
Degree Project in Computer Science and Engineering

Second cycle, 30 credits

Measuring the responsiveness of
WebAssembly in edge network
applications
REMO SCOLATI

Stockholm, Sweden, 2023

Measuring the responsiveness of
WebAssembly in edge network
applications

REMO SCOLATI

Master’s Programme, Software Engineering of Distributed Systems, 120 credits
Date: June 29, 2023

Supervisors: Viktoria Fodor, Ian Marsh
Examiner: Amir H. Payberah

School of Electrical Engineering and Computer Science
Host organization: RISE, Research Institutes of Sweden, AB
Swedish title: Mätning av responsiviteten hos WebAssembly i edge
network-applikationer

d |

Abstract | i

Abstract
Edge computing facilitates applications of cyber-physical systems that require
low latencies by moving compute and storage resources closer to the end
application. Whilst the edge network benefits such systems in terms of
responsiveness, it increases the systems’ complexity due to edge devices’
often heterogeneous and resource-constrained nature. In this work, we
evaluate whether WebAssembly can be used as a lightweight and portable
abstraction layer for such applications. Through the implementation of an edge
network robot control scenario, we benchmark and compare the performance
of WebAssembly against its native equivalent. We measure WebAssembly’s
overhead and assess the impact of different placement options in the network.
We further compare the overall application responsiveness against the latency
requirements of an industrial application to evaluate its performance. We find
that WebAssembly satisfies the portability and performance requirements of
the selected industrial use case. Our empirical results show that WebAssembly
doubles the execution latency in a localized setting, but does not excessively
impact the overall responsiveness of a cyber-physical system.

Keywords
Cloud Computing, Edge Computing, Internet of Things, WebAssembly

ii | Abstract

Sammanfattning | iii

Sammanfattning
Edge computing underlättar tillämpningar av cyberfysiska system som kräver
låga latenser genom att flytta beräknings- och lagringsresurser närmare
slutapplikationen. Även om edge-nätverket gynnar sådana system när det
gäller reaktionsförmåga, ökar det systemens komplexitet på grund av edge-
enheternas ofta heterogena och resursbegränsade natur. I detta arbete
utvärderar vi om WebAssembly kan användas som ett lättviktigt och portabelt
abstraktionslager för sådana applikationer. Genom att implementera ett
robotkontrollscenario för edge-nätverk benchmarkar och jämför vi prestandan
hos WebAssembly med dess inbyggda motsvarighet. Vi mäter WebAssemblys
overhead och utvärderar effekten av olika placeringsalternativ i nätverket.
Vi jämför även den övergripande applikationsresponsen mot latenskraven i
en industriell applikation för att utvärdera dess prestanda. Vi konstaterar att
WebAssembly uppfyller portabilitets- och prestandakraven för det utvalda
industriella användningsfallet. Våra empiriska resultat visar att WebAssembly
fördubblar exekveringslatensen i en lokaliserad miljö, men att det inte påverkar
den övergripande responsiviteten i ett cyberfysiskt system i alltför hög grad.

Nyckelord
Cloud Computing, Edge Computing, Internet of Things, WebAssembly

iv | Sammanfattning

Contents | v

Contents

1 Introduction 1
1.1 Domain problem . 2

1.1.1 WebAssembly as a portable edge runtime 2
1.1.2 Research questions 3

1.2 Purpose and goals . 3
1.3 Delimitations . 3
1.4 Research methodology . 4
1.5 Ethics and sustainability . 4
1.6 Contributions . 4
1.7 Structure of the report . 5

2 Background 7
2.1 Technical background . 7

2.1.1 Cyber-physical systems 7
2.1.2 Edge computing . 7
2.1.3 WebAssembly . 8

2.1.3.1 Wasm runtimes 9
2.1.3.2 Security model 9
2.1.3.3 WebAssembly System Interface 10

2.1.4 Use case: robot arm control 10
2.2 Related work . 11

3 Method 15
3.1 The experimental design . 15

3.1.1 A robotics workload 15
3.1.2 Wasm runtimes . 17
3.1.3 Application architecture 17
3.1.4 Compute placement 18
3.1.5 Deployment . 20

vi | Contents

3.2 Implementation . 21
3.2.1 Host Applications . 21

3.2.1.1 A remote host setup 21
3.2.1.2 A local host setup 23

3.2.2 Robot models . 23
3.3 Evaluation . 24

3.3.1 RQ1 - Usability in an edge network CPS 24
3.3.1.1 Portability 25
3.3.1.2 Performance 25

3.3.2 RQ2 - Wasm overhead 26

4 Results and analysis 27
4.1 Empirical results . 27

4.1.1 End-to-end measurements 28
4.1.2 Local benchmarks 30
4.1.3 Non-embedded measurements 31

4.2 Portability and performance 32
4.2.1 Portability . 33
4.2.2 Performance . 33

5 Discussion 35
5.1 Wasm usability in edge networks 35

6 Conclusions 39
6.1 Future work . 39

7 Lessons learned 43

References 45

A Additional results 51
A.1 End-to-end measurements 51
A.2 Local measurements . 51

List of Figures | vii

List of Figures

2.1 Illustration of a robot’s joint configuration and the relation-
ships between forward and inverse kinematics. 11

3.1 5 DoF Robot reachability plot. Blue indicates a reachable and
orange an unreachable target. 16

3.2 Networked factory scenario defined for the end-to-end bench-
marks with placement options. 19

3.3 Overview of remote host application architecture used in end-
to-end benchmarks. 22

3.4 Overview of local host application architecture used in local
benchmarks. 22

3.5 The Braccio Arduino robot arm (during assembly). 23
3.6 k sample robot torso model (rendering). 24

4.1 End-to-end benchmarks, robotics workloads on the far edge
device. 28

4.2 End-to-end benchmarks, robotics workloads on the near edge
device. 29

4.3 End-to-end benchmarks, robotics workloads on a cloud device. 29
4.4 End-to-end benchmarks, mean Wasm response times for

robotics workloads, relative to mean native response times. . . 30
4.5 Local benchmarks, mean Wasm execution times for robotics

workloads, relative to mean native execution times. 31
4.6 Standalone benchmarks, selected execution times for robotics

applications. 32

A.1 End-to-end benchmarks, response times. 52
A.2 Local benchmarks, execution times. 54

viii | List of Figures

List of Tables | ix

List of Tables

2.1 Comparison of results in related literature, Wasm execution
times compared to native code execution. 13

3.1 6 factors considered for the experimental design. 20
3.2 Selection of latency requirements for industrial applications,

industrial robotics, and networking standards. 25

4.1 Language and platform support, selected Wasm runtimes. . . . 33

A.1 End-to-end benchmarks, summary of results. 53
A.2 Local benchmarks, summary of results. 55

x | List of Tables

List of acronyms and abbreviations | xi

List of acronyms and abbreviations

ABI Application Binary Interface
AOT Ahead-of-Time
API Application Program Interface

CLI Command-Line Interface
CPS Cyber-Physical System

DoF Degrees of Freedom

FK Forward Kinematics

IIoT Industrial Internet of Things
IK Inverse Kinematics
IoT Internet of Things

JIT Just-in-Time

WASI WebAssembly System Interface
Wasm WebAssembly

xii | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

Cyber-physical systems (CPS) consist of sensing, connectivity, and control
technologies that allow an object or machine to monitor and act in a physical
environment. cyber-physical applications play an increasingly important role
in industrial processes and decision-making, in particular in industrial Internet
of Things (IIoT) implementations. IIoT describes the industrial application of
IoT technologies, using networks of connected sensors, devices, and objects.
IIoT employment sectors include healthcare, automotive, manufacturing,
mining, and many other sectors and associated domains. Example applications
are self-driving cars sensing traffic and obstacles, or industrial robots in
automated production processes.

Since many IoT devices are typically limited in size and power, many
use cases are enabled or enhanced by the availability of cloud resources and
improvements in network technology [1]. The centralized cloud approach
can, however, be a bottleneck, especially for time-sensitive applications due
to network latencies as well as the amount of data collected and processed
[2]. Edge computing benefits several use cases by shifting compute and
storage away from the cloud, making use of resources available in closer
proximity to producers and consumers [3]. The main advantage of moving
the compute-storage-communication is lower latency, especially in near real-
time applications that need high responsiveness. Distributed edge applications
can further make more efficient use of the storage and compute resources that
are available in a network of edge devices [4].

The edge network might, depending on the use case, include several
heterogeneous devices, ranging from embedded devices in cars and manu-
facturing machines, appliances, and mobile phones, to an internet service
provider’s network infrastructure and data centers. In the context of this

2 | Introduction

document, the network’s edge is intended as networked devices in close
proximity to the intended industrial application; more specifically, we
consider both an on-premise edge server and a resource-constrained device
as possible placement options for a robot control application.

1.1 Domain problem
One of the main problems of CPS implementations relying on the edge
network is the heterogeneity of the edge devices, which ranges from small 8-
bit microcontrollers to rack-mounted servers, where the smaller scale devices
are often more limited in processing power due to size and power constraints.
The diversity of devices is reflected in several different platforms for which
applications need to be developed and maintained. Distributed applications
in an edge network must account for the range of capacities and the different
platforms of the devices. Portability, that is, the ease with which a program
can be run on different platforms, is, therefore, a critical requirement for
many distributed edge applications. Many distributed applications, and CPS
in particular, require high responsiveness, as well as safe and portable code
[4, 5]. Typically, there is a trade-off between the portability and performance
of an application when comparing, for example, native binaries and languages
targeting portability through an abstraction layer such as interpreters or virtual
machines.

1.1.1 WebAssembly as a portable edge runtime
Wasm is a bytecode format designed as a compilation target for multiple
programming languages and originally developed for the web [6]. As a
lightweight virtualization layer, it is a portable alternative to cross-compiled
or interpreted edge applications that allows compiling source code from
many different languages into a portable intermediate format. Wasm was
specifically designed to execute untrusted applications inside a safe sandbox,
protecting the host’s environment and resources—possibly shared with other
applications—from malfunctioning or malicious code. Its security model
provides multiple features for developing safe applications. The portability
and flexibility it promises, together with its security model and the stated
design goal to offer near-native code performance, make Wasm a promising
solution for edge network architectures. Due to its potential in the domain, we
intend to assess the usability of Wasm in an edge network CPS.

Introduction | 3

1.1.2 Research questions
Given the described problem area, this work aims at answering the following
research questions.

RQ1 Could Wasm be used to operate an industrial robot application?

RQ2 How much delay does Wasm introduce in an edge-cloud robotic setting
in comparison to native binaries?

We hypothesize that Wasm is a viable technology to be employed in a
cyber-physical system, and does not introduce an excessive latency overhead
in the end-to-end delay, measured against the latency requirements from
an industrial use case, and therefore to the responsiveness of a robot arm
application.

1.2 Purpose and goals
Through this project, we evaluate whether Wasm can enable and facilitate edge
computing use cases. The high-level objective of the project is to evaluate
whether Wasm is a viable alternative to native applications in an edge-cloud
context. The main goal of this project is to evaluate the responsiveness of a
CPS employing Wasm and compare it to a native implementation. We aim to
present an overview of the current Wasm ecosystem and describe the usability
of the technology as a portable edge network runtime. We further aim to
illustrate a possible implementation of an edge network system and to produce
recommendations useful to both an industrial application and further research.

1.3 Delimitations
The project forgoes an in-depth comparison and analysis of compilation
options since extensively covered in other works. A performance trade-off
is expected for Wasm compared to a baseline, but a detailed analysis of
the reasons leading to differences in performance is out of scope for this
project. This project aims to measure the overall latency Wasm introduces
in an example implementation of a CPS and to compare the latency against
the performance requirements posed by an industrial application.

4 | Introduction

1.4 Research methodology
The evaluation of our research questions is based on a quantitative analysis of
empirical data collected through experiments on a (simulated) CPS. RQ1 is
addressed through an evaluation of the performance, given the experimental
results, platform support, and features in general, in terms of the requirements
posed by the selected robot arm control scenario. We address RQ2 through
the evaluation of the experimental results measured in an implementation of
the robotics system. We compare metrics such as execution time and end-to-
end responsiveness to a baseline (native binaries), to measure the additional
delay introduced by Wasm. We further compare and validate our results with
existing literature. A more detailed discussion of the methodology is presented
in Chapter 3.

1.5 Ethics and sustainability
Several ethical and sustainability issues can emerge from the use of IIoT.
Increasingly large quantities of timely and accurate data drive decision-making
and processes in industrial applications. The large amount of collected and
transferred information raises privacy concerns, while latency and throughput
requirements lead to increased energy and resource demands for network and
cloud infrastructure. The locality of edge network architectures can help
mitigate some of the privacy and sustainability concerns by transforming and
processing information closer to data sources and consumers. It can help
to ensure the timeliness of data by reducing latency and easing the strain
on core network infrastructure. By facilitating and enabling edge network
architectures, Wasm can help increase the efficiency of CPS, allowing device
networks to share storage and compute resources and capabilities. The project
relies on empirical data recorded from a simulated workload; as such it poses
no privacy issues.

1.6 Contributions
This thesis provides the following main contributions:

• We describe different placement and deployment options for Wasm in
an edge network architecture.

Introduction | 5

• We measure the performance overhead introduced by Wasm in a
cyber-physical system, comparing it against alternatives and industrial
requirements.

• We evaluate the relevance of Wasm as a portable virtualization layer for
industrial applications and its usability in the domain.

1.7 Structure of the report
In Chapter 2, we introduce the key concepts encountered in the remainder
of this report. We briefly describe both edge computing and Wasm to the
extent relevant to this work and describe some of the concepts from robotics
used throughout our implementation. We further summarize related and
comparable literature and their main findings. In Chapter 3, we outline the
design rationale, considered options, evaluation, and key factors of our work.
We describe the implementation of our experiments and the major technical
choices. In Chapters 4 and 5, we present the main empirical results of
this project, discuss the broader implications of the results and evaluate the
usability of Wasm in an industrial edge computing application in terms of
benefits and requirements. In Chapter 6, we summarize our main conclusions
and present several recommendations for future research topics.

6 | Introduction

Background | 7

Chapter 2

Background

The major technologies and background areas discussed in this project are
cyber-physical systems and robotics, edge cloud, and Wasm. In this chapter,
we briefly introduce the main concepts and then present a short overview of
related works that analyze the performance of Wasm in various contexts.

2.1 Technical background

2.1.1 Cyber-physical systems
A cyber-physical system integrates sensors and actuators, control and
connectivity into physical infrastructure and objects. The availability of cost-
effective sensors and advances in network technology have enabled several use
cases in which networked devices can sense—and interact with—the physical
world, creating increasingly complex CPS. Examples of CPS include many
IoT and IIoT applications, like self-driving cars and smart devices, as well
as smart grids and smart manufacturing. Many implementations leverage the
storage, performance, and flexibility of cloud platforms since the capabilities
of IoT devices are typically limited due to size and power limitations [1, 7].
The traditional centralized cloud architecture has, however, quickly become
a bottleneck, especially for time-sensitive applications, due to low latency
requirements [2].

2.1.2 Edge computing
Performance requirements as well as sustainability considerations have led
to the development of technologies to replace or complement cloud-based

8 | Background

systems, with varying degrees of decentralization [2, 8]. The distributed
architectural paradigm at the base of most of the proposed solutions is edge
computing. The core idea, originally introduced in the context of content
delivery networks, is to move computation and storage closer to the data
sources to reduce latency and save bandwidth [3, 9].

The edge computing paradigm is a promising solution, especially for many
novel ubiquitous computing and industrial IoT use cases, but there still exist
some hurdles holding back widespread adoption. A recent survey, targeted at
network operators and enterprises, shows that service providers and companies
expect edge computing to be important or even critical to their business, and
Telecommunication companies believe IoT and 5G to be the main drivers for
the adoption of edge computing. However, concerns about ecosystem maturity
and security are seen as the main inhibitors [10].

Existing studies identify portability, latency, and safety as critical
requirements for underlying technologies in edge networks and CPS platforms
[4, 5]. The main challenge in an edge network environment stems from the
heterogeneity of the devices, which, depending on the applications, ranges
from servers in edge data centers and content delivery networks to mobile
phones, smart cars, appliances, and embedded robot controllers. The diverse
nature and capabilities of devices, paired with the latency requirements in
many CPS, make it necessary to write and support fast and portable code with
a low operational footprint.

2.1.3 WebAssembly
Wasm has been previously proposed as an enabling technology in edge
network architectures based on its features and capabilities. Li et al. [11]
and Li et al. [12], for instance, propose Wasm for Edge and IoT applications
describing its main advantages as allowing better portability and execution
in sandboxed environments. They propose a programming model, WiPROG,
and a runtime, WAIT, optimized for use on resource-constrained IoT devices,
illustrating the benefits of Wasm-based approaches in the domain. Similarly,
Nieke et al. [13] propose an edge service migration platform, EDGEDANCER,
that leverages the sandboxed design, efficiency, and portability of Wasm to
support secure, portable, and provider-agnostic service relocation.

Wasm is a portable bytecode format for a stack-based virtual machine. The
language is designed as a portable compilation target, enabling deployment for
web, client, and server applications [14]. Wasm aims to be fast, safe, portable,
and hardware-, language-, and platform-independent [6]. It is an alternative to

Background | 9

native compilation or interpreted languages and allows to compile applications
from many different languages as well as to reuse of existing tool chains. As a
virtualization layer, it offers the portability required by Edge cloud applications
[15]. The design and provided features make Wasm a promising solution for
creating portable and modular edge cloud architectures that can be supported
on a wide range of platforms.

2.1.3.1 Wasm runtimes

Wasm bytecode is designed to be executed in a portable virtual machine that
can be embedded in a standalone runtime environment or a host application. A
Wasm runtime is a bytecode interpreter that executes the Wasm modules in a
secure sandbox without access to system services and networking. Interaction
with the outside world is provided by the runtime, originally by Web APIs
provided by browsers. Several Wasm runtimes are available for executing
Wasm modules as standalone applications or embedded in applications and
libraries written in other languages [16]. A Wasm runtime’s core functionality
is to translate from the portable Wasm code into platform-specific binary
encoding. Runtime implementations rely on ahead-of-time (AOT) or just-
in-time (JIT) compilation or interpreters to render Wasm code executable,
offering one or more options for standalone or embedded execution. The
various available runtimes offer a broad spectrum of features, language
integrations, execution options, and compilation modes.

2.1.3.2 Security model

The main goals of Wasm’s security model are to offer users protection from
malicious or malfunctioning code and to provide developers with the means
to develop safe applications [6]. The security model of Wasm is centered
on the execution of possibly untrusted code inside a sandboxed environment
[6]. Code is executed inside a memory-safe sandbox that isolates potentially
malicious, or faulty, modules from the host environment and applications
and data sharing the same host resources [17, 18]. Fault isolation in Wasm
is achieved through memory isolation; each Wasm module is executed in a
sandbox with dedicated memory, containing the effects of operations inside
the sandbox. Wasm further restricts access to the execution environment
on the host platform [6]. Any external functionality, such as access to host
functions, I/O, or operating system calls, has to be provided explicitly by the
host application or runtime. Further, all callable functions are statically pre-
defined and isolated from an application’s memory, allowing strict checks on

10 | Background

the application’s control flow [19].

2.1.3.3 WebAssembly System Interface

The WebAssembly System Interface (WASI) is a modular system interface
that provides access to features like file system and network socket access,
clocks, and other operating-system-like services to Wasm modules [20]. WASI
is being standardized by a subgroup of the W3C WebAssembly workgroup
[21]. It implements an application program interface (API) and application
binary interface (ABI) to provide fine-grained access to host system resources
through any compliant runtime, exposing functions analogous in purpose to
system calls. The interface aims to allow Wasm to have access to functionality
outside of its sandbox in a non-browser environment in a controlled manner.

2.1.4 Use case: robot arm control
The scenario considered in this project is a CPS in which a robot’s movement
is controlled over a network. The step-wise movement of the robot is given
by computing the robot’s joint configuration for a target position at each step.
A typical robot has multiple degrees of freedom (DoF), meaning one or more
joints can be configured independently. Figure 2.1 shows such an example
robot arm with three rotational joints that can be positioned independently.
The robot can be modeled as a hierarchical chain of links and joints in a parent-
child relationship in which a change in a joint is propagated to its children.

The resulting kinematic model can be used to compute the position of
a joint or link (e.g., the end effector) from a joint configuration through
forward kinematics (FK). That is, if we know the angles of the individual
joints, we can compute where an element of the kinematic chain is in space.
Inverse kinematics (IK) can be used to compute the opposite, i.e., the joint
configuration necessary to place an element of the chain, e.g., the end effector,
in a specific position, if such a solution exists [22]. Figure 2.1 illustrates the
relationship in a simplified way in a 2-dimensional space.

The inverse kinematics problem can be solved with several approaches, for
example by pre-computing all possible solutions using trigonometric methods.
A popular and more dynamic solution is the use of the Jacobian matrix to find
a solution iteratively [23]. The Jacobian method, used as a solution algorithm
in this project, approximates a solution by iteratively introducing changes in
the robot’s joint positions and minimizing the error between the position of
the end effector and the target.

Background | 11

Figure 2.1: Illustration of a robot’s joint configuration and the relationships
between forward and inverse kinematics.

2.2 Related work
Several studies assess the performance of Wasm through a comparison to
alternatives relevant to the domain, such as native code, Docker containers, or
JavaScript. In this section, we summarize relevant and recent efforts toward
describing the performance of Wasm.

Denis [24] compares the performance of multiple Wasm runtimes using
the libsodium cryptography library as a benchmark, comparing the execution
times of several major Wasm runtimes with native performance on a Cloud
compute server instance. The benchmarks show a ×2.32 (median across
multiple test samples) performance disadvantage for the best-performing
runtime for every single benchmark compared to native execution.

Hockley and Williamson [25] evaluate the performance of Wasm as a
general-purpose server-side scripting language. They run micro and macro
benchmarks, written in Rust, using the Wasmer runtime, comparing the
execution times between JIT and native execution. The authors implement
a Web proxy caching simulator as an example application for the macro
benchmarks. They find a ×5–×10 performance loss for Wasm compared to
the native implementation. They attribute the performance loss to the overhead

12 | Background

caused by frequent calls into the Wasm runtime’s sandbox.
Yan et al. [26] compare and analyze the performance of Wasm and

JavaScript across different browser environments. The authors find JIT
optimizations to be mostly ineffective for Wasm. They further find a
significant memory overhead for Wasm compared to JavaScript and that
performance is inconsistent for both JavaScript and Wasm between different
browsers and engines.

Napieralla [27] compares Wasm and Docker for deployment on con-
strained IoT devices in terms of capabilities and performance. In the study,
they perform several benchmarks using the PolyBenchC benchmark suite to
compare the performance of the Wasmer runtime with both native execution
and Docker containers as an alternative. They state that Wasm binaries take
twice as long as native binaries and the startup time for a Wasm runtime is
1/10th that of a Docker container.

Jangda et al. [28] measure the performance of Wasm in browser
environments. The authors implement a framework for emulating a UNIX
kernel in browsers, Browsix, allowing a comparison of Wasm and native code.
They found a ×1.3 performance advantage of Wasm over JavaScript, and a
×1.45–×1.55 disadvantage compared to native execution running the SPEC
benchmark suite.

Haas et al. [14] feature an in-depth overview and discussion of Wasm
and its design and semantics. They further compare Wasm performance with
native execution using the PolyBenchC benchmark suite. The authors find
execution times of Wasm, executed on both the V8 and SpiderMonkey engines,
within ×2 of native execution times.

While some papers focus on a broad set of common workloads using
benchmark suites, others measure the impact of Wasm for specific use case
implementations. We aim to validate and extend existing results for the
selected CPS use case scenario.

State of the art summary
Wasm performance evaluations show, in general, a significant overhead when
comparing Wasm with native code implementations. Most studies find
that measured Wasm execution times are within a range of ×1.5–×2.5 the
native execution times, depending on the tested workload, execution mode,
and implementation details. Table 2.1 summarizes the relevant findings of
compared studies.

Background | 13

Study Focus Results
Denis [24] Comparison of Wasm

runtimes, libsodium
cryptography library as
benchmark

×2.32 native (me-
dian)

Hockley and
Williamson [25]

Performance of Wasm as a
general-purpose server-side
scripting language

×5–×10 native

Napieralla [27] Comparison between Docker
and Wasm, PolyBenchC bench-
mark suite

×2 native

Jangda et al. [28] Comparison between Wasm,
native, and JavaScript, SPEC
benchmark suite

×1.45–×1.55
native

Haas et al. [14] Comparison between Wasm,
asm.js and native, PolyBenchC
benchmark suite

within ×2 native

Table 2.1: Comparison of results in related literature, Wasm execution times
compared to native code execution.

14 | Background

Method | 15

Chapter 3

Method

In this study, we collect and analyze empirical data through experiments. This
chapter describes the main factors we consider in the experimental design.
We further describe the architecture, implementation details, and any relevant
software and hardware used in our experiments, and how our results are
evaluated.

3.1 The experimental design
We test two main hypotheses, we assume that i) a native implementation
significantly outperforms a Wasm implementation on a local level, as shown
in similar works, but that ii) the overhead introduced by Wasm in a host
application is not excessive in an end-to-end scenario when compared against
a latency requirement. To test the hypotheses, we perform a series of
benchmarks, using a simulated robot arm control system to evaluate the
performance difference between native code (as a baseline) and Wasm.
Through the benchmarks’ results, we compare and evaluate the different
workload implementations, runtimes, application architectures, placement
options, and deployment options described below; a summary is shown in
Table 3.1.

3.1.1 A robotics workload
The robotics task measured in our benchmarks consists of controlling a step
during a robot’s movement by calculating its joint angles for a given initial
and target position. The input for a task is represented by the initial joint
configuration of the robot, i.e., the initial angles of its joints, and the target

16 | Method

position of the robot’s end effector. The output is the joint configuration that
allows the robot to reach the target position if such a solution exists. All
measurements are performed using the same implementation of a workload
library which exports the solving functionality for the implemented robot
models. The solutions are computed using the Jacobian method, described
in Section 2.1.4, as implemented by a third-party library. Through empirical
experimentation, we found that the default configuration of the library’s solver
with an upper iteration limit of 100 iterations works reasonably well for the
implemented robot models. We found that setting the iteration limit over that
threshold does result in an increase in the time it takes the algorithm to fail for
a target the robot cannot reach from a given joint configuration, with only a
modest increase of found solutions, since the algorithm simply takes longer to
terminate for unreachable targets.

Figure 3.1: 5 DoF Robot reachability plot. Blue indicates a reachable and
orange an unreachable target.

To ensure that the initial joint configurations and target positions used as
input for the measured samples are evenly distributed and to avoid possibly
solving only for targets with the same complexity, we generate pairs of initial
joint configurations and target points randomly over the whole action radius
of the robots. A set of 100 reachable and 100 unreachable combinations is
used as input for the experiments. An unreachable combination, or failure, is
intended as a combination of initial joint angles and target position for which
the algorithm does not find a solution with the given solver configuration. That

Method | 17

is, the robot model cannot reach the specified target from its initial position due
to joint constraints or the limits of the robot’s action radius. Figure 3.1 shows
for example the distribution of the target points for one of the implemented arm
models in the three-dimensional space. The sample size is determined through
a small number of preliminary measurements used to estimate the variance∗.

3.1.2 Wasm runtimes
We select a subset of available runtimes based on their “traction”, that is, user
adoption and reasonable development activity [30]. The runtimes are further
selected for compatibility with the WASI standard, language support, and to
represent different execution options, including AOT and JIT compilation,
or interpreted execution. The experiments are performed using the runtimes
described below; all projects are in active development.

• Wasmer (version 3.1.1), an open-source Wasm runtime, offers both
AOT and JIT compilation. Supports different compiler backends.
Throughout this project, the Cranelift compiler is used [31].

• Wasmtime (version 6.0.0), similar to Wasmer, with comparable features.
The runtime is built on the Cranelift code generator [32].

• Wasm3 (version 0.5.0), a Wasm interpreter, designed for small
footprint and wide platform support [33]. Used only in preliminary
measurements.

The Wasmer and Wasmtime runtimes offer a command-line interface
(CLI) tool for running Wasm in standalone mode as well as libraries
for integration in several programming languages, including Rust, C/C++,
Python, and .Net. Wasm3 does not fulfill the use case requirements in terms of
performance in preliminary test results (described in Section 4.1.3) and is thus
excluded in the implementation of the final local and end-to-end benchmarks.

3.1.3 Application architecture
All runtimes considered in our implementation offer both a standalone CLI
utility as well as a library available for many programming languages. The
runtimes’ CLI tools are used to compile (in AOT mode, if available) and

∗Determined through the method outlined in Jain [29], assuming a confidence interval of
95% and ±5% accuracy.

18 | Method

either directly invoke functions on Wasm binaries or execute complete Wasm
applications through the command line. Given the significant overhead caused
by access of resources outside the Wasm sandbox shown in related research,
we opt for embedding a Wasm runtime in a host application, even though
we record some preliminary measurements using the runtimes as standalone
environments to compare AOT and JIT performance [25]. The implemented
architecture allows the execution of only the core functionality, that is, solving
a given robotics workload, inside a guest Wasm environment.

For the host applications, we implement a guest abstraction layer as
a common interface for the embedded Wasm runtimes. The Wasm guest
implementation exposes the required functionality, that is, the initialization
of Wasm modules and function calls. The embedded runtime reads the pre-
compiled Wasm workload library during application start-up and performs
instantiation steps, such as code validation, optimization, and generation, that
result in an in-memory version of the Wasm library. Each function call is
then executed in a separate, sandboxed instance of the module. Ideally, a host
application should offer the functionality to read and update Wasm modules
at runtime, but some simplification is required to have predictable interfaces
for both the native and the Wasm function calls we time and compare. Section
3.2.1 illustrates the host applications’ architecture and implementation in more
detail.

3.1.4 Compute placement
Figure 3.2 illustrates the conceptual scenario selected for the series of
benchmarks we performed. The use case represents an industrial robotics
scenario, set in a factory, in which we compare the responsiveness of a Wasm
implementation of a robotics task with a native implementation. The three
placement options we consider for our experiments are i) a remote cloud
server, ii) a near edge device, e.g., an on-premise rack server, and iii) a far
edge device near the client, e.g., a control device close to the robot. The terms
near and far edge are used here from the perspective of cloud providers and
denote the proximity to the core network; near edge refers to the infrastructure
closer to the cloud while far edge refers to the infrastructure closest to the user
or end application.

The placement options are shown in Figure 3.2 as red, green, and
blue markers, where green and blue markers indicate possible near and far
edge locations. To assess the impact of the placement choice, we conduct
measurements on three devices representing the following placement options.

Method | 19

Figure 3.2: Networked factory scenario defined for the end-to-end benchmarks
with placement options.

Far edge A resource-limited device located at the far edge, in close proximity
to (or possibly integrated with) the client device. The far edge
experiments are performed on a Raspberry Pi 4 Model B running DietPi
(version 8.14.2), a minimal operating system based on Debian and
optimized for use on SBCs [34]. The device used for the experiments
comes with an ARMv8 CPU and 4GB RAM.

Near edge Represents a small server or comparable device located at the near
edge, on-premise in proximity (in network terms) to the client device.
The near edge experiments are performed on a local device running
Ubuntu 20.04 LTS. The local device used during the experiments is a
Linux notebook that runs on an x86-64 2.67GHz CPU and 4GB RAM.

Cloud A cloud device in a remote data center. The cloud experiments are
performed on a VPS from DigitalOcean∗ running Ubuntu 20.04 LTS.
The VPS used is an instance of the ”basic” offering, which comes with
a (virtual) x86-64 CPU and 512MB RAM.

Client Represents the client device in the robot control system. An Odroid
XU4 with an ARMv7 CPU and 2GB RAM is used as a client device
during remote measurements.

The local devices (near and far edge, client device) are connected to the
same, RISE-internal test network. The (average) TCP round-trip times from

∗Website: https://www.digitalocean.com.

https://www.digitalocean.com

20 | Method

the client to the near and far edge device are measured at around 1ms and 8ms,
respectively. The cloud device is located in the DigitalOcean Frankfurt region,
in Germany. The average round-trip time is measured at 32ms. TCP round-
trip times are measured using the Nmap Nping (version 0.7.80) utility [35]. All
experiments are performed on an unloaded system (less than 5% CPU usage),
with the bare minimum of system and user services running, to minimize the
impact of other processes on the benchmark results.

3.1.5 Deployment
Even though the focus of the project lies on a networked robot control
application, we perform measurements for both a local and a remote workload
deployment for all placement and workload options. The latency measured in
local benchmarks allows us to compare our results with similar results from
related literature, while the remote application is implemented as a simple
proof-of-concept for a CPS consisting of a client-server pair. We implement
the same overall host application architecture with an embedded Wasm guest
environment for both the local and remote benchmarks. The local and remote
host applications and the remote client implementations are described in more
detail in Section 3.2.1. The remote CPS is implemented through an HTTP
client-server pair.

Summary
Table 3.1 summarizes the main factors we consider for the implementation of
our experiments.

Factor Considered options Notes
Workload Native or Wasm Robotics tasks
Wasm Runtimes Wasmer, Wasmtime, Wasm3
Placement Cloud, near edge, far edge
Application
architecture

Embedded or standalone Applies to Wasm
only

Deployment Remote or local
Network LAN/WAN Does not apply to lo-

cal deployment, de-
pends on placement

Table 3.1: 6 factors considered for the experimental design.

Method | 21

3.2 Implementation
All workloads and Wasm host applications are implemented in Rust. The
language choice is based on Rust’s affinity to the Wasm ecosystem and
performance [30]. Both Wasm and native measurements are performed
using two versions of the same workload library, one is compiled as a
Wasm artifact, and one is imported as a native dependency. All workloads
are compiled using the Rust default toolchain (version 1.67) for both the
native and the Wasm artifacts. All workloads and applications are compiled
using the default target architecture on the tested system (native) and the
wasm32-unknown-unknown target architecture (Wasm) as compilation
targets, and the default release compilation optimization. We rely on the
time implementation in the Rust Standard library to measure the time elapsed
while solving a given arm movement task. Preliminary measurements include
results recorded using the hyperfine tool on the far edge device using the
runtimes’ CLI utilities to execute standalone Wasm artifacts [36].

3.2.1 Host Applications
To measure both the end-to-end response times and the Wasm overhead for
solving the tasks, we implement a local and a remote host application. The
remote application is used to measure the response times between the client
and the server for the three placement options described previously. The local
application is used to measure the execution times on the devices locally. The
remote and local host applications share a similar architecture and the same
Wasm guest implementation. Since the timing utility shares code between
the local host application and the client, it is implemented as part of the local
application.

3.2.1.1 A remote host setup

The remote CPS Wasm host application implements an HTTP API that
exposes both native and Wasm function calls to a client. A simple HTTP
client application is used to iterate over the set of target and joint configuration
combinations and measures the response times of the solver API. Figure 3.3
gives a high-level overview of the components of the remote host application.

22 | Method

Figure 3.3: Overview of remote host application architecture used in end-to-
end benchmarks.

Figure 3.4: Overview of local host application architecture used in local
benchmarks.

Method | 23

3.2.1.2 A local host setup

The local host application iterates over the set of target and joint configuration
combinations and measures the time it takes to solve a given combination
through both the function call exported by the native workloads library and the
call to the same function exported by the compiled Wasm workloads module
via the guest library for a given robot model. The components of the local host
application are shown in Figure 3.4.

3.2.2 Robot models
For the implementation of the robotics tasks, we rely on the k project (version
0.29.1) by the Open Rust Robotics platform [37]. The project is a Rust
Kinematics library that offers a straightforward API for the implementation
of forward and inverse kinematics functionality and robot models. Two robot
models are used in our benchmarks. The first represents a robot designed for
didactic purposes for the Arduino platform, the Tinkerkit Braccio∗ robot. The
second robot model is a robot definition provided as an example in the k library
and represents a torso with a left and right arm. The robots are defined through
available files in the URDF format; the implemented robots are illustrated in
Figures 3.5 and 3.6, respectively [37, 38].

Figure 3.5: The Braccio Arduino robot arm (during assembly).

We do not consider more complex, composite movements, e.g., grabbing
and moving an object. The goal of the implemented solver library is to

∗Website: https://store.arduino.cc/products/tinkerkit-braccio-robot.

https://store.arduino.cc/products/tinkerkit-braccio-robot

24 | Method

Figure 3.6: k sample robot torso model (rendering).

compute the necessary joint configurations to reach a given target point with
the end effector. For the robot arm model, the end effector is one of the gripper
joints; for the torso robot model, the aim is to reach a point with the right wrist
joint. The resulting kinematic chains representing the robots have 5 DoF and
6 DoF, respectively.

3.3 Evaluation
To address our research questions, we analyze our empirical results and
evaluate whether Wasm satisfies the responsiveness requirements posed by a
CPS in an edge network environment. We further assess whether Wasm offers
the platform and language support to achieve the portability goal posed by a
diverse edge network system.

3.3.1 RQ1 - Usability in an edge network CPS
We compare our empirical results with performance requirements identified
from industrial demands to address RQ1. Although the exact demands
vary depending on the domain and application, necessitating a more
detailed analysis and possibly a comparison with existing alternatives,
we evaluate whether Wasm provides developers and maintainers with the
features necessary to achieve reasonable portability and performance goals,
as described below.

Method | 25

3.3.1.1 Portability

Due to the diverse nature of devices and platforms, applications and artifacts
must provide a high degree of portability to help reduce implementation efforts
and increase the flexibility of edge network systems [4, 5]. Portable and
backward-compatible code can help reduce development and maintenance
costs and orchestration complexity in distributed systems. Due to its open
design, broad support, and its design goals, we expect Wasm to be compatible
with most major languages and common platforms.

3.3.1.2 Performance

A CPS task feasibility depends on how its performance compares against
industrial requirements. Some examples, with latency limits varying between
<1–500ms, are shown in Table 3.2. The latency requirements can vary
depending on the details and limitations of the application. To evaluate
whether Wasm satisfies the performance requirements, we compare the
metrics recorded during our experiments with a pre-defined latency limit,
selected from the requirements of possible applications. As a use case, we
consider the control of a robot’s movement through input signals from infrared
gates or similar sensors. Thus, for this project, we assume an overall latency
limit of 100ms, corresponding to a common signal polling interval, to be a
reasonable and realistic choice.

Sector Latency Source
Industrial Applications 5–500ms Lasi et al. [39]
Industrial Robotics 50ms HAL Robotics Ltd., polling

for tool path calculation for an
arc welding task

Industrial Robotics 100ms HAL Robotics Ltd., a com-
mon interval for electrical sig-
nal polling

6G <1ms Wikström et al. [15]
5G-Edge 1–10ms Marsh et al. [4]

Table 3.2: Selection of latency requirements for industrial applications,
industrial robotics, and networking standards.

26 | Method

3.3.2 RQ2 - Wasm overhead
To address RQ2, we compare the response times measured for our Wasm
implementation with a native implementation for the same robotics task.
We further compare and validate the local and remote results for different
placement options in an edge network with results from existing literature,
described in Section 2.2. The performance is measured strictly in terms of
the latency given by the solving time (local deployment) and response time
(remote deployment); a more detailed evaluation based on other metrics is
dependent on a variety of specific characteristics of possible use cases and
thus out of scope for this project.

Results and analysis | 27

Chapter 4

Results and analysis

In this chapter, we present the main empirical results of this project. Further,
we describe how Wasm can help solve portability issues posed by an edge
network CPS and compare the empirical results to the use case’s latency
requirements.

4.1 Empirical results
To answer RQ2, we perform benchmarks using a CPS implementation.
We measure the response times for the robotics tasks on three different
devices, representing the considered placement options. The Wasm results
shown in the following figures are those measured for the Wasmer runtime;
the Wasmtime runtime results are similar but omitted here for clarity.
The complete results can be found in Chapter A of the Appendix. The
Appendix further includes measurements performed with a no-op task, i.e.,
an empty function call, and a homepage request (native remote results only,
implemented mainly for testing purposes). The results shown in this section
include the response times measured for the successful solution of a robotics
task through the remote and local host applications as described in Chapter 3,
as well as some relevant results from preliminary standalone measurements. In
the following results, we consider exclusively the time measured for tasks for
which a solution can be successfully found since response and execution times
in case of failure depend mostly on the parametrization of the solver algorithm
and error handling. Recorded times for the tasks failed on unreachable
combinations are shown in Chapter A of the Appendix.

28 | Results and analysis

4.1.1 End-to-end measurements
Figure 4.1 shows the elapsed time, in milliseconds, for solving the two robotics
tasks (arm and torso robot models) on the Raspberry Pi (far edge device). The
average solving times for the robot arm task are around 7ms and 12ms for the
native and Wasm implementation, respectively, and around 9ms for the native
and 12ms for the Wasm implementation of the torso robot model. The box
plots in Figure 4.1 and successive figures show a box extending from the first
to the third quartile of the data, with a line at the median and a green point
at the mean. The whiskers extend within ×1.5 the inter-quartile range from
the box, while outliers beyond that range are plotted as individual points. The
response times, for both implementations, are well below the requirements
of the selected scenario, even though there is a difference in response times
between the native and Wasm implementation.

Figure 4.1: End-to-end benchmarks, robotics workloads on the far edge
device.

The same results are shown for the near edge placement in Figure 4.2,
where the measured response times have an average value of 9ms and 13ms
for the native and Wasm implementations of the arm robot model, and 11ms
and 15ms for the native and Wasm implementations of the torso robot model.
Figure 4.3 shows the results similarly measured on the cloud device. The mean
values of the measured response times are between 29ms and 32ms for both
tasks, both for the native and the Wasm implementations.

The difference between Wasm and native execution times is significant
even though execution with near-native performance is a stated Wasm design

Results and analysis | 29

Figure 4.2: End-to-end benchmarks, robotics workloads on the near edge
device.

Figure 4.3: End-to-end benchmarks, robotics workloads on a cloud device.

goal [6]. The results across all placement and runtime options show that the
native implementation consistently outperforms the Wasm version, as shown
in comparable works. Missing optimizations and code generation issues
during the conversion from Wasm bytecode into machine code have been
identified as the main causes for the performance reduction [26, 28].

Figure 4.4 shows the (average) response times, grouped by workload and
placement, relative to the native response times. As a general trend, we can see

30 | Results and analysis

that the overall performance overhead introduced by Wasm gets increasingly
negligible with growing device performance and network overhead.

Figure 4.4: End-to-end benchmarks, mean Wasm response times for robotics
workloads, relative to mean native response times.

The results found in related works, described in Section 2.2, suggest
that the performance ratio of Wasm to native code execution does not vary
substantially across different runtimes and implementations [14, 24, 27, 28].
Assuming that this holds across devices and platforms, this means that the
overall latency difference between Wasm and native implementations in an
end-to-end scenario is mostly dependent on the network latency and the
device’s performance. Increasing the device performance or the network
latency decreases the impact of the performance trade-off introduced by Wasm.

However, given that, when comparing the considered cloud and edge
placement options, the network latency is the more dominant factor, we find
that moving the computation closer to the target application is beneficial in
terms of overall application responsiveness, even when considering a greater
performance decrease due to device limitations. The results show that in our
implementation we can roughly half the application latency by deploying the
workloads at the network’s edge, moving closer to the target application, thus
validating the edge computing approach.

4.1.2 Local benchmarks
The results measured for a local deployment are consistent with the
performance ratio of Wasm to native execution times found in similar studies,

Results and analysis | 31

described in Section 2.2, across all considered runtime and placement options
[14, 24, 27, 28]. Figure 4.5 shows the (average) execution times, grouped by
workload and placement, relative to the native implementations. We can see
that the Wasm measurements are within ×1.9–×2.2 the times recorded for the
native tasks.

Figure 4.5: Local benchmarks, mean Wasm execution times for robotics
workloads, relative to mean native execution times.

The gap between our results and those shown by Hockley and Williamson
[25], who find a ×5–×10 difference, are most likely due to implementation
choices since the measured tasks in our project do not require any interaction
with resources outside the runtimes’ environment. The complete results for
the local measurements can be found in Chapter A of the Appendix.

4.1.3 Non-embedded measurements
Figure 4.6 shows some of the results measured during preliminary tests
using non-embedded Wasm artifacts on the far edge device. The results are
recorded using the Wasm runtimes to execute several test cases as standalone
applications. The results include the execution time for two applications
performing a robotics task i) compiled and executed as a native binary, ii)
compiled as a Wasm application and executed in the Wasm3 interpreter and
both the Wasmer and Wasmtime runtime in JIT compiled mode, and iii) pre-
compiled using the Wasmer and Wasmtime CLI tools to compile and execute
the applications in AOT compiled mode. The measured execution times for
both robot applications executed in native and AOT-compiled mode are below

32 | Results and analysis

100ms, with a significant difference between Wasm and native performance,
especially for the Wasmer runtime. The measured execution times for both
robot samples executed with Wasm3 are, on average, around ×20 longer than
the native applications, in both cases exceeding the selected upper response
time limit. Results measured for both Wasmtime and Wasmer in JIT compiled
mode are not included in this plot since they are both at around 1s, considerably
exceeding the chosen latency limit.

The significantly worse JIT performance is most likely due to the
complexity of the (unoptimized) Wasm artifacts, which impacts the code
analysis and generation. Both Wasm runtimes perform almost ×10 worse
in terms of execution time when comparing the JIT execution of an
empty application that includes the robotics dependencies with an identical
application without any dependencies.

Figure 4.6: Standalone benchmarks, selected execution times for robotics
applications.

4.2 Portability and performance
To answer RQ1, in this section, we take a closer look at the portability and
flexibility offered by Wasm and compare our empirical results in an end-
to-end application against the chosen latency requirement for an industrial
application.

Results and analysis | 33

4.2.1 Portability
Table 4.1 illustrates the language and platform support offered by the Wasm
runtimes we consider for this project [31–33]. Wasm bytecode is a compilation
target for all major languages, can be embedded in all popular languages,
and supports most common platforms, offering considerable portability and
language flexibility [16, 40]. The offered language and platform independence
make it a suitable choice for applications targeting portability and flexibility.
Wasm is an open standard and the ecosystem includes a great number of
compilers, runtimes, and tools provided by third-party projects. Both Wasm
and WASI further aim to be backward-compatible, reducing maintenance and
development efforts even though both are evolving standards [6, 20].

Runtime Supported Languages Supported Platforms
Wasmer Rust, C/C++, Go, Python,

PHP, Ruby, Go, C#, R, Elixir,
Java, JS

AMD64, ARM64, RISC-
V64

Wasmtime Rust, C, Python, .NET, Go,
Bash, Ruby, Elixir

AMD64, ARM64, RISC-
V64, S390X

Wasm3 Python3, Rust, C/C++,
GoLang, Zig, Perl, Swift,
.Net, Nim, Arduino,
PlatformIO, Particle,
QuickJS

Multiple architectures,
including x86, AMD64,
ARM, RISC-V, PowerPC,
MIPS, Xtensa, ARC32

Table 4.1: Language and platform support, selected Wasm runtimes.

4.2.2 Performance
Our empirical results show that, for all tested placement options, the Wasm
execution times for the implemented robotics tasks are within ×1.9–×2.2 the
native execution times. The results are consistent with comparable results
shown in other studies. The overall overhead introduced by Wasm into an end-
to-end system varies with the devices’ placement and performance, growing
with decreasing network latency or performance. The results show that, even
though there is a significant performance overhead when comparing Wasm
with native code, the overall performance is still in line with the requirements
of the chosen CPS application. That is, the response times for all tested
placement and runtime options are below the chosen latency limit of 100ms.
The results show considerable latitude in all three placement options we test;

34 | Results and analysis

the overall latency would still be below a more conservative latency limit, e.g.,
50ms. The results further validate the edge network architecture, illustrating
how proximity can help increase the responsiveness of a CPS application
despite the overhead introduced by Wasm and devices with more restricted
performance.

Discussion | 35

Chapter 5

Discussion

In this section, we discuss the relevance of our findings for edge networks and
describe possible placement options considering our empirical results and the
functionalities and capabilities offered by Wasm runtimes.

5.1 Wasm usability in edge networks
While edge network architectures can help reduce the latency in CPS, they
can pose significant issues due to the diversity of devices and platforms.
The language and platform flexibility offered by Wasm can help implement
an edge network system that allows services to be executed and migrated
in a heterogeneous network. While there is a trade-off between portability
and performance, our results show that the performance overhead introduced
by Wasm in the system is outweighed by the reduced latency found in
edge systems. We describe two possible placement options inside an edge
network with similar effects on the overall responsiveness of a cyber-physical
application. Based on our empirical results, we believe Wasm to be a viable
choice for implementing edge and cyber-physical systems. The features and
advantages Wasm offers in terms of portability and flexibility, particularly
benefit use cases such as service migration and scaling.

While our results do not show a significant advantage for one of the
tested edge placement options, the choice might be influenced by several
other factors, such as network topology, system architecture, and resource
availability. In our experimental design, we assume that the restrictions on
the devices’ performance increase with proximity, while it should be easier
to scale resources with increasing network latency; however, this does not
necessarily hold for all use cases and applications. In general, the results

36 | Discussion

from our benchmarks and comparable studies, suggest that the performance
degradation Wasm displays when compared to native code does not vary
substantially, with the following major caveats:

• Studies suggest that accessing resources and functionality outside the
Wasm sandbox is costly in terms of performance [25]. We opt for
an application architecture that embeds Wasm functionality in a host
application to minimize overhead due to frequent host-guest interaction
while allowing us to exploit Wasm’s portability for the core functionality
of our application.

• While efforts are underway to standardize access through WASI, Wasm
cannot take advantage of native hardware acceleration features, which
are relevant to applications such as cryptography and machine learning
[24, 41, 42]. The performance difference between Wasm and native
implementations might be prohibitive for such use cases.

• The proposed application architecture and implementation might not
be viable for all use cases. Platform and device limitations as well as
application requirements might dictate, for example, different runtime,
placement, or deployment choices, leading to worse results due to
runtime execution and optimization overhead [24].

• Studies found that the performance degradation is in large parts im-
putable to missing optimizations and problems during code generation
[26, 28]. Other applications and use cases might be impacted to a higher
degree, even though our results are consistent with similar benchmarks
performed in previous works, i.e. [14, 24, 27, 28].

The main goal of this project is to assess the responsiveness of
Wasm in an edge network CPS and evaluate whether the performance and
portability offered by the language can benefit applications in heterogeneous
edge networks. One further key requirement we do not consider in our
implementation and viability evaluation is safety. One of the main safety
challenges in edge network systems stems from untrusted code execution.
Systems and resources, e.g., memory and compute resources, need to
be safeguarded from malicious or malfunctioning code. Edge network
systems require the ability to isolate applications and data, particularly in
situations where applications from multiple tenants and entities share the same
environment and resources. Wasm offers developers security primitives and
risk mitigation features for the implementation of a safe edge network system.

Discussion | 37

However, this means that many of the safety guarantees rely on correct host
and runtime implementation. While we find that Wasm offers reasonable
risk mitigation mechanisms, the safety demands vary with the domain and
application, requiring a more detailed evaluation on a case-by-case basis.

Summary of research question answers
We find that Wasm is a viable option as a portable edge network runtime,
with some limitations. The main findings and answers to our original research
questions stated in Section 1.1.2, are the following.

RQ1 Could Wasm be used to operate an industrial robot application?
We find that Wasm offers the required portability to facilitate the
implementation of edge network systems. We further find that the
response times measured in the implementation of an edge network CPS
are within the 100ms latency limit chosen for the implemented robot
control application. Our results show that an edge network placement
can significantly reduce the response times through closer proximity to
the client, despite the considerable impact of Wasm on the application’s
overall performance and lower device performance.

RQ2 How much delay does Wasm introduce in an edge-cloud robotic
setting in comparison to native binaries?
We find that Wasm introduces a significant performance overhead when
compared to native implementations. For tasks executed locally, we
find that Wasm execution times are within ×1.9–×2.2 native execution
times. In an end-to-end scenario, we measure average Wasm response
times within 15ms for both edge network placement options and Wasm
response times within 32ms for the cloud placement option, while the
impact of Wasm on the overall latency decreases with increasing device
performance and network overhead.

38 | Discussion

Conclusions | 39

Chapter 6

Conclusions

Edge network solutions can reduce the latencies in cyber-physical systems
such as in IIoT applications. The heterogeneity of edge networks and industrial
demands make it critical to implement and deploy portable, fast, and safe
code. In this project, we evaluate the usability of Wasm as a portable runtime
in an edge network robot control system. To assess the usability of Wasm
for industrial applications, we evaluate whether it provides the portability
required by edge network systems and satisfies the performance demands of
an industrial use case.

We select and implement a robot arm control scenario and perform a series
of remote and local benchmarks. We compare our results against a baseline,
represented by a native implementation of the same task. This measures
the overall impact of introducing Wasm in the application stack. We further
compare the responsiveness of the implemented application against a latency
limit from selected industrial requirements.

We find that Wasm satisfies the portability requirement due to its language
and platform independence. Additionally, given our empirical results, we
show that the overhead introduced by Wasm is not prohibitive for the selected
application and that the overall delay of the Wasm implementation is well
within the chosen latency requirements. Thus, we conclude that Wasm could
benefit and enable several use cases due to its secure architecture, performance,
flexibility, and portability.

6.1 Future work
To keep the scope of the project manageable, we consider a restricted set of
technical and architectural choices, thus limiting the external validity of our

40 | Conclusions

results. The implemented application is a simplification of a remote robot
control system meant to assess primarily the performance differences between
a native and a Wasm implementation of a robotics task. In the remainder of
this section, we highlight some of the possible extensions to this project and
options that might warrant further research:

• The implemented task and architecture is a simplified model for one
of several possible applications that might be found in an IIoT scenario.
Many ubiquitous computing use cases depend on more complex models
and tasks, such as systems relying on computer vision, or federated
learning applications. Further research should validate the results for
increased complexity and different architecture and implementation
choices dictated by other use case requirements. Concretely, we could
extend the cyber-physical system presented from a single robot arm to,
for example, an automated factory floor.

• We do not consider all available options and features provided by the
Wasm ecosystem. For instance, we test two runtimes using the same
compiler backend and do not compare available optimization options
and tools. While our measurements seem to show a trade-off between
JIT performance and executable size (or, more precisely, complexity),
favoring AOT compilation and interpretation, further work is required
to evaluate available features and options, and their impact on the
performance of a system.

• In our experiment, we consider a simplified robot control application
in which a step in a robot’s movement is represented only by the
computation of the joint configuration for a given target. Further factors,
such as robot movement delays, error handling, and the effective control
of the robot, impact the overall responsiveness of a CPS. We think that
considering a more complete CPS implementation would be a useful
extension to this work.

• As can be seen in the plots in Chapter 4, we register several outliers in
some of the experiments which we cannot easily explain in a consistent
manner. The near edge model device shows the most severe examples,
which are excluded from the results, thus we assume that the outliers
are due to issues for that particular device. In other cases, the problems
might be caused by either hardware or software, the network, libraries,
or our implementation. Therefore, there is further room for investigating
these anomalies. One suggestion is to use a more granular analysis of the

Conclusions | 41

causes and components of the performance overhead and the variability
in some of the presented results.

42 | Conclusions

Lessons learned | 43

Chapter 7

Lessons learned

When starting with this project, I had no experience with WebAssembly and
a superficial knowledge of edge computing. Throughout the work on this
thesis, I had the opportunity to tinker with many different technologies and
paradigms, some outside of my comfort zone, and this project helped me apply
knowledge in new ways and widen my scope. But apart from know-how and
skills around the key technologies and a deep dive into (an admittedly small)
subset of robotics and system architecture, the main takeaway from this work
will be how it shaped my way of approaching and working on such a project.
Early on, it was clear that we were in front of a great number of different paths
and choices throughout the project, and the support from my supervisors was
invaluable in helping me keep the scope reasonable and approachable, and
consider things from different perspectives. What helped most in managing
the extent of the project was starting early with prototyping and to perform
small, incremental changes, evaluating at each step how we could narrow down
the options for the next iteration while working towards our original goal.
Having a short feedback loop was key in maintaining focus and steady progress
throughout the project. Another device I found helpful, particularly when
writing the report for this project, was maintaining organized and up-to-date
notes about the progress, thoughts, ideas, issues, and backlogs. This project,
all things considered, was an invaluable lesson, not only about the featured
technologies and concepts, but also in project management, and taught me
how to plan and execute a research project from start to finish through the
whole process.

44 | Lessons learned

References | 45

References

[1] L. Hou et al., “Internet of things cloud: Architecture and implemen-
tation,” IEEE Communications Magazine, vol. 54, no. 12, pp. 32–39,
Dec. 2016, ISSN: 0163-6804, 1558-1896. DOI: 10.1109/MCOM.2016.1
600398CM. [Online]. Available: https://ieeexplore.ieee.org/document
/7785887/ (visited on 06/07/2023).

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–
646, Oct. 2016, ISSN: 2327-4662. DOI: 10.1109/JIOT.2016.2579198.
[Online]. Available: http : / / ieeexplore . ieee .org /document /7488250/
(visited on 06/07/2023).

[3] A. Davis, J. Parikh, and W. E. Weihl, “Edgecomputing: Extending
enterprise applications to the edge of the internet,” in Proceedings of
the 13th international World Wide Web conference on Alternate track
papers & posters - WWW Alt. ’04, New York, NY, USA: ACM Press,
2004, p. 180, ISBN: 9781581139129. DOI: 10.1145/1013367.1013397.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1013367
.1013397 (visited on 06/07/2023).

[4] I. Marsh et al., “Evolving 5g: ANIARA, an edge-cloud perspective,”
2022. DOI: 10.48550/ARXIV.2205.03098. [Online]. Available: https:
//arxiv.org/abs/2205.03098 (visited on 02/03/2023).

[5] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott,
“Consolidate IoT edge computing with lightweight virtualization,”
IEEE Network, vol. 32, no. 1, pp. 102–111, Jan. 2018, ISSN: 0890-8044,
1558-156X. DOI: 10.1109/MNET.2018.1700175. [Online]. Available: h
ttps://ieeexplore.ieee.org/document/8270640/ (visited on 09/25/2022).

[6] A. Rossberg, “WebAssembly core specification,” W3C, W3C Working
Draft, Apr. 2022. [Online]. Available: https://www.w3.org/TR/2022
/WD-wasm-core-2-20220419/ (visited on 03/16/2023).

https://doi.org/10.1109/MCOM.2016.1600398CM
https://doi.org/10.1109/MCOM.2016.1600398CM
https://ieeexplore.ieee.org/document/7785887/
https://ieeexplore.ieee.org/document/7785887/
https://doi.org/10.1109/JIOT.2016.2579198
http://ieeexplore.ieee.org/document/7488250/
https://doi.org/10.1145/1013367.1013397
http://portal.acm.org/citation.cfm?doid=1013367.1013397
http://portal.acm.org/citation.cfm?doid=1013367.1013397
https://doi.org/10.48550/ARXIV.2205.03098
https://arxiv.org/abs/2205.03098
https://arxiv.org/abs/2205.03098
https://doi.org/10.1109/MNET.2018.1700175
https://ieeexplore.ieee.org/document/8270640/
https://ieeexplore.ieee.org/document/8270640/
https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/
https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/

46 | References

[7] S. Hamdan, M. Ayyash, and S. Almajali, “Edge-computing architec-
tures for internet of things applications: A survey,” Sensors, vol. 20,
no. 22, p. 6441, Nov. 11, 2020, ISSN: 1424-8220. DOI: 10.3390/s20226
441. [Online]. Available: https://www.mdpi.com/1424-8220/20/22/64
41 (visited on 06/07/2023).

[8] S. Wang, “Edge computing: Applications, state-of-the-art and chal-
lenges,” Advances in Networks, vol. 7, no. 1, p. 8, 2019, ISSN: 2326-
9766. DOI: 10.11648/j.net.20190701.12. [Online]. Available: http://ww
w.sciencepublishinggroup.com/journal/paperinfo?journalid=131&doi
=10.11648/j.net.20190701.12 (visited on 09/25/2022).

[9] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: A
platform for high-performance internet applications,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 3, pp. 2–19, Aug. 17, 2010, ISSN:
0163-5980. DOI: 10.1145/1842733.1842736. [Online]. Available: https
://dl.acm.org/doi/10.1145/1842733.1842736 (visited on 06/07/2023).

[10] Heavy Reading. “Strategies for connecting the edge: 2019 heavy
reading survey,” www.infinera.com. (2019), [Online]. Available: http
s://www.infinera.com/white-paper/strategies-for-connecting-the-edge
-2019-heavy-reading-survey/ (visited on 09/25/2022).

[11] B. Li, W. Dong, and Y. Gao, “WiProg: A WebAssembly-based
approach to integrated IoT programming,” in IEEE INFOCOM 2021
- IEEE Conference on Computer Communications, Vancouver, BC,
Canada: IEEE, May 10, 2021, pp. 1–10, ISBN: 9781665403252. DOI:
10.1109/INFOCOM42981.2021.9488424. [Online]. Available: https:
//ieeexplore.ieee.org/document/9488424/ (visited on 01/25/2023).

[12] B. Li, H. Fan, Y. Gao, and W. Dong, “Bringing webassembly to
resource-constrained iot devices for seamless device-cloud integra-
tion,” in Proceedings of the 20th Annual International Conference on
Mobile Systems, Applications and Services, Portland Oregon: ACM,
Jun. 27, 2022, pp. 261–272, ISBN: 9781450391856. DOI: 10.1145/34
98361.3538922. [Online]. Available: https://dl.acm.org/doi/10.1145/3
498361.3538922 (visited on 01/19/2023).

[13] M. Nieke, L. Almstedt, and R. Kapitza, “Edgedancer: Secure mobile
WebAssembly services on the edge,” in Proceedings of the 4th
International Workshop on Edge Systems, Analytics and Networking,
Online United Kingdom: ACM, Apr. 26, 2021, pp. 13–18, ISBN:
9781450382915. DOI: 10.1145/3434770.3459731. [Online]. Available:

https://doi.org/10.3390/s20226441
https://doi.org/10.3390/s20226441
https://www.mdpi.com/1424-8220/20/22/6441
https://www.mdpi.com/1424-8220/20/22/6441
https://doi.org/10.11648/j.net.20190701.12
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=131&doi=10.11648/j.net.20190701.12
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=131&doi=10.11648/j.net.20190701.12
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=131&doi=10.11648/j.net.20190701.12
https://doi.org/10.1145/1842733.1842736
https://dl.acm.org/doi/10.1145/1842733.1842736
https://dl.acm.org/doi/10.1145/1842733.1842736
https://www.infinera.com/white-paper/strategies-for-connecting-the-edge-2019-heavy-reading-survey/
https://www.infinera.com/white-paper/strategies-for-connecting-the-edge-2019-heavy-reading-survey/
https://www.infinera.com/white-paper/strategies-for-connecting-the-edge-2019-heavy-reading-survey/
https://doi.org/10.1109/INFOCOM42981.2021.9488424
https://ieeexplore.ieee.org/document/9488424/
https://ieeexplore.ieee.org/document/9488424/
https://doi.org/10.1145/3498361.3538922
https://doi.org/10.1145/3498361.3538922
https://dl.acm.org/doi/10.1145/3498361.3538922
https://dl.acm.org/doi/10.1145/3498361.3538922
https://doi.org/10.1145/3434770.3459731

References | 47

https : / / dl . acm . org / doi / 10 . 1145 / 3434770 . 3459731 (visited on
03/22/2023).

[14] A. Haas et al., “Bringing the web up to speed with WebAssembly,”
ACM SIGPLAN Notices, vol. 52, no. 6, pp. 185–200, Sep. 14, 2017,
ISSN: 0362-1340, 1558-1160. DOI: 10 . 1145 / 3140587 . 3062363.
[Online]. Available: https://dl.acm.org/doi/10.1145/3140587.3062363
(visited on 05/28/2023).

[15] G. Wikström et al., “6g – connecting a cyber-physical world,” Ericsson
White Paper, Nov. 2022. [Online]. Available: https://www.ericsson.co
m/en/reports-and-papers/white-papers/a-research-outlook-towards-6g
(visited on 03/16/2023).

[16] S. Akinyemi. “Awesome WebAssembly runtimes.” (2023), [Online].
Available: https : / /github.com/appcypher /awesome- wasm- runtimes
(visited on 03/17/2023).

[17] D. Salim, Securing Trigger-Action Platforms With WebAssembly. 2022.
[Online]. Available: https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva
-321994 (visited on 06/14/2023).

[18] J. Bosamiya, W. S. Lim, and B. Parno, “{Provably-safe} multilingual
software sandboxing using {WebAssembly},” presented at the 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 1975–
1992, ISBN: 9781939133311. [Online]. Available: https://www.usenix
.org/conference/usenixsecurity22/presentation/bosamiya (visited on
06/08/2023).

[19] P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, and G. Parmer,
“Sledge: A serverless-first, light-weight wasm runtime for the edge,”
in Proceedings of the 21st International Middleware Conference, Delft
Netherlands: ACM, Dec. 7, 2020, pp. 265–279, ISBN: 9781450381536.
DOI: 10.1145/3423211.3425680. [Online]. Available: https://dl.acm.or
g/doi/10.1145/3423211.3425680 (visited on 06/14/2023).

[20] “WASI: The WebAssembly system interface.” (2023), [Online].
Available: https://wasi.dev/ (visited on 03/17/2023).

[21] L. Clark. “Standardizing WASI: A system interface to run WebAssem-
bly outside the web – mozilla hacks - the web developer blog,” Mozilla
Hacks – the Web developer blog. (Mar. 27, 2019), [Online]. Available:
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly
-system-interface (visited on 03/17/2023).

https://dl.acm.org/doi/10.1145/3434770.3459731
https://doi.org/10.1145/3140587.3062363
https://dl.acm.org/doi/10.1145/3140587.3062363
https://www.ericsson.com/en/reports-and-papers/white-papers/a-research-outlook-towards-6g
https://www.ericsson.com/en/reports-and-papers/white-papers/a-research-outlook-towards-6g
https://github.com/appcypher/awesome-wasm-runtimes
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-321994
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-321994
https://www.usenix.org/conference/usenixsecurity22/presentation/bosamiya
https://www.usenix.org/conference/usenixsecurity22/presentation/bosamiya
https://doi.org/10.1145/3423211.3425680
https://dl.acm.org/doi/10.1145/3423211.3425680
https://dl.acm.org/doi/10.1145/3423211.3425680
https://wasi.dev/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface

48 | References

[22] R. Nilsson, Inverse kinematics. 2009. [Online]. Available: https://urn.k
b.se/resolve?urn=urn:nbn:se:ltu:diva-45528 (visited on 05/10/2023).

[23] M. Meredith and S. C. Maddock, “Real-time inverse kinematics: The
return of the jacobian,” 2004. [Online]. Available: https://www.semant
icscholar.org/paper/Real-Time-Inverse-Kinematics%3A-The-Return-
of-the-Meredith-Maddock/85dac7f7da71078853e59352530c2ffe22c7
a30b (visited on 05/10/2023).

[24] F. Denis. “Performance of WebAssembly runtimes in 2023,” Perfor-
mance of WebAssembly runtimes in 2023 | Frank DENIS random
thoughts. (2023), [Online]. Available: https://00f.net/2023/01/04/w
ebassembly-benchmark-2023/ (visited on 01/19/2023).

[25] D. Hockley and C. Williamson, “Benchmarking runtime scripting
performance in wasmer,” ser. ICPE ’22, New York, NY, USA:
Association for Computing Machinery, Jul. 19, 2022, pp. 97–104, ISBN:
9781450391597. DOI: 10.1145/3491204.3527477. [Online]. Available:
https://doi.org/10.1145/3491204.3527477 (visited on 01/19/2023).

[26] Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang, “Understanding the
performance of webassembly applications,” in Proceedings of the 21st
ACM Internet Measurement Conference, Virtual Event: ACM, Nov. 2,
2021, pp. 533–549, ISBN: 9781450391290. DOI: 10.1145/3487552.348
7827. [Online]. Available: https://dl.acm.org/doi/10.1145/3487552.34
87827 (visited on 02/01/2023).

[27] J. Napieralla, Considering WebAssembly Containers for Edge Comput-
ing on Hardware-Constrained IoT Devices. 2020. [Online]. Available:
http : / / urn . kb . se / resolve ? urn = urn : nbn : se : bth - 20112 (visited on
02/08/2023).

[28] A. Jangda, B. Powers, E. Berger, and A. Guha, “Not so fast: Analyzing
the performance of WebAssembly vs. native code,” 2019. DOI: 10.485
50/ARXIV.1901.09056. [Online]. Available: https://arxiv.org/abs/190
1.09056 (visited on 02/01/2023).

[29] R. Jain, The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation, and modeling. New
York: Wiley, 1991, 685 pp., ISBN: 9780471503361.

[30] C. Eberhardt. “The state of WebAssembly 2022,” Scott Logic. (Jun. 20,
2022), [Online]. Available: https://blog.scottlogic.com/2022/06/20/sta
te-of-wasm-2022.html (visited on 03/22/2023).

https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-45528
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-45528
https://www.semanticscholar.org/paper/Real-Time-Inverse-Kinematics%3A-The-Return-of-the-Meredith-Maddock/85dac7f7da71078853e59352530c2ffe22c7a30b
https://www.semanticscholar.org/paper/Real-Time-Inverse-Kinematics%3A-The-Return-of-the-Meredith-Maddock/85dac7f7da71078853e59352530c2ffe22c7a30b
https://www.semanticscholar.org/paper/Real-Time-Inverse-Kinematics%3A-The-Return-of-the-Meredith-Maddock/85dac7f7da71078853e59352530c2ffe22c7a30b
https://www.semanticscholar.org/paper/Real-Time-Inverse-Kinematics%3A-The-Return-of-the-Meredith-Maddock/85dac7f7da71078853e59352530c2ffe22c7a30b
https://00f.net/2023/01/04/webassembly-benchmark-2023/
https://00f.net/2023/01/04/webassembly-benchmark-2023/
https://doi.org/10.1145/3491204.3527477
https://doi.org/10.1145/3491204.3527477
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3487552.3487827
https://dl.acm.org/doi/10.1145/3487552.3487827
https://dl.acm.org/doi/10.1145/3487552.3487827
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20112
https://doi.org/10.48550/ARXIV.1901.09056
https://doi.org/10.48550/ARXIV.1901.09056
https://arxiv.org/abs/1901.09056
https://arxiv.org/abs/1901.09056
https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html
https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html

References | 49

[31] Wasmer. “Wasmer, the universal WebAssembly runtime.” (n.d.),
[Online]. Available: https://wasmer.io/ (visited on 05/10/2023).

[32] Bytecode Alliance. “Wasmtime, a fast and secure runtime for WebAs-
sembly.” (n.d.), [Online]. Available: https://wasmtime.dev/ (visited on
05/10/2023).

[33] Wasm3. “Wasm3.” (n.d.), [Online]. Available: https://github.com/was
m3/wasm3 (visited on 05/10/2023).

[34] “Lightweight justice for your SBC!” DietPi. (n.d.), [Online]. Available:
https://dietpi.com/ (visited on 05/25/2023).

[35] Nmap.org. “Nping — network packet generation tool & ping utility.”
(n.d.), [Online]. Available: https : / / nmap . org / nping/ (visited on
05/25/2023).

[36] D. Peter, Hyperfine, version 1.16.1, original-date: 2018-01-13T15:49:54Z,
Mar. 2023. [Online]. Available: https://github.com/sharkdp/hyperfine
(visited on 05/25/2023).

[37] Open Rust Robotics. “K,” K, Kinematics library for rust-lang. (n.d.),
[Online]. Available: https : / / github . com / openrr / k (visited on
05/05/2023).

[38] J. Balzer. “URDF file for arduino braccio toy robot arm,” URDF file for
Arduino Braccio toy robot arm. (n.d.), [Online]. Available: https://gith
ub.com/jonabalzer/braccio_description (visited on 05/10/2023).

[39] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0,” Business & Information Systems Engineering, vol. 6, no. 4,
pp. 239–242, Aug. 2014, ISSN: 1867-0202. DOI: 10.1007/s12599- 01
4-0334-4. [Online]. Available: http://link.springer.com/10.1007/s1259
9-014-0334-4 (visited on 05/23/2023).

[40] “The top programming languages,” The State of the Octoverse. (n.d.),
[Online]. Available: https://octoverse.github.com/2022/top-programm
ing-languages (visited on 06/14/2023).

[41] “WASI cryptography APIs,” WASI Cryptography APIs. (n.d.), [On-
line]. Available: https : / / github . com / WebAssembly / wasi - crypto
(visited on 06/03/2023).

[42] “A proposed WebAssembly system interface API for machine learning
(ML).,” A proposed WebAssembly System Interface API for machine
learning (ML). (n.d.), [Online]. Available: https://github.com/WebAss
embly/wasi-nn (visited on 06/03/2023).

https://wasmer.io/
https://wasmtime.dev/
https://github.com/wasm3/wasm3
https://github.com/wasm3/wasm3
https://dietpi.com/
https://nmap.org/nping/
https://github.com/sharkdp/hyperfine
https://github.com/openrr/k
https://github.com/jonabalzer/braccio_description
https://github.com/jonabalzer/braccio_description
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1007/s12599-014-0334-4
http://link.springer.com/10.1007/s12599-014-0334-4
http://link.springer.com/10.1007/s12599-014-0334-4
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://github.com/WebAssembly/wasi-crypto
https://github.com/WebAssembly/wasi-nn
https://github.com/WebAssembly/wasi-nn

50 | References

Appendix A: Additional results | 51

Appendix A

Additional results

A.1 End-to-end measurements
Figure A.1 illustrates the results recorded for the remote host application
during the end-to-end tests, grouped by placement (rows), workload
(columns), and task success status (color). Table A.1 summarizes the same
results, showing the average response times in milliseconds with the standard
error (SEM). The results include response times for the solution of the
robot tasks, an empty (remote) function call, and a homepage request for all
considered placement and runtime options.

A.2 Local measurements
Figure A.2 shows the response times measured for the local host application.
The results are grouped by placement (rows), workload (columns), and task
success status (color). Table A.2 summarizes the same results, showing the
time in milliseconds and the SEM. The results include execution times for
the solution of the robot tasks and an empty function call for all considered
placement and runtime options.

52 | Appendix A: Additional results

Figure A.1: End-to-end benchmarks, response times.

Appendix A: Additional results | 53

Placement Workload Runtime Mean ±SEM [ms]
Success Failure

far_edge wasmer arm 12.25 ±0.14 23.14 ±0.16
torso 11.69 ±0.06 28.7 ±0.11
noop 4.07 ±0.01

wasmtime arm 12.81 ±0.13 22.21 ±0.15
torso 11.77 ±0.09 28.94 ±0.15
noop 2.52 ±0.01

native arm 7.26 ±0.09 16.13 ±0.14
torso 8.77 ±0.05 19.96 ±0.16
noop 2.3 ±0.01
landing_page 1.17 ±0.01

near_edge wasmer arm 12.56 ±0.18 18.94 ±0.23
torso 15.46 ±0.08 24.86 ±2.22
noop 8.59 ±0.37

wasmtime arm 12.38 ±0.1 21.32 ±1.0
torso 16.67 ±0.86 23.68 ±0.56
noop 7.08 ±0.06

native arm 9.05 ±0.07 14.85 ±0.22
torso 11.06 ±0.08 17.89 ±0.89
noop 7.14 ±0.11
landing_page 10.91 ±0.77

cloud wasmer arm 31.33 ±0.39 58.47 ±0.38
torso 31.9 ±0.06 59.86 ±0.09
noop 28.88 ±0.03

wasmtime arm 31.51 ±0.4 58.6 ±0.39
torso 32.28 ±0.08 60.0 ±0.14
noop 28.37 ±0.01

native arm 29.78 ±0.03 58.07 ±0.05
torso 30.58 ±0.06 58.78 ±0.07
noop 28.19 ±0.01
landing_page 28.22 ±0.03

Table A.1: End-to-end benchmarks, summary of results.

54 | Appendix A: Additional results

Figure A.2: Local benchmarks, execution times.

Appendix A: Additional results | 55

Placement Workload Runtime Mean ±SEM [ms]
Success Failure

far_edge wasmer arm 5.15 ±0.0 7.25 ±0.01
torso 7.91 ±0.0 9.97 ±0.0
noop 0.18 ±0.0

wasmtime arm 4.74 ±0.0 6.66 ±0.01
torso 7.37 ±0.0 9.27 ±0.0
noop 0.04 ±0.0

native arm 2.7 ±0.0 3.96 ±0.01
torso 4.3 ±0.0 5.55 ±0.0
noop 0.0 ±0.0

near_edge wasmer arm 2.18 ±0.0 3.05 ±0.01
torso 3.39 ±0.0 4.27 ±0.03
noop 0.07 ±0.0

wasmtime arm 2.11 ±0.0 2.93 ±0.01
torso 3.28 ±0.0 4.09 ±0.0
noop 0.01 ±0.0

native arm 1.06 ±0.0 1.44 ±0.0
torso 1.55 ±0.0 2.01 ±0.0
noop 0.0 ±0.0

cloud wasmer arm 1.69 ±0.0 2.31 ±0.01
torso 2.55 ±0.0 3.21 ±0.02
noop 0.06 ±0.0

wasmtime arm 1.67 ±0.0 2.23 ±0.01
torso 2.84 ±0.0 3.13 ±0.03
noop 0.01 ±0.0

native arm 0.81 ±0.0 1.16 ±0.01
torso 1.24 ±0.0 1.55 ±0.0
noop 0.0 ±0.0

Table A.2: Local benchmarks, summary of results.

56 | Appendix A: Additional results

TRITA-EECS-EX- 2023:0000

www.kth.se

	Introduction
	Domain problem
	WebAssembly as a portable edge runtime
	Research questions

	Purpose and goals
	Delimitations
	Research methodology
	Ethics and sustainability
	Contributions
	Structure of the report

	Background
	Technical background
	Cyber-physical systems
	Edge computing
	WebAssembly
	Wasm runtimes
	Security model
	WebAssembly System Interface

	Use case: robot arm control

	Related work

	Method
	The experimental design
	A robotics workload
	Wasm runtimes
	Application architecture
	Compute placement
	Deployment

	Implementation
	Host Applications
	A remote host setup
	A local host setup

	Robot models

	Evaluation
	RQ1 - Usability in an edge network CPS
	Portability
	Performance

	RQ2 - Wasm overhead

	Results and analysis
	Empirical results
	End-to-end measurements
	Local benchmarks
	Non-embedded measurements

	Portability and performance
	Portability
	Performance

	Discussion
	Wasm usability in edge networks

	Conclusions
	Future work

	Lessons learned
	References
	Additional results
	End-to-end measurements
	Local measurements

