
Degree Project in Machine Learning

Second cycle, 30 credits

Unlearn with Your Contribution
A Machine Unlearning Framework in Federated Learning

YIXIONG WANG

Stockholm, Sweden, 2024

Unlearn with Your Contribution

A Machine Unlearning Framework in Federated
Learning

YIXIONG WANG

Master’s Programme, Machine Learning, 120 credits
Date: January 8, 2024

Supervisors: Masoumeh (Azin) Ebrahimi, Jalil Taghia, Selim Ickin
Examiner: Amir H. Payberah

School of Electrical Engineering and Computer Science
Host company: Ericsson AB
Swedish title: Avlär dig med ditt bidrag
Swedish subtitle: Ett ramverk för maskinavlärning inom federerad inlärning

© 2024 Yixiong Wang

Abstract | i

Abstract
Recent years have witnessed remarkable advancements in machine learning,
but with these advances come concerns about data privacy. Machine
learning inherently involves learning functions from data, and this process can
potentially lead to information leakage through various attacks on the learned
model. Additionally, the presence of malicious actors who may poison input
data to manipulate the model has become a growing concern. Consequently,
the ability to unlearn specific data samples on demand has become critically
important.

Federated Learning (FL) has emerged as a powerful approach to address
these challenges. In FL, multiple participants or clients collaborate to train
a single global machine learning model without sharing their training data.
However, the issue of machine unlearning is particularly pertinent in FL,
especially in scenarios where clients are not fully trustworthy.

This paper delves into the investigation of the efficacy of solving machine
unlearning problems within the FL framework. The central research question
this work tackles is: How can we effectively unlearn the entire dataset from
one or multiple clients once an FL training is completed, while maintaining
privacy and without access to the data?

To address this challenge, we introduce the concept of ”contribution,”
which quantifies how much each client contributes to the training of the
global FL model. In our implementation, we employ an Encoder-Decoder
model on the server’s end to disentangle these contributions as the FL process
progresses. Notably, our approach is unique in that there is no existing work
that utilizes a similar concept nor similar models.

Our findings, supported by extensive experiments on datasets MNIST
and FashionMNIST, demonstrate that our proposed approach successfully
solves the unlearning task in FL. Remarkably, it achieves results comparable
to retraining from scratch without requiring the participation of the specific
client whose data needs to be unlearned. Moreover, additional ablation
studies indicate the sensitivity of the proposed model to specific structural
hyperparameters.

Keywords
Machine Learning, Federated Learning, Machine Unlearning, Privacy

ii | Abstract

Sammanfattning | iii

Sammanfattning
Här har de senaste åren bevittnat enastående framsteg inom maskininlärning,
men med dessa framsteg kommer bekymmer om dataskydd. Maskininlärning
innebär i grunden att lära sig funktioner från data, och denna process kan
potentiellt leda till läckage av information genom olika attacker mot den
inlärda modellen. Dessutom har närvaron av illvilliga aktörer som kan förgifta
indata för att manipulera modellen blivit en växande oro. Följaktligen har
förmågan att avlära specifika datasatser på begäran blivit av avgörande
betydelse.

Federerad inlärning (FL) har framträtt som en kraftfull metod för att ta itu
med dessa utmaningar. I FL samarbetar flera deltagare eller klienter för att
träna en enda global maskininlärningsmodell utan att dela sina träningsdata.
Emellertid är problemet med maskinavlärande särskilt relevant inom FL,
särskilt i situationer där klienterna inte är fullt pålitliga.

Denna artikel fördjupar sig i undersökningen av effektiviteten av att
lösa problem med maskinavlärande inom FL-ramverket. Den centrala
forskningsfråga som detta arbete behandlar är: Hur kan vi effektivt avlära hela
datasamlingen från en eller flera klienter när FL-utbildningen är klar, samtidigt
som vi bevarar integritet och inte har tillgång till datan?

För att ta itu med denna utmaning introducerar vi begreppet ”bidrag,” som
kvantifierar hur mycket varje klient bidrar till träningen av den globala FL-
modellen. I vår implementering använder vi en Encoder-Decoder-modell på
serverns sida för att reda ut dessa bidrag när FL-processen fortskrider. Det är
värt att notera att vår metod är unik eftersom det inte finns något befintligt
arbete som använder ett liknande koncept eller liknande modeller.

Våra resultat, som stöds av omfattande experiment på dataseten MNIST
och FashionMNIST, visar att vår föreslagna metod framgångsrikt löser
avlärandeuppgiften i FL. Anmärkningsvärt uppnår den resultat som är
jämförbara med att träna om från grunden utan att kräva deltagandet av
den specifika klient vars data behöver avläras. Dessutom indikerar ytterligare
avläggningsstudier känsligheten hos den föreslagna modellen för specifika
strukturella hyperparametrar.

Nyckelord
Maskininlärning, Federerad inlärning, Maskinavlärande, Sekretess

iv | Sammanfattning

Acknowledgments | v

Acknowledgments
I would like to express my deepest gratitude to my supervisor at Ericsson
Stockholm, Jalil, Selim, for his invaluable guidance, patience, and expertise.
His insights and suggestions have been crucial in shaping this research work.
I am also immensely grateful to my manager, Andreas, for his continuous
support, encouragement, and for providing me with the opportunity to work
on this fascinating project.

A special word of thanks goes to my KTH supervisor, Azin, whose
expertise and understanding added considerably to my experience both
academically and personally. Her guidance was instrumental in navigating
the complexities of this research. I also wish to extend my gratitude to my
KTH examiner, Amir, for his constructive feedback and critical evaluation of
this work which immensely contributed to the quality of this thesis.

Furthermore, I would like to acknowledge the support and encouragement
from my colleagues at Ericsson Stockholm, who provided a stimulating and
fun environment to work in. Their perspectives and insights have been
invaluable throughout this journey.

Last but not least, I extend my heartfelt thanks to my family and friends for
their unwavering support and belief in me throughout my academic journey.
Their encouragement and understanding have been a source of strength and
motivation, making this achievement possible.

Stockholm, January 2024
Yixiong Wang

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Definition . 4
1.3 Purpose . 5
1.4 Goals . 6
1.5 Research Methodology . 7
1.6 Delimitations . 7
1.7 Structure of the thesis . 7

2 Technical Background 9
2.1 Machine Unlearning . 10

2.1.1 Unlearning Algorithm 11
2.1.2 Unlearning Requirement 14
2.1.3 Unlearning Verification 14

2.2 Federated Learning . 15
2.2.1 Overview of FL . 15
2.2.2 Entanglement in FL 15

2.3 Machine Unlearning in FL 16
2.3.1 Challenge . 16
2.3.2 Algorithm . 17

2.4 Variational Autoencoder (VAE) 18
2.5 Background Summary . 19

3 Methodology & Implementation 21
3.1 Research Process . 21
3.2 Problem Formulation . 22
3.3 Contribution Model . 24

3.3.1 Model Architecture 24
3.3.2 Optimization loss . 25

viii | Contents

3.3.3 Aggregation . 27
3.3.4 Unlearning . 27

3.4 Implementation . 28

4 Experiment 31
4.1 Experimental Environment 31
4.2 Dataset . 32
4.3 Experiment Design . 32
4.4 Verification of the FL System 33
4.5 Validation of Unlearning Algorithm 34
4.6 Impacts of Data Homogeneity in FL tasks 35
4.7 Sensitivity Analysis . 42

5 Conclusions and Future work 47
5.1 Conclusions . 47
5.2 Limitations . 48
5.3 Future Work . 49
5.4 Reflections . 50

References 51

List of Figures | ix

List of Figures

2.1 A Machine Unlearning Pipeline 10
2.2 The framework of SISA, data is divided into shards and

slices, once unlearning request arrives, the framework requires
retraining of the target constituent model. 12

2.3 Architecture overview of feature unlearning. The top
neural network is a classifier while the bottom one is the
representation detachment extractor. 13

2.4 A toy case of FL. Three agents and one server participate in
the FL task. 16

3.1 Research Process . 21
3.2 Model Architecture of three agents. 24

4.1 Cosine Similarity between latent variables t, with and without
regularization. 36

4.2 Error Bar Plots Comparing Performance of Different Learning
Frameworks Using Training Datasets with iid Distribution. . . 37

4.3 Error Bar Plots Comparing Performance of Different Learning
Frameworks Using Training Dataset with heterogeneous
Distribution. 39

4.4 Error Bar Plots Comparing Performance of Different Learning
Frameworks Using Training Datasets with Uneven Distribution. 41

4.5 Sensitivity Study of Dimensionality of Latent Variable z. . . . 43
4.6 Sensitivity Study on Randomness 45

x | List of Figures

List of Tables | xi

List of Tables

3.1 Structural Parameters . 28

4.1 Class Distribution in Training Dataset for the Sanity Check . . 34
4.2 FL System Sanity Check Results 34
4.3 Distribution of Training Data for Agents with Complete

Heterogeneity . 38
4.4 Assignment of Training Data to Agents under Uneven

Distribution . 40
4.5 Accuracy under Different Regularization Temperatures (FLZ) . 44
4.6 Accuracy under Different Regularization Temperatures (FLZ(unlearn)) 44

xii | List of Tables

Introduction | 1

Chapter 1

Introduction

1.1 Background
The global fascination with machine learning was ignited when the machine
learning model AlphaGo triumphed over human chess player Lee Sedol.
Machine learning encompasses programs or entities that possess human-like
abilities in learning and questioning, with machine learning being a prominent
aspect. Machine learning, in essence, refers to algorithms capable of acquiring
knowledge beyond explicit programming, and it encompasses deep learning.
Deep learning, a subset of machine learning, leverages vast quantities of data
to train artificial neural networks. In recent years, there has been tremendous
progress in the fields of machine learning and artificial intelligence. Virtually
all disciplines have embraced machine learning algorithms to enhance their
services and drive economic growth. For instance, Spotify leverages machine
learning algorithms to provide personalized song recommendations based
on users’ listening history. Similarly, Ericsson employs machine learning
models to optimize the configuration of communication towers, resulting in
energy savings. Furthermore, the remarkable yet controversial online chatbot,
ChatGPT, stands as a massive machine learning model itself, trained on
extensive language data.

In modern machine learning tasks, the harmonious interplay of both
data and model is crucial. A deficiency in either can lead to significant
drawbacks. Firstly, inadequate or poor-quality data can result in biased
models, creating fairness issues and ethical dilemmas, especially in sensitive
fields like healthcare or finance. Secondly, such insufficiency often leads to
overfitting, where the model excels in training scenarios but fails to generalize
to new, unseen data, severely limiting its practical applicability. Finally,

2 | Introduction

limited data scopes hinder the model’s ability to capture complex patterns,
compromising its effectiveness in accurately representing and interpreting
the real-world complexity. These challenges underscore the importance of
ensuring both robust data and model design in the development of effective
and ethical machine learning solutions.

However, large models tend to memorize some sensitive information from
training data. Nowadays, attacks that target at large models such as the
training data extraction attack [1], are capable of recovering individual training
examples by querying the model. On the other hand, security and privacy
has been a hot social topic. Laws and regulations enforce companies and
organizations to properly use personal data [2]. For instance, the European
Union’s General Data Protection Regulation (GDPR) [3], and the California
Consumer Privacy Act (CCPA) [4] empower people with the rights to get more
control of their data, and remove their personal information from any data
collection entities.

On the other hand, modern machine learning algorithms heavily rely on
training data, which often falls short of expectations regarding purity. These
datasets may contain errors or noises that can adversely affect the performance
of the model. Unwanted information, such as racist samples, may inadvertently
exist within the dataset, and it is crucial to prevent the model from learning
such biases. Additionally, some samples might be intentionally crafted by
malicious participants, introducing potential risks to the model. Hackers can
exploit these vulnerabilities, engaging in unauthorized activities like backdoor
attacks to manipulate the model and unlawfully gather information.

Ideally, thorough scrutiny of the data could mitigate these issues. However,
in the realm of contemporary machine learning tasks, this approach proves
impractical due to the massive scale of data and the substantial labor
cost associated with meticulous inspection. As a result, deviations and
problems are often identified during product tests or through user feedback.
Consequently, a pertinent question arises: Is it possible to remove specific
information from a trained model after its training phase?

To tackle the problem of removing data and corresponding information
from machine learning models, machine unlearning was proposed by Cao
& Yang [5]. Several unlearning paradigms have been brought up and have
sparked a interest and motivation both in academia and industry [6, 7, 8].

Although the utilization of machine unlearning can stem from a variety of
reasons such as security, usability, fidelity, and privacy, it is frequently framed
as a problem of preserving privacy. In this context, users have the ability to
request the erasure of their data from computer systems and machine learning

Introduction | 3

models. In order to comply with a request for data removal, the computer
system must delete all data associated with the user and eliminate any influence
it may have had on the models trained using that data. This entails a complete
unlearning of the user’s information and its influence on the system.

In traditional machine learning approaches, the model which is highly
centralised, has access to all the data in the dataset, yet in real scenarios, most
likely, the learning task involves many participants, and data is confidential
and exclusive to its owner. For instance, several insurance company intends to
train a machine learning model that predicts potential clients. One feasible
approach is to feed a model with their current customers’ information as
positive samples. Nevertheless, due to data regulations, any disclosure of
personal data is illegal, thereby jeopardizing the principle of data completeness
in traditional machine learning approaches.

To mitigate this problem, Google introduced FL as a potential solution [9,
10]. In the FL framework, the machine learning task is carried out through the
collaboration of multiple clients, each holding their own confidential dataset.
During the learning process, data privacy is maintained. In each federation
round, clients upload their local model gradients to the server. The server
then aggregates these gradients and sends back the aggregated result as the
initial model parameters for the next federation round. This iterative process
continues until specific convergence criteria are met.

Unlearning plays a crucial role in FL and holds practical significance.
In telecommunications, machine unlearning is a required feature due to
the increasing level of liability issues and corresponding strictness in data
protection regulations. In most cases, it is not desirable or allowed to deploy a
machine learning model that is trained on a dataset collected from a plurality of
network operators to serve for a particular operator. In that case, the ownership
of a ML model is not well-defined and it is non-trivial to pinpoint underlying
reasons if a ML model under-performs than expectations. Similarly, a base
station node may consist of different network elements from different vendors,
e.g., antenna and radio units from one vendor, while the baseband and power
supplier unit from another. A joint model trained on dataset collected from
products of different vendors may also create similar challenges with respect
to business sensitivity as well as model ownership and responsibility.

Unlearning under FL setups can be inherently challenging due to the
entangled contributions of each client during successive federation rounds.
This complexity arises from the nature of FL, where the information from
local models is exchanged among participants during the aggregation process
at the server’s end.

4 | Introduction

This projects aims to propose a new approach that mitigate the unlearning
problem under FL setup. The core idea is to employ a machine learning model
at the server’s end that monitors and updates the contribution from each FL
client. The contribution model takes model parameters from each client as
input, and estimates the contribution of each client. The training process of
the contribution model is synchronized and aligned with that of the FL task.
This means that the contribution model updates the contributions as well as its
own parameters in each federation round. Inspired by the idea of VAE [11],
we design the contribution model in an Encoder-Decoder fashion.

The contribution of this project underlies in: 1) we propose the concept
of contribution in FL for machine unlearning. 2) we employ the contribution
model in the server’s end to record and update the contribution of each agent,
thereby addressing the challenge posed by untrusted agents. 3) the training
process of the contribution model is incorporated with the FL training, which
suggests that no extra training rounds are required for unlearning.

1.2 Problem Definition
Consider the case where neither the server nor agents have access to training
datasets after FL, is it possible to unlearn a specific agent without revealing
potential information learned from the portion of the dataset that was asked to
be removed?

Given an enterprise or cross-silo setting [12], in which agents are different
organizations, and the number of agents is small, each client participates in
all rounds, and each agent possesses relatively large amount of data. More
specifically, we have N agents, and there are F rounds of federated training.
We formulate the problem as follow:

Definition 1 (Dataset) Let C denote the set of clients and |C| denote the
number of clients. As an example, C = {a, b, c} denote a federation of three
clients, named “a”, “b” and “c”. As an example, for the client “a”, the
training dataset is shown as Da := {(xan, yan) | n = 1, 2, . . .} containing the
pairs of inputs xan ∈ Rdx and outputs yan ∈ Rdy , where dx and dy indicate the
dimensionality of inputs and outputs respectively.

Definition 2 (local model) Let hθk : xk → yk denote the local model from
client k ∈ C, where θk ∈ Ω denotes all the model parameters and Ω is the
space of parameters for all local models. The local model hθk is learned from
its local training data Dk.

Introduction | 5

Definition 3 (Global model) LetM denote the global, before unlearning, and
denoteM\a as the global model after unlearning agent ”a”, andMb,c denotes
the global model that is retrained with Db and Dc from scratch.

Definition 4 (Contribution) Define the latent variable as the progressive
contribution of each agent in the federated training process. Denote the latent
variables as {zk ∈ Rdz |k = a, b, c}, which is an embedding of the contribution
from agent ’k’ to the global modelM, and πk =

∑
zk, where πk ∈ R is the

sum of all contributions from all agents.

Given the preceding definitions, our research inquiry quite naturally
evolves: Is it possible for M\a, when incorporated with z, to reach a level
of performance that is comparable toMb,c?

1.3 Purpose
Machine unlearning within an FL environment is a critical area of research.
The goals of this Master’s thesis involve leveraging a contribution model at
the server’s end that monitors and updates each agent’s contribution for the
purpose of unlearning, and the potential benefits of this study could ripple
across numerous sectors of society.

This thesis work would bring significant advantages to data privacy. The
ability to unlearn specific data points can protect user privacy and promote
ethical data use. Users could request their data to be unlearned from models,
thereby respecting their digital rights and autonomy. This aligns with ethical
considerations around personal data use and the right to digital privacy. Also
as mentioned in Section 1.1, Governments and other regulatory bodies would
appreciate the mechanism to unlearn data from models as it aligns with global
trends towards user data protection regulations, like GDPR [3] in Europe and
CCPA [4] in California. It enhances their ability to enforce data privacy laws
and protect citizens.

In parallel, machine unlearning contributes to sustainability. Machine
learning, especially at scale, can be resource-intensive. Consider the massive
computation that is involved in training with terabytes of data, the energy
assumption and the carbon emission are non-negligible when it comes to
retraining from scratch. The ability to unlearn data without retraining the
entire model could dramatically reduce the computational resources and
energy required, thus promoting sustainability in AI practices.

By addressing these anticipated issues, this thesis offers a balanced
approach to machine learning, underscoring the importance of ethical

6 | Introduction

considerations, sustainability in the development and deployment of AI
systems. The anticipated benefits and problem-solving potential of the
project go beyond technological advancement, underscoring the necessity of
incorporating societal and ethical perspectives into technological research and
development.

1.4 Goals
The overarching objective of this project is to alleviate issues related to
machine unlearning in an FL setting by introducing and employing the concept
of ’contribution.’ The main goal has been subdivided into the following
targeted sub-goals:

1. Acquire an in-depth understanding of the principles, research ori-
entations, methodologies, and challenges encompassing machine
unlearning and FL.

2. Establish the necessary framework for FL.

3. Develop a model to measure contributions and subsequently maintain
and update client contributions.

4. Customize the aggregation function at the server in line with the above.

5. Cultivate the ability to design and implement experiments to evaluate
unlearning performance within the FL environment.

6. Utilize evaluation methods to assess the unlearning process whilst
preserving an acceptable degree of FL performance.

Upon successful completion of the project, we anticipate the following
deliverables and outcomes:

1. A viable machine unlearning framework within an FL context will be
developed and verified for operation.

2. The concept of ’contribution’ will be rigorously defined, supported by
theoretical reasoning and mathematical assurances.

3. The effectiveness of the framework from computation and commu-
nication cost aspects will be verified through strategically designed
experiments. Specifically, it will be demonstrated that post-unlearning,
our model achieves performance metrics comparable to a model that has
undergone retraining from scratch.

Introduction | 7

1.5 Research Methodology
In this thesis, an Encoder-Decoder styled contribution model is utilized at
the server end to observe and update the contribution of each participating
agent, eliminating the need for retraining. Previous unlearning methodologies
applied at the server’s end, as noted in [13, 14], necessitate retraining, thereby
introducing additional computational burdens. [15] introduces gradient
ascent, and [16] extends this by incorporating the Fisher Information matrix
into gradient ascent, which constrains the update magnitude of different
parameters in consideration of the significance of each parameter from
preceding tasks. However, this approach operates at the agent’s end,
potentially compromising the global model due to the issues associated with
untrusted agents.

1.6 Delimitations
In the context of FL setup, machine unlearning can be broadly categorized
into three tasks. The first category is Class Unlearning, where clients request
the global model to unlearn information associated with specific classes. The
second category is Sample Unlearning, where a client seeks to have the
global model unlearn a subset of its own data. If the subset encompasses
the entire client’s data, then Sample Unlearning becomes equivalent to Client
Unlearning.

This project specifically concentrates on Client Unlearning, and all
experiments are conducted under this particular assumption.

1.7 Structure of the thesis
Chapter 2 presents relevant background information about xxx. Chapter 3
presents the methodology and method used to solve the problem. …

8 | Introduction

Technical Background | 9

Chapter 2

Technical Background

In this initial section, we strive to provide foundational knowledge pertinent
to the thesis. The objective is to empower readers with a thorough
comprehension of the key concepts involved, which are machine learning,
machine unlearning, FL, and the fusion of these concepts.

Machine learning (ML) is a subset of artificial intelligence (AI) that
employs algorithms and statistical models to enable systems to perform tasks
without explicit instructions, relying instead on patterns and inference derived
from data [17]. This dynamic field has progressed rapidly in recent years
and has underpinned many technological advancements, from autonomous
vehicles to personalized recommendation systems.

Machine Unlearning (MU), an extension of the traditional machine
learning model, has been introduced to address issues of data privacy and
model efficiency [5]. MU aims to ”forget” or remove specific data points
from a trained model when the data is no longer relevant, erroneous, or when
the data owner wishes for it to be deleted for privacy reasons. This could be
accomplished without completely retraining the model from scratch. MU has
also been explored as a tool for ensuring compliance with regulations such
as the General Data Protection Regulation (GDPR), which grants individuals
”the right to be forgotten” [3]. A seminal work by Bourtoule et al., ”Machine
Unlearning,” provides a comprehensive study on this topic [6].

FL is another emergent field in machine learning. Proposed by Google in
2016 [18], it enables models to be trained across many decentralized devices
or servers holding local data samples, without requiring the transfer of those
samples to a central server. This has significant implications for data privacy
and security, as it allows data to remain in its original location, mitigating the
risks of data breaches associated with central data storage. The work ”Towards

10 | Technical Background

Federated Learning at Scale: System Design” provides an excellent overview
of FL [19].

The intersection of Machine Unlearning and FL is a promising research
area, creating a potential for machine learning systems that safeguard user
privacy by learning in a distributed manner and ’unlearning’ data when
necessary.

2.1 Machine Unlearning

Figure 2.1: A Machine Unlearning Pipeline

In the realm of machine unlearning, training a model involves the use
of a particular dataset and a learning algorithm. Once this training phase
is complete, there arises a requirement to delete some elements, which
could include sample(s), feature(s), or class(es), contingent on the particular
unlearning task. Following this, an unlearning algorithm is executed.
Moreover, machine unlearning is a process that requires cooperation of
original data, learning algorithm, original model, unlearning algorithm,
unlearning requirements, unlearned model, and verification schemes. Fig 2.1
shows the pipeline of machine unlearning. Before diving deep into details of
each component, we give the mathematical definition of unlearning problems
in general.

Definition 5 (Exact Machine Unlearning) [20] Let A(·) denote a learning
algorithm and U(·) denote an unlearning algorithm. Further, letD denote the
training dataset and Df denote the dataset to be unlearned. For a hypothesis
T in the space of all possible hypothesesH, it is said thatU(·) exactly unlearns
Df if and only if:

Technical Background | 11

Pr(A(D\Df) ∈ T) = Pr(U(D,Df , A(D)) ∈ T), (2.1)

where \ denotes set subtraction.
One thing to mention is that in Equ. 2.1, the unlearning algorithm U(.)

has access to the unlearned dataset Df , however, this assumption may not be
necessary, as Nguyen et al. [21] proposed an unlearning algorithm based on
Bayesian Inference that does not require access to Df .

Def. 5 provides us with an ideal case where the unlearning algorithm has
identical performance (at least identical output distribution) with the model
retrained from scratch, while real scenarios often prove insufficiency of this
assumption. This yields a relaxed definition, ϵ−Approximate Unlearning.

Definition 6 (ϵ−Approximate Machine Unlearning) Given ϵ > 0, we say that
U(.) is an ϵ−Approximate machine unlearning algorithm if ∀T ∈ H:

e−ϵ ≤ Pr(U(D,Df , A(D)) ∈ T)
Pr(A(D\Df) ∈ T)

≤ eϵ (2.2)

The definition above provides a tolerance range concerning the deviation
between the output space distributions of the unlearned and retrained models.

2.1.1 Unlearning Algorithm
Based on their specifications, unlearning algorithms can be sorted into
different categories. Model-agnostic algorithms operate irrespective of the
variety of learning models and offer theoretical guarantees. Conversely,
model-intrinsic strategies are specifically designed for certain types of
learning models. Lastly, there exist data-driven techniques that employ data
segmentation and slicing to expedite the retraining process on a partitioned
fraction of the original dataset.

Since machine unlearning can be classified to sample-level unlearning,
feature-level unlearning, and class-level unlearning, we introduce some of
the most classic algorithms within each category, in order to give readers an
intuition of how unlearning algorithms work.

The goal of sample-level unlearning is to eliminate target sample(s) and
their potential influence from the learning model. Bourtoule et al. [6]
proposed a distributed framework as shown in Fig. 2.2. The global model
is the aggregation of several constituent models. When it comes to machine
unlearning, only the model whose shards contain the data that needs to be

12 | Technical Background

unlearned is retrained with the retained data. One thing to mention is that this
approach is different from FL, as the aggregation is done for once only if all
the constituency models converge.

Figure 2.2: The framework of SISA, data is divided into shards and slices,
once unlearning request arrives, the framework requires retraining of the target
constituent model.

SISA reduces the time required for retraining by segmenting the data into
shards and slices. Nonetheless, owing to the hierarchical structure, some data
points not associated with the unlearning process may also be inadvertently
unlearned. Additionally, it is inescapable that some level of retraining is still
necessary.

When it comes to the feature-level unlearning, instead of forgetting the
whole sample, the unlearning algorithm is asked to remove any potential
influences on the learned model that can be traced back to specific features
from the training data. [22] propose to replace the feature in each relevant
sample with 0. Accordingly, a first-order update formula for gradient descent
was proposed to make this approach learnable. This paper estimate the
effect of features in training data on parameter updates, and gave a closed-
form formula. However, retraining based on the 0-replacement algorithm is
required.

In [2], Guo et al. propose a pipeline for the feature-level unlearning task
in deep neural networks. Fig. 2.3 shows the architecture. The network model
is divided into two sections. The top segment constitutes the main network,
which in this case, is a VGG-based classifier. The bottom portion, the auxiliary

Technical Background | 13

network, computes the required mutual information given the feature map
and the labeled features from input space, and formulates a representation
detachment loss function. The objective is to map the features in the latent
space to input data, facilitating the removal of the target feature from the
latent space using this map as a reference. The assumption is that, once
this is done, the feature is also removed from the output, presuming the
propagation in the main network is a Markov process. While this study uses a
network to comprehend the correlation between features from different spaces
for unlearning features from the output space, it presumes the feature to be
unlearned is predetermined and is applicable only to feature-level unlearning
with deep neural networks.

Figure 2.3: Architecture overview of feature unlearning. The top neural
network is a classifier while the bottom one is the representation detachment
extractor.

Class-level unlearning becomes imperative when information pertaining
to an entire class needs to be forgotten. In such scenarios, Tarun et al. [23]
suggest utilizing a noise matrix to modify the model weight for the unlearning
process. This noise matrix aligns with the dimensionality of the input data and
is devised by resolving an optimization problem where the loss of the original
model with respect to data from the target unlearning class is maximized,
factoring in the noise matrix. Following the acquisition of the noise matrix,
a step to impair the model’s parameters is needed to confirm the unlearning
of the target class. An additional repair step is then executed to uphold
the performance on other classes. It’s important to note that the unlearning
algorithm does not have access to the erased dataset, thereby offering a degree
of privacy protection for the user.

An interesting consideration arises as to whether it is feasible to implement
class-level unlearning devoid of any access to either the training or the retained

14 | Technical Background

data. Drawing from the principles presented in [23], Chundawat et al. [24]
introduce a novel approach in the form of a zero-shot unlearning algorithm.
This approach diverges from the standard procedure of generating a noise
matrix from actual training data. Instead, the authors suggest a unique
method involving the synthesis of data through the resolution of a different
optimization problem. The resulting synthetic data then forms the foundation
of the noise matrix, thereby eliminating the necessity for access to the real
training data. Pertaining to the crucial processes of impairing and repairing the
model parameters, the technique of knowledge distillation is employed. This
technique allows the preservation and transfer of knowledge from a complex
model into a simpler one. In this context, it’s used to modify the model’s
parameters effectively for unlearning and subsequently restoring them, again
bypassing the requirement for the original training dataset.

2.1.2 Unlearning Requirement
To ensure the effective implementation of the unlearning algorithm, certain
prerequisites must be met. The primary requirement is completeness, which
infers that the performance of the model post-unlearning should be analogous
to the model prior to unlearning [5]. Another critical aspect to consider is
timeliness, given that the unlearning algorithm might necessitate additional
time. Furthermore, it is important that machine unlearning algorithms
effectively ”forget” or unlearn specific data points, having minimal impact
on the learning model. Aspects of efficiency and privacy should be taken
into account, although assuring these can be challenging in certain practical
scenarios, thus we might consider relaxing this requirement.

2.1.3 Unlearning Verification
Once an unlearning algorithm is implemented, the resultant model is referred
to as the unlearned model. Nevertheless, before concluding that the unlearning
process is complete, it’s essential to validate the unlearned model. The general
rule is that if the unlearned model and the model retrained from the start
are indistinguishable, then the unlearning algorithm is deemed feasible [25].
The first verification technique is feature injection. Izzo et al. [26] put
forth a method that concentrates on the weight associated with the target
feature to be unlearned. The concept is that if a model unlearns a feature,
the corresponding weight should drop to zero post-unlearning. However,
this approach is applicable only to feature-level unlearning, which will be

Technical Background | 15

discussed in subsequent sections. Relying on privacy attacks, measuring
forgetting ensures that the unlearned data does not further influence the
unlearned model. Jagielski et al. [27] introduced α−forgetting, where a
model α−forgets a training sample if a privacy attack on that sample yields no
more than a success rate of α. This methodology is more flexible compared
to differential privacy, as it does not necessitate instant forgetting. However,
when the volume of data samples to be unlearned is vast, this scheme fails in
terms of verification time.

2.2 Federated Learning

2.2.1 Overview of FL
A representative case of FL is illustrated in Fig. 2.4. This diagram
demonstrates the progressive update of the global model weight, θs, achieved
by aggregating the local model parameters θa, θb, and θc. This procedure
ensures a continuous adaptation of both the global and local model weights.
Such adaptations are made possible due to the efficient interaction between
the server and its associated agents, thereby upholding a system of timely and
responsive updates.

2.2.2 Entanglement in FL
In the FL process, iterative training takes place over numerous rounds,
with each client’s initial model for a given round being sourced from the
parameter updates in the preceding round. These updates inherently integrate
contributions from all participating clients. As a result, parameter updates
facilitate information entanglement, a phenomenon that intensifies with the
progression of the training rounds.

Suppose we consider N clients, each possessing their distinct dataset
denoted by Da, Db, · · · . The initial model weights for this scenario are
designated as θ0. Further, θ(i)k signifies the model of client k after the i-th
round of FL training, and θ(i)s represents the global model post-aggregation in
the i-th round.

The parameter update function, represented byG(θ,D), accepts the initial
model θ and the dataset D, and outputs the updated weight of this model. In
the j-th round, the global model is given by:

16 | Technical Background

Figure 2.4: A toy case of FL. Three agents and one server participate in the
FL task.

θ(j)s =
1

N

N∑
k=1

G(θ(j−1)
s , Dk) (2.3)

where the marginal condition θ(0)s = θ0 applies.
This iterative process is integral to FL and demonstrates the flow

and updating of model parameters in a collaborative multi-client setting.
Information entanglement, facilitated by parameter updates, allows all clients’
contributions to be incorporated into each iteration, further enriching the
model’s learning process.

2.3 Machine Unlearning in FL

2.3.1 Challenge
Navigating the intersection of machine unlearning and FL introduces distinct
challenges. In FL, training data remains private, belonging solely to its owner,
thereby preventing the server from accessing individual data samples.

The nature of FL also necessitates a different categorization of unlearning

Technical Background | 17

tasks compared to traditional machine unlearning. For instance, feature-level
unlearning, which is commonplace in typical scenarios, becomes impractical
in this context due to data confidentiality. Consequently, the concept of agent-
level unlearning emerges, which requires the unlearning algorithm to remove
all data and subsequent influences stemming from a specific agent. What’s
more, the distinction between each category in FL context can be vague.
In the case where the distribution of data of each agent is non independent
and identically distributed(non-iid), implying that every agent retains data
corresponding to exclusive classes, agent-level unlearning can morph into
class-level unlearning.

In addition, as discussed in Sec. 2.2.2, the occurrence of information
entanglement in FL cannot be neglected. The iterative contribution of all
clients to the final model’s learning complicates the disentanglement of an
individual agent’s impact in an agent-level unlearning task. This characteristic
of FL presents significant challenges to the execution and efficacy of machine
unlearning.

2.3.2 Algorithm
This fact that servers lack access to training data has led many researchers in
this field to implement unlearning algorithms on the agent’s side, where data
is directly accessible. Nevertheless, this idea brings potential reliability and
security risks to the FL system. This is largely due to the commonly recognized
assumption in FL that agents may manipulate their data or model weights to
their advantage, thereby creating added challenges to maintaining secure and
efficient unlearning in a federated environment.

In the work of Halimi et al. [15], the concept of agent-end gradient ascent
is proposed as a solution to the challenge of agent-level unlearning. The central
idea revolves around locating the weight that maximizes the loss function for
the client intended to be erased, located within the l2-norm ball with a radius
of δ, centered around wref . In this scenario, wref signifies the reference model
that is aggregated from the weights of all agents, excluding the targeted agent.

Inspired by [15], Wu et al. [16] give a comprehensive examination of
machine unlearning within the context of FL. It identifies three types of
unlearning requests - class, client, and sample unlearning, and proposes a
general pipeline to handle these requests effectively. The core of this pipeline
involves the use of reverse stochastic gradient ascent (SGA) and elastic
weight consolidation (EWC) as tools for federated unlearning. EWC takes
the importance of each parameter to the previous old data into account. The

18 | Technical Background

effectiveness of this approach was confirmed through numerous experiments
that measured both unlearning efficacy and efficiency.

In the paper [13], the authors introduce an innovative unlearning technique
for FL, known as FedEraser. This technique focuses on minimizing the loss
function of the global model while retaining the accuracy of unlearning below
a specific threshold. Model parameters are calibrated using the Frank-Wolfe
algorithm to solve an optimization problem, enabling the adjustment of the
remaining agents’ weights to offset the influence of the unlearned agent.
Crucially, the FedEraser algorithm operates on the server-side, thus ensuring
a secure environment free from potential data manipulation by individual
agents.

2.4 Variational Autoencoder (VAE)
VAEs are a type of generative model, which sets them apart from other types
of deep learning models. First proposed by [11], VAEs learn a compressed,
low-dimensional representation of the input data from a latent space. This
type of algorithms have demonstrated considerable effectiveness in scenarios
where the output isn’t directly influenced by the input. Instead, certain latent
variables, in conjunction with the input, jointly contribute to the formation of
the output.

VAEs employ an encoder-decoder structure. The encoder models the
posterior distribution p(z|x), where z is the latent variable and x is the observed
data. The decoder then generates new data by sampling from the posterior
distribution.

The objective of VAE is to maximize the evidence lower bound (ELBO)
of the marginal likelihood of x:

L(θ, ϕ; x(i)) = Eqϕ(z|x(i))[log pθ(x(i)|z)]− D[qϕ(z|x(i))||pθ(z)] (2.4)

where θ and ϕ are the parameters of the decoder and encoder, respectively,
pθ(x(i)|z) is the likelihood of data given latent variable, and qϕ(z|x(i)) is
the approximate posterior. The second term is the Kullback-Leibler (KL)
divergence between the approximate and prior distributions, acting as a
regularization term.

To make it computationally feasible, the authors introduce the reparame-
terization trick for the approximate posterior, which allows backpropagation
for neural nets:

Technical Background | 19

z = µ+ σ ⊙ ϵ (2.5)

whereµ and σ are outputs of the encoder,⊙ is the element-wise multiplication,
and ϵ ∼ N (0, I) is a noise vector.

2.5 Background Summary
In this chapter, we provide a succinct overview of machine unlearning,
FL, and variational autoencoders. We elaborate on the process of machine
unlearning, encompassing its definition, the various algorithms used, the
requirements for unlearning, and how to verify its effectiveness. In the context
of FL, we explore the interactions between the server and agents, and the
underlying causes of this entanglement. Further, we delve into the challenges
presented by the confluence of machine unlearning and FL. To provide a
comprehensive understanding, we discuss various algorithms associated with
this intersection and their respective limitations. Lastly, we introduce the
concept of Variational Autoencoders (VAEs), which forms the basis of the
contribution model we propose in this project.

20 | Technical Background

Methodology & Implementation | 21

Chapter 3

Methodology & Implementation

The purpose of this chapter is to provide an overview of the research method
used in this thesis. Section 3.1 outlines the research process. Section 3.2
presents a problem formulation. Section 3.3 details the contribution model’s
design, including its structure and the unlearning mechanism. Section 3.4
discusses the implementation of the FL-unlearning framework, covering
structural parameters, training, and the unlearning algorithm.

3.1 Research Process
The research process in this project can be divided into four steps, shown as
below:

Figure 3.1: Research Process

22 | Methodology & Implementation

Step 1 Literature Study: In this essential initial step, an in-depth review
of existing literature in the fields of machine unlearning and FL is
undertaken. This involves a comprehensive exploration of prevalent
challenges, existing algorithms, and fundamental principles in these
areas. The aim of this phase is to establish a thorough understanding,
laying a robust foundation for the forthcoming stages of the project.

Step 2 Problem Formulation and Solution Design: This step centres
around the precise definition of the problem within the unique context
of FL. This involves proposing an algorithm and pipeline to handle the
machine unlearning problem effectively. A significant focus in this
stage is the development of a methodology capable of disentangling
the contribution of each agent from the global model.

Step 3 System Verification: In this third phase, the integrated system along
with its individual components – the FL and unlearning frameworks
– is subjected to rigorous verification. This involves employing the
MNIST dataset, a well-known benchmark in machine learning, to
validate the efficacy and accuracy of the proposed solution.

Step 4 Performance Testing: The final step involves evaluating the
performance of the system under various conditions, using the MNIST
and FashionMNIST datasets. This phase also includes a sensitivity
analysis to understand how different configurations affect the system’s
performance. The insights gained from this stage are crucial for
refining the system and guiding future research.

Figure 3.1 shows the steps conducted to carry out this research.

3.2 Problem Formulation
In section 1.2, the background of the problem, relevant concepts, together with
the goal of the project is given. With those definitions in mind, we give the
problem formulation in details.

First, let’s consider a FL system withN agents, each of which holds a local
datasetDi of size n. The global model parameterized by weightsM is trained
by aggregating the local updates from each agent. Here, we assume averaging
over each agent’s model parameter is used as the aggregation function. Denote
the global model parameter after t rounds of updates asM(t), which can be
expressed as follows:

Methodology & Implementation | 23

M(t) =
1

N

N∑
i=1

f (t)(θ
(t−1)
i ;Di) (3.1)

Following Def. 2, f (t)(θ
(t−1)
i ;Di) is the local objective function computed

by agent i at round t, which is usually an average of a loss function L over the
local dataset Di. This can be written as:

f(θi;Di) =
1

n

∑
(x,y)∈Di

L(θi; x, y) (3.2)

In FL settings, machine unlearning refers to the task of removing the
influence of a certain data sample, agent, or class on the global model, without
complete retraining. And in this project, we focus on a specific unlearning
task, agent-level unlearning.

Denote the set of data to be unlearned as Du. The problem of machine
unlearning in FL is to find a global model parameter M\u such that
the distance between the output space distribution of M\u, and that of
M1,··· ,u−1,u+1,··· ,N is minimized with a tolerance boundary.

Following Def. 6, this problem can be formally written as:

e−ϵ ≤
Pr(M\u ∈ T)

Pr(M1,··· ,u−1,u+1,··· ,N ∈ T)
≤ eϵ (3.3)

whereM\u is the global model after unlearning agentu, andM1,··· ,u−1,u+1,··· ,N
is the global model retrained from scratch with agent u erased from the FL
training.

Together with the definition of contribution 4, Equ. 3.3 can be written as:

e−ϵ ≤ Pr((M1,··· ,N − πuMu) ∈ T)
Pr(M1,··· ,u−1,u+1,··· ,N ∈ T)

≤ eϵ (3.4)

where πu is the summation of contribution of agent u,Mu denotes the local
model of client “u” learned using local dataDa,M1,··· ,N is the original global
model. Note that M1,··· ,N is different from M in Equ. 3.1, we propose a
aggregation scheme which shall be elaborated later.

The main challenges are (1) to define an efficient unlearning method that
is suitable for the FL setting where data privacy is concerned, and (2) to find a
way to disentangle the contributions of individual data samples to the global
model.

24 | Methodology & Implementation

3.3 Contribution Model

3.3.1 Model Architecture
The contribution model receives as the input the model parameters from the
agents and learn the contributions of the agents over the course of federation.
The model architecture is shown in Fig. 3.2 and is described in the following.

θa

θb

θc

fϕenc

z

sa

sb

sc

ta

tb

tc

̂za

fϕdec

̂zb

̂zc

̂θa

̂θb

̂θc

gψa
dec

gψb
dec

gψ c
dec

gψaenc

gψbenc

gψ cenc
z1a

z2a

z3a

z1b

z2b

z3b

z1c

z2c

z3c

θa θb θc

zjczjbzja

Figure 3.2: Model Architecture of three agents.

The left figure in Fig. 3.2 is a conceptual figure showing dependencies
between model parameters and the latent contribution variables. Each agent
model parameter is represented by a vector (θa,θb,θc) that needs to be learned.
The latent contributions (za, zb, zc) are to be learned such they are disentangled
from each others, where za ∈ Rj , and j is a hyper-parameter, so is zb and zc.

The right figure in Fig. 3.2 shows the architecture of the contribution model
at the server. The model receives the agents’ model parameters and learns the
contributions from the agents.

Let θ := vec(θa,θb,θc) denote the concatenation of the model parameters
from all agents, and let z := vec(za, zb, zc) denote the concatenation of
the latent variables from the agents, named latent contributions. The latent
contributions and the model parameters are not directly comparable. Thus,
we define a second group of latent variables, named latent support set,
that project a latent contribution into a space where it can be compared
against the model parameters. As an example, for the agent ”a” with the
latent contribution za and model parameters θa, the latent support set is
denoted as sa := {sab , sac}. The product of the support variables and the latent
contributions are referred to as the projected model parameters defined as
θ̃ab = θa(z⊤b sab) and θ̃ac = θa(z⊤c sac) which can be compared against the agent
model parameters θa.

Methodology & Implementation | 25

The model is constructed as follows:

{sa, sb, sc}, z = fϕenc(θ),{
ta = gψa

enc(z)
ẑa = gψa

dec
(ta)

,{
tb = gψb

enc
(z)

ẑb = gψb
dec
(tb)

,{
tc = gψc

enc(z)
ẑc = gψc

dec
(tc)

,

θ̂ = fϕdec({sa, sb, sc}, ẑ),

(3.5)

where fϕenc and fϕdec are the outer encoder and decoder models with the
learnable parameters ϕenc and ϕdec, and gψa

enc and gψa
dec

are the inner encoder and
decoder models with the learnable parameters ψaenc and ψadec, for a given agent
”a”. The inner encoder-decoders are responsible for generation of z through
the latent variables ta, tb, and tc.

3.3.2 Optimization loss
We need to learn latent contributions from the agents such that they are
generated from disentangled processes. Taking agent ”a” as an example, it
means ta ⊥ tb and ta ⊥ tc, where ⊥ denotes the disentanglement symbol.
Furthermore, we also require to disentangle a given agent model parameters
from its projected model parameters. Taking agent ”a” as an example, that
means θa ⊥ θ̃ab and θa ⊥ θ̃ac . With these in mind, our loss function is
constructed as:

l = ℓrec(θ, θ̂) + ℓrec (z, ẑ)

+
1

3
(ℓreg(θa, {θ̃ab , θ̃ac}) + ℓreg(θb, {θ̃ba, θ̃bc}) + ℓreg(θc, {θ̃ca, θ̃cb}))

+
1

3
(ℓreg (ta, {tb, tc}) + ℓreg (tb, {ta, tc}) + ℓreg (tc, {ta, tb})), (3.6)

where ℓrec and ℓreg are reconstruction loss and regularization loss functions,
and taking agent ”a” as an example θ̃ab = θ̂a(ẑ⊤a sab) and θ̃ac = θ̂a(ẑ⊤a sac). The
reconstruction loss functions are defined as:

ℓrec(θ, θ̂) =

∥∥∥θ − θ̂
∥∥∥2

∥θ∥2
, (3.7)

26 | Methodology & Implementation

and

ℓrec (z, ẑ) =
∥z− ẑ∥2

∥z∥2
, (3.8)

where we have chosen a normalized loss. The regularization losses are
designed to encourage disentanglement among the variables. The first
regularization loss, for agent ”a” as an example, is designed to encourage
disentanglement between θa and the projected variables θ̃ba and θ̃ca,

ℓreg(θa, {θ̃ab , θ̃ac}) = −
1

2

∥∥∥θa − cos(∠(θa, θ̃ba))θa

∥∥∥2

∥θa∥2
+

∥∥∥θa − cos(∠(θa, θ̃ca))θa
∥∥∥2

∥θa∥2

(3.9a)

= −1 + 1

2

(
cos(∠(θa, θ̃ba)) + cos(∠(θa, θ̃ca)

)
, (3.9b)

where ∠ computes the angle between the two vectors and cos is the cosine
function. The loss is designed to encourage disentanglement between θa and
the projected variants θ̃ba and θ̃ca.

Similarly, the second regularization loss, for agent ”a” as an example, is
designed to encourage disentanglement between ta and the pair of tb and tc,

ℓreg(ta, {tb, tc}) = −1 +
1

2

(
cos(∠(ta, tb)) + cos(∠(ta, tc))

)
. (3.10)

The loss function above shows an ideal scenario. If we think about the
optimization problem behind, the reconstruction terms are the objectives that
our contribution model aims to minimize, while the regularization terms add
constraints to eliminate independencies between model parameters and latent
variables. The idea sounds plausible in theory, however, the algorithm may
not converge due to two main reasons. 1) the regularization on θ (Equ. 3.9)
can be too strong, as the nature of FL makes local models homogeneous
as the federation round goes on, complete orthogonality of local parameters
indicates low performance of the prediction model. 2) the values of the two
regularization terms are not in the same range, one may go up to infinity, which
may manipulate the total loss.

To mitigate the problem above, we add temperature t1 and t2 to the
regularization terms in Equ. 3.6, where t1 and t2 are hyper-parameters

Methodology & Implementation | 27

indicating how important each terms is. Now Equ.3.6 can be rewriten as:

l = ℓrec(θ, θ̂) + ℓrec (z, ẑ)

+
1

3
t1(ℓreg(θa, {θ̃ab , θ̃ac}) + ℓreg(θb, {θ̃ba, θ̃bc}) + ℓreg(θc, {θ̃ca, θ̃cb}))

+
1

3
t2(ℓreg (ta, {tb, tc}) + ℓreg (tb, {ta, tc}) + ℓreg (tc, {ta, tb})), (3.11)

When t1 = t2 = 0, the loss function is relaxed to reconstruction loss only,
and when t1 = t2 = 1, Equ. 3.11 is relaxed to Equ.3.6.

3.3.3 Aggregation
Given the inferred latent contributions from the agents, the aggregated model
is computed as:

θ̄ =
θ̂aπa + θ̂bπb + θ̂cπc

πa + πb + πc
(3.12)

where πi =
∑

ẑi, ∀i ∈ C. Notice that in computation of (3.12), we compute a
weighted average using estimated model parameters θ̂i.

3.3.4 Unlearning
Once an unlearning request arrives, we subtract the product of the target
agent’s contribution and its latest local model’s parameters from the global
model. Consider a simple scenario where only three agents participate, namely
A, B, and C. If an unlearning request for agent C arrives, the server processes
the operation as described in Equation 3.13.

θ̄\c =
θ̂aπa + θ̂bπb
πa + πb

(3.13)

It’s worth noting that our unlearning algorithm is designed to disentangle
each agent’s contribution from the federation history. Consequently,
unlearning can be initiated anytime a request is made, irrespective of the
FL’s progress stage. However, considering that the contribution model needs
several learning rounds to stabilize, we suggest invoking the unlearning
function only after the completion of the FL.

28 | Methodology & Implementation

3.4 Implementation
When implementing the contribution model, I followed Fig. 3.2 and build the
model with PyTorch, I referred to Equ. 3.11 to implement the loss function,
and Equ. 3.12 for the calibrated aggregation function. Tab. 3.1 shows structural
parameters that either contribute to the contribution model directly or have an
impact on the model configuration, and their corresponding usages as well
as purposes. One thing to mention is that these parameters are also hyper-
parameters, one can play with them to explore the influence of each parameter.
In later chapters we will discuss the importance of these parameters and how
they contribute to the performance of the unlearning system.

Table 3.1: Structural Parameters

Parameter Usage Purpose
in_dim Dimensionality of the in-

put for the local model at
the agent’s end.

Determines the dimen-
sionality of the input for
the contribution model.

n_agents Number of agents in the
FL task. This is equiva-
lent to in_dim.

Has the same purpose as
in_dim.

class_out Number of labeled
classes in the dataset.

Has the same purpose as
in_dim.

unlearn_agents Specifies agent(s) to be
unlearned.

Enables direct unlearn-
ing or retraining while
retaining specific agents.

z_dim Dimensionality of the la-
tent variable z for each
agent.

Represents agent contri-
butions in latent space
and provides input to
ψenc.

hidden_dim_encdec Dimensionality of hid-
den layers in ϕenc, ϕdec,
ψenc, and ψdec.

Enhances the
generalization capability
of the contribution
model through hidden
layers.

The pseudocode below shows the algorithm.

Methodology & Implementation | 29

Algorithm 1 Learning to Unlearn Algorithm
Require: θk, k ∈ {a, b, c}
Ensure: zk, k ∈ {a, b, c}
ϕM.enc, ϕM.dec, ψM.enc, ψM.dec ←M.Initialization
for round i = 1, · · · , F do

Agent’s End
for agent k ∈ {a, b, c} do
ŷk = f(Dk; θ̄)
lk = l(yk, ŷk)
θk ←M.optim(∇θk lk; θ̄)
Update(θk)

end for
Server’s End
θ ←M.concatenate(θa,θb,θc)
z, s← fϕM.enc

(θ)
t← gψM.enc

(z)
ẑa, ẑb, ẑc ← gψM.dec

(t)

θ̂ ← fϕM.dec
(ẑ)

l = ℓM.rec(θ, θ̂) + ℓM.rec (z, ẑ)

+
1

3
(ℓM.reg(θa, {θ̃ab , θ̃ac}) + ℓM.reg(θb, {θ̃ba, θ̃bc}) + ℓM.reg(θc, {θ̃ca, θ̃cb}))

+
1

3
(ℓM.reg (ta, {tb, tc}) + ℓM.reg (tb, {ta, tc}) + ℓM.reg (tc, {ta, tb})),

ϕM.enc, ϕM.dec, ψM.enc, ψM.dec ←M.Optimizer(∇ϕM.enc,ϕM.dec,ψM.enc,ψM.dec
l)

Global Model: θ̄ ← θaπa+θbπb+θcπc
πa+πb+πc

, πi =
∑

zi, ∀i ∈ C.
end for
Unlearn (agent c for instance): θ̄\c ← θaπa+θbπb

πa+πb
.

30 | Methodology & Implementation

Experiment | 31

Chapter 4

Experiment

In this project, we carry out a series of experiments with several objectives
in mind. Primarily, we aim to validate our FL system and our unlearning
algorithm. Furthermore, we aim to assess the performance of our integrated
FL-Unlearning system under diverse settings. By examining these different
aspects, we seek to identify optimal configurations and pinpoint the most
fitting use cases. Our ultimate goal is to facilitate the maximum exploitation
of our system in terms of its potential applications and benefits. This chapter
elaborates experiments we do in this project.

4.1 Experimental Environment
Since the implementation as well as all the experiments are conducted in
Python, one should simply create a virtual environment with libaries and
dependencies listed below:

• Python ≥ 3.10

• scikit-learn ≥ 1.2.1

• numpy == 1.23

• matplotlib == 3.7.0

• torch == 1.12.1

• seaborn == 0.12.2

• scipy == 1.10.0

32 | Experiment

• torchvision == 0.13.1

• pandas == 1.5.3

4.2 Dataset
In order to evaluate the performance and robustness of the devised FL-
Unlearning system, a series of tests are carried out using two well-regarded
and commonly used datasets: MNIST and FashionMNIST.

The MNIST dataset, also known as Modified National Institute of
Standards and Technology dataset, is a classic in machine learning and
computer vision. Its establishment by LeCun et al. [28] ushered in a rich
collection of handwritten digits, broadly utilized as a performance measure
for various machine learning algorithms. This dataset is composed of 60,000
training images and an additional 10,000 images for testing. Every image is
presented in grayscale and of the dimension 28x28 pixels.

As an alternative to MNIST, the FashionMNIST dataset was developed to
pose a more demanding problem while preserving the identical image size and
the structure of training and testing splits as the original MNIST. Introduced
by Xiao et al. [29], FashionMNIST is made up of 70,000 grayscale images
spanning ten categories. Each category represents a distinct type of clothing
item such as shirts, dresses, and footwear. The images, akin to those in the
MNIST dataset, are of 28x28 pixels, making FashionMNIST an exemplary
dataset for comparing and benchmarking machine learning algorithms.

Both of these datasets, given their clear-cut structure and relative
simplicity, serve as excellent foundations for machine learning projects.
Moreover, they provide a reliable framework for verifying the effectiveness
of new algorithms and models, thus making them ideal choices for our
experimental evaluation of the proposed FL-Unlearning system.

4.3 Experiment Design
The experiments in this project are designed with several specific objectives:

1. Verification of the FL System: The performance of the FL system
is assessed by conducting a machine learning task under different
environments, such as centralized learning, FL, and local learning. If
the FL system is working as intended, it is expected that the performance
order would be: centralized learning > FL > local training.

Experiment | 33

2. Validation of the Unlearning Algorithm: The regularization terms
in Equation 3.11 are introduced with the aim of disentangling the
contributions of individual agents. Cosine similarity, which can be
interpreted as a measure of entanglement between inputs, is used to test
this aspect. In this experiment, the cosine similarity between the vectors
z is compared both with and without the application of the regularization
terms. The validity of the unlearning algorithm is demonstrated if
the cosine similarity decreases with the regularization as the federation
round progresses.

3. Assessing the Impact of Data Homogeneity in FL tasks: This
experiment evaluates how the distribution of data amongst agents in the
FL task, particularly the homogeneity of data assigned to each agent,
affects the performance of the FL-Unlearning system. It aims to find
out the use case under which our FL-Unlearning system performs the
best.

4. Sensitivity Analysis: The performance of the system under different
configurations, such as the dimensionality of latent variables z, the
temperature of the regularization terms in the loss function, and the
effect of random seeds during initialization, is investigated. This test
allows us to understand the robustness of the system under different
settings.

4.4 Verification of the FL System
To ensure the robustness of the FL system, we conduct a preliminary
verification test comparing FL, local learning, and centralized learning
approaches. For the FL and local learning, five agents participate. The dataset
utilized is the widely-known MNIST, but with a specially tailored distribution
in the training set.

Tab. 4.1 displays the class distribution for each agent’s training dataset.
A 3symbol denotes the presence of a specific class in an agent’s training
data, while an 7indicates its absence. Notably, every agent lacks data for four
classes. Despite this, the frequency of each class across all five agents remains
consistent, with every 3representing 50 instances. This distribution results
in a total of 300 training samples per agent. Based on this arrangement, the
expected performance hierarchy is evident: centralized learning (CL) should
surpass FL, which in turn should outperform local learning (LL). For the FL

34 | Experiment

and LL, we executed 100 rounds of training, each consisting of 200 epochs.
To ensure convergence, the centralized learning approach was also trained for
a total of 200 epochs.

Table 4.1: Class Distribution in Training Dataset for the Sanity Check

Agent\Class 0 1 2 3 4 5 6 7 8 9
0 3 7 3 7 3 3 7 3 7 3

1 7 3 3 3 3 7 3 7 3 7

2 3 7 3 7 7 7 3 3 3 3

3 7 3 7 3 3 3 7 7 3 3

4 3 3 7 3 7 3 3 3 7 7

For the testing phase, the dataset comprises a balanced selection from each
class, resulting in a total of 600 samples—60 samples from each of the 10
classes. For both FL and LL, every agent undergoes testing using this shared
dataset. The final performance metric is the average accuracy across all agents.
The accuracy for centralized learning is computed directly. Tab. 4.2 illustrates
these results, confirming our anticipated performance ranking: CL excels,
followed by FL, with LL trailing. These findings validate the integrity of the
FL system, laying a solid foundation for subsequent experiments.

Table 4.2: FL System Sanity Check Results

FL Local Learning Centralized Learning
0.8451 0.546 7 0.990 7

4.5 Validation of Unlearning Algorithm
In modern distributed learning architectures, understanding the distinct
contributions of participating agents is paramount. As outlined in Sec. 4.3,
our objective with the contribution model is to effectively disentangle these
distinct contributions. Before advancing with more complex experiments, it’s
essential to verify if the current model meets this objective.

A notable feature of our model is the inclusion of regularization terms
in Eq. 3.11. These terms are designed to enforce the orthogonality of the
latent variables, denoted as ts. Historically, orthogonality in hyper-space is
associated with the notion of independence in probability theory. This allows
us to utilize the average cosine similarity between ts as a metric to indicate the
independence of contributions.

Experiment | 35

For the purposes of our experiment, several parameters were defined in
line with the specifics of the MNIST data. Specifically, in_dim to 784,
and class_out to 10. For the contribution model, z_dim was set to 5, and
hidden_dim_encdec was 50, . Additionally, the agent parameters were set
as n_agents to 5, and unlearn_agents to 4 (denoting the agent identified as
number 4). It’s noteworthy to mention that the data configuration adopted in
this experiment aligns with those detailed in Sec. 4.4.

Fig. 4.1 provides a visual representation of the evolution of average
cosine similarity under two conditions: with and without the aforementioned
regularization terms. The blue trajectory signifies the cosine score in the
absence of regularization, where both temperature coefficients in Eq. 3.11
are set to 0. The orange trajectory, however, denotes the score with the
temperature coefficient in Eq. 3.11 set to 1. From the plotted data, it
becomes evident that the cosine score diminishes when regularization is
applied, indicating an enhanced orthogonality between agents’ contributions.
Conversely, in the absence of regularization, the average cosine similarity
shows an increasing trend, stabilizing eventually around a value of 0.6. This
behavior can be interpreted as an evidence of increased entanglement in FL
processes. A salient observation here is that the average cosine similarity,
even with the application of regularization, doesn’t converge to a perfect zero.
While this might seem counterintuitive, it’s crucial to interpret this not as a
flaw, but as a realistic reflection of the inherent complexities in distributed
learning. Nonetheless, the observable trend underscores the potential of our
algorithm to achieve meaningful decoupling in FL dependencies.

4.6 Impacts of Data Homogeneity in FL
tasks

In our experiment, we examine the influence of data distribution in the training
set on the performance of our FL-Unlearning system. Our goal is to determine
the optimal conditions for the system’s peak performance, which is crucial for
its practical application.

Our experimental design aligns with the classification task of MNIST.
With ten classes available, we can tailor the training dataset for each agent. If
each agent has samples exclusively from unique classes, the data distribution
among agents is entirely heterogeneous. In this scenario, the FL task becomes
almost as challenging as local training. Conversely, when all agents hold data
from identical classes, the distribution is wholly homogeneous, causing the

36 | Experiment

Figure 4.1: Cosine Similarity between latent variables t, with and without
regularization.

FL task to closely resemble central training. However, the above perspective
mainly sheds light on the FL system’s performance. To truly understand the
FL-Unlearning system’s efficiency, it’s vital to pinpoint its most favorable use
case.

Homogeneous Data
Starting with the homogeneous scenario: each agent receives an even

distribution of data samples across the ten classes, maintaining uniformity in
class samples for every agent. Specifically, each agent collects 30 samples
from each class, totaling 300 training samples.

This experiment was performed on both the MNIST and FMNIST datasets.
Except for the assignment of training data, all configurations remain consistent
with those outlined in Sec. 4.5. We utilized multiple learning frameworks
for each dataset to compare performance and derive deeper insights. These
frameworks include:

• FLAvg: FL using average as the aggregation function.

• FLAvg(subset): FL with agents retained retrained from the beginning.

Experiment | 37

• FLZ: Our proposed FL-Unlearning framework.

• FLZ(unlearn): The unlearned version of our FLZ model, aligned with
our proposed unlearning mechanism.

• ll: Localized learning.

For each framework, experiments were conducted five times with varying
random initializations. This approach allowed us to compute the mean and
variance and to assess the stability of each framework. The consolidated
results can be seen in Fig. 4.2.

(a) MNIST (b) FMNIST

Figure 4.2: Error Bar Plots Comparing Performance of Different Learning
Frameworks Using Training Datasets with iid Distribution.

In Fig. 4.2, the error bar plot distinctly presents the accuracy performance
of various learning frameworks on both the MNIST and FMNIST datasets.

The x-axis enumerates the five selected learning frameworks: FLAvg,
FLAvg(subset), FLZ, FLZ(unlearn), and ll, while the y-axis measures their
respective accuracies.

Conceptually, the performance trends of FLZ and FLZ(unlearn) should
resemble those of FLAvg and FLAvg(subset). Ideally, FLAvg(subset) should
represent the performance ceiling for FLZ(unlearn). The narrower the
performance divergence between them, the better the unlearning efficiency.
The ’ll’ framework is included for a sanity check; we anticipate its performance
to be the lowest among the frameworks.

Zooming into Fig. 4.2a, FLAvg and FLAvg(subset) performances are
nearly identical, both gravitating towards an accuracy of approximately 0.76
with minimal deviation. Within the FLZ category, while FLZ displays
robust accuracy with a slight deviation, FLZ(unlearn) manifests a significant

38 | Experiment

performance dip and increased deviation, hinting at diminished stability.
These observations underscore the relative success of FLZ, with FLZ(unlearn)
indicating potential areas of enhancement.

Conversely, the results from Fig. 4.2b align favorably with our expecta-
tions. All the represented bars and their corresponding minimal deviations
indicate consistency and stability.

The homogeneity of the training dataset, paired with the intrinsic difficulty
gradient between MNIST and FMNIST, may account for these outcomes.
Given the uniformity across agents, deviations in local models are largely
absent. When a local model slated for unlearning (and its associated
contribution) is subtracted, it can exert significant perturbations on the global
model. Further, MNIST’s simplicity relative to FMNIST—translating to
reduced model complexity—may negatively sway performance.

Heterogeneous Data
This experiment emphasizes data that is entirely heterogeneous in

distribution. The design principle is to allocate distinct class data exclusively
to individual agents. The distribution of class data across the agents is depicted
in Tab. 4.3.

Table 4.3: Distribution of Training Data for Agents with Complete
Heterogeneity

Agent\Class 0 1 2 3 4 5 6 7 8 9
0 316 284 7 7 7 7 7 7 7 7

1 7 7 308 292 7 7 7 7 7 7

2 7 7 7 7 314 286 7 7 7 7

3 7 7 7 7 7 7 295 305 7 7

4 7 7 7 7 7 7 7 7 292 308

Figure 4.3 displays the performance metrics for the given frameworks.
Notably, all five frameworks exhibit relatively low accuracies, ranging from
0.2 to 0.25. One observation that stands out is the superior accuracy of
FLZ(unlearn), even though it also showcases the highest deviation. This
outcome deviates from our initial expectations.

Reflecting upon the data distribution, the underlying reason for such
results becomes evident. The inherently heterogeneous distribution among
agents in this scenario implies a significant lack of shared information. Such
limited overlap in data often complicates FL tasks, leading to divergence in
the learning process. Moreover, the impurity in FLZ further amplifies the

Experiment | 39

challenges, causing the performance of FLZ(unlearn) to deteriorate.
Contrasting this with the earlier homogeneous data distribution exper-

iment, it’s evident how data distribution intricacies profoundly affect the
learning outcomes. While homogeneous distribution aids in maintaining
consistency across federated agents, heterogeneity tends to scatter the learning
focus, leading to unpredictable results.

Figure 4.3: Error Bar Plots Comparing Performance of Different Learning
Frameworks Using Training Dataset with heterogeneous Distribution.

Slightly Heterogeneous Data
Distributed learning often encounters scenarios where data isn’t entirely

homogeneous across agents, yet isn’t completely divided by distinct classes
either. This section examines this middle ground: the realm of slightly
heterogeneous data distribution. The motivation behind this is grounded
in our prior observations: purely homogeneous data distribution simplifies
the FL task, as agents share a consistent data realm, making consensus
relatively straightforward, as seen in our previous homogeneous experiment.
In contrast, a completely heterogeneous setup complicates the task, creating a
scenario where agents lack shared information, leading to fragmented learning
outcomes, as evidenced by the performance metrics in our heterogeneous
experiments.

40 | Experiment

A slightly heterogeneous setup aims to bridge this gap, introducing
just enough variability among agents to make the task challenging yet not
insurmountable. It represents a more realistic scenario that many real-world
FL systems may face.

Tab. 4.4 provides a snapshot of this data distribution among the agents.
As expected, the results shown in Fig. 4.4 from this setup show a promising
trend. Both FLAvg and FLAvg(subset) produce high accuracies, hovering
around 0.8. Interestingly, both FLZ and FLZ(unlearn) follow a similar
performance trajectory, implying a coherent learning process even under
slightly uneven data distribution. The stability of these frameworks is further
underscored by the small deviations observed, suggesting the models are
reliable under this data distribution scenario. Notably, the higher accuracy
of FLZ(unlearn) compared to FLZ, mirroring the trend observed with FLAvg
and FLAvg(subset), suggests that the agent intended for unlearning was
detrimental to the global model, highlighting the potential benefits of targeted
unlearning.

In essence, this experiment strikes a balance, offering a lens into the per-
formance of FL frameworks under realistic data distribution conditions while
also highlighting the nuances and challenges posed by data heterogeneity.

Table 4.4: Assignment of Training Data to Agents under Uneven Distribution

Agent\Class 0 1 2 3 4 5 6 7 8 9
0 50 10 50 10 50 50 10 50 10 50
1 10 50 50 50 50 10 50 10 50 10
2 50 10 50 10 10 10 50 50 50 50
3 10 50 10 50 50 50 10 10 50 50
4 50 50 10 50 10 50 50 50 10 10

Conclusion
Across our extensive experimentation, spanning three distinct data

distributions - homogeneous, completely heterogeneous, and slightly hetero-
geneous - we’ve gleaned profound insights into the behavior of FL frameworks
and their adaptability to varying data landscapes.

Homogeneous Data: In the case of homogeneous distribution, while the
framework exhibited consistent outcomes across federated agents, it arguably
rendered the task overly simplistic. The commonality in data across agents
reduced the complexity and challenges typically faced in real-world scenarios.

Heterogeneous Data: At the opposite end of the spectrum, the completely
heterogeneous data posed severe complications. The lack of shared

Experiment | 41

Figure 4.4: Error Bar Plots Comparing Performance of Different Learning
Frameworks Using Training Datasets with Uneven Distribution.

information among agents led to disparate learning paths, resulting in
fragmented and often unpredictable results. This distribution, though
challenging, is also a less common scenario in practical applications of FL.

Slightly Heterogeneous Data: Nestled between the two extremes,
the slightly heterogeneous data distribution struck a harmonious balance.
It closely mirrored realistic scenarios, making the task challenging yet
achievable. This setup proved most beneficial, yielding promising results
and stability across the frameworks. Most notably, our FL-Unlearning model
showcased its peak performance under this distribution, reiterating its potential
for practical application.

In summation, while each data distribution provided valuable learnings,
it’s the slightly heterogeneous setup that stood out as the most conducive
environment for FL, especially for our FL-Unlearning model. The balance
it offers between challenge and achievability makes it the ideal benchmark for
real-world applications, suggesting that FL models, and in particular our FL-
Unlearning model, are best positioned to thrive in environments that present
a moderate degree of data variability across agents.

42 | Experiment

4.7 Sensitivity Analysis
Dimensionality of latent Variable z

Recall the design of our contribution model. The latent variable z ∈ Rn×d

serves as input for the internal Encoder-Decoder (ψ). The summation of z
over dimension d represents each agent’s contribution. While n (the number
of participating agents) is determined by the specific task, the embedding
dimension d is treated as a hyper-parameter. In this study, we investigate the
sensitivity of our model to various d values.

We designate the agent count (n) as 5 and test the embedding dimension
d at 2, 5, and 10. The framework undergoes training and testing on MNIST,
maintaining a consistent data distribution as presented in Tab. 4.4. For the
unlearning process, agent 4 is specifically targeted. In each d scenario, we run
experiments using FLAvg, FLAvg(subset), FLZ, and FLZ(unlearn). Ideally,
the accuracy trend under FLAvg should mirror that of FLZ. Meanwhile,
FLZ(unlearn) should correspond with FLAvg(subset), with FLAvg(subset)
acting as a theoretical performance ceiling for FLZ(unlearn). All models
undergo training until convergence.

As illustrated in Fig. 4.5, optimal performance for FLZ(unlearn) is
achieved when d = 5. The FLZ curve closely follows the FLAvg trajectory,
and FLZ(unlearn) closely matches FLAvg(subset), with only a marginal
performance gap. For d = 2, the performance curve for FLZ(unlearn) displays
a significant decline in accuracy; rather than paralleling FLAvg(subset), it
aligns more with FLZ. At d = 10, the performance of FLZ(unlearn) is
comparable to FLAvg(subset), but the trend deviates.

Worth noting is the subpar performance of FLZ across all d settings.
Instead of reflecting FLAvg’s behavior, its results stagnate at a low point,
suggesting model instability. Possible explanations include the poor
performance of the test set from the removed client or that the removed
client’s contribution negatively impacted prediction capabilities on other client
testsets.
Conclusion: Our exploration underscores the significance of the embedding
dimension d in the effectiveness and stability of our contribution model. While
some settings, like d = 5, yielded promising results, others highlighted
potential challenges and areas for further refinement. Continuous tuning and
understanding of the contribution model are essential for optimal FL and
unlearning processes.
Temperature of Regularization Terms

Recall that in Sec. 3.3.2, the concept of temperature in the loss function

Experiment | 43

(a) Accuracy of Different Learning
Frameworks when z_dim=2

(b) Accuracy of Different Learning
Frameworks when z_dim=5

(c) Accuracy of Different Learning
Frameworks when z_dim=10

Figure 4.5: Sensitivity Study of Dimensionality of Latent Variable z.

44 | Experiment

was introduced to constrain the magnitudes of different loss terms, ensuring
that they remain within a similar range. The temperature coefficients, denoted
as Reg θ and Reg t, are pivotal in stabilizing and regulating the model’s
training process. This section provides an examination of these temperature
settings’ impact on the model performance, specifically focusing on the
model’s accuracy.

The experiment sets Reg θ and Reg t to 0, 0.5, and 1, respectively,
and assesses the system performance through training and testing on the
MNIST dataset, maintaining a consistent data distribution as delineated in
Tab. 4.4. The unlearning process targets agent 4, and five experimental
runs are conducted under each configuration, yielding the mean and standard
deviations presented in Tabs. 4.5 and 4.6.

Table 4.5: Accuracy under Different Regularization Temperatures (FLZ)

Reg θ Reg t
0 0.5 1

0 0.7599(0.0562) 0.5645(0.0028) 0.5697(0.0164)
0.5 0.7052(0.0528) 0.7480(0.0883) 0.6860(0.0359)
1 0.7003(0.0705) 0.7322(0.0403) 0.7743(0.0399)

Table 4.6: Accuracy under Different Regularization Temperatures
(FLZ(unlearn))

Reg θ Reg t
0 0.5 1

0 0.7888(0.0295) 0.8133(0.0207) 0.8125(0.0163)
0.5 0.7990(0.0189) 0.8259(0.0216) 0.8088(0.0187)
1 0.7763(0.0410) 0.7480(0.0501) 0.7807(0.0425)

Diving into Tabs. 4.5 and 4.6, clear patterns emerge about the accuracy of
both FLZ and FLZ(unlearn) when tweaking the regularization temperatures.
FLZ hits its best accuracy, 0.7599, with a standard deviation of 0.0562, when
neither regularization coefficients are applied (both set to 0). On the flip
side, FLZ(unlearn) sees its top accuracy at 0.8259 (standard deviation of
0.0216) when both Reg θ and Reg t are set at 0.5. It’s also worth noting
that FLZ(unlearn) generally performs better than FLZ, which is in line with

Experiment | 45

the sensitivity study regarding the dimensionality of latent variable z, hinting
that the unlearning process could be giving model accuracy a boost.
Random Seeds

In our past tests, we observed that our contribution model reacts differently
depending on how it’s initially set up with random values. The differences
can sometimes be quite noticeable. This experiment is designed to see how
changes in random starting points can influence our model’s outcomes. For
this purpose, we chose the the specific random initialization method and
picked distinct random seeds: 235, 172, 51, 179, and 184. The results of
this experiment can be seen in Fig. 4.6.

Figure 4.6: Sensitivity Study on Randomness

The graphs show that the model’s performance varies quite a bit depending
on the seed. For instance, the seed 235 in both FLZ and FLZ(unlearn) seems
to have a more stable increase in accuracy compared to other seeds, especially
in the initial rounds. Also notice that FLZ(unlearn) generally has a more
consistent performance across different seeds compared to FLZ. In the latter
rounds, most of the FLZ(unlearn) seeds converge to similar accuracy levels,
which is not the case for FLZ. Overall, the initial setup or seed does play a
significant role in the model’s performance, emphasizing the need to consider
and possibly average over multiple initializations for a more robust evaluation.

46 | Experiment

Conclusions and Future work | 47

Chapter 5

Conclusions and Future work

In this final chapter, I wrap up the main points of my thesis, highlight its
innovative aspects, discuss its limitations, and suggest directions for upcoming
research. In Section 5.1, I provide a summary, revisiting the aims of this
study, its strengths and weaknesses, the outcomes, and offer guidance for those
interested in pursuing this area further. Section 5.2 addresses the constraints
of my approach and the areas where my results might fall short. In Section
5.3, I outline possible paths and questions that future researchers might want
to explore within this subject. Lastly, in Section 5.4, I share my reflections on
the entire thesis journey.

5.1 Conclusions
This paper brings up the topic of machine unlearning in FL. It introduces the
concept of contribution in FL, which quantifies the level of effort each client
contributes to the learning of the global model, and once an unlearning request
regarding certain client(s) arrive, the server merely subtracts the portion of
the target client(s) from the global model. To achieve this, we propose FLZ,
an unlearning method that learns to disentangle contributions of each client
in an FL task. The fundamental idea here is to consider orthogonality as an
indicator of disengagement. In an ideal scenario, we would be able to find
latent representations of contributions that are mutually orthogonal. However,
given the inherent heterogeneity of FL, enforcing orthogonality can potentially
lead to a decline in FL task performance. The core component of FLZ, the
contribution model is employed on the server side, and learns to disentangle
the contributions as the FL training progresses, while contribution is modeled
as vectors whose summation are real numbers that indicate percentage of

48 | Conclusions and Future work

participation of clients. We also customize the aggregation function in FL.
Instead of simply averaging local model parameters, our aggregation function
takes into account the contributions, aligning with the contribution model.
Consisting of reconstruction loss and regularization loss, the overall loss
function aims to disentangle contributions while preserve the global model’s
performance to the most extent. When an unlearning request is received, our
unlearning mechanism ensures that data access becomes unnecessary, which
contrasts with traditional methods where data access is typically essential.

In our MNIST experiments, we observed that the implementation of FLZ
effectively increased the orthogonality between latent variables, aligning with
our initial expectations. Furthermore, in a series of experiments conducted on
both MNIST and FMNIST datasets to explore the impact of data distribution
in the training dataset, FLZ demonstrated its highest performance levels in
both FL and unlearning tasks when clients’ data exhibited a slight degree
of heterogeneity. The performance achieved under this configuration was
notably close to the theoretical upper performance bound. Additionally, a
sensitivity analysis revealed that FLZ exhibits some degree of sensitivity to
specific hyperparameter configurations, an aspect that may warrant further
investigation in future work.

5.2 Limitations
This study, while pioneering in its approach to machine unlearning in FL
using the FLZ method, encounters several limitations. The most apparent
constraint is the task domain, narrowly focused on image classification tasks,
which raises questions about the model’s applicability to other domains. The
use of a simple multi-layer perceptron as the prediction model further limits the
generalizability of the findings, as this model may not capture the complexity
or nuances of more complicated datasets and tasks. Additionally, the nature
of training data collection for contribution model in FLZ, which accumulates
data progressively with each federation round, results in a limited number
of training samples. This shortage could reduce the model’s ability to learn
robust, generalizable patterns and might not represent the diverse scenarios
encountered in real-world applications.

Furthermore, the current model design primarily addresses unlearning
from a single agent at a time. This aspect is somewhat restrictive, as
practical applications often require handling multiple agents simultaneously,
particularly in complex federated environments. The sensitivity of FLZ to
specific hyperparameter configurations is another limitation. It suggests that

Conclusions and Future work | 49

optimal performance is highly dependent on precise tuning, which may not
be feasible or straightforward in all scenarios. Moreover, the study does not
explore the impact of various types of data, such as unstructured or non-image
data, which could provide insights into the model’s versatility and robustness.
The lack of comprehensive testing across different FL settings, such as varying
numbers of clients or network topologies, also constitutes a gap in the current
research. This limitation points to the need for more extensive experiments to
fully understand the capabilities and limitations of the FLZ approach.

5.3 Future Work
The current study opens several promising directions for future research in
machine unlearning and FL. Expanding the application of the FLZ framework
beyond image classification to encompass a wider range of tasks, such as
regression, natural language processing, or even more complex analytical
tasks, could significantly enhance the model’s applicability and utility.
Investigating the integration of model compression techniques to optimize
inputs for the contribution model, especially in scenarios involving large-scale
prediction models, is another crucial area. This approach could lead to more
efficient and scalable unlearning processes in federated settings.

Modifying the training strategy to incorporate data collected after each
epoch rather than each federation round may enrich the dataset and improve the
robustness and accuracy of the learning outcomes. Conducting experiments
with a larger number of agents, particularly focusing on scenarios involving
simultaneous unlearning from multiple agents, would more accurately
reflect real-world FL environments. Additionally, exploring different data
heterogeneity levels among clients and their impact on the performance of
FLZ could yield valuable insights, especially in balancing model accuracy
with unlearning capabilities.

There is also an opportunity to delve deeper into the effects of various
hyperparameter settings on the performance of FLZ, potentially leading to
the development of adaptive or self-tuning mechanisms that could optimize
performance across diverse scenarios. Further, examining the implementation
of FLZ in different FL architectures, such as hierarchical or decentralized
models, could provide a broader understanding of its adaptability and
effectiveness. Finally, expanding the research to include more diverse datasets,
including non-image and unstructured data, would offer a comprehensive view
of the model’s capabilities and limitations in various contexts.

50 | Conclusions and Future work

5.4 Reflections
This research delves into the realm of Federated Learning (FL) and machine
unlearning, a topic of significant relevance in today’s data-driven world. From
an economic perspective, the ability to unlearn data efficiently in FL models
offers a cost-effective solution for businesses. It eliminates the need for
resource-intensive retraining processes, thereby reducing computational costs
and time. This efficiency is critical in a fast-paced market where data privacy
concerns can arise spontaneously.

Socially, our approach to machine unlearning contributes to the increasing
need for privacy and data protection. In an era where data breaches and misuse
are prevalent, providing a mechanism for data unlearning helps build public
trust in machine learning systems. It empowers users with control over their
data, aligning with societal demands for greater data sovereignty and ethical
data management practices.

Environmentally, the reduced computational requirement for unlearning,
as opposed to full model retraining, translates to lower energy consumption.
This aspect is crucial in the context of sustainable computing, as it aligns with
global efforts to reduce the carbon footprint of large-scale data processing
tasks.

Ethically, the ability to unlearn data addresses critical concerns about the
right to be forgotten, a fundamental aspect of data privacy regulations like
GDPR. Our method enables compliance with such regulations, ensuring that
individuals’ data can be removed from machine learning models upon request.
This aspect not only adheres to legal requirements but also fosters an ethical
approach to data handling, respecting individual privacy and data rights.

In summary, this work on machine unlearning in FL not only advances
the field technically but also addresses key economic, social, environmental,
and ethical dimensions that are increasingly pertinent in the realm of artificial
intelligence and machine learning.

References | 51

References

[1] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss,
K. Lee, A. Roberts, T. B. Brown, D. Song, U. Erlingsson et al.,
“Extracting training data from large language models.” in USENIX
Security Symposium, vol. 6, 2021. [Page 2.]

[2] T. Guo, S. Guo, J. Zhang, W. Xu, and J. Wang, “Efficient attribute
unlearning: Towards selective removal of input attributes from feature
representations,” arXiv preprint arXiv:2202.13295, 2022. [Pages 2
and 12.]

[3] A. Mantelero, “The eu proposal for a general data protection regulation
and the roots of the ‘right to be forgotten’,” Computer Law & Security
Review, vol. 29, no. 3, pp. 229–235, 2013. [Pages 2, 5, and 9.]

[4] S. L. Pardau, “The california consumer privacy act: Towards a european-
style privacy regime in the united states,” J. Tech. L. & Pol’y, vol. 23,
p. 68, 2018. [Pages 2 and 5.]

[5] Y. Cao and J. Yang, “Towards making systems forget with machine
unlearning,” in 2015 IEEE symposium on security and privacy. IEEE,
2015, pp. 463–480. [Pages 2, 9, and 14.]

[6] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 141–159. [Pages 2, 9, and 11.]

[7] H. Huang, X. Ma, S. M. Erfani, J. Bailey, and Y. Wang, “Unlearnable
examples: Making personal data unexploitable,” arXiv preprint
arXiv:2101.04898, 2021. [Page 2.]

[8] A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh, “Remember
what you want to forget: Algorithms for machine unlearning,” Advances

52 | References

in Neural Information Processing Systems, vol. 34, pp. 18 075–18 086,
2021. [Page 2.]

[9] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016. [Page 3.]

[10] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016. [Page 3.]

[11] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013. [Pages 4 and 18.]

[12] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.
[Page 4.]

[13] G. Liu, X. Ma, Y. Yang, C. Wang, and J. Liu, “Federaser: Enabling
efficient client-level data removal from federated learning models,” in
2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS). IEEE, 2021, pp. 1–10. [Pages 7 and 18.]

[14] G. Wang, C. X. Dang, and Z. Zhou, “Measure contribution of
participants in federated learning,” in 2019 IEEE international
conference on big data (Big Data). IEEE, 2019, pp. 2597–2604.
[Page 7.]

[15] A. Halimi, S. Kadhe, A. Rawat, and N. Baracaldo, “Federated
unlearning: How to efficiently erase a client in fl?” arXiv preprint
arXiv:2207.05521, 2022. [Pages 7 and 17.]

[16] C. Wu, S. Zhu, and P. Mitra, “Federated unlearning with knowledge
distillation,” arXiv preprint arXiv:2201.09441, 2022. [Pages 7 and 17.]

[17] T. M. Mitchell and M. Learning, “Mcgraw-hill science,” Engineering/-
Math, vol. 1, p. 27, 1997. [Page 9.]

[18] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized

References | 53

data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282. [Page 9.]

[19] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan et al.,
“Towards federated learning at scale: System design,” Proceedings of
machine learning and systems, vol. 1, pp. 374–388, 2019. [Page 10.]

[20] T. T. Nguyen, T. T. Huynh, P. L. Nguyen, A. W.-C. Liew, H. Yin, and
Q. V. H. Nguyen, “A survey of machine unlearning,” arXiv preprint
arXiv:2209.02299, 2022. [Page 10.]

[21] Q. P. Nguyen, B. K. H. Low, and P. Jaillet, “Variational bayesian
unlearning,” Advances in Neural Information Processing Systems,
vol. 33, pp. 16 025–16 036, 2020. [Page 11.]

[22] A. Warnecke, L. Pirch, C. Wressnegger, and K. Rieck, “Machine
unlearning of features and labels,” arXiv preprint arXiv:2108.11577,
2021. [Page 12.]

[23] A. K. Tarun, V. S. Chundawat, M. Mandal, and M. Kankanhalli, “Fast yet
effective machine unlearning,” IEEE Transactions on Neural Networks
and Learning Systems, 2023. [Pages 13 and 14.]

[24] V. S. Chundawat, A. K. Tarun, M. Mandal, and M. Kankanhalli, “Zero-
shot machine unlearning,” IEEE Transactions on Information Forensics
and Security, 2023. [Page 14.]

[25] A. Thudi, H. Jia, I. Shumailov, and N. Papernot, “On the necessity
of auditable algorithmic definitions for machine unlearning,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 4007–
4022. [Page 14.]

[26] Z. Izzo, M. A. Smart, K. Chaudhuri, and J. Zou, “Approximate data
deletion from machine learning models,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2021, pp. 2008–2016.
[Page 14.]

[27] M. Jagielski, O. Thakkar, F. Tramer, D. Ippolito, K. Lee, N. Carlini,
E. Wallace, S. Song, A. Thakurta, N. Papernot et al., “Measuring forget-
ting of memorized training examples,” arXiv preprint arXiv:2207.00099,
2022. [Page 15.]

54 | References

[28] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998. [Page 32.]

[29] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017. [Page 32.]

	Introduction
	Background
	Problem Definition
	Purpose
	Goals
	Research Methodology
	Delimitations
	Structure of the thesis

	Technical Background
	Machine Unlearning
	Unlearning Algorithm
	Unlearning Requirement
	Unlearning Verification

	Federated Learning
	Overview of FL
	Entanglement in FL

	Machine Unlearning in FL
	Challenge
	Algorithm

	Variational Autoencoder (VAE)
	Background Summary

	Methodology & Implementation
	Research Process
	Problem Formulation
	Contribution Model
	Model Architecture
	Optimization loss
	Aggregation
	Unlearning

	Implementation

	Experiment
	Experimental Environment
	Dataset
	Experiment Design
	Verification of the FL System
	Validation of Unlearning Algorithm
	Impacts of Data Homogeneity in FL tasks
	Sensitivity Analysis

	Conclusions and Future work
	Conclusions
	Limitations
	Future Work
	Reflections

	References

