry. Once the image was pushed, as the difference in the artifacts with
respect to the iteration 1 to the images pushed in the next iterations are very
less, Docker daemon re-used the layers already existing in the registry and
pushed only the layers that have changed. Hence, further push times were
relatively lower when compared to the first iteration. In comparison with the
Ceph cluster storage infrastructure, the local storage infrastructure took sig-
nificantly more time to push the image in each iteration although both infras-
tructures took relatively more time for their respective first iterations.

Figure 4.2: Push performances (concurrency=1)

For the local storage infrastructure, iteration 1 required more than 10 sec-
onds to pull the image from the Harbor registry and further after the artifacts
were populated in the local repository, it took consistently lesser time com-
pared to the first iteration. But conversely, the Ceph cluster storage with single
concurrency has higher performances consistently and was below the 3 sec-
ond mark through out the experiment. This proved to be significantly more
efficient than the Harbor registry with a local storage infrastructure.

This efficiency is possible with distributed storage mechanism on the clus-
ter as the local storage infrastructure uses a specific node’s disk space to pro-
vide storage and the data is transferred over the network if the storage does not
exist on the same node. Hence the latency increases which may lead to higher
timelines, this provides good observations as to why the Ceph cluster storage
infrastructures are better for storing these Docker images on the Kubernetes
cluster when compared to the local storage infrastructure.

Previous theoretical research were also in accordance to the results ob-
tained, leaning towards the Ceph cluster implementations over the local-storage

48 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.3: Pull performances (concurrency=1)

implementations, as these might cause a single point of failure, where, if the
node on which the registry storage exists fail, the system fails to function al-
though a replication is made available on another node. This again does not
make the system self healing and limits the powers of Kubernetes as a self
healing and fault tolerant orchestrator.

4.2 Qualitative Results
The result of the manual tests performed against the integrated platform using
the cloud-based testing tool TestLodge are presented in this section. The tests
were performed in batches with test cases for each test suite executed sepa-
rately. Each test suite consisted of 2 to 4 test cases that were to be executed to
complete the test suite run. As a result of the tests performed, a total of 18 test
cases were executed across the 6 test suites and a total of 13 test cases passed
with the remaining failing these tests.

Test suites Test cases executed Passed Failed
6 18 13 5

Table 4.5: Test cases passed vs failed

The failed test cases were evaluated closely, all the test cases that failed
were a part of the meta data mismatch across the two integrated platforms.
The Python scripts called through the Hopsworks code to regulate the func-
tionality in Harbor is checked for a successful execution, if return values from
the scripts denotes a success, only then the functionality is allowed to com-
plete. If the Python scripts returns a non-zero value, then the Hopsworks code

CHAPTER 4. RESULTS AND DISCUSSION 49

Figure 4.4: Snapshot from the TestLodge tool

execution throws an exception and the functionality does not complete. Con-
sidering these failed test cases were due to a forceful deletion of metadata on
one of the platforms, these errors are less prone to occur in the actual system.
Aforementioned reconciliation jobs designed to check for any mismatch in the
metadata across platforms and updating the Harbor metadata accordingly will
be used in practice to negate these scenarios. Time intervals for these jobs are
critical to avoid such failures or errors in the system.

4.3 Future Work
This section aims to expose possible continuations of this work. These propo-
sitions are made mainly based on the limitations of the current implementa-
tions. As mentioned in the earlier chapters, this thesis is a proof-of-concept
for the integration of Hopsworks platform with the Harbor registry and Python
scripts are used to perform the API calls to update the metadata and perform
the functionalities on Harbor. If this implementation is to be realised on a
production environment, the best practice will be to develop Java based in-
tegration calls to the Harbor API to perform the functionality as the current
approach uses a less secure password management technique where the cre-
dentials needs to be passed to the Python scripts as part of the integration.
This can be done in a more elegant, secure way with consistency in the pro-
gramming languages. Also, a good approach would be to test the same archi-
tectures with more testing scenarios. It will then provide more data points for
comparison and will allow to better draw clear conclusions from statistical test
results. As this thesis was aimed to provide efficiency in-terms of performance
of Docker image pull and push to the registry, the performed tests were limited
to these functionalities. The security aspects were not really explored with re-

50 CHAPTER 4. RESULTS AND DISCUSSION

spect to the registry as part of this thesis, where Harbor provides improved
security for the images in terms of allowing signed images to be pushed into
the registry. This could be a great addition to the registry features to be im-
plemented. Conducting more complex experiments is also very efficient way
to spot some potential new issues not detected by this work’s testing scenar-
ios. Integration tests performed for this project was manual and limited to the
scope of extended functionalities. This might also encourage to extend more
sophisticated features present on Hopsworks to be extended onto the registry.

Chapter 5

Conclusion

In this era of big data context, there is always a need for efficient scalable and
fault tolerant software architectures in order to process the growing amount of
data. Hopsworks is one such platform that provides great features that inte-
grates many big data frameworks under one hood. With that being said, there
is also a need for a secure container registry to be implemented on to the plat-
form capable of extending the main multi-tenancy features of the Hopsworks
platform.

In this report, two architectures based on a storage mechanism were com-
pared. The implemented infrastructures perform well but differs in terms of
fault tolerance and slightly in terms of performance. This is explained with
some experimental results that show that the distributed Ceph cluster stor-
age infrastructure performed better on Docker push and pull commands when
compared to the local-storage infrastructure. The fact that the data placements
when storing these images play a vital role in the performance was deter-
mined by these experiments. Also it is evident that the infrastructure with
the distributed Ceph cluster approach provides better fault tolerance as the
local-storage infrastructure has a single point of failure.The experimental re-
sults show that the storage infrastructures opted for the container registry has
an important impact on performances of a system as a whole. However, the
implemented solutions are rather simple, and some robustness issues occur
during experiments. A direct continuation of the current work is to fix these
issues and perform more tests, especially testing scenarios with more images.
The limitation of the experiments is the computational power of the machines
of the testing cluster as most performance metrics are put to test with high
performance machines, But, this was also enough to spot the most obvious
characteristics of the tested architecture.

51

52 CHAPTER 5. CONCLUSION

The results of this study cannot be used directly to develop a complete
integrated architecture for production as it only focuses on a few parameters
and was designed to be more of a proof-of-concept implementation. Further
experiments are required in order to determine an optimal solution that can
be deployed in a production environment. However, the lessons learned from
this study surely will be very useful when implementing an integrated Harbor
registry for the Hopsworks platform in a production environment.

Bibliography

[1] BigData - A critical path to develop new business oppurtunities.https:
//www.ie.edu/insights/articles/big-data-critical-
path-to-develop-new-business-opportunities/. Ac-
cessed: 2020-04-07.

[2] Apache Hadoop. https://hadoop.apache.org/. Accessed:
2020-04-07.

[3] HopsworksDocumentation 0.9.https://hopsworks.readthedocs.
io/en/0.9/overview/introduction/what-hopsworks.
html. Accessed: 2020-04-09.

[4] How to build a collaborative data science environment. https://
blogs.oracle.com/datascience/how- to- build- a-
collaborative- data- science- environment. Accessed:
2020-04-09.

[5] Conda environment administration. url: https://hopsworks.
readthedocs.io/en/1.2/admin_guide/conda.html.

[6] Alan R. Hevner, Salvatore T. March, Jinsoo Park, Sudha Ram. “Design
Science in Information Systems Research”. In: Management Informa-
tion Systems Quarterly 28 (2004), p. 75.

[7] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, Samir Chatter-
jee. “ADesign Science ResearchMethodology for Information Systems
Research”. In: Journal of Management Information Systems 24 Issue 3
(2007-08), pp. 45–78.

[8] IEEE Code of Ethics. https : / / www . ieee . org / about /
corporate/governance/p7-8.html. Accessed: 2020-04-12.

[9] 5 things about data science. https://www.kdnuggets.com/
2018/02/5- things- about- data- science.html. Ac-
cessed: 2020-04-20.

53

54 BIBLIOGRAPHY

[10] Data science.https://www.binghamton.edu/transdisciplinary-
areas-of-excellence/data-science/index.html. Ac-
cessed: 2020-04-20.

[11] Michael Brodie. “Understanding Data Science: An Emerging Disci-
pline for Data-Intensive Discovery”. In: Sept. 2015, pp. 33–51.

[12] What is Data Science? Transforming data into value.https://www.
cio.com/article/3285108/what-is-data-science-
a-method-for-turning-data-into-value.html. Ac-
cessed: 2020-04-12.

[13] Kristopher Overholt Christine Doig.White paper: Productionizing and
Deploying Secure and Scalable Data Science Projects. Tech. rep. Con-
tinuum Analytics, June 2017.

[14] What is big data? https://www.oracle.com/big- data/
what-is-big-data.html. Accessed: 2020-04-25.

[15] D. P. Acharjya, Kauser Ahmed P. “A Survey on Big Data Analytics:
Challenges, Open Research Issues and Tools”. In: International Jour-
nal of Advanced Computer Science and Applications 7 Issue 2 (2016),
pp. 511–515.

[16] Olshannikova, E., Ometov, A., Koucheryavy, Y. et al. “Visualizing Big
Datawith augmented and virtual reality: challenges and research agenda”.
In: Journal of Big Data2 22 (2015).

[17] HowHadoop helps solve BigData Problem.https://www.techopedia.
com / 2 / 30166 / technology - trends / big - data / how -
hadoop-helps-solve-the-big-data-problem. Accessed:
2020-04-15.

[18] What is Hops? https : / / hopsworks . readthedocs . io /
en/latest/overview/introduction/what-hops.html.
Accessed: 2020-04-15.

[19] Ceph (software). url: https://en.wikipedia.org/wiki/
Ceph_(software).

[20] INTRO TO CEPH. url: https : / / docs . ceph . com / docs /
master/start/intro/.

[21] What is virtualization?url:https://opensource.com/resources/
virtualization#:~:text=Virtualization.

BIBLIOGRAPHY 55

[22] R. Morabito, J. Kjällman, and M. Komu. “Hypervisors vs. Lightweight
Virtualization: A Performance Comparison”. In: 2015 IEEE Interna-
tional Conference on Cloud Engineering. 2015, pp. 386–393.

[23] Containers andCloud: FromLXC toDocker to Kubernetes. url:http:
//www.ce.uniroma2.it/courses/sdcc1617/articoli/
bernstein_cc2014.pdf.

[24] Open container project. url: https : / / www . docker . com /
blog/open-container-project-foundation/.

[25] D. Bernstein. “Containers and Cloud: From LXC to Docker to Kuber-
netes”. In: IEEE Cloud Computing 1.03 (Sept. 2014), pp. 81–84. issn:
2372-2568. doi: 10.1109/MCC.2014.51.

[26] Docker Overview. url: https://docs.docker.com/get-
started/overview/.

[27] Borg,Omega, and Kubernetes. url: https://dl.acm.org/doi/
pdf/10.1145/2890784.

[28] Kubernetes Components. url:https://kubernetes.io/docs/
concepts/overview/components/.

[29] Overview of kubectl. url: https://kubernetes.io/docs/
reference/kubectl/overview/.

[30] Persistent Volumes. url: https : / / kubernetes . io / docs /
concepts/storage/persistent-volumes/.

[31] Understanding Kubernetes storage basics. url: https://cloud.
ibm.com/docs/containers?topic=containers-kube_
concepts.

[32] Do you know what’s in Helm 3? url: https://developer.ibm.
com/technologies/containers/blogs/kubernetes-
helm-3/#:~:text=Helm.

[33] Charts. url: https://helm.sh/docs/topics/charts/#:
~:text=Helm.

[34] HopsworksDocumentation 1.2.https://hopsworks.readthedocs.
io/en/1.2/overview/introduction/what-hopsworks.
html. Accessed: 2020-05-15.

[35] Trow. url: https://github.com/ContainerSolutions/
trow.

56 BIBLIOGRAPHY

[36] TrowArchitecture. url:https://github.com/ContainerSolutions/
trow/blob/master/docs/ARCHITECTURE.md.

[37] Harbor. url: https://goharbor.io/.

[38] Rook - Open-Source, Cloud-Native Storage for Kubernetes? https:
//rook.io/. Accessed: 2020-08-10.

[39] Rook - Ceph Storage. https://rook.io/docs/rook/v1.4/
ceph-storage.html. Accessed: 2020-08-10.

[40] Harbor authentication. https : / / goharbor . io / docs / 1 .
10/administration/configure-authentication/. Ac-
cessed: 2020-08-12.

[41] Howwe secure your data withHopsworks.https://www.logicalclocks.
com/blog/how-we-secure-your-data-with-hopsworks.
Accessed: 2020-08-18.

[42] Managing Users. https : / / goharbor . io / docs / 1 . 10 /
administration/managing-users/. Accessed: 2020-08-18.

Appendix A

Additional Infrastructure Design

A.1 Persistent Storage with HopsFS
Hopsworks utilizesHopsFS for it’s data andmeta data storage. SowithHopsFS
already being a part of the technology stack in the Hopsworks platform, the
current architecture proposes utilizingHopsFS as amedium to store theDocker
image manifests.

Figure A.1: HopsFS Storage Architecture

• Harbor utilizes PostgreSQL, Redis formetadata storage and caching pur-
poses. The image manifests are simply stored in the file-system on the

57

58 APPENDIX A. ADDITIONAL INFRASTRUCTURE DESIGN

pod it is running on. This image manifest data is persisted if the data on
the pod is persisted, if not, they are destroyed with the pod as well.

• As a replacement, the current architecture uses the existing HopsFS dis-
tributed file-system to store the image manifests to persist the data even
after the completion of the pod life-cycle.

• Replace Overlay2 with an HDFS compliant storage driver : HopsFS is
built on top of HDFS, storage driver programs that are compatible with
HDFS that helps to read and write data into them are used to populate
the image manifests into HopsFS on pushing the image onto the Harbor
registry. Overlay2 is the standard storage driver used by Docker to store
images onto the local file-system using an OverlayFS as part of the Cen-
tOS Linux Distribution. This storage driver is replaced with an HDFS
storage driver enabling the docker daemon to directly store the image
manifests into HDFS 1.

• NFS gateway to mount HDFS file-system on Kubernetes Pods : In this
approach, an NFS gateway is used in combination with the existing file-
system for the clients to mount the HopsFS onto the system and inter-
act with the file-system with the help of NFS as if it were part of their
local file-system. This NFS gateway can be installed on any DataN-
ode or Name-Nodes on the HopsFS system, it requires an NFS server
to be setup and running on one of these machines. Post mounting the
HopsFS, users can browse the file-system through the local file-system
on an NFSv3 client compatible operating system. The gateway also al-
lows the users to upload and download files directly from and to the local
file-system from HopsFS. It also allows to stream data directly through
the mount point 2.

• As a result of the lack of support for HDFS storage with Docker distri-
bution, as no stable drivers made available for the purpose, this method
is not ideal to be implemented. On the other hand, the incompatibility
of Hopsworks with the NFS gateway based on previous research, urges
the author to not use this storage implementation as part of this thesis.

1Docker Storage Drivers - https://docs.docker.com/storage/storagedriver/select-storage-
driver/

2HDFS NFS Gateway - https://hadoop.apache.org/docs/r2.8.0/hadoop-project-
dist/hadoop-hdfs/HdfsNfsGateway.html

Appendix B

Dockerfile for Infrastructure Test

Listing B.1: Dockerfile used to perform the tests

FROM ubuntu : 1 4 . 0 4
RUN apt−g e t i n s t a l l −y ng inx
EXPOSE 80
CMD / u s r / s b i n / ng inx −g ’ daemon o f f ; ’

Simple Dockerfile having functionality to run an Nginx web server and
expose the port 80 on an Ubuntu 14.04 operating system was developed to use
in the test scenarios.

59

Appendix C

Integration Test-case Examples

Below are a few example snapshots of successful test cases run in the cloud
based testing tool Test lodge.

Figure C.1: User creation test case result from the Test Lodge platform

60

APPENDIX C. INTEGRATION TEST-CASE EXAMPLES 61

Figure C.2: Project creation test case result from the Test Lodge platform

Figure C.3: Member addition test case result from the Test Lodge platform

62 APPENDIX C. INTEGRATION TEST-CASE EXAMPLES

Figure C.4: Docker image push test case result from the Test Lodge platform

Figure C.5: Member deletion test case result from the Test Lodge platform

APPENDIX C. INTEGRATION TEST-CASE EXAMPLES 63

Figure C.6: Project deletion test case result from the Test Lodge platform

www.kth.se

