ahe

L,
FKTH

VETENSKAP
28 OCH KONST 2%

e o

Degree Project in Computer Science and Engineering

Second cycle, 30 credits

A Comparative Study of Software
Engineers in East Africa and North
Western Europe Based on Skills,
Communication, Organizational
Culture, and Perceptions

A Pragmatic Mixed-Methods Approach to Understanding Global
Software Development Dynamics Between Rwanda, Uganda,
Sweden, and the Netherlands

SAM KHOSRAVI

A Comparative Study of Software
Engineers in East Africa and North
Western Europe Based on Skills,
Communication, Organizational
Culture, and Perceptions

A Pragmatic Mixed-Methods Approach to
Understanding Global Software Development
Dynamics Between Rwanda, Uganda, Sweden, and
the Netherlands

SAM KHOSRAVI

Master’s Programme, Computer Science, 120 credits
Date: July 2, 2025

Supervisors: Amir H. Payerah, Faiza A. Bukhsh
Examiner: Olov Engwall

Swedish title: En jamférande studie av mjukvaruingenjérer i Ostafrika och
Nordvasteuropa baserat pa fardigheter, kommunikation, organisationskultur och
uppfattningar

Swedish subtitle: En pragmatisk mixed-methods strategi for att férsta global
mjukvaruutveckling mellan Rwanda, Uganda, Sverige och Nederlanderna

© 2025 Sam Khosravi

Abstract | i

Abstract

This research examines cross-cultural dynamics in global software devel-
opment by comparing software engineers from East Africa (Rwanda and
Uganda) and North Western Europe (Sweden and the Netherlands). Despite
growing African tech hubs, empirical research looking into the technical
competencies, communication styles, and organizational practices of East
African software engineers remain limited, despite potential time-zone
alignment advantages with European partners. Most existing studies on global
software development focus on established outsourcing destinations in Asia,
Eastern Europe, and South America.

This thesis addresses this research gap by using a pragmatic mixed-
methods approach, combining quantitative and qualitative data, which was
collected through standardized programming challenges, system design tasks,
code reviews, and in-depth interviews with 48 software engineers across the
four countries. Technical solutions were analyzed using Machine Learning
techniques, including CodeBERT embeddings and clustering analysis, while
communication styles were evaluated through sentiment analysis of code
reviews using Valence Aware Dictionary and Sentiment Reasoner from the
Natural Language Toolkit.

The results reveal insights challenging conventional assumptions about
global software engineering. Rwandan senior software engineers showed
technical skills comparable to their European counterparts, while Rwandan
junior software engineers were outclassed by their European counterparts.
Communication styles differed across regions, with East African software
engineers providing more positive and supportive feedback (compound
sentiment scores >0.5) compared to the more critical, direct approach of
European software engineers (compound score -0.361 for Dutch software
engineers). Process priorities also varied as European teams allocated more
time to initial development and design, while East African teams put more
focus on code reviews and deployment processes. Most significantly, the
study found perception gaps with European software engineers consistently
underrating the capabilities of East Africans despite measured performance
showing individual excellence and overlap between regions in terms of
skills. These findings provide empirical evidence that can inform more
equitable global software development practices and enhance cross-cultural
collaboration by leveraging the complementary strengths adherent in each
region. Furthermore it challenges biases that may limit opportunities for
talented software engineers from emerging regions, and contributes to a

ii | Abstract

more inclusive understanding of global software engineering dynamics in
previously understudied contexts.

Keywords

Global Software Development, Cross-cultural Collaboration, Software Engi-
neering Skills, East Africa, North Western Europe, Perception Bias

Sammanfattning | iii

Sammanfattning

Denna studie undersoker tvirkulturell dynamik inom global mjukvaruut-
veckling genom att jimféra mjukvaruingenjorer frin Ostafrika mot de
frin Nordvidsta Europa. I studien ingdr Rwanda och Uganda som skall
representera Ostafrika, medan Sverige and Nederlinderna representerar
Nordvistra Europa. Trots att Ostafrikanska linder utvecklat bade infrastruktur
och teknisk kompetens de senaste dren saknas det empirisk forskning om
ostafrikanska utvecklares tekniska kompetenser, kommunikationssitt och
organisatoriska metoder, sdrskilt i jimforelse med andra mer etablerade
outsourcing destinationer i Asien och Osteuropa.

Studien omfattar 48 utvecklare, och anvidnder en pragmatisk mixed-
methods ansats som kombinerar kvantitativ och kvalitativ data. Datain-
samlingen omfattade standardiserade programmeringsutmaningar, systemde-
sign, kodgranskningar och djupintervjuer. Maskininldrningsmetoder sdsom
CodeBERT-embeddings och klusteranalys anvindes for att analysera tekniska
l6sningar, medan kommunikationsstilar utviarderades genom sentimentanalys
med VADER fran NLTK.

Resultaten visar att seniora utvecklare frin Rwanda besitter tekniska
fiardigheter som dr jaimforbara med deras europeiska motsvarigheter, daremot
presterar juniora utvecklare frin Rwanda sdmre. Kommunikationsstilar
skiljer sig markant mellan de tva regionerna, da Ostafrikanska utvecklare
gav mer positiv feedback pd kodgranskningar, jamfort med européers
mer kritiska och direkta tillvigagingssitt. Processprioriteringar varierade
ocksd, dar europeiska team fokuserade mer pé initial utveckling medan
Ostafrikanska team fokuserade mer pa kodgranskning och driftsittning. Mest
anmirkningsvirt var de perceptions skillnader som hittades, diar europeiska
utvecklare konsekvent underskattade Ostafrikanska utvecklares formégor trots
uppmitta prestationer som visade individuell forméiga och Gverlapp mellan
regionerna. Dessa fynd ger empiriska bevis som kan bidra till mer réttvisa
globala mjukvaruutvecklings mojlighter och utmana fordomar som begrinsar
mojligheter for talangfulla utvecklare fréan tillvixtregioner.

Nyckelord

Global Mjukvaruutveckling, Tvarkulturellt Samarbete, Mjukvaruingenjorsfér-
digheter, Ostafrika, Nordvisteuropa, Uppfattningsbias

iv| Sammanfattning

Acknowledgments | v

Acknowledgments

I would like to express my sincere gratitude to my supervisor Amir H. Payberah
for his guidance, continuous support, and insightful feedback throughout this
research project. I would also like to thank Faiza Bukhsh for her valuable
guidance during the early stages of my thesis, particularly in exploring process
mining and visualization, as well as facilitating a visit to the University of
Twente. A further thanks to Amir for being a role model to all KTH students
and putting so much effort into work related to social justice, and for helping
me come up with my thesis topic.

I would like to give a large thank you to Nicole Van Helst for giving me
the original impetus for the thesis, and helping shape it as well. A further
thanks for putting me in contact with various software engineers, companies
and universities from Rwanda and the Netherlands. Further I would like to
thank Yannick Kabayiza and Brian Gharibaan for hosting me at their offices in
Kigali, as well as Brian letting me stay at his place of residence in Rwanda. I
would also like to thank the whole team at Awesomity Labs for their hospitality
and friendliness, where I also have found lifelong friends. A thank you to the
software engineers from Code Of Africa as well for participating in the study.

In Uganda, I want to thank Sseruwagi Abdallah for putting me in contact
with many software engineers. I also want to thank The Ministry of ICT and
National Guidance for hosting me, as well as everyone from STEM Center
Kampala and The Innovation Village in Uganda.

This research would not have been possible without the cooperation of the
software engineers from Rwanda, Uganda, Sweden, and the Netherlands who
generously shared their time, experiences, and insights. Their contributions
are the backbone of this study, and I am very thankful towards them.
Furthermore, I want to thank all my former and current colleagues and
classmates for volunteering to join my sometimes 2 hours long interviews.

Finally, my deepest thanks go to my family and friends for their unwavering
support, patience, and encouragement throughout my academic journey. Their
belief in me has been a constant source of motivation.

Stockholm, July 2025
Sam Khosravi

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Research Questions 2
1.2 Problem 3
1.3 Methodused. 4
1.4 GoalandPurpose 5
1.5 Delimitations 5
1.6 Structure of thethesis 6
2 Background 7
2.1 Global Software Engineering and Cross-Cultural Collaboration 8
2.1.1 Global Software Development Trends 8
2.1.2 Cross-Cultural Collaboration in Software Engineering 9
2.1.3 Emerging Tech Hubs in East Africa 11
2.2 Analytical Techniques and Methodologies in Software Engi-
neering Research oL 12
2.2.1 Quantitative Assessment Methods 12
2.2.2 Qualitative Methods and Field Assessments 12
2.2.3 Pragmatic Mixed-Methods Research Approach 12
2.2.4 Evaluating Software Engineering Skills 13
23 RelatedWork 14
2.3.1 Related Work on Global Software Development 14
2.3.2 Related Work on Analytical Techniques 15
2.3.3 Related Work on Assessing Software Engineers 16
2.3.4 Explicit Research Gaps and Summary of Contributions 16
3 Methods 17
3.1 Research Paradigm 17
3.2 Research Questions and Design 18

3.2.1 DataCollection 19

viii | Contents

322 DataValidity
3.23 DataReliability
3.3 Assessments and Challenges

4 Results and Analysis

4.1 Technical AssessmentResults
4.1.1 Uniquepairs,
4.1.2 System Design Challenge
4.1.3 Code Review Analysis
4.1.4 Security Knowledge Analysis

4.2 Biases and Process analysis
42.1 ProcessSteps oo e
4.2.2 Longest vs Shortest Process Steps per Country
423 Biases
424 Process Step Visualization
425 Resultssummary

4.3 Reliability Analysis

4.4 Validity Analysis L o o o

5 Discussion

6 Conclusions and Future work
6.1 Conclusions e
6.1.1 FutureWork
6.2 Reflections

References

35
35
35
38
40
41
45
45

49
52
55
56
57

59

67
67
71
72

73

List of Figures | ix

List of Figures

2.1

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Reasons for outsourcing and offshoring. 8
Research Process Flowchart 18

Code Submission Clusters using Code Bidirectional Encoder
Representations from Transformers (codeBERT) embeddings

projected via Principal Component Analysis (PCA). 37
Code Submission Clusters using CodeBERT embeddings
shown through bar graph. 37
Heatmap visualization of security issue identification rates
across all software engineering groups. 42
Heatmap visualization of security issues identified by junior
software engineers across different countries. 42
Heatmap visualization of security issues identified by senior
software engineers across different countries. 43

Heatmap comparison of compounded security awareness
between senior and junior software engineers across Rwanda,

Sweden, and Netherlands. 44
Steps that take the longest as well as shortest for Rwandan
software engineers. 47
Steps that take the longest as well as shortest for Dutch
software engineers. 47
Steps that take the longest as well as shortest for Swedish
software engineers. e e .. 48
Steps that take the longest as well as shortest for Ugandan
software engineers. 48
Perception-based given by Rwandan participants to develop-
ers from Rwanda, Sweden, Netherlands, and Uganda. 49

Perception-based given by Swedish participants to software
engineers from Rwanda, Sweden, Netherlands, and Uganda. . 50

x | List of Figures

4.13

4.14

4.15
4.16
4.17
4.18
4.19

Perception-based given by Dutch participants to software

engineers from Rwanda, Sweden, Netherlands, and Uganda. . 51
Perception-based given by Ugandan participants to software

engineers from Rwanda, Sweden, Netherlands, and Uganda. . 51
Average ratings percountry 52
Process visualization for Sweden 53
Process visualization forRwanda 54
Process visualization for the Netherlands 54

Process visualization for Uganda 55

List of Tables | xi

List of Tables

2.1 Global Software Development (GSD) Challenges Due to

Distances [31] oo 9
4.1 Distribution of solution approaches by country 36
4.2 Sentiment Analysis Results of Code Reviews by Country . . . 41
4.3 Self-reported software development process time (minutes)

estimatesbycountry o L. 46

4.4 Critical Path Analysis - Steps Taking >10% of Total Time in
Minutes L e 49

xii | List of Tables

List of acronyms and abbreviations | xiii

List of acronyms and abbreviations

2FA
API
BERT
CI
CI/CD
codeBERT
DevOps
EA
GSD
ICT
ML
NLP
NLTK
NWE
PCA
RQ

SDG
SWEBOK

VADER

Two-Factor Authentication

Application Programming Interface

Bidirectional Encoder Representations from Transformers
Confidence Interval

Continuous Integration/Continuous Deployment

Code Bidirectional Encoder Representations from Transform-
ers

Development and Operations

East Africa

Global Software Development

Information and Communications Technology

Machine Learning

Natural Language Processing

Natural Language Toolkit

North Western Europe

Principal Component Analysis

Research Question

Sustainable Development Goals
Software Engineering Body of Knowledge

Valence Aware Dictionary and Sentiment Reasoner

xiv | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

The initial impetus for this study came from a conversation with a member
of the Rwandan delegation in the Netherlands, where concerns were raised
about the perception of East African software engineers, particularly those
from Rwanda, as being less capable. This perception is not only a local
issue the Rwandans face but it is reflecting a broader challenge in Global
Software Development (GSD) where stereotypes and biases can influence trust
in international collaborations, as well as influence career opportunities for
developers from emerging countries.

However, this concern is too narrow to provide insight into a broader
engineering context. Instead the scope is broadened to a comparative analysis
of software engineers from countries at different stages of development to
be able to address both a pressing industrial need and enhance academic
insights into cross-cultural software development. This study focuses on North
Western Europe (NWE) and East Africa (EA), specifically comparing Sweden
and the Netherlands in NWE with Rwanda and Uganda in EA.

This study not only addresses a pressing industrial need, but also
aims to contribute to the academic understanding of cross-cultural software
development practices. The geographical focus is particularly relevant as the
time-zone alignment between NWE and EA offers outsourcing opportunities
and real-time collaboration, making these regions a valuable case study for
exploring GSD dynamics.

The primary objective of this thesis is to compare the software engineers
across the following four dimensions:

e Technical Skills - How do coding skills and problem-solving
approaches differ across regions?

e Communication Styles - What are the differences in communication

2| Introduction

patterns, including sentiment and cultural context?

* Organizational Culture - How do organizational practices and work
environments shape software development workflows?

* Biases and Perception - What biases exists, and how could these
influence cross-cultural collaboration and perceptions of skills?

Throughout the study, the terms software engineer, software developer,
engineer, and developer are used interchangeably. All refer to individuals who
write code and are responsible for software engineering tasks.

1.1 Research Questions

Previous studies, as highlighted in Section 2.3, have used qualitative methods
primarily to examine cross-cultural communication styles and organizational
norms, while this study adopts a mixed-method approach to provide a
more comprehensive analysis of cultural influences on software engineering
practices. By integrating both quantitative assessments (standardized coding
tests) and qualitative evaluations (in depth interviews), this study captures both
objective metrics and contextual insights.

This methodological choice is directly related to the Research Question
(RQ), which are as follows:

* RQI: How do software engineers in East Africa and North Western
Europe differ in coding skills and problem-solving strategies?

* RQ2: How do communication styles and organizational practices differ
between regions?

¢ RQ3: What biases exist across the countries and how would this affect
collaboration between software engineers from East Africa and North
Western Europe?

As the study combines quantitative and qualitative methods, it offers
a holistic evaluation of technical competencies, communication styles, and
organizational practices. This approach advances existing research by
providing empirical data from underrepresented regions such as Rwanda and
Uganda, with the aim of contributing new insights to the discourse on GSD
and cross-cultural collaboration. Such a comparison cross regions including
each two countries from EA and NWE has not been made before.

Introduction | 3

1.2 Problem

Historically, Africa has often been overlooked as an outsourcing destination
in GSD due to perceptions of inadequate infrastructure [1], and in turn,
competence. Although such challenges persist in some areas, recent
investments, particularly in Rwanda, are transforming some countries in EA
into tech hubs [2]. Despite these advancements and focused efforts to foster
Information and Communications Technology (ICT) talent, most existing
studies concentrate on outsourcing to Asia or Eastern Europe [3-6], while
empirical investigations into the experiences of software engineers in EA
remain scarce. When African countries are studied, it is often more developed
countries such as Kenya and South Africa [7-10], and the consideration of
Rwandas immense national investments in fostering IT talent is not taken into
account, one such example being their dedication to train one million citizens
in digital skills and develop 500,000 technology professionals by 2030 [11].

Moreover, the majority of current literature relies predominantly on
secondary data, such as literature reviews and performance metrics, rather than
employing direct, in-person interviews or field assessments. Prior research
in software engineering evaluation indicates that primary data collection
methods, including in-person interviews, can capture richer, context-specific
insights into technical skills and team dynamics than secondary data alone
[12]. In addition to this, understanding the specific cultural characteristics of
EA and how these characteristics align with or diverge from European norms,
is important to developing effective outsourcing strategies that aid in good
collaboration.

The original problem addressed in this thesis is therefore twofold. First
the neglect of African contexts in GSD research has led to a large knowledge
gap regarding the practical experiences and capabilities of these software
engineers, particularly in EA. Second, the reliance on secondary data limits our
ability to capture the more nuanced and context-specific realities of technical
skills, communication, and process efficiencies in these emerging markets.
This study defines the problem as the need to empirically evaluate and compare
the performance, cultural dynamics, and organizational practices of software
engineers in EA with those in more established European contexts.

4 | Introduction

1.3 Method used

The research uses a pragmatic mixed-methods approach where both qualitative
and quantitative data is used. This method was chosen to give a balance
between both detailed insights as well as measurable results. The data
collected consists of interviews between 60-120 minutes long, with developers
from Sweden, Netherlands, Uganda and Rwanda. The number of developers
interviewed range between 10 to 15 from each country. The study
incorporates specific technical tasks alongside more open-ended discussion
about perceptions and experiences, which matches the semi-structured
approach where the interviewer “has the autonomy to explore pertinent ideas
that may come up in the course of the interview” [13]. The study also focuses
on methodological flexibility, which has been deemed important by seminal
work when researching social issues [14—16].

The interviews collect developer perceptions of their own abilities and
other countries present in the study regarding software engineering, problem-
solving, and communication styles. Furthermore, the participants are asked
to give time estimates for different types of tasks in the software development
lifecycle.

The developers go through three technical assessments.

The first assessment is a programming assignment, which is a variation
of the two-sum problem. This measures their algorithmic thinking, coding
efficiency and practical software development skills. The analysis is
made using Code Bidirectional Encoder Representations from Transformers
(codeBERT) for embeddings, Principal Component Analysis (PCA) for
dimensionality reduction and K-means clustering to identify coding pattern
similarities, as well as manually inspecting the code and comments said during
the interview.

The second technical task was a system design challenge where
participants were told to design an URL shortening service. The task is
analyzed manually based on architectural design, scalability, data handling
and communication skills.

The last technical task was a code review challenge that looked at both
communication styles and security knowledge. The task was to identify
vulnerabilities and give feedback accordingly. The sentiment of the feedback
was analyzed using Valence Aware Dictionary and Sentiment Reasoner
Valence Aware Dictionary and Sentiment Reasoner (VADER) from the
Natural Language Toolkit (NLTK) package [17].

Introduction | 5

1.4 Goal and Purpose

This thesis aims to deepen the understanding of GSD by empirically
comparing software engineering competencies and collaboration practices
between EA and NWE. The findings are intended to inform both industry and
academia. The industry can draw on the results to complement outsourcing
strategies and manage cross-cultural teams more effectively, while researchers
from academia gain fresh empirical data to strengthen theoretical perspectives
on GSD, as well as an analysis between practices across these regions.
Furthermore, this work also addresses ethical and social considerations by
advocating more equitable and inclusive practices in the global tech sector
by laying forward data for hiring considerations, which ultimately contributes
to a more just and representative digital society.

1.5 Delimitations

This study is defined by several boundaries that shape its scope and inform
how the results should be interpreted. First, it focuses exclusively on
software engineers in EA (Rwanda and Uganda) and NWE (Sweden and
the Netherlands). Other regions and outsourcing destinations fall outside its
scope, which may limit the broader relevance of the findings for the regions
specifically.

Second, the sample size is constrained to about 10-15 engineers per
country, due to time and resource limitations. This relatively small pool may
restrict how representative the results are for each region and its software
engineering ecosystem. If it were to act as a purely quantitative study, the
results would be non-satisfactory [18], but due to the mixed-methods approach
taken, the results are deemed reliable. This is further discussed in section 3.2.

Third, the research centers around coding skills, software architecture,
security knowledge, code comment sentiments, communication effectiveness,
and organizational culture. It does not address other factors important to a
software engineer such as business acumen, how well they innovate, version
control, and continuous learning ability. This was due to it being beyond the
scope of a masters thesis, and has already been researched over long periods
of time for other parts of the world [19].

Additionally, the data relies on insights that are self reported and in-person
interviews. While these methods give good insights, they can also introduce
biases such as social desirability or recall bias [20, 21]. The combination

6| Introduction

of quantitative and qualitative data given from the interviews aims to paint
a comprehensive picture of current practices. However, the study is not
longitudinal, but is instead cross-sectional and therefore it gives a “snapshot”
of the current state of software engineering in these countries, rather than
tracking changes over time. This study also aims to complement data heavy
studies, as empirical ones like this are rare due to the significant time and
resources they require.

Finally, although the project explores cross-cultural collaboration, it does
not include controlled experimental setups to establish causality between
cultural factors and software development outcomes.

1.6 Structure of the thesis

Chapter 1 presents the research problem, objectives, research questions,
methodology overview, results summary, and delimitations of the study.
Chapter 2 covers the theoretical foundations of GSD, cross-cultural collab-
oration, emerging tech hubs in EA, and analytical techniques used in software
engineering research. Chapter 3 covers the research paradigm, data collection
approaches, assessment techniques, and analytical methods used to compare
software engineers across regions. Chapter 4 explains the findings from the
technical assessments, code review analysis, security knowledge evaluation,
and perception studies that address the research questions. Chapter 5 goes
into the implications of the findings, focusing on technical skills disparities,
communication differences, process optimization strategies, and perception
biases. Chapter 6 summarizes insights, discusses limitations, and proposes
directions for future research in cross-cultural software engineering studies.

Background |7

Chapter 2

Background

This chapter provides background information and a review of related work to
establish the context for this study. It goes into the theoretical foundations of
GSD, which here consists of the trends in the field, as well as the challenges
that arise due to geographical, temporal, and cultural differences. The chapter
also discusses the need for comparative research in GSD and highlights the
underrepresentation of EA and African tech hubs in current research.

The first major area examined is the trends in GSD, where a major
trend is going from co-located teams to distributed ones, with multicultural
collaboration across many countries. It highlights the economic drivers behind
outsourcing and ways that facilitate global collaboration. Additionally, the
section addresses the how complex cross-cultural collaboration is due to
the impact of communication styles, organizational norms, and unconscious
biases present in teams.

The chapter then provides an in depth analysis of emerging tech hubs in
EA, particularly Rwanda and Uganda, which are experiencing rapid growth
of their technology ecosystems due to large investments in IT infrastructure.
It also identifies a critical gap in empirical research on software engineering
practices in these regions, justifying the comparative approach of this study.

The second major area explored are analytical techniques and methodolo-
gies used in software engineering research. It covers quantitative methods such
as standardized coding tests and technical interviews, as well as qualitative
methods such as in depth interviews and field assessments. The section also
reviewed advanced data analysis techniques, including Machine Learning
(ML), Natural Language Processing (NLP), and process visualization, as
they are techniques that are increasingly used to evaluate technical skills,
communication effectiveness, and workflow efficiencies.

8 | Background

2.1 Global Software Engineering and Cross-
Cultural Collaboration

This section introduces the context of GSD, highlighting the evolution of
distributed teams and outsourcing. It also goes through the challenges present
which are due to geographical, temporal, and cultural differences. The section
presses on the need for comparative research in cross-cultural settings and
discusses the underrepresentation of the state of software development in EA
in current research.

2.1.1 Global Software Development Trends

GSD has has historically been conducted in house and in a co-located
space. Nowadays, projects that once were confined to a single location
have through advances in ICT allowed organizations to recruit talent from
all around the world [22]. Innovations such as high-speed internet, cloud-
based collaboration tools, and agile methodologies have contributed to this
transition which enables teams to work together in almost real-time despite
being separated by geography [23-25].

The economic and strategic drivers behind this shift are also very
clear. Rising local labor costs and increasing global competition have given
companies incentive to outsource development work to regions that offer
advantages in both cost efficiency and access to expertise [26], as shown in
Figure 2.1 [26]. However, challenges remain in terms of communication,
coordination, and cultural integration even within well-established markets
which can lead to various problems such as misunderstandings between team
members, delays, and decreased productivity [27, 28].

Local Markets;
Flexibility; 14%

Labor Cost;
o
Quality, Cycle 2%
Time; 21%

Talentand
Skills; 27%

Figure 2.1: Reasons for outsourcing and offshoring.

Background |9

The literature also highlights the role of agile practices in facilitating
global collaboration. Agile methodologies have been adapted to work with
distributed environments. However, their implementation struggles to work
past the challenges of time-zone differences and cultural diversity. Digital
collaboration platforms and automated integration tools as well as scrum
methodologies are further allowing for a more efficient global development
workflow [29].

The current trends indicate that while distributed development offers
benefits such as cost savings and access to specialized skills, it also needs to
overcome the challenges of communication and coordination across diverse
cultural contexts. These issues are especially highlighted in countries that are
the norm of outsourcing, for example China, which presents issues in culture
and communication [30]. Research has shown that geographical, temporal,
and cultural distances can hinder effective communication and coordination as
well as trust, which in turn ultimately impacts project outcomes, highlighted
by Table 2.1.

Table 2.1: GSD Challenges Due to Distances [31]

Distance Challenges

Geographical | Lack of informal communication, less shared project
awareness, problems in information exchange, knowledge
management, process transparency, high communication
cost, and coordination issues.

Temporal Limited synchronous communication and delay in feedback.

Socio-cultural | Inconsistency in work practices, less informal commu-
nication, different terminologies, diverse hierarchy, and
differences in work ethics.

2.1.2 Cross-Cultural Collaboration in Software Engi-
neering

How effective GSD is is influenced by the extent of how well cross-cultural
collaboration works in teams. Cultural variations such as communication
styles and organizational norms affect how team members interact with
each other and coordinate their work. Power distance, individualism/
collectivism, and uncertainty avoidance show how communication styles
influence organizational practices in global teams [32, 33].

10 | Background

Hofstedes Cultural Dimensions is a framework developed to understand
how cultural differences across nations affect behavior in organizations
and society. Particularly relevant to the software industry, the research
began with IBM employees across different countries in the 1970’s. The
framework introduces concepts such as power distance, uncertainty avoidance
and individualism vs collectivism.

Power distance refers to the extent less powerful members of an
organization accept and expect that power is distributed unequally. In high
power distance cultures it is seen that hierarchical differences are accepted as
normal, while in low power distance cultures the members strive for power
equalization and also demand justification for power inequalities if present.

Uncertainty avoidance indicates to what extent a culture programs its
members to feel comfortable or uncomfortable in unstructured situations.
Uncertainty avoiding cultures try to minimize unstructured situations through
strict rules, laws, and behavioral codes, while uncertainty accepting cultures
are more tolerant of different opinions and behaviors.

The dimensions of individualism vs collectivism measure the degree to
which people in a society are integrated into groups. Individualist societies
have loose ties between individuals, with everyone expected to look after
themselves and their immediate family only. Collectivist societies instead
consist of strong in-groups (often extended families) that protect members in
exchange for loyalty [33].

It is know that high-context communication styles that normally are seen
in collectivist cultures can lead to misunderstandings when they interact
with low-context communicators, in turn impacting team coordination and
the effectiveness of the collaboration between the teams [34]. Therefore,
one important factor that the thesis aims to uncover is the similarity in
communication styles between the two regions of NWE and EA.

Studies indicate that cultural differences not only influence communication
but that they also affect how effective distributed team are. As misinterpreta-
tions arise from cultural differences, they lead to inefficiencies in work as well
as lowering trust between individuals [27]. Especially differences in power
distance and uncertainty avoidance can create barriers to open communication,
in turn reducing efficiency of collaboration and lastly impacting overall team
performance [35].

A study showed that African and European stakeholders demonstrated
opposing communication styles, as well as that Africans adhere to higher
power distance norms, which means that decision making is centralized and
follows a strict hierarchy, while Europeans tend to have more flexible power

Background| 11

structures, leading to potential misalignment in expectations and collaboration
[36].

Research has also looked into how unconscious biases impact team
dynamics. In environments characterized by high power distance or that are
collectivist, these biases could result in hierarchical communication patterns
or misaligned expectations, which in turn hurt collaboration [37]. An engineer
from a society with high power distance will in turn struggle to adapt to the
dynamics of a non-hierarchical company.

While traditional cross-cultural research has often addressed these issues
at a broad level, there is also research pointing out that even minor,
unconscious biases can significantly affect technical collaboration [38]. A
deeper understanding of these nuances is important for outsourcing strategies
that aim to have seamless communication and coordinated work practices
among globally distributed teams [39].

2.1.3 Emerging Tech Hubs in East Africa

Recent investments in IT infrastructure have become a characteristic of the
EA technology landscape. More specifically, it has been seen that Rwanda
has significantly enhanced its broadband connectivity, digital services, and
regulatory frameworks for I'T, which all signals them driving the growth of
their technology ecosystem [40, 41]. National policies aimed at knowledge
transfer and startup support have also aided this growth, which is positioning
Rwanda as a tech hub in EA [42]. This is also shown in the GDP growth
of Rwanda, where the ICT sector contributed to a 35% growth in Rwanda’s
GDP in 2023 [43]. IT investments in Uganda are also progressing, but at a
slower pace compared to Rwanda [44]. This also highlights a natural contrast
between the two countries technological landscapes.

Despite these rapid developments, empirical research directly assessing
the experiences of software engineers in EA, specifically Rwanda, is notably
limited. The gaps in evaluating technical skills, communication practices, and
work methodologies among software engineers in these regions have been
noted previously [45, 46]. This lack of empirical evidence is particularly
striking because of the rapid growth in these countries driven by increasing
internet penetration and a surge in local entrepreneurial activity [47]. Though
noted by some entrepreneurship hubs such as Norrsken which have setup a
co-working space in Kigali [48], this trend has not yet been picked up by
researchers.

12 | Background

2.2 Analytical Techniques and Methodolo-
gies in Software Engineering Research

This section outlines the research methods and analytical techniques that are
relevant to this study. It covers both quantitative and qualitative approaches. It
also covers data analysis methods such as ML, NLP, and process visualization.

2.2.1 Quantitative Assessment Methods

Quantitative assessments are used in software engineering research to evaluate
technical competencies and problem-solving abilities [49]. Standardized
coding tests provide objective metrics, and are also useful for assessing
programming proficiency [50], while challenges focusing on bug detection and
security, as well as system design offer insight into practical problem-solving
skills of developers [51].

2.2.2 AQualitative Methods and Field Assessments

Qualitative methods uncover the context behind the numbers from the
quantitative assessments [52]. They reveal the contextual and experiential
factors that shape software engineering [53]. In-depth and in-place interviews
as well as field assessments highlight the nuances of real-world environments
[52], from hierarchical communication to management approaches.

Research underscores the value of combining qualitative and quantitative
data for a holistic understanding of empirical research in a mixed-methods
approach [54].

2.2.3 Pragmatic Mixed-Methods Research Approach

A pragmatic mixed-methods approach puts together quantitative assessments,
such as standardized coding tests and perception studies, with qualitative
methods such as interviews and sentiment analysis of communication patterns.

A pragmatic mixed-methods approach does not follow a theoretical
approach, but keeps to a grounded reality of practicality and contextual
responsiveness [55]. This method encompasses this paper, as it is based on
empirical data taken directly from the source.

Background | 13

2.2.4 Evaluating Software Engineering Skills

The evaluation of the technical competencies of software engineers can be seen
as an important area of research in software engineering due to interest from
both hiring managers and interviewees. Various methods have been developed
to assess and rank developer skills, which will be discussed in the related works
section. These range from standardized coding tests and technical interviews
to more advanced approaches utilizing ML and data analytics. These methods
aim to provide objective metrics for comparing programming proficiency,
problem-solving abilities, and system design skills across different regions and
organizational contexts.

Technical interviews can complement coding tests, and research indicates
that structured technical interviews are effective in evaluating both technical
and soft skills, including teamwork and communication [56]. This approach
allows for a more holistic evaluation of a developer competencies and in turn
enables more accurate benchmarking across different regions.

Machine Learning and Data Analytics in Skill Assessment

Advancements in data analysis techniques have provided a complement to
traditional methods of analysis in software engineering. (ML) and NLP are
increasingly applied to analyze code comments, communication logs, and
other textual artifacts [57]. Transformer-based models such as Bidirectional
Encoder Representations from Transformers (BERT), have been used to
generate code embeddings that enable clustering and comparison of coding
styles and communication pattern using k-means clustering [57-59].

Additionally, clustering analyses have been used to compare programming
strategies and behaviors across varying skill levels [60], and therefore being
relevant in showing how cultural contexts influence problem-solving strategies
and communication styles.

codeBERT is a pre-trained model designed specifically for programming
languages and natural language [61]. It adapts the BERT architecture to
code-related tasks which allows it to learn meaningful representations from
both code and text. The model builds on research about how language
models capture structural information. BERT models form a rich hierarchy
of linguistic information” [62], and codeBERT extends this capability to
programming languages.

PCA is a dimensionality reduction technique used to transform high-
dimensional code embeddings into lower-dimensional representations while
preserving maximum variance in the data. In code similarity analysis PCA

14 | Background

plays an important role in visualizing relationships between code fragments
that would otherwise remain hidden in high-dimensional embedding spaces.
PCA is described as particularly valuable for “initial exploration” of code
embeddings as it helps to identify broad patterns in how different code
implementations relate to each other [63]. This makes it an essential first step
in analyzing the relationships between code fragments represented as high-
dimensional vectors, since code embeddings typically contain hundreds of
dimensions (codeBERT uses 768-dimensional vectors [62]), making direct
visualization impossible.

Sentiment analysis is a branch of NLP, and it plays an important role in
understanding the emotional tone behind textual communication, including
within software engineering environments. One widely used NLP tool for
sentiment analysis is VADER [17]. It is integrated into the (NLTK) library,
and VADER was from the beginning designed for analyzing sentiments in
social media and other forms of informal communication [17]. It combines
a sentiment lexicon of over 7,500 features with rule-based heuristics that takes
linguistic features such as punctuation and capitalization into consideration,
and requires no training data [17]. VADER uses a normalized compound score
that ranges from most negative (-1) to most positive (+1), which allows for a
straightforward assessment of overall sentiment [17]. Even though VADER is
not specifically designed for software engineering purposes, it has been used
in this context previously [64].

2.3 Related Work

This section reviews the existing literature that is most relevant to this study. It
covers prior research on GSD, cross-cultural collaboration, and the evaluation
and analysis of software engineering skills. It identifies both the contributions
and the limitations of existing studies, and thereby justifying the research focus
of this project.

2.3.1 Related Work on Global Software Development

GSD is characterized by distributed teams collaborating across geographical
and cultural boundaries. Prior research has examined the challenges associated
with communication, coordination, and cultural integration in GSD contexts
[31]. For instance, challenges in multilingual communication and the impact
of cultural diversity on collaboration have been explored in studies focusing
on global software teams [65].

Background | 15

Research also highlights the importance of understanding cross-cultural
dynamics to enhance collaboration and productivity in distributed teams [66].
The studies emphasize the role of multilingualism and cultural competencies
in mitigating communication barriers and improving team interactions [67].
However, most work on outsourcing and GSD reviewed focuses on major
technopoles and emerging centers such as India, Ireland, Israel, Russia,
The Philippines, China, Eastern Europe, North Africa, Brazil and Chile in
South America [4, 6, 68, 69], leaving a noticeable gap in empirical research
on emerging markets such as Rwanda and Uganda in EA. Furthermore, a
literature review on information technology outsourcing looked at 91 different
papers on outsourcing published in 51 unique journals, and found no research
published by any country in Africa specifically [70], indicating a lack of
engagement from African parties in this regard as well.

The studies reviewed that cover Africa, focus on more developed countries,
where the main focus is often South Africa, Kenya, Nigeria, North African
countries and even Mauritius in one study [7-10]

This study addresses that gap by conducting a comparative analysis of
software engineers in Rwanda, Uganda, Sweden, and the Netherlands, offering
new insights into how cultural and organizational contexts shape software
engineering practices, as well as benchmarking the skills of these engineers,
potentially putting Rwanda and/or Uganda on the map for discussions related
to outsourcing in Africa.

2.3.2 Related Work on Analytical Techniques

Analytical techniques, including ML, NLP, and process visualization, are
applied in software engineering research. These methods enable the extraction
of insights from large datasets, such as code repositories and communication
logs. For example, embedding models and clustering techniques have been
used to evaluate coding styles and problem-solving approaches across cultural
contexts [71].

NLP techniques, such as sentiment analysis and topic modeling, are
employed to analyze communication styles and collaborative behaviors in
software teams [72]. There are also studies focusing on how to leverage
process visualization techniques specifically for different software engineering
processes [73, 74]

16 | Background

2.3.3 Related Work on Assessing Software Engineers

Standardized coding tests are widely used for evaluating fundamental
programming skills, such as algorithmic thinking, data structures, and problem
solving [50], especially in the industry [75-77]. Studies have also looked
at general skills needed for software engineers [56], as well as a larger
competency framework developed by SWECOM [78], which has a vast
number of references to related articles. The assessments also include
incorporating bug detection challenges and system design tasks that provide
more holistic assessments of practical problem-solving and architectural
skills [78, 79]. Lastly, this study takes inspiration from seminal work on
methodological flexibility when to comes to researching social issues [14-16].

2.3.4 Explicit Research Gaps and Summary of Contri-
butions

Although existing research provides valuable insights into GSD and cross-
cultural collaboration, it predominantly focuses on established tech hubs in
Asia, South America, and Europe. There is a noticeable gap in empirical
research on emerging markets, particularly in EA. Especially, there is no
empirical research regarding GSD or skills assessments of engineers in
Rwanda and Uganda. Even so, going broader, empirical research on
developers and engineers generally in Rwanda and Uganda is comparably low.

This study addresses these gaps by conducting a comparative analysis
of software engineers in Rwanda, Uganda with those in Sweden and the
Netherlands. It uses methods such as NLP, sentiment analysis, and process
visualization to do the analysis. Also, it contributes to the academic discourse
by providing empirical data from underrepresented regions, offering new
insights into cross-cultural collaboration. Using a pragmatic mix-methods
approach, it closes the gap between productivity metrics and cultural nuances.

By addressing these research gaps, this study provides a more comprehen-
sive understanding of GSD practices, informing strategic decisions in global
collaboration and outsourcing.

Methods | 17

Chapter 3
Methods

This chapter outlines the methods used to compare software engineering
practices between engineers from EA (Rwanda and Uganda) and NWE
(Sweden and the Netherlands). It describes the overall approach taken in the
study, including data collection, experimental design, analytical methods, and
how the reliability and validity of the findings were ensured.

3.1 Research Paradigm

This study uses a pragmatic mixed-methods approach which combines both
quantitative and qualitative methods for evaluating software engineering skills
clearly and comprehensively [80], and in turn understanding cross-cultural
differences between the regions in the study. The framework was selected
because it connects the objectivity and measurability of quantitative data
with the insights and understanding you get from qualitative studies [80].
This approach enables thorough analysis of technical skills, communication
patterns, and organizational practices across different cultures.

Other methodological options were also considered. A purely quantitative
method was not selected because it typically focuses only on comparisons
or relationships between variables and could in turn miss important cultural
nuances and contextual details. On the other hand, a purely qualitative method
could be valuable for uncovering processes, experiences, and contextual depth,
but this could also not be suitable since it may lack the ability to generalize
results or make clear comparisons of technical performance across groups.
Therefore, a mixed-method approach was identified as the most appropriate
strategy because combining both quantitative and qualitative approaches can
offset the inherent limitations of each method individually, which in turn

18 | Methods

allows for more balanced and insightful analysis which still maintains both
clarity and depth [80]. Pragmatism also allows for greater depth and breadth
in the research [81] and frees researchers from the ’tyranny of method” [81,
82]. Lastly, seminal work has argued that science progresses best when not
constrained by rigid methodological rules [14], especially when addressing
the complexity of social problems [15], which is a theme followed in the
methodology.

Research Process

Research Process Flowchart

Cross-
Continental
—> Evaluation ——> Comparison
and
Reporting

Literature Data Data
Review Collection Analysis

Figure 3.1: Research Process Flowchart

Figure 3.1 illustrates the iterative nature of the research process,
emphasizing feedback loops between data collection, analysis, and evaluation.

3.2 Research Questions and Design

The research questions were formulated based on gaps identified in the
literature regarding GSD and cross-cultural collaboration with particular
attention to the limited representation of EA contexts [83]. Three main
research questions guide this study.

RQ1: How do software engineers in East Africa and North Western
Europe differ in coding skills and problem-solving strategies?

RQ1 is addressed through quantitative methods, including standardized
coding and system design tests designed to measure programming skills and
complexity of solutions, where analysis consists of clustering techniques for
comparative analysis. Additionally, qualitative methods involve in-depth
interviews to explore the reasoning behind the strategies.

RQ2: How do communication styles and organizational practices
differ between regions?

Methods | 19

RQ2 is answered through sentiment analysis on code comments and way
of expression when solving problems. Quantitative data will show differences
in process steps across the countries. Furthermore, qualitative data such
as interviews with team-leads are also analyzed to compare organizational
cultures.

RQ3: What biases exist across the countries and how would this affect
collaboration between software engineers from East Africa and North
Western Europe?

RQ3 employs perception study to quantitatively assess biases, as well
as conversing with the engineers about their answers to the questions.
Furthermore, interviewees as later stages will be asked to give their reflections
on the results of the perception study.

Data Collection, Validity & Reliability

3.2.1 Data Collection

Participants were selected to ensure representation from diverse levels of
seniority. The sample includes 48 software engineers, with 10—15 participants
each from Rwanda, Uganda, Sweden, and the Netherlands. Interviews
typically lasted 60—120 minutes. The participants were allowed to use a
Integrated Development Environment of their own choice, but were not
allowed to access the internet or use Al tools.

3.2.2 Data Validity

These numbers (48 software engineers, with 10-15 participants from each
country) are adequate because saturation in qualitative research, defined
as “the point in data collection when no additional issues or insights are
identified and data begin to repeat so that further data collection is redundant”
[84], typically occurs within 9-17 interviews for relatively homogeneous
populations [84]. Software Engineers fall under the category of being a
homogeneous population [85], and thus having saturation reached at the
number of participants included in this study per country. As a whole, software
engineers from 4 different countries is a heterogeneous group, and 48 in
depth interviews is deemed more than sufficient, especially since research
also points to that saturation is reached within a similar number of interviews
for a heterogeneous population as a homogeneous one [84]. Furthermore, a
study using semi-structured, open-ended interview questions in Ghana noted

20 | Methods

that after 30 interviews, their codebook contained 109 content-driven codes.
Importantly, 80 (73%) of these codes were identified within just the first six
interviews, and an additional 20 codes were found in the next six interviews -
meaning 92% of all codes were identified within the first 12 interviews. The
authors concluded that "Based on our analysis, we posit that data saturation
had for the most part occurred by the time we had analyzed twelve interviews”
[86].

Furthermore, the sampling was made through professional networks, and
the sample members were not selected at random from any population, and
instead were selected because they were the easiest to recruit for the study. This
is referred to as convenience sampling, andis often used to recruit participants
to a study as well as used in conjunction with most study designs [87].

For the quantitative part of this study, the sample size provides limited
statistical power, especially at the country level, and especially if only
considered without the qualitative component. Using standard Confidence
Interval (CI) calculations at a 90% confidence level, a margin of error can
be determined for proportions using the formula [88]:

p—p)

n

Margin of Error = z x 3.1)

Where z is the z-score (1.645 for 90% confidence level), p is the estimated
proportion (0.5 provides maximum variance), and 7 is the sample size [89].
Applying this formula to our samples:

For individual countries:

0.25

Rwanda (n=13): = 1.645 x Sl +22.8%
0.25

Uganda (n=14): = 1.645 x = +22.0%
0.25

Sweden (n=10): = 1.645 x ST +26.0%
0 25

Netherlands (n=11): = 1.645 x = +24.8%

Methods | 21

For regional comparisons:

’0.25

East Africa (n=27): = 1.645 x 7 = +15.8%
0.25

North Western Europe (n=21): = 1.645 x ST +17.9%

For the full sample:

’0.25
Total (n=48): = 1.645 x T +11.9%

These wide CI at the country level (over +20%) show that there is
uncertainty in the quantitative findings for individual countries. This
limitation is both acknowledged and addressed through the mixed-methods
approach taken by the study where quantitative data is primarily used for
identifying broad patterns and insights from qualitative data provide the
depth and context for country specific analysis. This statistical limitation
is consistent with the exploratory nature of this cross-cultural comparative
study, where depth of understanding often takes the driver seat over
statistical precision [90]. Also, mixed-methods research can compensate
when the quantitative approach by itself is inadequate to develop a complete
understanding about a research problem or question [91].

However, while wider CI indicate less precision in quantitative estimates,
they still provide valuable information about the range of plausible values
and uncertainty in the data. As emphasized by Hespanhol et al. [92]
decision making should not be based only on ’the dichotomized interpretation
of confidence intervals (i.e., statistically significant or non-statistically
significant),” but rather should incorporate ”a more in-depth analysis and
interpretation of the values and width (i.e., precision) of CI”. This principle
aligns with mixed-methods approach taken that is looking to balance statistics
with contextual understanding. It is therefore important to recognize that
quantitative measures with wider confidence intervals can still give valuable
insights when complemented by qualitative data that provides depth and
context. Furthermore, wider confidence intervals are an expected consequence
of the design choices made in pragmatic research that prioritize real-world
applicability [93], once again aligning with the approach taken in the study.

To further ensure the validity of the data, all assessments and interview
questions were designed to reflect real world software engineering tasks and

22 | Methods

communication practices. The type of questions was chosen based on the skills
that the scientific literature deems important for software engineers and were
refined by consulting experienced professionals within the field. Since the
literature is split on this issue, and in the pragmatic essence of this study, this
paper chooses to go with a study that also references the ten knowledge areas of
the Software Engineering Body of Knowledge (SWEBOK). The areas chosen
from that list were Software Design, Construction, Testing, Quality, Process,
Maintenance, which covers 6 of the 10 skills listed for software engineers [94].

Furthermore, a study showed that what classifies a good developer is their
technical and social skills [95]. In technical skills, they look at coding ability,
which asks how proficient is the knowledge of an individual, and how good
their ability to code is, and the second aspect is the quality of work, which
asks how good is the code that an individual produces? Social Skills are soft
skills that measure the ability to work as an individual and in teams. Three
important skills are collaboration proficiency, project management ability, and
motivation [95]. These were not taken into account due to the scope of the
study.

3.2.3 Data Reliability

Reliability refers to the consistency of the results, and in this study, it
was maintained by administering the same standardized assessments to all
participants. Every interviewee was given the same tasks under the same
conditions as well as the same amount of time. The coding challenges and
system design tasks are scored using predefined criteria to keep consistency
across all participants. Pilot tests were conducted before the main study to
make sure that assessments were clear and that the questions were interpreted
correctly by all participants. However, due to geographical reasons, the pilot
test was done on Swedish participants only.

To ensure that the data is accurate and truthful, the data is collected directly
from the participants during the coding challenges, system design tasks, and
interviews. This direct approach minimizes the risk of misrepresentation or
manipulation of results. During the case of a virtual interview, a second person
was to be present to validate the integrity of the candidate.

The coding tasks are monitored to ensure that the solutions are created
independently by the participants, and notes are taken during the assessments
to capture the whole thought process of the candidate and any deviations from
the assessment rules.

Methods | 23

3.3 Assessments and Challenges

Programming Assessment: Unique Pairs that Sum to
Target

The programming assessment chosen for this study is the problem titled
Unique Pairs that Sum to Target. The problem is defined as follows:

Given a list of integers nums and an integer target, return a
list of unique pairs (a,b) where:

*a+b=target

* (a,b) is considered the same as (b, a), so no duplicate pairs
should appear.

You may return the pairs in any order.

Example 1:
Input: nums = [1, 5, 3, 7, 4], target = 8
Output: [(1, 7), (5, 3)]

Example 2:
Input: nums = [2, 2, 4, 4], target = 8
Output: [(4, 4)]

Multiple approaches can solve this problem, each with different time and
space complexities. These approaches are detailed below:

Brute Force Approach

* Description: The brute force method involves checking all possible
pairs in the list to see if their sum equals the target value.

* Algorithm:

1. Iterate over each element i in nums.
2. For each i, iterate over every subsequent element j.

3. Ifnums[i]+nums[j] = target, add the pair (nums[i], nums[j])
to the result set.

4. Use a set to store pairs to automatically handle duplicate pairs.

24 | Methods

« Time Complexity: O(n?) since all pairs are checked.
* Space Complexity: O(n) for storing the result set.
* Example Implementation (Python):

Listing 3.1: Brute Force Approach for Two Sum Problem

def find_pairs(nums, target):
pairs = set()
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
if nums[i] + nums[j] == target:
pairs .add ((min(nums[i], nums[j]),
max(nums[i], nums[j])))
return list(pairs)

Sorting and Two-Pointer Technique

* Description: This approach sorts the list first, then uses a two-pointer
technique to find pairs.

* Algorithm:

1. Sort the list.

2. Initialize two pointers: one at the start (left) and one at the end
(right).

3. If the sum of the two pointers equals the target, add the pair to the
result and move both pointers.

4. If the sum is less than the target, move the left pointer forward.

5. If the sum is greater than the target, move the right pointer
backward.

* Time Complexity: O(nlogn) for sorting, and O(n) for the two-pointer
search, resulting in an overall complexity of O(nlogn).

* Space Complexity: O(n) for storing the result set.

* Example Implementation (Python):

Methods | 25

Listing 3.2: Two-Pointer Technique for Two Sum Problem

def find_pairs(nums, target):
nums. sort ()
left, right = 0, len(nums) - 1
pairs = set()

while left < right:

current_sum = nums[left] + nums[right]
if current_sum == target:
pairs.add ((nums[left], nums[right]))
left += 1
right —= 1
elif current_sum < target:
left += 1
else:
right —= 1

return list(pairs)

Hash Set Method (Optimal Solution)

* Description: This approach uses a hash set to check for the complement
of each element in a single pass.

* Algorithm:

1. Initialize an empty set to store seen numbers.

2. Iterate over the list. For each number, calculate its complement as
complement = target — num.

3. If the complement is in the set, add the pair to the result set.
4. Add the current number to the set.
* Time Complexity: O(7) due to a single pass through the list.

» Space Complexity: O(n) for storing the result set and the hash set.

* Example Implementation (Python):

Listing 3.3: Hash Set Method (Optimal Solution) for Two Sum Problem

def find_pairs(nums, target):
seen = set ()

26 | Methods

pairs = set()

for num in nums:
complement = target — num
if complement in seen:
pairs .add ((min(num, complement),
max (num, complement)))
seen .add (num)

return list(pairs)

This problem is a remade version of the two-sum problem, which is
the most practiced problem on Leetcode [96]. This particular problem
was selected due to its suitability in assessing core software engineering
competencies such as algorithmic thinking and coding efficiency, and
understanding of data structures. The task is complex enough to effectively
differentiate skill levels among participants yet straightforward enough to
be completed within a reasonable time frame. Additionally, this type
of algorithmic challenge is commonly employed in software engineering
recruitment contexts which enhances the ecological validity and practical
relevance of the assessment [97].

Analysis for Unique Pairs

To analyze code patterns across the different regions ML techniques for
clustering code similarities together with manual inspection of algorithmic
approaches was used.

The codeBERT model specifically designed for programming language
understanding was used. Each code submission was processed by first creating
an embedding. Here code snippets were tokenized and passed through
codeBERT to generate high-dimensional vector representations (embeddings)
that capture semantic and structural properties of each submission. Then
dimensionality reduction was used. This resulted in high-dimensional
embeddings (768 dimensions), that were reduced to two dimensions using
PCA to easier visualize the results and in turn conduct the analysis. Lastly,
K-means clustering was used, where k=4 was applied to the embeddings to
find patterns in the code and see which countries use what approaches. The
algorithm partitioned the code submissions into clusters based on similarity in
the embedding space. This was used to generate Figure 4.1 in the results, by
using PCA 1 and PCA 2 for the two dimensional axis.

Methods | 27

The distribution of clusters across countries were also represented using
stacked bar charts, allowing for direct comparison of coding patterns between
regions.

In addition to automated analysis the results were also manually inspected
to classify whether the engineers used a hash map solution, two-pointer
solution, nested loops or failed the task. Notes were also taken during the
process to see if the engineers mentioned another more effective solution, as
well as encouraging them in their explanations to continue speaking.

System Design Challenge - URL Shortening Service

This study includes a system design challenge which is to design a URL
Shortening Service, similar to commonly used services like Bit.ly. The
challenge requires participants to design a system that can:

* Handle a large number of requests efficiently.
* Store and retrieve shortened URLs effectively.
* Ensure each shortened URL is unique.

* Redirect users accurately from shortened URLs to the original
destinations.

This system design challenge was used to assess architectural design,
scalability and data handling. Participants completed the task in spoken
language, explaining their design choices and reasoning in real time. This
allowed for evaluation of both technical understanding and communication
skills. The challenge reflects practical, real-world scenarios and provides
a fair basis for comparing engineers across regions, and in this case EA
and NWE. Studies show that software engineers often lack practical system
design skills, particularly in scalability and architectural thinking [98]. This
challenge addresses this skills gap by looking at if they can design a scalable
and maintainable system.

Analysis for System Design

The results were aggregated using manual techniques, going over each answer
and noting down overall country generalizations, based on the four objectives
noted in 3.3

28 | Methods

Code Review Challenge - Authentication System

The Code Review Challenge is designed to evaluate the participants ability
to find security vulnerabilities and to see how they provide feedback. The
task involves reviewing and suggesting improvements to a poorly designed
authentication system through code comments. The code is presented in
Python, but participants are allowed to use Java if preferred.

Other than technical evaluation, this challenge also supports comparative
analysis of communication styles and feedback methods among software
engineers from EA and NWE. By doing sentiment analysis on the comments,
the study hopes to give an unique perspective on how cultural context may
influence communication in software engineering.

Assessment Code
The following is the Python code provided to the participants for review:

Listing 3.4: Authentication System Code

This authentication system is designed to be
simple and efficient

It provides basic login and password management
functionality

class AuthSystem:
def __init__ (self):
self.users = {”admin”: “passwordl123”} #
This makes it easy to manage users!

def login(self, username, password):

Quick and simple login check

if username in self.users and
self.users[username] == password:
print (”Login successful!”) # Users

will appreciate this feedback!

return True

return False # Should we provide more
details on failure?

def change_password(self , username,
new_password) :

Methods | 29

self.users[username] = new_password #
Password updates are quick and direct!

Let's test the system!
auth = AuthSystem ()

auth.login (”admin”, ”password123”) # Works well!

auth .change_password (”admin”, “newpass”) # Very
easy to change passwords!
auth.login (”admin”, “newpass”) # Success message

confirms everything is good!

After the issues are identified, the participants are encouraged to leave a
code review, as well as change any comments they deem unnecessary, and
add comments the way they feel are necessary. Code reviews are recognized
as a way for reducing software defects and improving the quality of software
projects [99]. The assignment is evaluated based on the tone of comments and
the review, and if the reviewer noticed any security vulnerabilities. The reason
for including an aspect of security is because even though software engineers
are not specifically experts in security, they are held responsible for developing
secure applications [100].

Security Issues Analysis

There were 11 distinct security issues that engineers identified, which were
cataloged:

* Plain text password storage

» Hardcoded credentials

* No authentication for password change
* Information leakage in error responses
* Inappropriate logging/print statements
* No input validation for passwords

» Unsafe password comparison

* No rate limiting for login attempts

30 | Methods

* Password complexity requirements
* Logging of security events

* Two-Factor Authentication (2FA) recommendation

For each identified issue the percentage of engineers from each region
and experience level who identified the problem were noted. Engineers
were categorized into groups of juniors and seniors from each country,
where seniors had over 3 years of experience and juniors under 3 years of
experience. Visualization techniques included bar charts, heat maps, and
tabular visualizations. Lastly, juniors and seniors were compared explicitly
for deeper understanding of the data.

Code Comments and Sentiment Analysis

The varying tones in the comments provide an opportunity for sentiment
analysis. Sentiment analysis will be applied to understand the emotional
context of the comments. This aims to reveal how engineers express feedback
and suggestions. It also contributes to the goal of the study which is comparing
communication styles and feedback mechanisms across different cultural
contexts.

The code contains various types of comments, which can be categorized
as follows:

Comment Category Details

Positive Comments Example: # Works well!, # Success
message confirms everything is
good!

These comments express positive feedback but lack
technical depth.

Neutral Comments Example: # Quick and simple login
check

These comments describe functionality without any
emotional tone.

Negative Comments Example: # WHY would you add this!?

These comments express negative feedback.

Methods | 31

Analysis of Code Comments

To analyze cultural differences in code reviewing practices, a structured
approach was implemented combining NLP techniques with manual analysis
of developer feedback.

For systematic analysis of comments, the process began with comment
extraction using regular expressions, where all inline comments were
extracted. Comments were then aggregated by country to enable a comparative
analysis of commenting patterns across regions. To understand the emotional
tone of review comments, sentiment analysis using the VADER sentiment
analysis tool from the NLTK library was used. Rather than simply aggregating
all comments by country before analysis, the sentiment scores were first
calculated for each individual engineers comments. This was as previously
all comments were aggregated, but specific engineers swayed the results which
turned them incomprehensible and biased. For each engineers comments, four
key sentiment metrics were computed, which were Negative, Neutral, Positive
and compound scores. Negative sentiment score as the proportion of text
expressing negative emotions, Neutral sentiment score was the proportion of
text expressing neutral emotions, Positive sentiment score was the proportion
of text expressing positive emotions and Compound score was the normalized,
weighted composite score between -1 and 1 [17]. Then the average sentiment
was calculated for each country. Overall sentiment was classified for each
country based on normal classification thresholds [17]:

* Positive: compound score > 0.05
* Negative: compound score < —0.05

* Neutral: compound score between —0.05 and 0.05

Developer Quantitative Study

To answer RQ3, the interviewees were asked to rate the software development,
communication, and problem-solving skills of engineers from all the countries
including their own on a scale from 1 to 10, where 1 is the lowest rating and
10 the highest rating. Their comments on this matter were also recorded.

To understand how the development process itself is different between
regions and countries, the interviewees were asked to provide a self-
assessment of how long they believe various development tasks typically take,
as well as giving justifications for why. As it is out of the scope of this

32 | Methods

study to analyze detailed activity logs, this section is intended to serve as a
complementary source of insight alongside other studies based on log data.

The software engineers were told to give a time estimate on the following
categories of tasks, which were picked pragmatically after looking at research
in the area [101, 102]:

* Issue Lifecycle

Investigation and root cause analysis

Implementation planning and design

Development and testing

Documentation and pull request

Issue verification and closure

* Code Review Process

Code cleanup and documentation

Running tests locally

Peer review process

Addressing feedback

Final approval
* Deployment Process

Build and test automation

Staging deployment and testing

Stakeholder review

Production deployment

Post-deployment verification

* Bug Fix Process

Bug investigation and reproduction

Fix implementation and testing

Documentation and review

Deployment and verification

Methods | 33

Development Process Visualization

To analyze and compare development processes across different regions the
study used time estimates provided by software engineers from Rwanda,
Uganda, Sweden, and the Netherlands. The methodology focused on three
analyses, which consist of process flow visualization, identification of top and
bottom steps by time consumption and a critical path analysis.

To ensure consistent analysis across participants who provided estimates
in different formats (minutes, hours, days), a time normalization function that
converted all time estimates to minutes was implemented to have a common
unit for comparisons. This also allowed for analysis across different countries
and experience levels. The normalization approach handled various time
formats through pattern matching. Weeks were converted to minutes (1 week
= 5 days =40 hours = 2400 minutes), days were converted to minutes (1 day =
8 hours = 480 minutes), and hours and minutes were converted directly. This
standardization was needed as participants used varying time formats in their
responses.

To visualize the development process flow for each country, directed
graphs that represented the sequence of processes and the relative time spent
on each were created. The visualization included process nodes where each
development process was represented as a node in the graph. The size of the
node was proportional to the total time spent on that process per country,
making it visually apparent which process consumed the most resources.
Nodes were also color coded using a gradient from green to red based on time
intensity. The color green represented shorter times and red longer times, to
give an immediate visual indication of where time was spent. Arrows between
nodes showed the typical sequence of processes in software engineering, going
from issue investigation through to deployment.

To identify which development steps consumed the most and least time
for each country, a comparative analysis was created where all steps across
processes were aggregated for a given country, then average time spent on
each step was calculated and sorted by time consumption (highest to lowest).
At last a visualization of top 5 and bottom 5 steps were visualized based
on average time. This analysis would show which steps in the development
process consumed the most and least time per country with an aim to show
where engineers from different regions focus their efforts.

To further show potential bottlenecks in the processes, a critical path
analysis was made where steps that consume over 10% of the the total
development time were found.

34 | Methods

Lastly, a cross country comparison was made to show how long each step
took for each country, visualizing the data of each country beside each other
in a table.

This process visualization approach shows the development workflows
[103]. With this the study aims to show differences in work patterns,
and strengths and weaknesses within the software engineering lifecycle. It
contributes to the goal of the study which is to compare software engineering
practices across EA and NWE by providing a analysis of how teams operate.
By going into detail in the processes, the study uncovers cultural and
organizational influences on development practices.

Results and Analysis | 35

Chapter 4

Results and Analysis

This chapter presents the findings from the comparative study of software
engineers in EA (Rwanda and Uganda) and NWE (Sweden and the
Netherlands). The results are organized to address our three research
questions:

RQ1 (coding skills differences) is addressed through the programming
assessment and system design challenge results.

RQ2 (communication and problem solving variations) is examined
through sentiment analysis of code reviews and process time estimations.

RQ3 (biases affecting collaboration) is explored through perception ratings
and their implications for cross cultural teams.

Throughout the chapter, the study integrates quantitative measurements
with qualitative insights from interviews to provide a comprehensive picture
of regional differences in software engineering practices.

4.1 Technical Assessment Results

4.1.1 Unique pairs

The approaches taken to solve the programming assessment in Section 3.3 are
distributed as shown in Table 4.1 between the countries.

Rwandan participants mostly relied on using nested loops, but also had a
minority applying hash-based optimizations. No submissions from Rwanda
used the two-pointer or counter technique, though a few noted that this way to
solve the problem is more efficient during the interview process.

In contrast, Swedish software engineers showed strong algorithmic
understanding where a majority was seen going for a hash map solution and

36 | Results and Analysis

a small minority using nested loops or two-pointer approaches. Similarly to
Swedish engineers, engineers from the Netherlands demonstrated an above
average grasp of efficient solutions, with more than half using hash maps/sets
and some using two-pointer methods.

Ugandan engineers had a high proportion of submissions classified as
failed. Only a small number used nested loops or hashing strategies. The
reasoning for this was because many Ugandan engineers opted to cheat by
using Al during this part of the test and therefore had their results nullified.

Country Hash Nested Two- Failed/

map/Set | For Loops | Pointer/Counter | Other
Rwanda 3(23%) | 9 (69%) 0 (0%) 1 (8%)
Uganda 4 (29%) | 2 (14%) 0 (0%) 8 (57%)
Sweden 8 (80%) 1 (10%) 1 (10%) 0 (0%)
Netherlands | 6 (55%) | 3 (27%) 2 (18%) 0 (0%)

Table 4.1: Distribution of solution approaches by country

The clustering of codeBERT embeddings in Figure 4.1 reveal groupings of
code submissions. Figure 4.2 easier shows how Swedish and Dutch software
engineers are very similar in coding styles, but they also have a surprising
similarity with Rwandan engineers, while Ugandan engineers differ from the
rest, having no submissions in cluster 1 or 3, which are the most frequent
ones for the remaining 3 countries. This analysis directly addresses RQ1 by
revealing patterns in coding approaches across regions.

Beyond the technical differences, the clustering also reveals patterns in
code organization, variable naming, and commenting styles. The European
solutions generally demonstrate more consistent patterns which could be due
to standardized educational or professional practices. Rwandan solutions
show higher variability, with some matching European standards and others
displaying more unique approaches.

This analysis supports the findings of the interviews which is that
educational background significantly influences coding style, with more
standardized European educational systems producing more consistent
approaches compared to the more diverse educational backgrounds of East
African software engineers. During the interviews, this was noted by almost
all Rwandan engineers, as well as some Europeans stating that their education
is uniform across the country.

Results and Analysis | 37

Code Submission Clusters (CodeBERT Embeddings + PCA)

Uganda
9 Clusters
@ Clustero
@ Cluster1
34 ® Cluster 2
Cluster 3
Sweden Uaind
® ganda
24 ®
o~ Uganda
.
T
g Uganda
o Uganda
s
S 1
= Rwanda
2 Uganda
k]
£
& Rwanda Sweden
Rwanda
04 swed Netherlands sweden
“Gweden nUANSR, () Netherlands
Netherlands
Swad R . Rwanda [] °
Nethewandsiands Rwanda
Rwarl.
Rpvanda Netherlands
-1+ Netherlaggs
@
Netherlands
T T T T T T T T
=2 -1] 1 2 3 4 5

Principal Component 1

Figure 4.1: Code Submission Clusters using codeBERT embeddings projected
via PCA.

Furthermore, the clusters can be represented in another way using a
barchart as shown in Figure 4.2

Cluster Distribution by Country

Number of Submissions

Rwanda
Sweden
Uganda

w
k-]
2
]
k=
@
k=1
@
]

Country

Figure 4.2: Code Submission Clusters using CodeBERT embeddings shown
through bar graph.

38| Results and Analysis

The barchart in figure 4.2 provide a complementary visualization of
the clustering analysis. It is showing the distribution of ways to approach
the solution across the countries. It is obvious that Swedish and Dutch
engineers show similar patterns in their code (Most results in clusters 1
and 3), but also Rwandan engineers showing a surprising similarity to their
European counterparts. In contrast, the valid submissions of the Ugandan are
concentrated in clusters 2 and 4 which suggest a different approach to problem-
solving. This addresses RQ1 by quantifying the similarities and differences in
coding patterns between regions, and shows that Rwandan code patterns in
particular have a striking similarity to European coding patterns.

4.1.2 System Design Challenge

In the system design challenge The Netherlands demonstrated the most overall
technical maturity across all experience levels. Their software engineers
delivered consistent quality responses that reflected a good educational
foundation and professional training. They were systematic about problem
solving with balanced attention to security, performance, and operations. The
small difference between junior and senior skill levels could be reflective of
good knowledge transfer within their development community, which was also
commented upon during the interviews. Dutch engineers all stressed security
and monitoring, preferred PostgreSQL together with Redis with advanced
caching, and showed better Development and Operations (DevOps) maturity
with Continuous Integration/Continuous Deployment (CI/CD) and container
orchestration knowledge. They had a professional and structured tone of
communication independent of experience, with good reasoning for technical
decisions.

The Swedish engineers showed a strong technical foundation, with a
clear progression going from junior levels to senior levels. The knowledge
the software engineers had were consistent with their experience. They
focused more on performance optimization and caching strategies. Most
often they preferred PostgreSQL + Redis like their Dutch counterparts,
but they demonstrated more variation in implementation details. Swedish
software engineers offered practical approaches focused on core requirements
where they tried balancing theory with implementation concerns. Their
communication was generally clear, but where confidence in answers
increased together with experience level.

The Rwandan software engineers showed the highest variation in technical
skills, where there were some exceptional software engineers across all

Results and Analysis | 39

experience levels together with more basic responses. They showed
the most diverse approaches, including serverless and document storage
architectures, and they also mentioned a wider variety of technologies with
less standardization. Their communication and problem solving approaches
ranged from very low, where some participants could not answer the design
question at all, to some few very comprehensive answers. They had less
predictable progression patterns across experience levels, as there were
instances of seniors not being able to answer the question, but also some
juniors who were on par with European senior engineers in their answers.
The reason to this could be the uneven access to both education and quality
work experience present in the country, which also was noted by Rwandan
engineers with a higher education and experience working in large software
companies. This however highlights the potential in the individual, as this
was evident in standout performances from both junior and senior engineers.
The interviews also revealed that some approaches studied were never put into
practice before, but that due to their own enthusiasm, the engineers had looked
into the theory behind architectural design previously, and could draw on that
rather than formal education or work experience.

Overall, Dutch seniors were consistent with giving comprehensive
technical approaches and had a strong emphasis on modern cloud architecture,
security, and monitoring. They showed a very high DevOps maturity
and communicated with a confident tone. Swedish seniors had a strong
technical foundation but that somehow varied from each other. They had
a good understanding of service separation and caching strategies. They
also had mixed communication styles that ranged from detailed step-by-step
explanations to more conceptual approaches. Rwandan seniors were the
most diverse in their designs, and presented different approaches varying in
completeness. It ranged from specialized serverless architectures to document
database solutions, to having one senior not being able to complete the
challenge at all. They also had very variable communication styles.

In the junior population interviewed, the Dutch junior engineers showed
strong awareness of security and a good architectural understanding. Their
responses consistently had PostgreSQL and Redis with caching strategies
and many of them also mentioned containerization and monitoring concepts
that would normally be expected of a senior engineers. Swedish junior
engineers showed good foundational knowledge with that corresponded with
their experience. In general they understood basic architectural concepts and
made reasonable picks of technology used. Their explanations were concise
and technical, and they covered important concepts like key-value databases

40 | Results and Analysis

and load balancing. Lastly, they showed good awareness of team context
and practical implementation concerns, which could suggest good industry
exposure despite only a few years of experience. Lastly, Rwandan juniors
were the most variable group. Several of them provided minimal or no
responses to the system design question, or were not even able to solve it, while
they also had some standout performers that gave comprehensive responses
with detailed Application Programming Interface (API) designs, encoding
explanations, and database schemas. This extreme variation is likely due to the
significant differences in educational background and learning opportunities
among the Rwandans interviewed, since some juniors had already been able to
work at Rwandan IT consultancies and acquired a masters, while other lower
performers did not have this extensive background.

When looking at technology preferences, we can see different ecosystem
differences. This is as the Dutch consistently referenced complete modern
stacks, while Swedish engineers showed strong cloud-native awareness, and
lastly Rwandan engineers demonstrating more varied technology familiarity.

The gap between Dutch juniors and seniors was smaller than expected,
while Swedish engineers showed the clearest progression by experience
level. Rwandan engineers had the most individual variation, making group
generalizations less reliable. The most consistent good quality responses
across all experience levels came from Dutch engineers, followed by Swedish
engineers. Ugandan engineers were not taken into account in this part of the
study, as all but 2 software engineers did cheat on this part, and the rest failed
to provide an answer.

4.1.3 Code Review Analysis

The code review challenge in Section 3.3 looked at the sentiment of developer
comments, which are showcased in Table 4.2. The table shows both cultural
and communication differences in feedback styles. Despite high neutrality
across all countries, compound sentiment scores indicate clear contrasts.
Rwandan and Ugandan reviews had a more positive tone in their
comments, with compound sentiment scores close to +1, which suggests more
encouraging or supportive feedback styles. On the other hand, Dutch reviews
were overall having a negative tone, while Swedish engineers had a neutral
tone. During the interviews, software engineers from NWE answered that their
tones do not imply hostility but rather critical or direct feedback styles which
they themselves preferred, and that they believed would be appreciated by their
peers and that this was more common in European engineering cultures.

Results and Analysis | 41

These differences do have implications for a cross cultural team, because
while Rwandan and Ugandan teams may focus more on emotionally
supportive environments, Swedish and Dutch teams might be more task-
oriented and direct, which could potentially result in conflicts.

Table 4.2: Sentiment Analysis Results of Code Reviews by Country

Neg- Neut- Pos- Com- Overall

Country ative ral itive pound Sentiment

Rwanda 0.049 0.818 0.133 0.541 Positive
Sweden 0.113 0.780 0.107 0.007 Neutral

Netherlands 0.153 0.764 0.083 -0.361 Negative
Uganda 0.047 0.713 0.240 00919 Positive

4.1.4 Security Knowledge Analysis

As seen in Figure 4.3 it is clear that the identification rates for security issues
differ across different engineering groups. Ugandan engineers will not be
showcased, as all but 3 participants were caught using ai on this part of the
examination.

Figure 4.3 shows that Rwandan software engineers were more varied in
the security issues they found, while Dutch and Swedish software engineers
focused on the top end of the spectrum. Surprisingly, Dutch juniors
underperformed on this task compared to their previous performances, even
though they showed strong security understanding in the challenge in Section
4.1.2. The interviews failed to uncover the reason for this.

The pattern of security issues identified by junior engineers in (Figure 4.4)
shows differences in awareness levels between countries. Swedish junior en-
gineers showed highest awareness, followed by juniors from the Netherlands,
and at last Rwandan juniors with the lowest identification rates.

42 | Results and Analysis

Heatmap of Security Issues Identified by Developer Groups

Plain text password storage

Hardcoded credentials

No authentication for password change

Information leakage in error responses

Inappropriate logging/print statements 06 8
s
3
g
g
8
No input validation for passwords 20% 0% 14% 33% 0% 0% s
8
£
£
g
Unsafe password comparison - 14% 0% 3% 0% 0% 0a B

No rate limiting for login attempts. 20% 14% 0% 0% 0% 0%

Password complexity requirements 20% 14% 0% 0% 0% 0%

0.2
Logging of security events 20% 0% 0% 0% 0% 0%
2FA recommendation 40% 14% 0% 0% 0% 0%
L—Loo
& & & & & &
& o Gl N o &
& & o 3 & &
& e & & & &
o @ & B & 9
& <

Figure 4.3: Heatmap visualization of security issue identification rates across
all software engineering groups.

Heatmap of Security Issues Identified by Junior Developers

Plain text password storage

Hardcoded credentials

0.8

No authentication for password change

Information leakage in error responses

o
g
Inappropriate logging/print statements - 14% 33% 0% 0.6 o
g
a
g
No input validation for passwords - 0% 33% 0% 5
k]
@
<3
&
Unsafe password comparison - 14% 33% 0% Lo §
)
&

No rate limiting for login attempts o 14% 0% 0%

Password complexity requirements - 14% 0% 0%

ro0.2
Logging of security events - 0% 0% 0%
2FA recommendation 14% 0% 0%
T T T —0.0
$ $ &
S S \°°‘°
» & &
& & &
o & N
A3) @?r
&

Figure 4.4: Heatmap visualization of security issues identified by junior
software engineers across different countries.

Results and Analysis |43

The recognition of security issues among senior software engineers in
Figure 4.5 vary in what is identified by each region. Senior Swedish and
Dutch software engineers focus on plain text password storage, hardcoded
credentials, authentication for password change and information leakage,
while the Rwandan engineers are more versatile and showing knowledge
scattered around many different areas.

Heatmap of Security Issues Identified by Senior Developers

Lo

Plain text password storage

Hardcoded credentials

0.8

No authentication for password change

Information leakage in error responses

o
o

Percentage of Senior Developers

Inappropriate logging/print statements -

No input validation for passwords 20% 14% 0%
Unsafe password comparison - 0% 0% 0.4
No rate limiting for login attempts 20% 0% 0%
Password complexity requirements - 20% 0% 0%
r0.2
Logging of security events - 20% 0% 0%
2FA recommendation - 40% 0% 0%
T —-0.0
‘ $ s«
& S &
& & N
9‘76 (\[7?‘ :)a
& & &
& & &
< < &

Figure 4.5: Heatmap visualization of security issues identified by senior
software engineers across different countries.

Figure 4.6 visualizes the differences in skills between seniors and juniors
across the regions. It shows that senior software engineers outperform
juniors in identifying security issues across all countries. However, Seniors
in Rwanda show a similar level of knowledge as Swedish ones, and
outperforming Dutch seniors, which is surprising as compared to the results
from the challenge in Section 4.1.2. When asked about why the results were
so, Rwandan team leads speculated that it might be due to the hours of work
they put in, and the exponential knowledge increase they see when growing
in seniority. When European team leads were queried about this, they also
speculated that Rwandan seniors amass more tech-work hours across their

44 | Results and Analysis

career, and one noted that work there is not only work, but survival, while work
in Europe is inherently different. Lastly, Rwandan juniors are the weakest
performers, falling slightly short of Dutch juniors and performing much worse
than Swedish ones. This was once again speculated by team leads from all
countries to be because of limited exposure to projects and a lower quality
education.

Average Security Issue Identification Rate by Country and Experience

Rwanda

Sweden

r0.35

Average Identification Rate

F0.30

Netherlands

F0.25

T T
Senior Junior

Figure 4.6: Heatmap comparison of compounded security awareness
between senior and junior software engineers across Rwanda, Sweden, and
Netherlands.

The results from the technical assessments directly address RQI1 by
showing patterns in the software engineering skills between the countries
and regions. The clustering analysis shows that European software engineers
employ more consistent algorithmic approaches, with Dutch and Swedish
software engineers favoring optimal hashmaps and displaying stronger
security awareness. However, in security issues identified shown in figure
4.6, it is shown how the difference between Rwandan seniors and juniors
is very large, and that the seniors from Rwanda outperform their European
counterparts, while the Rwandan juniors are outperformed by every other
group, which is speculated to be due to the longer hours Rwandan software
engineers work noted in the interviews, and in turn being exposed to more
projects and having more effective hours of software engineering. Lastly,
Rwandan software engineers showed higher variability in their technical
approaches, where some had outstanding performances matching European

Results and Analysis | 45

standards but others showing more basic implementations or failing to
implement a solution overall. These differences appear rooted in educational
backgrounds and early career opportunities, as revealed in our interviews
where several Rwandan software engineers mentioned limited access to
standardized computer science education. The standout performance of some
EA software engineers despite these limitations mean that there is individual
potential that may be unrealized because of systemic factors rather than
capability factors.

4.2 Biases and Process analysis

4.2.1 Process Steps

In this section the process steps from Section 3.3 will be presented. In the
Ugandan group, interviews revealed a persistent English-as-a-second-language
struggle. The inflated times are speculated to be a communication problem
rather than process inefficiency, and therefore Uganda is treated as an outlier
for the remainder of the process-duration analysis. Their data is still shown
for transparency, but all cross-country comparisons are restricted to Rwanda,
the Netherlands, and Sweden.

The table is divided into different process steps, where each process is
broken down into a step. The software engineers are told to give a time
estimate for how long each step takes to complete.

46 | Results and Analysis

Process Step RW NL SE UG
Bug Fix Investigation/reproduction 60.0 147.0 213.0 1400.0
Process Deployment 456 78.0 96.0 980.0
verification
Documentation/review 25.6 52.5 54.0 1080.0
Implementation/testing 46.1 261.0 261.0 1120.0
Code Review Addressing feedback 1439 645 90.0 1380.0
Process Cleanup/documentation 236.1 58.5 76.5 1140.0
Final approval 822 345 51.0 1190.0
Peer review process 872 960 93.0 1360.0
Running tests locally 1324 570 575 1170.0
Deployment Build/test automation ~ 287.8 135.0 264.0 1145.0
Process Post-deploy 335.6 51.0 58.0 1400.0
verification
Production 1267 540 72.0 1120.0
deployment
Staging deploy/testing 120 645 70.0 1080.0
Stakeholder review 1244 615 76.5 1360.0
Issue Development/testing 261.1 720.0 792.0 1920.0
Lifecycle Documentation/PR 101.1 96.0 109.0 960.0
Planning/design 1944 189.0 264.0 1600.0
Investigation/analysis ~ 165.9 111.0 132.0 1240.0
Verification/closure 141.7 51.0 88.0 840.0
Note: Values represent average time in minutes. = RW=Rwanda,

NL=Netherlands, SE=Sweden, UG=Uganda.

Table 4.3: Self-reported software development process time (minutes)
estimates by country

4.2.2 Longest vs Shortest Process Steps per Country

As shown in figure 4.7, the Rwandan engineers are quick at bug fixes and
documenting them, as well as going through their deployment process at a fast
rate. Their slowest steps include the process of development, writing tests and

doing their post deployment checks.

Figure 4.8 shows that the Dutch software engineers spend the least time
running their deployment tests, doing post deployment checks, and waiting
for a final approval. Their slowest steps include planing how to solve an issue,

fixing bugs and the process of development.

Results and Analysis | 47

Rwanda

Fastest Steps. Slowest Steps

Deployment and verification - Bug Fix Process

Development and testing - Issue Lifecycle

Documentation and review - Bug Fix Process Build and test automation - Deployment Process

Staging deployment and testing - Deployment Process Post-deployment verification - Deployment Process

0 s 100 150 200 250 300 350
Minutes

Figure 4.7: Steps that take the longest as well as shortest for Rwandan software
engineers.

Netherlands

Fastest Steps Slowest Steps

Post-deployment verification - Deployment Process Implementation planning and design - Issue Lifecycle

Fix implementation and testing - Bug Fix Process

Final approval - Code Reviey Development and testing - Issue Lifecycle

50 0 100 200 300 460 500 600 700
Minutes

Figure 4.8: Steps that take the longest as well as shortest for Dutch software
engineers.

Figure 4.9 shows that the Swedish software engineers spend the least time
running their tests when doing their code review, documenting bug fixes and
approval in the code review. What takes the most time for Swedish software
engineers is creating the build and test automation in the deployment process,
planing how to solve an issue, and lastly the process of development for an
issue.

48 | Results and Analysis

Sweden
Fastest Steps Slowest Steps
Running tests locally - Code Review Process Build and test automation - Deployment Process
Documentation and review - Bug Fix Process Implementation planning and design - Issue Lifecycle
Final approval - Code Review Process Development and testing - Issue Lifecycle
0 1 20 0 4 % e 0 100 200 00 40 500 600 700 800
Minutes Minutes

Figure 4.9: Steps that take the longest as well as shortest for Swedish software
engineers.

Figure 4.10 shows Ugandan software engineers fastest and slowest times.

Uganda

Fastest Steps Slowest Steps

Deployment and verification - Bug Fix Process Post-deployment verification - Deployment Process

Documentation and pull request - Issue Lifecycle

implementation planning and design - Issue Lifecycle

Issue verification and closure - Issue Lifecycle Development and testing - Issue Lifecycle

1500 2000

Figure 4.10: Steps that take the longest as well as shortest for Ugandan
software engineers.

Critical path analysis

Table 4.4 visualizes the process steps that take the most time in each country.
It is seen that the Dutch and Swedish software engineers focus the most on
development and testing, while the Rwandan software engineers instead put
in a third of the time here, and instead focus more on the deployment phase of
their project.

Results and Analysis | 49

Table 4.4: Critical Path Analysis - Steps Taking >10% of Total Time in
Minutes

Country | Process Step Time %o
Dev & testing (Issue Lifecycle) 261.1 | 10.0%
RwW Post-deploy verification (Deployment) | 335.6 | 12.9%
Build & test automation (Deployment) | 287.8 | 11.0%

NL Dev & testing (Issue Lifecycle) 720.0 | 30.2%
Fix impl & testing (Bug Fix) 261.0 | 11.0%
SWE Dev & testing (Issue Lifecycle) 792.0 | 27.1%

4.2.3 Biases

In this section the results from the bias questions from Section 3.3 will
be presented, together with relevant information mentioned by the software
engineers regarding biases.

Figure 4.11 shows that Rwandan software engineers see themselves mostly
as equals to their European counterparts, but as slightly better than Ugandan
software engineers. In their rating, they consistently mentioned that "Ugandan
developers are good”, but yet ranked them lower than those from NWE and
themselves. They also believed themselves as individuals to be at least on par
with Europeans in skills, but that the average Rwandan lacks in comparison
to NWE. Some Rwandan engineers had worked with Dutch developers, and
therefore ranked their communication skills very high. In general, they saw
Swedish engineers as entrepreneurial, and Dutch ones as hardworking.

Ratings by Rwandan Participants

skill
mmm Communication
e Problem Solving

mmm Software Development

¥
&

K

%
%
(2

& ol
o «

P
s,

IS
e
&

Rated Country

Figure 4.11: Perception-based given by Rwandan participants to developers
from Rwanda, Sweden, Netherlands, and Uganda.

Swedish participants rate themselves the highest, followed by Dutch

50| Results and Analysis

software engineers. Rwandan and Ugandan software engineers both received
low scores across all three categories. However, the Swedish software
engineers noted that they believe these software engineers to be capable
and have good problem solving and communication abilities, but that to
their understanding, the lack of technology and education about software
engineering make them poor coders. The Swedish software engineers made
no distinction between Uganda and Rwanda, and saw no difference in them as
software engineers.

Ratings by Swedish Participants

EE Communicat tion
s Problem Solving

I I §
o ©
\\’eb o .,&
< S 5
&

Average Score
N W os2 0 e N o

"

«\b

&
& &

Rated Country

Figure 4.12: Perception-based given by Swedish participants to software
engineers from Rwanda, Sweden, Netherlands, and Uganda.

Similar to Figure 4.12, it is seen that Dutch software engineers rank
themselves slightly higher than Swedish software engineers, as seen in Figure
4.13. They see Rwandan and Ugandan software engineers as much less
capable than European ones. When queried about it about half said that
they do not know enough about the countries, and that they put them under
the umbrella of Africa, and that because of that the deduce that they do not
have enough experience or knowledge. The other half were more confident
that these were underdeveloped African countries, and that they are never in
the discussion of software engineering in Africa like other countries, such as
Kenya.

Results and Analysis |51

Ratings by Dutch Participants

== Problem Solving
mmm software Development

Average Score

o bé‘ &
& & & &

Rated Country

Figure 4.13: Perception-based given by Dutch participants to software
engineers from Rwanda, Sweden, Netherlands, and Uganda.

Ugandan participants rated themselves slightly above Rwandan ones,
but still see Dutch and Swedish software engineers as more capable than
themselves. They were very confident in Dutch and Swedish software
engineers being better due to the opportunities NWE presents in terms of
education, infrastructure and job opportunities. They also deemed themselves
to be better than Rwandans, and believed Rwanda to be lacking in digital
infrastructure and good software engineers.

Ratings by Ugandan Participants

skill
= Communication
mmm Problem Solving
mmm Software Development

Average Score

N7 o
S & o &
I o & K

Rated Country

Figure 4.14: Perception-based given by Ugandan participants to software
engineers from Rwanda, Sweden, Netherlands, and Uganda.

On average, it is seen in Figure 4.15 that across all developer groups, the
European ones rank the highest as compared to Rwandan and Ugandan ones.
The interviews with Rwandan team leads showed that they were not surprised
by the results, as they expected to be subject to such biases. Swedish and Dutch

52 | Results and Analysis

team leads were not surprised either, and believed that this was reflective of
the true skill distribution across the countries.

The perception data reveals biases that directly address RQ3. The gap
between how software engineers from NWE rate EA software engineers
(consistently below 5 on a 10-point scale) and measured performance indicates
potential perception biases. These biases could be an issue for effective
collaboration as it could prevent the recognition of complementary strengths
across the regions. EA software engineers relatively balanced perception
of software engineers from all regions suggests a more understanding view
of global capabilities that could in turn help with cross-cultural teamwork.
However, the internalized lower self-assessment from Ugandan software
engineers compared to European software engineers also indicates how global
perception hierarchies may affect confidence and how each developer presents
themselves in an international context. During the interviews, high performing
Rwandan software engineers said that Rwandan developers as a whole are
worse than European ones, but deemed themselves to be on the same level,
contrary to Ugandan ones, which saw both themselves and their peers as less
capable.

Overall Average Ratings of Each Country

skill

= Communication
mmm Problem Solving
mmm Software Development
& g
\’DQ &
& <
5
&

Rated Country

Average Score
W PO o v ©

-

Figure 4.15: Average ratings per country

4.2.4 Process Step Visualization

Figure 4.16 shows the software development process flow, where each circle
represents a process step. The larger the circle is, and the more red the color is,
the more time is spent on that process. The flow starts with the Issue Lifecycle,
followed by Code Reviews, Deployment Process, and lastly Bug Fixes. The
figure shows that Swedish software engineers spend the most time on the issue

Results and Analysis |53

lifecycle, where they plan and develop their given programming tasks. As the
most time is spent here, much less time is needed for code reviews, which is
the fastest process step. After this, the deployment process goes quickly as
well. Lastly, bug fixes take more time than code reviews, but still are done
pretty fast considering the comparison to the issue development stage.

Software Development Process Flow - Sweden

aan

Figure 4.16: Process visualization for Sweden

Figure 4.17 shows that Rwandan software engineers spend the most time
on the issue lifecycle, as well as the third step, which is working on their
DevOps pipeline and deployment process. It is also seen that the second step
takes some time, which is the process of code reviews. Lastly, bug fixing,
which is the fourth step, goes extremely fast, due to putting time and effort
into having a strong DevOps pipeline, good code reviews, and spending much
time developing a robust solution.

Figure 4.18 shows that Dutch software engineers spend the most time on
the issue lifecycle part of development. The code review process is the shortest
step, followed by the deployment process. Lastly, the second longest time is
put on fixing bugs. The process mimics the one of Swedish software engineers,
where not much time is put into code reviews and the DevOps pipeline, and
instead more time on fixing the inevitable bugs that will appear.

Figure 4.19 shows the process of Ugandan software engineers. As
mentioned prior, the hurdle of language caused them to spend lots of time
on every step, and this can not be seen as valid data.

54 | Results and Analysis

Software Development Process Flow - Rwanda

Figure 4.17: Process visualization for Rwanda

Software Development Process Flow - Netherlands

aan

Figure 4.18: Process visualization for the Netherlands

Results and Analysis |55

Software Development Process Flow - Uganda

Figure 4.19: Process visualization for Uganda

The quantitative data serves to support and contextualize the qualitative
interview findings rather than standing alone as definitive statistical evidence.
For instance, the process time differences across countries provide quantitative
support for qualitative observations about different development approaches.

The process analysis and communication style findings directly answer
RQ2 by showing differences in software development approaches across
regions. The sentiment analysis in Table 4.2 in Section 4.1.3 shows that
software engineers from EA employ more positive, encouraging feedback
styles (compound scores >0.5) compared to the more critical, direct approach
of European software engineers. The differences in communication also
extend to the process emphases, where European teams put more time into
initial development while EA teams put more emphasis on code reviews, bug
fixing and and the deployment process.

These patterns reflect broader cultural approaches to problem solving, as
the Rwandan team leads mentioned collaborative verification and constructive
feedback, while their European counterparts favored individual development
time and direct critique. These differences in communication and process
priorities answer RQ2, and will be further discussed in the Discussion chapter,
as it could have important implications for cross-cultural software teams.

4.2.5 Results summary

The analysis reveals patterns of similarities and differences that address our
three research questions:
RQI1: software engineers from NWE showed more consistency in

56 | Results and Analysis

algorithmic approaches and system design, with Dutch engineers showing
strength in security awareness and Swedish engineers showing clear skill
progression from juniors to seniors. Developers from EA, and particularly
those from Rwanda, displayed a higher variability with both high performers
and basic implementations, where some outstanding participants were on the
same level of their European counterparts.

RQ2: Communication styles varied a lot, with software engineers from
EA using a more positive and encouraging feedback (a compound sentiment
scores >0.5) while Dutch software engineers had a more critical and direct
approach (a compound score -0.361). These communication differences
extended to what is emphasized more in the software development process,
where European teams allocate more time to initial development and EA teams
focusing more on verification and the deployment process.

RQ3: Large perception gaps exist where European software engineers
are underrating EA software engineers capabilities compared to both self-
assessments and measured performance in the study. These biases could
impede effective collaboration by preventing recognition of complementary
strengths across regions. However, European software engineers do recognize
that this is most likely due to weak technical education and infrastructure in
the country, and nothing to do with the individual themselves.

4.3 Reliability Analysis

The assessments were standardized across all locations. However, the
interviews with Dutch software engineers were done online, but with a second
person present in the room to avoid cheating. Ugandan software engineers
were incentivized to join the assessment where the top performers would
be given a job interview as a software engineer at a Swedish outsourcing
company, which could be too much incentive to do good and thereby making
the software engineers cheat.

All software engineers choose their own time slots, while Ugandan ones
were given time slots in the morning. Many of them also had to travel long
distances to reach the assessment area, which in turn could have lead to fatigue.
Furthermore, misinterpretations in the assessment goals and tasks were noted
at every Ugandan interview, despite English being a national language.

Results and Analysis | 57

4.4 Validity Analysis

To enhance the statistical validity of the clustering results, a bootstrap
resampling analysis with 1000 iterations on the code submissions was done,
which addresses validity concerns present in the dataset [104].

The bootstrap analysis systematically evaluates cluster stability by
repeatedly sampling the dataset with replacement. It performs k-means
clustering on each resampled dataset, and tracks the frequency of pairs of
code submissions that appear in the same cluster. In this way discrete cluster
assignments are transformed into probability-based relationships, providing a
better understanding of code similarity patterns [105].

A silhouette score of 0.3301 was given by the initial clustering, which
indicates moderate cluster separation. This suggests that meaningful patterns
exist in the data, but with overlap between clusters. In general, traditional
clustering approaches might be insufficient when looking at the moderate
silhouette score, as cluster boundaries are not strongly defined [106, 107].
The bootstrap method however overcomes this limitation by quantifying the
consistency of relationships between code submissions across 1000 random
resamples [108].

The perception bias data shows validity through three measures. To begin
it has an inter rater reliability score (0.846), which shows high consistency
among participants when rating the same targets and indicates that it is real
perception patterns that are being measured rather than random variations
[109]. Furthermore, the sample has sufficient statistical power to detect
the effects present in our data, the lowest detectable effect size (Cohen’s d)
was calculated at 0.6677, which was below the actual largest effect size of
2.89 between how software engineers from NWE view themselves versus EA
[110, 111]. Finally, as emphasized in mixed-methods research literature, the
quantitative findings are strengthened through triangulation with qualitative
insights. This gives deeper contextual understanding of the perception biases
identified in the statistical analysis [112].

However, with the sample size of 48 software engineers across four
countries, statistical tests have limited power. The analysis for the most part
relies on statistics that is descriptive, which is also supported by qualitative
insights rather than inferential statistics alone. As mentioned throughout
the study, this mixed-methods approach provides a more comprehensive
understanding than statistical significance testing could offer with the sample
size of the study.

A statistical test was made to assess the trend of Rwandan seniors

58 | Results and Analysis

outperforming their European counterparts. This was done through a
Wilcoxon signed-rank test which compared per-issue identification rates [113].
The results were not statistically significant at a 5% level, with W = 36.0 and
p = 0.193. However, the qualitative interview data reinforced the idea that
Rwandan senior software engineers had greater practical exposure to a wide
range of security scenarios as they often worked on many live deployments,
which may contribute to their strong performance. Therefore, although the
statistical evidence is insufficient to confirm a significant difference, the
qualitative context indicates that the claim is still plausible.

Selection bias remains a limitation as participants were recruited through
professional networks rather than random sampling. Swedish and Dutch
participants represent accomplished engineers and high achievers from top
universities in each respective country, working at highly funded VC startups
and large enterprises. Rwandan engineers were split between two high
achieving IT consultancies, and then random engineers willing to do the
assessment, some being free lancers and some working at smaller Rwandan
tech companies. Ugandan software engineers looking for a job were provided
through a third-party. As noted by Baltes and Ralph, volunteer bias in software
engineering studies can affect results by over representing engineers with
higher confidence in their abilities [114].

Interviewer bias was mitigated by using standardized assessments and
evaluation criteria. The same interviewer conducted all sessions to maintain
consistency.

Communication styles in code reviews showed clear regional patterns,
with sentiment analysis revealing more positive feedback approaches in
EA contexts compared to more direct critical feedback in NWE contexts.
These differences align with Hofstede’s cultural dimensions regarding power
distance and individualism/collectivism [33].

Self reported time estimates for development processes could be
influenced by cultural tendencies toward optimism or conservatism in
estimation. The way different cultures do time estimations varies across
the cultural contexts as some cultures systematically underestimate or
overestimate required effort [115]. Still, this can not give a overview of how
long different processes take, but instead shows what processes are deemed
the hardest or most important to put time on across each country.

Discussion |59

Chapter 5

Discussion

This chapter discusses the key findings from the comparative study and the
implications of the findings for GSD. It explores the technical differences
between regions and focuses on how systemic educational advantages account
for performance differences, rather than inherent capabilities. The discussion
examines how cultural dimensions such as power distance and individualism/
collectivism influence communication styles. It also looks at process
differences as alternative optimization strategies adapted to different contexts.
Then the perception gaps found in the study are discussed as potential
barriers to effective cross-cultural collaboration. Finally, methodological
reflections evaluate the strengths and limitations of the pragmatic mixed-
methods approach, suggesting improvements for future research in cross-
cultural software engineering studies.

Technical Skills and Implications

The technical assessments in the study show the differences in consistency
across the regions. Developers from NWE showed high consistency across
all assessments, while Rwandan software engineers showed some software
engineers to be on the same level of their European counterparts and some
drastically under performing. This is assumed to be because of two reasons,
the first reason being that the European developers are all highly educated and
work at large enterprise companies or VC funded startups. The second reason,
which was noted in the interviews, were that the Rwandan software engineers
that received good results on the technical assessments were also software
engineers who worked at reputable Rwandan IT consultancies, having gained
exposure to working with international companies, as well as having masters
degrees from decent schools and some even contributing to open source

60 | Discussion

projects during their free time to further develop their skills. The low
performers usually were seeking jobs while freelancing, or often juniors that
are early in their careers. There was also one instances of a developer in
reputable consultancy in Rwanda that did not perform well. Another insight
from the interviews were that Rwandan seniors worked many more hours a
week than their counterparts from NWE. Time ranges around 60 hours peer
week and many concurrent projects were not unusual for Rwandan seniors,
while seniors from NWE noted that they very often worked less than 40 hours
a week. This could be the reason for why some seniors, despite not having the
same quality of education as European ones, could amass the knowledge by
over time working many more hours.

The clustering analysis using codeBERT embeddings also confirms the
hypothesis of different strengths in educational backgrounds as it shows clear
patterns in approaches taken. European solutions generally demonstrated
more consistent patterns which is likely due to standardized educational
practices, as opposed to Rwandan solutions that showed higher variability.
Interestingly, some Rwandan software engineers clustered closely with
European developers, which is speculated to be due to the experience gained
in international teams, but also possibly as noted by Rwandans themselves due
to the establishment of Carnegie Mellon University Africa, where some of the
high performers had attended.

This also brings us to the relatively surprising discovery of Rwandan
seniors outperforming both Swedish and Dutch software engineers in
finding security issues, while Rwandan juniors fall behind their European
counterparts. This can once again be due to the vast exposure to projects
the Rwandan seniors work with. Furthermore, Rwandan team leads noted
that their teams work on multiple projects together, and often consult each
other on various topics which in turn leads to much knowledge sharing. When
queried about their security knowledge, Rwandan software engineers noted
this to be the highest, while the Al knowledge in their teams seemed to be
lower compared to European ones, though they were also trying to establish at
least a baseline by allowing some of their software engineers to work on side
projects related to Al

These technical disparities have implications for cross-regional collabo-
ration. The Rwandan standout performers show that organizations should
recognize the high variance present in the region, rather than viewing software
engineers from EA as uniformly less skilled. The performance of senior
Rwandan software engineers suggests that with appropriate experience, initial
educational gaps and smaller experience gaps can be overcome. However,

Discussion |61

Rwandan juniors remain harder to employ, but this is most likely to change
due to the increased focus on fostering IT knowledge in the country [11].
Unfortunately, the data can not speak to the skills of Ugandan software
engineers, and the validity of the data is not strong enough to make any claims
due to the language barriers present during the interviews, and because of the
use of unauthorized tools during the interview such as generative Al

Systemic Factors vs. Individual Potential

The findings strongly suggest that the performance differences found in the
study primarily come from systemic factors rather than inherent capability
limitations. The standout performance of some software engineers from EA,
despite significant educational disadvantages compared to NWE, indicates
individual potential that may remain unrealized due to systemic barriers.
Another note taken during the interviews is how eager software engineers from
EA are to learn and showcase their skills, while software engineers from NWE
were less enthusiastic about upskilling on their free time.

Several key systemic factors showed from the interviews and assessments.
First, software engineers from every country spoke of the inconsistent quality
of computer science education in EA. Particularly Rwandans and Ugandans
spoke of it creating an uneven foundation for early career development for
juniors. It was also noted during the interviews how some juniors did not have
a higher than basic knowledge of data structures at all, even though they had
completed a bachelors and started working as software engineers. When team
leads were asked about this, they said that they themselves also had to upskill
themselves after studying. The reason for this is most likely the low quality of
education given at most EA universities, where only a few universities from
Rwanda and Uganda are ranked between 1000-1500 in the world, with the
others falling outside of the ranking system, compared to Swedish and Dutch
universities that consistently are in the top 100-150 in the topic of Computer
Science [116]. However, once again, the enthusiasm of these students is
not to be taken lightly, as they are continuously upskilling themselves and
seeking new opportunities, which is a great characteristic if wanting to hire
based on potential [117]. Also, despite infrastructure advances, loss of internet
connectivity is a common occurrence, and was noted as by a developer from
Uganda to be frustrating as it makes it harder to get “deep work™ done.

62 | Discussion

Sentiment Analysis and Cultural Impact

The sentiment analysis of code reviews showed differences in communication
styles between countries and regions. Developers from EA generally gave
more positive and supportive feedback, meanwhile developers from NWE had
either a critical tone (Dutch) or neutral tone (Swedish). These differences
reflect deeper cultural patterns that influence workplace communication, since
when team leads were asked about their practices, the responses cross country
were different. Dutch software engineers did not feel like they necessarily had
a negative tone, but rather that if someone is doing something wrong, they
would be doing them a disfavor of sugar coating it, and that they themselves
appreciate straightforward feedback. Swedish software engineers did not have
any thoughts regarding culture, but plainly claiming that this is the way they
write and its the most straightforward way to communicate by just pointing
out what to keep and what to change. Rwandan software engineers were also
neutral to the tone of their comments, but also had engineers saying that they
are in the same seat in having a disadvantageous view upon them from the
outside world, and that encouragement is always appreciated. As opposed to
Dutch software engineers, Ugandan ones preferred positive feedback that still
showcases clearly what the issue at hand is.

Drawing on Hofstede’s cultural dimensions framework, these commu-
nication differences may correspond to variations in power distance and
individualism/collectivism. Studies show that African countries generally
score higher on power distance and collectivism [118], explaining their more
supportive approach that values group harmony and positive reinforcement
within hierarchical structures. This can also be a reason for why junior
software engineers from Rwanda were under performing compared to their
European counterparts, as due to the power distance they might be scared to
ask for help, and in turn aid knowledge transfer across seniority levels. This
was however not noted during the interviews.

European countries are typically on the other end of the scale to
African software engineers, and they show lower power distance and higher
individualism [118], leading to a more “matter-of-fact” or direct approach
that prioritizes task completion and technical correctness over maintaining
relationships. The lower power distance also allows for room to be curious
and ask questions, which could be a reason to the linear rise in knowledge
from junior to seniors levels seen in Swedish software engineers. The
Dutch perspective shows a low-context communication style where clarity and
honesty are valued above social cushioning which can be contrasted to the

Discussion | 63

Rwandan and Ugandan software engineers comments that suggest awareness
of different cultural expectations and the value placed on relationship-focused
communication in their culture. These patterns should be taken into account
when constructing GSD teams, so that misinterpretations of feedback style
does not lead to any form of tension or misunderstanding in case members of
the team are not aware of these cultural dimensions that potentially could affect
communication. The high power distance is also noted by a Swedish team
lead that has outsourced to EA previously, where his experience of software
engineers from EA is that they are knowledgeable, but would rather claim
sickness than ask for more time to complete a task, which was frustrating to
him and in the end the reason for him terminating the collaboration.

Process Differences and Efficiency

The analysis of development process times showed notable differences in
how teams from different regions allocate their efforts. Teams from NWE
focused more on the initial development and design stages where they were
allocating approximately 30% of total process time to development and
testing, while Rwandan teams emphasized deployment, code reviews, and
verification. Ugandan software engineers time estimations can not be taken
into consideration due to language barriers.

These process preferences likely reflect cultural approaches to software
development. Once again, drawing on Hofstedes work, the individual parts of
the software development cycle, which is solving an issue, are prioritized by
Europeans, while code reviews, which can be argued is a more collaborative
tasks, is prioritized in EA. When asked about their time approaches, both
Dutch and Swedish software engineers noted that they work upfront on proper
architecture and design to not have any issues later, very often referencing
tech debt. Rwandan software engineers felt like development was often not
what takes time, but rather code reviews, where many bugs were actually
being addressed, leading to less time spent on fixing bugs. Furthermore,
many Rwandan developers mentioned a rigorous DevOps pipeline, where they
collaborated on creating many tests for their code, and in turn, having less bugs
to solve alone.

Rather than representing efficiency variations, these differences can
instead be seen as alternative optimization strategies adapted to different
contexts. Neither approach is inherently better, as the Rwandan approach
makes sense when you have more variability in individual skill levels as
it catches issues through collaborative verification. These approaches can

64 | Discussion

complement each other and have potential benefits in global teams. European
software engineers developing robust code would be well combined with a
highly developed DevOps pipeline as well as thorough code reviews. It is also
important to note that developers from NWE showcased theoretical DevOps
knowledge, but when questioned about the time estimates they believed that
the importance of a robust testing suite is not always necessary, and that "less is
more” in these regards. Organizations could leverage these different strengths
by structuring global teams where in a way where European software engineers
lead initial architecture and design, while EA software engineers contribute to
quality assurance, deployment automation, and post-deployment verification.

Perception Biases and Their Impact

The perception study revealed biases that potentially could affect cross-
cultural collaboration. Developers from NWE consistently rated themselves
and each other more highly than their counterparts from EA, despite
performance data showing overlap and individual excellence from Rwandan
software engineers. This is a perception gap which presents a substantial
barrier to effective collaboration [37].

Rwandan software engineers tended to view themselves as equal to
Europeans but superior to Ugandans, while Ugandan software engineers saw
Europeans to be better than themselves across all aspects, but them being
better than Rwandans. Many Rwandan software engineers commented that
they believed that they would not be perceived in a good light by European
software engineers. Rwandan software engineers were also sometimes the
only Rwandans in international projects, and felt pressure to represent all
Rwandan software engineers. Rwandan juniors many times commented on
software engineers from NWE being better than developers from EA, while
seniors from Rwanda noted that they are as good as any European developer,
and that the difference is not ability but rather opportunity.

Developers from NWE many times said that they do not know a lot
about the state of technology in EA, but that they believe it to be very low
and undeveloped. During the interviews, the software engineers from NWE
gave varying comments. Around half of the software engineers from NWE
did not believe the developers to be very skilled, and some drew a parallel
to working with outsourcing teams in Asia, where they have not had good
experiences from, and in turn believed that EA teams would perform worse due
to infrastructure and education barriers, and from this deducted that software
engineers from EA would not be suitable to work with. The other half believed

Discussion | 65

that there is skill to be found in EA on par with NWE, but that the ratio of good
to bad software engineers is lower in EA than NWE.

Methodological Reflections

The pragmatic mixed-methods approach used in this study provided an
extensive understanding of cross-cultural practices in software engineering
and GSD. However, some of the methodological considerations do warrant
a discussion. The combination of quantitative assessments and qualitative
interviews made it so that it was possible to identify patterns while also
exploring the contextual factors that shape those patterns, but the relatively
small sample size (10-15 developers per country) limits the statistical power
of the quantitative analyses, particularly at the country level, and even more
when breaking it down to seniors and juniors.

The validity of the clustering analysis was strengthened through bootstrap
resampling, which did confirm the stability of the patterns found despite
having a moderate silhouette score of 0.3301. Also the perception bias
findings demonstrated validity through high inter rater reliability (0.846)
which indicates consistent patterns rather than random variation. Even though
the validity is strengthened, findings should be interpreted as exploratory
rather than definitive truths.

Selection bias remains a limitation, as participants were recruited through
professional networks rather than random sampling. Rwandan participants
were purely recruited from Kigali, and many of them from high end
consultancies, rather than software engineers from smaller towns and rural
areas. The European sample is also from top-teir companies and schools,
which might not represent the average developer from Sweden and the
Netherlands, but rather the highest performers. Ugandan software engineers
were recruited from a forum, with an incentive of a small monetary reward and
job interview opportunity if performing well, which in hindsight might have
been the reason to the high number of cases of Al use, which was unauthorized.

The study aimed to collect data in place in all 4 countries, but this was
failed to be achieved, as data from the Netherlands had to be collected online,
as the author got sick after visiting Uganda and needed to go back to Sweden.

Future research methodologies in cross-cultural software engineering
studies should consider larger and possibly longitudinal designs that capture
development over time, as well as methods that control for selection bias.
If research was to follow cohorts of software engineers over time, it would
insights into how the gaps seen between juniors and seniors in Rwanda evolve

66 | Discussion

with experience, as well as understanding what leads to Swedish software
engineers having such a great career progression. Additionally, incorporating
analysis of logs, rather than relying on self-reporting, would enhance validity,
but would be out of the scope for this study. Self-reporting gives another
angle that shows what each developer feels is the most important, and in turn
can complement or be complemented by log analysis. Lastly, the research
is grounded in pragmatism, as following a more theoretical approach would
not be ideal for this kind of study, especially since studies on social issues
normally require methodological flexibility [14—16].

Despite these limitations, the pragmatic mixed-methods approach provides
valuable insights into the complex interplay of technical skills, communication
styles, and organizational practices across regions. The findings contribute to a
understanding of GSD dynamics in a totally neglected area, and highlights the
importance of considering cultural context in software engineering research
and practice.

Conclusions and Future work | 67

Chapter 6

Conclusions and Future work

This chapter presents the conclusions of the comparative study of software
engineers in EA and NWE. It also outlines limitations of the current research
and identifies directions for future work that could build upon and extend this
work.

6.1 Conclusions

The comparative analysis of software engineers from EA and NWE
gave several significant findings that advance our understanding of GSD,
specifically in EA. The research has successfully addressed the three research
questions while revealing patterns in technical skills, communication styles,
organizational practices, and perception biases across the regions.

Positive Effects and Outcomes

The most significant positive outcome of this research is the empirical
demonstration that differences in software engineering practices across
regions reflect complementary strengths instead of different capabilities
and skill levels. The finding that senior Rwandan software engineers
outperformed their European counterparts in security awareness challenges,
as well as many standout performers from Rwanda being on parr with their
European counterparts, contradicts assumptions about technical competency
in emerging markets in EA, specifically in Rwanda. This insight aims to
challenge the narrative that outsourcing to Africa involves a trade off between
cost and quality, which can be noted due to the limited research on EA contexts
in GSD and technical outsourcing.

68 | Conclusions and Future work

The mixed-methods approach proved to be effective in capturing both the
quantitative metrics of performance and the qualitative parts of the cultural
context that was present. This methodology allowed for a more holistic
understanding than each of the approaches alone could have provided. This
was also especially true when it came to linking communication styles to
cultural dimensions such as power distance and collectivism/individualism.

The research also successfully established a baseline for understanding
cross-cultural software engineering dynamics in a highly understudied region.
By focusing on Rwanda and Uganda rather than the more commonly
researched African tech hubs like Kenya or South Africa (which themselves
are also under researched), this work expands the geographical scope of GSD
literature.

Evaluation of Results and Insights

The study successfully addressed all three research questions. RQI was
addressed as the study identified clear patterns in coding skills and problem-
solving strategies between regions. RQ2 was addressed as the study found
distinct communication styles and organizational practices across cultural
contexts. Lastly, RQ3 was addressed as it was revealed that there are
significant biases in play that could affect cross-cultural collaboration.

Several insights were gained from the study. The most striking one was
the disconnect between how software engineers from NWE perceived their
EA counterparts and the actual measured performance. This perception gap
represents a possible barrier to effective cross-cultural collaboration. Another
insight was the standout performance of some software engineers from EA,
where they despite educational disadvantages showed individual potential that
remains unrealized due to systemic barriers. The out-performance of senior
Rwandan software engineers in security knowledge, despite junior Rwandan
software engineers lagging behind, shows how experience and dedicated
practice can overcome initial educational and structural disadvantages.
Furthermore, it was argued that the differences in process priorities reflect
different optimization strategies in the software development lifecycle which
are adapted to different contexts rather than reflecting efficiency variations.
The Rwandan approach emphasizing collaborative verification makes sense
when there is more variability in individual skill levels. Lastly, the sentiment
analysis revealed how cultural contexts shape communication patterns in
software engineering in the different regions.

Conclusions and Future work | 69

Drawbacks and Limitations

Despite the positive outcomes, there are also several drawbacks that can
be seen throughout the study. The small sample size (10-15 developers
per country) limits the statistical significance of the findings, particularly
when further dividing populations into junior and senior categories. While
the qualitative insights help mitigate this limitation, broader generalizations
should be approached cautiously.

The research also had challenges with data collection consistency, as
interviews with Dutch software engineers had to be conducted online rather
than in-person as initially planned, and as was done with all other countries.

Furthermore, the high invalidation rate for Ugandan submissions due
to integrity concerns significantly limited the ability to draw conclusions
about this population. The incentivization structure may have unintentionally
encouraged unauthorized tool use. Due to budget and time constraints, the
Ugandan population could not be retrialed, as the interviews are very long and
need to be prepared well for, which showcases the challenges of empirical and
in place cross-cultural research.

Lastly, selection bias remains to be a significant limitation as participants
were recruited through professional networks rather than random sampling.
The European sample represented all high achievers from top universities
and companies, while the Rwandan sample was primarily from Kigali based
consultancies with large international clients. This sampling approach may
not represent the average developer experience in these countries, but instead
their top performers.

Recommendations for Future Research

As mentioned in Section 6.1, this study faced several limitations that affected
both the research process and the interpretation of results. For each limitation
identified, 1 also propose alternative approaches that could address these
constraints in future research.

Sample Size and Representation

The small sample size of 10-15 developers per country restricted the statistical
power and generalizability of the quantitative findings. When further dividing
these groups into junior and senior categories, it became too small for robust
statistical inference. A future approach would be a larger scale study with
at least 30-50 developers per country. This would provide more statistical

70 | Conclusions and Future work

reliability. However, it would also be very time consuming if trying to
gain the same qualitative insights that this study did, but in turn strengthen
generalization. Also, the sampling method that was used in the study also
introduced a potential selection bias, as participants were high performers
with strong backgrounds. It would be more advisable to implement a random
sampling method rather than convenience sampling as this would enhance
representativeness and data validity [87].

Data Collection Inconsistencies

The change from in person interviews to online interviews for Dutch
participants was an inconsistency when compared to all other interviews that
were made in place. The high invalidation rate for Ugandan submissions due
to unauthorized tool use also worsened data quality for this population. A
future approach would do all interviews in a similar manner. Additionally,
the incentive structures would be either removed or remade to minimize
motivation for unauthorized tool use. This would need to be further considered
by future researchers.

Cultural and Language Barriers

Despite English being an official language in Uganda, there were clear
language barriers present during the interviews with Ugandan software
engineers. These communication challenges may have artificially affected
performance metrics and limited qualitative insights. However, this only
affected process data, as the if the developer has a hard time understanding the
technical terms, they would not be considered a strong candidate to be part of a
global team, and any mistakes they do on the technical assessments should be
recorded. However, if this line of thought is not shared by future researchers,
a possible approach would be to include local translators that could assist with
the interviews when needed.

Scope and Methodology Constraints

The study focused on a limited set of technical skills and relied on self reported
time estimates rather than analysis of actual activity logs. A future approach
would include a broadened assessment to include additional dimensions of
software engineering competency. To complement the self reporting, an
analysis of actual project logs and repositories should be made. Ideally, a
new study would implement a longitudinal component that tracks a subset

Conclusions and Future work |71

of participants over a longer period of time to observe how skills develop,
particularly comparing junior developer progression across regions.

Analytical Limitations

The moderate silhouette score in the clustering analysis and the use of
sentiment analysis tools not specifically designed for technical communication
introduced analytical constraints, as well as too small sample sized for
generalization. A future approach would would employ more sophisticated
analytical techniques such as combining multiple clustering algorithms and
validating results through reviews by domain experts. For sentiment analysis,
the development or adapting of tools specifically calibrated for technical
communication in software engineering contexts could be developed, rather
than VADER, which is based on informal communication [17]. They could
also potentially incorporating domain specific lexicons for different cultural
settings. Lastly, to quantify the data from technical assessments, each task
could have been given a score that is then normalized over all countries to
allow for a comparison, as well as comparing this to the bias data go give
more tangible results to the study.

6.1.1 Future Work

Several areas of the study need further investigation, many of which were
covered in Section 6.1. The most pressing next steps would include
conducting a larger study with at least 30-50 developers per country using
random sampling to strengthen statistical power and and allow for better
generalization and representativeness. Additionally, as mentioned in Section
6.1, implementing a longitudinal component that tracks junior software
engineers progression over time would provide insights into how initial
skill gaps evolve with experience across the countries, especially because of
Rwandas initiative to training 500 000 new developers by 2030, which is a
large portion of their population [11].

The reliance on self reported time estimates rather than actual project logs
work as a complement to real logs, however, no such study has been made.
Future research should incorporate analysis of repositories, commit patterns,
and collaboration logs to objectively measure productivity and code quality,
and possibly utilize process mining techniques to uncover hidden processes.
This would complement the interview based approach of this study and also
eliminate potential biases in self reporting, as well as give view of how accurate
the perception of each country is about their processes.

72 | Conclusions and Future work

The lack of valid data from Ugandan software engineers shows a gap that
should be addressed with better method approach. This could be including
local translators and other, or no, incentive structures.

Finally, developing specialized sentiment analysis tools calibrated for
technical communication in different cultural contexts would give a better
understanding of how feedback is delivered and received across cultures.

6.2 Reflections

This comparative study of software engineers across EA and NWE has
economic, social, and ethical implications. From an economic perspective,
the findings challenge assumptions and prejudices about outsourcing to EA,
and particularly to Rwanda, by demonstrating that technical competency is not
uniformly lower than in NWE. Hopefully, this insight will help in potentially
reshaping hiring practices in outsourcing companies and global companies
and in turn open economic opportunities for both outsourcing companies and
talented software engineers from EA, who have previously been ignored due
to perception biases. At a larger scale, also stimulating GDP growth of EA.

In a social context the research shows how differences in education and
infrastructure, rather than inherent capabilities, account for many of the seen
differences in technical approaches. The variance among Rwandan software
engineers, where some software engineers perform at levels similar to those
of their European counterparts despite educational disadvantages, shows the
importance of investment in technical education and infrastructure in emerging
markets to further aid their software engineers, as well as looking at each
individual as themselves and not a reflection of their country.

In an ethical context this work addresses inequalities in how developers
from different regions are perceived and valued in the global marketplace. By
visualizing the gap between perception and measured performance, the study
challenges biases that may limit career opportunities for developers from EA.
The findings on communication differences also raise important aspects of
how cultural context influences workplace interactions and how awareness of
these differences can lead to more inclusive collaboration.

The thesis contributes to the UN Sustainable Development Goals (SDG)
number 8 (Decent Work and Economic Growth) and 9 (Industry, Innovation
and Infrastructure) by providing empirical evidence that can inform more fair
GSD practices and highlights the potential of tech talent from EA when given
appropriate opportunities.

References |73

References

[1]

L. Mann and M. Graham, The internet and business process
outsourcing in east africa: Value chains and networks of connectivity-
based enterprises in kenya and rwanda, https://eprints.lse
.ac.uk/85053/, London School of Economics, 2014.

M. Ghafoori, Revolutionizing economic growth through ict: Rwanda’s
path to digital empowerment, https://digitalcommons.bar
d.edu/senproij_s2024/106, Page 48, Bard College, 2024.

M. Marinho, A. Luna, and S. Beecham, Global software development:
Practices for cultural differences, https://arxiv.org/abs/1
810.02350, arXiv preprint arXiv:1810.02350, 2018.

S. Krishna, S. Sahay, and G. Walsham, “Managing cross-cultural
issues in global software outsourcing,” Communications of the ACM,
vol. 47, no. 4, pp. 62—66, Apr. 2004.

F. Merino, “Offshoring, outsourcing and the economic geography of
europe,” Papers in Regional Science, vol. 96, no. 2, pp. 299-324,2017.

Z. Igbal and A. M. Dad, “Outsourcing: A review of trends, winners
& losers and future directions,” International Journal of Business and
Social Science, vol. 4, no. 8, 2013.

M. Tanner, “Communication and culture in global software develop-
ment: The case of mauritius and south africa.,” Journal of Information,
Information Technology & Organizations, vol. 4, 2009.

M. Tanner, “Software methods in global software development: The
case of mauritius and south africa,” in International Conference
on Information Management and Evaluation, Academic Conferences
International Limited, 2010, p. 388.

https://eprints.lse.ac.uk/85053/
https://eprints.lse.ac.uk/85053/
https://digitalcommons.bard.edu/senproj_s2024/106
https://digitalcommons.bard.edu/senproj_s2024/106
https://arxiv.org/abs/1810.02350
https://arxiv.org/abs/1810.02350

74 | References

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

E. E. Salami, C. O. Nwabuokei, and K. Ekundayo, “Software
development and the security challenges in developing countries,”
Global Scientific Journal, vol. 12, no. 12, pp. 927-941, 2024, 1ssN:
2320-9186. [Online]. Available: https://www.globalscient
ificjournal.com.

D. Govender. “The rise of african tech talent in global software out-
sourcing.” Accessed: May 2025, Scrums.com. (Sep. 2024), [Online].
Available: https://scrums.com/software—outsourcin
g/african-tech-talent—-global-software—outsour
cing.

Taarifa Rwanda. “Rwanda launches ’1 million rwandan coders’
to build africa’s digital workforce.” Accessed: May 2025, Taarifa
Rwanda. (2023), [Online]. Available: https://taarifa.rw/rw
anda—-launches—1-million—rwandan—-coders—to—-bui
ld-africas—-digital-workforce/.

V. O. Ajayi, Primary sources of data and secondary sources of
data, Department of Science and Mathematics Education, Benue State
University, Makurdi, Nigeria, Accessed 27 February 2025, 2016.

O. A. Adeoye-Olatunde and N. L. Olenik, “Research and scholarly
methods: Semi-structured interviews,” Journal of the american
college of clinical pharmacy, vol. 4, no. 10, pp. 1358-1367, 2021.

P. Feyerabend, Against method: Outline of an anarchistic theory of
knowledge. Verso Books, 2020.

J. Law, After method: Mess in social science research. Routledge,
2004.

J. A. Maxwell, A realist approach for qualitative research. Sage, 2012.

C. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model for
sentiment analysis of social media text,” in Proceedings of the Eighth
International AAAI Conference on Weblogs and Social Media, 2014,
pp. 216-225.

H. Taherdoost, “Determining sample size; how to calculate survey
sample size,” International Journal of Economics and Management
Systems, vol. 2, 2017.

https://www.globalscientificjournal.com
https://www.globalscientificjournal.com
https://scrums.com/software-outsourcing/african-tech-talent-global-software-outsourcing
https://scrums.com/software-outsourcing/african-tech-talent-global-software-outsourcing
https://scrums.com/software-outsourcing/african-tech-talent-global-software-outsourcing
https://taarifa.rw/rwanda-launches-1-million-rwandan-coders-to-build-africas-digital-workforce/
https://taarifa.rw/rwanda-launches-1-million-rwandan-coders-to-build-africas-digital-workforce/
https://taarifa.rw/rwanda-launches-1-million-rwandan-coders-to-build-africas-digital-workforce/

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

References |75

J. G. Rivera-Ibarra, J. Rodriguez-Jacobo, and M. A. Serrano-Vargas,
“Competency framework for software engineers,” in 2010 23rd IEEE
Conference on Software Engineering Education and Training, 2010.
por: 10.1109/CSEET.2010.21. [Online]. Available: https :
//ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnu
mber=5463616.

T. F. Van de Mortel, “Faking it: Social desirability response bias in
self-report research,” Australian Journal of Advanced Nursing, The,
vol. 25, no. 4, pp. 4048, 2008.

E. Hassan, “Recall bias can be a threat to retrospective and prospective
research designs,” The Internet Journal of Epidemiology, vol. 3, no. 2,
pp- 339-412, 2006.

C. Ebert, M. Kuhrmann, and R. Prikladnicki, “Global software engi-
neering: Evolution and trends,” IEEE 11th International Conference
on Global Software Engineering, 2016. po1: 10.1109/ICGSE. 20
16.19. [Online]. Available: https://ieeexplore.ieee.or
g/document/7752721.

A. Deshpande, H. Sharp, L. Barroca, and P. Gregory, “Remote
working and collaboration in agile teams,” 2016, Accessed: 2025-02-
28. [Online]. Available: https://oro.open.ac.uk/47461/.

J. Drahokoupil, The Outsourcing Challenge: Organizing Workers
Across Fragmented Production Networks. European Trade Union
Institute (ETUI), 2015. [Online]. Available: https: / /www . etu
i.org/Publications2/Books/The-outsourcing-cha
llenge—-0Organizing-workers—across—fragmented-p
roduction—networks.

E. O Conchiiir, P. J. Agerfalk, H. H. Olsson, and B. Fitzgerald, “Global
software development: Where are the benefits?” Communications of
the ACM, vol. 52, no. 8, pp. 127-131, 2009. por: 10.1145/15366
16.1536648.

C. Ebert, M. Kuhrmann, and R. Prikladnicki, “Global software engi-
neering: Evolution and trends,” IEEE 11th International Conference
on Global Software Engineering, 2016. por: 10.1109/ICGSE. 20
16.19. [Online]. Available: https://ieeexplore.ieee.or
g/document/7752721.

https://doi.org/10.1109/CSEET.2010.21
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5463616
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5463616
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5463616
https://doi.org/10.1109/ICGSE.2016.19
https://doi.org/10.1109/ICGSE.2016.19
https://ieeexplore.ieee.org/document/7752721
https://ieeexplore.ieee.org/document/7752721
https://oro.open.ac.uk/47461/
https://www.etui.org/Publications2/Books/The-outsourcing-challenge-Organizing-workers-across-fragmented-production-networks
https://www.etui.org/Publications2/Books/The-outsourcing-challenge-Organizing-workers-across-fragmented-production-networks
https://www.etui.org/Publications2/Books/The-outsourcing-challenge-Organizing-workers-across-fragmented-production-networks
https://www.etui.org/Publications2/Books/The-outsourcing-challenge-Organizing-workers-across-fragmented-production-networks
https://doi.org/10.1145/1536616.1536648
https://doi.org/10.1145/1536616.1536648
https://doi.org/10.1109/ICGSE.2016.19
https://doi.org/10.1109/ICGSE.2016.19
https://ieeexplore.ieee.org/document/7752721
https://ieeexplore.ieee.org/document/7752721

76 | References

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

G. K. Stahl, M. L. Maznevski, A. Voigt, and K. Jonsen, “Unraveling
the effects of cultural diversity in teams: A meta-analysis of research

on multicultural work groups,” Journal of international business
studies, vol. 41, pp. 690-709, 2010.

B. Hunley, S. Chakraborty, and S. MacDonald, “The impact of cultural
communication on team performance,” 2018.

I. Zada, S. Shahzad, and S. Nazir, “Issues and implications of
scrum on global software development,” Bahria University Journal
of Information Communication Technologies, vol. 8, no. 1, pp. 81—
87, 2015, Accessed: 2025-02-28. [Online]. Available: https://ww
w.researchgate.net/publication/273193605_Issue
s_and_implication_of_scrum_on_global_software
_development.

A. A. Khan, M. Shameem, M. Nadeem, and M. A. Akbar, “Agile
trends in chinese global software development industry: Fuzzy
ahp based conceptual mapping,” Applied Soft Computing Journal,
vol. 102, 2021, Accessed: 2025-02-28. por: 10 . 1016/ j . asoc
.2021.107090. [Online]. Available: https://doi.org/10
.1016/73.as0c.2021.107090.

N. Saleem, S. Mathrani, and N. Taskin, “Understanding the different
levels of challenges in global software development,” IEEE Xplore,
2019.por: 10.1109/ICGSE.2019.8807743

E. MacGregor, Y. Hsieh, and P. Kruchten, “The impact of intercultural
factors on global software development,” in Canadian Conference on
Electrical and Computer Engineering, 2005., IEEE, 2005, pp. 920-
926.

G. Hofstede, “Dimensionalizing cultures: The hofstede model in
context,” Online Readings in Psychology and Culture, vol. 2, no. 1,
p- 8, Dec. 2011. por: 10 . 9707 /2307-0919 . 1014. [Online].
Available: https://scholarworks.gvsu.edu/orpc/vol
2/issl/8.

J. Palokangas, “Agile around the world: How agile values are
interpreted in national cultures,” Master’s Thesis, 2013. [Online].
Available: https://core.ac.uk/download/pdf /2501
33209.pdf.

https://www.researchgate.net/publication/273193605_Issues_and_implication_of_scrum_on_global_software_development
https://www.researchgate.net/publication/273193605_Issues_and_implication_of_scrum_on_global_software_development
https://www.researchgate.net/publication/273193605_Issues_and_implication_of_scrum_on_global_software_development
https://www.researchgate.net/publication/273193605_Issues_and_implication_of_scrum_on_global_software_development
https://doi.org/10.1016/j.asoc.2021.107090
https://doi.org/10.1016/j.asoc.2021.107090
https://doi.org/10.1016/j.asoc.2021.107090
https://doi.org/10.1016/j.asoc.2021.107090
https://doi.org/10.1109/ICGSE.2019.8807743
https://doi.org/10.9707/2307-0919.1014
https://scholarworks.gvsu.edu/orpc/vol2/iss1/8
https://scholarworks.gvsu.edu/orpc/vol2/iss1/8
https://core.ac.uk/download/pdf/250133209.pdf
https://core.ac.uk/download/pdf/250133209.pdf

[35]

[36]

[37]

[38]

[39]

[40]

[41]

References |77

W. Mangundjaya, I. Gandakusuma, and M. S. Arumi, “Power distance,
uncertainty avoidance and commitment to change,” Jurnal Scientia,
vol. 12, no. 03, pp. 2852-2860, 2023.

A. Unknown, “The role of intercultural differences and challenges
faced in negotiating active mine sites’ rehabilitation objectives from
africa to europe,” Journal of Environmental Management, pp. 2-4, 16,
2023, Accessed: 2025-02-28. [Online]. Available: https://www. s
ciencedirect.com/science/article/pii/S2214790
X2300151X.

T. Likhi, “Effects of the power distance index on multicultural software
engineering teams,” pp. 19-25, 2022, Discussion on unconscious
biases in work distribution, communication, and cultural adaptation.
[Online]. Available: https://theses.liacs.nl/pdf/2021
~-2022-LikhiT.pdf.

S. Matthiesen and P. Bjgrn, “Implicit bias and negative stereotyping in
global software development and why it is time to move on!” Journal
of Software: Evolution and Process, vol. 35, no. 2, 2435, 2023. por:
10.1002/smr.2435, [Online]. Available: https://onlinel
ibrary.wiley.com/doi/abs/10.1002/smr.2435.

D. Welsch, L. Burk, D. Métefindt, and M. Neumann, “Navigating
cultural diversity: Barriers and potentials in multicultural agile
software development teams,” arXiv preprint arXiv:2311.12061,
2023.

L. Mundere and P. MareSov4, “Potential of ict industry for economic
growth in developing countries - case study of rwanda,” Advanced
Science Letters, pp. 48-50, 56, 2016. [Online]. Available: https :
//theses.cz/id/wccx2k/STAG84980 .pdf.

R. Sitas, L. Cirolia, A. Pollio, and A. G. Sebarenzi, “Platform politics
and silicon savannahs: The rise of on-demand logistics and mobility
in nairobi and kigali,” International Centre for Cities, 2022. [Online].
Available: https://www.researchgate.net/profile/An
drea-Pollio/publication/360773802_Platform_Pol
itics_and_Silicon_Savannahs_The rise_of on—-dem
and_logistics_and_mobility_ in_Nairobi_and_Kiga
1i/1inks/6289fae239fa21703165ccfd4/Platform—-Pol
itics—-and-Silicon—-Savannahs-The-rise-of-on-de

https://www.sciencedirect.com/science/article/pii/S2214790X2300151X
https://www.sciencedirect.com/science/article/pii/S2214790X2300151X
https://www.sciencedirect.com/science/article/pii/S2214790X2300151X
https://theses.liacs.nl/pdf/2021-2022-LikhiT.pdf
https://theses.liacs.nl/pdf/2021-2022-LikhiT.pdf
https://doi.org/10.1002/smr.2435
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2435
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2435
https://theses.cz/id/wccx2k/STAG84980.pdf
https://theses.cz/id/wccx2k/STAG84980.pdf
https://www.researchgate.net/profile/Andrea-Pollio/publication/360773802_Platform_Politics_and_Silicon_Savannahs_The_rise_of_on-demand_logistics_and_mobility_in_Nairobi_and_Kigali/links/6289fae239fa21703165ccf4/Platform-Politics-and-Silicon-Savannahs-The-rise-of-on-demand-logistics-and-mobility-in-Nairobi-and-Kigali.pdf
https://www.researchgate.net/profile/Andrea-Pollio/publication/360773802_Platform_Politics_and_Silicon_Savannahs_The_rise_of_on-demand_logistics_and_mobility_in_Nairobi_and_Kigali/links/6289fae239fa21703165ccf4/Platform-Politics-and-Silicon-Savannahs-The-rise-of-on-demand-logistics-and-mobility-in-Nairobi-and-Kigali.pdf
https://www.researchgate.net/profile/Andrea-Pollio/publication/360773802_Platform_Politics_and_Silicon_Savannahs_The_rise_of_on-demand_logistics_and_mobility_in_Nairobi_and_Kigali/links/6289fae239fa21703165ccf4/Platform-Politics-and-Silicon-Savannahs-The-rise-of-on-demand-logistics-and-mobility-in-Nairobi-and-Kigali.pdf
https://www.researchgate.net/profile/Andrea-Pollio/publication/360773802_Platform_Politics_and_Silicon_Savannahs_The_rise_of_on-demand_logistics_and_mobility_in_Nairobi_and_Kigali/links/6289fae239fa21703165ccf4/Platform-Politics-and-Silicon-Savannahs-The-rise-of-on-demand-logistics-and-mobility-in-Nairobi-and-Kigali.pdf
https://www.researchgate.net/profile/Andrea-Pollio/publication/360773802_Platform_Politics_and_Silicon_Savannahs_The_rise_of_on-demand_logistics_and_mobility_in_Nairobi_and_Kigali/links/6289fae239fa21703165ccf4/Platform-Politics-and-Silicon-Savannahs-The-rise-of-on-demand-logistics-and-mobility-in-Nairobi-and-Kigali.pdf
https://www.researchgate.net/profile/Andrea-Pollio/publication/360773802_Platform_Politics_and_Silicon_Savannahs_The_rise_of_on-demand_logistics_and_mobility_in_Nairobi_and_Kigali/links/6289fae239fa21703165ccf4/Platform-Politics-and-Silicon-Savannahs-The-rise-of-on-demand-logistics-and-mobility-in-Nairobi-and-Kigali.pdf

78 | References

[42]

[43]

[44]

[45]

[46]

[47]

mand—logistics—and-mobility—in—-Nairobi-and-Ki
gali.pdf.

C. A. K. Gbali, “Impact of national policies on knowledge transfer to
small tech companies: The case of rwanda,” GRIPS Discussion Paper,
pp- 4-5, 2021. [Online]. Available: https://grips.repo.nii
.ac.jp/record/2000139/files/k295_report_phd206
05.pdf.

TechGyant. “Ict powers rwanda’s gdp with 3.5% all-time high growth
in 2023.” Accessed: 13 May 2025, TechGyant. (2023), [Online].
Available: https://techgyant .com/ict-powers—rwand
as—-gdp-with-35-all-time-high-growth-in-2023/
(visited on 05/13/2023).

Ministry of ICT and National Guidance, “Moict emagazine,” Ministry
of ICT and National Guidance, Uganda, Government Publication Issue
001, 2024, Accessed: 13 May 2023. [Online]. Available: https://1i
ct.go.ug/site/documents/MoICT_eMag_ TIssue001_20
24 . pdf (visited on 05/13/2023).

E. Bainomugisha, R. Hebig, and M. R. V. Chaudron, “Emerging
software engineering research networks in (east) africa,” ACM
SIGSOFT Software Engineering Notes, vol. 46, pp. 18-22, 2021. por:
10.1145/3448992.3448996.[Online]. Available: https://c
onsensus.app/papers/emerging—-software—-enginee
ring-research—networks—-in—-east-bainomugisha-h
ebig/74100£fba99b451bbac64bf5c7e2120a0/?utm_sou
rce=chatgpt.

C. Otioma, “Exploring the pattern and framework conditions of
technology-based entrepreneurial activities in africa,” in African
Economic Conference 2019: Jobs, Entrepreneurship and Capacity
Development for African Youths, Accessed: May 13, 2025, African
Development Bank, Sharm El Sheikh, Egypt, Dec. 2019. [Online].
Available: https://aec.afdb.org/sites/default/f
iles/papers/362-otioma_chuks—-exploring_the_pa
ttern_and_framework_conditions_of_ technology-b
ased_entrepreneurial_activities_in_africa.pdf.

E. K. Mwangi, L. X. W. Thuku, and J. P. Kangethe, Software develop-
ment industry in east africa: Knowledge management perspective and

https://www.researchgate.net/profile/Andrea-Pollio/publication/360773802_Platform_Politics_and_Silicon_Savannahs_The_rise_of_on-demand_logistics_and_mobility_in_Nairobi_and_Kigali/links/6289fae239fa21703165ccf4/Platform-Politics-and-Silicon-Savannahs-The-rise-of-on-demand-logistics-and-mobility-in-Nairobi-and-Kigali.pdf
https://www.researchgate.net/profile/Andrea-Pollio/publication/360773802_Platform_Politics_and_Silicon_Savannahs_The_rise_of_on-demand_logistics_and_mobility_in_Nairobi_and_Kigali/links/6289fae239fa21703165ccf4/Platform-Politics-and-Silicon-Savannahs-The-rise-of-on-demand-logistics-and-mobility-in-Nairobi-and-Kigali.pdf
https://www.researchgate.net/profile/Andrea-Pollio/publication/360773802_Platform_Politics_and_Silicon_Savannahs_The_rise_of_on-demand_logistics_and_mobility_in_Nairobi_and_Kigali/links/6289fae239fa21703165ccf4/Platform-Politics-and-Silicon-Savannahs-The-rise-of-on-demand-logistics-and-mobility-in-Nairobi-and-Kigali.pdf
https://grips.repo.nii.ac.jp/record/2000139/files/k295_report_phd20605.pdf
https://grips.repo.nii.ac.jp/record/2000139/files/k295_report_phd20605.pdf
https://grips.repo.nii.ac.jp/record/2000139/files/k295_report_phd20605.pdf
https://techgyant.com/ict-powers-rwandas-gdp-with-35-all-time-high-growth-in-2023/
https://techgyant.com/ict-powers-rwandas-gdp-with-35-all-time-high-growth-in-2023/
https://ict.go.ug/site/documents/MoICT_eMag_Issue001_2024.pdf
https://ict.go.ug/site/documents/MoICT_eMag_Issue001_2024.pdf
https://ict.go.ug/site/documents/MoICT_eMag_Issue001_2024.pdf
https://doi.org/10.1145/3448992.3448996
https://consensus.app/papers/emerging-software-engineering-research-networks-in-east-bainomugisha-hebig/74100fba99b451bbac64bf5c7e2120a0/?utm_source=chatgpt
https://consensus.app/papers/emerging-software-engineering-research-networks-in-east-bainomugisha-hebig/74100fba99b451bbac64bf5c7e2120a0/?utm_source=chatgpt
https://consensus.app/papers/emerging-software-engineering-research-networks-in-east-bainomugisha-hebig/74100fba99b451bbac64bf5c7e2120a0/?utm_source=chatgpt
https://consensus.app/papers/emerging-software-engineering-research-networks-in-east-bainomugisha-hebig/74100fba99b451bbac64bf5c7e2120a0/?utm_source=chatgpt
https://consensus.app/papers/emerging-software-engineering-research-networks-in-east-bainomugisha-hebig/74100fba99b451bbac64bf5c7e2120a0/?utm_source=chatgpt
https://aec.afdb.org/sites/default/files/papers/362-otioma_chuks-exploring_the_pattern_and_framework_conditions_of_technology-based_entrepreneurial_activities_in_africa.pdf
https://aec.afdb.org/sites/default/files/papers/362-otioma_chuks-exploring_the_pattern_and_framework_conditions_of_technology-based_entrepreneurial_activities_in_africa.pdf
https://aec.afdb.org/sites/default/files/papers/362-otioma_chuks-exploring_the_pattern_and_framework_conditions_of_technology-based_entrepreneurial_activities_in_africa.pdf
https://aec.afdb.org/sites/default/files/papers/362-otioma_chuks-exploring_the_pattern_and_framework_conditions_of_technology-based_entrepreneurial_activities_in_africa.pdf

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

References | 79

value proposition, https://arxiv.org/abs/1504.02017,
arXiv preprint arXiv:1504.02017, 2015.

Norrsken Foundation, Norrsken house kigali, Accessed: 2025-01-27,
2025. [Online]. Available: https://www.norrsken.org/hou
ses/kigali.

M. Devlin and C. Phillips, “Assessing competency in undergraduate
software engineering teams,” in I[EEE EDUCON 2010 Conference,
IEEE, 2010, pp. 271-278.

A. Sahakyan and T. Sloyan, “General coding skills evaluation
framework: Technical research paper,” CodeSignal, Tech. Rep., Apr.
2023, Originally published July 2019; Updated April 2023. [Online].
Available: https://discover.codesignal.com/rs/ 659
—-AFH-023/images/General-Coding-Framework—-Tech
nical—-Research—-Paper-CodeSignal.pdf.

V. Garousi, G. Giray, E. Tiiziin, and C. Catal, “Aligning software
engineering education with industrial needs: A meta-analysis,”
Journal of Systems and Software, 2019. [Online]. Available: https:
//pure.qub.ac.uk/files/199651164/JSS_Aligning
_SE_education_June_10.pdf.

J. S. McLaughlin, G. W. McLaughlin, and J. A. Muffo, “Using
qualitative and quantitative methods for complementary purposes:

A case study,” New directions for institutional research, vol. 2001,
no. 112, pp. 1544, 2001.

P. Lenberg, R. Feldt, L. Gren, L. G. Wallgren Tengberg, 1. Tidefors,
and D. Graziotin, “Qualitative software engineering research: Reflec-
tions and guidelines,” Journal of Software: Evolution and Process,
vol. 36, no. 6, 2607, 2024.

M. D. Penta and D. A. Tamburri, “Combining quantitative and
qualitative studies in empirical software engineering research,”
in 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), 2017, pp. 499-500. por: 10 . 1
109/ICSE-C.2017.163.[Online]. Available: https://doi
.org/10.1109/ICSE-C.2017.163.

A. E. Betzner, “Pragmatic and dialectic mixed method approaches: An
empirical comparison,” Adviser: Frances Lawrenz, Ph.D. dissertation,
University of Minnesota, Minneapolis, MN, Dec. 2008.

https://arxiv.org/abs/1504.02017
https://www.norrsken.org/houses/kigali
https://www.norrsken.org/houses/kigali
https://discover.codesignal.com/rs/659-AFH-023/images/General-Coding-Framework-Technical-Research-Paper-CodeSignal.pdf
https://discover.codesignal.com/rs/659-AFH-023/images/General-Coding-Framework-Technical-Research-Paper-CodeSignal.pdf
https://discover.codesignal.com/rs/659-AFH-023/images/General-Coding-Framework-Technical-Research-Paper-CodeSignal.pdf
https://pure.qub.ac.uk/files/199651164/JSS_Aligning_SE_education_June_10.pdf
https://pure.qub.ac.uk/files/199651164/JSS_Aligning_SE_education_June_10.pdf
https://pure.qub.ac.uk/files/199651164/JSS_Aligning_SE_education_June_10.pdf
https://doi.org/10.1109/ICSE-C.2017.163
https://doi.org/10.1109/ICSE-C.2017.163
https://doi.org/10.1109/ICSE-C.2017.163
https://doi.org/10.1109/ICSE-C.2017.163

80 | References

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

N. Assyne, H. Ghanbari, and M. Pulkkinen, “The essential compe-
tencies of software professionals: A unified competence framework,”
Information and Software Technology, vol. 151, pp. 14-15, 2022. por:
10.1016/7.infsof.2022.107020. [Online]. Available: htt
ps://www.sciencedirect.com/science/article/pii
/50950584922001446.

X.Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, and L. Li, “Large language
models for software engineering: A systematic literature review,” ACM
Transactions on Software Engineering, 2024. [Online]. Available: ht
tps://arxiv.org/pd£f/2308.10620.

A. Moharil and A. Sharma, “Tabasco: A transformer-based contex-
tualization toolkit,” Science of Computer Programming, vol. 230,
p. 102994, 2023. por: 10 . 1016/ j.scico.2023.102994.
[Online]. Available: https://doi.org/10.1016/7.scico
.2023.102994.

Y. Dyulicheva and E. Bilashova, “Learning analytics of moocs based
on natural language processing,” CS&SE@SW, pp. 2-3, 5-7, 10-13,
2021. [Online]. Available: https://www.researchgate.net
/profile/Yulia-Dyulicheva/publication/35717386
6_Learning_Analytics_of_ MOOCs_based_on_Natural
_Language_Processing/1inks/61e8305e8d338833e37
dffl0e/Learning—-Analytics—-of-MOOCs—-based-on—Na
tural-Language—-Processing.pdf.

A. Huang and S. Yang, “Dna of learning behaviors: A novel approach
of learning performance prediction by nlp,” Artificial Intelligence,
2024. [Online]. Available: https://www.sciencedirect.co
m/science/article/pii/S2666920X24000286.

Z. Feng et al., “Codebert: A pre-trained model for programming and
natural languages,” arXiv preprint arXiv:2002.08155, 2020.

G. Jawahar, B. Sagot, and D. Seddah, “What does bert learn about the
structure of language?” Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

J. Martinez-Gil, “Augmenting the interpretability of GraphCode-
BERT for code similarity tasks,” arXiv preprint arXiv:2410.05275,
2024. arXiv: 2410.05275 [cs.IR].

https://doi.org/10.1016/j.infsof.2022.107020
https://www.sciencedirect.com/science/article/pii/S0950584922001446
https://www.sciencedirect.com/science/article/pii/S0950584922001446
https://www.sciencedirect.com/science/article/pii/S0950584922001446
https://arxiv.org/pdf/2308.10620
https://arxiv.org/pdf/2308.10620
https://doi.org/10.1016/j.scico.2023.102994
https://doi.org/10.1016/j.scico.2023.102994
https://doi.org/10.1016/j.scico.2023.102994
https://www.researchgate.net/profile/Yulia-Dyulicheva/publication/357173866_Learning_Analytics_of_MOOCs_based_on_Natural_Language_Processing/links/61e8305e8d338833e37dff0e/Learning-Analytics-of-MOOCs-based-on-Natural-Language-Processing.pdf
https://www.researchgate.net/profile/Yulia-Dyulicheva/publication/357173866_Learning_Analytics_of_MOOCs_based_on_Natural_Language_Processing/links/61e8305e8d338833e37dff0e/Learning-Analytics-of-MOOCs-based-on-Natural-Language-Processing.pdf
https://www.researchgate.net/profile/Yulia-Dyulicheva/publication/357173866_Learning_Analytics_of_MOOCs_based_on_Natural_Language_Processing/links/61e8305e8d338833e37dff0e/Learning-Analytics-of-MOOCs-based-on-Natural-Language-Processing.pdf
https://www.researchgate.net/profile/Yulia-Dyulicheva/publication/357173866_Learning_Analytics_of_MOOCs_based_on_Natural_Language_Processing/links/61e8305e8d338833e37dff0e/Learning-Analytics-of-MOOCs-based-on-Natural-Language-Processing.pdf
https://www.researchgate.net/profile/Yulia-Dyulicheva/publication/357173866_Learning_Analytics_of_MOOCs_based_on_Natural_Language_Processing/links/61e8305e8d338833e37dff0e/Learning-Analytics-of-MOOCs-based-on-Natural-Language-Processing.pdf
https://www.researchgate.net/profile/Yulia-Dyulicheva/publication/357173866_Learning_Analytics_of_MOOCs_based_on_Natural_Language_Processing/links/61e8305e8d338833e37dff0e/Learning-Analytics-of-MOOCs-based-on-Natural-Language-Processing.pdf
https://www.sciencedirect.com/science/article/pii/S2666920X24000286
https://www.sciencedirect.com/science/article/pii/S2666920X24000286
https://arxiv.org/abs/2410.05275

[64]

[65]

[67]

[68]

[69]

[70]

[71]

References | 81

M. Obaidi and J. Kliinder, “Development and application of sentiment
analysis tools in software engineering: A systematic literature review,”
Evaluation and Assessment in Software Engineering (EASE 2021),
2021.po1: 10.1145/3463274.3463328.

M. Ilyas, T. Qadah, and A. Ghaffar, “Factors influencing software
development competencies of gsd teams: Extraction from slr and
empirical study,” IEEE Access, 2024. [Online]. Available: https :
//ieeexplore.ieee.org/abstract/document/108048
02/.

A. P. Oluleye and A. A. Mayowa, “Cross-cultural dynamics and
teamwork effectiveness in the construction industry: A review
exploratory study of professional interactions in nigeria,” Researchers
Journal of Science and Technology, vol. 5, no. 3, pp. 41-57, 2025.

Y. Wang, Y. Yue, and G. Zhang, “Uncovering non-native speakers’
experiences in global software development teams: A bourdieusian
perspective,” Computer Supported Cooperative Work (CSCW), pp. 1-
3, 2024. [Online]. Available: https://1link . springer . com
/article/10.1007/s10606-024-09504-y.

S. Sahay, B. Nicholson, and S. Krishna, Global IT outsourcing:

software development across borders. Cambridge University Press,
2003.

A. Alsahli, H. Khan, and S. Alyahya, “Agile development overcomes
gsd challenges: A systematic literature review,” International Journal
of Computer Science and Software Engineering, vol. 6, no. 1, p. 7,
2017.

P. Hanafizadeh and A. Zareravasan, “A systematic literature review
on it outsourcing decision and future research directions,” Journal of
Global Information Management (JGIM), vol. 28, no. 2, pp. 160-201,
2020.

M. Lukauskas and V. Pilinkiené, “Enhancing skills demand un-
derstanding through job ad segmentation using nlp and clustering
techniques,” Applied Sciences, pp. 2-3, 5, 2023. [Online]. Available:
https://www.mdpi.com/2076-3417/13/10/61109.

https://doi.org/10.1145/3463274.3463328
https://ieeexplore.ieee.org/abstract/document/10804802/
https://ieeexplore.ieee.org/abstract/document/10804802/
https://ieeexplore.ieee.org/abstract/document/10804802/
https://link.springer.com/article/10.1007/s10606-024-09504-y
https://link.springer.com/article/10.1007/s10606-024-09504-y
https://www.mdpi.com/2076-3417/13/10/6119

82 | References

[72]

[73]

[74]

[75]

[76]

[77]

[78]

C. Hiranrat and A. Harncharnchai, “Using text mining to discover
skills demanded in software development jobs in thailand,” Pro-
ceedings of the 2nd international conference on data science and
information technology, pp. 33-37,2018. [Online]. Available: ht tps
://dl.acm.org/doi/abs/10.1145/3206129.3239426.

T. Lehtonen, T. Aho, K. Kuusinen, and T. Mikkonen, “Visualizations
for software development process management,” in Information
Modelling and Knowledge Bases XXVIII, 10S Press, 2017, pp. 1-12.

S. Diehl, “Software visualization,” in Proceedings of the 27th
international conference on Software engineering, 2005, pp. 718-719.

CoderPad. “Coderpad’s tech hiring survey finds 60% of recruiters
are ready to ditch the cv, 40% looking internationally to find the
best candidates in tough job market.” Accessed: May 15, 2025,
BusinessWire. (Jan. 2022), [Online]. Available: https://www.bu
sinesswire.com/news/home/20220109005015/en/Cod
erPads—-Tech-Hiring—-Survey-Finds—-60-of—-Recruit
ers—Are—-Ready—-to-Ditch-the-CV-40-Looking-Inte
rnationally-to-Find-the-Best-Candidates—-in-To
ugh—-Job—-Market.

CodinGame and CoderPad. “Codingame and coderpad tech hiring
survey 2023.” Accessed: May 15, 2025, CodinGame. (2023), [Online].
Available: https://www.codingame.com/work/codinga
me—and-coderpad-tech-hiring-survey-2023/.

HackerRank. “Companies using hackerrank for technical hiring.”
Accessed: May 15, 2025, HackerRank. (2025), [Online]. Available:
https://www.hackerrank.com/customers/.

IEEE Computer Society, “Software engineering competency model
(swecom),” IEEE Computer Society, Technical Standard, version 1.0,
2014, A comprehensive framework defining competency areas for
software engineering professionals across multiple levels of expertise.
[Online]. Available: https://www.computer.org/volunte
ering/boards—and-committees/professional-educ
ational-activities/software—-engineering-compe
tency-model.

https://dl.acm.org/doi/abs/10.1145/3206129.3239426
https://dl.acm.org/doi/abs/10.1145/3206129.3239426
https://www.businesswire.com/news/home/20220109005015/en/CoderPads-Tech-Hiring-Survey-Finds-60-of-Recruiters-Are-Ready-to-Ditch-the-CV-40-Looking-Internationally-to-Find-the-Best-Candidates-in-Tough-Job-Market
https://www.businesswire.com/news/home/20220109005015/en/CoderPads-Tech-Hiring-Survey-Finds-60-of-Recruiters-Are-Ready-to-Ditch-the-CV-40-Looking-Internationally-to-Find-the-Best-Candidates-in-Tough-Job-Market
https://www.businesswire.com/news/home/20220109005015/en/CoderPads-Tech-Hiring-Survey-Finds-60-of-Recruiters-Are-Ready-to-Ditch-the-CV-40-Looking-Internationally-to-Find-the-Best-Candidates-in-Tough-Job-Market
https://www.businesswire.com/news/home/20220109005015/en/CoderPads-Tech-Hiring-Survey-Finds-60-of-Recruiters-Are-Ready-to-Ditch-the-CV-40-Looking-Internationally-to-Find-the-Best-Candidates-in-Tough-Job-Market
https://www.businesswire.com/news/home/20220109005015/en/CoderPads-Tech-Hiring-Survey-Finds-60-of-Recruiters-Are-Ready-to-Ditch-the-CV-40-Looking-Internationally-to-Find-the-Best-Candidates-in-Tough-Job-Market
https://www.businesswire.com/news/home/20220109005015/en/CoderPads-Tech-Hiring-Survey-Finds-60-of-Recruiters-Are-Ready-to-Ditch-the-CV-40-Looking-Internationally-to-Find-the-Best-Candidates-in-Tough-Job-Market
https://www.codingame.com/work/codingame-and-coderpad-tech-hiring-survey-2023/
https://www.codingame.com/work/codingame-and-coderpad-tech-hiring-survey-2023/
https://www.hackerrank.com/customers/
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model

[79]

[80]

[84]

[85]

[86]

[87]
[88]

References | 83

R. Florea, “The software tester: An exploration of the skills and
practice of the role,” University of Oslo, 2023. [Online]. Available:
https://www.duo.uio.no/bitstream/handle/10852
/101865/1/PhD-Florea-2023.pdf.

M.-A. Storey, R. Hoda, A. M. P. Milani, and M. T. Baldassarre, “Guid-
ing principles for mixed methods research in software engineering,”
arXiv preprint arXiv:2404.0601 1, pp. 4, 67, 2024.

E. Clarke and J. Visser, ‘“Pragmatic research methodology in educa-
tion: Possibilities and pitfalls,” International Journal of Research &
Method in Education, vol. 42, no. 5, pp. 455469, 2019.

G. Edwards, Education and theory: Strangers in paradigms, 2007.

M. Karanja, L. X. Thuku, and J. P. Kangethe, “Software development
industry in east africa: Knowledge management perspective and value
proposition,” Africa Casebook - Synergies in African Business and
Management Practices, pp. 26-37, 2015. [Online]. Available: http
s://www.researchgate.net/publication/27473012
1_Software_Development_Industry_In_FEast_Africa
_Knowledge_Management_Perspective_And_Value_Pr
oposition.

M. Hennink and B. N. Kaiser, “Sample sizes for saturation in
qualitative research: A systematic review of empirical tests,” Social
Science & Medicine, vol. 292, pp. 2, 6,2022. por: 10.1016/7.s0
cscimed.2021.114523.

E.Dagan, A. Sarma, A. Chang, S. D’Angelo, J. Dicker, and E. Murphy-
Hill, “Building and sustaining ethnically, racially, and gender diverse
software engineering teams: A study at google,” in Proceedings
of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2023,

pp. 631-643.

G. Guest, A. Bunce, and L. Johnson, “How many interviews are
enough? an experiment with data saturation and variability,” Field
methods, vol. 18, no. 1, pp. 59-82, 2006.

P. Sedgwick, “Convenience sampling,” Bmj, vol. 347, 2013.

W. G. Cochran, “Sampling techniques,” Johan Wiley & Sons Inc,
1977.

https://www.duo.uio.no/bitstream/handle/10852/101865/1/PhD-Florea-2023.pdf
https://www.duo.uio.no/bitstream/handle/10852/101865/1/PhD-Florea-2023.pdf
https://www.researchgate.net/publication/274730121_Software_Development_Industry_In_East_Africa_Knowledge_Management_Perspective_And_Value_Proposition
https://www.researchgate.net/publication/274730121_Software_Development_Industry_In_East_Africa_Knowledge_Management_Perspective_And_Value_Proposition
https://www.researchgate.net/publication/274730121_Software_Development_Industry_In_East_Africa_Knowledge_Management_Perspective_And_Value_Proposition
https://www.researchgate.net/publication/274730121_Software_Development_Industry_In_East_Africa_Knowledge_Management_Perspective_And_Value_Proposition
https://www.researchgate.net/publication/274730121_Software_Development_Industry_In_East_Africa_Knowledge_Management_Perspective_And_Value_Proposition
https://doi.org/10.1016/j.socscimed.2021.114523
https://doi.org/10.1016/j.socscimed.2021.114523

84 | References

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Z-Table.com. “90% confidence interval z-score.” Statistical reference
for confidence interval calculations, Z-Table.com. (2025), [Online].
Available: https://z—-table.com/90-confidence—inte
rval—-z—-score.html (visited on 05/15/2025).

A. Karasz and T. M. Singelis, Qualitative and mixed methods research
in cross-cultural psychology, 2009.

J. W. Creswell, A. C. Klassen, V. L. Plano Clark, K. C. Smith, et al.,
“Best practices for mixed methods research in the health sciences,”
Bethesda (Maryland): National Institutes of Health, vol. 2013,
pp- 541-545, 2011.

L. Hespanhol, C. S. Vallio, L. M. Costa, and B. T. Saragiotto,
“Understanding and interpreting confidence and credible intervals

around effect estimates,” Brazilian journal of physical therapy,
vol. 23, no. 4, pp. 290-301, 2019.

B. Giraudeau, A. Caille, S. M. Eldridge, C. Weijer, M. Zwarenstein,
and M. Taljaard, “Heterogeneity in pragmatic randomised trials:
Sources and management,” BMC medicine, vol. 20, no. 1, p. 372,
2022.

R. Colomo-Palacios, E. Tovar-Caro, and A. Garcia-Crespo, “Iden-
tifying technical competences of it professionals: The case of
software engineers,” Universidad Carlos III de Madrid / Universidad
Politécnica de Madrid, Tech. Rep., 2018, Also known in Spanish as
“Niveles competenciales para los perfiles de Ingenieros de Software”.

C.Zhou, S. K. Kuttal, and I. Ahmed, “What makes a good developer?
an empirical study of developers’ technical and social competencies,”
in 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), IEEE, 2018, pp. 319-321.

LeetCode, Two Sum, https://leetcode.com/problems/tw
o—sum/, Accessed: 2025-05-05.

S. Jindal, “Why faang companies ask leetcode,” Medium, Dec. 2024,
Accessed: 2025-05-05. [Online]. Available: https://medium. c
om/write—-a—-catalyst/why—-leetcode-is—-so—-popula
r—82bb9%94c97827.

https://z-table.com/90-confidence-interval-z-score.html
https://z-table.com/90-confidence-interval-z-score.html
https://leetcode.com/problems/two-sum/
https://leetcode.com/problems/two-sum/
https://medium.com/write-a-catalyst/why-leetcode-is-so-popular-82bb94c97827
https://medium.com/write-a-catalyst/why-leetcode-is-so-popular-82bb94c97827
https://medium.com/write-a-catalyst/why-leetcode-is-so-popular-82bb94c97827

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

References | 85

Z. Wan, Y. Zhang, X. Xia, Y. Jiang, and D. Lo, “Software architecture
in practice: Challenges and opportunities,” in Proceedings of the
31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2023,
pp. 1457-14609.

A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE), Foundational study
on modern code review practices, covering goals like quality
improvement, finding defects, knowledge transfer, team awareness,
and associated challenges., 2013, pp. 1-2. por: 10.1109/ICSE.2
013.6606647.

H. Assal, S. G. Morkonda, M. Z. Arif, and S. Chxiasson, “Software
security in practice: Knowledge and motivation,” Journal of Cyber-
security, 2025. por: 10 . 1093 / cybsec / tyaf005. [Online].
Available: https://doi.org/10.1093/cybsec/tyaf005.

A. N. Meyer, E. T. Barr, C. Bird, and T. Zimmermann, “Today was a
good day: The daily life of software developers,” IEEE Transactions
on Software Engineering, vol. 47, no. 5, pp. 863-880, 2019.

S. A. Licorish and S. G. MacDonell, “Exploring software developers’
work practices: Task differences, participation, engagement, and speed
of task resolution,” Information & Management, vol. 54, no. 3,

pp. 364-382, 2017.

M. Chen and A. Golan, “What may visualization processes optimize?”
IEEE transactions on visualization and computer graphics, vol. 22,

no. 12, pp. 2619-2632, 2015.

M. K. Kerr and G. A. Churchill, “Bootstrapping cluster analysis:
Assessing the reliability of conclusions from microarray experiments,”
Proceedings of the national academy of sciences, vol. 98, no. 16,

pp. 8961-8965, 2001.

S. Monti, P. Tamayo, J. Mesirov, and T. Golub, “Consensus clustering:
A resampling-based method for class discovery and visualization of
gene expression microarray data,” Machine learning, vol. 52, pp. 91—
118, 2003.

G. Ogbuabor and F. Ugwoke, “Clustering algorithm for a healthcare
dataset using silhouette score value,” Int. J. Comput. Sci. Inf. Technol,
vol. 10, no. 2, pp. 27-37, 2018.

https://doi.org/10.1109/ICSE.2013.6606647
https://doi.org/10.1109/ICSE.2013.6606647
https://doi.org/10.1093/cybsec/tyaf005
https://doi.org/10.1093/cybsec/tyaf005

86 | References

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

K. R. Shahapure and C. Nicholas, “Cluster quality analysis using
silhouette score,” in 2020 IEEE 7th international conference on data
science and advanced analytics (DSAA), IEEE, 2020, pp. 747-748.

S. Lubbe, “Bootstrapping cluster analysis solutions with the r package
clusboot,” Austrian Journal of Statistics, vol. 53, no. 3, pp. 1-19, 2024.

S. E. Stemler, “A comparison of consensus, consistency, and mea-
surement approaches to estimating interrater reliability,” Practical
Assessment, Research, and Evaluation, vol. 9, no. 1, 2004.

J. Cohen, Statistical power analysis for the behavioral sciences.
routledge, 2013.

C. R. Brydges, “Effect size guidelines, sample size calculations, and
statistical power in gerontology,” Innovation in aging, vol. 3, no. 4,
igz036, 2019.

J. W. Creswell and V. L. P. Clark, Designing and conducting mixed
methods research. Sage publications, 2017.

M. Kitani and H. Murakami, “One-sample location test based on
the sign and wilcoxon signed-rank tests,” Journal of Statistical
Computation and Simulation, vol. 92, no. 3, pp. 610-622, 2022.

S. Baltes and P. Ralph, “Sampling in software engineering research:
A critical review and guidelines,” Empirical Software Engineering,
vol. 27, no. 4, p. 94, 2022.

C. Ebert and P. De Neve, “Surviving global software development,”
IEEE software, vol. 18, no. 2, pp. 62-69, 2001.

Times Higher Education. “World university rankings 2025.” Filtered
by: Netherlands, Rwanda, Sweden, Uganda; Subject: 3081, Times
Higher Education. (2025), [Online]. Available: https : //www . t
imeshighereducation.com/world-university-rank
ings/latest/world-ranking#!/length/25/location
s/NLD+RWA+SWE+UGA/subjects/3081/sort_by/rank/s
ort_order/asc/cols/scores (visited on 05/07/2025).

BMS Performance. “The importance of hiring for potential, not
experience.” (Aug. 2024), [Online]. Available: https://bmsperf
ormance.com/insight/the-importance-of-hiring-
for—-potential-not—-experience/ (visited on 05/07/2025).

https://www.timeshighereducation.com/world-university-rankings/latest/world-ranking#!/length/25/locations/NLD+RWA+SWE+UGA/subjects/3081/sort_by/rank/sort_order/asc/cols/scores
https://www.timeshighereducation.com/world-university-rankings/latest/world-ranking#!/length/25/locations/NLD+RWA+SWE+UGA/subjects/3081/sort_by/rank/sort_order/asc/cols/scores
https://www.timeshighereducation.com/world-university-rankings/latest/world-ranking#!/length/25/locations/NLD+RWA+SWE+UGA/subjects/3081/sort_by/rank/sort_order/asc/cols/scores
https://www.timeshighereducation.com/world-university-rankings/latest/world-ranking#!/length/25/locations/NLD+RWA+SWE+UGA/subjects/3081/sort_by/rank/sort_order/asc/cols/scores
https://www.timeshighereducation.com/world-university-rankings/latest/world-ranking#!/length/25/locations/NLD+RWA+SWE+UGA/subjects/3081/sort_by/rank/sort_order/asc/cols/scores
https://bmsperformance.com/insight/the-importance-of-hiring-for-potential-not-experience/
https://bmsperformance.com/insight/the-importance-of-hiring-for-potential-not-experience/
https://bmsperformance.com/insight/the-importance-of-hiring-for-potential-not-experience/

References | 87

[118] N. Basabe and M. Ros, “Cultural dimensions and social behavior cor-
relates: Individualism-collectivism and power distance,” International
Review of Social Psychology, vol. 18, no. 1, pp. 189-225, 2005.

TRITA — XXX-EX2025:0000
Stockholm, Sweden 2025

www.kth.se

€€€E For DIVA €€€€

“Author1”: { "Last name”: "Khosravi”,
"First name”: "Sam”,

"Local User Id”: "uttukeft”,

"E-mail”: "smkh@kth.se”,
“organisation”: {"L1": ™,

}
h
"Cycle™ "2”,

"Course code”: "DA231X”,

"Credits”™: "30.0”,

"Degree1”: {"Educational program”: "Master’'s Programme, Computer Science, 120 credits”
,’programcode”: "TCSCM”

,’Degree”: "Degree of Master of Science in Engineering”

,'subjectArea”: "Computer Science and Engineering”

5

"Title™: {

”Main title”: "A Comparative Study of Software Engineers in East Africa and North Western Europe Based on Skills, Communication,
Organizational Culture, and Perceptions”,

"Subtitle”: "A Pragmatic Mixed-Methods Approach to Understanding Global Software Development Dynamics Between Rwanda, Uganda,
Sweden, and the Netherlands”,

“Language”: "eng” },

"Alternative title”: {

“Main title”: "En jamférande studie av mjukvaruingenjérer i Ostafrika och Nordvasteuropa baserat pa fardigheter, kommunikation,
organisationskultur och uppfattningar”,

”Subtitle”: "En pragmatisk mixed-methods strategi for att forsta global mjukvaruutveckling mellan Rwanda, Uganda, Sverige och
Nederléanderna”,
"Language”: "swe
b

"Supervisor1”: { "Last name”: "Payerah”,

“First name”: "Amir H.”,

"Local User Id”: "u1a7309d",

"E-mail”: "payberah@kth.se”,

“organisation”: {"L1": ™,

"L2": "EECS” }

1

"Supervisor2™: { "Last name”: "Bukhsh”,

"First name”: "Faiza A",

"E-mail™: "f.a.bukhsh@utwente.nl”,

"Other organisation”: "University of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)”
b

"Examiner1”: { "Last name”: "Engwall”,

“First name™: "Olov”,

"Local User Id”: "utniocbs”,
“E-mail”: "engwall@kth.se”,
“organisation”: {"L1": ™",
"L2" "EECS”}

"National Subject Categories": "10201, 10206",

"SDGs": "8, 9",

"Other information”: {"Year”: "2025", "Number of pages”: "xiii,87"},
"Copyrightleft”: "copyright”,

"Series”: { "Title of series™ "TRITA — XXX-EX", "No. in series™ "2025:0000" },
"Opponents”: { "Name”: "XXX"},

“Presentation”™: { "Date”: "2022-03-15 13:00”

JLanguage™:"XXX"

,”Room”: "via Zoom https://kth-se.zoom.us/j/ddddddddddd”
J’Address™: "Isafjordsgatan 22 (Kistagangen 16)”

,"City”: "Stockholm” },

"Number of lang instances™ "2",

"Abstractfeng]”: €€€€

This research examines cross-cultural dynamics in global software development by comparing software
engineers from East Africa (Rwanda and Uganda) and North Western Europe (Sweden and the Netherlands) .
Despite growing African tech hubs, empirical research looking into the technical competencies
communication styles, and organizational practices of East African software engineers remain limited,
despite potential time-zone alignment advantages with European partners. Most existing studies on
global software development focus on established outsourcing destinations in Asia, Eastern Europe,
and South America.

This thesis addresses this research gap by using a pragmatic mixed-methods approach, combining
quantitative and qualitative data, which was collected through standardized programming challenges,
system design tasks, code reviews, and in-depth interviews with 48 software engineers across the four
countries. Technical solutions were analyzed using Machine Learning techniques, including CodeBERT
embeddings and clustering analysis, while communication styles were evaluated through sentiment

analysis of code reviews using Valence Aware Dictionary and Sentiment Reasoner from the Natural
Language Toolkit.

The results reveal insights challenging conventional assumptions about global software engineering.
Rwandan senior software engineers showed technical skills comparable to their European counterparts,
while Rwandan junior software engineers were outclassed by their European counterparts. Communication
styles differed across regions, with East African software engineers providing more positive and
supportive feedback (compound sentiment scores >0.5) compared to the more critical, direct approach
of European software engineers (compound score -0.361 for Dutch software engineers). Process
priorities also varied as European teams allocated more time to initial development and design, while
East African teams put more focus on code reviews and deployment processes.

Most significantly, the study found perception gaps with European software engineers consistently
underrating the capabilities of East Africans despite measured performance showing individual
excellence and overlap between regions in terms of skills. These findings provide empirical evidence
that can inform more equitable global software development practices and enhance cross-cultural
collaboration by leveraging the complementary strengths adherent in each region. Furthermore it
challenges biases that may limit opportunities for talented software engineers from emerging regions,
and contributes to a more inclusive understanding of global software engineering dynamics in
previously understudied contexts.

"Abstract[swe]": €€€€

Denna studie undersdker tvarkulturell dynamik inom global mjukvaruutveckling genom att jdmfdra
mjukvaruingenjdrer fra&n Ostafrika mot de fr&n Nordvdsta Europa. I studien ingd&r Rwanda och Uganda som
skall representera Ostafrika, medan Sverige and Nederldnderna representerar Nordvdstra Europa. Trots
att Ostafrikanska l&nder utvecklat b&de infrastruktur och teknisk kompetens de senaste &ren saknas
det empirisk forskning om &stafrikanska utvecklares tekniska kompetenser, kommunikationss&dtt och
organisatoriska metoder, sdrskilt i jadmforelse med andra mer etablerade outsourcing destinationer i
Asien och Osteuropa.

Studien omfattar 48 utvecklare, och anvdnder en pragmatisk mixed-methods ansats som kombinerar
kvantitativ och kvalitativ data. Datainsamlingen omfattade standardiserade programmeringsutmaningar
systemdesign, kodgranskningar och djupintervjuer. Maskininldrningsmetoder s&som CodeBERT-embeddings
och klusteranalys anvdndes fér att analysera tekniska lésningar, medan kommunikationsstilar
utvdrderades genom sentimentanalys med VADER frdn NLTK.

Resultaten visar att seniora utvecklare frdn Rwanda besitter tekniska fdrdigheter som &r jadmférbara
med deras europeiska motsvarigheter, d&remot presterar juniora utvecklare fran Rwanda sdmre.
Kommunikationsstilar skiljer sig markant mellan de tv&d regionerna, d& &stafrikanska utvecklare gav
mer positiv feedback pd kodgranskningar, jamfért med européers mer kritiska och direkta
tillvdgagdngssdtt. Processprioriteringar varierade ocksd, dar europeiska team fokuserade mer pd
initial utveckling medan 8stafrikanska team fokuserade mer pd kodgranskning och drifts&ttning.

Mest anmdrkningsvdrt var de perceptions skillnader som hittades, dir europeiska utvecklare konsekvent
underskattade &stafrikanska utvecklares férmdgor trots uppmitta prestationer som visade individuell
férmdga och dverlapp mellan regionerna. Dessa fynd ger empiriska bevis som kan bidra till mer
rdttvisa globala mjukvaruutvecklings méjlighter och utmana férdomar som begrdnsar mdjligheter for
talangfulla utvecklare fran tillvaxtregioner.

€€EE,

"Keywords[eng]": €€€€

Global Software Development, Cross-cultural Collaboration, Software Engineering Skills, East Africa, North Western Europe, Perception
Bias €€€€,

€€€E,

"Keywords[swe]": €€€€

Global Mjukvaruutveckling, Tvarkulturellt Samarbete, Mjukvaruingenjérsfardigheter, Ostafrika, Nordvasteuropa, Uppfattningsbias €€€€,

}

=]

{
"Author1": {"Last name": "Khosravi", "First name": "Sam", "Local User Id": "u1tukeft", "E-mail": "smkh@kth.se", "organisation": {"L1": "" }},
"Cycle": "2", "Course code": "DA231X", "Credits": "30.0",
"Degree1": {"Educational program": "Master's Programme, Computer Science, 120 credits","programcode": "TCSCM" ,"Degree": "Degree of Master of Science in Engineering" ,"subjectArea": "Computer Science and Engineering" },
"Title": {"Main title": "A Comparative Study of Software Engineers in East Africa and North Western Europe Based on Skills, Communication, Organizational Culture, and Perceptions", "Subtitle": "A Pragmatic Mixed-Methods Approach to Understanding Global Software Development Dynamics Between Rwanda, Uganda, Sweden, and the Netherlands", "Language": "eng" }, "Alternative title": {"Main title": "En jämförande studie av mjukvaruingenjörer i Östafrika och Nordvästeuropa baserat på färdigheter, kommunikation, organisationskultur och uppfattningar", "Subtitle": "En pragmatisk mixed-methods strategi för att förstå global mjukvaruutveckling mellan Rwanda, Uganda, Sverige och Nederländerna", "Language": "swe" },
"Supervisor1": {"Last name": "Payerah", "First name": "Amir H.", "Local User Id": "u1a73o9d", "E-mail": "payberah@kth.se", "organisation": {"L1": "" ,"L2": "EECS" }},
"Supervisor2": {"Last name": "Bukhsh", "First name": "Faiza A.", "E-mail": "f.a.bukhsh@utwente.nl", "Other organisation": "University of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)" },
"Examiner1": {"Last name": "Engwall", "First name": "Olov", "Local User Id": "u1niocbs", "E-mail": "engwall@kth.se", "organisation": {"L1": "" ,"L2": "EECS" }},

"National Subject Categories": "10201, 10206",
"SDGs": "8, 9",
"Other information": {"Year": "2025", "Number of pages": "xiii,87" },
"Copyrightleft": "copyright",
"Series": {"Title of series": "TRITA -- XXX-EX" , "No. in series": "2025:0000" },
"Opponents": {"Name": "XXX"},
"Presentation": {"Date": "2022-03-15 13:00" ,"Language": "XXX" ,"Room": "via Zoom https://kth-se.zoom.us/j/ddddddddddd" ,"Address": "Isafjordsgatan 22 (Kistagången 16)" ,"City": "Stockholm" },
"Number of lang instances": "2",
"abstracts": {
"eng": €€€€
"
This research examines cross-cultural dynamics in global software development by comparing software engineers from East Africa (Rwanda and Uganda) and North Western Europe (Sweden and the Netherlands). Despite growing African tech hubs, empirical research looking into the technical competencies, communication styles, and organizational practices of East African software engineers remain limited, despite potential time-zone alignment advantages with European partners. Most existing studies on global software development focus on established outsourcing destinations in Asia, Eastern Europe, and South America.

This thesis addresses this research gap by using a pragmatic mixed-methods approach, combining quantitative and qualitative data, which was collected through standardized programming challenges, system design tasks, code reviews, and in-depth interviews with 48 software engineers across the four countries. Technical solutions were analyzed using Machine Learning techniques, including CodeBERT embeddings and clustering analysis, while communication styles were evaluated through sentiment analysis of code reviews using Valence Aware Dictionary and Sentiment Reasoner from the Natural Language Toolkit.

The results reveal insights challenging conventional assumptions about global software engineering. Rwandan senior software engineers showed technical skills comparable to their European counterparts, while Rwandan junior software engineers were outclassed by their European counterparts. Communication styles differed across regions, with East African software engineers providing more positive and supportive feedback (compound sentiment scores >0.5) compared to the more critical, direct approach of European software engineers (compound score -0.361 for Dutch software engineers). Process priorities also varied as European teams allocated more time to initial development and design, while East African teams put more focus on code reviews and deployment processes.
Most significantly, the study found perception gaps with European software engineers consistently underrating the capabilities of East Africans despite measured performance showing individual excellence and overlap between regions in terms of skills. These findings provide empirical evidence that can inform more equitable global software development practices and enhance cross-cultural collaboration by leveraging the complementary strengths adherent in each region. Furthermore it challenges biases that may limit opportunities for talented software engineers from emerging regions, and contributes to a more inclusive understanding of global software engineering dynamics in previously understudied contexts.
"
€€€€,
"swe": €€€€
"Denna studie undersöker tvärkulturell dynamik inom global mjukvaruutveckling genom att jämföra mjukvaruingenjörer från Östafrika mot de från Nordvästa Europa. I studien ingår Rwanda och Uganda som skall representera Östafrika, medan Sverige and Nederländerna representerar Nordvästra Europa. Trots att Östafrikanska länder utvecklat både infrastruktur och teknisk kompetens de senaste åren saknas det empirisk forskning om östafrikanska utvecklares tekniska kompetenser, kommunikationssätt och organisatoriska metoder, särskilt i jämförelse med andra mer etablerade outsourcing destinationer i Asien och Östeuropa.

Studien omfattar 48 utvecklare, och använder en pragmatisk mixed-methods ansats som kombinerar kvantitativ och kvalitativ data. Datainsamlingen omfattade standardiserade programmeringsutmaningar, systemdesign, kodgranskningar och djupintervjuer. Maskininlärningsmetoder såsom CodeBERT-embeddings och klusteranalys användes för att analysera tekniska lösningar, medan kommunikationsstilar utvärderades genom sentimentanalys med VADER från NLTK.

Resultaten visar att seniora utvecklare från Rwanda besitter tekniska färdigheter som är jämförbara med deras europeiska motsvarigheter, däremot presterar juniora utvecklare från Rwanda sämre. Kommunikationsstilar skiljer sig markant mellan de två regionerna, då östafrikanska utvecklare gav mer positiv feedback på kodgranskningar, jämfört med européers mer kritiska och direkta tillvägagångssätt. Processprioriteringar varierade också, där europeiska team fokuserade mer på initial utveckling medan östafrikanska team fokuserade mer på kodgranskning och driftsättning.
Mest anmärkningsvärt var de perceptions skillnader som hittades, där europeiska utvecklare konsekvent underskattade östafrikanska utvecklares förmågor trots uppmätta prestationer som visade individuell förmåga och överlapp mellan regionerna. Dessa fynd ger empiriska bevis som kan bidra till mer rättvisa globala mjukvaruutvecklings möjlighter och utmana fördomar som begränsar möjligheter för talangfulla utvecklare från tillväxtregioner.
"
€€€€,
},
"keywords": {
"eng": €€€€
"Global Software Development, Cross-cultural Collaboration, Software Engineering Skills, East Africa, North Western Europe, Perception Bias"
€€€€,
"swe": €€€€
"Global Mjukvaruutveckling, Tvärkulturellt Samarbete, Mjukvaruingenjörsfärdigheter, Östafrika, Nordvästeuropa, Uppfattningsbias"
€€€€,
}
}

fordiva.json

acronyms.tex

Local Variables:
mode: latex
TeX-master: t
End:
The following command is used with glossaries-extra
setabbreviationstyle[acronym] {long-short}
The form of the entries in this file is \newacronym{label} {acronym}{phrase}
or \newacronym[options]{label}{acronym}{phrase}
see "User Manual for glossaries.sty” for the details about the options, one example is shown below
note the specification of the long form plural in the line below
Local Variables:
mode: latex
% TeX-master: t
% End:
note the use of a non-breaking dash in long text for the following acronym
Define acronyms in alphabetical order
\newacronym{2FA} {2FA} {Two-Factor Authentication}
\newacronym{API}{API}{Application Programming Interface}
\newacronym{BERT} {BERT}{Bidirectional Encoder Representations from Transformers}
\newacronym{CI}{CI}{Confidence Interval}
\newacronym{CI/CD}{CI/CD}{Continuous Integration/Continuous Deployment}
\newacronym{codeBERT} {codeBERT} {Code Bidirectional Encoder Representations from Transformers}

P
%
o

-

o0 oo

E O R P R

\newacronym{DevOps} {DevOps} {Development and Operations}
\newacronym{EA} {EA} {East Africa}

\newacronym{GSD} {GSD} {Global Software Development}
\newacronym{ICT}{ICT}{Information and Communications Technology}
\newacronym{ML} {ML} {Machine Learning}

\newacronym{NLP} {NLP} {Natural Language Processing}
\newacronym{NLTK} {NLTK} {Natural Language Toolkit}
\newacronym{NWE} {NWE} {North Western Europe}
\newacronym{PCA} {PCA} {Principal Component Analysis}
\newacronym{RQ} {RQ} {Research Question}
\newacronym{SDG} {SDG} {Sustainable Development Goals}
\newacronym{SWEBOK} { SWEBOK} { Software Engineering Body of Knowledge}
\newacronym{VADER} {VADER} {Valence Aware Dictionary and Sentiment Reasoner}

All SDGs are within the range [1-17].

	Introduction
	Research Questions
	Problem
	Method used
	Goal and Purpose
	Delimitations
	Structure of the thesis

	Background
	Global Software Engineering and Cross-Cultural Collaboration
	Global Software Development Trends
	Cross-Cultural Collaboration in Software Engineering
	Emerging Tech Hubs in East Africa

	Analytical Techniques and Methodologies in Software Engineering Research
	Quantitative Assessment Methods
	Qualitative Methods and Field Assessments
	Pragmatic Mixed-Methods Research Approach
	Evaluating Software Engineering Skills

	Related Work
	Related Work on Global Software Development
	Related Work on Analytical Techniques
	Related Work on Assessing Software Engineers
	Explicit Research Gaps and Summary of Contributions

	Methods
	Research Paradigm
	Research Questions and Design
	Data Collection
	Data Validity
	Data Reliability

	Assessments and Challenges

	Results and Analysis
	Technical Assessment Results
	Unique pairs
	System Design Challenge
	Code Review Analysis
	Security Knowledge Analysis

	Biases and Process analysis
	Process Steps
	Longest vs Shortest Process Steps per Country
	Biases
	Process Step Visualization
	Results summary

	Reliability Analysis
	Validity Analysis

	Discussion
	Conclusions and Future work
	Conclusions
	Future Work

	Reflections

	References

