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Abstract

Evolutionary clustering (EC) is a kind of clustering algorithm to handle the noise of
time-evolved data. It can track the truth drift of clustering across time by considering
history. EC tries to make clustering result fit both current data and historical data/model
well, so each EC algorithm defines snapshot cost (SC) and temporal cost (TC) to reflect
both requests. EC algorithms minimize both SC and TC by different methods, and they
have different ability to deal with a different number of cluster, adding/deleting nodes,
etc.

Until now, there are more than 10 EC algorithms, but no survey about that. Therefore, a
survey of EC is written in the thesis. The survey first introduces the application scenario
of EC, the definition of EC, and the history of EC algorithms. Then two categories of
EC algorithms - model-level algorithms and data-level algorithms are introduced one-
by-one. What’s more, each algorithm is compared with each other. Finally, performance
prediction of algorithms is given. Algorithms which optimize the whole problem (i.e.,
optimize change parameter or don’t use change parameter to control), accept a change
of cluster number perform best in theory.

EC algorithm always processes large datasets and includes many iterative data-intensive
computations, so they are suitable for implementing on Spark. Until now, there is no
implementation of EC algorithm on Spark. Hence, four EC algorithms are implemented
on Spark in the project. In the thesis, three aspects of the implementation are intro-
duced. Firstly, algorithms which can parallelize well and have a wide application are
selected to be implemented. Secondly, program design details for each algorithm have
been described. Finally, implementations are verified by correctness and efficiency ex-
periments.
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Abstrakt

Evolutionär clustering (EC) är en slags klustringsalgoritm för att hantera bruset av
tidutvecklad data. Det kan spåra sanningshanteringen av klustring över tiden genom
att beakta historien. EC försöker göra klustringsresultatet passar både aktuell data och
historisk data / modell, så varje EC-algoritm definierar ögonblicks kostnad (SC) och
tidsmässig kostnad (TC) för att reflektera båda förfrågningarna. EC-algoritmer min-
imerar både SC och TC med olika metoder, och de har olika möjligheter att hantera ett
annat antal kluster, lägga till / radera noder etc.

Hittills finns det mer än 10 EC-algoritmer, men ingen undersökning om det. Därför
skrivs en undersökning av EC i avhandlingen. Undersökningen introducerar först app-
likationsscenariot för EC, definitionen av EC och historien om EC-algoritmer. Därefter
introduceras två kategorier av EC-algoritmer - algoritmer på algoritmer och algoritmer
på datanivå en för en. Dessutom jämförs varje algoritm med varandra. Slutligen ges re-
sultatprediktion av algoritmer. Algoritmer som optimerar hela problemet (det vill säga
optimera förändringsparametern eller inte använda ändringsparametern för kontroll),
acceptera en förändring av klusternummer som bäst utför i teorin.

EC-algoritmen bearbetar alltid stora dataset och innehåller många iterativa datintensiva
beräkningar, så de är lämpliga för implementering på Spark. Hittills finns det ingen
implementering av EG-algoritmen på Spark. Därför implementeras fyra EC-algoritmer
på Spark i projektet. I avhandlingen införs tre aspekter av genomförandet. För det
första är algoritmer som kan parallellisera väl och ha en bred tillämpning valda att
implementeras. För det andra har programdesigndetaljer för varje algoritm beskrivits.
Slutligen verifieras implementeringarna av korrekthet och effektivitetsexperiment.

Nyckelord: Evolutionär clustering; Spark; Undersökning; Datintensiv databehandling.
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Chapter 1

Introduction

Clustering is a well-researched topic in data mining, but traditional clustering algo-
rithms cannot handle time-evolved data well because of noise. Evolutionary Clustering
(EC) solves the problem. Evolutionary Clustering inputs a sequence of time-evolved
dataset D1, D2, D3, ..., Dt, and outputs a sequence of clustering result C1, C2, C3, ..., Ct.
The current clustering result Ct should both fit current data Dt well, and fit previous
data Dt�1 or model Ct�1 well. Since the history Dt�1 or Ct�1 is under consideration,
the noise can be smoothed. To satisfy both criteria, snapshot cost (SC) is defined to
measure how inaccurately current clustering represents current data, and temporal cost
(TC) is defined to measure how inaccurately current clustering represents historical data
or the distance between current and last clustering result. Different EC algorithms de-
fine different SC and TC and use different methods to minimize both of SC and TC
simultaneously. The most common method is to define and minimize an overall cost
cost = (1� CP)⇥ SC + CP⇥ TC which is controlled by a change parameter CP ranged
from 0 to 1. Since the first EC algorithm reformulated by Chakrabarti et al. in 2006[3],
there are already more than 10 EC algorithms.

Spark[34] is a data-intensive cluster computing tool which automatically provides job
managing, locality-aware scheduling and fault tolerance similar to previous cluster com-
puting model MapReduce[5]. Especially, Spark’s abstraction resilient distributed dataset
(RDD) can be cached in memory, which enables iterative algorithms running on clusters.
Machine learning algorithms always include many iterative data-intensive computations
and have to process a large number of data. Hence, many machine learning algorithms
have been built on Spark to speed up computation.

1.1 Background

To understand the thesis, the reader should have the knowledge of basic clustering
algorithms, such as k-means, spectral clustering, and hierarchical clustering[8]. It is
because many EC algorithms are just variants of traditional clustering algorithms.

Since the EC algorithms will be built on Spark using Scala, and the relevant code will
be explained in section 4, the reader should know the principle and concepts of Spark,

1



2 Chapter 1. Introduction

and understand the code example of Spark written in Scala[34].

In section 2, basic backgrounds of clustering algorithms and Spark will be given.

1.2 Problem

Currently, there are more than 10 EC algorithms, but no survey to arrange them in or-
der. Every researcher who is interested in EC has to spend much time on collecting all
papers and read them throughout. Even researchers read all papers; it is hard to recog-
nize pros and cons of each algorithm, compare them with each other and select which
to use. Hence, one of the problems of the thesis is

What’s the theoretical framework of Evolutionary Clustering?

The problem can be divided into following sub-questions:

1. What’s the criterion to categorize EC algorithms? How to categorize each of them?

2. What criteria to compare EC algorithms? What’s the comparison result?

3. Which EC should perform better? Is it possible to give a performance prediction
rank for each EC algorithm according to theory?

Moreover, EC is a kind of machine learning algorithm, and also always has many it-
erative data-intensive computations. Besides, EC algorithm handles time-evolved data,
so EC should process a large number of data. Hence, EC algorithm is suitable to be
implemented on Spark. However, until now, no such implementation exists, so the user
of EC algorithms cannot process large dataset quicker with the help of Spark. Hence,
the other problem the thesis solves is

How to implement Evolutionary Clustering algorithms on Spark?

The problem can be divided into following sub-questions:

1. What are suitable EC algorithms to implement on Spark?

2. How to implement them properly on Spark?

3. How much the implementations improve the efficiency of EC algorithms?

1.3 Purpose

To solve the first problem, a survey is written in the thesis. It covers categorization,
comparison and performance prediction of each EC algorithms in theory.

To solve the second question, implementation details including selecting algorithms,
designing program and experiments are covered in the thesis.

The project is carried out at SICS Swedish ICT. The main purpose of the project is to
implement EC algorithms on Spark.



1.4. Goal 3

1.4 Goal

For the first problem, a written survey of EC algorithms will be delivered in in the thesis.
For the second problem, four EC algorithms have been built on Spark. The implemen-
tations deal with batched dataset rather than data stream, and codes in Scala will be
issued. Implementation details and experiment results will be given in the thesis.

1.5 Benefits, Ethics and Sustainability

EC has a wide application. For example, social network updates every day, EC algorithm
is suitable for community analysis of the social network. For another instance, moving
objects equipped with GPS sensors can be clustered continuously by EC algorithms. It
can be extended to traffic jam prediction or animal migration analysis.

If there is a survey of EC algorithms, researchers can select a suitable algorithm with
a quick glance at the survey. It saves much time. Moreover, if there are already EC
implementations on Spark, it makes the large data processing easy.

In the project, only data collection is related to ethics. Since the main purpose of exper-
iments is to test program efficiency, so only synthetic data is used. Therefore, there is
nothing unethical in the project.

In the project, writing and implementation are carried out on the laptop, and the exper-
iments are carried out on virtual machines. As a whole, the project is sustainable.

1.6 Methodology/Methods

This section is written according to [9]. In this section, philosophical assumptions, re-
search methods, and research approaches will be discussed. The others will be discussed
in chapter 3 and 4. The project solves two problems according to section 1.2 so that the
methodology will be discussed for each of them.

The EC algorithm survey in section 3 solves the first problem. The survey is only in
theoretical; it provides categorization, comparison and performance prediction of EC
algorithms. Therefore, the survey is a qualitative research; it makes the conclusion
based on existing papers rather than a large number of data. Similarly, its philosophical
assumption is interpretivism which attempts to observe a phenomenon based on the
meanings people assign to it rather than credible data and facts. Hence, the suitable
research method is conceptual research which establishes concepts in an area of liter-
ature reviews. Since no large data set is used, the research approach is the inductive
approach.[9]

For the second problem, it is a combination of the quantitative and qualitative research
problem. At first, the suitable algorithms are selected based on 1) whether the EC algo-
rithm is suitable for implementing on Spark; 2) whether the EC algorithm has a wide
application. It is a qualitative research problem. The program design is also based on
Spark design principles, so it is also a qualitative research problem. The corresponding
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philosophical assumption is interpretivism. The research method is applied research
because the theory is used to solve practical problems. Then the research approach is
the inductive approach. However, prove the correctness and efficiency of implemented
algorithms are quantitative research problems, and the related philosophical assump-
tion is realism. Experimental research method and deductive research approach will
be used to test whether implemented algorithms run faster on clusters than on one
machine. If they run faster with the increment of worker number, the algorithms are
implemented properly. On the other hand, a good experimental result reflects proper
algorithm selection and program design.[9]

1.7 Delimitations

The following are delimitations of the thesis/project.

• Two papers [31] and [30] are not covered in the survey. It is because they are both
much beyond the scope of knowledge. Just in case misunderstanding them and
making wrong conclusions, they are not covered in the survey now. Including
them in the survey can be regarded as the future work of the project/thesis.

• The survey is only in theoretical, and the performance prediction in the survey will
not be tested in the thesis. It is because most of the time is spent in implementing
EC algorithms on Spark, and there are too much EC algorithms to implement if
performance prediction is needed to be tested. It is the future work.

• When testing the efficiency of implemented algorithms on Spark, only synthetic
data is used. It will be the future work.

1.8 Outline

The thesis is structured as follows. Chapter 2 presents extend background of Spark and
related work. Chapter 3 is a theoretical survey of Evolutionary Clustering algorithms.
Chapter 4 explains implementation details of Evolutionary Clustering algorithms are
given. Chapter 5 presents experiments and results. Finally the conclusion is given in
chapter 6.



Chapter 2

Background & Related Work

In this chapter, background for understanding the following chapters are introduced
concisely. Firstly, clustering concepts and popular clustering algorithms are presents.
Then Spark concepts, code examples, Spark program design principles, and project re-
lated data structures are given. Finally, related work is presented.

2.1 Clustering Basics

In this section, clustering concepts and popular clustering algorithms are presents. Al-
though there are many clustering algorithms, readers only need to know k-means, spec-
tral clustering, DBSCAN, and agglomerative hierarchical clustering in order to under-
stand the following sections.

2.1.1 What’s Clustering

Clustering is a well-studied subject including data clustering and graph clustering. Data
clustering allocates a batch of data points into several groups,[8] and graph clustering
partitions a connected graph into several subgraphs (like Figure 2.1 shows).[18] Data
points (nodes) in the same group (subgraph) are more similar to each other than Data
points (nodes) in the different groups (subgraphs).

2.1.2 k-means

k-means[12] is a data clustering algorithm. It uses k centroids to represent k clusters.
Data point belongs to the cluster with the nearest centroid. Therefore, k-means’s objec-
tive is to minimize the following cost function

D(X, C) =
k

Â
c=1

Â
i2c

||xi �mc||2, (2.1)

5
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Figure 2.1: Data clustering (left) and graph clustering (right)

where X is a dataset, xi is an observation, C is a clustering result, c is a cluster and mc is
the centroid of a cluster. The algorithm starts with initializing k centroids randomly or
deliberately. Then iterate following two steps until certain iteration or getting a satisfied
result. (i.e. the cost function 2.1 is low enough.):

• Allocate each observation to its closest centroid;

• Update each centroid as the expectation of observations belong to it.

2.1.3 Spectral Clustering

Spectral clustering is a graph clustering algorithm, the graph it processes presents as a
proximity matrix in which each entry represents an edge value of two nodes. It can also
deal with data clustering problem because observations can be transformed to similarity
matrix first.[26]

The first step of the spectral clustering is to generate a positive definite similarity matrix
W. (Gaussian similarity function, dot product, etc. get positive definite similarity.) Here
the notations are defined. D is a diagonal matrix with elements corresponding to row
sums of W. L is an unnormalized graph Laplacian matrix calculated by L = D�W. L
is the normalized Laplacian matrix calculated by L = I � D� 1

2 WD� 1
2 . X is the first k

eigenvectors of W or Lor L associated with the top-k eigenvalues of the matrix; it can
be regarded as n k-dimensional observations.[26]

Spectral clustering has three variants - optimizing negated average association (NA)
or normalized cut (NC) or ratio cut (RC). All of them are NP-hard, so the algorithm
turns to optimize the relaxed version problem. The three problems can be solved as
follows:[26]

1. Optimize NA: Compute X of W. Then do k-means to X.

2. Optimize RC: Compute X of L. Then do k-means to X.

3. Optimize NC: Compute X of L. Normalize n observations of X, then do k-means
to normalized X.
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2.1.4 DBSCAN

DBSACAN is a density-based clustering algorithm. It is not only robust to noise but also
can handle any shape of the cluster without knowing the number of clusters previously.
Data points can be divided into core nodes, boundary nodes, and noisy nodes. MINPTS
and EPS are two parameters should be set in advance. MINPTS is a threshold of point
number, and EPS is a radius threshold. If a node has no less than MINPTS of the
node within EPS, it is a core node. Core node links all its neighbors within EPS. Every
node will be judged whether it is a core node. As a result, nodes directly or indirectly
connected form a cluster, and the remaining single nodes are noisy nodes. Within a
cluster, except for core nodes, the remaining nodes are boundary nodes. [6]

2.1.5 Aggromerative Hierarchical Clustering

Agglomerative Hierarchical Clustering[8] is also suitable for both data clustering and
graph clustering. Similar to spectral clustering, the algorithm starts to generate a prox-
imity matrix for all data points (nodes). Then it iterates the following steps:

1. Merge two points with the largest similarity;

2. Replace rows and columns of merged points in similarity matrix by a row and a
column of the new point. The similarity value of the new point is the average or
maximal value of the two merged points.

After several iterations, the data points will be generated into a bottom-up binary tree.
Tree nodes represent a merge of two points. Then the tree is cut at a certain height to
obtain a flat clustering result.

2.2 Spark Basics

In the thesis, four EC algorithms are implemented on Spark, so this section introduces
RDDs & Spark concepts, Spark code examples, Spark program design principles, and
project related data structures.

2.2.1 RDDs

The data-intensive application includes many data-intensive computations which pro-
cess a large number of data independently by the same operations. Since data-intensive
computations are independent of data, distributed computation speeds up the process.
Cluster computing frameworks like MapReduce and Dryad have successfully imple-
mented large-scale data-intensive applications on commodity clusters. They automati-
cally provide locality-aware scheduling, fault tolerance, and load balancing. However,
they cannot be applied to an important class of applications - data reuse applications
(e.g., iterative machine learning). It is because they are built around an acyclic data flow
model and store intermediate data into stable external storage, which causes inefficient
data reuse due to data replication, disk I/O, and serialization. [34][33]
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Spark solves the problem by introducing an abstraction called resilient distributed datasets
(RDDs). An RDD is a read-only collection of objects partitioned across a set of machines
that can be rebuilt if a partition is lost. RDDs are lazy, so old RDDs will be discarded if
memory is limited. However, if user caches an RDD in memory across machines, it can
be reused again and again and won’t be discarded. Hence, Spark can deal with data
reuse applications.[34][33]

RDD can only be created by transformation operations from stable storage data or other
RDDs; RDDs can be used by actions to return a value or export data to a storage system.
Since RDDs is lazy, only an action is performed on an RDD; the RDD is generated by
previous transformations. Spark also provide scalability and fault tolerance automati-
cally. The computation process of a program will be drawn as a lineage, so lose RDD
can be rebuilt according to the lineage.[34][33]

The dependencies between RDDs includes narrow and wide dependencies. Narrow de-
pendencies mean each partition of the parent RDD is used by at most one partition of
the child RDD, it allows for pipelined execution on one cluster node. Recovery after a
node failure is more efficient with a narrow dependency, as only the lost parent parti-
tions need to be recomputed. Wide dependencies mean multiple child partitions may
depend on the RDD. Recovery after a node failure requires a complete re-execution for
wide dependencies. Hence, if an RDD has wide dependencies with other RDDs, it is
better to cache it.[34][33]

2.2.2 Spark

Spark is a language-integrated API for RDDs in an unmodified version of Scala. The
system runs over the Mesos cluster manager and can read data from any Hadoop input
source using Hadoop’s existing input plugin APIs.[34][33]

Spark consists of a driver program and a cluster of workers. The driver program that
implements the high-level control flow of their application, and the workers can store
RDD partitions in RAM across operations.[34][33]

Except for RDDs, another two abstractions of Spark for parallel programming are par-
allel operations and share variables. Parallel operations will be introduced in section
2.2.3 with code examples. There are two types of shared variables - broadcast variables
and accumulators. The broadcast variables are immutable and distributed on workers.
If a user wants to share a fixed variable with all workers, (different from local variables
on a worker,) the broadcast variable is a good choice. Accumulator allows update of a
shared variable, but only addition is allowed.[34][33]

2.2.3 Spark Code Examples

Spark common used parallel operations and their example codes are listed here.[24]

• map: map is a transformation, it transforms each element of an RDD by a function.
For example,

val rdd2 = rdd1.map(_ ⇤ 0.05), (2.2)
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each element of rdd1 multiplies 0.05 and saves in rdd2.

• foreach: foreach is an action, it passes each element through a user provided func-
tion. For example,

rdd1. f oreach(println(_)), (2.3)

each element of rdd1 is printed out. map and f oreach are different, the map result
of each element will be saved in a new rdd, but f oreach just uses each element of
rdd without saving anything.

• reduce: reduce is an action, it combines dataset elements using an associative func-
tion to produce a result at the driver program. For example,

val sum = rdd1.reduce(_ + _) (2.4)

calculates the sum of elements in rdd1. It’s easy to express as

val sum = rdd1.sum(). (2.5)

If each element of an RDD is a pair, the first element of the pair is key and the
second element is value. Then

val keySum = rdd1.reduceByKey(_ + _) (2.6)

means elements with the same key will be added together, and a list of pairs like
(key, sum) will be returned.

• groupByKey: groupByKey is a transformation. Similar to reduceByKey, groupByKey
groups values with the same key, the grouped values are stored in a Iterable[V].
For example,

val keyGroup = rdd1.groupByKey() (2.7)

returns a list of pairs like (key, group).

• collect: collect is a action, it sends all elements of the dataset to the driver program.
For example,

val keyGroup = rdd1.collect() (2.8)

sends rdd1 to driver program.

2.2.4 Spark Program Design Principles

Based on the concepts of RDDs and Spark, the following program design principles are
concluded.

• Parallelize computation as much as possible.

• Cache RDDs if they will be reused for several times, or it’s a global parameter of
the last iteration which can’t be calculated again.
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• Unpersist cached RDDs if it won’t be used again.

• Use broadcast variables and accumulators properly.

2.2.5 Project Related Data Structure

Spark mllib provides three Distributed Matrices which distributively store matrix con-
tent in workers. Some machine learning algorithms use similarity matrix, so Distributed
Matrices are useful.

• CoordinateMatrix[22]: CoordinateMatrix is a sparse matrix, and every entry in
the matrix is a MatrixEntry, like MatrixEntry(rowIndex, columnIndex, value). Ma-
trixEntries are stored distributively and randomly. Since MatrixEntry is a small
unit data structure, CoordinateMatrix doesn’t give too much pressure to each
worker. Also, map and reduce are easy to be conducted for CoordinateMatrix.

• IndexedRowMatrix (or RowMatrix)[23]: IndexedRowMatrix (or RowMatrix) stores
matrix as a RDD of IndexedRow (or Row). IndexedRow has a row index, but Row
doesn’t. RowMatrix and IndexedRowMatrix provide functions like PCA and SVD.
However, if a similarity matrix is stored in IndexedRowMatrix or RowMatrix, a
Row(IndexedRow) may be too large for the memory. Hence, if it doesn’t need to
use a specific function like SVD or PCA, IndexedRowMatrix should be avoided for
large dataset.

• BlockMatrix[20]: BlockMatrix divides a matrix in several blocks, and stores blocks
distributively. BlockMatrix can do matrix multiplication, addition, and subtrac-
tion.

2.3 Evaluation of Evolutionary Clustering

For EC algorithm, the goal is to minimize SC and TC simultaneously. However, algo-
rithms have different SC and TC, so it’s difficult to compare their results. Moreover, the
ultimate aim of EC is to track the drift of true clustering, low SC and TC do not neces-
sarily translate into a good quality in tracking the drift of true clustering. Therefore, the
external criterion is needed to directly evaluate the application of interest. [14]

In the experiment section, the synthetic data will provide the true classes of observa-
tions (label), so external criterion can be used to compare clustering result of different
algorithms.

Normalized mutual information(NMI) is one of the external criterion, which measures
difference between clustering result and the label. The clustering result is expressed as
W =

�
w1, w2, ...wj

 
, and the classes (label) are expressed as C =

�
c1, c2, ...cj

 
.

NMI doesn’t request the same number of class number and cluster number, and each
partition in classes compares with each partition in clusters. The formula of NMI is [14].
NMI is ranged between 0 to 1. The higher NMI, the higher clustering quality.
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NMI(W, C) =
I(W, C)

[H(W) + H(C)]/2
,

where, I(W, C) = Â
k

Â
j

|wj \ cj|
N

log
N|wk \ cj|
|wk||cj|

,

where, H(W) = �Â
k

|wk|
N

log
|wk|
N

(2.9)

2.4 Related Work

Until now, as far as we know, there is no survey of EC so that no related survey will
be mentioned here. However, the related work of EC will be discussed in Section 3.7,
because they will be compared with EC there.

Spark has provided clustering implementations k-means, Latent Dirichlet allocation
(LDA), Bisecting k-means, and Gaussian Mixture Model (GMM) on its official web-
site.[21] However, there is no implementation of EC on Spark as well, so no related
work will be mentioned here.



Chapter 3

A Survey of Evolutionary Clustering

In this section, the first problem mentioned in section 1.2 will be solved. The survey of
Evolutionary Clustering EC explains the theoretical framework of EC in details.

Before answering the sub-questions, basic concepts of EC is talked about. Section 3.1
talks about the application scenario which can’t be solved by traditional algorithms
and but is suitable for EC. Then section 3.2 defines EC, gives general workflow of EC
algorithms, and gives the categorization criteria. After that, section 3.3 introduce history
of EC.

Then section 3.4 and 3.5 introduce all EC in their categories. Moreover, the comparison
criteria and result are listed in section 3.6. Also, the performance prediction of EC
algorithms is given in section 3.8. Besides, the related work of EC is introduced in
section 3.7.

3.1 Application Scenario

In the real application, data and graph for clustering aren’t always static. Data points
may move, and graph nodes may change connections with each other. Hence, a se-
quence of new clustering result should be generated continuously. However, traditional
clustering methods can’t handle the case, just like the following two examples.

Figure 3.1 shows a time-evolved data clustering example called traffic jam prediction.
Moving objects equipped with GPS sensors are to be clustered to predict traffic jam.
A red group and a yellow group move from A to B by the same route at a different
time. The signal of one red member’ sensor is bad, so he’s still located in A when other
members are in B. According to the graph, this member will be clustered into the yellow
group. Obviously, it’s wrong. If the GPS works, the member will be clustered into the
red group. Hence, we need a clustering algorithm which can cluster the noise into the
correct cluster.

Figure 3.2 shows a time-evolved graph clustering example called communities of dy-
namic networks. Communities are clustering result of social networks. Eliza is inter-
ested in beauty makeup and follows many makeup bloggers on her social networks. She

12



3.2. Evolutionary Clustering 13

Figure 3.1: Application Scenario: Traffic jam prediction

is clustered into makeup community in 2015. Her interest changes slowly from makeup
to fashion in two years, so her community changes from makeup to fashion until 2017.
One day in 2016, a major political event happens in Eliza’s country. She commented
on some posts about the event and concerned with how it is going. If using traditional
clustering algorithms, Eliza is going to be clustered into a political community that day,
but it’s not the truth obviously.

Figure 3.2: Application Scenario: Communities of dynamic networks

In both examples, the traditional clustering algorithms can’t handle noise well. There-
fore, new clustering algorithms to deal with time-evolved clustering problem are ex-
pected.

3.2 Evolutionary Clustering

Based on the two examples, data points (nodes) to be clustered change slowly, and
behave anomaly sometimes. As a result, the clustering drifts in the long term, and also
have short-term variation. If an algorithm can reflect the long-term drift of clustering, it
can deal with time-evolved clustering problem.[4]

Evolutionary clustering (EC) algorithms are such algorithms to solve the time-evolved
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clustering problem. They reflect long-term drift of clustering so that they are robust to
short-term clustering variations. [4]

Evolutionary clustering algorithms work as follows. A sequence of time-stamped data is
inputted, EC algorithms output a sequence of a clustering result. The current clustering
result not only fits the current data well but also don’t deviate too dramatically from the
recent history.[3] Notice, the main objective of EC is still to fit current clustering result
well with the current data. EC never only depends on history.

Let’s see whether EC solves the two examples above. For traffic jam prediction, EC al-
gorithms which remember historical distance among members can handle the case. For
communities of dynamic networks, EC will cluster Eliza into makeup or fashion com-
munity than a political community since EC considers Eliza’s previous actions.

There is one thing to notice. All algorithms talked about here are in the online setting.
The online setting means the algorithm can’t see following batches of data when clus-
tering current batch of data. On the contrary, off-line setting means all batches of data
are available when clustering.

As stated above, clustering result of EC algorithm should both accurately reflect current
data, and similar to the clustering at the previous timestep. Hence, each EC algorithm
defines a snapshot cost (SC) and a temporal cost (TC) to reflect both constraints respec-
tively.[3]

Snapshot cost (SC) measures how inaccurately current clustering represents current
data. A higher SC means a worse clustering result for current data. [3]

Temporal cost (TC) measures the goodness-of-fit of the current clustering result con-
cerning either historical data features or historical clustering results. A higher TC means
a worse temporal smoothness. If TC measures the distance between current and last
clustering models, the algorithm can be categorized into model-level algorithm. If TC
measures how inaccurately the current clustering represents the historical data, the al-
gorithm can be categorized into data-level algorithm. The categorization result will be
explained in 3.4 and 3.5.[3][4].

After defining its own SC and TC, an EC algorithm tries to minimize both of them
simultaneously. Most of EC algorithms combine SC and TC into an overall cost func-
tion:

Cost = CP ⇤ TC + (1� CP)SC, (3.1)

where CP is change parameter which controls how much history affects clustering re-
sult. If CP = 0, it’s traditional clustering algorithm. If CP = 1, only history will be taken
into consideration. [3]

3.3 History of EC

In 2006, Chakrabarti et al. published the first paper about EC. The paper defines the gen-
eral framework of Evolutionary Clustering as stated in section 3.2. It also put forward
two greedy heuristic EC algorithms - Evolutionary k-means and Evolutionary agglomer-
ative hierarchical clustering. Both algorithms are model-level algorithms. They don’t try
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to minimize their defined SC and TC, but just take historical model into consideration
when updating current model.[3]

Inspired by the first paper, Yun Chi et al. extended EC to Spectral clustering algorithms
in 2007. The paper put forward one data-level EC algorithm (PCQ) and one model-
level EC algorithm (PCM). Both algorithms minimize overall cost like formula 3.1, so
they are in a more rigorous framework than Evolutionary k-means and Evolutionary
agglomerative hierarchical clustering.[4]

In the following years, many papers extended traditional clustering algorithms to EC
frameworks. For example, Ravi Shankar et al. extended frequent itemsets into a model-
level EC algorithm in 2010.[19] Yuchao Zhang et al. extended DBSCAN into a model-
level EC algorithm in 2013.[36]

Algorithms mentioned above only extend specific clustering algorithms into EC frame-
work, and select change parameter manually. Kevin S Xu et al. formulated AFFECT in
two papers in 2010 and 2014.[28][29] AFFECT is a data-level algorithm, it adjusts data
similarity by history first, then do clustering. AFFECT optimizes change parameter au-
tomatically and can extend to all clustering algorithms with proximity matrix as input.
Min-Soo Kim et al. formulated a similar data-level algorithm to AFFECT in 2009, but
the algorithm can’t calculate CP automatically and is only designed for dynamic net-
works clustering.[10] What’s more, James Rosswog et al. put forward another similar
algorithm to AFFECT called FIR in 2008.[17] The difference is AFFECT uses only the
history of the last timestep, but FIR uses a longer history.

Not only traditional clustering algorithms can be extended to EC framework, whatever
methods minimize SC and TC simultaneously can be regarded as EC algorithms. Multi-
objective optimization methods are suitable to minimize SC and TC at the same time.
Hence, Jingjing Ma et al. and Francesco Folino et al. put forward two EC algorithms
respectively based on multi-objective optimization in 2010 and 2011.[7][13] Statistical
methods are also used to create new EC algorithm. For example, Jianwen Zhang et al.
put forwarded an EC algorithm in 2009 which formulates EC as density estimation of
Exponential Family Mixture (EFMs).[35]

Just as we mentioned in section 3.2, only online EC algorithms are talked about. Offline
algorithms like [27] and [1] aren’t mentioned in the thesis.

3.4 Model-level EC Algorithms

In this section, all existing EC algorithms will be introduced briefly by the category of
data-level or model-level algorithms. Since space is limited, details of algorithms won’t
be covered here.

3.4.1 Evolutionary k-means

The Evolutionary k-means formulated by Chakrabarti is a greedy approximation algo-
rithm which changes only the second iterated step in standard k-means introduced in
section 2.1.2. Updating centroids consider both expectations of current observations and
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the position of the closest centroid of the last timestep. Although Evolutionary k-means
is a greedy algorithm, it used SC and TC to measure clustering quality. SQ (which is
inverse proportional to SC) of Evolutionary k-means is [3]

sq(C, U) = Â
x2U

(1�minc2C||c� x||), (3.2)

and TC is
hc(C, C0) = min f :[k]![k]||ci � c

0

f (i)||. (3.3)

3.4.2 EKM-MOEA/D

EKM-MOEA/D is Evolutionary k-means Clustering based on MOEA/D. The algorithm
defined the same SQ and HC as Evolutionary k-means Clustering introduced in section
3.4.1. However, EKM-MOEA/D optimizes SQ and HC instead of a greedy heuristic.
MOEA/D is a multi-objective optimization method, so SQ and HC can be optimized
simultaneously by MOEA/D. The details of MOEA/D is beyond the scope of the thesis.
The experiment of EKM-MOEA/D demonstrate the result outperforms EKM.[13]

3.4.3 Evolutionary Agglomerative Hierarchical Clustering

Evolutionary Agglomerative Hierarchical Clustering first defines the SC and TC. Node
similarity means similarity of two children of the node. Snapshot quality (be inversely
proportional to SC) is defined as the sum of tree node similarity. The distance between
two points means nodes number along with the route between the two points on the
tree. The difference between two points’ distance expresses two clusterings’ difference.
Therefore, TC is defined as the difference expectation of pairs of objects’ distance be-
tween last timestep and current timestep.[3]

Although the paper defines SC and TC, the algorithm doesn’t minimize them. The
paper formulates four greedy heuristics, each of heuristics changes the points merge
conditions as follows:[3]

1. Squared: Merge two points with the highest SQ� CP ⇤ HC at each timestep

2. Linear-Internal: Merge two points with the highest SQ� CP ⇤ (HC + penalty) at
each timestep. The penalty performs when the merge for nodes that are still too
close compared to the last timestep.

3. Linear-External: Merge two points with the highest SQ � CP ⇤ (HC + penalty)
at each timestep. The penalty performs when the merge for nodes will cause an
additional cost to merge the third node.

4. Linear-Both: Merge two points with the highest SQ�CP ⇤ (HC + penalty) at each
timestep. The penalty combines penalties of Linear-Internal and Linear External.
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3.4.4 Evolutionary Spectral Clustering - PCM

Evolutionary Spectral Clustering provides relaxed NA and NC optimization solutions
for a data-level EC algorithm (PCQ) and model-level EC algorithm (PCM).

PCM SC is NA (NC) of current clustering result and current data. TC for PCM is the
difference of clusters from two timesteps as

tc(Xt, Xt�1) =
1
2
||XtXT

t � Xt�1XT
t�1||2, (3.4)

which doesn’t request the same number of cluster across time. In PCM, the only step dif-
ferent from Spectral clustering is to calculate the first k eigenvectors of CP ⇤ Xt�1XT

t�1 +

(1� CP) ⇤Wt for NA and CP ⇤ Xt�1XT
t�1 + (1� CP) ⇤ D�

1
2

t WtD
� 1

2
t for NC.[4]

3.4.5 Evolutionary Clustering with DBSCAN

Evolutionary clustering with DBSCAN remember the neighbor vector of core nodes
at each timestep

�!
Ct , the vector is after temporal smoothness by a computation of Mt

original vector at t and Ct�1. SC is defined as Âi(ci
t �mi

t)
2, and HC is defined as Âi(ci

t �
ci

t�1)
2. The overall cost like formula 3.1 is optimized, so the temporal smoothness is

like:[36]

�!
Ct = (1� cp)

�!
Mt + cp

��!
Ct�1 (3.5)

For example, at t = 1, there are 5 core nodes with 4, 5, 3, 4, 3 neighbors respectively,
EC with DBSCAN remembers a vector C1 = [4, 5, 3, 4, 3]. At t = 2, there are still 5
nodes with 3, 4, 5, 4, 3 neighbors respectively, the vector before temporal smoothness
is M2 = [2, 2, 5, 4, 3]. If cp = 0.5, EC with DBSCAN remembers C2 = [3, 3.5, 4, 4, 3]. If
MINPTS = 3, the first and second node are still core nodes after temporal smoothness,
which is different from original clustering result.[36]

EC with DBSCAN has a shortcoming that the number of core nodes across time should
be the same; it’s nearly impossible in the real application.

3.4.6 FacetNet

FacetNet is a dynamic networks EC algorithm. It doesn’t extend traditional cluster-
ing algorithms, but formulates clustering problem as a non-negative matrix factoriza-
tion problem. For each graph clustering algorithm, the input is a proximity matrix W.
FacetNet assume every similarity entry in the matrix is a combined effect due to all m
communities. Hence, FaceNet approximate similarity entry wij ⇡ Âm

k=1 pk · pk!i · pk!j,
where pk is the probability that wij is due to the k-th community, pk!i and pk!j4 are
the probabilities that community k involves node vi and vj respectively. Written in a
matrix form, W ⇡ XLXT, where X is a n⇥m non-negative matrix with xik = pk!i, and
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L is an m ⇥ m non-negative diagonal matrix with lk = pk. XL fully characterize the
community structure (clustering result) in the mixture model.[11]

In EC setting, FacetNet is a model-level EC algorithm. It defined SC as KL-divergence
between true proximity matrix W and approximated matrix Wa, and also defined the
TC as the KL-divergence between the current clustering result from XtLt and clustering
result of the last timestep Xt�1Lt�1. FaceNet tries to minimize the overall cost in formula
3.1 using an iterative algorithm.[11]

3.4.7 Incremental frequent itemset mining

Frequent itemsets is a document clustering algorithm. The algorithm believes docu-
ments with similar keyword set are similar and should be clustered into a cluster.

One of the frequent itemsets algorithms works as follows. Each document has a doc-
space which includes keywords for the document. Some keywords are frequently com-
bined in several documents; they form frequent itemsets. For a batch of the document,
there is a list of frequent itemsets. Each frequent itemset has a doc-list which includes
all documents with these keywords. As a result, documents are clustered automatically
by frequent itemsets. However, a document may be allocated to several clusters (i.e., the
clusters may be overlapped.) To reduce the overlaps between clusters, a document can
only be allocated to a cluster with the highest following score. (The score is proposed
by Yu, et al[32])[2]

Score(d, T) = Â
t2T

(d⇥ t)/length(T) (3.6)

where d⇥ t denotes the tf-idf score of each word t in T , the frequent itemset in document
d.

Now Frequent itemsets mining is extended to EC setting. After clustering a batch of
the document, frequent itemsets are remembered. The remembered frequent itemsets
are the initialization of next frequent itemsets. It’s called incremental frequent itemset
mining.

Incremental frequent itemset mining defines Snapshot Quality (be inversely propor-
tional to SC) and HC. SQ is clustering quality of current documents by general mea-
sures like F-Score[37], NMI[25], etc. To define HC, the algorithm first matches every
clustering at ti to the most similar clustering at ti+1. For each pair of clusters, the docu-
ments included only in one of them are selected into a Set S0to measure the difference.
Âs2S0 Score(s, T) measures difference of a pair of clusters, so HC = Â8clusterpair Âs2S0 Score(s, T).
Since HC compares clustering results of two timesteps, incremental frequent itemset
mining is a model-level EC algorithm. What’s more, incremental frequent itemset min-
ing restricts cluster number because of match of different timestep clusters. [19]

3.4.8 DYN-MOGA

DYN-MOGA (DYNamic MultiObjective Genetic Algorithms) is an EC algorithm de-
signed for Dynamic Networks. It uses multi-objective optimization methods to mini-
mize SC and TC simultaneously, which is similar to EKM-MOEA/D. [7]
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DYN-MOGA defines SC as the community score introduced in [16] which effectively
maximize the number of connections inside each community and minimizes the number
of links between the communities. TC is defined as NMI of two clustering results; it
measures the similarity of community structures from the last timestep to now. Due to
its TC, the algorithm is a model-level clustering algorithm. [7]

DYN-MOGA formulates EC problem as follows. The population W means a pool of
possible clustering result CRt

m, m = 1, 2, ...for current network. The objective of EC
is to minimize both SC(CRt) and TC(CRt) simultaneously by selecting nondominated
individuals from a population. Nondominated individuals perform no worse than all
other individuals when minimizing SC and/or TC. In other words, a solution performs
well on at least one constraint. Hence, there is not one unique solution to the problem,
but a set of solutions are found. These solutions are called Pareto-optimal. [7]

DYN-MOGA represent communities based on locus-based adjacency representation.
Every node in network call gene and every gene has its allele value in the range of
{1, ..., No.node}. The allele value j of a node i means i and j are linked to the net-
work. Linked nodes (directly or indirectly) form a community. Therefore, locus-based
adjacency representation can represent different community structures in a network.
[7]

Based on above community structure, the algorithm works as follows. When t = 1, op-
timize SC only. From t = 2, a population of randomly generated individuals is created,
and individuals will be ranked according to Pareto dominance. Then individuals with
the lower rank will be selected and changed to another individual by applying variation
operators. (e.g., uniform crossover, mutation.) The new individuals will be added to the
population and ranked with old individuals. The variation and rank step will iterate
until getting a satisfied set of nondominated individuals. Finally, modularity is used to
select the highest score community structure. [7]

3.4.9 On-line Evolutionary Exponential Family Mixture - HMD

The exponential family is a probability distribution set which can be uniquely expressed
using Bregman divergence. Exponential Family Mixtures (EFMs) is a mixture of several
exponential families. e.g., GMM, multinomial mixture model (MMM). [35]

The clustering problem can be formulated as an EFM estimation problem. The dataset
to be clustered is an unknown true distribution, clustering via EFM uses an EFM to ap-
proximate the unknown true distribution. The approximation procedure is to minimize
variational convex upper bound of the KL-divergence between unknown true distribu-
tion and EFM model by EM procedure. Many clustering algorithms are EFM estimation.
(e.g., k-means and GMM clustering.)[35]

Online Evolutionary EFM provides a data-level algorithm - historical model dependent
(HMD), and a model-level algorithm - historical data dependent (HDD). For HMD, it
defines SC as the KL-divergence between unknown current data distribution and current
estimated EFM model and defines TC as Earth Mover Distance (EMD) between current
estimated EFM model and last estimated EFM model. The objective is to minimize the
overall cost like formula 3.1. It minimizes the variational convex upper bound of loss
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function by w-step, q-step or ⌘-step. Evolutionary k-means introduced in 3.4.1 is a
special case of HMD with approximate computing of dead in w-step. [35]

The data-level model will be introduced in section 3.5.5. [35]

Most of EC algorithms track the same object from time to time, so data to be clustered at
different time epochs should be identical. Online Evolutionary EFM is different; it can
be applied to the scenario that data of different epochs are arbitrary I.I.D. samples from
different underlying distributions. Hence, it obviously deals with the variation of data
size. What’s more, it doesn’t limit the cluster number. Besides, using different specific
exponential families, both HMD and HDD can produce a large family of evolutionary
clustering algorithms. [35]

3.5 Data-level EC algorithms

3.5.1 A Particle-and-Density Based Evolutionary Clustering Method

The algorithm is designed for dynamic network clustering (time-evolved network). It’s
a data-level model, so it remembers similarity matrix at each timestep. It uses cost em-
bedding method to smooth similarity between nodes first then clustering. For a pair of
node v and w, SC is defined as one-dimensional Euclidean distance measure between
dO(v, w) and dt(v, w), where dO means original distance and dt means distance after tem-
poral smoothness. TC is defined as dt�1(v, w) and dt(v, w). The cost embedding method
minimizes overall cost like formula 3.1, and the solution asks to smooth similarity of
node pair as follows. [10]

dt(v, w) = (1� CP)⇥ dt�1(v, w) + CP⇥ dO(v, w) (3.7)

After cost embedding, clustering is applied to adjusted similarity matrix. Cost embed-
ding has two advantages, independent of both the similarity measure and the cluster-
ing algorithm. Although cost embedding doesn’t limit clustering algorithm, DBSCAN
(density-based clustering algorithm) is recommended, because of its advantages of an
arbitrary number of clusters, handling noises, and being fast. As stated in section 3.4.5,
MINPTS and EPS are parameters needed to be set. Clustering result is sensitive to EPS
but isn’t much sensitive to MINPTS, so the algorithm also determines EPS automat-
ically by maximizing modularity. Since modularity maximizing is NP-complete, so a
heuristic algorithm is used. [10]

The algorithm can easily identify the stage of each community among the three stages:
evolving, forming, and dissolving by using a community structure - nano-communities.
If one node v at last timestep and another node w at current timestep (no need the same
node) have a non-zero score for a similarity function, they form a nano-community
NC(v, w). v and w have a link which is different from an edge between two nodes at the
same timestep. The whole dynamic network is modeled as a collection of lots of nano-
communities. For a dynamic network, if links among the subset of nano-communities
are dense, these nodes form a cluster. A cluster changes across time can be represented
by (quasi) l-clique-by-clique(shortly, l-KK). Figure 3.3 shows a 4-kk example. Nodes in
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an oval are in the same community at the same timestep, and the lines are links for
nano-communities. From left to right, there are four timesteps. If the number of nodes
in a community change, it’s shown on l-kk. Hence, community’s evolving, forming, and
dissolving can be detected by l-kk. The detailed method to detect community change
won’t be explained here. If interested, turn to section 5 of [10].

Figure 3.3: Example of 4-clique-by-clique(4-KK)[10]

In fact, although the algorithm is designed for dynamic network clustering, the similar-
ity adjustment then clustering steps are suitable for all clustering problems.

3.5.2 AFFECT

AFFECT is similar to A Particle-and-Density Based Evolutionary Clustering Method.
It’s a data-level EC algorithm. However, AFFECT is more general, it’s suitable for both
data and graph clustering problems, and can be extended to all traditional clustering
algorithms with similarity matrix as input. What’s more, CP is automatically optimized
by AFFECT adaptively, so that temporally smoothed similarity matrix approximates
truth similarity matrix. [29]

AFFECT assumes cluster change is a mixed result of the long-term drift of clusters and
noise. Hence, in a data-level setting, the truly proximity matrix (represent long-term
drift of clusters) assumes to be a linear combination of a true proximity matrix and a
zero-mean noise matrix as [29]

Wt = Yt + Nt, t = 0, 1, 2, ... (3.8)

where Wt is a matrix calculated from the dataset, Yt is the unknown true proximity
matrix which is the goal for the algorithm to accurately estimate at each time step.
Nt reflects short-term variations due to noise, Nt at different time step are mutually
independent.[29]

A estimate of Yt is smoothed proximity matrix:

Ŷt = CPt ⇥Yt�1 + (1� CPt)⇥Wt (3.9)
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Shrinkage estimators are used for estimating an optimal CP at each timestep, so that
estimated Ŷt has a minimized mean squared error (MSE) with the true proximities Yt.
After estimating true proximity matrix, any clustering algorithms with proximity matrix
as input can follow directly. [29]

Hence, the procedure of AFFECT repeats:

1. Adaptively estimates the optimal smoothing parameter CP using shrinkage esti-
mation;

2. Accurately tracking the time-varying proximities between objects: Ŷt = CPt ⇥
Yt�1 + (1� CPt)⇥Wt;

3. Followed by static clustering.

Actually, Ŷt incorporates proximities not only from time t-1, but potentially from all pre-
vious timesteps because Ŷt�1 covers a longer history. Ŷt can be unfolded like[29]

Ŷt =(1� CPt)Wt + CPt(1� CPt�1)Wt�1 + CPtCPt�1(1� CPt�2)Wt�2 + ...

+ CPtCPt�1...CP2(1� CP1)W1 + CPtCPt�1...CP2CP1W0 (3.10)

The details of shrinkage estimators aren’t covered in this section. Since AFFECT are im-
plemented in the project, the details will be covered in implementation section.[29]

3.5.3 FIR

FIR (Finite Impulse Response) is a data-level EC algorithm. Although it doesn’t follow
general framework of EC by minimizing SC and TC, it solves the time-evolve clustering
problem similar to AFFECT. [17]

As stated in section 3.5.2, the smoothed proximity matrix can be unfolded as formula
3.10, and CPt, t = 0, 1, 2... are automatically optimized by shrinkage estimators. FIR also
formulate smoothed proximity matrix as [17]

Ŷt = btWt + bt�1Wt�1 + bt�2Wt�2 + ... + b1W1 + b0W0, (3.11)

But the coefficients bt, t = 0, 1, 2... don’t have as good optimizer as shrinkage estima-
tors. The paper considers to set all coefficients to 1 using the flat filter, and also tries
the linear decreasing filter and quadratic decreasing filters. No one coefficient setting
outperformed the others during all time periods. Finally, they use Adaptive History
Filtering which gives more weight to the time periods when the clusters are far apart.
Adaptive History Filtering separates overlapped clusters well, but can’t detect a natu-
ral merge of two clusters. As a result, cluster number should be fixed. What’s more,
even if AFFECT uses a long history, but the older matrix will get smaller coefficients
(coefficients for older matrix will be smaller and smaller by repeatedly multiplying a
coefficient less than 1.) FIR has a risk to give too large weight to long ago history.
[17]
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3.5.4 Evolutionary Spectral Clustering - PCQ

PCQ is a data-level algorithm, SC and TC are defined similarly. SC is NA (NC) of current
clustering result and current data. TC is NA (NC) of current clustering result and last
timestep data. In PCQ, the only step different from Spectral clustering is to calculate the

first k eigenvectors of CP ⇤Wt�1 + (1� CP) ⇤Wt for NA and CP ⇤D�
1
2

t�1Wt�1D�
1
2

t�1 + (1�
CP) ⇤ D�

1
2

t WtD
� 1

2
t for NC.[4]

3.5.5 On-line Evolutionary Exponential Family Mixture - HDD

The concepts of Online Evolutionary EFM and model-level algorithm (HMD) are already
introduced in section 3.4.9. The data-level algorithm historical data dependent (HDD) is
going to be introduced here. HDD defines SC the same as HMD and defines TC as KL-
divergence of last unknown data distribution and current estimated EFM model. The
objective is to minimize the overall cost like formula 3.1. It minimizes the variational
convex upper bound of loss function by EM procedure. [35]

3.6 EC Algorithms Comparison

After introducing algorithms one by one in section 3.4 and in section 3.5, algorithms
are compared by specified criteria here. The comparison of model-level algorithms are
listed in table 3.1 and table 3.2. The comparison of data-level algorithms are listed in
table 3.3. The comparison for each criteria are listed as follows.

• Application Scenario: If an algorithm is suitable for graph clustering, it must
be suitable for data clustering. It’s because data points can be transformed to
proximity matrix. However, some algorithms are only suitable for data clustering
problem. They process data points one-by-one, but graph can’t be transformed to
observations easily.

• Adding/Deleting nodes: Algorithms which need to process proximity matrix (es-
pecially algorithms designed for dynamic networks) request points should be
identical across time because matrix addition is always executed. These algo-
rithms can deal with adding/deleting a small part of points. They add an empty
row and an empty column in the last matrix if a new point is added now. They
remove related rows and columns if some old points are deleted. As a whole,
these algorithms request most of the points should be identical across time. On
the contrary, algorithms which process data points, one-by-one accept data points
arbitrary I.I.D samples from distributions.

• Changing cluster number: Data-level algorithms always accept cluster number
change, because they don’t need to compare two clustering results. Model-level
algorithms need to compare two clustering results. If they use NMI or chi-square
to calculate the similarity of two clustering results, clustering number doesn’t need
to be fixed. If they match the closest cluster across time first, the calculate pair
distance, the cluster number has to be fixed because of the one-by-one match.
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Table 3.1: Model-level Algorithms Comparison 1

Application Sce-
nario

Adding/Deleting
nodes

Changing cluster
number

How to compare
two clustering
results

Evolutionary k-
means

data clustering yes, arbitrary
I.I.D samples
from distribu-
tions

no match clusters
across time
one-by-one

EKM-MOEA/D data clustering yes, arbitrary
I.I.D samples
from distribu-
tions

no match clusters
across time
one-by-one

Evolutionary
Agglomerative
Hierarchical
Clustering

data&graph clus-
tering

yes, but most of
points should be
identical across
time

yes, by change
tree cutting crite-
ria manually.

compare distance
of each point pair
in clustering re-
sult

PCM data&graph clus-
tering

yes, but most of
points should be
identical across
time

yes, manually
setting.

chi-square statis-
tics.

EC with DB-
SCAN

data&graph clus-
tering

yes, but the core
points should be
identical across
time

yes, automati-
cally detected

difference of
neighbour num-
ber of core nodes

FacetNet data&graph clus-
tering

yes, but most of
points should be
identical across
time

yes, automati-
cally detected

KL-divergence of
clustering results

Incremental fre-
quent itemset
mining

document clus-
tering

yes, arbitrary
I.I.D samples
from distribu-
tions

yes, automati-
cally detected

match clusters
across time
one-by-one

DYN-MOGA data&graph clus-
tering

yes, but most of
points should be
identical across
time

yes, automati-
cally detected

NMI of two clus-
tering results

HMD data clustering yes, arbitrary
I.I.D samples
from distribu-
tions

yes, manually
setting.

Earth Mover Dis-
tance (EMD) be-
tween two esti-
mated EFM mod-
els
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Table 3.2: Model-level Algorithms Comparison 2

Memory Optimization
Method

Extension
ability

optimize
CP au-
tomati-
cally

Others

Evolutionary k-
means

centroids of last
timestep

heuristic no no -

EKM-MOEA/D centroids of last
timestep

multi-objective
optimization

no no -

Evolutionary
Agglomerative
Hierarchical
Clustering

bottom-up bi-
nary tree of last
timestep

heuristic no no -

PCM k-eigenvector
matrix of last
timestep

relaxed version
optimization

no no -

EC with DB-
SCAN

vector of neigh-
bor number of
core nodes

the first-order
derivative of the
cost function
equals to zero

no no core
nodes
should
be iden-
tical
across
time

FacetNet dot product of
matrix XL

an iterative algo-
rithm

no no -

Incremental fre-
quent itemset
mining

frequent itemsets
of last timestep

heuristic no no -

DYN-MOGA last community multi-objective
optimization

no no -

HMD last estimated
EFM model

minimize the
variational con-
vex upper bound
of loss function
by w-step, q-step
or ⌘-step

yes no -



26 Chapter 3. A Survey of Evolutionary Clustering

Table 3.3: Data-level Algorithms Comparison

A particle-and
Density based
EC

AFFECT FIR PCQ HDD

Application
Scenario

data&graph
clustering

data&graph
clustering

data&graph
clustering

data&graph
clustering

data clustering

Adding/Deleting
nodes

yes, but most of
points should
be identical
across time

yes, but most of
points should
be identical
across time

yes, but most of
points should
be identical
across time

yes, but most of
points should
be identical
across time

yes, arbitrary
I.I.D samples
from distribu-
tions

Changing clus-
ter number

yes, automati-
cally

yes, manually
set

yes, manually
set

yes, manually
set

yes, manually
set

Memory similarity matrix data distribu-
tion

Optimization
Method

optimize good
parameters by
modularity op-
timization

shrinkage esti-
mation

Adaptive His-
tory Filtering

relaxed version
optimization

EM procedure

Extension abil-
ity

yes, only ex-
tends to cluster-
ing algorithms
with similarity
matrix as input

yes, only ex-
tends to cluster-
ing algorithms
with similarity
matrix as input

yes, only ex-
tends to cluster-
ing algorithms
with similarity
matrix as input

no yes, all EFM
model

optimize CP
automatically

no yes yes no no

For both data-level and model-level algorithm, whether an algorithm can detect
suitable cluster number automatically is determined by the clustering algorithm
it extends. For example, DBSCAN detects cluster number automatically, so EC
algorithm extends DBSCAN can do it too.

• Memory: Data-level algorithms remember similarity matrix or data distribution,
and model-level algorithms remember last clustering result which is different from
different algorithms.

• Optimization Method: There are three categories of optimization methods. Firstly,
only the earliest algorithms just provide heuristics to simply involve current data
and last model in updating clustering result. In the following, most of the algo-
rithms optimize the overall cost function in formula 3.1, and get their specific solu-
tion by their defined SC and TC. Besides, there are two algorithms EKM-MOEA/D
and DYN-MOGA which optimize SC and TC separately using multi-objective op-
timization methods.

• Optimize CP automatically: Except for EKM-MOEA/D and DYN-MOGA, other
algorithms minimize overall cost controlled by CP or use overall cost with CP to
measure the clustering result. Among all algorithms need a CP, only AFFECT and
FIR optimize CP automatically. According to experiments of both paper, AFFECT’s
optimization is outperformed FIR’s.

• Extension ability: Model-level algorithms can’t extend to other methods because
they define TC by their clustering method. On the contrary, data-level algorithms
have a better extensibility, because they always adjust data similarity in advance,
then follows traditional clustering method. All traditional clustering method with
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similarity matrix as input can follow all data-level model. On the other hand,
data-level algorithms are too similar to each other.

3.7 Related Work of Evolutionary Clustering

3.7.1 Incremental Clustering

The objective of incremental clustering is to update clustering result quickly when new
data arrive. There is two main difference between incremental clustering and evolu-
tionary clustering. The first is illustrated in figure 3.4. For incremental clustering, the
objective of is to get one clustering result for all data, while evolutionary clustering will
get a sequence of clustering results. (i.e. a clustering result for a batch of data).

Figure 3.4: Difference between incremental clustering and evolutionary clustering.

Secondly, incremental clustering update clustering results quickly primarily to avoid
the cost of storing all historical similarities, the focus of incremental clustering is at low
computational cost at the expense of clustering quality. It’s an obvious different objective
against evolutionary clustering which wants to remember more historical similarities.
[29] However, Some incremental clustering algorithms targets similar problem setting as
evolutionary clustering, like [15], but their focus is still on low computational cost.

However, incremental clustering is suitable for initialization model at each timestep.
For example, in Evolutionary k-means, centroids should be initialized at each timestep.
If using centroids of the last timestep as initialization, the algorithm will convergence
quickly and be more stable. [29]

3.7.2 Clustering data streams

A large amount of data that arrive at high rate make it impractical to store all the data
in memory or to scan them multiple times, so data stream clustering tries to cluster all
data with one-pass scanning and process data scalability (by using limited memory).
Although EC’s application scenarios are always a large volume of data, the objective of
EC are obviously different from data stream clustering. [29]
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3.7.3 Constrained clustering

Constrained clustering algorithms optimize some goodness-of-fit objective subject to a
set of constraints. They can be classified as hard constrained and soft constrained. For
clustering problems, hard constrained may specify that two objects must or must not
be in the same cluster, but soft constrained may bias clustering results based on addi-
tional information. Evolutionary clustering can be regarded as a soft constrained when
historical data or historical clustering results are be regarded as additional information.
However, current constrained clustering algorithms don’t have the same objective with
EC. E.g., divide the time series into segments that differ significantly from one another.
Therefore, constrained clustering is different from EC currently.[29]

3.8 Performance Prediction in Theory

In this section, the performance prediction of EC algorithms will be listed here.

EC algorithms are compared with each other. Since most of the algorithms track identi-
cal objects and don’t have extension ability, these two criteria aren’t taken into consider-
ation. For other criteria,

• Data-level algorithms as a whole should perform better than model-level algo-
rithms because data-level algorithms remember more history and adjust model at
a fine granularity level. However, it can not be said that all data-level algorithms
outperform all model-level algorithms since other criteria should be considered as
well.

• Algorithms accept different cluster number across time should perform better than
fixed cluster number algorithms. It’s because cluster merge or split is natural.
No matter whether the cluster number change automatically or manually, if the
determined cluster number is appropriate, the performance should be good.

• Algorithms optimizing the whole problem should perform better than algorithms
optimizing of defined SC and TC but not CP. Then any optimization should per-
form better than heuristics.

In the following, data-level algorithms and model-level algorithms are compared sepa-
rately, because no experiment or theory supports comparison of all of them.

Data-level algorithms: AFFECT and HDD optimize the whole problem, and AFFECT
support cluster number change automatically while HDD manually. Hence, both of
them should be the best. PCQ and particle-and-density based EC select CP manually,
they are on the second level. Although FIR optimizes the whole problem, their optimiza-
tion performs badly in experiments because considering too more historical information.
Hence, it should be the worst. In summary, the performance rank should be: (The larger,
the better.)

AFFECT, HDD > particle-and-density based EC, PCQ > FIR

Model-level algorithms: HMD, DYN-MOGA optimize the whole problem and accept
a change of cluster number, they should perform best. PCM manually sets CP and
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take a change of cluster number; it should perform worse than HMD and DYN-MOGA.
EKM-MOEA/D optimizes the whole problem, but restricts the cluster number; it should
perform worse than PCM. Evolutionary Agglomerative Hierarchical Clustering and In-
cremental frequent itemset mining are heuristics accept a change of cluster number,
and Evolutionary k-means is heuristic using fixed cluster number. Although EC with
DBSCAN doesn’t restrict clustering number, it limits core nodes number which is unre-
alistic in the real application. In summary, the performance rank should be: (The larger,
the better.)

HMD, DYN-MOGA > PCM > EKM-MOEA/D
> EC with Agglomerative Hierarchical, Incremental frequent itemset mining

> Evolutionary k-means > EC with DBSCAN



Chapter 4

Building Evolutionary Clustering Al-
gorithms on Spark

In this section, first two sub-problems of the second problem mentioned in section 1.2
will be solved. Section 4.1 selects suitable EC algorithms for Spark, and section 4.2,
4.3, and 4.4 explain how to implement four algorithms properly on Spark. It should be
noted that the implementations process batched dataset rather than data stream.

4.1 Selecting algorithms

In this project, four evolutionary clustering (EC) algorithms are built on Spark. Since
EC algorithms are categorized as data-level and model-level algorithms, two of each
category are selected to be implemented on Spark. The algorithms are determined based
on 1) whether the EC algorithm has a wide application; 2) whether the EC algorithm is
suitable for implementing on Spark.

The first determined algorithm is AFFECT. The reasons are: 1) If AFFECT is imple-
mented, another clustering algorithm is easy to be extended based on AFFECT. Hence,
AFFECT has a wide application; 2) AFFECT is designed to track the true drift of clus-
tering. (i.e., it optimizes CP.) Hence, AFFECT should perform better compared to other
algorithms. 3) Similarity calculation & CP optimization can be parallelized well.

In theory, all clustering algorithms with similarity matrix as input can extend AFFECT
directly. However, clustering algorithms which are easy to be parallelized are suitable
for extending AFFECT on Spark. Agglomerative Hierarchical Clustering merges binary
trees continuously, which doesn’t parallelize well. Density-based clustering algorithms,
like DBSCAN, can parallelize well. However, if the input is similarity matrix, current dis-
tributed DBSCAN algorithm doesn’t work. Spectral clustering is easy to be parallelized
and obviously accepts matrix input. k-means processes observations piece-by-piece so
that it can parallelize well. However, it can’t calculate centroid-point distance if the in-
put is similarity matrix. Fortunately, paper [29] provides a version of k-means which
uses similarity matrix as input. Therefore, k-means and spectral clustering are selected
to extend AFFECT according to paper [29].

30
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After selecting two data-level algorithms, two model-level algorithms are needed. Since
k-means and spectral clustering parallelize well and they are popular clustering algo-
rithms, Evolutionary k-means in paper [3] and PCM in paper [4] are going to imple-
mented.

In the following, implementation of four algorithms will be introduced one-by-one. We
start from theory to program design details. Spark program design principles are con-
sidered when designing programs.

4.2 Evolutionary k-means

4.2.1 Theory

In chapter 3, Evolutionary k-means has been briefly introduced. More details about
Evolutionary k-means will be given here.

The algorithm requests the data point as unit vectors in Euclidean Space and works only
upon cosine similarity. Evolutionary k-means also starts from centroids initialization,
but traditional initialization methods are only used for batch 1 data. From batch 2 data,
initialized centroids are centroids from the last timestep. (Like incremental clustering)
After initialization, iterate following steps until certain iteration or getting a satisfied
result.

1. Allocate data points to the closest centroid;

2. pairing each centroid at t to its nearest peer at t-1 by a function f ;

3. update each centroid by considering both expectation of surrounding points and
the closest centroid of last timestep according to

ct
j  g(1� CP)Et

X2closest(j)(x) + CP(1� g)ct�1
f (j), (4.1)

where Et
X2closest(j)(x) is mean of current surrounding point of centroid j; ct�1

f (j) and

ct
j are pairing up centroids by f ; g =

nt
j

nt
j+nt�1

f (j)
measures relative sizes of these two

clusters; nt
j = |closest(j)| be the number of points belonging to cluster j at time t.

In addition, CP measures how much to remember;

4. Normalize centroids.

4.2.2 Implementation

The pseudocode of implemented algorithm is shown in Algorithm 1. In the follow-
ing, last centroids mean centroids of the last batch of data, and current centroids mean
centroids of the current batch of data. Line 3 to 10 makes certain observations in each
batch have the same dimension. Line 11 normalizes each observation using Spark built-
in normalization transformation. Line 12 caches normalized dataset because it will be
transformed for many times. Line 13 to 18 initializes last and current centroids. For
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batch one, spark built-in KMeans (run one iteration) is used to initialize current cen-
troids; the last centroids should be the same as current centroids. For the others batches,
current centroids are initialized as last centroids, which is similar to incremental clus-
tering. Line 19 counts surrounding point number of each last centroid and return an
array of tuple (lastCentroid, count). Line 21 counts surrounding point number and cal-
culates surrounding points mean of each current centroid, it returns an array of triple
(currentCentroid, count, mean). Line 22 matches each last centroid to one current cen-
troid using a greedy algorithm - algorithm 14. Line 23-24 updates each current centroid
according to formula 4.1. Line 26 and 27 calculates snapshot quality and historical cost
according to formula 3.2 and formula 3.3 respectively.

Algorithm 14 is a greedy algorithm which matches each last centroid to the nearest
current centroid. Line 2 initializes an array of tuple (lastCentroid, currentCentroid). Line
4 finds the closest current centroid for each last centroid, and record distances for the
closest pairs. Line 5 sort the centroid pairs by distances from small to large. Line 6 to
line 12 traverses each centroid pair. If both current and last centroids are still in mutable
sets, match them, and delete them from lastModel and currentModel. If at least one
of current and last centroids have been deleted from mutable sets, ignore the pair. For
remaining centroids in lastModel and currentModel, repeat line 3 to10, until both of
them are empty.

In algorithm 1, parallelization is carried out at the normalizing dataset, counts sur-
rounding point number of each last centroid, and counts surrounding point number
and calculate surrounding points mean of each current centroid. The first is built-in
Spark transformation, so the left two are discussed here.

Algorithm 3 calculates number of surrounding point for each last centroid. Line 2 store
centroids into Spark Matrix. Line 3 let the matrix multiply each point, which is the same
as calculating the dot product of the point with each centroid. Then a vector with dot
product value of each centroid is got, the vector index with the largest value is returned
as the closest centroid index. Line 3 returns an RDD with a centroid index in each Row.
Line 4 maps an RDD with centroid indexes to a tuple of (centroid, 1) then reduce by key,
so that Line 4 get an RDD with a tuple (centroid, count) in each Row. Algorithm 4 works
similar to Algorithm 3, so it won’t be explained more.

In the program, no broadcast variable and accumulator is used.

4.3 AFFECT

The principle and procedure of AFFECT have been introduced in section 3.5.2. In this
section, implementation will be explained in details. In the following, implementation
of AFFECT, especially CP optimization, will be discussed first. Then, implementation
of clustering algorithms followed by AFFECT will be explained.
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4.3.1 Implementing AFFECT

Pseudocode of AFFECT is shown in Algorithm 5. The algorithm inputs data in the
format (index : value1, value2, ...). The user can set AFFECT iteration number evoIter
and number of cluster k manually. In the thesis, k-means and spectral clustering are
extended to AFFECT, and both of them needs a k value, so a k is inputted here. If
DBSCAN is extended to AFFECT, k is of unneeded.

Line 2 saves all data index, and line 3 broadcast it. Line 4 maps each observation into
a (key, value) pair (i.e. data with index). In line 5, data with index Cartesians itself, so
that n⇥ n pair of observations are generated. (like ((key1, value1), (key2, value2)).) Line
6 map each pair to a MatrixEntry, and line 7 creates a similarity matrix for the RDD of
MatrixEntry. The similarity measures are different according to clustering algorithms.
Line 8-13 initializes last similarity matrix and clustering result if it’s the first batch of
data.

Last similarity matrix should be adjusted before using. It’s because some objects appear
at last timestep may not generate new data now, and some new objects generate data
at this timestep but not previously. AFFECT deal with the problem by adding/deleting
data simply. If a new object is added, the line of the object in last similarity matrix
will be the same as this timestep. If an old object disappears, the line of the object
in last similarity matrix will be deleted directly. Therefore, last and current similarity
matrix will be in the same shape. Line 14 adds or deletes the rows and columns as
stated above. Line 15 catches lastMatrix in memory because it can’t be recalculated if
it’s discarded.

Line 16 to 22 iterates the procedure introduced in section 3.5.2. CP is calculated on line
17. Each value of current matrix multiplies (1� CP), then transforms to a BlockMatrix
in line 18. Similarly, each value of the last matrix multiplies CP, then transforms to a
BlockMatrix in line 19. Line 20 adds current and last matrices, and get the evolutionary
matrix. Line 21 does the static clustering with the evolutionary matrix.

After several iterations, TC and SC are calculated on line 23 and 25. Line 24 unpersist
the last matrix, just in case to seize too much memory. Then evolutionary matrix will
be stored as the last matrix in line 26 to adjust proximity matrix of next batch. Line 27
stores final clustering result which will be the model initialization of next batch.

4.3.2 Optimizing CP

In this section, CP optimization will be explained in details from theory to implementa-
tion.

Let’s recall that the true proximity matrix at each timestep can be approximated as Wt

and Ŷt�1)
Ŷt = cptŶt�1 + (1� cpt)Wt, where Ŷ0 = W0 (4.2)

Since Ŷt�1 has been temporal smoothed at last timestep, Ŷt�1 has a low variance. The
drift of clustering causes it a high bias from Ŷt. Wt has a low bias from Ŷt but a high
variance because of noise. Hence, optimizing cp has become a bias-variance trade-off
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problem. AFFECT calculates an optimized cp at each timestep by minimizing the MSE
(squared Frobenius norm) between Ŷt and Yt. The optimized cp is according to the
equation

(cpt)⇤ =
Ân

i=1 Ân
j=1 var(nt

ij)

Ân
i=1 Ân

j=1{(ŷt�1
ij � yt

ij)
2 + var(nt

ij)}
. (4.3)

Since both Yt and var(Nt) are unknown, AFFECT uses the spatial sample mean and
variance to replace yt

ij and var(nt
ij). AFFECT assumes a block structure (Dynamic

Gaussian mixture model (GMM) and dot product similarity matrix satisfy the assump-
tion.)

Based on the assumption, yt
ij and var(Nt

ij) can be estimated based on the following
equation.

1. For two distinct objects i and j both in cluster c,

Ê[wt
ij] =

1
|c|(|c|� 1) Â

l2c
Â

m2c,m 6=l
wt

lm (4.4)

ˆvar[wt
ij] =

1
|c|(|c|� 1)� 1 Â
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2 (4.5)

2. For the same object i,

Ê[wt
ii] =

1
|c| Â

l2c
wt

ll (4.6)

ˆvar[wt
ii] =
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|c|� 1 Â

l2c
(wt

ll � Ê[wt
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3. For distinct objects i in cluster c and j in cluster d with c 6= d,

Ê[wt
ij] =

1
|c||d| Â

l2c
Â

m2d
wt

lm (4.8)

ˆvar[wt
ij] =

1
|c||d|� 1 Â

l2c
Â

m2d
(wt

lm � Ê[wt
ij])

2 (4.9)

The pseudocode of calculating CP is shown in Algorithm 6. The algorithm inputs last
matrix, current proximity matrix, and current clustering result. According to formula
4.4-4.9, yt

ij and var(Nt
ij) are estimated based on the block structure in three conditions.

If there are k clusters, there are k, k, and k(k�1)
2 possible Ê[wt

ij] and ˆvar[wt
ij] estimations

for the above three conditions respectively. Before optimizing CP, yt
ij and var(Nt

ij) are
estimated according to different clusters in advance by line 4-6. Example in Fugure
4.1 illustrates the procedure. In the example, there are 5 observations in 2 clusters.
Cluster 1 has observations 1, 7, 20, and Cluster 2 has observations 3, 50. For each
condition, matrix is first filtered, then the mean and variance is estimated by traversing
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the entries in the filtered matrix. As a result, for the first two condition, an array of triple
(clusterIndex, mean, variance) is returned. For the third condition, an array of quadruple
(clusterOneIndex, clusterTwoIndex, mean, variance) is returned.

Figure 4.1: Divide Matrix when calculating CP

After estimating Ê[wt
ij] and ˆvar[wt

ij], CP is estimated by updating numerator and de-
nominator of formula 4.3 continuously. Numerator and denominator are updated in
parallel as shown in line 7.

4.3.3 Extend k-means for AFFECT

In this section, a k-means which extended to AFFECT is introduced. Traditional k-means
uses coordinates values to represent centroid and point. AFFECT smooth similarity first
then do static clustering, and the smoothed similarity can’t be transformed back to
coordinates values. Therefore, a similarity matrix based centroid-point distance formula
is needed. Paper [29] provides such a formula. The squared Euclidean centroid-point
distance is

||xi �mc||2 = wii �
2 Âj2c wij

|c| +
Âi,j2c wjl

|c|2 , (4.10)

where wij is dot product of observations i and j. Using the formula, it’s innecessary
to update centroid’s coordinates. Updating cluster’s membership directly is enough.
After testing, the formula doesn’t actually calculate squared Euclidean centroid-point
distance, but if the dataset is suitable for cosine distance measure, the formula’s result
is proportional to cosine distance. Since centroid doesn’t need to be updated, it’s fine to
use formula 4.10.

The pseudocode of adjusted k-means is shown in Algorithm 7. The algorithm inputs a
proximity matrix and the previous clustering result. The algorithm repeats calculating
minimal centroid-point distance for each point(line 4-6) and updating clustering result
(line 8) until the clustering result is fixed.

The main difference between traditional k-means and adjusted k-means is how to cal-
culate centroid-point distance. Adjusted k-means uses formula 4.10. The third term
of formula 4.10 is the same for a cluster, so it’s calculated and broadcasted in advance
(line4-5). Then the centroid-point distance is calculated in parallel.
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4.3.4 Extend Spectral Clustering for AFFECT

Spectral clustering has been introduced in section 2.1.3, it is easy to extend AFFECT in
Spark. In the project, Spectral clustering optimizing NA is implemented. It has only
two steps.

1. Do eigenvector decomposition to Adjusted proximity matrix, and get X which is
the first k eigenvectors of W associated with the top-k eigenvalues of the matrix.

2. Do k-means to X.

In the project, eigenvector decomposition is done my Spark built-in SVD decomposition.
Since Adjusted proximity matrix is symmetry, so SVD decomposition is the same as
eigenvector decomposition. The k-means is also done by Spark built-in k-means.

4.4 PCM

Theory of PCM has been introduced in section 3.4.4. Implementation of PCM is very
similar to AFFECT-Spectral (Algorithm 5). The differences are as follows. PCM doesn’t
need iterated calculation, so line 16 and 22 should be deleted. PCM set CP manually, so
line 17 can be deleted. PCM remembers Xt�1 which is the first k eigenvectors of Wt�1
associated with the top-k eigenvalues of matrix. In PCM, last Matrix Wt�1 is calculated
by Xt�1XT

t�1, it should be added in the algorithm.



Chapter 5

Experiments & Results

In this chapter, the third subproblem of problem two in section 1.2 will be answered
by experiment. The main purpose of the experiment is to test whether the four imple-
mentations are implemented properly on Spark. (i.e., They improve efficiency with the
increment of worker number.)

Of course, before testing efficiency, all of them will be tested whether they work correctly
on time-evolved data. Labelled synthetic datasets will be used in the experiment. Since
the datasets are labeled, (i.e. have ground truth,) NMI introduced in section 2.3 is a
unified evaluation measurement for all algorithms. In addition to NMI, TC and SC
defined by each algorithm will be used to evaluate each of them respectively.

5.1 DataSet

For each algorithm, Euclidean distance and dot product are implemented. In the experi-
ment, we use dot product as the similarity measurement, so the datasets are also suitable
for dot product measurement. The two datasets used in the experiment are synthetic
datasets. The first one simulates time-evolved data without noise, and the second one
simulates time-evolved data with noise.

5.1.1 Time-evolved Dataset without Noise

Spectral clustering and k-means are extended to Evolutionary Clustering Scenario in the
thesis. Among them, spectral clustering first does dimensional reduction then cluster-
ing. Hence, we use 5-dimensional data. (i.e. 2-dimensional or 3-dimensional data are
meaningless for Spectral Clustering.)

In order to simulate time-evolved data, the dataset has 7 batches (timestamps) from
batch 0 to batch 6. In each batch of the non-noise dataset, there are 3 well-separated
Gaussian distributions. The mean of each distribution is controlled by 5 coefficients (the
norm from the original point and 4 angles between mean four axes.) In the dataset,
the norm is 100, and the four angles are the same for each distribution for convenience.
Angles for each batch and each distribution are listed in table 5.1. In addition, the
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variance of the norm is 1, and the variance of each angle is p
180 . Besides, each distribution

has 1000 observations in correctness experiments.

Table 5.1: Angles of time-evolved dataset without noise

distribution 1 distribution 2 distribution 3
batch 0 0.0 2.0p

3
4.0p

3
batch 1 0.05p

3
2.05p

3
4.05p

3
batch 2 0.7p

3
2.7p

3
4.7p

3
batch 3 1.1p

3
3.1p

3
5.1p

3
batch 4 1.3p

3
3.3p

3
5.3p

3
batch 5 1.7p

3
3.7p

3
5.7p

3
batch 6 1.9p

3
3.9p

3
5.9p

3

5.1.2 Time-evolved Dataset with Noise

Except for well-separated dataset, another dataset with noise is used in the experiment.
The dataset is similar to the well-separated dataset, except for the change of angles
in each Gaussian distribution. In the not well-separated dataset, distribution 2 and
distribution 3 first move close to each other (from batch 0 to 3), then overlap (batch 4),
then leave each other (from batch 5 to 8). 7 batches of data aren’t enough to simulate
the whole process, so we add 2 more batches. The detailed angles are listed in table
5.2.

Table 5.2: Angles of time-evolved dataset with noise

distribution 1 distribution 2 distribution 3
batch 0 0.0p

3
2.7p

3
3.5p

3
batch 1 0.05p

3
2.8p

3
3.4p

3
batch 2 0.10p

3
2.9p

3
3.3p

3
batch 3 0.15p

3
3.0p

3
3.2p

3
batch 4 0.20p

3
3.1p

3
3.1p

3
batch 5 0.25p

3
3.2p

3
3.0p

3
batch 6 0.30p

3
3.3p

3
2.9p

3
batch 7 0.35p

3
3.4p

3
2.8p

3
batch 8 0.40p

3
3.5p

3
2.7p

3

5.2 Correctness Experiments

In this section, the correctness of four algorithms is tested. Each algorithm will run both
datasets stated in section 5.1 with CP = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 respectively. Then their
performance will be tested by NMI and its own defined snapshot quality(SQ)/snapshot
cost(SC) and temporal cost(TC)/temporal quality(TQ).
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5.2.1 PCM

For PCM, we implement Negated Average Association. Hence, the snapshot quality(SQ)
is NA = Tr(ZT

t WtZt), and a higher snapshot quality means a better performance on
current batch data; the temporal quality(TQ) is NA = Tr(ZT

t Wt�1Zt), and a higher
temporal quality means a better performance on previous batch data.

We first run time-evolved dataset without noise. Since the distributions are well-separated,
NMIs for all batches of data under all CP settings are 1.0. It means all CP settings can
cluster the well-separated dataset perfectly. (i.e. Traditional clustering algorithm can
handle time-evolved data without noise.) However, different CP settings have different
TQ and SQ performances. The TQ and SQ testing result for non-noise data are shown
in figure 5.1. For all CP settings, temporal quality is set to 0 for all batch 0 data, since
there is no previous batch before batch 0. When CP = 1.0, temporal quality is obviously
higher than other CP settings. However, the differences in TQ for other CP settings are
too small to be distinguished in figure 5.1. SQ result is similar to the result of TQ, except
the SQ when CP = 1.0 are much worse than other CP settings. (The detailed experiment
result is appended in Appendix C.1 and C.3.)

In order to distinguish the difference of SQ and TQ among different CP settings, ad-
justed results are shown in figure 5.2. In figure 5.2, the same first digits of TQ/SQ of the
same batch data are removed so that the differences are more clear. For example, if TQs
for batch 0 data are 123123.2487812, 123123.2432412, 123123.2425313, 123123.2413414 un-
der different CP settings, the same first digits 123123.24 will be removed. As a result,
the adjusted TQ are 87812, 32412, 25313, 13414. Since we delete the same first digits of
each value, the fluctuation in figure 5.2 doesn’t mean something wrong in the imple-
mentation. The actual trend of TQ and SQ should be in accordance with the trend in
figure 5.1, and figure 5.2 is only intended to show the difference of TQ and SQ under
different CP settings. In figure 5.2, it’s clear that a higher CP leads to a higher TQ and
a lower SQ, which is in line with the theory. Therefore, the implementation of PCM
performs correctly on the time-evolved dataset without noise. (The detailed experiment
result is appended in Appendix C.2 and C.4.)

Figure 5.1: Temporal quality & Snapshot quality of PCM

Then we run time-evolved dataset with noise. The NMI result of noise data is shown
in figure 5.3. When CP = 1.0, the NMI stays 1.0 all the time, since it only remembers
the first batch’s data. It’s a special case, and CP = 1.0 isn’t always the best CP choice
for other cases. From batch 0 to batch 4, two distributions move closer and closer to
each other, so whatever CP setting has a worse NMI result as time flows. From batch
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Figure 5.2: Temporal quality & Snapshot quality of PCM (adjusted)

5 to batch 8, two distributions leave each other, so whatever CP setting has a better
NMI result as time flows. However, except for CP = 1.0, no one CP setting has a better
performance than other CP settings all the time. (The detailed experiment result is
appended in Appendix C.5.)

Figure 5.3: NMI result of PCM of noise data

Now, we analyze TQ and SQ testing result for noise data. The results are shown in
figure 5.4. The result is similar to the result of non-noise data. When CP = 1.0, the TQ
is much better than other CP settings, and the SQ is much worse than other CP settings.
It’s a special case as stated above. The differences of TQ and SQ for other CP settings
are vague since the differences are too small. Similarly, the adjusted TQ and SQ testing
result are shown in figure 5.5. Similar to figure 5.2, figure 5.5 is intended to show a clear
differences of TQ and SQ result under different CP settings. Hence, the fluctuation in
figure 5.5 doesn’t mean the actual trend of the result. In figure 5.5, it’s clear that a larger
CP has a better TQ and a worse SQ, which is in line with the theory. (The detailed
experiment result is appended in Appendix C.6, C.7, C.8 and C.9.)

Therefore, the implementation of PCM is correct according to both non-noise and noise
data experiments.
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Figure 5.4: Temporal quality & Snapshot quality of PCM for noise data

Figure 5.5: Temporal quality & Snapshot quality of PCM for noise data (adjusted)

5.2.2 AFFECT-Spectral clustering

For AFFECT-Spectral clustering, SQ and TQ are the same as PCM. Since the only dif-
ference between PCM and AFFECT-Spectral clustering is the optimized CP, we won’t
show TQ and SQ results under different CP settings for AFFECT-Spectral clustering.
We need to show if the optimized CP provides a better clustering result than fixed CP.
We first run the well-separated dataset. Since PCM under all CP settings can cluster the
well-separated dataset well, optimized CP can do it too. (i.e. NMI for batches of data
is 1.0.) Then we run the noise data. The optimized CP and NMI for all batches are
listed in the table 5.3. Compared to figure 5.3, the NMI result of optimized CP performs
better.

Table 5.3: NMI result of AFFECT-Spectral clustering for noise data

batch CP NMI
batch 0 0.0108317 0.9937967512863873
batch 1 0.1073556 0.9937967512863871
batch 2 0.1435724 0.9937967512863873
batch 3 0.2632847 0.8913647197575457
batch 4 0.2971376 0.7355696722827354
batch 5 0.2031391 0.6913295766384434
batch 6 0.1346736 0.8425014917559971
batch 7 0.1035679 0.8941037815430084
batch 8 0.1013767 0.9763153529148262
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5.2.3 Evolutionary k-means

SQ and TC of Evolutionary k-means has been introduced in section 3.4.1. They are

sq(C, U) = Â
x2U

(1�minc2C||c� x||), (5.1)

and
tc(C, C0) = min f :[k]![k]||ci � c

0

f (i)||, (5.2)

where C is current clustering result, C0 is last clustering result, and U is the dataset.

We first run the dataset without noise. Similar to PCM’s result, NMI for all batches
of data under all CP settings is 1.0. The TC and SQ testing result are shown in figure
5.6. On the left of figure 5.6, the temporal cost is higher if CP is smaller, which is in
accordance with the theory. On the right of figure 5.6, snapshot quality is higher if CP
is smaller, which is also in accordance with the theory. (The detailed experiment result
is appended in Appendix C.10 and C.11.)

Figure 5.6: Temporal cost& Snapshot quality of Evolutionary k-means for non-noise data

Then we run time-evolved dataset with noise. The NMI result is shown in figure 5.7.
Before the overlap of two distritbutions, a larger CP setting should perform better, and a
smaller CP setting should perform better after distribution 2 and 3 overlap. In figure 5.7,
from batch 0 to batch 3, a larger CP setting actually has a better NMI result; From from
batch 6 to batch 8, a smaller CP setting actually has a better NMI result; From batch
4 to batch 5, there is no obvious trend.(The detailed experiment result is appended in
Appendix C.12 and C.13.)

The TC and SQ result for noise data are shown in figure 5.8.

For the TC result, the TC from batch 0 to 3 and from batch 6 to 8 are higher than the TC
from batch 4 to 5. It’s because from batch 4 to 5, two distributions are overlapped, and
TC of Evolutionary k-means is the expected absolute value of the difference between
matched centroid pairs, so the centroids for two distributions are closer to each other
than other timesteps. In addition, when distribution 2 and 3 move close to or leave each
other, a larger CP setting has a lower TC, which is in line with the theory. However,
when the two distributions are (near) overlapped, there is no clear trend which CP
setting is better. If the TC isn’t the absolute value, the TC trend from batch 4 to 5
should be the same as the trend from batch 0 to 3 and from batch 6 to 8. (The detailed
experiment result is appended in Appendix C.14.)
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Figure 5.7: NMI result of Evolutionary k-means for noise data

For the SQ result, it’s clear a lower CP setting has a larger SQ, which is in line with the
theory. There is one difference between the SQ result of noise data and that of non-noise
data. When distribution 2 and 3 overlap, the SQ of noise data under a higher CP setting
is lower than that under a lower CP setting. It’s because, when distribution 2 and 3
overlap, the centroids of the two distributions are very close to each other if CP is small.
Whatever points are clustered into a correct cluster, the point-centroid distance is very
small. On the other side, if CP is large, both centroids of distribution 2 and 3 are a
little away from the center of the overlapped distributions. Hence, whatever points are
clustered into a correct cluster, the point-centroid distance is large if CP is large. (The
detailed experiment result is appended in Appendix C.15.)

Figure 5.8: Temporal cost& Snapshot quality of Evolutionary k-means for noise data

Therefore, according to the NMI and SQ/TC evaluation, the implementation of Evolu-
tionary k-means on Spark is correct.

5.2.4 AFFECT-k-means

The SC of AFFECT is the sum of centroid-point distance for current dataset calculated by
formula 4.10. Similarly, TC of AFFECT is the sum of centroid-point distance for the last
dataset calculated by formula 4.10. Since AFFECT-k-means uses a k-means algorithm
with proximity matrix as input, we first show if the algorithm works correctly for both
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non-noise and noise data under different CP settings. Then we will show whether the
optimized CP provides a better performance than fixed CP settings.

We first run the well-separated dataset. Just like other algorithms, AFFECT-k-means
clusters the dataset perfectly. (i.e. NMI is 1.0 for all batches of data under all CP
settings.) The TC and SC results are shown in figure 5.9. The TC/SC for the same batch
of data is always the same and doesn’t show expected curves.

Figure 5.9: Temporal cost& Snapshot cost of AFFECT-k-means for non-noise data

It’s because of the definition of SC and TC here. Just review the TC/SC formula as
follows.

||xi �mc||2 = wii �
2 Âj2c wij

|c| +
Âi,j2c wjl

|c|2 , (5.3)

For a batch of data, the proximity matrix is fixed. Since NMI is 1.0 for the same batch of
data under all CP settings, so the clustering results are the same. If we use the formula,
the centroid-point distances for the same point under different CP settings are the same
if the clustering result and the proximity matrix are the same. Therefore, in figure 5.9,
the TC/SC for the same batch of data is always the same. From a certain perspective,
the defined TC/SC are not good evaluation measurements.

Then we run the noise dataset. The NMI result is shown in figure 5.10, and the record
is appended in Appendix C.16. The result of AFFECT k-means is similar to the result
of Evolutionary k-means. Before distribution 2 and 3 overlapped, a higher CP setting
performs better; after distribution 2 and 3 overlapp, a lower CP setting performs better
gradually.

We are not going to analyze the TC and SC result for AFFECT k-means. It’s because if
the clustering method and proximity matrix are fixed, the TC and SC are fixed. It’s not
a good measurement.

Finally, we will run the noise data with the optimized CP setting, in order to see whether
the optimized CP setting has a better NMI result. According to the result in table 5.4,
AFFECT-k-means provides good result before and after distribution 2 and 3 overlapped.
When the two distributions are (nearly) overlapped, the optimized CP doesn’t perform
better than other CP settings.

Based on the NMI experiment result, AFFECT k-means is implemented correctly.
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Figure 5.10: NMI result of AFFECT k-means for noise data

Table 5.4: NMI result of AFFECT-k-means for noise data

batch CP NMI
batch 0 0.0015256 1.0
batch 1 0.1052625 1.0
batch 2 0.2143257 1.0
batch 3 0.2508956 0.8167114929527717
batch 4 0.2759801 0.647661999743697
batch 5 0.2015299 0.7461175870548299
batch 6 0.1802462 0.7285453014338626
batch 7 0.0914781 0.9701911554558438
batch 8 0.0148692 0.9829929733076637



46 Chapter 5. Experiments & Results

5.3 Efficiency Experiments

In the following, the efficiency of each algorithm is evaluated. The main objective is to
test whether these four algorithms are parallelized well.

The cluster used in the experiment are OpenStack virtual machines provided by SICS
Swedish ICT. Each virtual machine has 80GB disk and 8GB RAM, and the system is
Ubuntu 16.10. If not mention, the executor memory is 1GB, and executor memory
overhead is 0.1GB.

We test the efficiency by using the well-separated dataset. In the experiment, only two
parameters change - data size and worker number. With a specific data size, execu-
tion time will be recorded for different worker number. After running one program,
all workers will be restarted to create the same execution environment for each pro-
gram. Also, each parameter setting will be run three times, and the average time will be
recorded.

5.3.1 Evolutionary k-means

For evolutionary k-means, the parameters used are CP = 0.2, k = 3, iterNum = 10. The
testing result is shown in figure 5.11, and the records are appended in the Appendix
C.17. The well-separated dataset has 7 batches, the time we show in figure 5.11 and
Appendix C.17 are average time (in second) of running a batch.

According to figure 5.11, if the data size is larger than 1000000, more workers run more
efficiently than one worker. What’s more, the larges data size we run, the better par-
allelization performance we get. However, if the data size is small, the memory of one
machine is enough, distributive computation spends more time on job allocation, data
shuffle, etc..

Figure 5.11: Evolutionary k-means Efficiency test (completed)

If only small data set testing result is examined, (shown in Figure 5.12) 250000 is the
junction point. Therefore, data set with less than 250000 observations don’t have to run
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the program on clusters. As a whole, the implementation runs in a high efficiency and
parallelizes well.

Figure 5.12: Evolutionary k-means Efficiency test (small size)

5.3.2 PCM

For PCM, the parameters used are CP = 0.2, k = 3, kMeansIter = 10. The testing
result is shown in Figure 5.13, and the experiment records are appended in Appendix
C.18. PCM is much slower than Evolutionary k-means when running the same size of
data, since PCM process entries in proximity matrix rather than observations. If PCM
processes 4000 data points, it means 16000000 data points for Evolutionary k-means.
In addition, PCM uses Spark built-in SVD decomposition which is time-consuming.
What’s more, Evolutionary k-means is easier to parallelize than PCM, so Evolutionary
k-means is much quicker than PCM.

The result of PCM is similar to the result of Evolutionary k-means. For large dataset,
with the increment of the worker number, the running time decreases. A larger dataset,
a larger difference between the running time of different worker number. It means the
implementation parallelize well. 4000 data is the junction point. If the data size is less
than 4000, more workers may lead to a longer running time because of job allocation,
data shuffle, etc. If the dataset is larger than 4000, it’s suitable to run on clusters.

5.3.3 AFFECT-Spectral clustering

For AFFECT Spectral clustering, the parameters used are k = 3, kMeansIter = 10,
evoIter = 3.The testing result is shown in Figure 5.14, and the detailed record is ap-
pended in Appendix C.19. There are two differences between PCM and AFFECT-
Spectral clustering. Firstly, AFFECT-Spec optimizes CP but PCM doesn’t. Secondly,
AFFECT-Spec runs 3 more iterations than PCM. Therefore, AFFECT-Spec is obviously
slower than PCM. According to figure 5.14, AFFECT-Spec is actually slower than PCM.
Similar to PCM, if a dataset is small, more workers can’t guarantee a faster cluster-
ing. If a dataset is large enough, more worker leads to a faster clustering process.
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Figure 5.13: PCM Efficiency test

What’s more, the larger dataset we run, the more specific difference between the run-
ning time of different worker number. The junction point of AFFECT-Spec is 4000. As
a whole, AFFECT-Spec is parallelized well but is obviously worse than Evolutionary
k-means.

The test result of AFFECT-Spectral clustering is similar to the result of AFFECT-k-means.
With the increment of data size, the running time decreases. Also, a large dataset im-
proves the efficiency more than a small dataset. However, we can’t prove whether the
improvement will be better if the data size is much larger.

Figure 5.14: AFFECT Spectral Clustering Efficiency
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5.3.4 AFFECT-k-means

For AFFECT k-means, the parameters used are k = 3, evoIter = 3. The testing result
is shown in Figure 5.15, and the experiment records is appended in Appendix C.20.
The result of AFFECT-k-means is really similar to the result of AFFECT-Spec, and the
only difference is the clustering method after calculating evolutionary proximity matrix.
AFFECT-k-means is also too slow to deal with real world large data. When the dataset
is large, more workers perform better; When the dataset is small, more workers my lead
to a worse result. The junction point is still 4000. The implementation is parallelized
well, but obviously not as good as Evolutionary k-means.

Figure 5.15: AFFECT k-means Efficiency



Chapter 6

Discussion and Conclusion

6.1 Discussion & Future Work

For the implementation part, four algorithms are implemented correctly on Spark. Four
of them are parallelized well, so running them on clusters improve computing efficiency.
In four of them, Evolutionary k-means is the best implementation, because it can deal
with large dataset within an acceptable time. For three other algorithms, although they
may have a more stable and better clustering result than Evolutionary k-means, they
run slower than expected. (i.e. They can’t deal with large data volume tasks in real life.)
Therefore, if new EC algorithms are going to be implemented on Spark, we prefer a
model-level algorithm. It’s because no proximity matrix has to be stored and compute.
For the future work, experiments of real data should be carried out at current four
implementations.

For the survey part, the survey provides categorization, comparison, and performance
prediction for EC algorithms. They are all useful for the researcher who is interested
in EC. In future work, the performance prediction should be verified by experiments.
Also, the two papers [31] and [30] which are not covered in the survey can be added to
the survey in future work.

6.2 Conclusion

In this thesis, we solve two problems.

Firstly, the theoretical framework of evolutionary clustering is structured by a survey.
The survey first introduces the application scenario, the definition, and the history of EC
algorithms. Then two categories of EC algorithms - model-level algorithms and data-
level algorithms are introduced one-by-one. What’s more, each algorithm is compared
with each other. Finally, performance prediction of algorithms is given. Algorithms
which optimize change parameter or don’t use change parameter to control should
perform better than algorithms use a fixed change parameter to control. In addition,
algorithms accept a change of cluster number should perform better than algorithms
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don’t accept. However, the performance prediction is in theory. In future work, the
prediction should be verified by experiments.

Secondly, the thesis explains the whole process of building evolutionary clustering algo-
rithms on Spark. Four EC algorithms are implemented on Spark in the project. Firstly,
we state how to select suitable EC algorithms for Spark. Then program design details are
given for each algorithm. The four program design principles are used to design pro-
grams. Finally, implementations are verified by correctness and efficiency experiments.
All four algorithms are implemented correctly, and all of them are parallelizes well.
However, only Evolutionary k-means improves efficiency dramatically when working
on clusters. All other algorithms don’t have such a dramatical result. In the real appli-
cation, Evolutionary k-means should be a good choice then three of others.
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Appendix A

Evolutionary k-means algorithms

A.1 Evolutionary k-means algorithm

Algorithm 1: Evolutionary k-means
1 function EvolutionaryKMeans(data, k, CP, iterNum, seed):model, hisCost, snapQuality

Input : data: A batch of dataset in libsvm format which can be transformed to
sql.DataFrame directly. k: number of centroids, CP: Change Parameter,
iterNum: Iteration Number of k-means.

Output: model: an array of k-means centroids (vector). hisCost: Historical cost of
current model. snapQuality: Snapshot Quality of current model.

2 data = toDataFrame(data);
3 newDim = data. f irst().size;
4 if isFirstBatch() then
5 dim = newDim
6 else
7 if newDim! = dim then
8 Error
9 end

10 end
11 normData = normalize(data)**Parallelization**;
12 normData.cache()
13 if isFirstBatch() then
14 currentModel = Initialize(normData) ;
15 lastModel = currentModel
16 else
17 currentModel = lastModel;
18 end
19 lastCentroidCount = getCentroidCount()**Parallelization**

55



56 Appendix A. Evolutionary k-means algorithms

20 for 1 to iterNum do
21 currentCentroidCountMean = getCentroidCountMean()**Parallelization**
22 centroidPair = matchCentorids(lastModel, currentModel)
23 currentModel =

updateCentroid(centroidPair, lastCentroidCount, currentCentroidCountMean)
24 model = normalize(currentModel)
25 end
26 hisCost = calculateHisCost(model, lastModel)
27 snapQuality = calculateSnapQuality(model, normData)
28 return model, hisCost, snapQuality

Algorithm 2: Match Nearest Centroids
1 function MatchCentorids(currentModel, lastModel):centroidPairs

Input : currentModel: Centroids of current batch data, lastModel: Centroids of
last batch data.

Output: centroidPairs: an array of tuple (lastcentroid, currentcentroid)
2 centroidPairs = null
3 if !lastModel.isEmpty() then
4 nearestPairs = lastModel. f indclosestCentroid(currentModel)
5 nearestPairs = nearestPairs.sortByDistance()
6 for each pair in nearestPairs do
7 if lastModel.contains(pair.last)&&currentModel.contains(pair.current) then
8 centroidPairs+ = (pair.last, pair.current)
9 lastModel.delete(pair.last)

10 currentModel.delete(pair.current)
11 end
12 end
13 end
14 return centroidPairs
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A.2 Match Two Clustering Algorithm

A.3 Centroid-Number algorithm

Algorithm 3: Centroid-Number algorith
1 function getCentroidCount(normData, lastModel):centroidCount

Input : normData: normalized dataset, lastModel: Centroids of last batch data.
Output: centroidCount: a RDD of tuple (lastcentroid, count)

2 lastModel = lastModel.toMatrix()
3 nearestCenter = normData.map(point => lastModel.multiply(point).argmax)

**Parallelization**
4 centroidCount = nearestCenter.map(center => (center, 1)).reduceByKey()

**Parallelization**
5 return centroidCount

A.4 Centroid-Number-Mean algorithm

Algorithm 4: Centroid-Number-Mean algorith
1 function getCentroidCountMean(normData, currentModel):centroidCountMean

Input : normData: normalized dataset, currentModel: Centroids of current batch
data.

Output: centroidCountMean: a RDD of triple (currentCentroid, count, mean)
2 currentModel = currentModel.toMatrix()
3 nearestPointCenter = normData.map(point =>

(currentModel.multiply(point).argmax), point) **Parallelization**
4 centroidCountSum = nearestPointCenter.map((center, point) =>

(center, 1, point)).reduceByKey((number1, point1), (number2, point2) =>
number1 + number2, vectorSum(point1, point2)) **Parallelization**

5 centroidCountMean = centroidCountSum.map((centroid, count, vectorSum) =>
(centroid, count, vectorSum/count)) **Parallelization**

6 return centroidCountMean
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AFFECT

B.1 AFFECT

B.2 Optimizing CP

B.3 Ajusted k-means
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Algorithm 5: AFFECT
1 function AFFECT(data,k,evoIter):clustering

Input : data: a RDD with observation in the format (index, value0, value1...),
k:number of centroid, evoIter:Iteration number of AFFECT.

Output: clustering: A map whose keys are clusters index and whose values are
sets of point index of that cluster

2 objectSet = getIndex(data) **Parallelization**
3 broadcast(objectSet.collect())
4 dataWtihIndex = data.map((_.index, _.vector)) **Parallelization**
5 cartesianResult = dataWtihIndex.cartesian(dataWtihIndex)
6 proximity =

cartesianResult.map(new MatrixEntry(_1.index, _2.index, eucliDis(_1.vector, _2.vector))
**Parallelization**

7 SimilarityMatrix = newCoordinateMatrix(proximity)
8 if isFirstBatch() then
9 lastMatrix = SimilarityMatrix

10 currentModel = initRandom(objectSet)
11 else
12 currentModel = lastModel
13 end
14 lastMatrix = AddDeletePoint(lastMatrix)
15 lastMatrix.cache()
16 for i in evoIter do
17 CP = calculateCP(currentModel, SimilarityMatrix, lastMatrix)
18 CurrentWeight = SimilarityMatrix.entries.map(new MatrixEntry(i, j, value ⇤

(1� CP))).toBlockMatrix() **Parallelization**
19 LastWeight = SimilarityMatrix.entries.map(new MatrixEntry(i, j, value ⇤

CP)).toBlockMatrix() **Parallelization**
20 EvolutionaryMatrix = CurrentWeight + LastWeight
21 clustering = staticClustering(EvolutionaryMatrix, currentModel)
22 end
23 hisCost = calculateHisCost(currentModel, lastModel)
24 lastMatrix.unpersist()
25 snapQuality = calculateSnapQuality(currentModel, normData)
26 lastMatrix = EvolutionMatrix
27 lastModel = currentModel
28 return clustering
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Algorithm 6: Optimizing CP
1 function calculateCP(lastMatrix,currentMatrix, clustering):CP

Input : lastMatrix: Adjusted proximity matrix of last timestep,currentMatrix:
proximity matrix of current data, clustering: current clustering result.

Output: CP: change parameter.
2 numerator = spark.accumulator(”numerator”)
3 denominator = spark.accumulator(”denominator”)
4 SameObjectEntry =

divideMatrixSameObject(clusterSet, lastMatrix, currentMatrix)
5 SameClusterEntry =

divideMatrixSameCluster(clusterSet, lastMatrix, currentMatrix)
6 Di f ClusterEntry = divideMatrixDi f Cluster(clusterSet, lastMatrix, currentMatrix)
7 lastMatrix. f oreach{entry => numerator.update(), denominator.update()}

**Parallelization**
8 return CP

Algorithm 7: Adjusted k-means
1 function adjustKMeans(Matrix, lastModel):newModel

Input : Matrix: proximityMatrix, lastModel:A map whose index is cluster index,
and value is the points belong to the cluster

Output: currentModel: new clustering result in a Map.
2 currentModel = null
3 while lastModel! = currentModel do
4 sameClusterMean = weightMeanSameCluster(lastModel, Matrix)
5 broadcast(sameClusterMean)
6 pointCenterPair =

Matrix.toIndexedRowMatrix.rows.MinCenterPoint(sameClusterMean)
7 lastModel = currentModel
8 currentModel = pointCenterPair
9 end

10 return currentModel



Appendix C

Experiment records

C.1 Temporal Quality of PCM for non-noise dataset

Table C.1: Temporal Quality of PCM for non-noise time-evolved data.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6
0.0 0.0 2.79418618538138 2.564631441578113 2.5849381445473765 2.580444471320224 2.428485707664763 2.528945717015586
0.2 0.0 2.7941863623881598 2.564632357612078 2.584939083991315 2.580445392948348 2.428487154293394 2.528946580950538
0.4 0.0 2.7941866573989818 2.564633884332414 2.5849406497273253 2.580446928992034 2.4284893386742166 2.5289480208425568
0.6 0.0 2.794187247418819 2.56463693776208 2.5849437811848017 2.58045000106745 2.4284938674349923 2.52895090062822
0.8 0.0 2.7941890174639346 2.5646460979630055 2.584953175440823 2.580459217198058 2.4285374537104014 2.52895953999821
1.0 0.0 3.0 3.0000000000000013 3.0000000000000036 3.0000000000000018 2.9999999999999996 2.9999999999999996

C.2 Adjusted Temporal Quality of PCM for non-noise dataset

Table C.2: Adjusted Temporal Quality of PCM for non-noise time-evolved data.

CP batch 1 batch 2 batch 3 batch 4 batch 5 batch 6
0.0 618538138 31441578113 38144547376 44471320224 48570766476 45717015586
0.2 636238815 32357612078 39083991315 45392948348 48715429339 46580950538
0.4 665739898 33884332414 40649727325 46928992034 48933867421 48020842556
0.6 724741881 36937762080 43781184801 50001067450 49386743499 50900628220
0.8 901746393 46097963005 53175440823 59217198058 53745371040 59539998210

C.3 Snapshot Quality of PCM for non-noise dataset

Table C.3: Snapshot Quality of PCM for non-noise time-evolved data.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6
0.0 2959645.2518285275 2961418.333846696 2957963.939101965 2949440.692331399 2959181.0564527093 2961696.9257635702 2965633.512843652
0.2 2959645.251828525 2961418.333846675 2957963.9391018646 2949440.692331361 2959181.056452605 2961696.9257634557 2965633.51284361
0.4 2959645.251828526 2961418.33384654 2957963.9391012304 2949440.6923311497 2959181.0564519716 2961696.925762758 2965633.5128433523
0.6 2959645.251828527 2961418.3338458994 2957963.939098252 2949440.6923301583 2959181.056448963 2961696.9257594533 2965633.5128421322
0.8 2959645.251828528 2961418.3338410323 2957963.939075576 2949440.6923225923 2959181.0564260683 2961696.9257342913 2965633.5128328432
1.0 2959645.2518285275 2834475.173251886 2806232.433293705 2764605.3700496056 2758403.9011363573 2766899.9708003392 2777680.115364826
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C.4 Adjusted Snapshot Quality of PCM for non-noise dataset

Table C.4: Adjusted Snapshot Quality of PCM for non-noise time-evolved data.

CP batch 1 batch 2 batch 3 batch 4 batch 5 batch 6
0.0 6696 10196 3139 5270 6357 4365
0.2 6675 10186 3136 5260 6345 4361
0.4 6540 10123 3114 5197 6275 4335
0.6 5899 9825 3015 4896 5945 4213
0.8 1032 7557 2259 2606 3429 3284

C.5 NMI of PCM for noise dataset

Table C.5: NMI of PCM for noise dataset.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8
0.0 1.0 0.9701911554558438 0.7739862721886919 0.7180275258245575 0.4971340263759154 0.7409194869433314 0.867865487335697 0.9829929733076637 0.9829929733076637
0.2 1.0 0.9317131161633849 0.9011219347136158 0.7242284135114484 0.6417529618267943 0.7409194869433314 0.8678654873356971 0.9829929733076637 0.9829929733076637
0.4 1.0 0.9701911554558438 0.9011219347136158 0.7242284135114484 0.584917911865751 0.682983686559486 0.8678654873356971 0.9829929733076637 0.9829929733076637
0.6 1.0 0.9701911554558438 0.9054528902493049 0.7242284135114484 0.584917911865751 0.7409194869433312 0.867865487335697 0.9829929733076637 0.9829929733076637
0.8 1.0 0.9701911554558436 0.9054528902493049 0.7242284135114484 0.6218105432816295 0.7409194869433314 0.867865487335697 0.9501535823395036 0.9829929733076637
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

C.6 Temporal Quality of PCM for noise dataset

Table C.6: Temporal Quality of PCM for noise time-evolved data.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8
0.0 0.0 1.8881846113840206 1.6520790027784977 1.3445378870458455 1.2158164417024182 1.308989593000706 1.6295708458002574 1.9157834154399633 1.8802650739740205
0.2 0.0 1.888190279444579 1.6520826833609616 1.344540149197961 1.215820439820447 1.3089915381823871 1.6295767009078368 1.9157902747331519 1.8802665113658867
0.4 0.0 1.8881997266405075 1.6520888178698487 1.3445439197067088 1.2158271044952544 1.3089947804696362 1.629586460174546 1.9158017075271707 1.8802689071350005
0.6 0.0 1.8882186226387616 1.652101087655727 1.3445514616815704 1.2158404381394232 1.3090012662362023 1.6296059815359392 1.9158245755104324 1.8802736991082112
0.8 0.0 1.8882753234870135 1.6521379031588086 1.3445740952698235 1.2158804734617676 1.3090207330818775 1.629664568253464 1.9158931986261438 1.880288078508725
1.0 0.0 3.0000000000000147 3.0000000000000013 3.000000000000002 3.0000000000000013 3.000000000000002 2.9999999999999987 2.999999999999999 3.0000000000000027

C.7 Adjusted Temporal Quality of PCM for noise dataset

Table C.7: Adjusted Temporal Quality of PCM for noise time-evolved data.

CP batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8
0.0 1846113 790027 3788704 1644170 8989593 5708458 7834154 6507397
0.2 1902794 826833 4014919 2043982 8991538 5767009 7902747 6651136
0.4 1997266 888178 4391970 2710449 8994780 5864601 8017075 6890713
0.6 2186226 1010876 5146168 4043813 9001266 6059815 8245755 7369910
0.8 2753234 1379031 7409526 4734617 9020733 6645682 8931986 8807850
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Table C.8: Snapshot Quality of PCM for noise time-evolved data.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8
0.0 2997286.260184053 2997233.751478402 2994756.1335715812 3000732.623520988 3000504.465596417 2997242.145316064 3000753.012426059 2999788.7523815953 3003411.5397727704
0.2 2997286.2601840524 2997233.7514776993 2994756.133571206 3000732.623520768 3000504.4655959182 2997242.145315908 3000753.012425401 2999788.752380965 3003411.539772654
0.4 2997286.2601840515 2997233.7514733663 2994756.1335689256 3000732.6235194453 3000504.465592872 2997242.145314947 3000753.0124214035 2999788.752377143 3003411.5397719443
0.6 2997286.2601840557 2997233.7514528967 2994756.133558163 3000732.623513194 3000504.4655784722 2997242.1453104126 3000753.012402493 2999788.7523590485 3003411.539768604
0.8 2997286.2601840557 2997233.7513969673 2994756.133546174 3000732.625065531 3000504.4655687257 2997242.1453058648 3000753.0123984146 2999788.75235121 3003411.539765146
1.0 2997286.2601840533 2916980.6008960716 2928275.2447140515 2918651.003846713 2913624.5332332626 2883679.2614975446 2889981.1066282596 2852088.9930265415 2805363.2063691844

Table C.9: Adjusted Snapshot Quality of PCM for noise time-evolved data.

CP batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8
0.0 478402 571581 520988 596417 316064 426059 381595 727704
0.2 477699 571206 520768 595918 315908 425401 380965 726540
0.4 473366 568925 519445 592872 314947 421403 377143 719443
0.6 452896 558163 513194 578472 310412 402493 359048 686040
0.8 396967 546174 506553 568725 305864 398414 351210 651460

C.8 Snapshot Quality of PCM for noise dataset

C.9 Adjusted Snapshot Quality of PCM for noise dataset

C.10 Temporal Cost of Evolutionary k-Means for non-noise dataset

Table C.10: Temporal Cost of Evolutionary k-Means for non-noise time-evolved data.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6
0.0 0.0 0.8157691522977811 0.8659157600915951 0.9283515595592866 0.8644783303235639 0.8957323852170261 0.8884068541374655
0.2 0.0 0.7325465817523916 0.832196483784308 0.9014480263546701 0.8569428669667812 0.8790682260169895 0.8757383626963002
0.4 0.0 0.5474462350796749 0.728706147612146 0.834701859229267 0.8258971111108274 0.8468207560027983 0.847935142215625
0.6 0.0 0.36240315201706624 0.5510496538063343 0.6823041340374237 0.7233301744309403 0.7746344191636392 0.7886867398900091
0.8 0.0 0.17933199174442152 0.3051975723909362 0.4226621996587821 0.5229920625902855 0.6457969544645339 0.7312802950869099

C.11 Snapshot Quality of Evolutionary k-means for non-noise
dataset

Table C.11: Snapshot Quality of Evolutionary k-means for non-noise time-evolved data.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6
0.0 0.828370885206748 0.8327354081749027 0.8253040381092734 0.8276198560186273 0.8251857553337235 0.8300057427343421 0.8311601685678628
0.2 0.8283708852067486 0.8236671627414754 0.8130380839534908 0.8149037966652238 0.8131664454976615 0.8169490684152143 0.8183800397620151
0.4 0.8283708852067491 0.7981809119333384 0.7670801936926255 0.7542722038004684 0.7526832819851206 0.7519728301248954 0.7532781547570846
0.6 0.8283708852067486 0.7599389129575106 0.6794963078710272 0.6194147136334596 0.5987615290466337 0.584704101833293 0.5810772820926002
0.8 0.8283708852067488 0.7141476090870659 0.5565192497880586 0.4156973186725811 0.34503486021656843 0.3142641611072171 0.29293825493864415

C.12 NMI of Evolutionary k-means for noise dataset

Table C.12: NMI of Evolutionary k-means for noise dataset.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8
0.0 0.9963579265109104 0.9724379883396751 0.8776249195454948 0.68759162349734 0.5794154878593103 0.6854758188560143 0.8668439759912974 0.9709126581431078 0.9969400177317583
0.2 0.9963579265109104 0.9726082399251037 0.8780014725129598 0.6876780546150545 0.5794020091353757 0.6852553394891804 0.8657256099128117 0.970903528653236 0.9969204235245254
0.4 0.9963579265109104 0.9727808845747723 0.8782293316847862 0.6878031503322383 0.5793960000490327 0.6853731699048665 0.8656013403000266 0.970901359756586 0.9969000134134143
0.6 0.9963579265109104 0.9729381755592637 0.8780230297869933 0.6879756612739988 0.579386625750811 0.6855421581778604 0.8656013403000266 0.9708743902532503 0.9967122676086605
0.8 0.9963579265109104 0.973114395315707 0.8784611086180283 0.6879881575408359 0.5794240573735349 0.6859323974856063 0.8654520005465765 0.970604720353678 0.9964895980389522
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C.13 Adjusted NMI of Evolutionary k-means for noise dataset

Table C.13: Adjusted NMI of Evolutionary k-means for noise dataset.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8
0.0 357926 243798 762491 591623 415487 547581 684397 912658 940017
0.2 357926 260823 800147 678054 402009 525533 572560 903528 920423
0.4 357926 278088 822933 803150 396000 537316 560134 901359 900013
0.6 357926 293817 802302 975661 386625 554215 560134 874390 712267
0.8 357926 311439 846110 988157 424057 593239 545200 604720 489598

C.14 Temporal Cost of Evolutionary k-means for noise dataset

Table C.14: Temporal Cost of Evolutionary k-means for noise time-evolved data.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8
0.0 0.0 0.2744531130863489 0.2592477697031659 0.2145766241421455 0.11880485193477844 0.11932620996603133 0.2130728597707409 0.264768430601621 0.27885586827990205
0.2 0.0 0.21922557880980562 0.25060543061071233 0.22129589625671828 0.1391699319027682 0.08904182628976604 0.18796522590182782 0.24892704652243508 0.2719383455671389
0.4 0.0 0.16411549434464123 0.2202898870366507 0.21603400266845335 0.15737721606326188 0.058918816571199684 0.1472033274593832 0.21685021838126495 0.2524144624026989
0.6 0.0 0.10917398411223493 0.16822312512156665 0.18585958803868557 0.15872143364290575 0.09153665607214612 0.0891468284365063 0.15795096401870837 0.2042743557619488
0.8 0.0 0.05445203292446815 0.09459853975282177 0.11774900225691627 0.1177681363487246 0.09240279954629352 0.052962929730713176 0.07186091336944392 0.11132249604340796

C.15 Snapshot Quality of Evolutionary k-means for noise dataset

Table C.15: Snapshot Quality of Evolutionary k-means for noise time-evolved data.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8
0.0 0.8813489085250211 0.8860705542482572 0.8938772260871086 0.9065795241612601 0.9178623996303693 0.9057677842391284 0.8905374188555276 0.881506301520095 0.8750847559455854
0.2 0.8813489085250211 0.8844802873070233 0.8916526328615005 0.9035428839415529 0.9164244470472871 0.9059865148597118 0.890443539774675 0.8808718269961499 0.8742146407429779
0.4 0.8813489085250199 0.8806789153198805 0.8839855024754855 0.8936726854153328 0.9097573060921301 0.90461741011162 0.8886099361404785 0.8760641589210413 0.8673638057383362
0.6 0.8813489085250211 0.8748597937932547 0.8677307666137014 0.8691527120928025 0.8865534390296472 0.8956094133008714 0.8850173471146269 0.8660187052976717 0.8485194190023789
0.8 0.8813489085250211 0.8672425875618369 0.8408148516137072 0.8211117823600184 0.8266966765643387 0.8510046373474721 0.8674494966619815 0.8533416034237001 0.8200381394399169

C.16 NMI of AFFECT k-means for noise dataset

Table C.16: NMI of AFFECT k-means for noise dataset.

CP batch 0 batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8
0.0 1.0 1.0 0.839671062716 0.677302576416 0.6506724208907063 0.707960539346 0.8885453014338626 0.9889753057921956 1.0
0.2 1.0 1.0 0.857552088874 0.659941657685 0.5811521825199422 0.747486195464 0.8487945710972422 0.9529929733076637 1.0
0.4 1.0 1.0 0.880172957310 0.682978953134 0.647552088874601 0.6365829144738 0.7081444495253784 0.9474861954642688 1.0
0.6 1.0 1.0 0.907602763882 0.727140312459 0.6798420407796374 0.684825652452 0.7829929733076637 0.8829929733076637 1.0
0.8 1.0 1.0 0.911215276941 0.777318042745 0.6913454251454545 0.654822028705 0.6829929733076637 0.8299425222457374 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table C.17: Efficiency Experiment record of Evolutionary k-means.

data size 5000000 3000000 1000000 500000 250000 100000 50000
5 workers 25s 12s 7.5s 6.67s 6.5s 7.83s 9.16s
4 workers 35s 13s 7.5s 6.67s 6s 6.83s 8s
3 workers 100s 14s 8.5s 7.33s 7s 6s 6.83s
2 workers 140s 22s 9.3s 7.67s 6s 5.83s 5.33s
1 worker 320s 76s 12s 8.67s 5.67s 5.16s 4.83s

Table C.18: Efficiency Experiment record of PCM.

data size 6000 5000 4000 3000 2000 1000
6 workers 139s 128s 139s 80s 52s 27s
5 workers 143s 136s 141s 77s 45s 26s
4 workers 154s 140s 121s 84s 43s 25s
3 workers 176s 156s 119s 82s 38s 24s
2 workers 243s 190s 160s 112s 43s 25s
1 worker 364s 301s 198s 129s 66s 28s

Table C.19: Efficiency Experiment record of AFFECT-Spec.

data size 6000 5000 4000 3000 2000 1000
6 workers 856s 714s 453s 321s 143s 65s
5 workers 921s 756s 470s 259s 164s 59s
4 workers 975s 722s 498s 311s 158s 56s
3 workers 1088s 873s 466s 335s 160s 79s
2 workers 1353s 1043s 525s 451s 169s 55s
1 worker 1623s 1233s 842s 426s 244s 84s
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C.17 Efficiency Experiment record of Evolutionary k-means.

C.18 Efficiency Experiment record of PCM.

C.19 Efficiency Experiment record of AFFECT-Spec.

C.20 Efficiency Experiment record of AFFECT-kmeans.

Table C.20: Efficiency Experiment record of AFFECT-kmeans.

data size 6000 5000 4000 3000 2000 1000
6 workers 812 726 480 312 179 62
5 workers 953 734 467 285 162 61
4 workers 964 712 445 361 163 59
3 workers 1203 839 437 385 159 74
2 workers 1602 1072 498 402 171 57
1 workers 1832 1262 814 435 238 80
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