
Degree Project in Computer Science and Engineering

Second cycle, 30 credits

Scaling Apache Hudi by boosting
query performance with RonDB
as a Global Index
Adopting a LATS data store for indexing

RALFS ZANGIS

KTH ROYAL INSTITUTE
OF TECHNOLOGY

Stockholm, Sweden, 2022

Scaling Apache Hudi by
boosting query performance
with RonDB as a Global Index

Adopting a LATS data store for indexing

RALFS ZANGIS

Master’s Programme, Software Engineering of Distributed
Systems, 120 credits
Date: May 30, 2022

Supervisor: Jim Dowling
Examiner: Amir H. Payberah

School of Electrical Engineering and Computer Science
Host company: Hopsworks AB
Swedish title: Skala Apache Hudi genom att öka frågeprestanda
med RonDB som ett globalt index
Swedish subtitle: Antagande av LATS-datalager för indexering

© 2022 Ralfs Zangis

Abstract | i

Abstract
The storage and use of voluminous data are perplexing issues, the resolution of
which has become more pressing with the exponential growth of information.
Lakehouses are relatively new approaches that try to accomplish this while
hiding the complexity from the user. They provide similar capabilities to a
standard database while operating on top of low-cost storage and open file
formats. An example of such a system is Hudi, which internally uses indexing
to improve the performance of data management in tabular format.

This study investigates if the execution times could be decreased by
introducing a new engine option for indexing in Hudi. Therefore, the thesis
proposes the usage of RonDB as a global index, which is expanded upon by
further investigating the viability of different connectors that are available for
communication.

The research was conducted using both practical experiments and the study
of relevant literature. The analysis involved observations made over multiple
workloads to document how adequately the solutions can adapt to changes
in requirements and types of actions. This thesis recorded the results and
visualized them for the convenience of the reader, as well as made them
available in a public repository.

The conclusions did not coincide with the author’s hypothesis that RonDB
would provide the fastest indexing solution for all scenarios. Nonetheless, it
was observed to be the most consistent approach, potentially making it the best
general-purpose solution. As an example, it was noted, that RonDB is capable
of dealing with read and write heavy workloads, whilst consistently providing
low query latency independent from the file count.

Keywords
Apache Hudi, Lakehouse, RonDB, Performance, Index, Key-value store

ii | Sammanfattning

Sammanfattning
Lagring och användning av omfattande data är förbryllande frågor, vars
lösning har blivit mer pressande med den exponentiella tillväxten av
information. Lakehouses är relativt nya metoder som försöker åstadkomma
detta samtidigt som de döljer komplexiteten för användaren. De tillhandahåller
liknande funktioner som en standarddatabas samtidigt som de fungerar på
toppen av lågkostnadslagring och öppna filformat. Ett exempel på ett sådant
system är Hudi, som internt använder indexering för att förbättra prestandan
för datahantering i tabellformat.

Denna studie undersöker om exekveringstiderna kan minskas genom
att införa ett nytt motoralternativ för indexering i Hudi. Därför föreslår
avhandlingen användningen av RonDB som ett globalt index, vilket utökas
genom att ytterligare undersöka lönsamheten hos olika kontakter som är
tillgängliga för kommunikation.

Forskningen genomfördes med både praktiska experiment och studie av
relevant litteratur. Analysen involverade observationer som gjorts över flera
arbetsbelastningar för att dokumentera hur adekvat lösningarna kan anpassas
till förändringar i krav och typer av åtgärder. Denna avhandling registrerade
resultaten och visualiserade dem för att underlätta för läsaren, samt gjorde dem
tillgängliga i ett offentligt arkiv.

Slutsatserna sammanföll inte med författarnas hypotes att RonDB skulle
tillhandahålla den snabbaste indexeringslösningen för alla scenarier. Icke
desto mindre ansågs det vara det mest konsekventa tillvägagångssättet, vilket
potentiellt gör det till den bästa generella lösningen. Som ett exempel
noterades att RonDB är kapabel att hantera läs- och skrivbelastningar,
samtidigt som det konsekvent tillhandahåller låg frågelatens oberoende av
filantalet.

Nyckelord
Apache Hudi, Lakehouse, RonDB, Prestanda, Index, Nyckel-värde butik

Acknowledgments | iii

Acknowledgments
I would like to thank Jim Dowling, Fabio Buso, Mikael Ronström, and the rest
of Hopsworks team for their assistance in making of this thesis. Owing to their
support much of the work was made possible. Furthermore, i am grateful to my
examiner Amir Payberah for his continuous guidance in advancing research.

Stockholm, May 2022
Ralfs Zangis

iv | Contents

Contents

1 Introduction 2
1.1 Background . 2
1.2 Problem . 4
1.3 Purpose . 4

1.3.1 Ethics and Sustainability 4
1.4 Goals . 5
1.5 Research question . 5
1.6 Research methodology . 5
1.7 Delimitations . 5
1.8 Structure of the thesis . 6

2 Background 7
2.1 Lakehouse . 7

2.1.1 Lakehouse characteristics 7
2.1.2 How Lakehouses work 8
2.1.3 Lakehouse solutions 9
2.1.4 Lakehouse choice . 12

2.2 Hudi platform . 13
2.2.1 Hudi table format . 13
2.2.2 Data structure . 13
2.2.3 Metadata . 16
2.2.4 Indexing . 19

2.3 Databases . 21
2.3.1 Database options . 21
2.3.2 Database choice . 23

2.4 Related work . 24

3 Method 25
3.1 Research Process . 25

Contents | v

3.2 Research Paradigm . 26
3.3 Data Collection . 27
3.4 Test environment . 28
3.5 Assessing quality . 28
3.6 Planned Data Analysis . 29
3.7 System documentation . 29

4 Solution 31
4.1 Software design . 31
4.2 Implementation . 32

4.2.1 Solution using JDBC 32
4.2.2 Solution using ClusterJ 34
4.2.3 Configuration . 35

4.3 Development . 35
4.4 Deployment . 37
4.5 Usage . 38
4.6 Test setup . 40

5 Results and Analysis 42
5.1 Results . 42

5.1.1 Workload A . 42
5.1.2 Workload B . 44
5.1.3 Workload C . 46
5.1.4 Workload D . 48
5.1.5 Workload E . 52

5.2 Quality Analysis . 56
5.3 Discussion . 56

6 Conclusions and Future work 59
6.1 Conclusions . 59
6.2 Limitations . 60
6.3 Future work . 60

6.3.1 Left undone . 61
6.3.2 Cost analysis . 61
6.3.3 Security . 61
6.3.4 Future prospects . 62

6.4 Reflections . 62

References 64

vi | Contents

A NDB size report of the final solutions 71

List of Figures | vii

List of Figures

2.1 Basic Data Lakehouse. 9
2.2 Data structure of Hudi. 14
2.3 Structure of Parquet file in Hudi. 15
2.4 Hudi timeline. 17

3.1 Research Process . 26
3.2 Research Paradigm . 27

4.1 Entity relation diagram for RONDB_JDBC 33
4.2 Entity relation diagram for RONDB_CLUSTERJ 34

5.1 Baseline times for index operations under low load conditions 43
5.2 Insert times for index engines for increasing Hudi table size . . 45
5.3 Update times for index engines for increasing Hudi table size . 45
5.4 Delete times for index engines for increasing Hudi table size . 46
5.5 Insert times for index engines for increasing number of

operations . 47
5.6 Update times for index engines for increasing number of

operations . 47
5.7 Delete times for index engines for increasing number of

operations . 48
5.8 Insert times for index engines based on batch size 49
5.9 Update times for index engines based on batch size 50
5.10 Delete times for index engines based on batch size 50
5.11 Insert times for RonDB index engines based on batch size . . . 51
5.12 Update times for RonDB index engines based on batch size . . 52
5.13 Delete times for RonDB index engines based on batch size . . 52
5.14 Insert times for index engines based on file size 53
5.15 Update times for index engines based on file size 54
5.16 Delete times for index engines based on file size 55

viii | List of Figures

5.17 Update times for index engines based on file size disregarding
1 MB observations . 55

5.18 Delete times for index engines based on file size disregarding
1 MB observations . 56

List of Tables | ix

List of Tables

3.1 Device specification. 29

4.1 The main Hudi index interface elements. 32
4.2 The RonDB indexing properties. 40

5.1 Insert execution times (s) . 43
5.2 Upsert execution times (s) 44
5.3 Delete execution times (s) . 44

x | List of Listings

List of Listings

1 Delta Lake schema example. 10
2 Apache Iceberg schema example. 11
3 Apache Hudi schema example. 12
4 Apache Hudi index options. 21
5 Creating Hudi index table for RONDB_CLUSTERJ 36
6 Creating Spark client jar file 37
7 Hudi dependencies . 38
8 Creating new Hudi table with 10 entries using RonDB as the

global index . 39
9 Example providing value for hoodie.index.rondb.clusterj

property . 40

List of acronyms and abbreviations | 1

List of acronyms and abbreviations

ACID Atomicity, Consistency, Isolation, and Durability
AI Artificial Intelligence
API Application Programming Interface

COW Copy On Write
CPU Central Processing Unit

DDL Data Definition Language

ETL Extract, Transform, Load

I/O Input/Output

JDBC Java Database Connectivity
JPA Java Persistence API

LATS Low Latency, high Availability, high Throughput, and scalable
Storage

LTS Long-Term Support

ML Machine Learning
MOR Merge On Read
MVCC Multiversion Concurrency Control

NDB Network Database
NoSQL Not only Structured Query Language

OCC Optimistic Concurrency Control
OS Operating System

RAM Random Access Memory
RDBMS Relational Database Management System

SQL Structured Query Language

UUID Universal Unique Identifier

2 | Introduction

Chapter 1

Introduction

Currently, there are three commonly used Big Data storage platforms,
consisting of the following: Data warehouse, Data lake, and Lakehouse. Each
one offers enticing properties for its usage as a database. However, not all
of them are suited to satisfy the ever-changing requirements of a modern
company1.

Therefore, in this thesis, we will examine the most recent such architecture:
Lakehouse, explaining how it can offer capabilities that were previously
unattainable in a single system. While additionally, it makes its adopters more
efficient and scalable, thus gifting a competitive advantage.

Furthermore, for the duration of this research, we are going to attempt to
enhance a Lakehouse solution. This would be achieved by improving query
performance and reducing the overall amount of Input/Output (I/O), through
the introduction of a new approach for indexing. In the end, tests would be
performed on the resulting product, and observations documented. Thereafter,
providing conclusions on the feasibility of the new indexing approach and
making it publicly available for consumption of anyone interested.

1.1 Background
There is a multitude of data administrative tools available for the users dealing
with the storage and governance of immense amounts of data. The earliest

1A VentureBeat interview with Krishna Subramanian (COO of Komprise)
about challenges associated with unstructured data can be found at https:
//venturebeat.com/2021/07/22/why-unstructured-data-is-the-
future-of-data-management/.

https://venturebeat.com/2021/07/22/why-unstructured-data-is-the-future-of-data-management/
https://venturebeat.com/2021/07/22/why-unstructured-data-is-the-future-of-data-management/
https://venturebeat.com/2021/07/22/why-unstructured-data-is-the-future-of-data-management/

Introduction | 3

such architecture was Data warehouse2. It accommodated the data-analysis
needs of the organizations for many years. However, Data warehouses could
not deal with the changes in requirements posed by a fast-moving industry,
compelling companies to be efficient and capable of dealing with data that has
high variety, velocity, and volume (The three Vs of Big Data).

Altogether, at this time it is estimated that unstructured data comprises
about 80-90% of all information stored within companies, with many of them
not benefiting from it [1]. That is why a new system was envisioned and
developed. It was called a Data lake3 and while resolving the aforementioned
issues it came at the cost of not offering previously supported management
properties (such as: Atomicity, Consistency, Isolation, and Durability
(ACID) and schema enforcement). Consequently, without a well-established
standardization and primitives, Data lakes thus in time could become messy
“Data swamps”, which are the bane of any data engineer [2].

The already mentioned aspects of the technologies lead to a trend of using
both of them in tandem (often called hybrid/two-tier architecture), introducing
inefficiency and complexity throughout the system. Therefore, in recent years
a new solution called Lakehouse has emerged, combining the best features
of the already discussed platforms [3]. This was done by adding a new
layer of abstraction on top of the Data lake. The resulting product makes
the approach ideal for companies aiming to support business intelligence,
analytics, real-time data applications, data science, and machine learning
in one platform. The newly available functionality of the technology thus
constitutes an attractive proposition for many up and coming industries. In
particular, the ones dealing with Machine Learning [4].

Lakehouses offer a comparative performance to their peers and this in a
large part can be attributed to the usage of metadata, in particular indexing [5].
While it is not the only performance-defining factor, it most certainly is one
of the most crucial. Accordingly, its continuous evolution is the determining
characteristic in the execution time reduction. This led to the thesis goal of
introducing a new and improved indexing solution, that could be the next step
in the maturation and lead to further advances.

2Details regarding the unique aspects of Data warehouse can be found at https://
www.oracle.com/database/what-is-a-data-warehouse/

3Details regarding the unique aspects of the Data lake can be found at https://
cloud.google.com/learn/what-is-a-data-lake

https://www.oracle.com/database/what-is-a-data-warehouse/
https://www.oracle.com/database/what-is-a-data-warehouse/
https://cloud.google.com/learn/what-is-a-data-lake
https://cloud.google.com/learn/what-is-a-data-lake

4 | Introduction

1.2 Problem
The ever-changing business landscape has forced companies to be innovative
and agile in their choice of Big Data management tools. This has resulted in the
change of expectations from a database. The latest approach tries to combine
previously unattainable goals in a singular solution. But in return, it heavily
relies on a file system for the core component storage. This makes the approach
highly scalable but does so at the cost of efficiency and responsiveness.

The problem arising from using the traditional databases for a component
such as index storage is that they are often not capable of being distributed
and working in a cloud environment. Moreover, they consume more resources
to provide improved performance, resulting in a less easily scalable solution.
Therefore, it is often not advantageous for the provider to trade resource
consumption for speed.

The various indexing solutions used by Lakehouses offer contrasting
benefits to their users. Therefore, identifying and implementing the correct
approach is imperative to achieving the vital aspects of the adopter’s
requirements. However, while the current indexes perform well for their
intended tasks, it could be an enticing proposition to have an option fixated on
minimizing the response time. This left the author with the following question:
”Can the usage of RonDB as a global index for Hudi result in the lowest latency
response times among the available indexing engines?”.

1.3 Purpose
The purpose of this project is the introduction of possibly the fastest-
performing indexing solution for Hudi. This would benefit the users through
improved query execution times and the host company by showcasing the
capabilities of their in-house built data store (RonDB). Thereupon, making
Hudi more sustainable as well as an increasingly attractive proposition for the
consumer.

1.3.1 Ethics and Sustainability
This project does not encounter any ethical issues. Nonetheless, it helps
with the sustainability of Lakehouses and in particular Hudi. The reason for
this is that more effective metadata management can lead to notable gains in
execution times as well as a reduction in resource consumption (through the
cutback on the need for I/O operations) [6].

Introduction | 5

1.4 Goals
The goal of this project is the introduction of a new indexing solution. This
has been divided into the following three sub-goals:

1. Improvement of latency/throughput for Hudi.

2. Introduction of the data science community to the capabilities of
RonDB.

3. Comparison of the indexing engines.

As an outcome of this research, the resulting code and its performance
analyses would be provided. This is intended to encourage further advances
in the field of efficient data management.

1.5 Research question
Can we improve the performance of ACID Data lakes by introducing a global
index backed by a scale-out in-memory database?

1.6 Research methodology
The research is conducted using an empirical method. More specifically a
combination of practical implementation and performance of exhaustive tests
on the resulting product. The evaluation of improvement gained by comparing
it to the existing solutions. The reasoning for the approach is that it would
provide a quantifiable answer to the previously posed question. This is not
obtainable through Conceptual research, making it impractical for the task at
hand.

1.7 Delimitations
The focus of this project is placed on improving Lakehouse’s performance
and documenting results. With a particular interest in response times.
Therefore, only a single Lakehouse implementation will be thoroughly
investigated. Furthermore, while alternative databases used for indexing
would be considered, they would not be implemented due to time constraints.
Thus, leaving it as well as other prospects of the approach for future research.

6 | Introduction

1.8 Structure of the thesis
The research is structured following the traditionally used thesis model.
Starting with Chapter 1 providing the basic information about the goals.
Chapter 2 presents the relevant background information as well as previous
work. Chapter 3 bestows the chosen method for the problem resolution.
Chapter 4 expands on the implementation, while Chapter 5 informs of the
observations. Finally, Chapter 6 reflects on the results and proposes future
work.

Background | 7

Chapter 2

Background

This chapter introduces the concepts used throughout the following report in
greater detail. It is done by examining the Lakehouse, its implementations,
how they differ, and what is the chosen approach. After that, a
more in-depth analysis notifies the reader of the necessary background
knowledge. Subsequently, proposing, justifying, and describing the tools for
accomplishing the thesis goal. Finally, related work is described.

2.1 Lakehouse
As already briefly introduced in the Section 1.1, Lakehouses are the next
logical step in the evolution of data storage. They allow users to share
benefits from Data lakes, by having low-cost storage that supports unstructured
data, and Data warehouses, by offering management features as well as great
performance.

2.1.1 Lakehouse characteristics
Lakehouse solutions through their peculiarity might deviate in their feature
set. However, they could generally be characterized as offering the following
attributes:

• Simple and reliable data governance: Previously, to obtain the
Lakehouse capabilities, the users had to perform several Extract,
Transform, Load (ETL) actions between Data lake and Data warehouse,
making the system overly complex and error-prone.

8 | Background

• Up to date data: The ETL actions between multiple systems introduce
staleness in the data being served.

• Directly accessible data: The Machine Learning (ML) solutions need a
lot of data to function, which is most efficiently retrieved using files in
open formats.

• ACID capabilities: Provide guarantees previously not obtainable in the
Data lake, but expected in the Data warehouse.

• Low cost: All data is stored in a single solution, not requiring
unwarranted duplication.

• Data versioning: Users could perform time travel on the data, retrieving
information as it was in the past or obtaining changes that have occurred
since the specified point-in-time.

• Great performance: Features such as metadata, indexes, z-ordering, and
cache allow Lakehouse to benefit from query optimization, which offers
comparable performance to the Data warehouse.

2.1.2 How Lakehouses work
The Lakehouses achieve the aforementioned aspects of their approach through
their reliance on low-cost object stores and open file formats (Parquet, ORC,
and Avro) [7]. This means that they are built on top of the existing Data
lake solution, by introducing a new data management layer that enforces the
capabilities of the Data warehouse and exposes Application Programming
Interface (API) for interacting with data (Figure 2.1). Therefore, often it is
a relatively simple process to migrate the existing solution to Lakehouse.

Background | 9

Figure 2.1: Basic Data Lakehouse.

2.1.3 Lakehouse solutions
The most well-known projects offering Lakehouse prospects are Delta Lake,
Apache Iceberg, and Apache Hudi. They all have a similar premise (Section
2.1) and were developed nearly simultaneously, with only a slight deviation
in their capabilities and implementations [8, 9], depending on the underlying
reason for their inception. With possible convergence of their proficiencies, as
the technologies continue to evolve [10].

2.1.3.1 Delta Lake

Delta Lake1 (often referred to as Delta) is an open-source Lakehouse solution
allowing for batch and streaming processing [11]. It was developed by
Databricks and is designed to integrate with Apache spark. Delta Lake relies
on the transaction log (ordered record of every action) as a single source
of truth [12]. As a result, using it in tandem with Optimistic Concurrency
Control (OCC), Delta can offer ACID properties (The conflict resolution
of the overlapping processes in most situations is worked out silently).
Altogether, this Lakehouse implementation is well documented and feature-
rich. However, its capabilities lack when compared to the commercial version
(Delta Engine) [13]. Therefore, it is best suited for clients of Databricks and
users of Spark.

1Delta Lake GitHub repository can be found at https://github.com/delta-io/
delta

https://github.com/delta-io/delta
https://github.com/delta-io/delta

10 | Background

An example of the directory structure present in Delta Lake [14, 12] can
be seen in Listing 1.

Listing 1 Delta Lake schema example.
system

_delta_log

000000.json

000001.json

...

000010.checkpoint.parquet

...

partition_column_name

part-00000-(random_UUID)-c000.snappy.parquet

...

...

2.1.3.2 Iceberg

Iceberg2 is a solution that was established to rectify the issues (performance,
scalability, and manageability) of Apache Hive tables in large Data lakes [15].
The development of it started at Netflix, which subsequently open-sourced
it in 2018, and as of 2020, it is a top-level project of Apache Foundation.
Iceberg was designed to be engine agnostic and consider everything as a
metadata operation [16]. As a result, it boasts excellent reading performance
and supports OCC. However, up until recently, it had limited support for
modifications such as deletes [17], meaning that it is an actively evolving
solution. Apache Iceberg is best suited for huge tables that could be comprised
of a large number of partitions or require frequent schema transformation.

An example of the directory structure present in Apache Iceberg [14, 18]
can be seen in Listing 2.

2Apache Iceberg GitHub repository can be found at https://github.com/apache/
iceberg

https://github.com/apache/iceberg
https://github.com/apache/iceberg

Background | 11

Listing 2 Apache Iceberg schema example.
system

data

partition_column_name

00003-3-(random_UUID)-00001.parquet

...

...

metadata

version-hint.text

V1.metadata.json

...

snap-1771790970144017284-1-(random_UUID).avro

...

(random_UUID)-m0.avr

...

2.1.3.3 Hudi

Hudi3 (an acronym for Hadoop Upserts Deletes and Incrementals) was
developed in Uber to deal with the glaring inefficiencies and complexity of
scaling using at the time available data management architectures. From
the very beginning this was done by having data, indexes, and metadata as
core storage components [19]. This architecture supports incremental changes
over columnar file formats, offering both Multiversion Concurrency Control
(MVCC) (using central log and one concurrent writer) and OCC capabilities
[20]. Furthermore, the solution awards two types of tables Copy On Write
(COW) and Merge On Read (MOR), which allows for it to be flexible in how
data is managed for maximum read/write efficiency4. Therefore, the best way
to describe Apache Hudi is by calling it a ”Streaming Data lake Platform” [21].
Currently, Hudi is a top-level project in Apache foundation, offering an ever-
increasing selection of features [22]. It is a great option for users who would

3Apache Hudi GitHub repository can be found at https://github.com/apache/
hudi

4Hudi concepts can be found at https://hudi.apache.org/docs/concepts/

https://github.com/apache/hudi
https://github.com/apache/hudi
https://hudi.apache.org/docs/concepts/

12 | Background

like to have support for a multitude of tools out of the box (primarily relying
on Apache Spark and Apache Flink for data processing) and place particular
interest in stream ingestion workloads.

An example of the directory structure present in Apache Hudi [14] can be
seen in Listing 3.

Listing 3 Apache Hudi schema example.
system

partition_column_name

(random_UUID)-0_0-43-62_20220409202006131.parquet

...

.hoodie_partition_metadata

...

.hoodie

archived

.aux

.temp

hoodie.properties

20220320163857541.commit

20220320163857541.commit.requested

...

2.1.4 Lakehouse choice
Throughout the following text, the focus will be placed on analyzing Apache
Hudi in particular. This decision was made due to the limitations of open-
source Delta Lake and the relative lack of documentation for Apache Iceberg,
which could stifle the progress. Furthermore, Hudi has an active community5

and is used by the thesis host institution, granting access to resources and
qualified staff.

5List of notable Hudi community members can be found at https://
hudi.apache.org/powered-by/

https://hudi.apache.org/powered-by/
https://hudi.apache.org/powered-by/

Background | 13

2.2 Hudi platform
Hudi is not only a data orchestration apparatus but also a solution that comes
with inbuilt services. For example, users have out-of-box support for tools
used for ingesting, ETLing, cleaning, and more. Therefore, the best way to
call it is a platform [21].

As already mentioned in the previous section, Hudi relies on data, indexes,
and metadata for its core functionality. Therefore, knowledge of the structure
and the associated terminology is a prerequisite for working within the
technology stack and understanding the terms used in subsequent text. The
following subsections provide a brief introduction to data management.

2.2.1 Hudi table format
At the very beginning Hudi was designed to work using the Hive table format,
which was the de-facto standard for the industry. However, this approach did
not bode well for the workloads that Hudi was anticipated to accommodate.
Therefore, in time a new approach was developed, solving scaling challenges
and bringing in additional functionality.

This was done by creating a new table format. Similar to a file format the
table format is used for standardizing contents. Hudi format can be considered
as a representation of the table’s metadata and it uses different file formats
internally to achieve this. Hudi provides a file layout of the table, the table’s
schema, and metadata tracking changes to the table.

2.2.2 Data structure
Data in Hudi is stored in multiple files, that are partitioned by the underlying
information. This is the case since a change/read of a single table entry would
not require an operation on the entire data set, thus reducing the amount of
I/O.

The directory structure in Hudi:

1. Base file: Contains data after compaction, usually saved in a parquet file
format [23].

2. File slice: Includes the base file and any associated delta log files (files
containing changes, used when operating using MOR). Each file slice
represents a state of the sub-set of records at a certain time.

14 | Background

3. File group: Possesses a pre-defined number of file slices (as determined
by the configuration) who can all be identified by the same ”file id”.

4. Partition: Retains all file groups that share some characteristics. A table
could contain multiple partitions which are represented as folders saved
under the base path. For example, products could find themselves in
different partitions based on the country of origin.

Figure 2.2 illustrates the Hudi structure using diagram for better
understanding.

Figure 2.2: Data structure of Hudi.

2.2.2.1 Base file

The contents of a typical Base file in Apache Hudi can be further subdivided
into three distinct parts [24]:

Background | 15

1. Record metadata

2. Record data

3. Additional metadata (in file footer)

Parts (1) and (3) make up, what is often known as the “Hudi skeleton”.
It is essential for supporting Hudi primitives (upserts and incremental pulls).
When migrating a massive data set these components can be stored in separate
files and referenced for efficiency [24, 25].

Figure 2.3 displays this information with different colours identifying the
separation of function (orange = row metadata, red = data, blue = footer).

Figure 2.3: Structure of Parquet file in Hudi.

The name of the file itself conveys information as well [14]. Accordingly,
the subsequent text lists its parts and provides a template for a parquet file
name in Hudi.

1. Arbitrary Universal Unique Identifier (UUID) (used to uniquely identify
file group)

2. Number of updates in file group

16 | Background

3. Partition id

4. Spark stage id

5. Task attempt id

6. Commit time

Template parquet base file name in Hudi (replace the number with a
corresponding entry in the enumeration provided previously):

1-2_3-4-5_6.parquet

2.2.3 Metadata
Hudi achieves the desired properties of the solution by heavily relying on
metadata. This information is stored at the record, file, partition, and table
level.

Record metadata

As already discussed in Section 2.2.2.1 Hudi maintains per record metadata
that is stored in the base file. Such information is used for performing various
kinds of record-related operations.

Currently each record has five Hudi metadata fields (with more in planning
stage) [25]:

• _hoodie_commit_time: Time of the latest mutation

• _hoodie_commit_seqno: Number of actions that have impacted
entry (necessary in incremental pull)

• _hoodie_record_key: Key used for row identification

• _hoodie_partition_path: Partition-Path of the record

• _hoodie_file_name: Name of the file used for record storage

Base file metadata

This information is stored in the file footers and is used to describe data within
a file. It includes schema, statistics, and indexes. The inclusion of these facts
allows for actions such as data-skipping to dramatically reduce the amount of
data that needs to be processed.

Background | 17

Partition metadata

Each partition maintains basic information that is used to describe it (such as
creation time and partition depth). It is stored in the partition folder within a
file named .hoodie_partition_metadata.

Table metadata

It is stored in a separate folder called .hoodie, which contains information
about the configuration of the table as well as the timeline.

Configuration Table configuration is maintained in a single hoodie.properties
file, which specifies the table type, version, and more.

Timeline The timeline is also known as the event log. It functions as the
source of truth, regarding the current state of the system [22]. The log is
composed of actions that are performed on the table at different instants (time
at the server). Figure 2.4 illustrates how it functions using batch upsert action
as an example.

Figure 2.4: Hudi timeline.

Actions in the timeline could be of the following types:

• Commit: Write a batch of records to the table.

• Clean: Remove old versions of files.

18 | Background

• Delta commit: Write a batch of records to the table’s delta logs.

• Compaction: Merge delta logs into a base file.

• Rollback: Remove partial changes in case of Commit/Delta commit
failure.

• Savepoint: Mark certain file groups to not be cleaned.

Each action changes status during its execution, iterates over the three
states:

1. Requested

2. In flight

3. Completed

Log entries are retained for a specified time period or until action is invoked
archiving them. Even if information in the timeline is lost, it is often possible
to retrieve the past state of the table using only file slices or delta logs (in the
case of MOR table) [21]. At the time of writing this document indexed timeline
and infinite retention of versions are in the roadmap, but not yet achieved.

Metastore Server

File access in Hudi incurs inefficiencies in form of directory listing (especially
in cloud storage systems) and performance limitations of name nodes. That
is why additional metadata can help in the management of the platform as a
whole.

A metadata table is an example of such a solution. It proactively maintains
the list of files and reflects the current table situation. This solution functions
similarly to the MOR table, allowing for low write amplification. The
information is stored in HFile file format providing indexed lookups of all
directory entries [21].

However, the metadata table does not provide a unified view of the system
as a whole, rather managing the metadata of a single instance. Therefore, Hudi
is working towards a solution that could store all metadata and provide services
for using it (in essence taking a step closer to the Iceberg approach, where
everything is a metadata operation). This approach is called Hudi Metastore
Server and it will be made to be compatible with Hive metastore so that other
engines can access it without any changes [26].

Background | 19

2.2.4 Indexing
The indexes enable the management of data at a large volume by offering quick
retrieval of records. There are many indexing structures [27] that could be
implemented. However, in Hudi they work by mapping the record key with
the optional partition path to the file group. Therefore, this allows for only the
necessary files to be operated on while avoiding examination of all existing
data, making a huge difference when retrieving/working within voluminous
tables6.

2.2.4.1 Index types

Before delving into the index implementations it is worth investigating the
different types of indexes supported in Hudi [28]. Currently, there are two
such practices, with each one guaranteeing different properties:

• Global- Enforces key uniqueness for all partitions of a table. This means
indexes grow proportionally to the table size. Data access occurs using
the following relation: record key -> (partition, file id)

• Local- Enforces key uniqueness within a single partition of a table. This
means indexes grow proportionally to the specific partition. Data access
occurs using the following relation: (partition, record key) -> file id

Index implementation might not necessarily support both of these types.
Therefore, the developer must be aware of the differences and choose the
solution accordingly.

2.2.4.2 Indexing options

Hudi provides multiple indexes [28], supporting: Bloom Index, Simple Index,
and HBase Index. In the following paragraphs, the most suited use cases for
each will be provided. Additionally, summarizes their inner workings.

Simple Index A simple index as the name suggests is the most basic
indexing approach. It works by joining the incoming records against the keys
extracted from the table in storage. Information about the index is stored in
the base files and is maintained by Hudi. It is best suited when having a lot of
random modifications to a table [28].

6Hudi performance observations can be found at https://hudi.apache.org/
docs/performance/

https://hudi.apache.org/docs/performance/
https://hudi.apache.org/docs/performance/

20 | Background

Bloom Index Bloom index is the default indexing approach in Hudi and it
works by saving information in the footers of all base files. It is based on the
Bloom filter, which is a space-efficient probabilistic data structure that uses
hashing to identify the absence of a value [29]. This approach can result in
False-positive matches, but it ensures that there would be no False-negatives.
The configuration7 of the False-positive ratio can be altered, with higher
precision coming at the cost of increased index size. Its most appropriate use
case is when there is a need to deal with the late arrival of data or duplicates
[28].

HBase Index This is a straightforward indexing solution, where indexes are
stored in an external database [30]. This approach offers the best performance
out of all index implementations. However, it is more resource-demanding
than storing information in the file system. Moreover, this solution is only
capable of being a global index (unlike the aforementioned approaches, who
can be also local). This makes HBase the solution of choice for users who are
willing/capable of bearing the increased cost of this approach.

2.2.4.3 Indexing conclusions

Previous sections introduced the current indexing capabilities of Hudi
(General summary found in Listing 4). Based on this information it can
be concluded that there is a growth prospect. This is demonstrated by new
and better indexes presently materializing that allow for efficient record level
indexing while relying on the file system (not requiring a scan of all files)
[31]. For example, the Hudi team envisions a speedier Bloom index, by
relying on metadata tables to track Bloom filters [28]. Furthermore, adding
a new indexing solution has been encouraged by an architecture design that
simplifies the introduction of a new approach. Therefore, the current offerings
are in a constant struggle for survival, as a better option could in time replace
established approaches.

7Hudi configuration properties can be found at https://hudi.apache.org/docs/
configurations/

https://hudi.apache.org/docs/configurations/
https://hudi.apache.org/docs/configurations/

Background | 21

Listing 4 Apache Hudi index options.
Index

Global

Simple Bloom HBase RonDB

Local

Simple Bloom

2.3 Databases
For the index to function, it has to be stored. At the moment, this is done
within a file system or in an external process like a database. The usage of
a database improves performance noticeably. Therefore, it is the approach of
organizations who believe that the benefits of such a system outweigh its cost
[32]. However, many databases could be used for this task, likely differing
in performance, resource consumption, and scalability. The subsequent text
evaluates and proposes the best solution for offering indexing with the lowest
latency.

2.3.1 Database options
Data storage is a massive field, as a result, many databases could be
investigated. To reduce the number of considerations we should look into
their distinguishing features. In-particular indexing in Lakehouse requires
horizontal scaling and low latency (for adding and getting values), with the
solution preferably being cloud-native and free to use.

This significantly reduces the number of databases to be examined.
However, there are still several solutions fulfilling the role. Therefore,
attention will be placed on the most popular. Particular interest is fixated on
those that can benefit from mapping parts/whole of the database into volatile
memory for faster workloads [33]. The following subsections list the most
suitable candidates (including an overview of the current approach- HBase).

HBase

The HBase8 is the current database choice for indexing in Hudi. It is an
open-source, non-relational, distributed column-oriented store, offered by the

8Introduction to HBase can be found at https://aws.amazon.com/big-data/
what-is-hbase/

https://aws.amazon.com/big-data/what-is-hbase/
https://aws.amazon.com/big-data/what-is-hbase/

22 | Background

Apache foundation. In general, it is a highly scalable and performant solution,
that has a low cost of ownership.

Redis

Redis is likely the most commonly used key-value store9. It is an in-memory
data storage platform10, whose use cases include: analytics, search, ML, and
Artificial Intelligence (AI). Moreover, it supports a variety of programming
languages and could be deployed virtually anywhere. However, the enterprise
version of the product is superior to the open-source, at least in the case when
scalability is the main concern.

MongoDB

Possibly the most well-known Not only Structured Query Language (NoSQL)
database is MongoDB. It follows the document store paradigm, which offers
an intuitive way to work with data11. Additionally, the product is known
for its simplicity and consistency in developer experience. However, many
capabilities are not available for the community users, requiring financial
investment to gain access to an in-memory storage engine, advanced security
features, and more.

Memcached

Memcached is an in-memory key-value store, originally intended for
caching12. It is a fully open-source solution, that is commonly compared to
Redis. The most notable differentiation between the two is Memcached’s
tendency to be able to handle more concurrent operations while being designed
for workloads with smaller quantities of data.

9Ranking of database management systems by popularity can be found at https://db-
engines.com/en/ranking

10Introduction to Redis can be found at https://aws.amazon.com/redis/
11Introduction to MongoDB can be found at https://www.mongodb.com/what-is-

mongodb
12Introduction to Memcached can be found at https://aws.amazon.com/

memcached/

https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://aws.amazon.com/redis/
https://www.mongodb.com/what-is-mongodb
https://www.mongodb.com/what-is-mongodb
https://aws.amazon.com/memcached/
https://aws.amazon.com/memcached/

Background | 23

Cassandra

Cassandra is a wide-column store that similarly to HBase is a part of
Apache foundation [34], meaning that it is fully open source13. What
differentiates Cassandra from HBase is that it follows a distinct architecture,
which emphasizes Availability over Consistency [35].

RonDB

The only relational database considered for the task is RonDB. It is an
open-source scale-out in-memory key-value store based on MySQL Network
Database (NDB) Cluster. This data store is optimized for use in modern
cloud settings, offering Low Latency, high Availability, high Throughput, and
scalable Storage (LATS) capabilities to its users [36]. The design of this
data management system was tailor-made for reliability and responsiveness,
ensuring the most crucial aspects of any indexing solution14.

RonDB is powered by an NDB engine, which offers high availability and
data persistence while preferring storage of information in memory rather than
on disk. For it to function it requires the use of three types of cluster nodes15

(node in this context is not the same as a computer, rather single computer can
have multiple nodes, therefore its more akin to a process):

• Management node: used for administration of all nodes in the cluster
(starting/stopping, initiating backups, etc.).

• Data node: responsible for storing information.

• SQL node (API node): responsible for accommodating the interaction
from the clients.

2.3.2 Database choice
HBase offers the best response times right now, but it might not be the best
option for this role. Other databases with more preferable attributes could
in time replace the current technique. While any of the aforementioned data
storage platforms could form the basis for an indexing solution. This research

13Introduction to the Cassandra can be found at https://cassandra.apache.org/
_/cassandra-basics.html

14Detailed list of RonDB capabilities can be found at https://docs.rondb.com/
rondb_special/

15NDB Cluster Core Concepts can be found at https://dev.mysql.com/doc/
mysql-cluster-excerpt/8.0/en/mysql-cluster-basics.html

https://cassandra.apache.org/_/cassandra-basics.html
https://cassandra.apache.org/_/cassandra-basics.html
https://docs.rondb.com/rondb_special/
https://docs.rondb.com/rondb_special/
https://dev.mysql.com/doc/mysql-cluster-excerpt/8.0/en/mysql-cluster-basics.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/8.0/en/mysql-cluster-basics.html

24 | Background

will subsequently focus on the employment of RonDB for this role. The reason
for its adoption is that it does not limit the functionality based on the financial
involvement of the parties, it offers industry-leading performance, and the host
company has extensive experience in the solution. A more detailed analysis
of its adoption can be found in Section 2.4 where the previous work was used
to derive the comparative performance of the candidate approaches.

2.4 Related work
Researchers have attributed the development of a Lakehouse to the challenges
encountered by the users of the preceding solutions [37]. This experience has
culminated in products that could achieve ACID Table Storage over Cloud
Object Stores for improved efficiency [38]. Therefore, the feasibility of the
undertaking was attributed to it offering comparative management functions
to Data warehouses while providing the underlying capabilities of Data Lakes
[7].

Past work has associated optimization mechanisms (such as indexing,
caching, metadata, and entry ordering) to Hudi being able to provide
low latency for data access across and within partitions [39]. The index
performance relies on fast and efficient storage, with the best response times
gained through the usage of an external database [32]. The relatively recent
paradigm shift for in-memory databases provides an order of magnitude faster
executions [33], making the new technique ideal for satisfying the indexing
needs.

A performance evaluation of the most popular in-memory databases
proved that key-value stores like Memcached and Redis outperform their rival
data storage models in basic operations as well as in the overall memory
efficiency [40]. Furthermore, a different study expanded on this by verifying
that HBase is incapable of competing with Redis in the performance of
workloads that are expected for an indexing solution (loading, updating, and
reading) [41]. Therefore, making Redis a plausible candidate. However, it
lacks in comparison with RonDB which offers better performance (even on
single thread) due in large part to evolution in architecture [42, 43].

Method | 25

Chapter 3

Method

This chapter describes the research method for identifying the feasibility of
RonDB as a global index in Hudi. It begins by outlining the research process
in Section 3.1. Following that, Section 3.2 specifies the research paradigm.
Section 3.3 defines data collection, while the testing environment is described
in Section 3.4. The quality measures are portrayed in Section 3.5. Finally,
Section 3.6 details the data analysis approach and Section 3.6 describes the
documentation of the end product.

3.1 Research Process
The thesis organizes work into steps shown in Figure 3.1. The inquiry begins
with the problem identification and its subsequent investigation. Following
this, a solution to rectify the issue is proposed, with a particular focus
on providing an action plan. Subsequently, the software is developed and
iteratively improved until deemed sufficient in its characteristics. Afterwards,
the product is exposed to a set of tests that are used to determine the
performance, later documenting the implementation details and analyzing
results to derive conclusions.

26 | Method

Figure 3.1: Research Process

These steps were chosen due to their capacity of offering a product
that is capable of fulfilling the research objectives while simultaneously
resulting in a highly performant implementation. Moreover, the iterative
improvements allow for a predictable study cycle and the establishment of
a more comprehensive collection of future work proposals.

3.2 Research Paradigm
The answer to the study is obtained by following the positivist research
philosophy1. This quantitative approach is visualized in Figure 3.2.

1Explanation of research paradigm can be found at https://
www.helpinproject.com/research-paradigm/

https://www.helpinproject.com/research-paradigm/
https://www.helpinproject.com/research-paradigm/

Method | 27

Figure 3.2: Research Paradigm

The diagram shows how observations of reality (gained through testing)
are used to conclude the comparative performance through reliance on the
existing indexes for the basis of identification.

Contrasting implementations allow for the obtainment of results with
actionable information. As observations without the basis of comparison yield
outcomes with no point of reference. The subsequent evaluation of the data
encompasses various analytical and visualization activities, which in return
can help to induce the favorable/ominous properties of each solution. The
resulting conclusions, therefore, allow for the recognition of the best-suited
application of a technique.

3.3 Data Collection
The collection of data is going to be realized by employing exhaustive testing
of current and newly implemented approaches. This is done by surveying
response times for use cases mandating a lookup of specific data entries using
global indexes.

As already discussed in the previous sections, Hudi is designed to

28 | Method

accommodate petabytes of data. Therefore, it is difficult to create workloads
that could adequately represent the solution’s usage in any particular scenario,
since it theoretically has no upper bound of storage volume. As a result, this
examination would identify and work within a preset array of data masses and
batch sizes chosen to most sufficiently represent performance variations.

Throughout the inquiry, the tables would be of COW type and the data used
for testing (both for the initial table composition and the subsequent sequential
changes) will be identical for all solutions on any specific workload. This
means that at the start of any particular test the only differentiating factor is
the selected indexing implementation.

Additionally, to provide results that are more consistent with reality
the tests would use centrality measures implemented on top of multiple
executions.

3.4 Test environment
The testing environment consists of a newly installed system with all
unwarranted services shut down/disabled during the experimentation to lower
the interference. The work is organized using Jupyter notebooks and tests
are executed on top of a running solution to avoid the ”cold start” problem.
Moreover, the external databases are set up using the latest Long-Term
Support (LTS) releases (RonDB2 : 21.04.1 and HBase3:2.4.11) and default
configuration. Furthermore, the environment includes Spark (version 3.2.1).

Table 3.1 describes the specification of the device used for testing in detail.

3.5 Assessing quality
The quality of the method is assessed by investigating its validity and
reliability. Validity ensures that the approach grants answers to the correct
questions, while reliability guarantees that results are consistent.

To assure that data used for analysis is valid, the method has to provide
answers to the following questions: How long does it take to execute the query?
and What impact do different variables play on the performance of any given

2The RonDB solution used during testing can be found at https:
//repo.hops.works/master/rondb-21.04.1-linux-glibc2.17-
x86_64.tar.gz

3The HBase solution used during testing can be found at https://
dlcdn.apache.org/hbase/2.4.11/hbase-2.4.11-src.tar.gz

https://repo.hops.works/master/rondb-21.04.1-linux-glibc2.17-x86_64.tar.gz
https://repo.hops.works/master/rondb-21.04.1-linux-glibc2.17-x86_64.tar.gz
https://repo.hops.works/master/rondb-21.04.1-linux-glibc2.17-x86_64.tar.gz
https://dlcdn.apache.org/hbase/2.4.11/hbase-2.4.11-src.tar.gz
https://dlcdn.apache.org/hbase/2.4.11/hbase-2.4.11-src.tar.gz

Method | 29

Table 3.1: Device specification.

Operating System (OS) Ubuntu (Linux)
Version 20.04.4 LTS
System type 64-bit
Central Processing Unit (CPU) 11th Gen Intel(R) Core(TM) i5-1135G7
Random Access Memory (RAM) 32.0 GB
Capacity 200.0 GB
Storage unit SSD

index? It is expected that results will produce identifiable groupings, that can
uniquely be attributed to the use of a certain indexing approach.

For a solution to be considered reliable its use cases have to produce
results with high precision, be reproducible and have a low standard deviation.
A slight variation was expected due to factors outside of test conductors’
control (such as garbage collection, OS operations, and more). However, to
ensure the highest possible reliability the experiments should avoid performing
intermittent steps during their execution (like communication over the internet
or data generation during test).

3.6 Planned Data Analysis
During the preliminary study, a sample size that is needed to acquire the
representative value will be determined. The subsequent data analysis would
be conducted by observing the differences between the solutions. This
would involve looking at statistics (such as min, max, average, and more)
and examining graphs. Results, as well as the derived conclusion, will
subsequently be made available for peer review.

3.7 System documentation
The resulting solution will be annotated with all necessary commentary, to
make its adoption as easy as possible for prospective users. This includes, but
is not limited to, comments provided in the code, short guidelines on how
to deploy it (Section 4.4), and initiation on its proper usage (Section 4.5).
Furthermore, to manage the user expectations of index resource consumption,

30 | Method

the final NDB size reports are affixed (Appendix A).

Solution | 31

Chapter 4

Solution

The solution’s development was an iterative process, which involved gaining
familiarity with the current software, designing an approach for adopting this
knowledge in the new problem area, expanding upon it by optimizing, and
finally testing. As a result of this endeavor, two independent solutions were
developed, with each one focusing on obtaining different characteristics that
are desirable to the users. The details regarding the practical aspects of this
undertaking will be granted in the subsequent text.

4.1 Software design
Even though Hudi has been developed to be engine agnostic, not all clients
are equal. Subsequently, the focus was placed on Spark, as it offers the most
feature-rich interface, owing to it being used since the software’s inception
[44]. Other, clients were designated as future work due to their presence
deemed to be non-crucial for the thesis goal.

The underlying implementation is based on the aforementioned HBase
indexing solution, which similarly relies on an external database. To
implement a new approach the concept had to extend HoodieIndex abstract
class, which works as a template. In essence, the indexing exposes three main
methods (Table 4.1) and it is managed by the user-provided configuration,
using pre-established defaults in the case of the absence of this data.

32 | Solution

Table 4.1: The main Hudi index interface elements.
Name Description
tagLocation Reading database and appending the current

location (if present in the database) to the
provided HoodieRecord.

updateLocation Modifying the index storage unit by inserting,
updating or deleting records. (by default
updates are disabled for database based indexes
to reduce load on the server)

rollbackCommit Undoing any changes that follow certain times-
tamp. (by default disabled to reduce load on the
server)

4.2 Implementation
As already discussed the solution had to expose certain endpoints so that it
could be integrated into the Hudi. However, the choice of how to store and
interact with this data was left to the developer. Therefore, two approaches
were developed, with design and implementation favoring either efficient
storage, adaptability, and security or responsiveness. This choice was made
consciously as it is a balancing act, each approach having associated trade-offs,
with the goal being the identification of the best practice.

The following subsections list the implementation details of RonDB
solutions, with each approach identified by the client used for communication
(Java Database Connectivity (JDBC) or ClusterJ).

4.2.1 Solution using JDBC
This solution stores information in a normalized form, meaning that there are
multiple tables specializing in maintaining certain aspects of knowledge, while
referencing/being referenced by entries in different structures. Therefore, this
approach plays on the strengths of the relational database, allowing for efficient
storage of data. However, it comes at the cost of execution time, as now
operations on a single entry often require the lookup of data in different tables.

Another unique detail of this proposal is its reliance on JDBC API for
exchanging information. This makes the code easier to adapt to different
Structured Query Language (SQL) databases (only possibly requiring a change
of driver).

Solution | 33

Overall, this is the solution that likely has the most appealing character-
istics for most use cases. Its only shortcoming is a slight overhead, due to
the existence of multiple tables and intermediate communication through the
MySQL server.

The code related to its implementation can be found under the class named
SparkHoodieRonDBIndex and it could be used by simply specifying
hoodie.index.type property value as RONDB.

The schema used for storing index-related information is showcased in
Figure 4.1.

Figure 4.1: Entity relation diagram for RONDB_JDBC

34 | Solution

4.2.2 Solution using ClusterJ
This approach, as opposed to the preceding implementation, disregards the
storage efficiency clearly favoring performance. It can be seen in Figure 4.2,
where all information is stored in a single table, thus allowing for duplicate
values for information such as partition_path and file_name.

Figure 4.2: Entity relation diagram for RONDB_CLUSTERJ

The improved performance of this approach is not only obtained through
having more self-contained entries but also by using more specialized
technologies. The tool picked for this task is ClusterJ. It functions on a lower
level than JDBC, directly communicating with the NDB cluster, bypassing the
MySQL Server entirely [45].

ClusterJ is a relative niche solution that works similarly to other object-
relational mapping persistence frameworks (such as Java Persistence API
(JPA)) [46]. However, it is limited in its capabilities, offering only the basic
interactions with row data, not possessing any functionality to perform Data
Definition Language (DDL) actions (such as table creating), lacking security,
and relationships between tables1. Therefore, in addition to ClusterJ SQL
queries are run during initialization using JDBC to ensure that data structure
is defined.

This approach is likely unfeasible for many use cases owing to the already
listed limitations it incurs. However, its main goal was never explicit real-
world usage, but rather obtaining a product that emphasizes speed over

1MySQL guide for NDB Cluster API can be found at https://dev.mysql.com/
doc/ndbapi/en/

https://dev.mysql.com/doc/ndbapi/en/
https://dev.mysql.com/doc/ndbapi/en/

Solution | 35

everything else. Working as an additional point of reference used throughout
the result analysis.

The code related to this endeavor can be viewed inside the Spark-
HoodieRonDBClusterIndex class and could be used by specifying the
hoodie.index.type property value as RONDB_CLUSTERJ.

4.2.3 Configuration
The management of indexing is performed through configuration. Both JDBC
and ClusterJ indexing implementations use a class named HoodieRonD-
BIndexConfig for these purposes. It offers an interface for retrieving user-
provided information or offering defaults in case of its absence. Owing to
this, the user is not expected to alter code to make adaptations for specific
needs. Although, it is impossible to reconfigure the data structure, adjustment
of which would encompass revision of code.

4.3 Development
Before delving into the problem resolution, the current approach for handling
indexes was investigated. This reduced the number of changes needed in the
project as well as keeping the interface uniform.

The development began by establishing the basic functionality for the
storage optimized solution, intending to create a product that is able to
accommodate the bare minimum of services. Therefore, the first iteration
of the solution relied on simple JPA interface, with subsequent updates
introducing batch updates/retrievals and directly using SQL queries for
reduced overhead.

Thereafter it was realized that it is impossible to further improve the
performance without changing some of the underlying technologies or design.
Accordingly, steps were taken to advance the data lookup efficiency, which of
course is the cornerstone of this solution. This endeavor was accomplished by
the already discussed solution using ClusterJ.

Throughout the development, intermediate changes were tested using
the Hopsworks platform2 and conducting version control through GitHub.
Furthermore, the expected storage requirements were analyzed using ndb_-
size.pl tool3.

2Introduction to Hopsworks can be found at https://www.hopsworks.ai/
3Information on NDBCLUSTER size requirement estimator can be found at

https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-

https://www.hopsworks.ai/
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-programs-ndb-size-pl.html

36 | Solution

Altogether, development proceeded smoothly, with only a few hindrances
attributed to the author’s unfamiliarity with the software.

Code examples
The most important aspect for understanding the newly introduced index and
how it functions can be obtained through interpretation of the database schema.
Listing 5 shows an example of a table creation script.

Listing 5 Creating Hudi index table for RONDB_CLUSTERJ
CREATE TABLE IF NOT EXISTS index_cluster_record (

record_key VARBINARY(255) NOT NULL,
commit_ts BIGINT NOT NULL,
partition_path VARCHAR(255) NOT NULL,
file_name VARCHAR(38) NOT NULL,
PRIMARY KEY (record_key, commit_ts),
INDEX idx_record_key (record_key)

) ENGINE=NDBCLUSTER

This query is executed upon initialization of RonDB for the ClusterJ
approach. Therefore, ensuring that the necessary infrastructure is in place
to accommodate indexing. The columns of this table are storing the same
information as present in HBase, with only slight alterations for optimization.

In-depth reasoning for the table components:

• record_key - Contains the key that is used to pinpoint the file
location. This key can contain virtually any information, therefore, the
choice was primarily between Varbinary and Varchar types. The final
decision was in favor of Varbinary because it has no collation and is not
limited to any character set.

• commit_ts - Is the timestamp associated with the creation/alteration
of the record, provided during the mutation step. It is used to signify the
records state.

• file_name - Simple string that can be used to locate the file group
within a partition.

cluster-programs-ndb-size-pl.html

https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-programs-ndb-size-pl.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-programs-ndb-size-pl.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-programs-ndb-size-pl.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-programs-ndb-size-pl.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-programs-ndb-size-pl.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-programs-ndb-size-pl.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-programs-ndb-size-pl.html

Solution | 37

• partition_path - Value that identifies the partition containing the
desired record (necessary as RonDB implementations are only global
indexes).

While, the schema of the RonDB JDBC solution slightly differs it is worth
noting that it is storing the exact same information, just in a normalized
form. Indexing is extensively used in both approaches to offer fast retrieval
of information by fields other than the primary key [47].

The benefits of the normalization can be observed in database sizes
after a certain number of inserts have taken place. For example,
after inserting one million values generated by Hudi QuickstartU-
tils.DataGenerator() the normalized indexing solution takes up only
about 82 MB while de-normalized 146 MB, showcasing the advantageous
outcome of this action.

4.4 Deployment
For the solution to be used it and all its dependencies must be accessible by
Spark. Therefore, this section provides a step-by-step guide on deploying the
newly improved Hudi client.

The following steps assume that the RonDB has already been set up. Guide
on how it could be done can be found in RonDB documents4.

The first step is cloning the provided GitHub repository5 and building the
package. This repository contains the latest available Hudi version (0.10.1)
at the time of writing this document. The following commands outline these
steps, by listing the Linux commands.

Listing 6 Creating Spark client jar file
#!/bin/bash

git clone git@github.com:bubriks/hudi.git
cd hudi
git checkout branch-0.10.0-RonDB
mvn clean package -Pspark3 -DskipTests

4Documentation on RonDB installation can be found at https://docs.rondb.com/
rondb_installation/

5Public repository containing the Hudi Spark client with support for RonDB global index
can be found at https://github.com/bubriks/hudi/tree/branch-0.10.0-
RonDB

https://docs.rondb.com/rondb_installation/
https://docs.rondb.com/rondb_installation/
https://github.com/bubriks/hudi/tree/branch-0.10.0-RonDB
https://github.com/bubriks/hudi/tree/branch-0.10.0-RonDB

38 | Solution

After the completion of the aforementioned actions a new jar file is gener-
ated (packaging/hudi-spark-bundle/target/hudi-spark3-
bundle_2.12-0.10.0.1.jar). This file should be made accessible to
Spark.

Subsequently, to allow for usage of the RonDB index, libraries related to
communication with the database should be provided. The commands for
acquiring these dependencies are listed hereafter (Listing 7).

Listing 7 Hudi dependencies
#!/bin/bash

driver for JDBC (needed for both approaches)
wget https://repo1.maven.org/maven2/mysql/mysql-

connector-java/8.0.28/mysql-connector-java-
8.0.28.jar

↪→

↪→

necessary for ClusterJ solution
wget https://archiva.hops.works/repository/Hops/co ⌋

m/mysql/ndb/clusterj-
rondb/{RONDB_VERSION}/clusterj-rondb-
{RONDB_VERSION}.jar

↪→

↪→

↪→

After this, if using ClusterJ ensure that libndbclient.so (found in
mysql-RONDB_VERSION/lib folder created by RonDB) is provided in
the java library path (either update path or copy file to the current location).

Now the solution should be complete and ready for usage. The following
sections expand upon how this can be done.

4.5 Usage
Running of the solution in most scenarios would be as simple as just specifying
the index type as either RONDB or RONDB_CLUSTERJ and defining batch
size. However, in the case of any kind of deviation of database details a new
configuration properties can be easily provided.

An example of basic solutions execution on the Hopsworks platform can
be seen in Listing 8. It shows how entries are inserted into a new table, using
hudi_trips_cow directory as the base path and implementing the RONDB
approach for indexing.

Solution | 39

Listing 8 Creating new Hudi table with 10 entries using RonDB as the global
index
pyspark
tableName = ”hudi_trips_cow”
basePath = ”hdfs:///Projects/my_project/temp_dir/”

+ tableName↪→

quickstartUtils =
sc._jvm.org.apache.hudi.QuickstartUtils↪→

dataGen = quickstartUtils.DataGenerator()
inserts = quickstartUtils.convertToStringList(data ⌋

Gen.generateInserts(10))↪→

df = spark.read.json(spark.sparkContext.paralleliz ⌋

e(inserts,2))↪→

hudi_options = {
'hoodie.table.name': tableName,
'hoodie.datasource.write.recordkey.field':

'uuid',↪→

'hoodie.datasource.write.partitionpath.field':
'partitionpath',↪→

'hoodie.datasource.write.table.name':
tableName,↪→

'hoodie.datasource.write.operation': 'upsert',
'hoodie.datasource.write.precombine.field':

'ts',↪→

'hoodie.index.type': 'RONDB',
'hoodie.index.rondb.batch.size': 100

}

df.write.format(”hudi”)
.options(**hudi_options)
.mode(”overwrite”)
.save(basePath)

As already mentioned in the case of different requirements users can
specify their properties. This can be done by providing value for any of the
listed properties. The default values and documentation can be viewed by
visiting the class mentioned in Section 4.2.3.

Configuration variables used for managing the RonDB indexing can be

40 | Solution

seen in Table 4.2. The property types are used to provide properties for sub-
resources (view Listing 9 for example of such usage).

Table 4.2: The RonDB indexing properties.
Name Type
hoodie.index.rondb.update.partition.path boolean
hoodie.index.rondb.rollback.sync boolean
hoodie.index.rondb.batch.size integer
hoodie.index.rondb.jdbc.driver string
hoodie.index.rondb.jdbc.url string
hoodie.index.rondb.jdbc properties6

hoodie.index.rondb.clusterj properties7

Listing 9 Example providing value for
hoodie.index.rondb.clusterj property
'hoodie.index.rondb.clusterj': {

'com.mysql.clusterj.connectstring':
'127.0.0.1:1186',↪→

'com.mysql.clusterj.database': 'hudi'
}

4.6 Test setup
During the testing, tables were populated using Hudi quick start utility tool.
It generates entries with 10 columns within three unique partitions, meaning
that growth in the data will result in the creation of multiple file groups.

Through the preliminary analysis, the sample size of 10 was determined to
be of sufficient scope (due to low result variation during testing). Therefore,
all test cases are repeated for the same amount of time for consistency.

During testing a local single data node setup was established for external
databases, with the rest of the configuration left with default values. The

6JDBC configuration properties can be found at https://dev.mysql.com/
doc/connector-j/8.0/en/connector-j-reference-configuration-
properties.html

7ClusterJ configuration properties can be found at https://dev.mysql.com/doc/
ndbapi/en/mccj-clusterj-constants.html

https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-configuration-properties.html
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-configuration-properties.html
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-configuration-properties.html
https://dev.mysql.com/doc/ndbapi/en/mccj-clusterj-constants.html
https://dev.mysql.com/doc/ndbapi/en/mccj-clusterj-constants.html

Solution | 41

communication with databases was conducted using the HBase client (version
1.7.1), MySQL connector (version 8.0.28), and ClusterJ (version 21.04.1).

The observations were documented in auto-generated csv 8 files
expressing time taken for requests completion (created only after successful
execution). These files were subsequently used to extract and visualize
information.

All of this endeavor was accomplished by using the Python programming
language and its associated libraries, with the most crucial ones listed
hereafter:

• os

• happybase

• pymysql

• time

• pandas

• matplotlib

• seaborn

The results recorded execution times for three different types of actions,
with each one encompassing different use of an index. These types correspond
to values of hoodie.datasource.write.operation property. A
short explanation of what each one entails:

• insert- creates a new Hudi table entry without examining if the key
already exists in the table.

• upsert (update)- updates location of an existing entry, by altering
partition value.

• delete- removes record value from Hudi table. Uses soft delete, meaning
that the record will be removed from the table, but the index will persist
(used since it is the default setup in Hudi).

8The observations, as well as configuration files and code used for obtaining/visualizing
data, are made available at https://github.com/bubriks/rondb_thesis

https://github.com/bubriks/rondb_thesis

42 | Results and Analysis

Chapter 5

Results and Analysis

In this chapter, different indexing solutions’ performance observations are
documented. It is subdivided into three main sections that correspond to
the introduction of the results, reflection on the information therein, and
discussion of findings.

5.1 Results
The observation of index performance includes multiple types of tests, as
response times could be impacted by several independent variables. Therefore,
each workload can be found in a separate subsection.

5.1.1 Workload A
Figure 5.1 serves as a brief overview of the performance of different indexing
solutions when considering distinct types of actions. This is achieved by
observing execution times when operating under a low-load environment, as
it provides a baseline for the consideration made in the subsequent workloads.

For this evaluation, Hudi uses default values for its properties and the total
table size consists of 1000 entries, with the number of changes per assessment
equating to 100.

Results and Analysis | 43

Figure 5.1: Baseline times for index operations under low load conditions

By looking at the bar chart and statistics tables 5.1 to 5.3 it can be noticed
that insert is the fastest action for all indexes. Additionally, it can be observed
that some solutions perform notably better than others for most tasks, forming
a kind of hierarchy based on execution times. The only deviation from this can
be observed with simple index uncharacteristically being among the fastest for
inserts, while slowest for upserts and deletes.

Table 5.1: Insert execution times (s)

metric bloom simple hbase rondb_jdbc rondb_clusterj
mean 1.046985 0.834320 0.956588 0.876729 0.807058
std 0.131717 0.136526 0.190086 0.134766 0.106279
min 0.919316 0.727889 0.797595 0.784635 0.716516
max 1.293633 1.170720 1.333785 1.221648 1.014967

44 | Results and Analysis

Table 5.2: Upsert execution times (s)

metric bloom simple hbase rondb_jdbc rondb_clusterj
mean 1.829518 2.736187 1.216716 1.176769 1.134291
std 0.192906 0.133183 0.082512 0.073121 0.085568
min 1.600711 2.479992 1.094011 1.082000 1.016648
max 2.258326 2.926483 1.324814 1.299815 1.246474

Table 5.3: Delete execution times (s)

metric bloom simple hbase rondb_jdbc rondb_clusterj
mean 1.704032 2.518236 1.274243 1.214424 1.160595
std 0.074139 0.101318 0.075307 0.070587 0.077204
min 1.590105 2.427108 1.156054 1.102276 1.074429
max 1.818256 2.782736 1.370543 1.291193 1.291273

5.1.2 Workload B
As previously discussed Hudi was designed to accommodate voluminous
data. Therefore, the indexing should function on practically any scale that the
underlying solution could encounter. To observe how scalable the approaches
are tests were executed having different Hudi table volumes.

The Hudi load in this scenario is identified by the number of entries rather
than table size in the file system (for reference, 1 million entries roughly equals
100MB of information when saved in Hudi without retaining old commits).
The number of entries was chosen to most adequately identify tendencies that
could be noticed by the end-user, with the stopping point set when trends could
be identifiable as subsequent increases would produce no palpable gains.

This workload encompasses the usage of Hudi with a default configuration
and 100 mutations per test.

Results and Analysis | 45

Figure 5.2: Insert times for index engines for increasing Hudi table size

Figure 5.2 shows that insert times for most implementations grow in
tandem with one another. The only deviation from this is the hbase index,
where an increase in table size had a much smaller impact over the course of
the test.

Figure 5.3: Update times for index engines for increasing Hudi table size

The update action (Figure 5.3) presents an inclination that it shares with

46 | Results and Analysis

delete (Figure 5.4). These line plots show that the worst performing index was
simple, which by the end of the test case was more than two times slower
than the best. With the fastest approach for deletes identified as rondb_-
jdbc, while for updates hbase.

Figure 5.4: Delete times for index engines for increasing Hudi table size

In this workload, it could be observed that all solutions tend to become
slower with more data, but they are uniquely impacted. Furthermore, the speed
of the Hudi is influenced not only by the indexing implementation but also by
the use case it finds itself in.

5.1.3 Workload C
The changes Hudi incurs usually are grouped into data sets with multiple
mutations in each action. Therefore, this test case aims to examine how
well each index is suited for accommodating changes at different quantities
(test sizes). This is crucial as if the approach takes exceeding amounts of
time to complete a transformation with multiple table alterations it could be a
bottleneck in an otherwise well-operating data structure.

The Hudi table at the commencement of the tests contains 10000000
entries and is configured using standard properties.

Results and Analysis | 47

Figure 5.5: Insert times for index engines for increasing number of operations

The results of insert enactment (Figure 5.5) reveal a more noticeable
growth in execution time for HBase than for any of its peers (Expanding the
number of entries in the test from 1000 to 10000 produced a 30-second longer
undertaking, which is an increase of 6 times). The rest of the solutions are
notably less impacted when operating under different payloads, some even
experiencing slightly faster execution.

Figure 5.6: Update times for index engines for increasing number of operations

48 | Results and Analysis

The completion times for updates with a different number of mutations
(Figure 5.6) follow an easily identifiable trend. All indexes perform worse for
updates than inserts and most solutions grow in tandem with one another. The
only outlier is the HBase index, which produces a notably steeper time curve.
From the start, the simple index is slower than its counterparts, but throughout
the test, it is overtaken by the HBase.

Figure 5.7: Delete times for index engines for increasing number of operations

Figure 5.7 displays delete results. They are akin to upsert action times,
but for this scenario, the HBase index does not experience growth in the same
proportions.

5.1.4 Workload D
Implementations relying on external databases need to communicate infor-
mation from the client (Hudi) to the server. This is most efficiently done by
grouping changes into batches, rather than executing mutations separately.

Therefore, to identify the best-suited batch size and subsequently conclude
how dependent the index is on batch size it is necessary to locate the point
where the lowest response times can be observed. This entails performing a
constant number of changes in a single transaction.

The trial maintains a table size of 100000 entries and 10000 mutations for
each test, with only batch size configuration (for both get and put operations)

Results and Analysis | 49

altered for Hudi. This workload impacts only HBase and RonDB index
implementations, therefore rest of the solutions will be absent from the results.

Figure 5.8: Insert times for index engines based on batch size

figs. 5.8 and 5.9 display how changes in batch size clearly benefit HBase,
while it does not noticeably impact RonDB indexes in the depicted range. For
both actions increase in batch size allows HBase to provide more comparable
results to RonDB, but the performance improvements are steadily decreasing
never bypassing any of the RonDB solutions. By the end, a plateau can be
observed, whereupon any further increase in batch size results in negligible/no
advancements.

50 | Results and Analysis

Figure 5.9: Update times for index engines based on batch size

The delete times (Figure 5.10) have similar tendencies to the upsert and
insert actions, but here the base value for HBase is much smaller and it
manages to outperform jdbc index while lagging behind clusterj.

Figure 5.10: Delete times for index engines based on batch size

The previous figures have shown RonDB, producing what could be
described as horizontal lines that are parallel to one another.

Results and Analysis | 51

However, it is not entirely accurate, as batch size has an impact on the
RonDB implementations. This just could not be displayed in the same plots
due to HBase’s tendency to have exponential growth with decreasing batch
size. Therefore, figs. 5.11 to 5.13 showcase how batch processing provides
notable improvements to RonDB implementations, but does not grant tangible
gains once exceeding the size of 100.

Figure 5.11: Insert times for RonDB index engines based on batch size

52 | Results and Analysis

Figure 5.12: Update times for RonDB index engines based on batch size

Figure 5.13: Delete times for RonDB index engines based on batch size

5.1.5 Workload E
Some of the indexes use file systems directly while others rely on external data
structures for their needs. This results in the potential for different indexing

Results and Analysis | 53

approaches to have a distinct relation to the number of files present in the Hudi
table. However, it is not clear if and by how much the file count/size impacts
their performance.

Hudi creates a new filegroup when the preceding one has reached a preset
amount of data. By default, this value is set at 120 MB. Throughout this test
case, the file size property will be shifted, while the table size is 10000000
entries and observation contains 100 mutations.

Figure 5.14: Insert times for index engines based on file size

Figure 5.14 shows that 60 MB parquet files provide the optimal
performance for inserting. Any change to smaller/bigger file groups results in
a worse performing solution, independent of the index engine. However, while
most indexes produce results that are similar to their peers, HBase stands as
an outlier, being less impacted by the file size once exceeding 60 MB.

54 | Results and Analysis

Figure 5.15: Update times for index engines based on file size

The update and delete actions (figs. 5.15 and 5.16) can be observed to have
no notable difference between the two. But they both show simple and bloom
index lacking in comparison to their peers, especially with small file sizes.
This can be more clearly seen in figs. 5.17 and 5.18), where bloom index is
on average 5 seconds slower than the competing database solutions for any
given file size.

Results and Analysis | 55

Figure 5.16: Delete times for index engines based on file size

Figure 5.17: Update times for index engines based on file size disregarding 1
MB observations

56 | Results and Analysis

Figure 5.18: Delete times for index engines based on file size disregarding 1
MB observations

5.2 Quality Analysis
The results presented in the previous section display unique tendencies for
each approach. This as anticipated allows for clear identification of solutions
capabilities concerning its peers and answers the most pressing questions
about the performance. Therefore, the author believes that the observations
can be considered valid.

Furthermore, reliability has also been achieved, as results are consistent
between tests of the same use case. This means that they are reproducible
assuming conductors have access to the same environment.

5.3 Discussion
The results of Workload A (5.1.1) display a clear performance advantage
for database solutions (at least for actions involving lookup of information).
This corresponds to what was anticipated since as already explained usage
of HBase, and by extension RonDB, was inspired to provide faster execution
times. The reason for all solutions obtaining similar insert times is that the
index is not used, only initialized. This is a strong suit of the simple index, as
it does not have to perform any additional operations for it to function.

Results and Analysis | 57

By looking at the observations made during the alteration of Hudi table
size (Section 5.1.2) it was noticed that all solutions scale differently. This of
course is directly attributed to how each implementation functions internally
and not necessarily how it was implemented in Hudi. For reference, observe
that difference between the two RonDB implementations is within the margin
of error. Additionally, the plots showcased that both of the file-based indexes
take the longest time for all use cases (even though bloom was much more
analogous to database implementations). The fast insert times for HBase could
potentially be attributed to it being a log-structured storage engine [48]. This
means that writes are simply an append operation that at first performs changes
to the in-memory data structure, which is subsequently flashed to the disk upon
reaching some predefined condition/threshold.

Changing the number of mutations that the test incurs (Section 5.1.3)
results in easy identification of HBase shortcomings. This is because the
HBase index is rate limited to avoid overwhelming the server with requests,
which could result in the HBase Region server dying. The reason why the
bloom index performance improved by the end of the insert operation can
likely be attributed to changes being more self-contained, thus not requiring
append to an existing file. The results overall showed both of the RonDB
clients coping with the increasing number of changes similarly to file-based
indexes, consistently being among the fastest (in particular when changes
involved data lookup).

The batch size test case (Section 5.1.4) shows how important it is to bundle
information for the different databases. HBase observes notable improvements
up until the final tested volume, while RonDB sees enhancement only up to
the batch size of 100. The reason for this is the already mentioned HBase
solutions rate limiting approach (which uses the java sleep function to avoid a
high number of concurrent changes to the database). A more noticeable impact
should be anticipated if communication was coordinated over the internet,
as the overhead of multiple small messages would increase (negated in this
test due to databases being co-located with the execution engine on the same
machine). The discrepancy between RonDB clients manifests itself mostly
because of the variation in communication medium (but also partially due to
the usage of normalization). The lower level API clusterj is more efficient
as the scale of mutations per test increases, but for this to be appreciable a
considerable number of changes have to take place in relatively few files, as a
modification to large number of directory entries negate the benefits.

The final test case investigated file size, and by extension file count, impact
on the index (Section 5.1.5). Here, as expected, database solutions were

58 | Results and Analysis

among the fastest, in particular when acquiring existing data with small file
sizes. This can be rationalized by recognizing that file-based indexing has
to investigate each file, while database solutions avoid these I/O operations.
However, an unexpected finding was that HBase performs notably better for
inserts, especially with an increase in file sizes. The reason for this is once
again a bi-product of HBase being a log-structured storage engine. As the
small number of changes are just append operation to an in-memory data
structure (following similar reasoning to insert performance in Hudi table size
workload).

Conclusions and Future work | 59

Chapter 6

Conclusions and Future work

This thesis has investigated how indexing operates in Hudi and why it is needed
to provide timely responses. Furthermore, a new indexing approach was
introduced and subsequently examined to evaluate its feasibility and determine
the best-suited role for each solution.

This chapter concludes the research, reflecting on the work that has been
done and proposes ideas for furthering the goals of this thesis.

6.1 Conclusions
This thesis has confirmed that the usage of an external database provides the
fastest response times for nearly all use cases. However, there is an additional
cost associated with this approach (in terms of storage) that file-based indexing
does not incur. Accordingly, there is no single solution that suits the needs of
all users.

The results showed that the variation between the RonDB and HBase
arises from their design principles (if the batch size is adequately adjusted
beforehand). Therefore, the difference between the two in most scenarios can
not be easily identified, owing to fast query responses, with the majority of the
time taken up by work other than indexing. Likewise, it cannot be conclusively
stated that RonDB is better than HBase for indexing in Hudi. Nonetheless, the
author believes that the goals of the thesis have been met.

RonDB offers a well-rounded solution capable of suiting most needs.
This is because it provides fast operations independent of the workload.
Whereas, the bloom index suffers from an increased table size (especially with
multiple files) and HBase fails to cope with a large number of mutations (in
particular with incorrect batch size). Moreover, the use of Relational Database

60 | Conclusions and Future work

Management System (RDBMS) makes this approach more developer-friendly
as more users are familiar with SQL syntax and could utilize its full set of
features more comfortably. As a result, boosting the potential for the solution
to be worked on by the community.

Subsequent work in this area should anticipate the large number of
independent variables impacting the performance of any given solution.
Therefore, counting on a multitude of configuration changes to provide the
best response times. Furthermore, it should be realized that the majority of
execution time is spent on I/O operations even when using a database-based
index. This means that there is only so much that a faster index can contribute
to performance improvements, without reconstructing the rest of the solution.

6.2 Limitations
The limiting factor of this research has been time, the number of configurable
properties, the data volume, and the shortage of documentation. Therefore, the
research could not have been further expanded to encompass a more substantial
set of test cases. However, the author believes that the current results provide
an adequate understanding and do not require more observations to derive
accurate conclusions.

6.3 Future work
This research helped to conceive a new index implementation and identify its
response characteristics concerning peers. But by doing so it also pinpointed
aspects that could be subsequently explored in the future.

The most fundamental research could be conducted on the resource
consumption of the indexing solutions. As it would help collaborate the
findings of this thesis, providing a clear overview of the performance as a
whole (not only execution times). Furthermore, the rollback times could be
evaluated, as this research considered only successful executions, avoiding
investigation into the ”rainy day scenario”. The impact of operating in a
cloud environment could also be scrutinized, by looking at the significance
of multiple data/worker nodes, potentially operating with more voluminous
data in object stores, and observing the effect of concurrent use.

In addition to performance analysis, future researchers could attempt
to provide new capabilities for Hudi. For example, using indexing when
performing read queries on the Hudi table (At the moment it is utilized only

Conclusions and Future work | 61

for mutations of the information). Subsequently, with successful usage of
indexing for all operations, the next logical step could be the implementation of
a secondary index. Thus blurring the lines between a fully managed database
and lake house even further.

6.3.1 Left undone
The implemented solution is capable of providing the same kind of capabilities
that can be expected from the HBase approach, but at this time it does not yield
advanced features such as batch size auto compute and adaptive key types.
This, although negligible, could be a welcome feature. For example, storing
integer values instead of binary data would be more efficient. Moreover,
the current implementation supports only spark clients, making it logical to
expand capabilities for its counterparts as well.

6.3.2 Cost analysis
The expenditure associated with the storage of the index depends on the
information that is stored. However, RonDB can hold data both in memory and
on disk, while scaling to clusters of up to 1PB in size [42]. Which could equate
roughly to 12-13 trillion entries (assuming usage of a normalized solution).

The current solution contains two newly implemented approaches, but as
shown by the tests they produce similar outputs in most scenarios, with the
difference arising only when performing several changes. Therefore, it is cost-
prohibitive and not user-friendly to maintain both. To rectify these issues all
subsequent development should be focused on the improvement of a single
solution.

The author proposes advancing the RONDB_JDBC. The reason for this
choice is due to its greater potential for the future (can expand to multiple
databases and utilize their full potential through SQL), improved security (one
of the building blocks for managed RDBMS), and memory savings (when
normalized it was observed that table would store approximately 44% less
data).

6.3.3 Security
As already discussed in the previous sections, the JDBC approach uses a
MySQL server when communicating with the NDB cluster. Therefore, it
comes with all security features expected in a RDBMS. However, when

62 | Conclusions and Future work

directly communicating with the NDB nodes there is no authentication/au-
thorization and encryption, meaning users of RONDB_CLUSTERJ are prone
to a variety of attacks if exposed to the wider public. Accordingly, the usage of
ClusterJ implementation should be avoided for most organizations as it could
end up as an entry point for a malicious actor 1.

6.3.4 Future prospects
The changes at this point are only available on a fork of Apache Hudi and they
are in the prototype phase. It would be a welcome sight to see them be made
available for the wider community, allowing for the usage of not only RonDB
but also other databases following the relational paradigm (using SQL) to offer
index.

6.4 Reflections
The newly introduced indexing approach does not offer exceedingly fast
response times when compared to its peers. But it is an adaptable solution,
that is capable of providing fast and dependable response times for all use
cases, when in fact the performance of the rival is greatly influenced by the
situation it finds itself in.

In closure, a summary of the indexing solutions, from the author’s point
of view, is provided hereafter.

• Simple: the best approach for workloads involving a lot of data
insertions, but noticeably pales in comparison to other indexes for
lookup times (in a sense fire and forget approach).

• Bloom: great potential, but suffers from the existence of multiple
files and results in longer execution times when compared to database
solutions.

• RonDB: well-rounded product, capable of accommodating all work-
loads (being among the fastest for all), but does not notably excel at
any.

1A brief article describing security and networking issues as well as how to mitigate
them in a publicly facing NDB cluster can be found at https://dev.mysql.com/
doc/mysql-cluster-excerpt/8.0/en/mysql-cluster-security-
networking-issues.html

https://dev.mysql.com/doc/mysql-cluster-excerpt/8.0/en/mysql-cluster-security-networking-issues.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/8.0/en/mysql-cluster-security-networking-issues.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/8.0/en/mysql-cluster-security-networking-issues.html

Conclusions and Future work | 63

• HBase: well suited for read-intensive workloads, but performs poorly
with an increasing number of mutations (bootstrapping a large table is
a particular hurdle).

64 | References

References

[1] T. Harbert, “Tapping the power of unstructured data,” Feb. 2021.
[Online]. Available: https://mitsloan.mit.edu/ideas-made-to-matter/
tapping-power-unstructured-data [Accessed: 2022-03-02] [Page 3.]

[2] J. Phipps, “Data Lake vs. Data Swamp,” Aug. 2021. [Online].
Available: https://www.enterprisestorageforum.com/management/data-
lake-data-swamp/ [Accessed: 2022-03-30] [Page 3.]

[3] B. Lorica, M. Armbrust, A. Ghodsi, R. Xin, and M. Zaharia, “What Is
a Lakehouse?” Jan. 2020. [Online]. Available: https://databricks.com/
blog/2020/01/30/what-is-a-data-lakehouse.html [Accessed: 2022-01-
19] [Page 3.]

[4] D. Bzhalava and J. Dowling, “MLOps Wars: Versioned
Feature Data with a Lakehouse,” Aug. 2021. [Online].
Available: https://www.logicalclocks.com/blog/mlops-wars-versioned-
feature-data-with-a-lakehouse [Accessed: 2022-01-19] [Page 3.]

[5] R. Xin and M. Mokhtar, “Databricks Sets Official Data
Warehousing Performance Record,” Nov. 2021. [Online].
Available: https://databricks.com/blog/2021/11/02/databricks-sets-
official-data-warehousing-performance-record.html [Accessed: 2022-
03-30] [Page 3.]

[6] P. Edara and M. Pasumansky, “Big Metadata: When Metadata
is Big Data,” Proc. VLDB Endow., vol. 14, no. 12, pp.
3083–3095, Jul. 2021. doi: 10.14778/3476311.3476385 Publisher:
VLDB Endowment. [Online]. Available: https://doi.org/10.14778/
3476311.3476385 [Page 4.]

[7] M. Zaharia, A. Ghodsi, R. Xin, and m. crossbow, “Lakehouse: A
New Generation of Open Platforms that Unify Data Warehousing

https://mitsloan.mit.edu/ideas-made-to-matter/tapping-power-unstructured-data
https://mitsloan.mit.edu/ideas-made-to-matter/tapping-power-unstructured-data
https://www.enterprisestorageforum.com/management/data-lake-data-swamp/
https://www.enterprisestorageforum.com/management/data-lake-data-swamp/
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://www.logicalclocks.com/blog/mlops-wars-versioned-feature-data-with-a-lakehouse
https://www.logicalclocks.com/blog/mlops-wars-versioned-feature-data-with-a-lakehouse
https://databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
https://databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
https://doi.org/10.14778/3476311.3476385
https://doi.org/10.14778/3476311.3476385

References | 65

and Advanced Analytics,” in 11th Conference on Innovative Data
Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021,
Online Proceedings. www.cidrdb.org, 2021. [Online]. Available: http:
//cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf [Accessed: 2022-
01-21] [Pages 8 and 24.]

[8] J. Chen, “A Thorough Comparison of Delta Lake, Iceberg and Hudi,”
Jul. 2020. [Online]. Available: https://databricks.com/session_na20/a-
thorough-comparison-of-delta-lake-iceberg-and-hudi [Accessed: 2022-
01-19] [Page 9.]

[9] O. Katz, “Hudi, Iceberg and Delta Lake: Data Lake Table Formats
Compared,” Apr. 2021. [Online]. Available: https://lakefs.io/hudi-
iceberg-and-delta-lake-data-lake-table-formats-compared/ [Accessed:
2022-01-27] [Page 9.]

[10] B. Bopanna, “Comparative study of Apache Iceberg, Open Delta,
Apache CarbonData and Hudi,” Apr. 2021. [Online]. Available:
https://brijoobopanna.medium.com/comparative-study-of-apache-
iceberg-open-delta-apache-carbondata-and-hudi-c3962e5a0c4a
[Accessed: 2022-01-19] [Page 9.]

[11] P. Chockalingam, “Open Sourcing Delta Lake,” Apr. 2019.
[Online]. Available: https://databricks.com/blog/2019/04/24/open-
sourcing-delta-lake.html [Accessed: 2022-01-27] [Page 9.]

[12] B. Yavuz, M. Armbrust, and B. Heintz, “Diving Into Delta
Lake: Unpacking The Transaction Log,” Aug. 2019. [Online].
Available: https://databricks.com/blog/2019/08/21/diving-into-delta-
lake-unpacking-the-transaction-log.html [Accessed: 2022-03-02]
[Pages 9 and 10.]

[13] A. Conway and J. Minnick, “Introducing Delta Engine,” Jun.
2020. [Online]. Available: https://databricks.com/blog/2020/06/24/
introducing-delta-engine.html [Accessed: 2022-01-27] [Page 9.]

[14] B. Konieczny, “ACID file formats - file system layout,”
Apr. 2022. [Online]. Available: https://www.waitingforcode.com/
data-engineering/acid-file-formats-file-system-layout/read [Accessed:
2022-04-17] [Pages 10, 12, and 15.]

http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://databricks.com/session_na20/a-thorough-comparison-of-delta-lake-iceberg-and-hudi
https://databricks.com/session_na20/a-thorough-comparison-of-delta-lake-iceberg-and-hudi
https://lakefs.io/hudi-iceberg-and-delta-lake-data-lake-table-formats-compared/
https://lakefs.io/hudi-iceberg-and-delta-lake-data-lake-table-formats-compared/
https://brijoobopanna.medium.com/comparative-study-of-apache-iceberg-open-delta-apache-carbondata-and-hudi-c3962e5a0c4a
https://brijoobopanna.medium.com/comparative-study-of-apache-iceberg-open-delta-apache-carbondata-and-hudi-c3962e5a0c4a
https://databricks.com/blog/2019/04/24/open-sourcing-delta-lake.html
https://databricks.com/blog/2019/04/24/open-sourcing-delta-lake.html
https://databricks.com/blog/2019/08/21/diving-into-delta-lake-unpacking-the-transaction-log.html
https://databricks.com/blog/2019/08/21/diving-into-delta-lake-unpacking-the-transaction-log.html
https://databricks.com/blog/2020/06/24/introducing-delta-engine.html
https://databricks.com/blog/2020/06/24/introducing-delta-engine.html
https://www.waitingforcode.com/data-engineering/acid-file-formats-file-system-layout/read
https://www.waitingforcode.com/data-engineering/acid-file-formats-file-system-layout/read

66 | References

[15] C. Mathiesen, “A Short Introduction to Apache Iceberg,” Jan. 2021.
[Online]. Available: https://medium.com/expedia-group-tech/a-short-
introduction-to-apache-iceberg-d34f628b6799 [Accessed: 2022-01-27]
[Page 10.]

[16] J. Hughes, “Apache Iceberg: An Architectural
Look Under the Covers,” Nov. 2021. [Online].
Available: https://www.dremio.com/resources/guides/apache-iceberg-
an-architectural-look-under-the-covers/ [Accessed: 2022-03-02]
[Page 10.]

[17] G. P. Kowshik and X. J. C. Mojica, “Taking Query
Optimizations to the Next Level with Iceberg,” Jan. 2021. [Online].
Available: https://medium.com/adobetech/taking-query-optimizations-
to-the-next-level-with-iceberg-6c968b83cd6f [Accessed: 2022-01-27]
[Page 10.]

[18] K. Stokes, “The why and how of partitioning in Apache Iceberg,” Oct.
2020. [Online]. Available: https://developer.ibm.com/articles/the-why-
and-how-of-partitioning-in-apache-iceberg/ [Accessed: 2022-04-17]
[Page 10.]

[19] P. Rajaperumal and V. Chandar, “Hudi: Uber Engineering’s Incremental
Processing Framework on Apache Hadoop,” Mar. 2017. [Online].
Available: https://eng.uber.com/hoodie/ [Accessed: 2022-01-21]
[Page 11.]

[20] V. Chandar, “Lakehouse Concurrency Control: Are we too optimistic?”
Dec. 2021. [Online]. Available: https://hudi.apache.org/blog/2021/12/
16/lakehouse-concurrency-control-are-we-too-optimistic [Accessed:
2022-08-02] [Page 11.]

[21] ——, “Apache Hudi - The Data Lake Platform,” Jul. 2021. [Online].
Available: https://hudi.apache.org/blog/2021/07/21/streaming-data-
lake-platform/ [Accessed: 2021-11-07] [Pages 11, 13, and 18.]

[22] N. Agarwal, “Building a Large-scale Transactional Data Lake
at Uber Using Apache Hudi,” Jun. 2020. [Online]. Available:
https://eng.uber.com/apache-hudi-graduation/ [Accessed: 2021-11-07]
[Pages 11 and 17.]

https://medium.com/expedia-group-tech/a-short-introduction-to-apache-iceberg-d34f628b6799
https://medium.com/expedia-group-tech/a-short-introduction-to-apache-iceberg-d34f628b6799
https://www.dremio.com/resources/guides/apache-iceberg-an-architectural-look-under-the-covers/
https://www.dremio.com/resources/guides/apache-iceberg-an-architectural-look-under-the-covers/
https://medium.com/adobetech/taking-query-optimizations-to-the-next-level-with-iceberg-6c968b83cd6f
https://medium.com/adobetech/taking-query-optimizations-to-the-next-level-with-iceberg-6c968b83cd6f
https://developer.ibm.com/articles/the-why-and-how-of-partitioning-in-apache-iceberg/
https://developer.ibm.com/articles/the-why-and-how-of-partitioning-in-apache-iceberg/
https://eng.uber.com/hoodie/
https://hudi.apache.org/blog/2021/12/16/lakehouse-concurrency-control-are-we-too-optimistic
https://hudi.apache.org/blog/2021/12/16/lakehouse-concurrency-control-are-we-too-optimistic
https://hudi.apache.org/blog/2021/07/21/streaming-data-lake-platform/
https://hudi.apache.org/blog/2021/07/21/streaming-data-lake-platform/
https://eng.uber.com/apache-hudi-graduation/

References | 67

[23] B. Braams, “The Parquet Format and Performance
Optimization Opportunities,” Oct. 2019. [Online].
Available: https://databricks.com/session_eu19/the-parquet-format-
and-performance-optimization-opportunities [Accessed: 2022-05-17]
[Page 13.]

[24] B. Varadarajan, “Efficient Migration of Large Parquet Tables to Apache
Hudi,” Aug. 2020. [Online]. Available: https://hudi.apache.org/blog/
2020/08/20/efficient-migration-of-large-parquet-tables/ [Accessed:
2022-01-02] [Pages 14 and 15.]

[25] B. Varadarajan and U. Mehrotra, “RFC - 12 : Efficient Migration
of Large Parquet Tables to Apache Hudi,” Mar. 2020. [Online].
Available: https://cwiki.apache.org/confluence/display/HUDI/RFC+
-+12+%3A+Efficient+Migration+of+Large+Parquet+Tables+to+
Apache+Hudi [Accessed: 2022-01-02] [Pages 15 and 16.]

[26] X. Geng, “RFC-36: HUDI Metastore Server,” Jan. 2022. [Online].
Available: https://cwiki.apache.org/confluence/display/HUDI/RFC-
36%3A+HUDI+Metastore+Server [Accessed: 2022-02-03] [Page 18.]

[27] R. Peterson, “Indexing in DBMS: What is, Types of Indexes
with EXAMPLES,” Jan. 2022. [Online]. Available: https:
//www.guru99.com/indexing-in-database.html [Accessed: 2022-01-29]
[Page 19.]

[28] V. Chandar, “Employing the right indexes for fast updates, deletes in
Apache Hudi,” Nov. 2020. [Online]. Available: https://hudi.apache.org/
blog/2020/11/11/hudi-indexing-mechanisms/ [Accessed: 2022-01-19]
[Pages 19 and 20.]

[29] A. Jain, “Probabilistic Data Structures for Big Data and
Streaming Applications,” Sep. 2021. [Online]. Available: https:
//octo.vmware.com/bloom-filter/ [Accessed: 2022-01-27] [Page 20.]

[30] N. Agarwal and K. Devarajaiah, “Consistent Data Partitioning through
Global Indexing for Large Apache Hadoop Tables at Uber,” Apr.
2019. [Online]. Available: https://eng.uber.com/data-partitioning-
global-indexing/ [Accessed: 2022-01-27] [Page 20.]

[31] S. Narayanan, N. Agarwal, and P. Wason, “RFC-08 Record level
indexing mechanisms for Hudi datasets,” Sep. 2021. [Online]. Avail-
able: https://cwiki.apache.org/confluence/display/HUDI/RFC-08+

https://databricks.com/session_eu19/the-parquet-format-and-performance-optimization-opportunities
https://databricks.com/session_eu19/the-parquet-format-and-performance-optimization-opportunities
https://hudi.apache.org/blog/2020/08/20/efficient-migration-of-large-parquet-tables/
https://hudi.apache.org/blog/2020/08/20/efficient-migration-of-large-parquet-tables/
https://cwiki.apache.org/confluence/display/HUDI/RFC+-+12+%3A+Efficient+Migration+of+Large+Parquet+Tables+to+Apache+Hudi
https://cwiki.apache.org/confluence/display/HUDI/RFC+-+12+%3A+Efficient+Migration+of+Large+Parquet+Tables+to+Apache+Hudi
https://cwiki.apache.org/confluence/display/HUDI/RFC+-+12+%3A+Efficient+Migration+of+Large+Parquet+Tables+to+Apache+Hudi
https://cwiki.apache.org/confluence/display/HUDI/RFC-36%3A+HUDI+Metastore+Server
https://cwiki.apache.org/confluence/display/HUDI/RFC-36%3A+HUDI+Metastore+Server
https://www.guru99.com/indexing-in-database.html
https://www.guru99.com/indexing-in-database.html
https://hudi.apache.org/blog/2020/11/11/hudi-indexing-mechanisms/
https://hudi.apache.org/blog/2020/11/11/hudi-indexing-mechanisms/
https://octo.vmware.com/bloom-filter/
https://octo.vmware.com/bloom-filter/
https://eng.uber.com/data-partitioning-global-indexing/
https://eng.uber.com/data-partitioning-global-indexing/
https://cwiki.apache.org/confluence/display/HUDI/RFC-08++Record+level+indexing+mechanisms+for+Hudi+datasets

68 | References

+Record+level+indexing+mechanisms+for+Hudi+datasets [Ac-
cessed: 2022-01-02] [Page 20.]

[32] Z. Guan, “Building an ExaByte-level Data Lake Using
Apache Hudi at ByteDance,” Sep. 2021. [Online].
Available: https://hudi.apache.org/blog/2021/09/01/building-eb-level-
data-lake-using-hudi-at-bytedance/ [Accessed: 2021-11-07] [Pages 21
and 24.]

[33] M. Gupta, V. Verma, and M. Verma, “In-Memory Database
Systems - A Paradigm Shift,” ArXiv, vol. Volume 6, no. Dec
2013, Feb. 2014. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/
1402/1402.1258.pdf [Accessed: 2022-01-31] [Pages 21 and 24.]

[34] N. Patel, “What is Cassandra and why are big tech companies using
it?” May 2020. [Online]. Available: https://ubuntu.com/blog/apache-
cassandra-top-benefits [Accessed: 2022-01-31] [Page 23.]

[35] A. Bekker, “Cassandra vs. HBase: twins or just strangers with similar
looks?” Jun. 2018. [Online]. Available: https://www.scnsoft.com/blog/
cassandra-vs-hbase [Accessed: 2022-01-31] [Page 23.]

[36] M. Ronström and J. Dowling, “Rondb: The world’s
fastest key-value store is now in the cloud.” Feb. 2020.
[Online]. Available: https://www.logicalclocks.com/blog/rondb-the-
worlds-fastest-key-value-store-is-now-in-the-cloud [Accessed: 2021-
11-07] [Page 23.]

[37] D. Orescanin and T. Hlupic, “Data Lakehouse - a Novel Step in Analytics
Architecture,” in 2021 44th International Convention on Information,
Communication and Electronic Technology (MIPRO). Opatija,
Croatia: IEEE, Sep. 2021. doi: 10.23919/MIPRO52101.2021.9597091.
ISBN 978-953-233-101-1 pp. 1242–1246. [Online]. Available:
https://ieeexplore.ieee.org/document/9597091/ [Accessed: 2022-01-31]
[Page 24.]

[38] M. Armbrust, T. Das, L. Sun, B. Yavuz, S. Zhu, M. Murthy,
J. Torres, H. van Hovell, A. Ionescu, A. Łuszczak, M. Świtakowski,
M. Szafrański, X. Li, T. Ueshin, M. Mokhtar, P. Boncz, A. Ghodsi,
S. Paranjpye, P. Senster, R. Xin, and M. Zaharia, “Delta lake:
high-performance ACID table storage over cloud object stores,”

https://cwiki.apache.org/confluence/display/HUDI/RFC-08++Record+level+indexing+mechanisms+for+Hudi+datasets
https://cwiki.apache.org/confluence/display/HUDI/RFC-08++Record+level+indexing+mechanisms+for+Hudi+datasets
https://hudi.apache.org/blog/2021/09/01/building-eb-level-data-lake-using-hudi-at-bytedance/
https://hudi.apache.org/blog/2021/09/01/building-eb-level-data-lake-using-hudi-at-bytedance/
https://arxiv.org/ftp/arxiv/papers/1402/1402.1258.pdf
https://arxiv.org/ftp/arxiv/papers/1402/1402.1258.pdf
https://ubuntu.com/blog/apache-cassandra-top-benefits
https://ubuntu.com/blog/apache-cassandra-top-benefits
https://www.scnsoft.com/blog/cassandra-vs-hbase
https://www.scnsoft.com/blog/cassandra-vs-hbase
https://www.logicalclocks.com/blog/rondb-the-worlds-fastest-key-value-store-is-now-in-the-cloud
https://www.logicalclocks.com/blog/rondb-the-worlds-fastest-key-value-store-is-now-in-the-cloud
https://ieeexplore.ieee.org/document/9597091/

References | 69

Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 3411–
3424, Aug. 2020. doi: 10.14778/3415478.3415560. [Online]. Available:
https://dl.acm.org/doi/10.14778/3415478.3415560 [Accessed: 2022-
01-31] [Page 24.]

[39] N. Gebretsadkan Kidane, “Hudi on Hops : Incremental Processing
and Fast Data Ingestion for Hops,” Master’s thesis, KTH, School
of Electrical Engineering and Computer Science (EECS), 2019,
backup Publisher: KTH, School of Electrical Engineering and
Computer Science (EECS) Issue: 2019:809 Series: TRITA-EECS-
EX. [Online]. Available: http://kth.diva-portal.org/smash/get/diva2:
1413103/FULLTEXT01.pdf [Accessed: 2022-01-21] [Page 24.]

[40] A. T. Kabakus and R. Kara, “A performance evaluation of in-
memory databases,” Journal of King Saud University - Computer
and Information Sciences, vol. 29, no. 4, pp. 520–525, Oct.
2017. doi: 10.1016/j.jksuci.2016.06.007. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S1319157816300453 [Accessed:
2022-01-31] [Page 24.]

[41] P. Martins, M. Abbasi, and F. Sá, “A Study over NoSQL Performance,”
in New Knowledge in Information Systems and Technologies, �. Rocha,
H. Adeli, L. P. Reis, and S. Costanzo, Eds. Cham: Springer
International Publishing, 2019, vol. 930, pp. 603–611. ISBN 978-3-
030-16180-4 978-3-030-16181-1 Series Title: Advances in Intelligent
Systems and Computing. [Online]. Available: http://link.springer.com/
10.1007/978-3-030-16181-1_57 [Accessed: 2022-01-21] [Page 24.]

[42] M. Ronström and J. Dowling, “AI/ML needs a Key-Value
store, and Redis is not up to it,” Feb. 2021. [Online].
Available: https://www.hopsworks.ai/post/ai-ml-needs-a-key-value-
store-and-redis-is-not-up-to-it [Accessed: 2022-01-20] [Pages 24
and 61.]

[43] M. Ronström, “NDB Cluster, the World’s Fastest Key-Value Store,” Feb.
2020. [Online]. Available: http://mikaelronstrom.blogspot.com/2020/
02/ndb-cluster-worlds-fastest-key-value.html [Accessed: 2022-01-20]
[Page 24.]

[44] X. Wang, “Apache Hudi meets Apache Flink,” Oct. 2020.
[Online]. Available: https://hudi.apache.org/blog/2020/10/15/apache-
hudi-meets-apache-flink/ [Accessed: 2022-02-20] [Page 31.]

https://dl.acm.org/doi/10.14778/3415478.3415560
http://kth.diva-portal.org/smash/get/diva2:1413103/FULLTEXT01.pdf
http://kth.diva-portal.org/smash/get/diva2:1413103/FULLTEXT01.pdf
https://linkinghub.elsevier.com/retrieve/pii/S1319157816300453
https://linkinghub.elsevier.com/retrieve/pii/S1319157816300453
http://link.springer.com/10.1007/978-3-030-16181-1_57
http://link.springer.com/10.1007/978-3-030-16181-1_57
https://www.hopsworks.ai/post/ai-ml-needs-a-key-value-store-and-redis-is-not-up-to-it
https://www.hopsworks.ai/post/ai-ml-needs-a-key-value-store-and-redis-is-not-up-to-it
http://mikaelronstrom.blogspot.com/2020/02/ndb-cluster-worlds-fastest-key-value.html
http://mikaelronstrom.blogspot.com/2020/02/ndb-cluster-worlds-fastest-key-value.html
https://hudi.apache.org/blog/2020/10/15/apache-hudi-meets-apache-flink/
https://hudi.apache.org/blog/2020/10/15/apache-hudi-meets-apache-flink/

70 | References

[45] A. Morgan, “Using ClusterJPA (part of MySQL Cluster
Connector for Java) – a tutorial,” Mar. 2010. [Online].
Available: http://www.clusterdb.com/mysql-cluster/using-clusterjpa-
part-of-mysql-cluster-connector-for-java-a-tutorial [Accessed: 2022-
08-03] [Page 34.]

[46] ——, “Using ClusterJ (part of MySQL Cluster Connector
for Java) – a tutorial,” Mar. 2010. [Online].
Available: http://www.clusterdb.com/mysql-cluster/using-clusterj-
part-of-mysql-cluster-connector-for-java-a-tutorial [Accessed: 2022-
06-03] [Page 34.]

[47] B. Barnhill, “Indexing,” Aug. 2021. [Online]. Available: https:
//dataschool.com/sql-optimization/how-indexing-works/ [Accessed:
2022-04-05] [Page 37.]

[48] P. Tanwar, “Log-Structured Storage Engines,” Sep. 2021. [Online].
Available: https://medium.com/@pnk.tanwar/log-structured-storage-
engines-a0c6e78273c [Accessed: 2022-04-29] [Page 57.]

http://www.clusterdb.com/mysql-cluster/using-clusterjpa-part-of-mysql-cluster-connector-for-java-a-tutorial
http://www.clusterdb.com/mysql-cluster/using-clusterjpa-part-of-mysql-cluster-connector-for-java-a-tutorial
http://www.clusterdb.com/mysql-cluster/using-clusterj-part-of-mysql-cluster-connector-for-java-a-tutorial
http://www.clusterdb.com/mysql-cluster/using-clusterj-part-of-mysql-cluster-connector-for-java-a-tutorial
https://dataschool.com/sql-optimization/how-indexing-works/
https://dataschool.com/sql-optimization/how-indexing-works/
https://medium.com/@pnk.tanwar/log-structured-storage-engines-a0c6e78273c
https://medium.com/@pnk.tanwar/log-structured-storage-engines-a0c6e78273c

Appendix A: NDB size report of the final solutions | 71

Appendix A

NDB size report of the final
solutions

/

ndb_size.pl report for database: 'hudi' (3 tables)
Connected to: DBI:mysql:host=127.0.0.1;port=3306

Including information for versions: 4.1, 5.0, 5.1

Table List

hudi.index_record
hudi.index_record_file
hudi.index_record_file_id$unique
hudi.index_record_file_partition_id$unique
hudi.index_record_partition
hudi.index_record_record_key$unique

hudi.index_record

DataMemory for Columns

* means varsized DataMemory

Column Name Type Varsized Key 4.1 5.0 5.1
commit_ts timestamp(3) PRI 4 4 4
file_id int MUL 4 4 4
record_key varbinary(255) PRI 256 256 256
Fixed Size Columns DM/Row 264 264 264
Varsize Columns DM/Row 0 0 0

DataMemory for Indexes

Index Name Type 4.1 5.0 5.1
PRIMARY BTREE N/A N/A N/A
record_key BTREE N/A N/A N/A
file_id BTREE N/A N/A N/A
Total Index DM/Row 0 0 0

Supporting Tables DataMemory/Row

Table 4.1 5.0 5.1
hudi.index_record_record_key$unique 272 272 280
hudi.index_record_file_id$unique 276 276 284
This DataMemory/Row 276 276 280
Total DM/Row (inludes DM in other tables) 824 824 844

IndexMemory for Indexes

Index Name 4.1 5.0 5.1
PRIMARY 285 16 16
Indexes IM/Row 285 16 16

Supporting Tables IndexMemory/Row

hudi.index_record_record_key$unique 281 16 16

RONDB_JDBC ndb size report.
;

/

hudi.index_record_file_id$unique 29 16 16
Total Suppt IM/Row 310 32 32

Summary (for THIS table)

Fixed Sized Part

4.1 5.0 5.1
Fixed Overhead DM/Row 12 12 16
NULL Bytes/Row 0 0 0
DataMemory/Row (incl overhead, bitmap, indexes) 276 276 280

Variable Sized Part

Varsize Overhead DM/Row 0 0 8
Varsize NULL Bytes/Row 0 0 0
Avg Varsize DM/Row 0 0 0

Memory Calculations

No. Rows 1000 1000 1000
Rows/32kb DM Page 118 118 116
Fixedsize DataMemory (KB) 288 288 288
Rows/32kb Varsize DM Page 0 0 0
Varsize DataMemory (KB) 0 0 0
Rows/8kb IM Page 28 512 512
IndexMemory (KB) 288 16 16

hudi.index_record_file

DataMemory for Columns

* means varsized DataMemory

Column Name Type Varsized Key 4.1 5.0 5.1
partition_id int MUL 4 4 4
file_id int PRI 4 4 4
file_name varchar(38) UNI 40 40 40
Fixed Size Columns DM/Row 48 48 48
Varsize Columns DM/Row 0 0 0

DataMemory for Indexes

Index Name Type 4.1 5.0 5.1
file_name BTREE 16 16 16
PRIMARY BTREE N/A N/A N/A
partition_id BTREE N/A N/A N/A
Total Index DM/Row 16 16 16

Supporting Tables DataMemory/Row

Table 4.1 5.0 5.1
hudi.index_record_file_partition_id$unique 20 20 28

RONDB_JDBC ndb size report.
;

/

This DataMemory/Row 76 76 80
Total DM/Row (inludes DM in other tables) 96 96 108

IndexMemory for Indexes

Index Name 4.1 5.0 5.1
file_name N/A N/A N/A
PRIMARY 29 16 16
Indexes IM/Row 29 16 16

Supporting Tables IndexMemory/Row

hudi.index_record_file_partition_id$unique 29 16 16
Total Suppt IM/Row 29 16 16

Summary (for THIS table)

Fixed Sized Part

4.1 5.0 5.1
Fixed Overhead DM/Row 12 12 16
NULL Bytes/Row 0 0 0
DataMemory/Row (incl overhead, bitmap, indexes) 76 76 80

Variable Sized Part

Varsize Overhead DM/Row 0 0 8
Varsize NULL Bytes/Row 0 0 0
Avg Varsize DM/Row 0 0 0

Memory Calculations

No. Rows 3 3 3
Rows/32kb DM Page 429 429 408
Fixedsize DataMemory (KB) 32 32 32
Rows/32kb Varsize DM Page 0 0 0
Varsize DataMemory (KB) 0 0 0
Rows/8kb IM Page 282 512 512
IndexMemory (KB) 8 8 8

hudi.index_record_file_id$unique

DataMemory for Columns

* means varsized DataMemory

Column Name Type Varsized Key 4.1 5.0 5.1
file_id int MUL 4 4 4
record_key varbinary(255) PRI 256 256 256
commit_ts timestamp(3) PRI 4 4 4
Fixed Size Columns DM/Row 264 264 264
Varsize Columns DM/Row 0 0 0

RONDB_JDBC ndb size report.
;

/

DataMemory for Indexes

Index Name Type 4.1 5.0 5.1
PRIMARY BTREE N/A N/A N/A
Total Index DM/Row 0 0 0

IndexMemory for Indexes

Index Name 4.1 5.0 5.1
PRIMARY 29 16 16
Indexes IM/Row 29 16 16

Summary (for THIS table)

Fixed Sized Part

4.1 5.0 5.1
Fixed Overhead DM/Row 12 12 20
NULL Bytes/Row 0 0 0
DataMemory/Row (incl overhead, bitmap, indexes) 276 276 284

Variable Sized Part

Varsize Overhead DM/Row 0 0 8
Varsize NULL Bytes/Row 0 0 0
Avg Varsize DM/Row 0 0 0

Memory Calculations

No. Rows 1000 1000 1000
Rows/32kb DM Page 118 118 114
Fixedsize DataMemory (KB) 288 288 288
Rows/32kb Varsize DM Page 0 0 0
Varsize DataMemory (KB) 0 0 0
Rows/8kb IM Page 282 512 512
IndexMemory (KB) 32 16 16

hudi.index_record_file_partition_id$unique

DataMemory for Columns

* means varsized DataMemory

Column Name Type Varsized Key 4.1 5.0 5.1
file_id int PRI 4 4 4
partition_id int MUL 4 4 4
Fixed Size Columns DM/Row 8 8 8
Varsize Columns DM/Row 0 0 0

DataMemory for Indexes

Index Name Type 4.1 5.0 5.1
PRIMARY BTREE N/A N/A N/A

RONDB_JDBC ndb size report.
;

/

Total Index DM/Row 0 0 0

IndexMemory for Indexes

Index Name 4.1 5.0 5.1
PRIMARY 29 16 16
Indexes IM/Row 29 16 16

Summary (for THIS table)

Fixed Sized Part

4.1 5.0 5.1
Fixed Overhead DM/Row 12 12 20
NULL Bytes/Row 0 0 0
DataMemory/Row (incl overhead, bitmap, indexes) 20 20 28

Variable Sized Part

Varsize Overhead DM/Row 0 0 8
Varsize NULL Bytes/Row 0 0 0
Avg Varsize DM/Row 0 0 0

Memory Calculations

No. Rows 3 3 3
Rows/32kb DM Page 1632 1632 1165
Fixedsize DataMemory (KB) 32 32 32
Rows/32kb Varsize DM Page 0 0 0
Varsize DataMemory (KB) 0 0 0
Rows/8kb IM Page 282 512 512
IndexMemory (KB) 8 8 8

hudi.index_record_partition

DataMemory for Columns

* means varsized DataMemory

Column Name Type Varsized Key 4.1 5.0 5.1
partition_path varchar(255) UNI 256 256 256
partition_id int PRI 4 4 4
Fixed Size Columns DM/Row 260 260 260
Varsize Columns DM/Row 0 0 0

DataMemory for Indexes

Index Name Type 4.1 5.0 5.1
PRIMARY BTREE N/A N/A N/A
partition_path BTREE 16 16 16
Total Index DM/Row 16 16 16

IndexMemory for Indexes

RONDB_JDBC ndb size report.
;

/

Index Name 4.1 5.0 5.1
PRIMARY 29 16 16
partition_path N/A N/A N/A
Indexes IM/Row 29 16 16

Summary (for THIS table)

Fixed Sized Part

4.1 5.0 5.1
Fixed Overhead DM/Row 12 12 16
NULL Bytes/Row 0 0 0
DataMemory/Row (incl overhead, bitmap, indexes) 288 288 292

Variable Sized Part

Varsize Overhead DM/Row 0 0 8
Varsize NULL Bytes/Row 0 0 0
Avg Varsize DM/Row 0 0 0

Memory Calculations

No. Rows 3 3 3
Rows/32kb DM Page 113 113 111
Fixedsize DataMemory (KB) 32 32 32
Rows/32kb Varsize DM Page 0 0 0
Varsize DataMemory (KB) 0 0 0
Rows/8kb IM Page 282 512 512
IndexMemory (KB) 8 8 8

hudi.index_record_record_key$unique

DataMemory for Columns

* means varsized DataMemory

Column Name Type Varsized Key 4.1 5.0 5.1
record_key varbinary(255) PRI 256 256 256
commit_ts timestamp(3) PRI 4 4 4
Fixed Size Columns DM/Row 260 260 260
Varsize Columns DM/Row 0 0 0

DataMemory for Indexes

Index Name Type 4.1 5.0 5.1
PRIMARY BTREE N/A N/A N/A
Total Index DM/Row 0 0 0

IndexMemory for Indexes

Index Name 4.1 5.0 5.1
PRIMARY 281 16 16
Indexes IM/Row 281 16 16

RONDB_JDBC ndb size report.
;

/

Summary (for THIS table)

Fixed Sized Part

4.1 5.0 5.1
Fixed Overhead DM/Row 12 12 20
NULL Bytes/Row 0 0 0
DataMemory/Row (incl overhead, bitmap, indexes) 272 272 280

Variable Sized Part

Varsize Overhead DM/Row 0 0 8
Varsize NULL Bytes/Row 0 0 0
Avg Varsize DM/Row 0 0 0

Memory Calculations

No. Rows 1000 1000 1000
Rows/32kb DM Page 120 120 116
Fixedsize DataMemory (KB) 288 288 288
Rows/32kb Varsize DM Page 0 0 0
Varsize DataMemory (KB) 0 0 0
Rows/8kb IM Page 29 512 512
IndexMemory (KB) 280 16 16

Parameter Minimum Requirements
* indicates greater than default

Parameter Default 4.1 5.0 5.1
NoOfTables 128 6 6 6
DataMemory (KB) 81920 960 960 960
NoOfAttributes 1000 15 15 15
NoOfOrderedIndexes 128 8 8 8
NoOfTriggers 768 41 41 41
IndexMemory (KB) 18432 624 72 72
NoOfUniqueHashIndexes 64 3 3 3

RONDB_JDBC ndb size report.
;

/

ndb_size.pl report for database: 'hudi' (1 tables)
Connected to: DBI:mysql:host=127.0.0.1;port=3306

Including information for versions: 4.1, 5.0, 5.1

Table List

hudi.index_cluster_record
hudi.index_cluster_record_record_key$unique

hudi.index_cluster_record

DataMemory for Columns

* means varsized DataMemory

Column Name Type Varsized Key 4.1 5.0 5.1
record_key varbinary(255) PRI 256 256 256
partition_path varchar(255) Y 256 256 28*
file_name varchar(38) Y 40 40 40*
commit_ts bigint PRI 8 8 8
Fixed Size Columns DM/Row 560 560 264
Varsize Columns DM/Row 0 0 68

DataMemory for Indexes

Index Name Type 4.1 5.0 5.1
idx_record_key BTREE N/A N/A N/A
PRIMARY BTREE N/A N/A N/A
Total Index DM/Row 0 0 0

Supporting Tables DataMemory/Row

Table 4.1 5.0 5.1
hudi.index_cluster_record_record_key$unique 276 276 284
This DataMemory/Row 572 572 280
Total DM/Row (inludes DM in other tables) 848 848 564

IndexMemory for Indexes

Index Name 4.1 5.0 5.1
PRIMARY 289 16 16
Indexes IM/Row 289 16 16

Supporting Tables IndexMemory/Row

hudi.index_cluster_record_record_key$unique 281 16 16
Total Suppt IM/Row 281 16 16

Summary (for THIS table)

Fixed Sized Part

RONDB_CLUSTERJ ndb size report.
;

/

4.1 5.0 5.1
Fixed Overhead DM/Row 12 12 16
NULL Bytes/Row 0 0 0
DataMemory/Row (incl overhead, bitmap, indexes) 572 572 280

Variable Sized Part

Varsize Overhead DM/Row 0 0 8
Varsize NULL Bytes/Row 0 0 0
Avg Varsize DM/Row 0 0 76

Memory Calculations

No. Rows 1000000 1000000 1000000
Rows/32kb DM Page 57 57 116
Fixedsize DataMemory (KB) 561408 561408 275872
Rows/32kb Varsize DM Page 0 0 429
Varsize DataMemory (KB) 0 0 74624
Rows/8kb IM Page 28 512 512
IndexMemory (KB) 285720 15632 15632

hudi.index_cluster_record_record_key$unique

DataMemory for Columns

* means varsized DataMemory

Column Name Type Varsized Key 4.1 5.0 5.1
commit_ts bigint PRI 8 8 8
record_key varbinary(255) PRI 256 256 256
Fixed Size Columns DM/Row 264 264 264
Varsize Columns DM/Row 0 0 0

DataMemory for Indexes

Index Name Type 4.1 5.0 5.1
PRIMARY BTREE N/A N/A N/A
Total Index DM/Row 0 0 0

IndexMemory for Indexes

Index Name 4.1 5.0 5.1
PRIMARY 281 16 16
Indexes IM/Row 281 16 16

Summary (for THIS table)

Fixed Sized Part

4.1 5.0 5.1
Fixed Overhead DM/Row 12 12 20
NULL Bytes/Row 0 0 0
DataMemory/Row (incl overhead, bitmap, indexes) 276 276 284

RONDB_CLUSTERJ ndb size report.
;

/

Variable Sized Part

Varsize Overhead DM/Row 0 0 8
Varsize NULL Bytes/Row 0 0 0
Avg Varsize DM/Row 0 0 0

Memory Calculations

No. Rows 1000000 1000000 1000000
Rows/32kb DM Page 118 118 114
Fixedsize DataMemory (KB) 271200 271200 280704
Rows/32kb Varsize DM Page 0 0 0
Varsize DataMemory (KB) 0 0 0
Rows/8kb IM Page 29 512 512
IndexMemory (KB) 275864 15632 15632

Parameter Minimum Requirements
* indicates greater than default

Parameter Default 4.1 5.0 5.1
IndexMemory (KB) 18432 561584* 31264* 31264*
NoOfOrderedIndexes 128 2 2 2
NoOfTables 128 2 2 2
NoOfTriggers 768 13 13 13
DataMemory (KB) 81920 832608* 832608* 631200*
NoOfAttributes 1000 6 6 6
NoOfUniqueHashIndexes 64 1 1 1

RONDB_CLUSTERJ ndb size report.
;

TRITA-EECS-EX- 2022:00

www.kth.se

For DIVA
{
”Author1”: { ”Last name”: ”Zangis”,
”First name”: ”Ralfs”,
”Local User Id”: ”0000000200451376”,
”E-mail”: ”zangis@kth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science”,
}
},
”Degree1”: {”Educational program”: ”Master’s Programme, Software Engineering of Distributed Systems, 120 credits”
,”programcode”: ”TSEDM”
,”Degree”: ”Degree of Master of Science in Engineering”
,”subjectArea”: ”Computer Science and Engineering”
},
”Title”: {
”Main title”: ”Scaling Apache Hudi by boosting query performance with RonDB as a Global Index”,
”Subtitle”: ”Adopting a LATS data store for indexing”,
”Language”: ”eng” },
”Alternative title”: {
”Main title”: ”Skala Apache Hudi genom att öka frågeprestanda med RonDB som ett globalt index”,
”Subtitle”: ”Antagande av LATS-datalager för indexering”,
”Language”: ”swe”
},
”Supervisor1”: { ”Last name”: ”Dowling”,
”First name”: ”Jim”,
”Local User Id”: ”0000000294846714”,
”E-mail”: ”jdowling@kth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science”,
”L2”: ”Division of Software and Computer Systems” }
},
”Examiner1”: { ”Last name”: ”Payberah”,
”First name”: ”Amir H.”,
”Local User Id”: ”0000000227488929”,
”E-mail”: ”payberah@kth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science”,
”L2”: ”Division of Software and Computer Systems” }
},
”Cooperation”: { ”Partner_name”: ”Hopsworks AB”},
"National Subject Categories": "10201, 10206",
”Other information”: {”Year”: ”2022”, ”Number of pages”: ”1,82”},
”Series”: { ”Title of series”: ”TRITA-EECS-EX” , ”No. in series”: ”2022:00” },
”Opponents”: { ”Name”: ”Karl Axel Pettersson”},
”Presentation”: { ”Date”: ”2022-05-25 13:00”
,”Language”:”eng”
,”Room”: ”via Zoom https://kth-se.zoom.us/j/2884945301”
,”City”: ”Stockholm” },
”Number of lang instances”: "2",
”Abstract[eng]”: €€€€

The storage and use of voluminous data are perplexing issues, the resolution of which has become more
pressing with the exponential growth of information. Lakehouses are relatively new approaches that
try to accomplish this while hiding the complexity from the user. They provide similar capabilities
to a standard database while operating on top of low-cost storage and open file formats. An example
of such a system is Hudi, which internally uses indexing to improve the performance of data
management in tabular format.

This study investigates if the execution times could be decreased by introducing a new engine option
for indexing in Hudi. Therefore, the thesis proposes the usage of RonDB as a global index, which is
expanded upon by further investigating the viability of different connectors that are available for
communication.

The research was conducted using both practical experiments and the study of relevant literature. The
analysis involved observations made over multiple workloads to document how adequately the solutions
can adapt to changes in requirements and types of actions. This thesis recorded the results and
visualized them for the convenience of the reader, as well as made them available in a public
repository.

The conclusions did not coincide with the author's hypothesis that RonDB would provide the fastest
indexing solution for all scenarios. Nonetheless, it was observed to be the most consistent approach,
potentially making it the best general-purpose solution. As an example, it was noted, that RonDB is
capable of dealing with read and write heavy workloads, whilst consistently providing low query
latency independent from the file count.

€€€€,
”Keywords[eng]”: €€€€
Apache Hudi, Lakehouse, RonDB, Performance, Index, Key-value store €€€€,
”Abstract[swe]”: €€€€

Lagring och användning av omfattande data är förbryllande frågor, vars lösning har blivit mer
pressande med den exponentiella tillväxten av information. Lakehouses är relativt nya metoder som
försöker åstadkomma detta samtidigt som de döljer komplexiteten för användaren. De tillhandahåller
liknande funktioner som en standarddatabas samtidigt som de fungerar på toppen av lågkostnadslagring
och öppna filformat. Ett exempel på ett sådant system är Hudi, som internt använder indexering för
att förbättra prestandan för datahantering i tabellformat.

Denna studie undersöker om exekveringstiderna kan minskas genom att införa ett nytt motoralternativ
för indexering i Hudi. Därför föreslår avhandlingen användningen av RonDB som ett globalt index,
vilket utökas genom att ytterligare undersöka lönsamheten hos olika kontakter som är tillgängliga för
kommunikation.

Forskningen genomfördes med både praktiska experiment och studie av relevant litteratur. Analysen
involverade observationer som gjorts över flera arbetsbelastningar för att dokumentera hur adekvat
lösningarna kan anpassas till förändringar i krav och typer av åtgärder. Denna avhandling
registrerade resultaten och visualiserade dem för att underlätta för läsaren, samt gjorde dem
tillgängliga i ett offentligt arkiv.

Slutsatserna sammanföll inte med författarnas hypotes att RonDB skulle tillhandahålla den snabbaste
indexeringslösningen för alla scenarier. Icke desto mindre ansågs det vara det mest konsekventa
tillvägagångssättet, vilket potentiellt gör det till den bästa generella lösningen. Som ett exempel
noterades att RonDB är kapabel att hantera läs- och skrivbelastningar, samtidigt som det konsekvent
tillhandahåller låg frågelatens oberoende av filantalet.

€€€€,
”Keywords[swe]”: €€€€
Apache Hudi, Lakehouse, RonDB, Prestanda, Index, Nyckel-värde butik €€€€,
}

	Introduction
	Background
	Problem
	Purpose
	Ethics and Sustainability

	Goals
	Research question
	Research methodology
	Delimitations
	Structure of the thesis

	Background
	Lakehouse
	Lakehouse characteristics
	How Lakehouses work
	Lakehouse solutions
	Lakehouse choice

	Hudi platform
	Hudi table format
	Data structure
	Metadata
	Indexing

	Databases
	Database options
	Database choice

	Related work

	Method
	Research Process
	Research Paradigm
	Data Collection
	Test environment
	Assessing quality
	Planned Data Analysis
	System documentation

	Solution
	Software design
	Implementation
	Solution using JDBC
	Solution using ClusterJ
	Configuration

	Development
	Deployment
	Usage
	Test setup

	Results and Analysis
	Results
	Workload A
	Workload B
	Workload C
	Workload D
	Workload E

	Quality Analysis
	Discussion

	Conclusions and Future work
	Conclusions
	Limitations
	Future work
	Left undone
	Cost analysis
	Security
	Future prospects

	Reflections

	References
	NDB size report of the final solutions

