
IN DEGREE PROJECT INFORMATION AND COMMUNICATION
TECHNOLOGY,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2019

Machine Learning for
Constraint Programming

TIANZE WANG

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Machine Learning for
Constraint Programming

TIANZE WANG

ICT Innovation Data Science
Date: June 24, 2019
Supervisor: Amir Payberah
Examiners: Christian Schulte, Vladimir Vlassov
School of Electrical Engineering and Computer Science
Swedish title: Maskininlärning för begränsningsprogrammering

iii

Abstract
It is well established that designing good heuristics for solving Constraint Pro-
gramming models requires years of domain experience and a huge amount of
trials and error. In this thesis project, we conduct an empirical study of whether
Machine Learning and Deep Learning techniques have the potential to help the
design of constraint solvers.

Specifically, this thesis project examines the potential ofMachine Learning
and Deep Learning models for the regression task of predicting the makespan
and solving time of a Job-shopScheduling Problem without actually solving
the givenJob-shop Scheduling Problem instance. Several Machine Learning
models are tested with manually designed features as input. Different Deep
Learning architectures are explored with either just the Job-shop Scheduling
Problem instance as input or with an additional input of the previously de-
signed features.

The experiment results justify the potential of several proposed models in
predicting the makespan and solving time. For predicting the makespan (unit:
machine time unit), the best Random Forest regression model achieves aMean
Squared Error of 0.78 on the test set. The best Deep Learning model achieves
a Mean Squared Error of 0.74 on the test set. For predicting the solving time
(unit: millisecond) of a Job-shop Scheduling Problem, the best Random Forest
regression model achieves a Mean Squared Error of 2.12× 107 on the test set.
The best Deep Learning model achieves a Mean Squared Error of 5.19× 107

on the test set.
Discussions of the reason behind difference of different Machine Learning

and Deep Learning models are provided and future directions are proposed.

iv

Sammanfattning
Det är väl etablerat att det kräver många års erfarenhet av domänexpertis och
mycket experimentell felsökning för att utforma en bra sökheuristik för vill-
korsprogrammeringsmodeller. I denna avhandling beskriver vi genomförandet
av en empirisk studie med syftet att utreda potentialen av maskininlärnings-
tekniker för att underlätta framtagandet av villkorsprogrammeringslösare.

Mer specifikt undersöker vi maskininlärningsmodellers regressionsförmå-
ga att förutsemakespanöch lösningstid för "Job-Shop Scheduling Problem"utan
att för den delen lösa den givna "Job-Shop Scheduling Problem"instansen.
Flertalet maskininlärningsmodeller testasmedmanuellt framtagna särdrag som
indata. Olika djupmaskininlärningsarkitekturer utforskas med antingen bara
"Job-Shop Scheduling Problem-instanser som indata eller med ytterliggare in-
data i form av de manuellt framtagna särdragen.

Experimentresultaten motiverar användandet av flertalet av de föreslagna
maskininlärningsmodellerna för att förutse makespanöch lösningstid. För för-
utsägandet av makespan"(enhet: maskintidsenhet) uppnår den bästa Random
Forestregressionsmodellen ett medelkvadratfel på 0,78 på testdatamängden.
Den bästa djupmaskininlärningsmodellen uppnår ett medelkvadratfel på 0,74
på testdatamängden. För förutsägandet av lösningstiden (enhet: millisekund)
av "Job-Shop Scheduling Problem"uppnår den bästa Random Forestregres-
sionsmodellen ett medelkvadratfel på 2.12 × 107 på testdatamängden. Den
bästa djupmaskininlärningsmodellen uppnår ett medelkvadratfel på 5.19×107
på testdatamängden.

Skillnadsorsakerna rörande de olikamaskininlärningsmodellernas prestan-
da diskuteras i avhandlingen samt framtida forskningsinriktningar.

v

Acknowledgements
I would like to thank my examiner Christian Schulte and my supervisor Amir
Payberah for offering the opportunity of the thesis project and their constant
guiding and helping through the course the thesis.

I want to express my thankfulness to Vladimir Vlassov for reviewing and
offering the feedback to the thesis.

I want to show my gratitude to Edward Tjörnhammar for his feedback on
the thesis and offering the Swedish translation of the abstract.

Last but not least, I would like to express my gratitude to my family, my
friends, and all of the people who have inspired and support me during the
path.

Contents

1 Introduction 1
1.1 Problem Formation . 1
1.2 Research Question . 2
1.3 Goals . 2
1.4 Thesis Contributions . 3
1.5 Methodology . 3
1.6 Ethics . 4
1.7 Sustainability . 4

2 Background 6
2.1 Constraint Programming . 6

2.1.1 Parts of a Constraint Programming Model 6
2.1.2 General Procedure of a Constraint Programming Solver 7

2.2 Machine Learning . 8
2.2.1 Traditional Machine Learning Models 9
2.2.2 Deep Learning models 12

2.3 Combination of Constraint Programming andMachine Learning 13
2.3.1 Machine Learning for Constraint Programming 13
2.3.2 Constraint Programming for Machine Learning 19

2.4 Job-shop Scheduling Problems 19
2.4.1 Mathematical definition of Job-shop Scheduling Prob-

lems . 20
2.4.2 GeneralMethods for Solving Job-shop Scheduling Prob-

lems . 20

3 Implementation 23
3.1 Dataset Acquisition . 23

3.1.1 Job-shop Scheduling Problems Instance Data Acqui-
sition and Generation 23

vi

CONTENTS vii

3.1.2 Gecode Model and Benchmarking Setup 25
3.1.3 Machine Learning and Deep Learning Dataset Gener-

ation . 28
3.2 Traditional Machine Learning Models 30

3.2.1 Experimentation Setup 30
3.3 Deep Learning models . 34

3.3.1 Models . 34
3.3.2 Experiment setup . 38

4 Results and Discussion 41
4.1 Results of traditional Machine Learning models 41

4.1.1 Makespan . 42
4.1.2 Runtime . 42

4.2 Results of Deep Learning models 45
4.2.1 Models with vanilla Convolutional Neural Network . . 45
4.2.2 Models with LeNet mockup 46

4.3 Discussion of different results 49

5 Conclusion and Future Work 51
5.1 Conclusion . 51
5.2 Future Directions . 52

Bibliography 54

Chapter 1

Introduction

1.1 Problem Formation
Constraint Programming (CP) is a successful method for solving combina-
torial search problems which draws upon a wide range of techniques from
AI, computer science, databases, programming languages, and operations re-
search [1]. Different aspects of constraint processing are investigated in the-
oretical computer science, logic programming, knowledge representation, op-
erations research, and many related application domains [2].

The basic idea behind CP is that the user, instead of coming up with the
exact procedure to solve a given program, states a specification of the problem
which includes the decision variables, the possible values for the variables,
and the set of constraints on the decision variables to make feasible solutions.
In order to acquire solutions to the specification of the problem, the user then
resort to general purpose or domain specific constraint solvers for help which
usually encodes different heuristic for finding solutions for a given specifica-
tion.

Traditionally, the heuristics in the solvers are hand engineered by domain
experts and can be seen as reflections of their expertise in solving those specific
kinds of problems which can often require a lot of past experiences from the
same domain. One of the most common way to optimize a constraint solver
is to come up with additional information during solving that can be utilized
to greatly reduce the search space and such information usually comes from
deterministic approaches that are hand-engineered.

In this thesis project, we are interested in investigating whether Machine
Learning (ML) methods, especially Deep Learning (DL) methods, can be
used to predict information that can be beneficial to prune the search space

1

2 CHAPTER 1. INTRODUCTION

and whether such additional information can improve the performance of con-
straint solvers.

1.2 Research Question
Job Shop Scheduling Problem (JSSP) , which falls into a bigger category
scheduling problem, serves as a good candidate for our study as the problem
is easily formulated, very well studied in research during the past, and that
the hardness of the problem in terms of computation needed to come up with
the optimal solution could vary dramatically even with a small change in the
problem specification which could be a potential area where ML can make its
contributions. JSSPs are concerned with finding a feasible schedule of differ-
ent jobs each with a certain number of operations across different machines
where one machine can only run one operation at a given time point. To be
more specific, in solving a JSSP, we are interested in finding a schedule plan
that minimize or maximize certain metrics, with makespan, which is the time
elapses from the start of the first job and the end of the last job, being the most
common one.

Constraint solvers for JSSP usually come up with a lower bound and a up-
per bound for themakespan and then start constraint propagation and searching
from there to find the minimal makespan from there via binary search within
the interval. One way to optimize the problem is to provide a estimated value
for the optimal makespan to the solver at the beginning and let it first search
around the estimated optimal makespan.

The research question for this master thesis project is that:

• Can we build a Machine Learning model that can predict, within a rea-
sonable amount of time, the minimal makespan within a reasonable er-
ror range by only looking into the JSSP instance specification and some
features from the solving phase that are easy to compute?

We will investigate the research question through empirical studies.

1.3 Goals
The goal of the project is to account for the usefulness ofMLmodels in solving
JSSPs, compare the performance of different models, and explore whether the
additional information from ML models can actually yield performance gain
for JSSP constraint solvers.

CHAPTER 1. INTRODUCTION 3

1.4 Thesis Contributions
The contributions of this master thesis are as follows:

• An experimental study of using different Machine Learning models to
predict the optimal makespan of a Job-shop Scheduling Instance. We
investigate different traditional Machine Learning models and several
Deep Learning architectures and performance experiments and then eval-
uate the performance of these models. Our study shows that there are
Machine Learning models which can predict the makespan within an
acceptable range of error.

• Two randomly generated Job-shop Scheduling Problem instances dataset
and the corresponding computational record for solving the instances.
A Job-shop Scheduling Problem instances generator that can be used to
generate more instances if needed. A Constraint Programming model
for Job-shop Scheduling Problem.

1.5 Methodology
The research strategy for this dissertation is to perform quantitative and empir-
ical research. We begin with a comprehensive and systematic literature study
with the following two goals:

• Identify what are the state of art techniques in CP to solve JSSPs;

• Identify what ML and DL techniques has been applied in the field of CP
with an extra focus on how they can be utilized to optimize the perfor-
mance of constraint solver.

Specifically, we observe the potential of ML techniques to boost the per-
formance of constraint solver in the setting of JSSPs. The experiment design
is guided by the research objectives. We implement a CP model and corre-
sponding constraint solvers for JSSPs. After that benchmarking for different
JSSP specification is performed and the result are transformed into a dataset
that is later used for ML and DL models for predicting the running time and
makespan of the given JSSP specifications.

Delimitations
The extent to which we try to answer the research question is limited by a
number of factors.

4 CHAPTER 1. INTRODUCTION

First, our evaluation is experimental and focuses on empirical results from
quantitative experiments. For example, when comparing the performance of
different ML and DL models on predicting the makespan and runtime, which
is the running time that a CP solver to solve a CP model, we only demon-
strate empirically that one model has better performance on the dataset used
for testing.

Second, our experiments are only concerned with predicting the perfor-
mance of ML and DL models on predicting the makespan and runtime of
JSSPs. But we are not concernedwith the performance of themodel on general
scheduling problems.

Third, we are making the assumption that the job-shop scheduling in-
stances reflect the actual running time of each operation in the jobwhichmeans
we are assuming that an operation will finish with in the time given by the
specification without delay.

Finally, although we make some modification to existing DL networks, we
do not propose any new network architectures that are specially designed for
JSSPs.

1.6 Ethics
While it might not seem obvious how solving a JSSP could lead to ethical
concerns, when we generalize the ML method to boost the performance of
other constraint solvers, problemsmight occur. For example, when performing
roster scheduling, aMLmodel maybe learning from the data in such a way that
the prediction of theMLmodel is in favour of one group of people havingmore
night shifts than the other which might lead to biased predictions that might
mislead the constraint solver to make unethical roster schedule.

Thus, when applying ML techniques to problems that might have the po-
tential for ethical concerns, it is very important to not only to filter out features
that might lead to unethical decisions but also to inspect the predictions of the
model to avoid unethical results.

1.7 Sustainability
This work aims to contribute to Sustainable Development Goal #81 which
reads “promoting sustained, inclusive and sustainable economic growth, full

1https://sustainabledevelopment.un.org/

CHAPTER 1. INTRODUCTION 5

and productive employment, and decent work for all” by demonstrating that
ML has the potential of saving computing power and energy used for solving
CP tasks via the use case of ML techniques can be used to fasten the process
of JSSPs.

0https://sustainabledevelopment.un.org/

Chapter 2

Background

2.1 Constraint Programming
First introduced in Artificial Intelligence (AI) and graphics in the 1960s and
19770s, the concept of CP has led to many techniques that are used and studied
in different fields of computing. CP has proven itself suitable for solving many
combinatorial optimization problems which can be expressed in different for-
malism. One of such formalism commonly used in AI are (Constraint Satis-
faction Problems) (CSPs) and (Constrained Optimization Problems) (COPs).

CP is a programming paradigm where, instead of specifying sequence of
steps for the program to execute to get the result, one states the relations be-
tween variables in the form of constraints that must be satisfied in order to
get feasible solutions for the problem which makes CP a form of declarative
programming.

2.1.1 Parts of a Constraint Programming Model
CSP captures intuitions of CP problem specifications with variables, values,
and constraints. Note that here a problem specification only states what are
the solutions to the problem but not how to perform the computations to get
those solutions. To be more specific, a CSP constrains the following parts:

• A finite set of variables V = {x0, x1, ...};

• A universe U made of a finite set of values which specifies the values
that each variable can take;

• A finite set of constraints C which states what are the solutions to the
problem by specifying what relationships that variables should follow.

6

CHAPTER 2. BACKGROUND 7

COP is another type of problems that can be solved by CP where the ma-
jor difference from CSP is that, apart from satisfying all the constraints on
variables and values, COP also have an objective function that needs to be
minimized or maximized depending on the requirement of the task.

2.1.2 General Procedure of a Constraint Programming
Solver

After specifying the configuration in a constraint model, when it comes to ac-
tually solving the problem, one will need to resort to constraint solvers which
will take the constraint model as input and return either solutions to the con-
straint model or a failure message that no solution has been found. While dif-
ferent solving procedures and optimization techniques might exist for different
constraint solvers, the general process of solving a constraint model includes
the following steps:

• Propagation: where propagators, which are implementations of con-
straints, remove values that violate the constraints in the problem spec-
ification.

• Search: when propagator remove values anymore and a solution have
not yet occur, we resort to search for help. And the search phase includes
the following two steps.

– Branching: defines the structure of a search tree.
– Exploration: specifies the way to explore the search tree to
look for solutions.

While constraints state relations among variables in problem specifica-
tions, propagators, which prune values that are in conflict with constraints, im-
plement constraints when it comes to programming a constraint model. While
in some cases propagation will lead to good results, most of the time propaga-
tion alone is not enough and that is when searching comes to the rescue. There
are two main steps during the solving phase: branching which creates simpler
sub-problems and defines the shape of the search tree; explorations defines the
way to traverse the search tree, with depth first search being the most common
one.

Heuristics are often applied to CP models with the aim of extra perfor-
mance gain by exploring the search space smartly. One of themost well-known
heuristics is first-fail where we would like the constraint solver to try the vari-
able and value combination that is most likely to fail first. The key observation

8 CHAPTER 2. BACKGROUND

behind this is that a failure that happens in the upper level of the search tree
wastes less computation that a failure that happens at lower level of the search
tree. Also, a failure at the upper level of the search tree prunes more search
space than a lower level. There are various approaches to approximate the
probability of failure for each variable. A naive approximation is to inversely
correlate the probability of failure with the number of values left for the vari-
able that we are interested in. Accumulated Failure Count (AFC) is another
commonly used heuristic that take advantage of search history that prefers
variables involved in failure. Nowadays, the search for better heuristics still
remains an active field of research in CP.

Metaheuristics are general algorithmic frameworks designed to solve com-
plex optimization problems. In recent years, metaheuristics are becoming suc-
cessful alternatives also for solving optimization problems that include math-
ematical formulation of uncertain, stochastic, and dynamic information. To
be more specific, metaheuristic algorithms such as (Ant Colony Optimization)
(ACO),Evolutionary Computation (EC), Simulated Annealing (SA), Tabu Search
(TS), and others, are justifying themselves as successful alternatives to classi-
cal approaches based on mathematical and dynamic programming for solving
Stochastic Combinatorial Optimization Problems (SCOPs) [3].

Uncertainty is another interesting part of CP to be explored. Few CP for-
malism can deal with both optimization and uncertainty at the same time. [4]
proposes a way to deal with combinatorial optimization problems under uncer-
tainty by injecting the Rank Dependent Utility from decision theory and the
results shows it is possible to handle uncertainty with regular CP solvers with-
out the need to define a new formalism neither to develop dedicated solvers.

2.2 Machine Learning
ML is the scientific study of algorithms and statistical models that computer
systems use in order to learn to perform specific tasks without using explicit
step by step instructions, but relying on the ML model to explore the patterns
behind and perform the inference. ML is seen as an important part of AI.

MLmodels are algorithms that build a mathematical model based on train-
ing data, in order to make predictions on the test data without explicitly being
programmed on how to perform the task given that the training and the test
data are independent and identically distributed.

ML models have been applied to a wide variety of applications, such as
spam filtering, fraud detection, image recognition and classification, where it
is almost infeasible even for domain experts with years of experience to de-

CHAPTER 2. BACKGROUND 9

velop algorithms of specific instructions on performing the task with good
performance. ML techniques can also be applied to the domain of feature
selections by automatically learning important features or combination of fea-
tures with regard to certain objective measurements via the power of com-
puting. ML greatly facilitates the process of feature selection where domain
experts hand engineer features and test the correlation with statistical analysis
manually.

The types of ML algorithms can be classified into different categories
based on the type of input and output data, and the type of problem they are
intended to solve. A brief summary can be found as follows:

• Supervised and semi-supervised learning:

Supervised learning models are built on top of a dataset where the out-
put datasets have desired labels, while in the case of semi-supervised
learning, parts of the labels are missing.

• Unsupervised learning:

Unsupervised learning models takes only a set of input data and are sup-
posed to explore and find the structure of the data without the help of
desired output labels.

• Reinforcement learning:

Reinforcement Learning (RL) models perform learning on the dataset
with the help of feedback agents that give feedback on the action of the
model and then take on the next step so as to maximize some predefined
cumulative reward function.

In this thesis project, we are more interested in supervised learning meth-
ods which can be further divided into two categories:

• Regression where the prediction of a given input is a variable in a
continuous space;

• Classification where the prediction of a given input falls into one
of the pre-defined categories in a discrete space.

2.2.1 Traditional Machine Learning Models
In this subsection, we are going to briefly go through the traditionalMLmodels
that we have experimented with.

10 CHAPTER 2. BACKGROUND

Linear regression

Linear models make a prediction using a function that is linear combination
of input features. For regression problems, the prediction formula for input
features x, wi and b are the parameters, where 0 ≤ i ≤ p and i ∈ N, that are
involved in the following function:

ŷ = w0 ∗ x0 + w1 ∗ x1 + ...+ wp ∗ xp + b

where ŷ is the prediction from the linear model andwi and b are the parameters
to learn.

In order to train a linear regression model, an objective function is needed
to evaluate the “goodness” of the parameters wi and b which, in our case, is
the Mean Squared Error (MSE) between the predictions and the true values.
Perhaps, one of the disadvantages of linear regression is that there is no hyper-
parameters which means the complexity of the model cannot be controlled.

Ridge regression

Ridge regression is very similar to linear regression in that they share the same
formula. However, when it comes to objective function, a penalty term of
λ
∑p

i=0wi
2 is added in additional the mean square error which serves regu-

larization method that explicitly restricts the model to avoid overfitting. The
regularization term is designed in such a way that it will requires the coeffi-
cients wi to be close to zero which achieves the effect that each feature should
have as little effect on the prediction as possible.

The value of λ controls the strength of the regularization with a larger
λ lead coefficients close to zero which translate to more regularization and
a smaller λ lead coefficients further away from zero which translate to less
regularization.

Lasso regression

Lasso regression is another type of linear regression model with regularization
that is similar to ridge regression except that the penalty term is λ

∑p
i=0 ‖wi‖

which prefers some coefficients to be exactly zero. This means that some fea-
tures from the input data are entirely ignored by themodel which can be viewed
as a form of automatic feature selection.

CHAPTER 2. BACKGROUND 11

Support Vector Machine

In the case of classification problems, while in some linear models we are op-
timizing the model in a way such that the misclassification error is as small as
we can get, in Support Vector Machine (SVM), the optimization objective is
the maximize the margin between different classes where the margin is defined
as the distance between the separating hyperplane and the support vectors be-
tween different classes. The key intuition behind SVM is that a SVM model
with large margins between different classes generalize better whereas the a
model small margins may have the tendency to overfit on the training data.

Support Vector Regression (SVR) is a bit different from its classification
counterpart, which is namely SVM, so that SVR can work with continuous
values instead of discrete classification labels. While in SVM we try to max-
imize the margin between different classes, in SVR we aim to fit the error
within certain threshold. As for the choice of kernel, which is the function
that maps a lower dimensional data into a higher dimensional data, we tried
“linear”, “poly”, “rbf”, and “sigmoid” kernels.

Decision tree

Decision tree (DT) regression builds the regression model in the form of a tree
structure. The tree split the dataset into parts by searching over all possible
splits and choose the on that leads to the highest degrees of purity among
subnodes of the tree which is usually measured by entropy. The tree is built
through recursive partitioning until no further split is available or one of the
predefined stopping criteria is reached, e.g. the minimum number of nodes in
a node.

When making predictions, there is a little difference between classification
and regression where the they both find the leaf for the new data point but
classification gives the majority class label while regression returns the mean
of all values in the leaf as prediction.

As for regularization, there are a number of hyperparameters that can be
maneuvered, e.g. the maximum depth of the tree, the number of features to
consider when looking for the best split, the minimum number of samples
required to be at an internal node or a leaf node.

Random forest

Random forest (RF) regression learning methods fall into the category of en-
semble learning methods where the key intuition behind is that the predictions

12 CHAPTER 2. BACKGROUND

that are made by a set of weak learns through voting are more powerful that
the decision made by a single strong learner. RF builds randomize trees on
random samples of the training dataset.

When it comes to making predictions, the final prediction is made by ag-
gregating the predictions of individual tree. For example, in the case of clas-
sification where every weak learner returns the probability for each class, the
final prediction is the class with the highest probability. In the regression case,
the final prediction could be as simple as the mean of all predictions of all the
weak learners in the ensemble.

For regularization, in addition to the hyperparameters that can be tuned for
individual DT regressor, there is also a number of other parameters related to
the ensemble learning, e.g. the number of trees in the forest, whether bootstrap
samples are used when building trees.

2.2.2 Deep Learning models
Artificial Neural Networks (ANNs) are computing systems inspired by biologi-
cal neural networks that constitute animal brains. Such systems are considered
as a sub-category of ML that have gained popularity in the area of research in
recent years.

Compared to traditional ML models, ANN models have superior perfor-
mance on the task where a lot of non-linearity and combinations of features
are involved. For example, while traditional ML models such as DTs and RFs
might have good performance on spam email filtering, when it comes to more
challenging tasks like image classifications of cats and dogs, hand written digit
recognition, ANNmodels usually performsmuch better with their learning ca-
pabilities for much harder problems.

While the idea of ANN has been around for many years, it is not until
the recent boost of training power and availability of large datasets, that the
performance of ANN begins to shine. However, even with the current com-
puting power and dataset, most of the time, people still need to carefully design
model architecture and develop training methods in order to gain the best per-
formance.

CHAPTER 2. BACKGROUND 13

2.3 Combination of Constraint Programming
and Machine Learning

AI has gained a considerable amount of audience in recent years and has been
successfully applied to many places, boosting the performance of a wide range
of application in terms of accuracy, efficiency and effectiveness. Combinato-
rial optimization is such an area withmodeling, search, and optimization being
the three pillars of COP and CSP solving which makesML especially relevant.
As pointed out by [5], ML and CP have developed mostly independently with
each other, but the vision that many opportunities lies at the intersection of
the two areas has became more and more clear during the past decade. The
combination of ML and CP has opened a research avenue with two directions.
In one direction, how ML, especially its subcategory DL, can be used to ease
the journey of modeling, solving and explaining CP tasks. In the other direc-
tion, how constraint solving can be utilized to facilitate ML applications. In
this section, we will be looking into what has been accomplished in these two
directions.

2.3.1 Machine Learning for Constraint Programming
One of the key challenges for operation and combinatorial optimization re-
searchers when solving real-world problems is designing and implementing
high-quality heuristics to guide the search process of solving a constraintmodel.
In the past, finding such good heuristics highly relies on the experience and do-
main knowledge of the expert designing the system and very often a heuristic
that is highly optimized for a particular process is not guaranteed to be the best
heuristic for another problem. Thus, making it somehow time consuming for
practitioners to find the best heuristic for a given problem. The problem has
already been recognized in the CP community. For example, Jean-Francois
Puget gave an invited talk at the 2004 International Conference on Principles
and Practice of CP with the title The next challenge for CP: ease of use [6].

Much progress has been made in the past twenty years towards the goal
to make CP easier to use. As pointed out by the survey [7], the progress to-
wards automation are mainly in three different areas: acquisition which aims
at automating problem modeling, solution which aim at automating problem
solution, and explanation which aims at explaining the reason behind a success
or failure in CP.

14 CHAPTER 2. BACKGROUND

Acquisition

Problem acquisition aims at facilitating the problem specification process.
For modeling CP models, modeling languages of higher abstract level like

MiniZinc [8] which provides a large set of predefined constraints that can ease
themodeling process. Gecode [9] is an open source C++ toolkit for developing
CP systems and applications which provides constraint solvers with state-of-
the-art performance while making the system easily extensible with its mod-
ular design.

As constraint expression can be naturally embedded in spreadsheet envi-
ronments, [10] describes how decision models can be based on rule families
represented in Excel decision tables.

However, making it easier to state constraints during the modeling process
has its limitations as the resulting model might be very inefficient to solve.
Fortunately, there have been plenty of work on automating the formulation or
reformulation process for constraint models to make it easier to solve. Frisch
gives an invited talk on progress in constraint modelling and reformulation
[11]. [12] discusses how a MiniZinc model can be transformed into a form
that is easier for constraint-based local search backend solver.

[13] focuses on the modeling component which has traditionally shaped
by optimization and domain experts, interacting to provide realistic results.
ML techniques can help to simplify the process by exploiting the data to ei-
ther create models or refine expert-designed ones. [13] also covers approaches
that have been proposed to enhance the modeling process by either single con-
straints, objective functions, or even the whole model.

One of the ultimate goals could be that the user of a CP tool can give a
description in natural language and the constraint model can be automatically
and correctly generated which can then be used to calculate solutions to the
problem. While this goal might be wonderful, but the reality is still far from
the vision. However, there is indeed some process made in the field of au-
tomating problem acquisition. [14] provides an early attempt in this direction.
[15] makes progress in extracting constraint from natural languages using a
structured-output classifier.

Solution

[16] propose one more technique to the Empirical Model Learning (EML)
technique by devising methods to embed in a CP model two types of tree-
based classifiers from ML, namely DT and RF. There are many difficulties to
overcome in order to make a successful embedding of ML models into a CP

CHAPTER 2. BACKGROUND 15

model although DT and RF have many similarities to a constraint model.
While many attempts have been made to utilize the power of ML tech-

niques to CSPs, not many of them have utilized the recent advances in DL.
[17] applies DL to predict the satisfiabilities of CSPs and this is the first effec-
tive application of DL to CSPs that yields above 99.99% prediction accuracy
on random Boolean binary CSPs whose constraint tightnesses or constraint
densities do not determine their satisfiabilities. A deep convolutional neural
network on amatrix representation of CSPs has been used to solve the problem
and the asymptotic behavior of generalized model along with domain adapta-
tion and data augmentation techniques have been applied to deal with the high
cost of generating labeled training dataset.

Apart from that, many other approaches exists. [18] integrates Deep Neu-
ral Networks (DNNs) into a heuristic tree search procedure to decide which
branch to choose next and to estimate a bound for pruning the search tree of
an optimization problem. [19] promotes a RL approach for solving a classical
job scheduling problem. [20] uses a Q-learning based method to minimize
the total transmission cost in caching optimization. [21] employs a DNN to
train the optimal scheduling algorithm to solve the problem of minimizing
network energy consumption and reducing transmission delay by opt propa-
gation (RProp) algorithm as the learning heuristic for supervised learning on
the model shown in Figure 2.1. [22] applies neural networks trained with RL
and Constraint-Based Local Search (CBLS) for solving CP problems. [23]
explores whether a DNN can learn how to construct solutions of a CSP in an
end-to-end manner without any explicit symbolic information about the prob-
lem constraints. In particular, the authors train a DNN to extend a feasible
partial solution by making a single, globally consistent, variable assignment.
[19] proposes a ML methods DeepRM, which translates the problem of pack-
ing tasks with multiple resource demands into a learning problem, as an alter-
native to manually designed heuristics for resource management. [24] applies
RL methods to learn domain-specific heuristics for JSSP. Empirical results
indicates that RL can offer a new method for constructing high-performance
scheduling systems. [25] presents a new approximate optimization method,
namely Hybrid Imperialist Competitive Algorithm (HICA), which is based
on the imperialist competitive algorithm from Atashpaz-Gargari and Lucas
(2007).

As constraint solvers can be viewed as complicated software that have to
make many decisions through the solving process based on a limited amount
of information and sometimes even only on a pre-defined heuristic, [26] in-
vestigates using ML to make these decisions automatically depending on the

16 CHAPTER 2. BACKGROUND

Figure 2.1: A DNN structure

problem to solve.
[27] demonstrates that Empirical Hardness Models, which can be used to

predict the runtime of search algorithms for hard combinatorial problems, can
also make accurate predictions of the Run-Time Distributions (RDTs) of in-
complete and randomized search methods. The paper also shows that param-
eter settings of an algorithm can also be incorporated into a model, which can
be used to to automatically adjust parameter settings on a per-instance basis in
order to optimize for performance.

[28] proposes a new propagator for a set of Neuron Constraints that are
employed in the context of the Empirical Model Learning technique. Specif-
ically, a Neural Network can be embedded in a Constraint Model by simply
encoding each neuron as a Neuron Constraint. A new propagator for the most
common ANN structure in practice is proposed with the assumption of using
sigmoid neurons in the hidden layer. But the methods can easily be extended
to any differentiable activation function.

ML for algorithm selection is also an active filed of research. The algo-
rithm selection problem is concerned with selecting the best algorithm to solve
a given problem based on features and other relevant description of the prob-
lem. It is an area of research where researchers are investigating how to iden-
tify the most suitable existing algorithm for solving a given problem instead
of developing new algorithms.

[29] provides a survey on algorithm selection techniques in the area of
combinatorial search problems. Some of the techniques in this area have

CHAPTER 2. BACKGROUND 17

achieved significant performance improvements.
Apart from that, [30] investigates the impact of different sets of evolved

instances for building models that give predictions on algorithm selection.
Algorithm portfolios are yet another approach that can be used to improve

the speed of solving a CP task. [31] proposes a general method for combining
existing algorithms into new programs that are unequivocally preferable to any
of the component algorithms. The method offers a computational portfolio
design procedure that can be widely used. The portfolio is constructed simply
by letting algorithms in the portfolio run concurrently but independently on a
serial computer. And as soon as one of the algorithms finds a solution, the run
terminates. The paper plays around with the setting of fractions of time for
each algorithms and have some interesting results.

[32] provides an evaluation of the portfolio approach on hard combina-
torial search problems. One of the interesting observations is that it could
be advantageous to apply a more “risk-seeking” strategy with a high variance
in runtime. And the experiment results testify the computational advantage
of portfolio approaches when dealing with hard combinatorial optimization
problems. Another interesting findings is that one can exploit the large vari-
ance in certain randomized search methods by packing them in a portfolio and
still achiever better overall performance than more conservative strategies.

[33] compares the performance of off-the-shelfML classifiers against some
well-known portfolio approaches, e.g. CPHydra, ISAC, 3S, SATzilla, and
SUNNY. [34] presents an automated approach for the algorithm selection pipeline.

[35] describes extensions and improvements of existing models, new fam-
ilies of models, and a much more thorough treatment of algorithm parameters
as model inputs. While suchmodels have been studied for complete, determin-
istic search algorithms, [27] promotes that empirical hardness models, which
is models based on linear basis function regression for predicting the time an
algorithm will take to solve a given problem instance, can also make accu-
rate predictions on the run-time distributions of incomplete and randomized
search methods, e.g. stochastic local search algorithms. Their work extends
empirical hardness models significantly in the following three ways:

1. shows that the same approach can be used to predict sufficient statistics
of the RTDs of incomplete, randomized algorithms, and in particular
of Stochastic Local Search (SLS) algorithms for Boolean Satisfiability
Problem (SAT);

2. extends empirical hardness models to include algorithm parameters in
addition to features of the given problem instance;

18 CHAPTER 2. BACKGROUND

3. explores the potential of such an approach for automatic per-instance
parameter tuning. In their experiments, the tuning never hurt and some-
times resulted in substantial and completely automatic performance im-
provements compared to default or optimized fixed parameter settings;

Explanation

Explaining why a solution is successful might be straight forward, as one can
simply check whether all the constraints are satisfied. However, sometimes
this might not be enough, as the current constraint model might be incomplete,
incorrect or inadequately specified and the users are more interested in getting
more information about why a solution works. In other cases where multiple
solutions exist, users might be interested in why a particular solution is chosen.

Recent wide adoption of ML has also renewed the interest in interpretable
ML as many decision are too important to black-box techniques. One nat-
ural approach to get better explanation for a solution is to trace the solving
process of the constraint program. However, such tracing generally does not
work well when the solver employs search in the solving phase. [36] pro-
vides explanations of the problem solving behaviour for logic puzzles us-
ing inference-based constraint satisfaction which provides considerably more
meaningful explanations than a plain trace of a search process. [37] proposes
aMaxSAT-based framework, calledMLIC, which allows principled search for
interpretable classification rules expressible in propositional logic. The main
focus of the paper is to encourage researchers in both interpretable classifica-
tion and in the CP community to take it further and develop richer formula-
tions, and bespoke solvers attuned to the problem of interpretable ML.

Not surprisingly, much of the work on explanation has been focusing on
why there is no solution to the problem, which might be explained by the need
of the user to understand why the constraint model does not have any solution
so as to weaken or alter the constraint specification to allow solution. For ex-
ample, [38] studies the problem of deriving explanations for assignments and
deletions in terms of previous selections using explanation trees. [39] describe
a set of tree-based tools for explaining the solving process in a user-friendly
manner where users can explore the constraint model through understandable
nodes in a tree architecture. Other failure explanation methods also exists with
the idea of explaining intermediate failures during the constraint solving phase
in order to make the process more efficient.

CHAPTER 2. BACKGROUND 19

2.3.2 Constraint Programming for Machine Learning
While ML has demonstrate its potential in facilitating the automation of CP
task, CP techniques can also be utilized to further improve ML.

For example, CP can be a flexible way to tackle data mining tasks. [40]
argues that constraints from users can be helpful for itemset mining in the
following three ways:

• Preprocessing: the dataset after preprocessing satisfy the user-defined
constraints which serves as a data cleaning method;

• Mining process: constraints can be integrated to data mining sys-
tems to facilitate the mining process;

• Postprocessing: the result from the mining process can be re-
quired to satisfy a set of constraints so that any violation is removed.

[41] introduces a generic CP model for itemset mining taking into account any
type of user’s constraints. Empirical evaluation shows that the proposedmodel
can handle different types of constraints on different datasets and can find the
itemsets that satisfies all users constraints. [42] proposes a new propositional
satisfiability based approach for mining maximal frequent itemsets that ex-
tends the one in [43] by showing that the maximal itemsets can be obtained
by performing clause learning during search. [42] presents an efficient and
scalable approach for computing all maximal frequent itemsets using propo-
sitional satisfiability. Experimental results on have shown that their approach
is more effective compared to Eclat and DMCP,a specialized and CP-based
algorithms, respectively.

Apart from its application in data mining, CP are also used in the other
areas. For example, [44] presents a new approach for training ANNs using
techniques for solving the CSPs.

2.4 Job-shop Scheduling Problems
In this project, we aim to construct a algorithm portfolio based on ML tech-
niques for JSSPs.

20 CHAPTER 2. BACKGROUND

2.4.1 Mathematical definition of Job-shop Scheduling
Problems

Sequencing and scheduling is concerned with the optimal allocation of scarce
resources to activities over time and it has been subject of active research in
CP and in Operations Research (OR). [45] classifies scheduling problems ac-
cording to shop environments, including single-machine, parallel machines,
flow shop, no-wait flow shop, flexible flow shop, job shop, open shop.

JSSP is one of the most difficult COPs considered [46] and it is, together
with a large class of intractable numerical problems, proven to be NP-hard
[47], while many of its variations have been proven to be NP-complete [48],
[49], [50]. The unary resource scheduling problem can be represented by the
disjunctive graph. Disjunctive scheduling problems can be generally defined
as the problem of scheduling n jobs J = {J1, J2, ..., Jn}, on a set ofm unary
resources R = {R1, R2, ..., Rm}. A job Ji consists of a set of tasks T =

{t1, t2, ..., tk}, where each task has a processing time and a resource that it
must be processed on associated with it. A resource, which is also referred to
as a machine, is exclusive and can only process one task at a time in a non-
preemptive fashion.

The classical JSSP consists of scheduling m jobs to n machines. There
are many variants of JSSPs, in the setting we are working with, there are sets
of machines M = {M1,M2, ...,Mm} and jobs J = {J1, J2, ..., Jn}, where
a job j has m ordered operations Oj = {OJ1 , OJ2 , ..., OJm}, where each of
the operations of a job should be processed on each of themmachines exactly
once in an given order. The objective of JSSP is to look for a possible schedule
of operations to minimize criteria such asmakespan, which is the time elapses
from the start of the first job and the end of the last job, total weighted tardiness,
sum of maximum earliness, etc.

2.4.2 General Methods for Solving Job-shop Schedul-
ing Problems

According to [45], the first systematic approach to scheduling problems was
proposed in the mid-1950s. Since then, thousands of research papers aiming
at the problem have been published. Different solution techniques including
exact methods, heuristics, estimation methods and metaheuristics have been
suggested for each JSSP variation.

The majority of methods for solving the problem use meticulously de-
signed heuristics, which requires domain experts to come upwith clever heuris-

CHAPTER 2. BACKGROUND 21

tics, painstakingly test, and tuning of the heuristics for good performance in
practice.

For example, [51] provides a statistical study of the relationship between
JSSP features and the optimalmakespan. The study includes a set of 380 care-
fully hand-designed features each representing a certain aspect of the schedul-
ing problem. The 380 features can be divided into two categories: config-
uration features which are taken from the JSSP specification and temporal
features which are concerned with the information about the solving process
such as the output of a dispathing rule, heuristic applied to the problem. In
the first experiment, three different methods to assess the correlation of indi-
vidual features with C’ (the scheduling efficiency metric) and then rank them
accordingly. Temporal features, expectedly, ranked among the highest for both
batches, whereas some configuration features performed well too. The second
and third experiments were an effort to see which feature combinations can
have a higher prediction power in the ML problem to classify instances into
higher or lower than class average. ML and statistical analysis techniques have
been applied to identify features with regard to the optimal makespan.

The result of the experiments demonstrate a test accuracymeasure of around
80% on classification task of whether themakespan is higher or lower than the
mean optimal makespan with a test set of 15000 randomly generated JSSP in-
stance. Apart from that, a separate section is dedicated to offer an example on
how the learned correlations can be applied in practice for feature selections in
a prismatic par manufacturing setting. In the discussion, the paper also point
out a future direction of applying feature combination approaches using RFs.

[52] presents a simple technique for disjunctive machine scheduling prob-
lems by combining several generic search techniques such as restarts, adaptive
heuristics and solution guided branching and show that this method can match
or even in some cases outperform state of the art algorithms on a number of
problem types.

[53] considers the problem of scheduling correlated parallel machines to
minimize makespan and scheduling correlated parallel machines with release
times to minimize total weighted tardiness with different levels and combi-
nation of machine correlations, which is the dispersion of processing times
among jobs on the same machine, and job correlations, which is the disper-
sion of processing times of the same job across machines. Mathematical mod-
els are used for examine machine correlation and job correlation with regard
to computation results and times which reveal that the problem instances be-
comes harder to solve as with the increment on machine and job correlation.
Apart from that, the paper also points out why some of the typical assumptions

22 CHAPTER 2. BACKGROUND

in machine scheduling problems are over idealized and why tests performed
under those assumptions might be far from reality.

Chapter 3

Implementation

3.1 Dataset Acquisition
In this section, we will introduce how do we prepare the dataset for further
experiments. Specifically, there are two different types of dataset, one for CP
benchmark which we will refer to as JSSP instance data, another for ML and
DL which we will refer to as machine learn and DL dataset.

3.1.1 Job-shop Scheduling Problems Instance Data
Acquisition and Generation

In order for a constraint model for JSSP to work, we need to send the problem
specification as input to the model which we refer to as a JSSP instance. Given
that our constraint model is implemented in Gecode which is an open sources
C++ toolkit for building constraint based system, it make sense for us to make
the JSSP instance data in a form that is easy to incorporate to our constraint
model.

Specifically, we define each JSSP instance as an array of constant integer
number in C++, one of the examples is shown as follows:

Listing 3.1 shows an JSSP instance named la01 where the first two number
of the array specifies that this JSSP instance is concerned with a scheduling of
5 jobs of 5 operations each over 5 different machines. From line 3 to line 12
in Listing 3.1 is the requirements of the 5 different jobs. For example, line 3
states that job 0 requires 5 operations to finish where the first operation needs
to be performed on machine 1 and take 21 units of time, the second operation
needs machine 0 and takes 53 units of time and so on. Note that to follow the
indexing schema in C++, both the index of the jobs and the machines starts

23

24 CHAPTER 3. IMPLEMENTATION

from 0.
Now that we know what a JSSP instances look like, we will introduce how

we compose or generate the dataset of JSSP instances in the rest of this sub-
section.

1 const int la01 [] = {
2 10 , 5, // Number of jobs and machines
3 1, 21 , 0, 53 , 4, 95 , 3, 55 , 2, 34 ,
4 0, 21 , 3, 52 , 4, 16 , 2, 26 , 1, 71 ,
5 3, 39 , 4, 98 , 1, 42 , 2, 31 , 0, 12 ,
6 1, 77 , 0, 55 , 4, 79 , 2, 66 , 3, 77 ,
7 0, 83 , 3, 34 , 2, 64 , 1, 19 , 4, 37 ,
8 1, 54 , 2, 43 , 4, 79 , 0, 92 , 3, 62 ,
9 3, 69 , 4, 77 , 1, 87 , 2, 87 , 0, 93 ,

10 2, 38 , 0, 60 , 1, 41 , 3, 24 , 4, 83 ,
11 3, 17 , 1, 49 , 4, 25 , 0, 44 , 2, 98 ,
12 4, 77 , 3, 79 , 2, 43 , 1, 75 , 0, 96
13 };

Listing 3.1: A JSSP Instance

Randomly generated 10 by 10 Job-shop Scheduling Problem instances
dataset

In order to get a larger dataset with more jssp instances so that more bench-
mark results could be used to formulate the training and testing dataset for the
MLmodels, we generate a dataset of 1000 instances where each JSSP instance
has 10 jobs and 10 machines and the duration of each operation in each job is
randomly sampled from a uniform distribution from 1 to 99 with the bound-
aries included. And the naming of the instances are from r000 to r999. We
will refer to the dataset as Instance_R1000 from now on.

Randomly generated 9 by 9 Job-shop Scheduling Problems instances dataset

To further enlarge the size of the benchmark dataset while still make all the
benchmark to finish within a reasonable amount of time, we generate a dataset
of 10000 instances of 9 jobs and 9 machines each where the duration of each
operation in each job is again randomly sampled from a uniform distribution
from 1 to 99 with the boundaries included. The naming of the instances are
from q0000 to q9999. We will refer to the dataset as Instance_Q10000
from now on.

CHAPTER 3. IMPLEMENTATION 25

The random Job-shop Scheduling Problem instances generator

To generate the dataset, we make a generator using Gecode. The generator
has a set of pre-defined and changeable parameters which specifies the num-
ber of machines, the number of jobs, the uniform distribution from which the
operation time is drawn. The generator is available from the following link 1

3.1.2 Gecode Model and Benchmarking Setup
In this subsection, we are going to introduce how we construct a constraint
model for solving JSSP in Gecode and how we run the benchmark on the in-
stances dataset we have acquired earlier.

The gecode model for solving JSSPs

The CP model used for benchmarking is implemented in Gecode [9] and the
approach for constructing the constraint model and constraint solver mainly
follows the idea from the following paper [52]. However, it is important to
note that our implementation is a sketch and does not include all techniques
from the paper which could lead to less competitive performance. For details
of our implementation of the model, please refer to the following link 2.

When it comes to running the benchmark for different JSSP instances given
our model, the user needs to specify at least three different parameters

• The name of the heuristic to use;

• A real number between 0.0 and 1.0 indicating the level of randomness
encode in finding the solutions for the constraint model with 0.0 being
no randomness at all and 1.0 being completely random in parts of the
program;

• The name of the JSSP instance to solve.

A typical log file for the solving process looks is shown in the following
code:

1 sixteen -16 -60 -120 -120/ abz5 - action -0.25. log
2 Probing ...
3 abz5 [makespan : 1505]

1https://github.com/chschulte/gecode/blob/job-shop-experiments/examples/job-shop-
generate.cpp

2https://github.com/chschulte/gecode/blob/job-shop-experiments/examples/job-shop.cpp

26 CHAPTER 3. IMPLEMENTATION

4 abz5 [makespan : 1452]
5 abz5 [makespan : 1347]
6 nodes : 35338
7 failures : 8
8 peak depth : 710
9 runtime : 1.361 (1361.000 ms)

10
11 Adjusting ...
12 Bounds : [868 ,1347]
13 Bounds : [1107 ,1347]
14 abz5 [makespan : 1227]
15 Bounds : [1107 ,1227]
16 Bounds : [1167 ,1227]
17 Bounds : [1197 ,1227]
18 abz5 [makespan : 1212]
19 Bounds : [1197 ,1212]
20 Bounds : [1204 ,1212]
21 Bounds : [1208 ,1212]
22 nodes : 2793541
23 failures : 1395739
24 restarts : 1597
25 no - goods : 0
26 peak depth : 104
27 runtime : 2:00.003 (120003.000 ms)
28 stopped due to time - out ...
29
30 Solving ...
31 nodes : 1300376
32 failures : 649776
33 restarts : 1116
34 no - goods : 0
35 peak depth : 104
36 runtime : 52.111 (52111.000 ms)
37
38 Found best solution and proved optimality .

Listing 3.2: A JSSP Solving Log

The solving process mainly contained three phases: probing, adjusting,
and solving where probing examine randomly whether some values are so-
lutions for makespan, adjusting applies interval bisection, which consists of
repeatedly bisecting the interval using the value x that is in the middle of the
interval and then selecting x as the new lower bound if no feasible schedule
with a makespan of x exists and x as the new upper bound otherwise, until
either a timeout is reached or the lower bound is the same as the upper bound
to get better bounds for the optimal makespan, and solving resorts search to

CHAPTER 3. IMPLEMENTATION 27

the optimal makespan given by the last interval given in the adjusting phase.
Line 1 shows the name of the log file which include information about the in-
stance, heuristic, and tbf value combination we have used for this benchmark
setting. The following lines shows the three phase of process to find solutions.
Line 2 to line 9 shows information about the probing phase. Line 11 to line
28 shows information about the interval bisection method to adjust the lower
bound and the upper bound for the optimalmakespan. Line 30 to line 36 is the
solving phase to find the optimal makespan. Line 38 indicate that the optimal
makespan has been found.

Benchmarking methods

We perform benchmark on both datasets: namely Instance_R1000 and
Instance_Q10000. For each JSSP instance, we run test with a combina-
tion of three different heuristics (“action”, “afc”, and “chb”) and three different
tbf values (0.0, 0.1, 0.25) which lead to 9 different benchmark results for each
JSSP instance we have. The results are stored in separate log files which can
be processed later to form the training and testing data for ML models.

Hardware and software configurations

The computations of for solving the JSSP instances are performed on the ma-
chine with the following specification

• CPU: Intel Xeon E-2186G

• Memory: 4 x 16 GB DDR4 2666 MHz ECC

• Operating System: Windows 10 Pro for Workstations

TheCPmodel for JSSP is given as aGecodemodel and solvedwith “GECODE
6.1.1”.

Constraint Programm Settings

Note that while Gecode native providemulti-threading to speed up the solution
finding process, in all of our settings to acquire the benchmark dataset, we only
use a single thread. The main reason behind is that we use running time as the
major measurement of computation cost, which we treat as the hardness to
solve the problem, and the scale of speed up in terms of the number of threads
in not completely problem independent. Thus, to keep a fair comparison of

28 CHAPTER 3. IMPLEMENTATION

hardness among different JSSP instances, we choose to use a single thread
across all the benchmark.

For the R instances, we set the time out for probing to be 60 seconds, 240
seconds for adjusting, and no time out for the probing so that we always find
the optimal solution. For the Q instances, probing times out after 30 seconds,
adjusting times out after 15 seconds, and there is no time out for the solving
phase.

3.1.3 Machine Learning and Deep Learning Dataset
Generation

In the previous subsection, we introduce how we acquire all the benchmark
data for different JSSP instances in our three different JSSP instance dataset,
in this subsection, we will go through how we generate the dataset for the
ML and DL tasks from the JSSP instances and the corresponding benchmark
results.

Features

In order to train ML and DL models for predicting the makespan and runtime
of JSSP instances, features that represent certain characteristics of the problem
should be developed. As an example, [51] manually develops a set of 380
mostly novel features for ML models to predict the optimal makespan.

To this end, we also develop the following features from the JSSP instance
itself or the corresponding benchmark log whose names and meanings are
shown in the following list:

• Heuristic: the name of the heuristic used for the benchmark;

• Instance: the name of the JSSP instance used for the benchmark;

• tbf: the value of tbf;

• first_LB: the first output of lower bound on makespan in the bench-
mark log;

• first_UB: the first output of upper bound on makespan in the bench-
mark log;

• first_makespan: the first output of makespan in the benchmark
log;

CHAPTER 3. IMPLEMENTATION 29

Figure 3.1: A sample of five items for R1000 instances

• probing_progress: the ratio between the difference of the first and
the last makespan during probing divided by the first makespan during
probing. This feature captures how much progress can be made during
the probing phase which may serve as feature reflecting the hardness of
the given JSSP problem;

• probing_time_ms: the time spent during probing phase in millisec-
onds;

• adjusting_time_ms: the time spent during adjusting phase in mil-
liseconds;

• solving_time_ms: the time spent during solving pahse in millisec-
onds;

• runtime_ms: the arithmetic sum of probing_time_ms, adjusting_time_ms,
and solving_time_ms;

• num_of_jobs: the number of jobs for a given JSSP;

• num_of_machines: the number of machines for a given JSSP;

• max_operation_time: the maximal number of time units of the
sum of all operations belonging one job among all jobs;

• max_machine_load: the maximal number of time units of the sum
of all operations belonging to one machine among all machines;

• r_first_makespan_bound: first_makespan−first_LB
first_UB−first_LB

Dataset format

As for the organization of the output dataset, we packed the preprocessed data
for our three different instances dataset into three different objects of type “pan-
das.Dataframe” where each row in the dataframe contains the features that we
manually designed. Figure 3.1 gives an example of 5 rows randomly selected
from the dataframe for R instances.

30 CHAPTER 3. IMPLEMENTATION

Instances matrix

As for the data regarding the raw JSSP instances, we simply convert the JSSP
specification into a two-dimensional matrix without the two values specifying
how many machines and how many jobs are required for the JSSP instances
as these two values can easily be acquired from the dimensions of the matrix
and more importantly padding of meaningless numbers will be introduced to
the two-dimensional matrix if we were to include these two numbers. As an
example, the instance matrix of JSSP instance “la01” is shown as follows:

1 21 0 53 4 95 3 55 2 34

0 21 3 52 4 16 2 26 1 71

3 39 4 98 1 42 2 31 0 12

1 77 0 55 4 79 2 66 3 77

0 83 3 34 2 64 1 19 4 37

1 54 2 43 4 79 0 92 3 62

3 69 4 77 1 87 2 87 0 93

2 38 0 60 1 41 3 24 4 83

3 17 1 49 4 25 0 44 2 98

4 77 3 79 2 43 1 75 0 96

Makespan and runtime distributions

Figure 3.2a shows the makespan distribution for R instances and Figure 3.2b
for Q instances. As it can be seen from the figures, the two distributions follows
normal distributions.

The distribution for runtime follows a long tail distribution which is a typ-
ical distribution for running time of computer programs and benchmarks, as it
can be seen from Figure 3.3a for R instances and 3.3b for Q instances.

3.2 Traditional Machine Learning Models

3.2.1 Experimentation Setup
In this section we are going to introduce the experiment setup for training and
evaluating the traditional ML models and the measurement for model perfor-
mance.

CHAPTER 3. IMPLEMENTATION 31

(a) Makespan distribution for R instances

(b) Makespan distribution for Q instances

Figure 3.2: Makespan distribution

32 CHAPTER 3. IMPLEMENTATION

(a) Runtime distribution for R instances

(b) Runtime distribution for Q instances

Figure 3.3: Runtime distribution

CHAPTER 3. IMPLEMENTATION 33

Figure 3.4: An example of five-fold cross validation

Performance measurement

To have a quantitative evaluation of the ML model, we need a measurement
for performance. We employ one of the most common measurement for re-
gression which is the MSE between the predictions and the true values of the
data points whose mathematical definition is shown in the following equation:

MSE =
1

n

n∑
i=1

{yi − ŷi}2 (3.1)

where n is the number of items in the dataset, yi is the true value of the ith
data point, and ŷi is the predicted value of the ith data point.

Cross validation

Cross validation is amethod to estimate generalization performance of amodel
where k-fold cross validation randomly split the data into k parts of equal sizes
which is referred as folds. After the folds are made, a five-fold cross validation
first takes fold 1 as the test set and folds 2-5 as the training set. Then, it takes
fold 2 as the test set and folds 1, 3, 4, and 5 as the test set. Such an iteration
goes on until each fold is taken as the test set for exactly once. Finally, the
mean of the five evaluation scores are returned as the evaluation score from
cross validation. An example of five-fold cross validation is shown in Figure
3.4.

Software and library configurations

For performing experiments on traditional ML models, we use the scikit-learn
[54] version “0.20.0”. And the experiments are performed on a computer of
“Ubuntu 18.04.1 LTS” with “4.15.0-51-generic” Linux kernel.

34 CHAPTER 3. IMPLEMENTATION

3.3 Deep Learning models

3.3.1 Models
In this subsection, we will introduce the DL models that we have applied to
solve the regression problem for makespan and runtime. Note that we em-
ployed the same model architecture for makespan and runtime regression but
they are trained separately. Specifically, we have trained four different mod-
els where Vanilla CNN model and Lenet 5 model takes JSSP instance ma-
trix as input and the other two hybrid models take an additional vector as in-
put including the values for “first_LB”, “first_UB”, “first_makespan”, “prob-
ing_progress”, “tbf”, “num_of_jobs”, “num_of_machines”, “max_operation_time”,
“max_machine_load”, and “r_first_makespan_bound”, and an onehot encod-
ing of which of the three heuristic to use.

Vanilla Convolutional Neural Network model

The vanilla CNN model we apply here perhaps one of the simplest model one
can come up with which contains several 2-d convolutional layers, a flatten
layer, and a few fully connected layers. Figure 3.5 shows a summary of the
model. Note that as the dimension of our input data is significantly smaller
than the dimension of modern image data, we do not employ any pooling layer
in the model so that more convolutional layers can be applied before running
out of dimensions.

Le-Net 5 model

The LeNet-5 architecture is perhaps one of the most known CNN architecture
proposed by Yann LeCun in 1998 [55] and widely used for the handwritten
digit recognition onMNIST [56] dataset. Here we build a model that is similar
to the LeNet-5 architecture whose summary can be found in Figure 3.6. The
major differences are:

• We remove the average pooling layer due to the fact that our input data
is of dimension 9× 18 instead of 32× 32.

• We do not account for the complex connection between layer C3 and
layer S2. See table 1 in [55] for more details.

• We do not employ the complex mechanism for measuring howmuch the
input image belongs to each class as we are working with a regression
problem now.

CHAPTER 3. IMPLEMENTATION 35

Figure 3.5: Summary for vanilla CNN model

• Other modifications to the network structures to avoid negative dimen-
sions.

Hybrid vanilla Convolutional Neural Network model

The hybrid vanilla CNN model takes an auxiliary input of features in addition
to JSSP instance matrix. The main purpose for testing the hybrid model is to
see whether the additional information can further improve the performance
of the model or at least fasten the training process. A detailed summary of the
model can is shown in Figure 3.7 and a visualization can be found in Figure
3.10.

Hybrid Le-Net 5 model

The hybrid Le-Net 5 model is designed with same idea as in the case of hybrid
vanilla CNN model. A detailed summary of the model can is shown in Figure
3.9 and a visualization can be found in Figure 3.10.

36 CHAPTER 3. IMPLEMENTATION

Figure 3.6: Summary for LeNet mockup model

Figure 3.7: Summary for hybrid vanilla CNN model

CHAPTER 3. IMPLEMENTATION 37

Figure 3.8: Visualization for hybrid vanilla CNN model

38 CHAPTER 3. IMPLEMENTATION

Figure 3.9: Summary for hybrid LeNet mockup model

3.3.2 Experiment setup
Performance measurement

We choose the same performance measurement as in the case of traditional
ML experiments, namely MSE whose definition is given by equation (3.1).

Training setup

When it comes to train the DL models, we have only used the ML dataset
generated from the Instance_Q10000 dataset as it contains ten times more
instances than theML dataset generated from the Instance_R1000 dataset
which can be used to better train the networks.

Since the dataset is reasonably large, which means the result across differ-
ent train test dataset split are more stable than smaller datasets, and that the
computational cost for a ten-fold cross validation is simply too much to pay,
we employ a traditional train test split method where 80% of the whole dataset
is used for training purpose and the other 20% is used for testing and evalu-
ation. The data that is used for training is further split into a training dataset
(70%) and a validation dataset (30%).

The batch size of each model is set to 4000 and we train each model until
the model converges which takes from 3000 to 10000 epochs with the Adam

CHAPTER 3. IMPLEMENTATION 39

Figure 3.10: Visualization for hybrid LeNet mockup model

40 CHAPTER 3. IMPLEMENTATION

optimizer [57].

Software and library configurations

For performing experiments on neural networks, we use the Keras [58] version
“2.2.4” with a TensorFlow [59] backend of version “1.12.0”. And the exper-
iments are performed on a computer of “Ubuntu 18.04.1 LTS” with “4.15.0-
51-generic” Linux kernel.

Chapter 4

Results and Discussion

In this chapter we first show some results from our experiments and then dis-
cuss some of the interesting findings we have observed. Note that as our main
objective is to investigate the performance of different ML and DLmodels, we
focus on the difference of performance of different models instead of trying to
get the best performance of every single model through fine tuning or other
hyperparameter optimization techniques.

4.1 Results of traditional Machine Learning
models

In this section, we will show the results of experiments on traditionalMLmod-
els with both the R instances and the Q instances for both makespan and run-
time regression.

To evaluate the performance of the family of linear models (linear regres-
sion, ridge regression, and lasso regression), ten-fold cross validation is per-
formed on the whole dataset and the mean and variance of the MSE are re-
ported. As for SVR, DT regression and RF regression, as the ten-fold cross
validation is much more expensive to afford computationally, we use the tra-
ditional train test split method where 67% of the whole dataset is used for
training and 33% of the whole dataset is used for testing purpose. Also, the
input features are standardized through sklearn.preprocessing.StandardScaler
which is trained only on the training set to avoid the leakage of information
from test set to the training phase.

41

42 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.1: Makespan regression - Linear models

Model R_MSE_Avg R_MSE_Var Q_MSE_Avg Q_MSE_Var
Linear 407.11 4987.66 403.40 230.93
Ridge 407.02 4974.56 405.13 223.72
Lasso 407.69 5089.36 406.36 223.38

Table 4.2: Makespan regression - Support Vector Regression

SVR kernel R_MSE_Train R_MSE_Test Q_MSE_Train Q_MSE_Test
linear 404.40 395.58 404.41 402.77
poly 823.00 877.74 444.77 445.43
rbf 615.89 604.47 400.11 399.57
sigmoid 1125.64 1094.16 124423.05 129020.02

4.1.1 Makespan
The experiment results of the linear model family is shown in Table 4.1 where
“R_MSE_Avg” represents the average ofMSEs of the ten-fold cross validation
on R instances and “Q_MSE_Var” represents the variance of MSEs of the ten-
fold cross validation score on Q instances.

The regression results formakespanwith different kernel options is shown
in Table 4.2 where “R_MSE_Train” represents the MSE of R instances on
the training set and “Q_MSE_Test” represents the MSE of Q instances on the
testing set.

The regression results formakespanwith DT and RF is shown in Table 4.3
where “R_MSE_Train” represents the MSE of R instances on the training set
and “Q_MSE_Test” represents the MSE of Q instances on the testing set.

DT and RF

4.1.2 Runtime
The result of regression for runtime follows the same organization of tables
and naming schema for columns as for makespan regression. Specifically, the
result for linear model family is shown in Table 4.4, the result for SVR with
different kernels is shown in Table 4.5, and the result for DT regression and
RF regression is shown in Table 4.6.

CHAPTER 4. RESULTS AND DISCUSSION 43

Table 4.3: Makespan regression - Decision Tree and Random Forest

Model R_MSE_Train R_MSE_Test Q_MSE_Train Q_MSE_Test
Decision Tree 0.00 0.17 0.00 0.00
Random Forest
(max_depth=10,
n_estimators=100)

36.136 46.031 202.360 221.983

Random Forest
(max_depth=80,
n_estimators=100)

0.143 0.565 0.121 0.775

Random Forest
(max_depth=20,
n_estimators=2)

1.319 2.952 3.963 8.006

Table 4.4: Runtime regression - Linear models

Model R_MSE_Avg R_MSE_Var Q_MSE_Avg Q_MSE_Var
Linear 7.52× 109 1.52× 1019 1.16× 108 5.58× 1015

Ridge 7.51× 109 1.54× 1019 1.16× 108 5.58× 1015

Lasso 7.51× 109 1.53× 1019 1.17× 108 5.61× 1015

Table 4.5: Runtime regression - Support Vector Regression

SVR kernel R_MSE_Train R_MSE_Test Q_MSE_Train Q_MSE_Test
linear 8.40× 109 8.15× 109 1.24× 108 1.11× 108

poly 8.43× 109 8.18× 109 1.24× 108 1.12× 108

rbf 8.43× 109 8.18× 109 1.24× 108 1.12× 108

sigmoid 8.43× 109 8.18× 109 1.24× 108 1.12× 108

44 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.6: Runtime regression - Decision Tree and Random Forest

Model R_MSE_Train R_MSE_Test Q_MSE_Train Q_MSE_Test
Decision Tree 0.000 2.01× 109 0.00 2.38× 107

Random Forest
(max_depth=60,
n_estimators=150,
min_samples_leaf=2)

1.19× 109 2.19× 109 1.98× 107 3.34× 107

Random Forest
(max_depth=60,
n_estimators=150,
min_samples_leaf=1)

3.26× 108 1.70× 109 5.58× 106 2.17× 107

Random Forest
(max_depth=60,
n_estimators=150,
min_samples_leaf=1,
max_feature=0.5)

3.27× 108 1.65× 109 5.74× 106 2.12× 107

Random Forest
(max_depth=10,
n_estimators=1000,
min_samples_leaf=1)

1.89× 109 2.74× 109 1.76× 107 2.93× 107

Random Forest
(max_depth=10,
n_estimators=1000,
min_samples_leaf=1,
max_features=0.5)

1.82× 109 2.56× 109 2.08× 107 3.34× 107

Random Forest
(max_depth=10,
n_estimators=1000,
min_samples_leaf=1,
max_features=0.1)

2.50× 109 4.36× 109 4.34× 107 6.31× 107

CHAPTER 4. RESULTS AND DISCUSSION 45

(a) Training Loss

(b) Validation Loss

Figure 4.1: Makespan regression with vanilla CNN

4.2 Results of Deep Learning models
In this section, we will show the result of experiments of makespan and run-
time regression onQ instances. The visualization of the training and validation
loss is generated from TensorBoard tool from TensorFlow [59] with a smooth-
ing factor of 0.6.

4.2.1 Models with vanilla Convolutional Neural Net-
work

The result of makespan regression of the vanilla cnn model is shown in Fig-
ure 4.1 where “Vanilla_CNN/makespan_q” shows the result of hybrid model
and “Vanilla_CNN/makespan_jssp_instance_only_q” shows the result of the
model with only the JSSP instance matrix as input.

The result of runtime regression of the vanilla cnnmodel is shown in Figure
4.2 where “Vanilla_CNN/runtime_q_run_1” shows the result of the first run of

46 CHAPTER 4. RESULTS AND DISCUSSION

(a) Training Loss

(b) Validation Loss

Figure 4.2: Runtime regression with vanilla CNN

hybrid model, “Vanilla_CNN/runtime_q_run_2” shows the result of the sec-
ond run of hybrid model, and “Vanilla_CNN/runtime_jssp_instance_only_q”
shows the result of the model with only the JSSP instance matrix as input.

As for the performance on the test dataset, the hybrid CNNmodel achieves
a MSE of 93.87 on the test set for predicting makespan after 10000 epochs
of training and 5.19× 107 on the test set for predicting runtime after 10000
epochs of traning.

The CNNmodel that takes only the JSSP instance matrix as input achieves
a MSE of 355 on the test set for predicting makespan after 10000 epochs of
traning and 8.43× 107 on the test set for predicting runtime after 10000 epochs
of training.

4.2.2 Models with LeNet mockup
The result for makespan regression using the LeNet mockup model is shown
in Figure 4.3 and the runtime regression result is shown in Figure 4.4. Note that

CHAPTER 4. RESULTS AND DISCUSSION 47

(a) Training Loss

(b) Validation Loss

Figure 4.3: Makespan regression with LeNet mockup

the naming schema is the samewhere one training recordwith “jssp_instance_only”
indicates that the result is from the model that only takes the JSSP instance
matrix as input and a training record without such characters is from a hybrid
model that also the one dimensional vector as input in addition to the instance
matrix.

As for the performance on the test dataset, the hybrid LeNet mockupmodel
achieves a MSE of 2.85 on the test set for predicting makespan after 5000
epochs of training and 1.11× 108 on the test set for predicting runtime after
10000 epochs of traning.

The LeNet mockupmodel that takes only the JSSP instance matrix as input
achieves a MSE of 0.74 on the test set for predicting makespan after 6000
epochs of traning and 8.43× 107 on the test set for predicting runtime after
6000 epochs of training.

48 CHAPTER 4. RESULTS AND DISCUSSION

(a) Training Loss

(b) Validation Loss

Figure 4.4: Runtime regression with LeNet mockup

CHAPTER 4. RESULTS AND DISCUSSION 49

4.3 Discussion of different results
As can be seen from the result in Table 4.1, the performance of predicting
makespan of different linear models do not differ much from each other with a
average MSE at around 400. While increase the number of instances does not
further decrease the average of MSE, it does help the variance of the MSE in
cross validation to decrease dramatically which can be a sign that the model
is becoming more stable with the larger dataset. The same observation also
holds for runtime regression (see Table 4.4) with the linear model family.

As for SVR, the result formakespan and runtimemight be leading to differ-
ent conclusions. From Table 4.2, it seems that the choice of kernel affects the
regression performance and some kernels, e.g. “sigmoid”, are more sensitive
to the size of the dataset while other kernels might be less affected. However,
Table 4.5 tells a different story where the choice of kernel does not matter
much in terms of the result and an increase of the data volume leads to a per-
formance gain. One guess of the reason behind is that some kernels are better
at approximating the makspan than others while for runtime regression, which
we consider to be harder than the makespan regression as can be seen from
later examples, all the kernels approximate the distribution equally bad so that
performances do not differ much.

As for DT regression and RF regression, as can be seen from Table 4.3
and 4.6, a single DT without any regularization shows a typical sign of over-
fitting by remembering the almost the whole training data through its complex
branches and leaves. A carefully chosen RF regressor can achieve on par per-
formance as a single overfitting DT but may require some efforts for hyperpa-
rameter tuning through methods like grid search or more advanced techniques
which might be time consuming. However, given the performance gain, both
in makespan and runtime regression, compared to linear models and support
vector regressors, we would like to argue that such effort is worth it.

As for the DL models, all of the four models have really good performance
with the LeNet mockup hybrid model being extremely efficient both in train-
ing and predicting the makespan, and the hybrid CNN model being good at
prediciting the runtime at least compared to the performance of DT and RF in
these settings.

Another interesting observation we have found during the training phase
is that, most of the time the model that took the JSSP instance matrix as the
only input is sufficient to achieve the same performance at its corresponding
hybrid models which can be seen from Figure 4.3 and the trend is also reflected
in Figure 4.1. This could potentially be the sign that the RFs that we have

50 CHAPTER 4. RESULTS AND DISCUSSION

applied to the problem can learn the important features from the JSSP instance
matrix alone without the input of domain knowledge. Also, this indicates that
the features we have developed are actually important features in terms of the
value that we want to estimate for the simple reason that using these features
as auxiliary input can greatly speed up the training process.

Through different tasks, we have found that different CNN architectures
might have different performance on the same task and some may also be less
computationally expensive than others to train. One of the reasons behind
might be that some special design in the CNN architecture might be better at
the learning problem. For example, the depth wise convolutional layer might
be at least one of the reasons why our LeNet mockupmodels are easier to train.

Finally, we would like to point out that in Figure 4.2 and 4.4 the perfor-
mance of the model is quite unstable. One the reason behind could be that
the runtime for solving a given JSSP instance involves randomness that might
not yet captured in our training dataset as the dataset only contains a single
result of runtime for each unique combination of features. This might be an
interesting directiong to look into.

Chapter 5

Conclusion and Future Work

5.1 Conclusion
In this thesis project, we have demonstrate the potential of ML and DLmodels
to predict the optimal makespan and the runtime of solving a JSSP instance
based on the JSSP instance matrix and other hand-designed features within
an acceptable range of error and within an reasonable amount of time. In
particular, we have found that DT and RF from traditional ML models to have
good performance in predictingmakespan and runtimewith the hand-designed
features and that DLmodels can learned important features automatically from
the raw JSSP intances.

For predicting the makespan (unit: machine time unit), the best Random
Forest regression model achieves a Mean Squared Error of 0.78 on the test
set. The best Deep Learning model achieves a Mean Squared Error of 0.74
on the test set. For predicting the solving time (unit: millisecond) of a Job-
shop Scheduling Problem, the best Random Forest regression model achieves
a Mean Squared Error of 2.12× 107 on the test set. The best Deep Learning
model achieves a Mean Squared Error of 5.19× 107 on the test set.

Finally, we would also like to mention that the time used for training and
predicting model are also reasonable. The Random Forest regressor takes a
few minutes to train on a dataset with 90000 records on a modern computer
with 4 CPU cores and the time used for predicting is at a level of seconds.
The Deep Leaning models take about an hour or two to train depending on
the exact model on a modern desktop with a single GTX 1080 GPU and the
predicting time on the test set is within 1 second.

51

52 CHAPTER 5. CONCLUSION AND FUTURE WORK

5.2 Future Directions
In this section, we identify several aspects of this thesis project that can be
expanded upon and improved.

Encode the regression models into Gecode

Perhaps, one of the most obvious and interesting directions that one could look
into is to encode the ML and DL model for predicting the makespan into the
Gecode program and see if such a combination actually decrease the amount
of time needed for getting the optimal makespan of a given JSSP instances.

Explore the influence of different loss functions

In this thesis project, we choose Mean Squared Error as the loss function for
all of over prediction models as this is the most common choice of loss func-
tions for regression problems. In the future, it would be interesting to explore
whether the choice of different loss function will affect evaluation of the per-
formance across different models.

Make the model compact

While the computational time is relative acceptable in our training setting
which have access to GPU for training the network, when deploying the DL
models in production it could very well be the case that the program can only
rely on CPU for the prediction. Thus, making the model compact could reduce
the running time of the model during inference.

Explore different architectures

As we have observed from the experiments, different DL architectures might
be good at different tasks. Thus, it might be interesting to further explore
other DL architectures for potential performance gain. Up till now, we treat
the JSSP instances as two-dimensional matrices and apply CNN models for
the regression task. This process is quite similar to using CNN for processing
images.

Apart from this, the following aspects are also interesting: First, instead
of treating the JSSP instance as a two-dimensional matrix, we can flatten the
instance and tackle the regression problem using sequence modeling. An-
other aspect that might be interested to look into is to train an JSSP instance

CHAPTER 5. CONCLUSION AND FUTURE WORK 53

embeddings using autoencoders and test whether such embeddings could be
sufficient in the regression tasks.

Another interesting technique that might be interesting to look into is ap-
plying differentiable architecture search to find the most suitable DL architec-
ture for the regression tasks.

Choice of tbf values

Perhaps, one of the most counter-intuitive findings from solving a CP task is
that randomness in the solving process can actually improve the performance
with high probability. However, what is the level of randomness to use, or is
there even an optimal level of randomness yet remain to be the question to
answer. Thus, it would be very interesting to target this direction.

Ways to generalize the Machine Learning methods to other scheduling
problems

Once we have demonstrated the potential of ML and DL in improving the per-
formance of solving a JSSP, another question that comes directly after is that
how can be justify that these techniques can be used to facilitate other schedul-
ing or general CP problems. While experimentation results can show the use-
fulness of such techniques in particular use cases of CP problems, proving
these techniques are useful in general can be quite trick which requires serious
thinking and proving.

Bibliography

[1] Francesca Rossi, Peter van Beek, and Toby Walsh. “Handbook of Con-
straint Programming (Foundations of Artificial Intelligence)”. In: New
York, NY, USA: Elsevier Science Inc., 2006. isbn: 0444527265.

[2] Brian H. Mayoh, Enn Tyugu, and Jaan Penjam, eds. Constraint Pro-
gramming, Proceedings of the NATO Advanced Study Institute on Con-
straint Programming, Parnu, Estonia, August 13-24, 1993. Vol. 131.
NATOASI Series. Springer, 1994. isbn: 978-3-642-85985-4. doi: 10.
1007/978-3-642-85983-0. url: https://doi.org/10.
1007/978-3-642-85983-0.

[3] Leonora Bianchi et al. “A Survey onMetaheuristics for Stochastic Com-
binatorial Optimization”. In: 8.2 (June 2009), pp. 239–287. issn: 1567-
7818. doi: 10.1007/s11047-008-9098-4. url: http://dx.
doi.org/10.1007/s11047-008-9098-4.

[4] Valentin Antuori and Florian Richoux. “Constrained optimization un-
der uncertainty for decision-making problems: Application to Real-Time
Strategy games”. In: Jan. 2019.

[5] Luc De Raedt et al. “Constraint Programming meets Machine Learning
and Data Mining (Dagstuhl Seminar 11201).” In: Dagstuhl Reports 1
(Jan. 2011), pp. 61–83.

[6] Jean-Francois Puget. “Constraint Programming Next Challenge: Sim-
plicity of Use”. In: Principles and Practice of Constraint Programming
– CP 2004. Ed. by Mark Wallace. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 5–8. isbn: 978-3-540-30201-8.

[7] Eugene C. Freuder. “Progress towards the Holy Grail”. In: Constraints
23.2 (Apr. 2018), pp. 158–171. issn: 1572-9354. doi: 10 . 1007 /
s10601-017-9275-0. url: https://doi.org/10.1007/
s10601-017-9275-0.

54

BIBLIOGRAPHY 55

[8] Nicholas Nethercote et al. “MiniZinc: Towards a Standard CP Mod-
elling Language”. In: CP. 2007.

[9] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. “Modeling”.
In:Modeling and Programming with Gecode. Ed. by Christian Schulte,
Guido Tack, and Mikael Z. Lagerkvist. Corresponds to Gecode 6.2.0.
2019.

[10] Jacob Feldman. “Representing and Solving Rule-Based Decision Mod-
els with Constraint Solvers”. In: RuleML America. 2011.

[11] Alan Frisch. “A Decade of Progress in Constraint Modelling and Refor-
mulation: The Quest for Abstraction and Automation”. In: Invited Talk
slides. 2011. url: https://www-users.cs.york.ac.uk/
~frisch/Research/decade.pdf.

[12] GustavBjordal et al. “A constraint-based local search backend forMiniZ-
inc”. In: Constraints 20.3 (July 2015), pp. 325–345. issn: 1572-9354.
doi: 10.1007/s10601-015-9184-z. url: https://doi.
org/10.1007/s10601-015-9184-z.

[13] Michele Lombardi andMichelaMilano. “BoostingCombinatorial Prob-
lemModelingwithMachine Learning”. In:CoRR abs/1807.05517 (2018).
arXiv: 1807.05517. url: http://arxiv.org/abs/1807.
05517.

[14] Mihaela Sabin and EugeneC. Freuder. “Automated Formulation of Con-
straint Satisfaction Problems.” In: Jan. 1996, pp. 1407–1407.

[15] Zeynep Kiziltan, Marco Lippi, and Paolo Torroni. “Constraint Detec-
tion in Natural Language ProblemDescriptions”. In: Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence.
IJCAI’16. NewYork, NewYork, USA:AAAI Press, 2016, pp. 744–750.
isbn: 978-1-57735-770-4.url:http://dl.acm.org/citation.
cfm?id=3060621.3060725.

[16] Alessio Bonfietti, Michele Lombardi, and Michela Milano. “Embed-
ding Decision Trees and Random Forests in Constraint Programming”.
In: Integration of AI and OR Techniques in Constraint Programming -
12th International Conference, CPAIOR 2015, Barcelona, Spain, May
18-22, 2015, Proceedings. 2015, pp. 74–90. doi: 10.1007/978-3-
319-18008-3_6. url: https://doi.org/10.1007/978-
3-319-18008-3%5C_6.

56 BIBLIOGRAPHY

[17] Hong Xu, Sven Koenig, and T K. Satish Kumar. “Towards Effective
Deep Learning for Constraint Satisfaction Problems”. In: Aug. 2018.
doi: 10.1007/978-3-319-98334-9_38.

[18] André Hottung, Shunji Tanaka, and Kevin Tierney. “Deep Learning As-
sisted Heuristic Tree Search for the Container Pre-marshalling Prob-
lem”. In: (Sept. 2017).

[19] Hongzi Mao et al. “Resource Management with Deep Reinforcement
Learning”. In: Proceedings of the 15th ACM Workshop on Hot Top-
ics in Networks. HotNets ’16. Atlanta, GA, USA: ACM, 2016, pp. 50–
56. isbn: 978-1-4503-4661-0. doi: 10.1145/3005745.3005750.
url: http://doi.acm.org/10.1145/3005745.3005750.

[20] Wei Wang et al. “Edge Caching at Base Stations with Device-to-Device
Offloading”. In: IEEE Access PP (Mar. 2017), pp. 1–1. doi: 10.1109/
ACCESS.2017.2679198.

[21] Lei Lei et al. “A deep learning approach for optimizing content deliv-
ering in cache-enabled HetNet”. In: 2017 International Symposium on
Wireless Communication Systems (ISWCS) (2017), pp. 449–453.

[22] Helge Spieker and Arnaud Gotlieb. “Towards Hybrid Constraint Solv-
ing with Reinforcement Learning and Constraint-Based Local Search”.
In: 2018.

[23] AndreaGalassi et al. “Model Agnostic Solution of CSPs viaDeep Learn-
ing: A Preliminary Study”. In: Integration of Constraint Programming,
Artificial Intelligence, and Operations Research - 15th International
Conference, CPAIOR 2018, Delft, The Netherlands, June 26-29, 2018,
Proceedings. 2018, pp. 254–262. doi: 10 . 1007 / 978 - 3 - 319 -
93031-2_18. url: https://doi.org/10.1007/978-3-
319-93031-2%5C_18.

[24] Wei Zhang and Thomas G. Dietterich. “A Reinforcement Learning Ap-
proach to job-shop Scheduling”. In: IJCAI. 1995.

[25] Maziar Yazdani et al. “Optimizing the sum of maximum earliness and
tardiness of the job shop scheduling problem”. In: Computers & Indus-
trial Engineering 107 (2017), pp. 12–24. issn: 0360-8352. doi:https:
//doi.org/10.1016/j.cie.2017.02.019. url: http:
//www.sciencedirect.com/science/article/pii/
S0360835217300803.

[26] Ian Gent et al. “Machine learning for constraint solver design – A case
study for the alldifferent constraint”. In: (Aug. 2010).

BIBLIOGRAPHY 57

[27] Frank Hutter et al. “Performance Prediction and Automated Tuning of
Randomized and Parametric Algorithms”. In: Principles and Practice
of Constraint Programming - CP 2006. Ed. by Frédéric Benhamou.
Berlin, Heidelberg: Springer BerlinHeidelberg, 2006, pp. 213–228. isbn:
978-3-540-46268-2.

[28] Michele Lombardi and Stefano Gualandi. “A New Propagator for Two-
Layer Neural Networks in Empirical Model Learning”. In: CP. 2013.

[29] Lars Kotthoff. “Algorithm Selection for Combinatorial Search Prob-
lems: A Survey”. In:Data Mining and Constraint Programming: Foun-
dations of a Cross-Disciplinary Approach. Ed. by Christian Bessiere et
al. Cham: Springer International Publishing, 2016, pp. 149–190. isbn:
978-3-319-50137-6. doi: 10.1007/978-3-319-50137-6_7.
url: https://doi.org/10.1007/978-3-319-50137-
6_7.

[30] F. Neumann and S. Poursoltan. “Feature-based algorithm selection for
constrained continuous optimisation”. In: 2016 IEEE Congress on Evo-
lutionary Computation (CEC). July 2016, pp. 1461–1468. doi: 10 .
1109/CEC.2016.7743962.

[31] Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. “An Eco-
nomicsApproach toHardComputational Problems”. In: Science 275.5296
(1997), pp. 51–54. issn: 0036-8075. doi: 10 . 1126 / science .
275 . 5296 . 51. eprint: https : / / science . sciencemag .
org/content/275/5296/51.full.pdf. url: https://
science.sciencemag.org/content/275/5296/51.

[32] Carla P. Gomes and Bart Selman. “Algorithm portfolios”. In: Artificial
Intelligence 126.1 (2001). Tradeoffs under Bounded Resources, pp. 43–
62. issn: 0004-3702. doi:https://doi.org/10.1016/S0004-
3702(00)00081- 3. url: http://www.sciencedirect.
com/science/article/pii/S0004370200000813.

[33] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. “An Ex-
tensive Evaluation of Portfolio Approaches for Constraint Satisfaction
Problems”. In: International Journal of Interactive Multimedia and Ar-
tificial Intelligence 3.7 (June 2016), pp. 81–86. issn: 1989-1660. doi:
10.9781/ijimai.2016.3712. url: http://www.ijimai.
org/journal/sites/default/files/files/2016/05/
ijimai20163_7_12_pdf_13932.pdf.

58 BIBLIOGRAPHY

[34] Andrea Loreggia et al. “Deep Learning for Algorithm Portfolios”. In:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.
AAAI’16. Phoenix, Arizona: AAAI Press, 2016, pp. 1280–1286. url:
http : / / dl . acm . org / citation . cfm ? id = 3015812 .
3016001.

[35] Frank Hutter et al. “Algorithm runtime prediction: Methods & evalua-
tion”. In: Artif. Intell. 206 (2014), pp. 79–111.

[36] M.H. Sqalli and E.C. Freuder. “Inference-based constraint satisfaction
supports explanation”. In: (Dec. 1996).

[37] DmitryMaliotov andKuldeep S.Meel. “MLIC:AMaxSAT-Based frame-
work for learning interpretable classification rules”. In:CoRR abs/1812.01843
(2018). arXiv: 1812.01843. url: http://arxiv.org/abs/
1812.01843.

[38] Eugene C. Freuder, Chavalit Likitvivatanavong, and Richard J. Wal-
lace. “Deriving Explanations and Implications for Constraint Satisfac-
tion Problems”. In: Principles and Practice of Constraint Programming
— CP 2001. Ed. by Toby Walsh. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 585–589. isbn: 978-3-540-45578-3.

[39] Narendra Jussien and Samir Ouis. “User-friendly explanations for con-
straint programming”. In: Proceedings of the Eleventh Workshop on
Logic Programming Environments (WLPE’01), Paphos, Cyprus, De-
cember 1, 2001. 2001. url: http://arxiv.org/abs/cs.PL/
0111037.

[40] MarekWojciechowski andMaciej Zakrzewicz. “Dataset Filtering Tech-
niques in Constraint-Based Frequent Pattern Mining”. In: Proceedings
of the ESF Exploratory Workshop on Pattern Detection and Discov-
ery. London, UK, UK: Springer-Verlag, 2002, pp. 77–91. isbn: 3-540-
44148-4. url: http://dl.acm.org/citation.cfm?id=
647915.738873.

[41] Christian Bessiere et al. “Users Constraints in ItemsetMining”. In:CoRR
abs/1801.00345 (2018). arXiv:1801.00345.url:http://arxiv.
org/abs/1801.00345.

[42] Said Jabbour et al. “On Maximal Frequent Itemsets Mining with Con-
straints: 24th International Conference, CP 2018, Lille, France, August
27-31, 2018, Proceedings”. In: Aug. 2018, pp. 554–569. isbn: 978-3-
319-98333-2. doi: 10.1007/978-3-319-98334-9_36.

BIBLIOGRAPHY 59

[43] Said Jabbour, Lakhdar Sais, and Yakoub Salhi. “Top-k Frequent Closed
Itemset Mining Using Top-k SAT Problem”. In: Sept. 2013. doi: 10.
1007/978-3-642-40994-3_26.

[44] Hamid Khodabandehlou and Sami Fadali. “Training Recurrent Neural
Networks as a Constraint Satisfaction Problem”. In: (Mar. 2018).

[45] Ali Allahverdi et al. “A survey of scheduling problems with setup times
or costs”. In: European Journal of Operational Research 187.3 (2008),
pp. 985–1032. issn: 0377-2217. doi: https : / / doi . org / 10 .
1016/j.ejor.2006.06.060.url:http://www.sciencedirect.
com/science/article/pii/S0377221706008174.

[46] E.L. Lawler et al. “Sequencing and scheduling : algorithms and com-
plexity”. English. In: Logistics of Production and Inventory. Ed. by S.S.
Graves, A.H.G. Rinnooy Kan, and P. Zipkin. Handbooks in Operations
Research and Management Science. Netherlands: North-Holland Pub-
lishing Company, 1993, pp. 445–522. isbn: 0-444-87472-0.

[47] J.K. Lenstra and A.H.G. Rinnooy Kan. “Computational Complexity of
Discrete Optimization Problems”. In: Discrete Optimization I. Ed. by
P.L. Hammer, E.L. Johnson, and B.H. Korte. Vol. 4. Annals of Discrete
Mathematics. Elsevier, 1979, pp. 121–140. doi: https : / / doi .
org / 10 . 1016 / S0167 - 5060(08) 70821 - 5. url: http :
//www.sciencedirect.com/science/article/pii/
S0167506008708215.

[48] M. R. Garey, D. S. Johnson, and Ravi Sethi. “The Complexity of Flow-
shop and Jobshop Scheduling”. In: Math. Oper. Res. 1.2 (May 1976),
pp. 117–129. issn: 0364-765X. doi: 10.1287/moor.1.2.117.
url: http://dx.doi.org/10.1287/moor.1.2.117.

[49] Teofilo Gonzalez and Sartaj Sahni. “Flowshop and Jobshop Schedules:
Complexity andApproximation”. In:Operations Research 26 (Feb. 1978),
pp. 36–52. doi: 10.1287/opre.26.1.36.

[50] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. “Complexity ofMa-
chine Scheduling Problems”. In: Studies in Integer Programming. Ed.
by P.L. Hammer et al. Vol. 1. Annals of Discrete Mathematics. Elsevier,
1977, pp. 343–362. doi: https://doi.org/10.1016/S0167-
5060(08)70743- X. url: http://www.sciencedirect.
com/science/article/pii/S016750600870743X.

60 BIBLIOGRAPHY

[51] Sadegh Mirshekarian and Dušan N. Šormaz. “Correlation of job-shop
scheduling problem featureswith scheduling efficiency”. In:Expert Sys-
tems with Applications 62 (2016), pp. 131–147. issn: 0957-4174. doi:
https://doi.org/10.1016/j.eswa.2016.06.014. url:
http://www.sciencedirect.com/science/article/
pii/S0957417416302949.

[52] Diarmuid Grimes and Emmanuel Hebrard. “Solving Variants of the Job
Shop Scheduling Problem Through Conflict-Directed Search”. In: IN-
FORMS Journal on Computing 27 (Apr. 2015), pp. 268–284. doi: 10.
1287/ijoc.2014.0625.

[53] Yang-Kuei Lin. “Scheduling efficiency on correlated parallel machine
scheduling problems”. In: Operational Research 18 (Oct. 2017). doi:
10.1007/s12351-017-0355-0.

[54] F. Pedregosa et al. “Scikit-learn:Machine Learning in Python”. In: Jour-
nal of Machine Learning Research 12 (2011), pp. 2825–2830.

[55] Y. Lecun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–2324.
issn: 0018-9219. doi: 10.1109/5.726791.

[56] Yann LeCun and Corinna Cortes. “MNIST handwritten digit database”.
In: (2010). url: http://yann.lecun.com/exdb/mnist/.

[57] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: CoRR abs/1412.6980 (2015).

[58] François Chollet et al. Keras. https://keras.io. 2015.

[59] Martin Abadi et al. TensorFlow: Large-ScaleMachine Learning onHet-
erogeneous Systems. Software available from tensorflow.org. 2015.url:
http://tensorflow.org/.

www.kth.se

