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Abstract

Retrieval-Augmented Generation (RAG) enhances large language
models (LLMs) by incorporating information retrieved from
external sources, such as document corpora or structured
databases, to improve the accuracy and relevance of generated
responses. RAG techniques range from simple, naive approaches
to advanced methods using recursive retrieval or structured
knowledge. While naive RAG handles basic queries well, it
struggles with multi-hop QA and is prone to hallucinations. More
sophisticated methods improve reasoning but typically require
greater computational resources.

To assess the trade-off between accuracy and resource
consumption, this thesis presents a comparative evaluation of four
RAG systems: Naive RAG, Recursive RAG, KG-Graph RAG, and
Community-Graph RAG. The evaluation is conducted on a multi-hop
QA dataset with diverse query types, including inference, temporal,
comparison, and null queries.

Each system is assessed based on generation accuracy, retrieval
quality, and resource consumption. KG-Graph RAG achieves
high accuracy, strong inference capabilities, and the lowest
hallucination rate, while maintaining efficient token usage and
moderate computational demand. Community-Graph RAG excels in
temporal queries but incurs higher latency and cost. Naive RAG
and Recursive RAG offer a balanced trade-off between cost and
accuracy, making them suitable for general-purpose applications.

While these results offer practical guidance for selecting RAG
strategies based on use-case needs, accuracy on multi-hop QA
remains an area for improvement. Future work could explore hybrid
systems that dynamically switch retrieval strategies based on query
type to optimize both performance and efficiency.

Keywords

Retrieval-Augmented Generation (RAG), Multi-hop Question An-
swering (MHQA), Large Language Models (LLMs), Naive RAG,
Recursive RAG, Graph RAG, Knowledge Graphs
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Sammanfattning

Hämtningsförstärkt Generering (RAG) förbättrar stora språkmo-
deller (LLMs) genom att integrera information från externa
källor, såsom dokumentsamlingar eller databaser, vilket ökar
noggrannheten och relevansen i de genererade svaren. RAG-
tekniker varierar från enkla, naiva metoder till avancerade tekniker
som exempelvis använder sig av rekursiv hämtning. Metoder som
Naive RAG hanterar enkla frågor väl, men har svårigheter med
multi-hop frågor och tenderar att hallucinera i sina svar. Detta
är till skillnad från mer sofistikerade metoder, som förbättrar
resonemangsförmågan, men kräver mer beräkningsresurser.

I detta arbete genomför vi en jämförande studie av fyra RAG-
system: Naive RAG, Recursive RAG, KG-Graph RAG och Community-
Graph RAG. Utvärderingen baseras på ett multi-hop QA dataset med
olika typer av frågor, inklusive inferens-, temporala-, jämförelse- och
null-frågor.

Alla system utvärderas utifrån svarsnoggrannhet, kvalitet på
den hämtade informationen samt resursförbrukning. KG-Graph
RAG visar på hög noggrannhet, stark inferensförmåga och den
lägsta graden av hallucinationer, samtidigt som det har låg
tokenanvändning och måttlig beräkningsbelastning. Community-
Graph RAG presterar särskilt bra vid temporala frågor, men
har längre svarstid och högre token-kostnader. Naive RAG och
Recursive RAG erbjuder en balanserad avvägning mellan kostnad
och noggrannhet, vilket gör dem väl lämpade för allmänna
användningsområden.

Sammanfattningsvis ger dessa resultat en praktisk vägledning
i valet av RAG-metod utifrån användningsområde. Svarsnog-
grannheten vid multi-hop QA är dock fortfarande ett område
med förbättringspotential. Framtida arbete skulle kunna utforska
hybrida system som dynamiskt växlar mellan hämtningstekniker
beroende på frågetyp, i syfte att optimera både prestanda och
effektivitet.

Nyckelord

Hämtningsförstärkt Generering (RAG), Multi-hop Frågebesvarande
(MHQA), Stora Språkmodeller (LLMs), Naive RAG, Recursive RAG,



iv | Sammanfattning

Graph RAG



Acknowledgments | v

Acknowledgments

I extend my sincere gratitude to my supervisor, Elsa Rimhagen at
Framna, for her unwavering support, continuous interest in my
work, and thoughtful input throughout the project.

I would also like to thank my KTH supervisor, Amir H.
Payberah, for regularly following up on my progress and providing
constructive feedback that significantly improved the quality of my
work. My thanks also go to Amirhossein Layegh Kheirabadi, whose
expertise helped me resolve several questions along the way.

I am grateful to many colleagues at Framna who were open
to discussing my project and generously shared their insights
whenever needed.

Lastly, I would like to thank my examiner, Bo Peng, for showing
interest in the progress of the project and for supporting me in
finalizing the work.

Stockholm, June 2025
Zaina Ramadan



vi | Acknowledgments



Contents | vii

Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Research Methodology . . . . . . . . . . . . . . . . . . . 5
1.6 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Structure of the Thesis . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Natural Language Processing . . . . . . . . . . . . . . . 7
2.2 Large Language Models . . . . . . . . . . . . . . . . . . 8
2.3 Retrieval Augmented Generation . . . . . . . . . . . . . 10

2.3.1 Embeddings . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Vector Store . . . . . . . . . . . . . . . . . . . . . 11

2.4 Overview of RAG Systems . . . . . . . . . . . . . . . . . 12
2.4.1 Naive RAG . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Advanced RAG . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Modular RAG . . . . . . . . . . . . . . . . . . . . . 14

2.5 Selected Advanced Techniques . . . . . . . . . . . . . . 14
2.5.1 Recursive Retrieval . . . . . . . . . . . . . . . . . 14
2.5.2 Graph RAG . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Multi-hop Question Answering . . . . . . . . . . . . . . 17
2.7 RAG Evaluation . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Method 21
3.1 Research Process . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Research Paradigm . . . . . . . . . . . . . . . . . . . . . 22
3.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . 23



viii | Contents

3.4 Reliability and Validity of Method and Collected Data . 23
3.5 Experimental design . . . . . . . . . . . . . . . . . . . . 25
3.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Implementation 29
4.1 Benchmark Dataset . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Original Dataset . . . . . . . . . . . . . . . . . . . 29
4.2 RAG Systems Design . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Selected Parameters . . . . . . . . . . . . . . . . 33
4.2.2 Naive RAG Implementation . . . . . . . . . . . . . 36
4.2.3 Recursive Retrieval RAG Implementation . . . . . 39
4.2.4 KG-Graph RAG Implementation . . . . . . . . . . 41
4.2.5 Community-Graph RAG Implementation . . . . . 44

4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Generation Metrics . . . . . . . . . . . . . . . . . 48
4.3.2 Retrieval Metrics . . . . . . . . . . . . . . . . . . 49

4.4 RAGAS - LLM as a Judge Evaluation . . . . . . . . . . . 51
4.5 Token Usage . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Hardware Utilization . . . . . . . . . . . . . . . . . . . . 53

5 Results and Analysis 54
5.1 Generation Accuracy . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Overall Accuracy . . . . . . . . . . . . . . . . . . . 55
5.1.2 Accuracy per Query Type . . . . . . . . . . . . . . 56

5.2 Retrieval Accuracy . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 BERTScore . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 RAGAS . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Community-GraphRAG Local Search . . . . . . . . . . . 59
5.4 Other Metrics . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.1 Query Execution Time . . . . . . . . . . . . . . . . 60
5.4.2 Token Usage . . . . . . . . . . . . . . . . . . . . . 61
5.4.3 Hardware Utilization . . . . . . . . . . . . . . . . 62

5.5 Knowledge Graph Construction Cost . . . . . . . . . . . 64
5.6 Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Discussion 67

7 Conclusion and Future Work 70
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Contents | ix

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References 75



x |Contents



List of Figures | xi

List of Figures

2.1 Illustration of how RAG improves the accuracy of
chatbots, based on Figure 1 from the following study
[12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Naive RAG workflow . . . . . . . . . . . . . . . . . . . . 36
4.2 Recursive Retrieval RAG workflow . . . . . . . . . . . . 39
4.3 KG-Graph RAG workflow . . . . . . . . . . . . . . . . . . 41
4.4 KG-Graph RAG knowledge graph excerpt . . . . . . . . 42
4.5 GraphRAG workflow . . . . . . . . . . . . . . . . . . . . 44
4.6 An excerpt of the constructed knowledge graph . . . . 45

5.1 Overall answer accuracy for naive RAG, Recursive
RAG, Community-Graph RAG (Global Search) and KG-
Graph RAG . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Accuracy detailed per query type for naive RAG, Recur-
sive RAG, Community-Graph RAG (Global Search) and
KG-Graph RAG . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Retrieval accuracy per RAG system measured with
BERTScore . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 RAGAS metrics for each RAG system . . . . . . . . . . . 58
5.5 Community-Graph RAG accuracy achieved using local

search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Average execution time per query for all RAG systems . 60
5.7 Average token usage per query for each RAG system . 61
5.8 CPU and memory usage measured every 2 seconds for

Naive RAG . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.9 CPU and memory usage measured every 2 seconds for

Recursive RAG . . . . . . . . . . . . . . . . . . . . . . . 63
5.10CPU and memory usage measured every 2 seconds for

Community-Graph RAG . . . . . . . . . . . . . . . . . . 63



xii | List of Figures

5.11CPU and memory usage measured every 2 seconds for
KG-Graph RAG . . . . . . . . . . . . . . . . . . . . . . . 64



List of Tables | xiii

List of Tables

4.1 Distribution of the number of evidence items required
to answer queries in the sampled dataset . . . . . . . . 32

4.2 Parameter configuration for vector-based RAG systems 34
4.3 Parameter configuration for KG-GraphRAG . . . . . . . 35
4.4 Parameter configuration for GraphRAG . . . . . . . . . 35
4.5 Metadata of a sample document node in the knowledge

graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Community-Graph RAG node metadata . . . . . . . . . 45

5.1 Token usage statistics for knowledge graph construction 64
5.2 Average cost associated with each RAG system, using

OpenAI’s GPT4o mini . . . . . . . . . . . . . . . . . . . . 65



xiv | List of Tables



List of acronyms and abbreviations | xv

List of acronyms and abbreviations

Advanced
RAG

Advanced Retrieval-Augmented Generation

AI Artificial Intelligence
AQ Ambiguous Questions

BERT Bidirectional Encoder Representations from Trans-
formers

CoRAG Chain-of-Retrieval Augmented Generation
CoT Chain-of-Thought

GPT Generative Pretrained Transformer
Graph
RAG

Graph Retrieval-Augmented Generation

HyDE Hypothetical Document Embeddings

IRCoT Interleaving Retrieval with Chain-of-Thought

LLM Large Language Model
LoRA Low-Rank Adaptation
LSTM Long Short-Term Memory

MHQA Multi-hop Question Answering
ML Machine Learning
MMR Maximal Marginal Relevance
Modular
RAG

Modular Retrieval-Augmented Generation

MRR Mean Reciprocal Rank

Naive
RAG

Naive Retrieval-Augmented Generation

NER Named Entity Extraction
NLG Natural Language Generation
NLP Natural Language Processing
NLU Natural Language Understanding



xvi | List of acronyms and abbreviations

PEFT Efficient-Fine-Tuning

QA Question Answering
QFS Query-Focused Summarization

RAG Retrieval-Augmented Generation
RAPTOR Recursive Abstractive Processing for Tree-Organized

Retrieval
Recursive
RAG

Recursive Retrieval-Augmented Generation

RNN Recurrent Neural Network

ToC Tree of Clarifications



Introduction | 1

Chapter 1

Introduction

This chapter introduces the research area of this study and
the problem domain. Section 1.1 provides an overview of
Retrieval-Augmented Generation (RAG), its use cases, and relevant
background information necessary to understand the context of
the work. Section 1.2 presents the research problem addressed
in this study. Section 1.3 outlines the purpose of the work, while
Section 1.4 highlights the goals to be achieved. Section 1.5
describes the research methodology adopted. Section 1.6 discusses
the limitations of the study. Finally, Section 1.7 provides an outline
of the structure of the thesis.

1.1 Background

Artificial Intelligence (AI) chatbots have become powerful tools,
assisting millions of users every day. While general-purpose AI
chatbots such as ChatGPT are readily accessible, certain use
cases require systems that are tailored to specific domains. This
customization is often achieved through techniques such as fine-
tuning, which adapts a model to a targeted dataset. For instance,
a medical or legal AI assistant is likely unable to deliver high
accuracy and context awareness without fine-tuning the underlying
model on domain-specific data. While fine-tuning is an effective
method for tailoring chatbots to specific domains, it is often a costly
and resource-intensive process, requiring large annotated datasets,
significant computational power, and considerable time.

RAG is a method that has garnered significant interest from both
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the research community and organizations aiming to adapt AI for
their business needs. RAG enhances Large Language Model (LLM)
by allowing them to retrieve and incorporate additional information
before generating responses, rather than relying solely on their pre-
existing training data. It does so by leveraging advanced search
algorithms to query external data sources such as web pages,
knowledge bases, and proprietary databases. This approach is
typically more cost-efficient than fine-tuning and allows for dynamic
updates, ensuring the model has access to the most current and
relevant information.

Several techniques have been proposed to improve the retrieval
performance of RAG systems. Traditional RAG methods typically
rely on similarity-based retrieval from a vector store, where the
user query is matched against stored document embeddings to
fetch relevant information. While effective for simple queries, Naive
Retrieval-Augmented Generation (Naive RAG) often struggles with
complex information needs, particularly when reasoning across
multiple documents. To address these limitations, more advanced
approaches have emerged. For example, some methods introduce
recursive retrieval, where information is gathered iteratively from
the vector store in refinement steps based on previously retrieved
context. Other methods explore knowledge-graph-based retrieval,
which represents relationships between entities in the text more
explicitly and enables structured, multi-step reasoning. These
advanced techniques aim to support more complex query handling
by capturing the semantic structure of the data more effectively.

1.2 Problem

Knowledge-graph-based RAG systems (hereafter referred to as
Graph Retrieval-Augmented Generation (Graph RAG)), such as Mi-
crosoft’s GraphRAG [1], have demonstrated improved performance
on Multi-hop Question Answering (MHQA). This is particularly
of interest as MHQA tasks better reflect real-world scenarios,
where user queries tend to be complex and require reasoning
over multiple, distinct pieces of information. However, these
improvements often come at the cost of increased resource
consumption, including tokens, memory and computation time.

While the Graph RAG results are promising, current research
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often lacks fair and comprehensive comparisons that consider
not only accuracy but also resource-related metrics such as
token usage and hardware utilization. Furthermore, many
studies benchmark Graph RAG methods only against Naive
RAG baselines, overlooking more advanced alternatives such as
Recursive Retrieval-Augmented Generation (Recursive RAG). This
makes it difficult to assess the true benefits and trade-offs of using
knowledge graphs. For example, one key question is whether
the performance improvement offered by knowledge graph-based
methods is substantial enough to justify the increased cost? Or
could comparable results be achieved at a significantly lower cost,
albeit with a slight drop in performance?

To ensure a comprehensive evaluation, this study considers
multiple query types, including inference, temporal, comparison,
and null queries (see Section 4.1). In particular, the evaluation on
null queries is of interest, as it can be an indicator of each system’s
tendency to hallucinate information when no supporting evidence
exists in the underlying data sources.

Formally the research questions are posed as follows:

1. How does the response and retrieval accuracy of Graph RAG
compare to Naive RAG and Recursive RAG across different
query types in multi-hop question answering tasks?

2. What are the differences in resource consumption, including
response latency, token, CPU and memory usage, between
Graph RAG, Recursive RAG, and Naive RAG systems?

3. What is the token cost associated with the initial construction
of a knowledge graph compared to building a vector store for
retrieval?

1.3 Purpose

The purpose of this thesis is to evaluate and compare the
performance and resource efficiency of advanced RAG systems,
with a particular focus on Graph RAG and Recursive RAG methods.
By conducting a systematic comparison across the selected
systems, this study aims to provide insights into the trade-offs
between accuracy and resource consumption. The goal is to help
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guide future design decisions for organizations and researchers
seeking to implement cost-effective and accurate domain-specific
AI assistants.

This degree project contributes to the broader field of applied
AI and Natural Language Processing (NLP) by addressing a
practical gap in current research: the lack of fair, comprehensive
benchmarks that consider both performance and cost. The
outcomes of this study will be especially beneficial to developers,
system architects, and AI researchers who must select or design
retrieval systems under constrained budgets.

From an ethical standpoint, this project includes an analysis
of hallucination tendencies across RAG systems, particularly in
response to null queries. Reducing hallucinations in AI-generated
content is critical for ensuring the trustworthiness and safety of AI
applications, especially in sensitive domains like healthcare, law,
and finance.

Furthermore, RAG systems inherently promote more sustainable
AI practices. Unlike traditional approaches that rely on fine-
tuning which often requires significant energy and computational
resources, RAG systems make use of pre-trained models combined
with external knowledge sources. Demonstrating the effectiveness
of such systems could encourage broader adoption, thereby
reducing the overall carbon footprint of AI deployment.

1.4 Goals

The primary goal of this thesis is to conduct a comprehensive and
fair evaluation of several RAG methods. The aim is to shed light on
the trade-offs between performance and resource usage for each
system in MHQA scenarios.

The specific objectives of the project are:

• To implement or integrate systems for Naive RAG, Recursive
RAG, and Graph RAG. Two systems will be evaluated for
Graph RAG. The first, referred to as Community-Graph RAG,
will be based on Microsoft’s open-source implementation.
The second, referred to as KG-Graph RAG, will be based
on extracting node triplets from the constructed knowledge
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graph. See section 2.5.2 for more background information on
the Graph RAG approaches.

• To design and execute a benchmarking framework that
evaluates both retrieval and generation accuracy across
multiple query types. The framework will utilize a combination
of standard evaluation metrics (implemented via Python
scripts) and LLM-as-a-judge techniques.

• To analyze each system’s resource usage in terms of token
consumption, response latency, CPU and memory usage.

• To investigate each system’s tendency to hallucinate, es-
pecially in response to null queries where no relevant
information exists.

• To quantify the cost of initial graph construction in terms of
token usage.

• To provide actionable insights and guidelines for selecting a
RAG architecture depending on accuracy requirements, data
nature, and resource constraints.

1.5 Research Methodology

This thesis adopts a quantitative research methodology, focused on
comparative analysis of various RAG methods. The methodology
chosen is suitable for examining performance metrics, including
accuracy, BERTScore Precision, BERTScore Recall, BERTScore F1,
recall, latency, resource consumption, and system behavior (e.g.,
tendency to hallucinate). This research aligns with a positivist
paradigm, which assumes that reality is objectively measurable and
can be analyzed through systematic observation. The approach
emphasizes empirical evidence, focusing on observable variables.
By using this framework, the research can provide reliable,
repeatable results that offer actionable insights.
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1.6 Delimitations

This thesis project focuses exclusively on evaluating queries
with single-entity or yes/no answers. It does not assess
system performance for tasks requiring longer outputs, such as
summarization or dialogue generation. Furthermore, while many
RAG variants exist and could be of interest for evaluation, this study
is limited to three approaches: Naive RAG, Recursive RAG, and
Graph RAG. For the language model component, OpenAI’s GPT-4o-
mini [2] is the only model used. Evaluating performance using other
models may yield different outcomes and is outside the scope of this
project. Lastly, the evaluation is restricted to quantitative metrics.
Qualitative factors such as user satisfaction or human preference
judgments are not included.

1.7 Structure of the Thesis

The structure of the thesis is as follows: Chapter 2 presents
relevant background information on RAG, MHQA, and the
systems being compared in this study. Chapter 3 outlines the
research methodology and Chapter 4 details the implementation,
experimental setup and evaluation metrics. Chapter 5 presents the
results of the evaluation. Chapter 6 discusses the implications of the
results, compares system trade-offs, and reflects on the research
questions. Chapter 7 concludes the thesis by summarizing key
findings, acknowledging limitations, and proposing directions for
future work.
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Chapter 2

Background

The purpose of this chapter is to provide background information
relevant to this thesis. Sections 2.1 and 2.2 present the concepts of
NLP and LLMs. Sections 2.4 and 2.5 provide a thorough explanation
of RAG and the specific techniques selected for this study. Section
2.6 explains multi-hop question answering and discusses why it
poses challenges in the context of RAG. Section 2.7 describes
existing evaluation approaches for RAG systems. Finally, Section
2.8 presents relevant previous work identified in the literature.

2.1 Natural Language Processing

NLP is a subfield of AI focused on enabling computers to
understand, interpret and generate human language. NLP bridges
the gap between human and computer communication, allowing
meaningful interactions between the two. NLP is classified
into two parts, Natural Language Understanding (NLU) and
Natural Language Generation (NLG). NLU enables computers to
comprehend and interpret human language by analyzing text
and extracting concepts, entities, emotions and keywords. On
the other hand, NLG focuses on producing human-like text
based on structured data [3]. NLP has various applications,
including Machine Translation, Text Categorization, Spam Filtering,
Information Extraction, Summarization and more. Many advances
have been made in the field of NLP, especially considering recent
breakthroughs in Machine Learning (ML). The introduction of
models like Recurrent Neural Networks (RNNs) [4] and Long



8 |Background

Short-Term Memory (LSTM) networks [5] allowed for better
handling of sequential data, such as text, time series, financial
data, speech, audio and video. More recently, models based
on the Transformer architecture described in Section 2.2, such
as Bidirectional Encoder Representations from Transformers
(BERT) [6] and Generative Pretrained Transformer (GPT), have
revolutionized NLP by leveraging attention mechanisms to capture
complex dependencies in large datasets [5].

2.2 Large Language Models

LLMs are a class of deep learning models designed to process
and generate text with high fluency and contextual understanding.
LLMs are trained on vast amounts of text data, often sourced
from publicly available corpora, allowing them to generalize
across multiple domains. LLMs are built using the transformer
architecture, which is a neural network architecture first proposed
in 2017 by a team at Google [7]. Since their release, LLMs
have demonstrated remarkable performance across various NLP
tasks, ranging from text summarization and machine translation
to information extraction and sentiment analysis [8]. While pre-
trained LLMs perform well on open-domain tasks, they may lack
the precision required for specialized applications. Fine-tuning can
then be utilized to enable the model to align better with domain-
specific terminology and improve factual accuracy. Fine-tuning
is typically done by training an LLM on a smaller, task-specific
dataset. Since models have billions of parameters (e.g., 175B in
GPT-3 [9]), full fine-tuning requires extensive GPU resources and is
highly inefficient and unsustainable [10]. To address this challenge,
a technique, termed Efficient-Fine-Tuning (PEFT) has emerged.
PEFT involves adjusting a limited number of LLM parameters while
keeping the rest unchanged. Several PEFT methods exist and can
be categorized into additive fine-tuning (e.g., Adapter and Soft
Prompt), selective fine-tuning, reparameterized fine-tuning (e.g.,
Low-Rank Adaptation (LoRA)) and hybrid fine-tuning [10].
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Transformers

The Transformer architecture, the main building block in modern
LLMs, was introduced by Vaswani, et al. [7] in 2017. It rapidly
became the new state-of-the-art, replacing RNNs in a wide range
of NLP tasks.

RNNs are capable of leveraging sequential information by
maintaining a hidden state that encodes previously seen inputs,
thereby allowing the model to predict the next word in a sequence
based on prior context [11]. This represented a significant
improvement over traditional feedforward neural networks, which
treat each input independently. However, RNNs suffer from
limitations when processing longer sequences: the retained context
tends to degrade as the distance between relevant tokens increases,
making it difficult for the model to capture context over large spans
of input data.

The Transformer architecture addresses the limitations of
RNNs through the use of a self-attention mechanism, which
allows the model to consider all positions in the input sequence
simultaneously. Unlike RNNs, which process sequences token
by token and maintain a hidden state that can decay over time,
Transformers do not rely on sequential processing. Instead, they
operate on the entire input sequence at once, enabling them
to capture long-range dependencies more effectively. The key
innovation behind Transformers is self-attention, which enables the
model to dynamically assign weights to different tokens in the
input based on their relevance to each other. This is achieved
through Scaled Dot-Product Attention, which computes attention
scores efficiently using matrix operations that scale well with larger
sequences [7].

In practice, the Transformer consists of an encoder-decoder
structure, where both parts are built from stacks of attention layers
and feed-forward neural networks. The encoder processes the input
sequence and creates a contextual representation of each token,
while the decoder generates the output sequence by attending to
both the encoder’s outputs and previously generated tokens.

Moreover, because the architecture is fully parallelizable, it
allows for significantly faster training compared to RNNs, which
require sequential computation [11].
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2.3 Retrieval Augmented Generation

Figure 2.1: Illustration of how RAG improves the accuracy of
chatbots, based on Figure 1 from the following study [12]

RAG is a technique used to enhance the capabilities of LLMs
by allowing them to access and reference an external knowledge
source (see Figure 2.1). Although LLMs have demonstrated strong
performance across various NLP tasks, they still have certain
limitations. One major issue is AI hallucinations, where models
generate responses that contain incorrect or fabricated information
[13][14]. Another challenge is keeping LLMs up to date with
current information. The traditional approach relies on fine-
tuning with new data, which is resource-intensive, making frequent
updates extremely costly. RAG addresses these challenges by
providing LLMs with relevant and accurate information retrieved
from an external knowledge source, allowing the model to generate
responses that are factually grounded and up to date [15]. RAG has
been studied for domain-specific Question Answering (QA) and has
demonstrated impressive results [16][17][18].

A RAG system typically consists of three main components:
the retrieval component, the retrieval fusion component, and
the generation component [15]. The retriever encodes inputs
into embeddings and searches an indexed datastore to retrieve
relevant key-value pairs. A key challenge in retrieval is
balancing efficiency with quality to ensure that the most relevant
information is retrieved without excessive computational overhead.
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The retrieval fusion component then integrates the retrieved
information using various augmentation techniques to enhance
the generation process. Finally, the generator produces the final
output, utilizing either standard LLMs like GPT [19] and Mistral
[20] or retrieval-augmented models such as RETRO [21], which
incorporate specialized modules for fusing retrieved data.

2.3.1 Embeddings

Embeddings are numerical vector representations of real-world
data such as text, images, or code. These vectors map information
into a multi-dimensional space, allowing ML models to process
and understand complex, non-numerical data. Since ML models
cannot directly interpret human language, embeddings are used to
convert language into mathematical forms that preserve semantic
meaning. This enables models to capture intricate relationships
between different concepts.

For example, the words "smart" and "intelligent" may appear
different on the surface, but their embeddings are located close
to each other in the vector space since they are often used in
similar contexts. This proximity allows ML models to recognize
them as semantically similar, even if they are not identical. In RAG,
this capability is crucial: it ensures that a user’s query retrieves
contextually relevant passages, even if the wording doesn’t exactly
match.

Transformers such as BERT [6] are commonly used to generate
vector embeddings that preserve contextual meaning. These
embeddings form the basis for efficient semantic search, clustering,
and ranking in RAG systems.

2.3.2 Vector Store

A vector store, also known as a vector database, is a specialized
data structure designed to store and retrieve high-dimensional
embeddings efficiently. In traditional databases, we store and
query structured data using exact matching or filtering conditions
(e.g., SQL queries). However, vector databases work by storing
embeddings and using similarity metrics, like Cosine similarity or
Euclidean distance, to determine how close two vectors are in the
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embedding space.
In RAG systems, the vector store serves as the core retrieval

engine. When a user submits a query, it is converted into
an embedding and compared against the stored embeddings to
retrieve the top-k most relevant documents, where k is the number
of the retrieved documents. These documents are then passed to
the language model to inform and ground the generated response.

Popular vector databases include FAISS [22], Pinecone [23]
and ChromaDB [24]. ChromaDB, in particular, is an open-source,
lightweight, and developer-friendly vector database often used in
RAG pipelines for local development or smaller-scale applications.
It integrates well with tools like LangChain [25], making it a popular
choice for rapid prototyping and experimentation in LLM-based
systems.

2.4 Overview of RAG Systems

RAG research can be categorized into three stages: Naive
RAG, Advanced Retrieval-Augmented Generation (Advanced RAG)
and Modular Retrieval-Augmented Generation (Modular RAG)
[26]. Below is a brief overview of each stage, highlighting key
characteristics, improvements, and challenges.

2.4.1 Naive RAG

Naive RAG is a basic form of the RAG framework that includes a
process consisting of indexing, retrieval, and generation. In the
indexing phase, raw data from various formats (PDF, HTML, Word,
etc.) is cleaned and split into smaller chunks to accommodate
the limited context window of LLMs. The chunked data is then
converted into vector representations using an embedding model,
and stored in a vector database. Indexing is crucial for enabling
similarity searches during the retrieval phase.

In the retrieval phase, the user query is converted into a vector
representation using the same embedding model as in the indexing
phase. A similarity search [27] is then performed between the
user query and the chunked data to retrieve the most relevant
information. This retrieved information serves as additional context
for the LLM during the generation step.
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In the generation phase, the retrieved documents are combined
with the original query to construct a prompt that guides the LLM in
producing a response. A straightforward approach is to concatenate
the retrieved chunks with the user query in a simple sequential
format. However, more advanced prompting techniques exist, some
of which have shown potential for improving system performance
[28].

Naive RAG faces several challenges. The retrieval phase
struggles with precision and recall, often selecting irrelevant
chunks or missing crucial information. In addition, the generation
process is prone to hallucinations, bias, and toxicity, leading to
unreliable responses.

2.4.2 Advanced RAG

Advanced RAG enhances retrieval quality by introducing pre-
retrieval and post-retrieval optimization strategies. It refines
indexing through techniques like sliding windows, fine-grained
segmentation, and metadata incorporation [29].

The pre-retrieval process enhances indexing and query structure
through various strategies. Indexing is refined using finer data
granularity, optimized index structures, metadata incorporation,
and mixed retrieval. Meanwhile, query optimization aims to
clarify the user’s original question through techniques such
as query rewriting, query transformation, and query expansion
[30][31][32], along with other methods such as Hypothetical
Document Embeddings (HyDE) [33].

The post-retrieval process focuses on techniques that enhance
the integration of the query with the retrieved contexts. One
key method is re-ranking, where a relevance score is calculated
between the query and the retrieved contexts. This score is then
used to reorder the contexts, prioritizing those most relevant to the
query [34].

These improvements address the limitations of Naive RAG,
ensuring more accurate retrieval and generation results.
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2.4.3 Modular RAG

The Modular RAG system is composed of several specialized
modules, each designed to handle specific tasks. While these
modules operate independently, they are tightly coordinated to
work together seamlessly within the overall system [35]. Six distinct
modules are proposed by Gao, et al. [35]: Indexing, Pre-retrieval,
Retrieval, Post-retrieval, Generation, and Orchestration. A key
advantage of this modular approach is its flexibility where each
module can be upgraded or replaced without impacting the entire
system. This allows for easier customization and optimization based
on the specific needs of different applications. Additionally, Modular
RAG’s architecture enables improved scalability, as new modules
can be added or existing ones can be fine-tuned to handle larger
datasets or more complex queries.

2.5 Selected Advanced Techniques

This section delves into specific advanced techniques selected and
implemented in this study. First, we present relevant prior work
that has investigated Recursive RAG. Then, we present two main
approaches for implementing Graph RAG and discuss related work
that has contributed to their development.

2.5.1 Recursive Retrieval

Recursive Retrieval is an advanced technique used in RAG
pipelines, where information retrieval is iteratively refined based
on the results of previous searches. Unlike traditional RAG, which
retrieves a fixed set of documents based on a single query, recursive
retrieval dynamically updates the query based on intermediate
outputs.

One approach to implementing recursive retrieval is through
Chain-of-Thought (CoT) reasoning [36], which guides the retrieval
process. For instance, Interleaving Retrieval with Chain-of-Thought
(IRCoT) [37] combines three components: (i) a base retriever that
fetches paragraphs from a knowledge source, (ii) a language model
with CoT generation, and (iii) a small set of annotated questions
with reasoning steps and supporting paragraphs. Chain-of-Retrieval
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Augmented Generation (CoRAG) [38] on the other hand, uses
rejection sampling [39] to automatically generate the intermediate
retrieval chains, eliminating the need for manual annotation.

Other approaches such as Recursive Abstractive Processing
for Tree-Organized Retrieval (RAPTOR) [40] recursively embed,
cluster, and summarize chunks of text to construct a tree structure
with varying levels of summarization from the bottom up. Lastly,
Tree of Clarifications (ToC) [41] recursively constructs a tree
of disambiguations for Ambiguous Questions (AQ) through few-
shot prompting and leveraging external knowledge, in an effort
to generate comprehensive answers without asking the user for
clarifications.

Recursive retrieval approaches for RAG have outperformed
traditional retrieval methods [40] and have shown significant
improvement in LLM multi-hop reasoning and QA performance
for complex knowledge-intensive open-domain tasks in a few-shot
setting [37].

2.5.2 Graph RAG

Graph RAG enhances the retrieval process in RAG by leveraging
knowledge graphs to represent and reason over structured data.
These graphs typically model entities, concepts, and documents
as nodes, while relationships between them are modeled as
edges. Various implementations of Graph RAG have been proposed,
each leveraging the graph structure in distinct ways to improve
performance and contextual understanding. In this section,
we present two representative approaches: KG-Graph RAG and
Community-Graph RAG.

KG-Graph RAG

KG-Graph RAG utilizes either Named Entity Extraction (NER)
or more recently, an LLM with custom prompts to construct a
knowledge graph from a text corpus. The process begins by
chunking the text and extracting knowledge triplets from it. A
triplet is a representation of a fact structured as: (entity) -
[relationship] → (entity). These triplets capture the semantic
relationships between entities mentioned in the corpus and form
the foundation of the graph. Once extracted, the triplets
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are persisted in a graph database such as Neo4j [42], where
each node represents an entity and each edge represents a
relationship. This graph structure can then be queried to retrieve
relevant information, enabling multi-hop reasoning and context-
aware retrieval in downstream RAG tasks.

Several frameworks for KG-Graph RAG have been proposed,
including GRAG [43], KG-RAG [44], KG2-RAG [45], and KG-
IRAG [46]. Such frameworks have shown promising results,
outperforming LLM baselines, particularly in scenarios requiring
detailed, multi-hop reasoning on textual graphs.

Community-Graph RAG

Community-Graph RAG constructs a knowledge graph using an
LLM, and further refines it to improve retrieval effectiveness. A
notable implementation of Community-Graph RAG is proposed by
a team at Microsoft in the following article [1]. The high-level
dataflow and the pipeline of the approach are described in detail.
As a first step, the input text is split into chunks and passed into an
LLM. The LLM extracts entities (e.g., person, organization, event
etc.), relationships, and relevant attributes, refining the results
through iterative processing to improve accuracy. The entities
and their relationships are modeled as a graph and a community
detection algorithm, Leiden [47] in this case, is used to partition
the graph into communities. Nodes within the same community
have stronger connections to one another than to the other nodes
in the graph. Summaries are then generated for each detected
community in the graph. The summaries are generated at either
the leaf-level communities or at higher-level communities. These
summaries help users understand the data’s overall structure and
semantics by scanning through them. Lastly, the final answer is
generated through a multi-stage process leveraging hierarchical
community summaries. The process follows three steps: first,
community summaries are prepared by randomly shuffling and
dividing them into chunks to distribute relevant information evenly.
Then, intermediate answers are generated for each chunk, with the
LLM assigning a helpfulness score (0-100) and filtering out low-
scoring responses. The final step combines the highest-scoring
intermediate answers iteratively to produce the final response. The
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evaluation of the implemented Community-Graph RAG framework
showed substantial improvements over a Naive RAG baseline for
both the comprehensiveness and diversity of answers, especially
for Query-Focused Summarization (QFS) tasks.

2.6 Multi-hop Question Answering

MHQA is a task in which answering a single question requires
aggregating and reasoning over multiple pieces of information,
often spread across several documents [48]. The goal of MHQA is
to predict the correct answer to a question that requires multiple
reasoning "hops" across given contexts (text, table, knowledge
graph etc).

While RAG has proven effective for single-hop question
answering and open-domain QA, traditional RAG systems often
fall short in multi-hop scenarios. The core limitation lies in
the assumption that retrieving a handful of top-k documents is
sufficient for the model to generate an accurate answer. However,
in multi-hop scenarios, relevant information is often scattered
across multiple sources, requiring the model to bridge facts and
reason over several interconnected pieces of evidence. To address
this, more advanced approaches such as Recursive RAG, which
iteratively updates queries based on previously retrieved content,
and Graph RAG, which builds a graph to capture relationships
between entities, have emerged. These methods support more
structured, stepwise reasoning and better reflect how humans
navigate information to answer complex questions.

MultiHop-RAG is an MHQA dataset introduced by Tang,
et al. [49], and is one of the first datasets designed specifically
for evaluating RAG systems in the context of multi-hop queries.
The motivation behind this dataset is to provide a more accurate
benchmark for RAG systems in scenarios that closely resemble
real-world use cases. In practice, users often submit complex
or nuanced questions to RAG systems. These are questions that
require synthesizing information scattered across multiple pieces of
evidence. By emulating this behavior, MultiHop-RAG enables more
realistic and meaningful evaluations of how well RAG pipelines can
perform multi-step reasoning over retrieved content.
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2.7 RAG Evaluation

The evaluation of RAG systems presents a unique challenge due
to their hybrid architecture consisting of retrieval and generation
components. LLMs are usually evaluated on their ability to generate
accurate, fluent, and coherent text, using metrics such as BLEU,
ROUGE and METEOR [50]. On the other hand, RAG evaluation must
account for retrieval and generation performance both separately
and jointly. To address this challenge, researchers have proposed
various frameworks and metrics for RAG evaluation.

RAGAS [51] introduces a suite of metrics that enable the
evaluation of RAG systems for both the retrieval and generation
components, without requiring ground-truth human annotations.
RAGAS evaluates RAG systems using three quality aspects:
faithfulness, answer relevance and context relevance. The
evaluation is fully automated by prompting an LLM and using
it as a judge. For each metric, a set of instructions outlining
the passing criteria is given in the form of a prompt. The LLM
then assesses whether an answer or a set of retrieved documents
meets the specified requirements for each metric. The results
showed that the RAGAS evaluation is closely aligned with human
judgments, especially for faithfulness and answer relevance. ARES
[52] is another framework that uses LLM judges to evaluate RAG
systems across the same three dimensions as RAGAS. ARES uses
synthetic training data to fine-tune lightweight language model
judges, thereby reducing reliance on manual annotations.

Other studies focus on metrics that are less frequently assessed.
For instance, Zhou, et al. [53] propose an evaluation benchmark
for RAG trustworthiness, based on six key dimensions: factuality,
robustness, fairness, transparency, accountability, and privacy.
Furthermore, Şakar, et al. [54] measure the trade-offs between
vector-store based RAG accuracy, token usage, runtime, and
hardware utilization.

For annotated datasets that contain a ground-truth context and
a ground-truth answer, evaluation metrics such as precision, recall,
F1-score, Mean Reciprocal Rank (MRR), and Hit Rate can be used
to assess retrieval performance, measuring how accurately the
system retrieves relevant documents [49]. Generation performance
is assessed by comparing the generated response to the ground-
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truth answer.

2.8 Related Work

Previous studies have either proposed new techniques for
improving RAG performance or presented a comparative analysis
of different techniques.

Şakar, et al. [54] investigate the optimization of vector-store
based RAG processes by evaluating various methodologies. The
research involves an extensive grid-search optimization comprising
23,625 iterations, assessing multiple RAG methods (Map Re-rank,
Stuff, Map Reduce, Refine, Query Step-Down, Reciprocal) across
different vector stores, embedding models, and LLMs, utilizing
cross-domain datasets and contextual compression filters.

Eibich, et al. [55] assess Advanced RAG techniques, including
HyDE, LLM reranking, Maximal Marginal Relevance (MMR), Co-
here rerank, Multi-query approaches, Sentence Window Retrieval,
and Document Summary Index, focusing on their impacts on
retrieval precision and answer similarity. The study also explores
whether different combinations of these methods yield better
results. HyDE and LLM re-ranking are identified as notable
enhancers of retrieval precision; however, they come with increased
latency and cost.

Furthermore, one study of particular relevance to this thesis
project is the following [56]. The study presents a comparative
analysis of Naive RAG and Graph RAG (both Community-Graph
RAG and KG-Graph RAG). The study evaluates the systems using
a diverse set of datasets, including a single-hop QA dataset
and a MHQA dataset, with query types that overlap with those
considered in this thesis. The results indicate that Naive
RAG generally performs better on detailed single-hop queries,
while Community-Graph RAG outperforms on multi-hop queries,
particularly those involving comparison and temporal reasoning.
Community-Graph RAG however showed weaker performance on
null queries compared to KG-Graph RAG and Naive RAG. The study
adopts an LLM-as-a-judge evaluation approach to assess the quality
of generated responses.

Existing studies have repeatedly benchmarked Graph RAG
against Naive RAG, potentially overlooking valuable insights that
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could be gained by comparing it with other advanced retrieval
techniques. Moreover, studies involving Graph RAG have often
neglected the critical aspect of cost and resource consumption
analysis which is an important consideration when deploying real-
world systems. This thesis aims to address these gaps by providing
a comprehensive benchmark that evaluates both generation and
retrieval accuracy. The benchmark employs metrics such as
BERTScore precision, BERTScore recall, and BERTScore F1-score,
in addition to incorporating an LLM-as-a-judge evaluation to offer
a more nuanced and reliable assessment. It also includes metrics
that are frequently omitted in prior work, such as token usage and
hardware utilization.
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Chapter 3

Method

The purpose of this chapter is to provide an overview of the research
method used in this thesis. Section 3.1 describes the research
process. Section 3.2 details the research paradigm. Section 3.3
focuses on the data collection techniques used for this research.
Section 3.4 explains the techniques used to evaluate the reliability
and validity of the data collected. Section 3.5 describes the
experimental design. Section 3.6 describes the method used for
the data analysis.

3.1 Research Process

This section outlines the key steps taken to address the problem
defined in Section 1.2, from the initial stages of the project to its
final implementation.

Understanding the Problem

The initial phase of this study involved an in-depth investigation
into RAG to understand its existing applications and limitations.
A comprehensive review of previous research was conducted to
examine the frameworks, architectures, and evaluation methods
commonly used in RAG-based systems. This analysis provided
insights into current methodologies and performance benchmarks.
Based on this understanding, a literature gap was identified,
leading to the formulation of an experimental design aimed at
systematically evaluating and comparing different RAG techniques.
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Designing and Conducting the Experiment

To address the identified research gap, a comparative experiment
was designed and conducted, focusing on three distinct RAG
techniques. To establish an understanding of how a RAG system
is built, a Naive RAG implementation was developed. This included
deciding on and experimenting with RAG parameters and LLMs.
Furthermore, a preliminary set of evaluation metrics was selected
and mapped to specific RAG components to ensure a comprehensive
assessment of system performance. Finally, the code for each
technique was implemented, maintaining consistent parameters
and environment settings across all methods to enable a controlled
and rigorous comparison [57].

Results and Discussion

Once the RAG systems were implemented, each technique was
executed on the dataset, and the resulting outputs were collected
for analysis. Evaluation scripts were developed to assess
each method systematically, using the predefined metrics. The
evaluation results were then structured into tables and graphs,
allowing for a clear comparison of performance across the three
techniques. Finally, the findings were analyzed to draw conclusions,
highlighting key insights and answering the research questions
formulated in the study.

3.2 Research Paradigm

This study follows a quantitative, experimental research paradigm,
as it aims to systematically evaluate and compare different RAG
systems using predefined performance metrics. The research
is empirical in nature, relying on controlled experiments and
numerical data to draw conclusions. As such, the study aligns
with the positivist paradigm, which assumes that there is a single
reality that can be understood through objective measurements and
systematic observations.
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3.3 Data Collection

Building a RAG-based system requires access to a text corpus that
can be loaded into an external knowledge source. Additionally,
for evaluation purposes, a labeled dataset with ground-truth
answers and retrieved evidence is needed. A suitable dataset
was identified through a previous study [49] where a multi-hop
dataset was produced and open-sourced on Github, along with the
corresponding text corpus. This dataset was selected because it
aligns with the research objectives, enabling a fair comparison of
Naive RAG, Graph RAG, and Recursive RAG in handling complex,
multi-step reasoning tasks.

Beyond using an existing dataset, data collection was also
performed to gather results from the four RAG systems. This
involved running each system on the dataset, recording the
retrieved evidence, generated answers, and metric scores.

Sampling

Taking into account environmental and economic considerations,
the original dataset, consisting of 619 documents and 2,556
queries, was sampled. The original dataset comprises queries
from four distinct categories: temporal, comparison, inference,
and null queries. To ensure a balanced representation across
these categories, 50 queries of each type were randomly sampled.
Furthermore, the distribution of the number of evidence required
to answer queries was kept similar to the original dataset.
After extracting the queries, the associated documents were also
extracted using the metadata provided with each query, resulting in
a final sample of 200 questions and 157 corresponding documents.

3.4 Reliability and Validity of Method and

Collected Data

This section outlines the steps taken to ensure the reliability and
validity of both the methods and the data used in this study.
By evaluating the consistency and accuracy of the approach, the
credibility of the results can be better understood and assessed.
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Validity of method

Several measures were taken to ensure the validity of the methods
used in this study. Firstly, a suitable dataset was selected to
support fair and effective evaluation. This dataset had been
used in previous research, including Microsoft’s Graph RAG paper,
which further supports its relevance for this project. A thorough
understanding of each RAG technique was developed before any
implementation began, ensuring that all components were correctly
applied according to their intended design. To maintain consistency
across comparisons, the same set of documents and input questions
was passed to each RAG system. Additionally, the same evaluation
metrics were applied to all systems to ensure that the results were
directly comparable. Finally, both the system outputs and the
resulting evaluation scores were manually inspected and analyzed
to confirm that they aligned with expected behavior and yielded
meaningful outcomes.

Reliability of method

To ensure the reliability of the methods, all experiments were
conducted under consistent test settings. Each RAG system was
deployed within the same controlled environment and processed
the same set of input questions, eliminating variability due to
differing runtime conditions. The experiments were also executed
multiple times to verify that the outputs remained stable and
reproducible across runs. Since outputs from language models can
vary across calls, the temperature parameter was set to zero for
all LLM-generated responses to ensure determinism and eliminate
randomness in the generation process.

Data validity

The validity of the collected data was ensured by using standardized
evaluation metrics, including accuracy, precision and recall. This
captured different aspects of system performance and provided a
structured and repeatable way to compare results across systems.
In addition, to better account for the nature of the data and
the challenges in evaluating RAG retrieval performance, an LLM-
based evaluator (LLM-as-a-judge) was incorporated through the
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RAGAS framework to assess outputs in a more contextually
relevant manner. The results from the LLM evaluator were
then compared with traditional, "static" metrics to provide a
more comprehensive view of system performance and ensure the
alignment between automated and human-like evaluation. By
combining both traditional and LLM-based evaluation approaches,
we increased the validity of the collected data and ensured that it
better reflected real-world use cases.

Reliability of data

To ensure the reliability of the collected data, queries were run
multiple times on each system under consistent conditions. This
approach helped verify that the results were deterministic and
reproducible. Any variation in the outputs was carefully noted
and analyzed to ensure that the systems provided consistent
responses when given the same inputs. Additionally, all systems
were evaluated using the same metrics and evaluation procedures,
further reinforcing the reliability of the collected data. By
conducting these repeated runs and comparing the results across
experiments, we were able to confirm that the data was dependable
and could be trusted for further analysis.

3.5 Experimental Design

To systematically evaluate the effectiveness of different RAG
techniques, ranging from naive to more advanced approaches,
four RAG systems were constructed: Naive RAG, Community-
Graph RAG, KG-Graph RAG and Recursive RAG. A set of carefully
selected metrics was used to assess both generation and retrieval
performance, as well as hardware utilization and token usage.

For generation, accuracy was used as the primary metric, as
the expected answers were either yes/no or single-entity responses.
Retrieval performance was evaluated using BERTScore, specifically,
BERTScore precision, BERTScore recall and BERTScore F1, based
on ground truth retrieved evidence. Additionally, CPU and RAM
utilization were measured to assess system efficiency. Finally, input
and output token counts were recorded to provide a cost analysis,
and execution time per query was measured to evaluate latency.
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A MHQA dataset was used to benchmark the RAG systems,
ensuring identical environment settings across evaluations. After
running the experiments, evaluation metrics were computed based
on the model responses. Based on these results, adjustments
and optimizations were applied to enhance system performance,
experimenting with parameters that potentially improved answer
accuracy. This ensured a fair and meaningful comparison of the
three approaches.

Test Environment

This project is implemented entirely in Python, using LangChain
as the development framework. For the Community-Graph RAG
implementation, Nano-GraphRAG [58], a lightweight and modular
framework based on Microsoft’s Graph RAG implementation, was
used. OpenAI’s GPT-4o-mini model was employed as the generation
module across all RAG systems. The constructed knowledge
graph for Community-Graph RAG, along with intermediate results,
was stored locally as JSON files. For KG-Graph RAG, the graph
was stored in Neo4j. For the vector-store based RAG systems,
ChromaDB was used as the vector store.

To assess system performance, two main scripts were developed.
The first evaluated generation accuracy by cleaning up the model’s
output and comparing the result with the ground truth, checking for
exact word matches. The second script measured retrieval accuracy
using the BERTScore metrics precision, recall and F1 score.
Additionally, the RAGAS evaluation framework was incorporated to
better capture retrieval quality in a manner more similar to human
evaluation and without requiring ground-truth labeling.

Hardware and Software Used

All RAG systems were developed using Python 3.9.6 in a virtual
environment. Dependencies were managed using pip and specified
in a ‘requirements.txt‘ file to ensure reproducibility. The primary
libraries, tools and frameworks included LangChain, ChromaDB,
and Neo4j. All LLM-related calls, including testing and evaluation
using RAGAS, were made via OpenAI’s API. Remaining development
tasks, such as document chunking and indexing, vector store
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management, and non-LLM-based evaluations, were executed
locally on a development machine with the following specifications:

• Device: MacBook Pro (16-inch, 2021)

• Processor: Apple M1 MAX

• Memory: 64 GB

• MacOS: Sequoia 15.3.2

3.6 Data Analysis

The generation accuracy on the QA dataset was calculated for
each system to determine which RAG system had the overall best
performance. This included cleaning up the generated responses
and comparing them to the ground truth. The retrieved contexts
were also compared against the ground-truth contexts using
standard quantitative metrics implemented in Python. Additionally,
the RAGAS framework was used to evaluate the retrieved contexts
in a manner closer to human judgment, leveraging an LLM-
evaluator. This additional evaluation approach was incorporated
to guarantee a fair assessment of the retrieval performance,
considering that the ground truth contexts may not always match
the retrieved contexts exactly due to variability in phrasing
or formulation. Furthermore, using an LLM-evaluator allows
for reasoning about retrieval quality based on the user query,
generated answer, and retrieved context, rather than relying solely
on embedding similarity to a labeled reference.

Lastly, execution time and token usage (both input and
output tokens) were measured per query for each system and
recorded. This enabled us to calculate the average value per query.
Additionally, CPU and RAM usage were monitored periodically
(every 2 seconds) throughout the execution of all 200 queries in
each system to track system performance and analyze hardware
utilization.

Software Tools

The code was implemented in Visual Studio Code, utilizing a virtual
environment to isolate dependencies. Git was used for version
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control. The following libraries were used in the experiments:

• LangChain: A framework that simplifies the development of
LLM applications.

• Nano-GraphRAG: A modular and easy-to-use implementation
of Microsoft’s Graph RAG.

• ChromaDB: An open-source vector database optimized for
storing and querying dense vectors.

• Neo4j: A graph database that supports efficient querying and
visualization of graphs.

• OpenAI: Leading AI organization, offering API access to
capable LLMs such as GPT 4o mini, used in this study.

• BERTScore: A semantic similarity evaluation metric for
natural language generation tasks.

• RAGAS: A RAG evaluation framework that utilizes an LLM for
evaluation.

• Pandas: A data manipulation and analysis library for Python.

• Matplotlib: A Python library used for visualizing data and
creating a variety of graphs and plots.
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Chapter 4

Implementation

This chapter details the implementation of all four RAG systems
as well as the evaluation metrics. Section 4.1 presents the
dataset used and the sampling strategy. Section 4.2 describes the
implementation approach for each system, including code snippets
and illustrations to guide the reader’s understanding. Section 2.7
presents the evaluation metrics used for assessing generation
and retrieval performance. Section 4.4 introduces the RAGAS
framework and motivates its use. Finally, Sections 4.5 and 4.6
explain the additional metrics recorded and analyzed, namely token
usage and hardware utilization.

4.1 Benchmark Dataset

This section introduces the dataset used in this study, which
is specifically designed to support MHQA. It includes both the
original full-scale dataset and the sampled subset used during
experimentation. The dataset provides a variety of query types
and evidence structures, making it well-suited for analyzing how
different systems handle complex retrieval and reasoning tasks.

4.1.1 Original Dataset

The benchmark dataset used in this study is a sampled subset of
the MultiHop-RAG dataset, introduced by Tang, et al. [49]. This
dataset includes a knowledge base structured as a collection of
609 documents paired with metadata, as illustrated in Listing 4.1.
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The document corpus consists of news articles published between
September 2023 and December 2023, spanning a range of
categories including entertainment, business, sports, health, and
more. Each document contains at least 1,024 tokens in length.
Additionally, the dataset includes 2,556 multi-hop queries, each
paired with a ground-truth answer and corresponding supporting
evidence, designed for benchmarking RAG systems. The multi-
hop queries are categorized into four types: inference, comparison,
temporal, and null. Each query is labeled with its corresponding
type in the dataset, as shown in Listing 4.2. Below is an explanation
of each query type:

• Inference: These queries require combining information
from multiple sources in order to identify a specific entity in
question, for example: Which country’s prime minister visited
both France and Germany in 2021?.

• Comparison: These queries ask for a comparative judgment
between two or more entities, such as which company has
more revenue.

• Temporal: These queries involve reasoning over time-
based information, such as sequencing events and identifying
durations. The answer to these queries is usually yes/no or a
single temporal word such as "before" or "after".

• Null: These are control queries for which no correct answer
can be derived from the provided corpus. They are used
to evaluate the system’s ability to recognize unanswerable
questions and avoid hallucination.

{
"title": "Fans spot Travis Kelce wearing Taylor Swift-themed

friendship bracelet before she attended his game",
"author": "Amber Raiken",
"source": "The Independent - Life and Style",
"published_at": "2023-09-26T22:05:34+00:00",
"category": "entertainment",
"url": "https://www.independent.co.uk/life-style/travis-kelce-

taylor swift-friendship-bracelet-b2419065.html",
"body": "Fans have spotted Travis Kelce wearing a friendship

bracelet with Taylor Swift lyrics on it..."
}
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Listing 4.1: Example of a single document from the corpus, which is
stored as a JSON file. Each document contains structured metadata
fields (e.g., title, author, publication date) and a body of text.

{
"query": "Between the report from 'The Independent - Life and

Style' on September 26, 2023, regarding Taylor Swift
and Travis Kelce, and the subsequent report from 'The
Independent - Life and Style' on December 6, 2023,
concerning the same individuals, was the narrative
about their relationship consistent?",

"answer": "Yes",
"question_type": "temporal_query",
"evidence_list": [

{
"title": "Fans spot Travis Kelce wearing Taylor Swift-

themed friendship bracelet before she attended
his game",

"author": "Amber Raiken",
"url": "https://www.independent.co.uk/life-style/travis

-kelce-taylor-swift-friendship-bracelet-
b2419065.html",

"source": "The Independent - Life and Style",
"category": "entertainment",
"published_at": "2023-09-26T22:05:34+00:00",
"fact": "The post came after Swift was seen

enthusiastically cheering him on in the box
seats at Arrowhead Stadium, fuelling
speculation that she and the athlete are
dating."

}
]

}

Listing 4.2: Example of a single query from the query collection,
which is stored as a JSON file. Each entry includes a query, its
ground-truth answer, the query type, and the associated evidence.
For readability, only one piece of evidence is shown in this example.

Sampled Dataset

Although the initial plan was to evaluate all 609 documents
and 2556 queries, this proved impractical due to both time and
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cost constraints. Executing the full set of queries, particularly
across four different RAG systems using OpenAI’s GPT-4o mini,
led to prolonged execution times and a high volume of API
calls, which eventually triggered OpenAI’s rate limiting. The
most resource-intensive system was Community-Graph RAG, as
it required significant computational effort for constructing the
knowledge graph and executing queries on top of it. This is evident
in the token-usage analysis for Community-Graph RAG presented in
section 5.4.2.

For the reasons stated above, a representative sample of
the original dataset was selected, resulting in an evaluation set
comprising 157 documents and 200 queries. Each query type is
represented by 50 queries to support category-specific analysis,
particularly to assess whether any of the RAG systems are more
susceptible to null query hallucinations. The distribution of the
number of evidence items required to answer the queries is shown
in Table 4.1, and is consistent with that of the original dataset, with
most queries requiring two or three supporting documents.

Table 4.1: Distribution of the number of evidence items required to
answer queries in the sampled dataset

Num. of Evidence Needed Count Percentage
0 (Null Query) 50 25.00%

2 74 37.00%
3 54 27.00%
4 22 11.00%

Total 200 100.00%

Sampling Strategy

To create a balanced and representative subset of the original
dataset, a stratified random sampling approach was employed. The
objective was to ensure equal representation of each query type
while maintaining a consistent link between the sampled queries
and their supporting evidence documents. The following procedure
was carried out for the sampling:

1. Grouping by Query Type: The queries were grouped into the
four categories (null, comparison, inference, and temporal) to
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allow for random sampling from each type.

2. Uniform Sampling: 50 queries were randomly sampled from
each query type group using Python’s random.sample().

3. Evidence Linking: Each sampled query contains one or
more supporting evidence documents, identified via unique
URLs. To preserve the integrity of the evaluation context, all
documents referenced by the sampled queries were extracted
from the original corpus.

4. Exporting the Sampled Data: The sampled queries and the
associated documents were saved into separate JSON files
to facilitate reproducibility and support efficient use of the
dataset in evaluation tasks.

This strategy ensures that the evaluation subset maintains
structural diversity, supports fair performance analysis across
query types, and remains grounded in realistic multi-hop retrieval
scenarios.

4.2 RAG Systems Design

This section outlines the implementation details for each of the four
RAG systems. We begin by describing the parameter configurations
used across the systems, followed by a deeper dive into their
individual implementations, including selected code snippets to
illustrate key components.

4.2.1 Selected Parameters

The choice of parameters and models in the RAG pipeline plays
a critical role in the quality of the responses generated. To
enable a fair and meaningful comparison between the different RAG
systems, we aimed to keep core parameters, such as chunk size,
embedding model, and language model, as consistent as possible
across all four implementations. Below, we outline and motivate the
specific parameter choices for the vector-based and graph-based
RAG systems, respectively.
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Vector-Based RAG Configurations

Table 4.2: Parameter configuration for vector-based RAG systems

Parameter Chosen Configuration
Chunk Size 1200 characters
Chunk Overlap 100 characters
Vector Store Chroma DB
Retrieval Method Top-K based on Cosine similarity
Embedding Model BGE-M3
Generation Model GPT-4o mini

Table 4.2 presents the parameter configuration used for both
the Naive RAG and Recursive RAG systems. A chunk size of 1200
tokens was selected to ensure that each chunk contained sufficient
contextual information without becoming too broad. Preliminary
experiments with smaller chunk sizes (e.g., 500 tokens) led to
decreased accuracy, likely due to the context being too narrow. A
chunk overlap of 100 tokens was used to preserve continuity across
adjacent chunks, thereby reducing the risk of missing relevant
information located near chunk boundaries.

Chroma DB was chosen as the vector store, enabling efficient
storage of text chunks as dense embeddings and supporting
similarity search between user queries and the embedded
documents. For retrieval, a Top-K selection strategy based on
Cosine similarity was employed, where K is a positive integer. The
choice of K is discussed in more detail in Section 4.2.2 for the Naive
RAG system and in Section 4.2.3 for the Recursive RAG variant.

The embedding model used was BGE-M3 [59], an open-
source model accessible via the Ollama framework. For response
generation, we utilized GPT-4o mini, a lightweight, cost-effective
yet capable version of GPT-4 provided through the OpenAI API.
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KG-Graph RAG Configurations

Table 4.3: Parameter configuration for KG-GraphRAG

Parameter Chosen Configuration
Chunk Size 1200 characters
Chunk Overlap 100 characters
Storage Neo4j (Graph Database)

Retrieval Method
Hybrid: Dense vector retrieval (Cosine similarity)
+ Graph retrieval (Cypher)

Embedding Model BGE-M3
Generation Model GPT-4o mini

Table 4.3 outlines the parameter configuration used for the KG-
Graph RAG implementation. The chunk size and overlap were
kept consistent with the other systems. Neo4j was chosen as the
storage and query engine for the knowledge graph due to its native
support for graph structures and efficient querying capabilities. To
retrieve relevant context, a hybrid retrieval strategy was employed.
This approach combines semantic similarity-based retrieval from a
Neo4j vector index with structured graph retrieval using Cypher,
Neo4j’s declarative graph query language. The embedding model
used for vector retrieval is BGE-M3 and the LLM, used both to build
the graph and generate the final answers, is GPT-4o mini.

Community-Graph RAG Configurations

Table 4.4: Parameter configuration for GraphRAG

Parameter Chosen Configuration
Chunk Size 1200 characters
Chunk Overlap 100 characters
Storage Local File Storage (GraphML and JSON files)
Retrieval Method Global Search / Local Search
Embedding Model BGE-M3
Generation Model GPT-4o mini

Table 4.4 summarizes the parameter configurations used in the
Community-Graph RAG implementation. To ensure consistency
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across all methods, the chunk size is set to 1200. This size strikes
a balance between capturing meaningful entities and relationships
for graph construction while keeping costs manageable, as building
the graph involves a large number of asynchronous LLM calls. The
graph is stored locally as a GraphML file, and supporting data
such as community reports and intermediate results are saved as
JSON files. While a database like Neo4j could be used for graph
storage, local file-based storage is the default storage method and
is sufficient for our use case since the system is not intended for
production deployment.

To retrieve context relevant to user queries, the experiment was
ran twice; once using global search and once using local search
as described in Section 4.2.5. This allows for a direct comparison
between the two strategies. The embedding model used is BGE-
M3, consistent with the other systems. The embedding model is
required for local search, where entity descriptions are embedded
and used to identify suitable entry points for graph traversal (i.e.,
navigating through a graph structure by following edges between
nodes to retrieve connected and relevant information). Finally, the
LLM used for graph construction, community summarization, and
final answer generation is GPT-4o mini. This model was chosen due
to its strong performance and reasonable cost, both of which are
critical factors given that the quality of the generated graph directly
impacts the overall system performance.

4.2.2 Naive RAG Implementation

Figure 4.1: Naive RAG workflow
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Figure 4.1 illustrates the Naive RAG workflow. The implementation
follows this simple but effective approach to answer user queries.
The process begins by chunking documents, followed by embedding
and storing these chunks in a persistent vector database (see
Listing 4.3).

documents = load_data('data/sampled_documents.json')
chunked_documents = [

Document(page_content=chunk, metadata=document.metadata)
for document in documents
for chunk in text_splitter.split_text(document.page_content)

]
db = Chroma(

collection_name="documents",
embedding_function=HuggingFaceEmbeddings(model_name="BAAI/bge-m3
"),
persist_directory="chroma"

)
db.add_documents(documents=chunked_documents, ids=chunk_ids)

Listing 4.3: Naive RAG: Code snippet for chunking and embedding
documents

When a query is received, the system performs a similarity
search by comparing the embedding of the user query with the
embeddings of stored document chunks in the vector database
(see Listing 4.4). This process retrieves the top 10 most
semantically similar text segments. We chose to retrieve the top
10 documents to strike a balance between providing sufficient
contextual information and maintaining computational efficiency.
Retrieving too few documents risks excluding relevant evidence,
while retrieving too many can introduce noise and increase
inference time without notable improvements in performance.

results = db.similarity_search(query, k=10)
context = "\n".join([doc.page_content for doc in results])

Listing 4.4: Naive RAG: Code snippet for retrieving top 10 relevant
text chunks

Finally, the retrieved chunks are passed as context to the
language model, which then generates the final answer (see Listing
4.5).

messages = [
{"role": "system", "content": system_prompt},
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{"role": "user", "content": f"{context}\n\nQuestion:{query}\
nAnswer:"}

]
response = client.chat.completions.create(

model="gpt-4o-mini",
messages=messages,
temperature=0

)
answer = response.choices[0].message.content.strip()

Listing 4.5: Naive RAG: code snippet for answer generation

Naive RAG Prompt

system_prompt = """Below is a question followed by some context from
different sources. Please answer the question based on the

context. The answer to the question is a word or entity ONLY. If
the provided information is insufficient to answer the question

, respond 'Insufficient Information' only. For yes/no answers,
answer only with 'yes' or 'no' without further explanation."""

Listing 4.6: Naive RAG prompt

Listing 4.6 shows the prompt used to generate responses in the
Naive RAG pipeline. The prompt is carefully designed to restrict
the model’s output and ensure consistency in the response format.
It instructs the model to answer based on the provided context,
limiting the response to either a single entity or a “yes”/“no” answer,
depending on the question type. Additionally, it mitigates the risk
of hallucination by directing the model to respond with "Insufficient
Information" if the context is inadequate to answer the query.
By limiting the format of the generated answer, we simplify the
evaluation process, as all outputs follow a consistent structure that
is easy to parse and extract.
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4.2.3 Recursive Retrieval RAG Implementation

Figure 4.2: Recursive Retrieval RAG workflow

Figure 4.2 illustrates the workflow of a RAG system that
incorporates recursive retrieval. The initial steps including
chunking, embedding, and storing documents in the vector
database are identical to the Naive RAG pipeline and reuse the
same underlying code. The key difference lies in the retrieval
strategy. While the naive approach performs a single retrieval step
before passing the context to the language model for generation,
the recursive variant executes N iterations, where N is a positive
integer, retrieving up to K document chunks in each round. In
every iteration, the language model receives the original query
along with the previously retrieved documents and generates sub-
queries intended to guide subsequent retrievals more effectively.
In this implementation, we perform five retrieval iterations (N
= 5), where in each iteration, up to seven chunks (K = 7) can
be fetched. The retrieval loop is terminated early if no new
documents are found in an iteration. To compute the average
number of retrieved documents per query, we ran the retrieval
process for all queries in the dataset. For each query, we counted
the number of unique documents retrieved across all iterations. We
then summed these counts and divided the total by the number of
queries. Using this method, we found that the average number of
retrieved documents per query was 10.8. Listing 4.7 presents the
code used for performing recursive retrieval. Listing 4.8 illustrates
the generation of sub-queries, which are formulated based on the
initial query and the context accumulated during previous retrieval
iterations.
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def recursive_retrieval(query, steps=5):
for _ in range(steps):

docs = db.similarity_search(query, k=7)
if not docs:

break
context = update_context(docs)
if not context:

break
sub_questions = generate_sub_questions(context, query)
if not sub_questions:

break
query += "\n" + "\n".join(sub_questions)

return final_documents

Listing 4.7: Recursive Retrieval: Code snippet for performing five
iterations of retrieval

def generate_sub_questions(context, initial_query):
prompt = f""" Based on the following retrieved documents,
context, and initial query, generate 2-3 specific sub-questions
that:
1. Focus on aspects not covered in the current context
2. Help answer the initial query more comprehensively
3. Are specific and targeted"""
messages = [

{"role": "system", "content": prompt},
{"role": "user", "content": f"""Initial Query:{initial_query

}\n\nCurrent Context: {context}\n\nSub-questions:"""}
]
response = client.chat.completions.create(model="gpt-4o-mini",
messages=messages,
temperature=0)
questions = response.choices[0].message.content.strip().split("\
n")
return questions

Listing 4.8: Recursive Retrieval: Code snippet for generating sub-
queries based on previous context

Once the retrieval process is complete, the accumulated context
is provided to the language model alongside the original query to
generate a final response. This is done using the same prompt
described in Listing 4.6.
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4.2.4 KG-Graph RAG Implementation

Figure 4.3: KG-Graph RAG workflow

Figure 4.3 illustrates the overall workflow of the KG-Graph RAG
implementation. The process begins by splitting the document
corpus into smaller text chunks. These chunks are then passed to an
LLM, which extracts entities and relationships to form a structured
representation of the content. This structured output, referred to as
graph documents, encapsulates the semantic relationships between
entities and serves as the basis for constructing the knowledge
graph. The graph documents are finally ingested into a Neo4j
database, enabling efficient storage and retrieval. Listing 4.9 shows
the code used to build the knowledge graph using LangChain’s
convert_to_graph_documents function.

def build_graph():
docs = chunk_documents()
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
llm_transformer = LLMGraphTransformer(llm=llm)
graph_docs = llm_transformer.convert_to_graph_documents(docs)
graph.add_graph_documents(graph_docs, baseEntityLabel=True,
include_source=True)

Listing 4.9: KG-Graph RAG: Code snippet for knowledge graph
construction.

The resulting knowledge graph comprises 10,793 nodes and 28,346
relationships. An excerpt of this graph structure is visualized
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in Figure 4.4, illustrating the types of nodes and relationships
identified during the graph construction process. As shown in the
figure, nodes are color-coded according to their type. Purple nodes
represent document chunks, which include associated metadata
such as publication date, source, title, and URL, as outlined in
Table 4.5. The remaining nodes correspond to extracted entities,
each containing an identifier and a value (e.g., an entity name).

Figure 4.4: KG-Graph RAG knowledge graph excerpt

Table 4.5: Metadata of a sample document node in the knowledge
graph

elementId 4:806af3a9-2661-436a-bde0-3d2b6be0f75d:89
id 89
embedding [0.0158596523, -0.038642671, 0.01054068,

...]
document_id d23d0211071a902354f77a69ec7d0b2f
published_at 2023-10-06T21:31:00+00:00
source CNBC | World Business News Leader
text A worker sorts out parcels in the outbound dock at

the Amazon fulfillment center in Eastvale,
California, on Aug. 31, 2021.

title Amazon sellers sound off on the FTC’s
’long-overdue’ antitrust case

url https://www.cnbc.com/2023/10/06/amazon-sel
lers-sound-off-on-the-ftcs-long-overdue-ant
itrust-case.html

https://www.cnbc.com/2023/10/06/amazon-sellers-sound-off-on-the-ftcs-long-overdue-antitrust-case.html
https://www.cnbc.com/2023/10/06/amazon-sellers-sound-off-on-the-ftcs-long-overdue-antitrust-case.html
https://www.cnbc.com/2023/10/06/amazon-sellers-sound-off-on-the-ftcs-long-overdue-antitrust-case.html
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When a query is submitted, hybrid retrieval is used to fetch
relevant context. Firstly, the graph is queried to retrieve nodes
whose entity labels match the entities in the user question. The
nodes and their edges are returned in the form of triplets (source,
relation, target). Furthermore, a Neo4j vector index is initialized
using the embeddings associated with the document nodes in the
knowledge graph. To retrieve additional relevant context, the
user query is embedded and compared against this index using
similarity search. This process returns the most semantically
similar document chunks, thereby complementing the graph-based
retrieval with dense vector retrieval (see Listing 4.10).

def full_retriever(question):
graph_data = graph_retriever(question)
vector_data = [

{
"source": "Neo4j Vector",
"fact": el.page_content

}
for el in vector_retriever.invoke(question)

]
return graph_data, vector_data

Listing 4.10: KG-Graph RAG: Code snippet for hybrid retrieval

In the last step, the vector and graph data are passed along with
the user query to the language model, in order to generate the final
answer, using the same prompt described in Listing 4.6.
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4.2.5 Community-Graph RAG Implementation

Figure 4.5: GraphRAG workflow

Figure 4.5 illustrates the workflow of the Community-Graph RAG
implementation, which uses a graph-based retrieval strategy to
capture and exploit relationships between entities and concepts
across documents. We use a modified version of the Nano-
GraphRAG implementation [58] to build and query the graph. This
library is based on Microsoft’s Graph RAG implementation. Nano-
GraphRAG enables lightweight yet effective graph construction
and supports retrieval methods that traverse the graph to find
semantically and structurally relevant contexts.

During the indexing phase we construct a knowledge graph by
utilizing an LLM. The LLM is prompted to extract semantic entities,
such as persons, organizations, events, and other relevant types,
from pre-processed and chunked documents. These entities, along
with the relationships inferred between them, are used to build
a structured knowledge graph. To identify meaningful clusters
within the graph, the Leiden algorithm is employed to detect
communities by grouping strongly connected nodes. Then the
graph communities are used to generate community summaries.
The resulting knowledge graph, constructed from our sampled
dataset, comprises 29,632 nodes and 19,180 relationships. An
excerpt of the resulting graph structure, showcasing a subset of
extracted nodes and relationships, is provided in Figure 4.6.
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Figure 4.6: An excerpt of the constructed knowledge graph

Furthermore, Table 4.6 details an example of the metadata
stored at each node. elementId and id are used to uniquely
identify the node. The clusters field lists the communities or
groups that the node belongs to across different clustering levels.
The description field offers a textual summary of the entity,
derived directly from the source documents. The entity_type
indicates the type of entity represented by the node. Lastly, the
source_id points to the original chunk or section of the document
from which the entity and its associated metadata were extracted.

Table 4.6: Community-Graph RAG node metadata

elementId 4:8fd013fd-1ef5-48b6-bcb1-94c7d0392319:36
id 36
clusters ["level": 0, "cluster": 3, "level": 1, "cluster": 81]
description "Fred Ruckel is a seller on Amazon, known for his

product ’Ripple Rug’..."
entity_type PERSON
source_id chunk 3552f1f05c8dca81ade9afcf7cf6b0cd

During the retrieval and generation phase, the community
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summaries serve as a basis for retrieving relevant contextual
information. This context is then refined through a multi-
stage process involving an LLM. The refinement occurs by first
generating intermediate responses at the community level, which
are subsequently aggregated and polished to form a final global
output. Listing 4.11 demonstrates the code used to generate
answers. To retrieve context, we experimented with both global
and local search to evaluate the strengths and limitations of
each approach. Global search is designed for queries that
require reasoning across the entire dataset, leveraging community
summaries extracted from the knowledge graph. In contrast, local
search is tailored for entity-centric questions, providing detailed
information about specific people, organizations, or events. This
is achieved by identifying relevant entities and expanding outward
to include their neighboring nodes and associated concepts. The
desired search mode can be specified as a parameter to query().

def query(query):
rag = GraphRAG(

working_dir=WORKING_DIR,
best_model_func=llm_model_if_cache,
cheap_model_func=llm_model_if_cache,
embedding_func=ollama_embedding,

)
answer, context = rag.query(

query, param=QueryParam(mode="global")
)
return answer, context

Listing 4.11: Community-Graph RAG: Code snippet for querying
and answer generation
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Community-Graph RAG Prompt

system_prompt = """You are a helpful assistant responding to
questions about a dataset by synthesizing perspectives from
multiple analysts.

---Goal---
Generate a **single word or entity** that answers the user's

question based on the context provided in the reports.

For yes/no questions, answer with **yes** or **no** only, without
further explanation.

The analysts' reports are ranked in the **descending order of
importance**, and you should focus on the most relevant and
informative data provided.

Remove any irrelevant information from the analysts' reports before
deriving the final answer. Ensure the answer is concise and
directly related to the question.

Do not include information where the supporting evidence for it is
not provided, answer instead with **Insufficient information**.
"""

Listing 4.12: Community-Graph RAG prompt

Listing 4.12 details the prompt used to generate the final global
answer. Similarly to the Naive RAG prompt, this prompt was
modified to restrict the model output to single entity answers,
yes/no answers or "Insufficient information". In addition, there is
a specific prompt (see Listing 4.13) that is designed to respond with
"Insufficient information" in the case that no relevant context or
graph relationships are found.

PROMPTS["fail_response"]="Insufficient information"

Listing 4.13: Community-Graph RAG: No relevant context found
prompt

Since the Community-Graph RAG implementation relies on
an LLM for multiple tasks, including entity extraction, context
retrieval, and context refinement, various specialized prompts are
employed at different stages of the pipeline. This design introduces
flexibility and opens up opportunities for prompt experimentation
and fine-tuning. Prompts can be adapted or optimized to better
suit a particular dataset, domain-specific use case, or performance
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requirement, making Community-Graph RAG a highly customizable
framework.

4.3 Evaluation Metrics

In this section, we describe the metrics used to evaluate both the
generation and retrieval components of our systems. Generation
metrics evaluate the accuracy of the model’s output based on
the retrieved context, while retrieval metrics assess how well
the retrieved context matches the ground-truth. During context
retrieval and response generation, outputs (e.g., answer and
retrieved context) were saved in the same format as the ground-
truth dataset (see Listing 4.2). Maintaining a consistent format
simplifies the evaluation process and enables direct comparison
between generated answers and reference labels.

4.3.1 Generation Metrics

To assess generation quality, we use the accuracy metric, which
compares the generated answer to the ground-truth label.

Accuracy

To evaluate each system’s ability to produce correct answers,
we measure the accuracy of its responses. Since the model is
constrained to generate yes/no answers, single entities, or the
string “Insufficient Information”, the output space is well-defined
and discrete. This makes it straightforward to extract the predicted
answer and compare it against the ground truth. For each evaluated
example, a correct prediction is recorded as a 1, and an incorrect
one as a 0. The overall accuracy is then computed using the
following formula:

Accuracy =
1

N

N∑
i=1

[ŷi = yi] (4.1)

where:

• N denotes the total number of evaluated examples.

• ŷi is the predicted answer for the i-th example.
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• yi is the corresponding ground-truth answer for the i-th
example.

• [·] is the Iverson bracket [60] returning 1 if the predicted
answer matches the ground truth, and 0 otherwise.

4.3.2 Retrieval Metrics

Evaluating RAG retrieval performance is a challenging task that
requires careful consideration of several factors. Upon examining
the retrieved contexts from each system and comparing them
to the ground-truth contexts, it became clear that exact word
matching or fuzzy string matching would not yield satisfactory
results. This is largely due to the nature of the retrieved content,
which can differ significantly from the ground truth depending
on factors such as chunk size, the embedding model used, and
other pre-processing steps. In particular, the context produced
by Community-Graph RAG has undergone multiple rounds of LLM-
based summarization, making it even less likely to match the
ground truth verbatim. Therefore, a metric capable of evaluating
semantic similarity rather than surface-level overlap was required.
BERTScore [61] was selected as a suitable evaluation metric, as it
compares the contextual meaning of the retrieved content to that
of the ground truth using embeddings from pre-trained language
models.

BERTScore Precision

BERTScore Precision measures how well the retrieved context x̂

semantically aligns with the ground truth context x. For each
token in x̂, the maximum Cosine similarity with any token in x

is computed. Precision is then defined as the average of these
maximum similarities. Formally, BERTScore Precision, or PBERT is
computed using the following formula:

PBERT =
1

|x̂|
∑
x̂j∈x̂

max
xi∈x

x⊤
i x̂j (4.2)

where:

• x̂ is the set of tokens in the retrieved context.
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• x is the set of tokens in the ground-truth context.

• x⊤
i x̂j denotes the Cosine similarity between the contextual

embeddings of the i-th token in x and j-th token in x̂.

A higher BERTScore Precision indicates that the retrieved
content contains tokens that closely match the reference in
meaning.

BERTScore Recall

BERTScore Recall measures how well the ground truth context
x is covered by the retrieved context x̂. For each token in x,
the maximum Cosine similarity with any token in x̂ is computed.
Recall is then defined as the average of these maximum similarities.
Formally, BERTScore Recall or RBERT is defined as:

RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

x⊤
i x̂j (4.3)

where:

• x is the set of tokens in the ground-truth context.

• x̂ is the set of tokens in the retrieved context.

• x⊤
i x̂j denotes the Cosine similarity between the contextual

embeddings of the i-th token in x and the j-th token in x̂

respectively.

A higher BERTScore Recall indicates that the retrieved content
successfully covers the meaning expressed in the ground truth.

BertScore F1

BERTScore F1 combines Precision and Recall to provide a balanced
measure of how well the retrieved context x̂ aligns with the ground
truth context x. It is computed as the harmonic mean of PBERT and
RBERT. Formally, the BERTScore F1 or FBERT is defined as:

FBERT = 2× PBERT ×RBERT

PBERT +RBERT
(4.4)

where:
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• PBERT is the BERTScore Precision.

• RBERT is the BERTScore Recall.

4.4 RAGAS - LLM as a Judge Evaluation

Using an LLM to evaluate how well the retrieved context in a RAG
system supports answering a user query has become a popular
approach, with several RAG studies adopting it. This method
enables flexible, human-like evaluation of system performance.
Perhaps more importantly, it allows for evaluation of both the
retrieval and generation steps without requiring access to an
annotated dataset. Instead, the LLM uses only the query, the
generated answer, and the retrieved contexts as input. Well-crafted
prompts are then employed to guide the LLM in its evaluation.

Whilst BERTScore can measure retrieval performance by
assessing semantic similarity against ground-truth labels, it lacks
awareness of the specific context and intent of the user query.
Moreover, it requires access to annotated datasets, which limits its
applicability in scenarios where labeled data is unavailable or costly
to produce.

To address this limitation and provide another evaluation
dimension, we employed the RAGAS framework [51], which
leverages LLMs to assess the quality of RAG pipelines across
multiple dimensions. RAGAS adopts an LLM-as-a-judge paradigm
to evaluate whether the retrieved context adequately supports the
generated answer, even when surface-level string similarity is low.
The metrics used from RAGAS were: context precision without
ground-truth answer reference, context precision with ground-truth
answer reference, and context recall, as seen in listing 4.14. We
compute retrieval precision both with and without access to the
ground-truth answer using the RAGAS framework. This allows for
an assessment of whether RAGAS is able to accurately evaluate the
retrieval performance using only the query, answer and retrieved
context, i.e., without explicit access to ground-truth labels.

result = evaluate(
dataset = dataset,
metrics=[

context_precision_without_ref,
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context_precision_with_ref,
context_recall

]
)

Listing 4.14: RAGAS metrics

4.5 Token Usage

Requests sent to LLMs are typically broken down into tokens, which
represent units of text such as word fragments or characters. On
average, one token corresponds to approximately four characters
in English. Token usage is a critical factor in cost estimation, as
providers such as OpenAI charge based on the number of tokens
processed, both input tokens (e.g., prompt and retrieved context)
and output tokens (e.g., the generated response).

To evaluate the efficiency and economic feasibility of the
different RAG systems, token usage was recorded for each query
processed by each system. The OpenAI API provides detailed token
usage statistics, including the number of input, output, and total
tokens, as illustrated in Listing 4.15.

For Community-Graph RAG, token counts were accumulated
across all API calls made during the execution of a single query
to account for its multi-step retrieval and generation process. For
Recursive RAG, token usage related to the generation of sub-
queries was also included to ensure an accurate and comprehensive
measurement.

In the cost analysis (see Section 5.6), the recorded tokens per
query were used to estimate the cost of using each system in a
realistic deployment scenario. This analysis enables a comparative
assessment of the trade-off between system performance and cost-
efficiency.

input_tokens = response.usage.prompt_tokens
output_tokens = response.usage.completion_tokens
total_tokens = response.usage.total_tokens

Listing 4.15: Recording token usage
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4.6 Hardware Utilization

To complement the cost and performance analysis, system-level
resource usage was also monitored. Specifically, CPU and RAM
utilization were recorded at two-second intervals throughout the
execution of all 200 queries for each system. The Python
library, psutil, was used to measure CPU and memory usage.
This monitoring provides insight into the computational overhead
and memory demands associated with each RAG approach.
Furthermore, tracking hardware utilization helps identify potential
bottlenecks, assess scalability, and evaluate the suitability of each
system for deployment in environments with limited computational
resources.

cpu_usage = psutil.cpu_percent(interval=2)
ram_usage = psutil.virtual_memory().percent

Listing 4.16: Recording Hardware Utilization using psutil in Python
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Chapter 5

Results and Analysis

This chapter presents the results of the evaluation on the multi-hop
dataset for all four RAG systems. Section 5.1 reports the generation
accuracy of each system, including a detailed breakdown by query
type. Section 5.2 presents the BERTScores for the retrieval step,
along with the RAGAS scores. Section 5.3 evaluates the generation
accuracy of Community-Graph RAG when using a local search
algorithm. Section 5.4 summarizes the benchmarking results for
remaining metrics, including execution time, token usage, CPU
load, and memory consumption. Finally, Section 5.5 details the
token cost of knowledge graph construction, and Section 5.6
provides a cost analysis for each system.

5.1 Generation Accuracy

This section presents the evaluation results of the answer
generation accuracy for the RAG systems: Naive RAG, Graph
RAG, and Recursive RAG. Two main analyses were performed.
First, the overall accuracy of each system was measured to assess
their general performance across all queries. Second, a detailed
breakdown of the accuracy per query type was performed to
gain insights into the systems’ strengths and weaknesses across
different categories of questions.
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5.1.1 Overall Accuracy

Figure 5.1: Overall answer accuracy for naive RAG, Recursive RAG,
Community-Graph RAG (Global Search) and KG-Graph RAG

Figure 5.1 illustrates the overall generation accuracy of the four
RAG systems. As shown in the figure, KG-Graph RAG achieved the
highest overall accuracy at 77.0%, closely followed by Recursive
RAG at 76.5% and Naive RAG at 76.0%. Community-Graph RAG
exhibited noticeably lower performance, achieving an accuracy
of 61.5%. These results suggest that vector-based RAG systems
exhibited comparable or improved performance relative to Graph
RAG. Section 5.1.2, which presents a breakdown of accuracy by
query type, provides further insight into the factors underlying
these overall results. By analyzing each system’s performance
across different query categories, it becomes possible to better
understand the discrepancies in accuracy between the systems.
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5.1.2 Accuracy per Query Type

Figure 5.2: Accuracy detailed per query type for naive RAG,
Recursive RAG, Community-Graph RAG (Global Search) and KG-
Graph RAG

A more detailed analysis of answer accuracy across different query
types was performed for each system, as shown in Figure 5.4.
For null queries, KG-Graph RAG achieved the highest accuracy
at 92.0%. Naive RAG and Recursive RAG followed with similar
scores of 78.0% and 76.0%, respectively, while Community-Graph
RAG performed considerably worse at 28.0%. In comparison
queries, all systems performed similarly, with Recursive RAG
achieving the highest accuracy at 70.0%, followed by KG-Graph
RAG at 68.0%. For inference queries, Naive RAG achieved perfect
accuracy (100.0%), with Recursive RAG and KG-Graph RAG close
behind at 98.0% and 96.0%, respectively. Community-Graph RAG
lagged behind at 88.0%. Lastly, for temporal queries, Naive RAG
and Recursive RAG both achieved an accuracy of 62.0%, while
Community-Graph RAG performed slightly better at 64.0%. KG-
Graph RAG, in contrast to its strong performance on other query
types, recorded the lowest accuracy for temporal queries at 52.0%.
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5.2 Retrieval Accuracy

This section presents the results of the retrieval evaluation.
First, the retrieved context of each system was evaluated against
the gorund-truth context based on semantic similarity using
BERTScore. Furthermore, RAGAS, a framework that employs an
LLM for evaluation was used to provide an additional dimension
in our evaluation. For retrieval evaluation, null queries were
excluded, as they do not have an associated context. For KG-
Graph RAG, only the retrieved context from the vector-based search
was evaluated. The graph-derived context, composed of knowledge
triplets, was excluded due to repetition of entity names, which could
have artificially inflated BERTScore values.

5.2.1 BERTScore

Figure 5.3: Retrieval accuracy per RAG system measured with
BERTScore

Overall, Naive RAG, Recursive RAG and KG-Graph RAG had
almost identical scores across all BERTScore metrics, which can
be explained by the fact that they use semantic similarity-based
retrieval. Community-Graph RAG, on the other hand, had lower
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scores on all BERTScore metrics, with an F1 of 0.5768. This
result suggests that although Community-Graph RAG may leverage
a rich retrieval structure, it may also introduce noise or irrelevant
information that reduces the semantic match of the final retrieved
context in comparison to the ground-truth. An additional factor
that may have contributed to the lower score of Community-Graph
RAG is that the context it retrieves has undergone multiple layers of
LLM-based summarization, which may have introduced abstraction
or information loss that negatively impacted alignment with the
ground-truth.

5.2.2 RAGAS

Figure 5.4: RAGAS metrics for each RAG system

To further assess the quality of retrieved context, RAGAS metrics
were employed, namely Context Precision without Reference,
Context Precision with Reference, and Context Recall. These
metrics evaluate how relevant the retrieved context is in supporting
the final answer, with and without the ground-truth answer for
comparison.

Community-Graph RAG outperformed all other RAG systems
according to RAGAS scores, in contrast to the BERTScore metrics.
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It achieved the highest values in both context precision and recall
(around 70%), indicating that the context retrieved by Community-
Graph RAG aligns more closely with the information required to
answer the queries, both when evaluated independently and against
the ground-truth answers. The remaining three systems received
comparable scores, ranging from 49% to 54% across all metrics,
with KG-Graph RAG slightly ahead, followed by Naive RAG, and
finally Recursive RAG.

5.3 Community-GraphRAG Local Search

Figure 5.5: Community-Graph RAG accuracy achieved using local
search

Figure 5.5 details the accuracy achieved by Community-Graph RAG
using the local search algorithm. This experimental analysis was
conducted to explore whether local search performs better for
specific query types compared to global search. Specifically, our
hypothesis was that local search would have better accuracy on null
queries, as the search is conducted on lower-level, more detailed
communities (and their neighbors), which have summaries that
semantically match the user queries.

Local search achieved significantly better accuracy on null
queries, at 94%, making it the highest value among all constructed
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RAG systems. However, local search performed worse on all other
query types, especially temporal queries, with an accuracy of only
20%, bringing the overall accuracy to just 54%. Based on these
results, a hybrid search approach that can switch between local
and global search depending on the nature of the data or the query
type would likely yield more satisfactory results.

5.4 Other Metrics

This section presents the results of the resource consumption
metrics, including execution time, token usage, CPU utilization, and
memory consumption.

5.4.1 Query Execution Time

Figure 5.6: Average execution time per query for all RAG systems

Figure 5.6 illustrates the average execution time per query for
each of the implemented systems. KG-Graph RAG demonstrated
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the lowest response latency, averaging 1.76 seconds per query.
Naive RAG followed with an average response time of 3.85 seconds,
while Recursive RAG exhibited a higher latency of 13.64 seconds.
The system with the longest execution time was Community-Graph
RAG, averaging 94.24 seconds per query. This substantial delay
was primarily due to OpenAI’s rate limiting, which caused repeated
interruptions during query generation. As many API requests per
query were blocked, the system had to pause and retry after several
seconds, significantly increasing the overall execution time.

5.4.2 Token Usage

(a) Naive RAG (b) Recursive RAG

(c) Community-Graph RAG (d) KG-Graph RAG

Figure 5.7: Average token usage per query for each RAG system

As observed in Figure 5.7, Community-Graph RAG had
significantly higher token usage compared to all other RAG systems,
with an average of 314,439 tokens per query. The majority of these
tokens are input tokens, which aligns with the number of LLM calls
made to refine the community summaries. This result indicates that
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Community-Graph RAG is more resource-intensive in terms of token
consumption, due to its process of iterative summary refinement.
In contrast, KG-Graph RAG had the lowest token usage, with an
average of 1,521 tokens per query. Naive RAG followed with a total
token usage of 2,208 tokens, while Recursive RAG had a higher
token usage of 8,676 tokens. The latter’s increased token usage can
be attributed to the recursive nature of the system, where previous
context is passed to the model in each iteration.

5.4.3 Hardware Utilization

Figure 5.8: CPU and memory usage measured every 2 seconds for
Naive RAG

As shown in Figure 5.8, the CPU usage for Naive RAG fluctuates
between 2% and 12%, with occasional spikes reaching almost 20%.
In contrast, memory usage remains relatively stable, ranging from
approximately 50% to 54%. Overall, both CPU and memory usage
appear to be moderate throughout the evaluation.
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Figure 5.9: CPU and memory usage measured every 2 seconds for
Recursive RAG

Figure 5.9 illustrates the CPU and RAM usage for the Recursive
RAG system. Similar to Naive RAG, CPU usage fluctuates between
2% and 10%, with a greater concentration of values near the
lower bound compared to the Naive RAG system. The RAM usage,
however, exhibits a slight upward trend over the observed samples,
starting at around 31% and gradually increasing to approximately
34% by the end. This suggests that the memory footprint of
the Recursive RAG system increases as it processes more data or
performs additional recursive retrieval steps.

Figure 5.10: CPU and memory usage measured every 2 seconds for
Community-Graph RAG

Figure 5.10 shows the CPU and RAM usage for the Community-
Graph RAG system. The CPU usage ranges from 0% to 20%, with
a higher concentration of values near 0% compared to the other
systems. However, there are occasional spikes reaching up to 80%,
which are likely caused by graph traversal operations. In contrast,



64 |Results and Analysis

lower CPU usage is typically observed when the system is primarily
making OpenAI API calls. The memory usage remained consistent
between 33% to 34%.

Figure 5.11: CPU and memory usage measured every 2 seconds for
KG-Graph RAG

Figure 5.11 shows the CPU and RAM usage for the KG-Graph
RAG. The system showed stable CPU usage ranging between 5%
and 10%. Similarly, it showed stable RAM usage between 54% and
55%.

Overall, all four systems demonstrated moderate and man-
ageable resource usage, with some variation in usage patterns.
KG-Graph RAG showed the most consistent performance, while
Community-Graph RAG exhibited occasional CPU spikes, making it
more resource-sensitive during specific operations. These results
suggest that all systems operate efficiently within reasonable
hardware constraints.

5.5 Knowledge Graph Construction Cost

Table 5.1: Token usage statistics for knowledge graph construction

RAG System Input Tokens Output Tokens Total Tokens
KG-Graph RAG 2,178,000 620,508 2,798,508
Community-Graph RAG 8,496,200 1,768,000 10,264,200

Table 5.1 presents the token usage required to construct
the knowledge graphs for KG-Graph RAG and Community-Graph
RAG. Community-Graph RAG exhibited significantly higher token
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consumption, approximately 10 million tokens in total, compared
to around 3 million for KG-Graph RAG. This cost was incurred
while building the knowledge graphs from a corpus of only 157
documents, which is relatively small. In real-world applications,
the document corpus is likely to be substantially larger and
continuously growing.

Given the observed accuracy of Community-Graph RAG, its
higher tendency to hallucinate answers, and its substantial token
usage per query, the upfront cost may be difficult to justify,
especially in scenarios that demand fact-based answer generation
rather than broad summaries of the entire knowledge base. The
latter use case is more appropriate for Community-Graph RAG, as
noted in the Microsoft Graph RAG paper.

KG-Graph RAG, on the other hand, demonstrated both higher
accuracy and a lower hallucination rate than all other systems,
while incurring fewer tokens for both graph construction and
answer generation. This suggests strong potential for production
environments, particularly where the knowledge graph can be
further optimized (for example, by defining a focused set of entities
to extract based on the dataset). Such refinements could yield
even higher accuracy at a significantly reduced cost compared to
Community-Graph RAG.

The vector-based systems required no token consumption for
initial construction and still achieved accuracy levels comparable
to KG-Graph RAG.

5.6 Cost Analysis

Table 5.2: Average cost associated with each RAG system, using
OpenAI’s GPT4o mini

RAG System Graph Construction Cost Average Cost per Query
Naive RAG - $0.0003
Recursive RAG - $0.0015
KG-Graph RAG $0.6990 $0.0002
Community-Graph RAG $2.3352 $0.0481

In this section, we provide an analysis of the cost associated with
each of the four RAG systems considered in our study. Table 5.2
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outlines both the graph construction cost and the average cost per
query for each RAG system (using GPT4o mini). Naive RAG had the
lowest overall cost, followed by Recursive RAG. KG-Graph RAG had
the lowest average cost per query, although it incurred an initial
graph construction cost. Community-Graph RAG had the highest
overall cost, with a graph construction cost of $2.34 and a query
cost of $0.0481, making it the least cost-effective system.
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Chapter 6

Discussion

As presented in Chapter 5, KG-Graph RAG emerges as a
promising alternative to traditional vector-based RAG systems.
Although it slightly underperformed compared to Naive RAG and
Recursive RAG on certain query types, its ability to correctly
identify null queries and avoid generating hallucinated answers is
noteworthy, achieving an accuracy of 92%. Furthermore, KG-Graph
RAG exhibited the lowest token usage among all four systems,
consistently moderate hardware utilization, and fast query response
times.

Notably, KG-Graph RAG demonstrated near-perfect performance
on inference-based queries, indicating its strong reasoning
capabilities within the structured knowledge graph. However, its
performance on temporal queries was the weakest of the systems
evaluated. This may suggest that the constructed knowledge
graph struggled to preserve temporal relationships within the data.
Moreover, the initial cost of constructing the knowledge graph
represents a trade-off, although it may be justifiable in contexts
where minimizing hallucinations is of high importance.

Community-Graph RAG demonstrated comparable or improved
performance on comparison and temporal queries compared to
the other systems. This makes it a strong candidate for multi-
hop use cases, particularly those involving temporal reasoning.
However, the system exhibited a high hallucination rate, achieving
an accuracy of only 28%. It also had significantly higher token
usage per query, higher query latency, and a greater initial cost
for graph construction compared to KG-Graph RAG.
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While Community-Graph RAG shows potential for MHQA, these
strengths are offset by its overall low accuracy, which was the
lowest among all evaluated systems. The system may be better
suited for tasks that require longer and more comprehensive
answers that summarize information from the entire text corpus.
This is its intended use case, as highlighted in the Microsoft paper.
For QA tasks, the summarization-based retrieval approach seems to
introduce noise, which likely contributed to the high hallucination
rate and poor performance on inference queries.

This limitation is also reflected in the BERTScore of the retrieved
context, where Community-Graph RAG scored lower than the other
systems. Interestingly, RAGAS assigned it a higher score (around
20% higher than all other systems), possibly because it included
more context, which was interpreted as more comprehensive.
However, in the context of question answering, this additional
information appears to have misled the LLM, resulting in reduced
accuracy.

One approach to improving Community-Graph RAG’s accuracy
is to use a hybrid search strategy, where local search is applied
to null queries. Local search significantly reduced hallucinations
compared to global search, resulting in an overall performance that
is more comparable to the other evaluated systems.

Naive RAG and Recursive RAG, which performed similarly,
offered a reasonable trade-off between accuracy and cost. However,
both systems exhibited a higher hallucination rate compared to KG-
Graph RAG, which may be a critical factor in applications where
factual correctness is essential. Notably, both systems achieved
perfect or near-perfect accuracy on fact-based inference queries.
Additionally, they demonstrated low token usage (with Naive RAG
using nearly four times fewer tokens), along with moderate latency,
CPU, and memory consumption. These characteristics make the
vector-based RAG systems strong candidates for general-purpose
chatbots, where cost, ease of system construction, efficiency, and
responsiveness are prioritized over absolute factual precision.

The results presented in this thesis align with previous research
evaluating Naive RAG and Graph RAG. Prior work found that
Naive RAG excelled in fact-based retrieval, while Community-Graph
RAG demonstrated a greater tendency to hallucinate but achieved
higher accuracy in multi-hop retrieval. Additionally, it was similarly
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reported that KG-Graph RAG performed well on null queries [56].
This thesis extends these findings by offering a detailed analysis
of resource consumption, graph construction costs, and a more
nuanced evaluation of retrieval quality.
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Chapter 7

Conclusion and Future Work

This chapter summarizes the key findings of the thesis, discusses
its limitations, and outlines directions for future work and broader
reflections on the implications of the research.

7.1 Conclusion

This thesis presented a comparative evaluation of vector-based
and knowledge-graph-based RAG systems. Specifically, four RAG
systems were constructed: Naive RAG, Recursive RAG, KG-Graph
RAG, and Community-Graph RAG. These systems were evaluated
on an MHQA dataset. The benchmark assessed answer accuracy,
retrieval quality, and resource consumption for each system. Based
on the results, KG-Graph RAG emerged as a strong candidate due
to its high accuracy, low hallucination rate, and efficient resource
usage.

Although Naive RAG and Recursive RAG demonstrated higher
hallucination rates, they were still promising alternatives. These
systems were easy to construct, incurred no initial knowledge
base construction cost, and had moderate token usage, hardware
utilization, and response times. This makes them a favorable choice
for building general-purpose chatbots.

None of the evaluated systems achieved an overall accuracy
above 80 percent on the multi-hop queries. However, there is clear
potential for improving KG-Graph RAG to increase its accuracy.
For example, based on the specific dataset or use case, entities
and relationships could be more selectively defined and extracted
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during knowledge graph construction. This could make it easier
to capture key information. Furthermore, a hybrid system that
dynamically switches between retrieval approaches based on the
nature of the query or data could leverage the strengths of each
method, combining them into a single, more robust system.

7.2 Limitations

Despite the contributions of this thesis, several limitations should
be acknowledged.

First, due to economic constraints, the evaluation was conducted
on a relatively small dataset consisting of a limited number of multi-
hop questions and a small corpus for constructing the knowledge
base. In addition, the dataset was restricted to yes/no questions
and single-entity answers. A larger and more diverse dataset,
including queries that require longer and more elaborate answers,
would likely offer a more comprehensive assessment of system
performance.

Second, all evaluations were carried out using GPT-4o mini
as the sole LLM backend. While this allowed for consistent
comparisons, the results may vary when using other models with
different reasoning capabilities, token limits, or response behaviors.
Exploring alternative or more powerful LLMs, especially for the
knowledge graph construction phase, could improve accuracy and
yield interesting results.

Third, Community-Graph RAG showed promising results on
multi-hop and temporal queries, but it was only tested with
a single prompt configuration and minimal parameter tuning.
Further experimentation with prompt design, chunking strategy,
and recursive depth could improve its performance and reduce
hallucinations. The potential of this system was not fully explored
within the scope of this thesis.

Finally, the study focused on accuracy and resource consumption
metrics but did not evaluate user-facing factors such as latency
under high load or robustness to ambiguous or adversarial inputs.
These factors are crucial for real-world deployment and should be
explored further.
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7.3 Future Work

To improve the accuracy of the results and strengthen the findings
of this study, future work should consider using a larger dataset
paired with a corresponding text corpus. This would enable more
comprehensive evaluation of the generated answers using metrics
such as faithfulness and answer relevance.

Another promising direction for future research is to focus
on enhancing the performance of KG-Graph RAG. For example,
experiments could be conducted to refine the prompt engineering
techniques used to generate the knowledge graph. These prompts
could be tailored to extract specific entities and types of information
based on the task requirements and desired optimization goals.
Temporal queries, in particular, could benefit from prompting the
language model to pay closer attention to the sequencing and
timing of events, thereby improving its ability to reason over
temporally grounded information.

Lastly, hybrid systems that combine a Graph RAG implemen-
tation with a vector-based RAG approach may be well-suited for
certain use cases. Since Naive RAG excels at fact-based retrieval,
it could be used for fact-based inference queries. In contrast,
Graph RAG can be optimized for more complex, multi-hop reasoning
tasks. To support this, queries should first be classified into specific
types using a language model, and based on the classification, the
appropriate retrieval system would be used to generate the answer.

7.4 Reflections

This thesis project has several relevant economic, environmental
and ethical implications.

From an economic perspective, RAG systems can reduce
computational costs by limiting the need for large-scale fine-
tuning, and instead relying on models augmented with external
information. This can be particularly beneficial for organizations
with limited computational resources, lowering the barrier to
adopting LLM solutions. Moreover, this thesis highlights
the trade-off between accuracy and cost across different RAG
implementations, offering insights that support informed, cost-



Conclusion and Future Work | 73

effective decisions when selecting a suitable RAG strategy.
The environmental impact of LLMs is an increasingly important

concern. While RAG systems are more efficient than training
massive models from scratch or performing frequent fine-tuning,
they can still consume substantial energy with each query.
However, this thesis has helped shed light on the average cost per
query across different systems, offering a better understanding of
which approaches may be less sustainable and should potentially
be avoided in resource-constrained or environmentally sensitive
contexts.

From an ethical standpoint, it is crucial to ensure that the LLM
system does not produce hallucinated or false information. For this
reason, this study has evaluated each implemented RAG system’s
ability to accurately detect queries that are not supported by the
external knowledge source. In fields such as healthcare, finance, or
law, RAG systems with low hallucination rates are essential. They
can enhance efficiency without compromising the reliability and
trustworthiness of the information provided.
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